
A Tableaux-Based Decision Procedure

for Multi-parameter Propositional Schemata

David Cerna

Technical University of Vienna�, Austria
cernadavid1@logic.at

http://www.logic.at/people/cernadavid1/

Abstract. The class of regular propositional schemata, discovered by
Aravantinos et al. [4], is a major advancement towards more expres-
sive classes of inductive theorems with a decidable satisfiability prob-
lem. Though more expressive than previously known decidable classes
outlined by Kapur & Giesl[17], it still requires the burdensome restric-
tion of induction with only one free parameter. In general, unrestricted
usage of multiple free parameters in schematic formulae is undecidable
for satisfiability [2]. In later work, Aravantinos et al. [6] introduced nor-
malized clause sets which have a decision procedure for satisfiability and
allow for restricted usage of multiple parameters. In our work, we in-
vestigate classes of propositional schemata which allow for multiple free
parameters and are more expressive than regular schemata. Specifically,
the classes we investigate have a decision procedure for satisfiability
testing without requiring the additional theoretical machinery of normal-
ized clause sets. Thus, allowing one to avoid conversion to CNF formu-
lae. Both of the classes we introduce, linked schemata and pure overlap
schemata use the machinery introduced in the earlier works of Aravanti-
nos et al.[4] with only a slight change to the decision procedure.

1 Introduction

The concept of schema has been pervasive throughout the history of logic [14].
First-order Peano arithmetic’s usage of an induction schema is a well known
example of schema in mathematical logic [22]. There are many other less known
examples where schemata were used in both propositional and first-order logic
to attain proof theoretic results. For example, results pertaining to proof length,
unification, construction of ‘proof skeletons’, and first-order schematic Hilbert-
type systems [7,9,21,19,20]. Also, in the analysis of the Fürstenberg’s proof of
the infinitude of primes [8], cut elimination resulted in a schema of proofs where
the free parameter indexed the number of prime numbers. Very recently, work
has been done on schematizing cut-elimination so that an arbitrary number of
cuts can be eliminated without instantiating the free parameter of the proof [15].

The usage of schemata that we will focus on for the majority of this paper is
schemata as an object level construction iterating propositional formulae. This

� This work was funded by the Vienna PhD School of Informatics.

S.M. Watt et al. (Eds.): CICM 2014, LNAI 8543, pp. 61–75, 2014.
c© Springer International Publishing Switzerland 2014

http://www.logic.at/people/cernadavid1/
http://www.informatik.tuwien.ac.at/teaching/phdschool

62 D. Cerna

work was pioneered by Aravantinos et al. [4] with application to the field of
repeated circuit verification. This construction has also resulted in discoveries
in the field of inductive theorem proving, namely, construction of classes of in-
ductively defined formulae which have a decidable satisfiability problem and are
more expressive than those currently known in the field [4,17,18]. Namely, theses
classes are bounded-linear schemata, regular schemata, nested regular schemata,
and a multiple free parameter generalization of regular schemata through nor-
malized clause set representation, [6]. Decidable classes of inductive theorems
discovered by Kapur et al. [17,18], the most prominent work in this area, were
mainly universally quantified. Propositional schemata can express both bounded
existential and universal quantification through ∧ and ∨ iterations.

Our main results are formalizations of the class of linked schemata and pure
overlap schemata, both being multiple free parameter extension of regular schema,
together with a decision procedure for both classes. This decision procedure is a
simple extension of the ST procedure for STAB[4]. Our decision procedure allows
one to avoid the conversion of propositional schemata to normalized clause sets [6].
Our work is of a similar vein as Gentzen’s work [16] in which he provided a method
to fuse multiple inductions together in Peano arithmetic.

Though both classes of schemata we introduce are subclasses of the schemata
representable by normalized clause sets and benefit from the satisfiability pro-
cedure of normalized clauses sets [6], the existence of a tableaux-based decision
procedure for satisfiability testing for these classes remained an open problem.
The benefit of a tableaux-based decision procedure is that one does not need
to convert the propositional schemata into CNF form to test satisfiability. Note
that, if one wants to keep logical equivalence between the original formula and
the CNF form, the conversion can result in an exponential increase in formula
size.

In this paper, we consider multiple regular schemata (each with its own pa-
rameter) such that the propositional symbols of one schema are not found in the
other regular schemata. When this property holds, we can use the parts (i.e. the
iterations and propositional variables not found in the iterations) to construct
a formula with multiple free parameters–we refer to this class as the class of
linked schemata. Essentially, we build formulae using the pieces of several regu-
lar schemata. Although, this idea is quite simple, it provides a class of schemata
extending regular schemata which still has a tableaux-based decision procedure
for satisfiability.

Next we investigate when it is possible for the propositional symbols to oc-
cur in two or more linked regular schemata, i.e. the same propositional symbol
has occurrences indexed by two different parameters. To answer this question,
we develop the concept of relative pure literals, literals which are pure when
considering occurrences indexed by another parameter. This concept is used to
construct the class of pure overlap schemata.

Both linked and pure overlap schemata are extensions of regular schemata,
but after applying several tableaux extension rules to the constructed tableau,
It is possible to reduce the branches of the constructed tableau to tableaux

A Tableaux-Based Decision Procedure 63

branches which are decidable using the decision procedure for regular schemata.
Essentially, they are both propositional extensions of the class. It is not com-
pletely clear if these classes of schemata are the most expressive classes such
that their satisfiability problem can be reduced to the satisfiability problem for
regular schemata. An open problem regarding this point is whether the purity
constraint can be relaxed and retain the reduction– results of Aravantinos et al.
[4] (Thm. 6.2) suggests that this is not going to be the case.

Overall, our paper provides a simpler and more natural alternative to normal-
ized clause set representation when deciding satisfiability for certain classes of
multiple-parameter schemata.

The rest of this paper is structured as follows, Sec. 2 will be necessary back-
ground material from Aravantinos et al. [4], in Sec. 3 we formalize the construc-
tion of linked schemata, in Sec. 4 we formalize the construction of pure overlap
schemata , in Sec. 5 we provide a decision procedure for the satisfiability problem
of pure overlap schemata. Finally, in Sec. 6 we conclude the paper and shortly
discuss the open problems.

2 Background

2.1 Propositional Schemata

The indexing language for standard schematic propositional logic as considered
in Aravantinos et al. [4] is the set of linear arithmetic terms (denoted by Z)
built using the language {0, s(·),+,−} and a countably infinite set of variables
V . Multiplication is considered as a shorthand for terms of the form x+x+x+x =
4 ·x and is not a real operator in the language, nor is it a necessary one. To stick
to the framework of Aravantinos et al. [4] Z is considered as the standard model
of the terms in Z.

Definition 1 (Indexed Proposition[4]). Let P be a fixed and countably infi-
nite set of propositional symbols. An indexed proposition is an expression of the
form pa where p ∈ P and a ∈ Z. An indexed proposition pa s.t. a ∈ Z is called
a propositional variable.

Definition 2 (Formula Schemata[4]). The set of formula schemata is the
smallest set satisfying the following properties.

– ⊥,� are formula schemata.

– If a,b ∈ Z then a < b is a formula schema.

– Each indexed proposition is a formula schema.

– If φ1, φ2 are formula schemata then φ1 ∧ φ2, φ1 ∨ φ2, ¬φ1 are formula
schemata.

– If φ is a formula schema not containing <, and if a,b ∈ Z , where i is an
arithmetic variable, then

∧b
i=a φ,

∨b
i=a φ are formula schemata.

64 D. Cerna

Example 1. Consider the formula:

ϕ = q1 ∧
n∧

i=0

⎛

⎝pi+2n ∧
⎛

⎝
2n+1∨

j=n

¬qn−j ∨ qj+1

⎞

⎠

⎞

⎠ ∧ 0 ≤ n

ϕ is a formula schema.

Formula schemata are inherently finite. We will label the indexed propositions,
�, ⊥ and statements of the form a < b, as atoms. Formula schemata of the form∧b

i=a φ and
∨b

i=a φ will be called iterations. A formula schema whose constituents
are any of the following: �, ⊥, and a < b, is an arithmetic formula. Also, it is
taken as a standard that arithmetic formulae of the form a < b can only occur
outside of iterations. This constraint is necessary being that a < b is interpreted
as an iteration, i.e.

a < b ≡
b∨

i=a+1

� (1)

Also, we use a = b as an abbreviation for ¬(b < a) ∧ ¬(a < b) and a ≤ b as an
abbreviation for ¬(b < a). Iterations have both free and bound variables, where
free variable and parameter are synonymous. A bound variable i is a variable in
the scope of an iteration Πb

i=aφi where Π = {∨,
∧}. A substitution is a function

mapping all the free variables to linear expressions. If a substitution σ is applied
to a schema ϕ, i.e ϕσ such that the domain of σ is every free variable in ϕ, then
the linear expressions of ϕ are integer terms, i.e. all indices in ϕ are variable free.

Definition 3 (Interpretation [4]). An interpretation of the schematic lan-
guage is a function mapping every parameter to an integer and every proposi-
tional variable to a truth value T or F. The substitution and interpretation will
be denoted as σ and I, respectively.
Example 2. An Interpretation I such that ϕ from Ex. 1 is modelled by I would
be σ ≡ {n ← 0} and q1 = T, p0 = T, q0 = T, q−1 = T, q1 = F, q2 = T

Definition 4 (Semantics of Schematic Formulae [4]). The semantics of a
schematic formula ϕ in a given interpretation I, denoted by �ϕ�I , is defined as
follows:

– ���I = T and �⊥�I = F
– �a < b�I = T ⇔ �a�I <Z �b�I
– �Pa�I = I(P�a�I) for P ∈ P
– �¬ϕ�I = T ⇔ �ϕ�I = F
– �ϕ ∨ ψ�I = T ⇔ �ϕ�I = T or �ψ�I = T
– �ϕ ∧ ψ�I = T ⇔ �ϕ�I = T and �ψ�I = T

– �
∨b

i=a ϕi�I = T ⇔ ∃α ∈ Z such that �a�I ≤Z α ≤Z �b�I and �ϕi�I[α�i] = T

– �
∧b

i=a ϕi�I = T ⇔ ∀α ∈ Z , �a�I ≤Z α ≤Z �b�I implies �ϕi�I[α�i] = T

A Tableaux-Based Decision Procedure 65

In the above definition, by �ϕi�I[α�i] we mean every occurrence of i in ϕi is
replaced by α. A propositional schema ϕ is valid (respectively satisfiable) iff for
all (exists an interpretation) interpretations I s.t. �ϕ�I = T . I is called a model
of ϕ, written as I |= ϕ. Two schemata ϕ, ψ are equivalent (written ϕ ≡ ψ) iff
I |= ϕ ⇔ I |= ψ. ϕ and ψ are sat-equivalent (written ϕ ≡S ψ) iff ϕ and ψ are
both satisfiable or both unsatisfiable (not necessarily by the same model).

Definition 5 (Unrolling Iterations [4]). The following set S of rewrite rules
is used to unroll the iterations of a given schematic formula ϕ:

S =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∨b
i=a ψ −→ ⊥ a,b ∈ Z and b <Z a

∧b
i=a ψ −→ � a,b ∈ Z and b <Z a

∨b
i=a ψ −→

(∨b−̇1
i=a ψ

)
∨ ψ [b�i] a,b ∈ Z and a ≤Z b

∧b
i=a ψ −→

(∧b−̇1
i=a ψ

)
∧ ψ [b�i] a,b ∈ Z and a ≤Z b

(2)

By ≤Z we are referring to the standard ordering over the integers.

Definition 6 (Regular Schemata (as written in [4])). A propositional
schema φ is regular if it has a unique parameter n and if it is flat, of bounded
propagation and aligned on [α, n− β]:

1) A schema is flat if every Πb
i=aψ occurring in the schema ψ does not contain

an iteration, , where Π ∈ {∨,
∧}.

2) A schema is of bounded propagation if every atom that occurs in an iteration
Πb

i=aψ is of the form Pi+γ for some γ ∈ Z, where Π ∈ {∨,
∧} .

3) A schema is aligned on [c, d] if all iterations occurring in the schema are of
the form Πd

i=cψ, where Π ∈ {∨,
∧}.

Example 3. Consider the following schema:

ϕ = p0 ∧
(

n∧

i=0

¬pi ∨ pi+1

)

∧ ¬pn ∧ 0 ≤ n (3)

ϕ is a regular schemata.

2.2 Basics of STAB and the ST Procedure

We now overview the main ingredients of the ST decision procedure of the STAB
framework introduced in Aravantinos et al. [4]. In this paper, we only rely on the
existence of the ST procedure and the propositional tableaux extension rules to
define an extended decision procedure for our newly defined classes of schemata.

Definition 7 (Tableau). A tableau is a tree T s.t. each node N occurring in
T is labelled by a set of schemata written ΦT (N).

Definition 8 (Extension Rules). The extension rules of the STAB procedure
are as follows:

66 D. Cerna

Propositional Rules

• ϕ ∧ ψ ⇒ ϕ, ψ
• ϕ ∨ ψ ⇒ ϕ | ψ

Iteration Rules

• ∧b
i=a ϕ ⇒ a ≤ b, ϕ [b�i] ∧∧b−1

i=a ϕ
∣
∣
∣ b < a

• ∨b
i=a ϕ ⇒ a ≤ b, ϕ [b�i] ∨∨b−1

i=a ϕ

Closure Rule

• pa,¬pb ⇒ pa,¬pb, a �= b

The way the STAB extension rules work is by extending currently constructed
tableau with new leaves containing all the formulae of the prior node minus the
formula ϕ on which the extension rule was applied. The parts of ϕ will be added
to the leaves in accordance with the extension rule definitions. The symbol | in
the extension rules means that the constructed tableau branches when this rule
is applied. The closure rule, rather than extending the constructed tableau, tells
us that there is no need to extend the considered branch because it contains an
unsatisfiable sub-branch.

Theorem 1. There is a decision procedure for satisfiability testing of regular
schemata (ST procedure) based on the STAB extension rules (Def. 8) and an
additional rule to deal with looping, which terminates on every regular schema.
The procedure is sound and complete for regular schemata.

Example 4. We provide an example of the ST procedure producing a closed
tableau for the regular schema of example 3. Note that not every available for-
mula is passed down the constructed tableau in the diagram.

(1)

p0 ∧ (
∧n−1

i=0 ¬pi ∨ pi+1) ∧ ¬pn ∧ 0 ≤ n

p0, (
∧n−1

i=0 ¬pi ∨ pi+1),¬pn, 0 ≤ n

n �= 0
����

����
n ≥ 1

(
∧n−2

i=0 ¬pi ∨ pi+1)
¬pn−1 ∨ pn

�
��

�
��¬pn−1

�1

pn
×

n < 1
×

A Tableaux-Based Decision Procedure 67

The symbol �1 at the bottom of the left-most branch represents the looping
rule. Essentially it means that the branch at the denoted point is the same as
the branch at (1) (the top of the tableau), but for n − 1 instead of n. We will
not delve deeper into the theory behind the looping rule as we only rely on
the existence of such a rule for our procedure to work– for more details on the
looping we refer to [4].

Finally, we recall the following two concepts over a set Φ of schemata: the
interval constraints (IC(Φ)) and the conjunction of arithmetic formulae in Φ
(ΦZ). The formula IC(Φ) is the conjunction of the arithmetic formulaeminφ(i) ≤
i∧ i ≤ maxφ(i) for each φ ∈ Φ and for each bound variable in φ. We assume that
all bound variables are distinct in Φ and minφ(i) is defined as the minimal value
that can be assigned to the bound variable i, whereas maxφ(i) is the maximum
value that can be assigned to the bound variable i.

Definition 9 (Pure Literal). A literal pa (respectively ¬pa) is pure in a set
of schemata Φ iff for every occurrence of a literal ¬pb (respectively pb) in Φ, the
arithmetic formula ΦZ ∧ IC(Φ) ∧ a = b is unsatisfiable.

This definition will be modified to formalize the class of pure overlap schemata.

3 Linked Schemata

The class of linked schemata is an extension of regular schemata based on the
following observation:

(
n∧

i=1

pi

)

∧
⎛

⎝
m∨

j=n+1

¬pi
⎞

⎠ ≡S

(
n∧

i=1

pi

)

∧
⎛

⎝
m∨

j=1

¬qi
⎞

⎠ . (4)

Simply, we choose the interpretations such that �pn+k�I = �qk�I for k ∈ [1,m].
By the finiteness of the language, we can separate the integers into two distinct
parts, those greater than n and those less than n. Thus, the propositional variable
p in the interval [1, n] is invariant to the labelling of the propositional variable
in the interval [n+1,m]. They can share the same name or not, the assignment
will not influence the interpretations which model the schema. This observation
is similar to the reduction from monadic predicate logic with monadic function
symbols to monadic predicate logic without monadic function symbols, as out-
lined in Sec. 6.2 of “The Classical Decision Problem”[10].

3.1 Construction

The simplest way to understand the construction of the class of linked schemata
is that any regular schema consists of atoms (specifically, ones not contained
in iterations) and iterations. We will refer to these “parts” as the principal
objects, denoted by P(φ) of a schema φ. We consider sets Φ of regular schemata,
such that the propositional symbols are distinct with regards to the regular

68 D. Cerna

schemata in the set, i.e. if φ, ψ ∈ Φ and φ contains a propositional variable using
the symbol p then ψ cannot contain propositional variables using this symbol.
We can compute

⋃
φ∈Φ P(φ) without any propositional symbols occuring in two

iterations indexed by different free parameters. Using this set of “parts” and the
propositional connectives ¬, ∨ , and ∧ we can construct new formulae. The rest
of this section will be focused on the formalization of this concept.

Definition 10. Let p ∈ P be a propositional symbol and ϕ a formula schema,
then occ(p, ϕ) = 1 iff p occurs in ϕ, otherwise it is occ(p, ϕ) = 0

Definition 11 (principal Objects). Given a schema ϕ we can construct the
set of principal objects P(ϕ) using the following inductive definition:

• P(Pa) ⇒ {Pa}
• P(

∨b
i=a ψ) ⇒

{∨b
i=a ψ

}

• P(
∧b

i=a ψ) ⇒
{∧b

i=a ψ
}

• P(¬ψ) ⇒ P(ψ)
• P(φ ∨ ψ) ⇒ P(φ) ∪ P(ψ)
• P(φ ∧ ψ) ⇒ P(φ) ∪ P(ψ)

One can consider P(ϕ) as a specially constructed set of formula schema.

Example 5. Let use compute the set of principal objects of the following regular
schema:

ϕ ≡ (0 ≤ n) ∧ P0 ∧
n∧

i=1

(¬Pi−1 ∨ Pi) ∧ ¬Pn (5)

We get P(ϕ) = {(0 ≤ n), P0,
∧n

i=1 (¬Pi−1 ∨ Pi) , Pn}
We will abbreviate the set of propositional connectives used as O = {∧,∨,¬}.

By ψ ∈ clO(Φ), we mean that ψ can be constructed using the set of formula
schema Φ and the logical connective set O.

Example 6. Using the principal object set from Ex. 5 and the set of operators
O = {∧,∨,¬}, some of the formulae we can construct are:

ψ1 = (0 ≤ n) ∧ P0 ∧
n∧

i=1

(¬Pi−1 ∨ Pi) ∧ ¬Pn (6)

ψ2 = ((0≤n)∧P0∧
∧n

i=1(¬Pi−1∨Pi)∧¬Pn)∨((0≤n)∧¬P0∧
∧n

i=1(¬Pi−1∨Pi)∧Pn) (7)

It is not necessary that the constructed formulae are valid, satisfiable, or unsat-
isfiable. One can check that both ψ1, ψ2 ∈ clO(P(ϕ)).

Lemma 1. If ϕ is a regular schema, then all ψ ∈ clO(P(ϕ)) have the same
aligned interval as ϕ.

A Tableaux-Based Decision Procedure 69

Proof. Assuming that ϕ has an aligned interval [α, n− β], then any, of its parts
must have an aligned interval of at most [α, n− β] and are themselves regu-
lar schema. Thus, ψ is a boolean combination with the same aligned interval,
implying that its aligned interval must be the same. �

Using this simple result we will define the class of linked schemata, as follows.

Definition 12 (The class of Linked Schemata). Let us consider the class Λ
of all finite sets Φ of regular schemata such that for all propositional symbols p,

we have that
(∑

φ∈Φ occ(p, φ)
)
is either 1 or 0, we define the class LS of linked

schemata as

LS =
⋃

Φ∈Λ

clO

⎛

⎝
⋃

φ∈Φ

P(φ)

⎞

⎠

Lemma 2. If ϕ is a regular schema, then it is a linked schema.

Proof. By definition 12, we can consider the set Φ = {ϕ}, also, ϕ ∈ clO (P(ϕ)),
and thus, ϕ ∈ LS. �
Theorem 2. The class of regular schemata is contained but not equal to the
class of linked schemata.

Proof. We prove this by providing an example, see Ex. 7, of a linked schema
which is not a regular schema. �
Example 7. Let us consider Φ containing the following three regular schemata.
In what follows, we write A ↔ B as an abbreviation for (¬A ∨B) ∧ (¬B ∨ A):

ϕ1 =
k∨

i=1

¬Pi ∧ ¬
k∨

i=1

¬Pi (8a)

ϕ2 =

m∨

i=1

Qi ∧
m∨

i=1

Ri ∧
m∧

i=1

Qi ↔ Ri (8b)

ϕ3 =
n∧

i=1

Mi (8c)

We can construct the following LS formula using Φ:

((
k∨

i=1

¬Pi →
m∨

i=1

Qi

)

∧
(

m∨

i=1

Ri →
n∧

i=1

Mi

)

∧
m∧

i=1

(Qi ↔ Ri)

)

→
(

k∨

i=1

¬Pi →
n∧

i=1

Mi

)

.

(9)

Formula 9 gives a formalization of the composition of certain boolean functions
when one function’s range has the same number of bits as another function’s
domain. This formula is obviously not regular, but it is linked. This concludes
the proof of Thm. 2.

70 D. Cerna

4 Pure Overlap Schemata

In this section we show how one can weaken the restriction that propositional
symbols occur indexed by only one parameter. Consider the following formula
schema ψ:

0 ≤ n ∧
(

n∧

i=0

pi

)

∨
(

m∧

i=0

¬pi
)

∧ 0 ≤ m (10)

It is not a linked schema because p occurs indexed by two different parameters,
however, using the tableaux extension rule for propositional ∨ we see that the
occurrences are handled by two different branches, thus each parameter can be
handled separately. It is also important to note that

0 ≤ n ∧
(

n∧

i=0

pi

)

∨
(

m∧

i=0

¬qi
)

∧ 0 ≤ m (11)

Replacing p with q in Eqn. 10 results in Eqn. 11, which changes the formula
from valid to satisfiable (only when 0 ≤ n,m). Thus, we cannot reduce this
formula to linked schemata without changing its semantic properties. To deal
with this problem we introduce relatively pure literals, based on the observation
that if the negation of a literal occurs in the same branch indexed by a different
parameter then the literal must not be of arithmetic importance. We then show
that relatively pure literals can be dropped without effecting satisfiability of the
considered pure overlap schemata.

4.1 Construction

We first introduce the notion of relatively pure literals and detail the construction
of pure overlap schemata.

Definition 13 (Iteration Invariant DNF (IIDNF)). The Iteration Invari-
ant disjunctive normal form of a linked schema is a schema of the form:

(ϕ1,1 ∧ · · · ∧ ϕ1,n1) ∨ · · · ∨ (ϕm,1 ∧ · · · ∧ ϕm,nm)

where m,n1, · · · , nm ∈ N (note they are not free parameters, but rather meta
variables) and ϕi,j is either an iteration, an atom, or negated atom. We will
refer to the formula (ϕi,1 ∧· · · ∧ϕi,ni) as clauses Ci for i ∈ [1,m], That is, given
a formula ϕ in IIDNF we will write Ci ∈ ϕ as the ith clause of ϕ.

Lemma 3. Given a set of regular schemata Φ, for all ψ ∈ clO
(⋃

φ∈Φ P(φ)
)

there exists an IIDNF of ψ.

Proof. Since, iterations are not unfolded in the creation of an IIDNF form of ψ,
the problem reduces to showing that all propositional formulae have a DNF form,
which is a well known result. Also, it is possible to put a regular schemata into
Negation Normal Form (NNF) because negation can be passed over iterations,

i.e ¬∧b
i=a φi ≡|=

∨b
i=a ¬φi and ¬∨b

i=a φi ≡|=
∧b

i=a ¬φi. �

A Tableaux-Based Decision Procedure 71

Definition 14 (Relatively Pure Literal). Given a set of regular schemata

Φ, let ψ ∈ clO
(⋃

φ∈Φ P(φ)
)

and ψ′ be the IIDNF of ψ. A literal pa (¬pa) is

relatively pure in ψ iff for every clause C ∈ ψ′ and for any two distinct regular
schemata ϕ1, ϕ2 ∈ Φ used to construct ψ, where pa ∈ C (¬pa ∈ C), ¬pb ∈ C
(pb ∈ C), pa ∈ ϕ1 (¬pa ∈ ϕ1) and ¬pb ∈ ϕ2 (pb ∈ ϕ2), the arithmetic formula
ΦZ ∧ IC(Φ) ∧ a = b is unsatisfiable, where Φ = P(C).

Example 8. Consider the schemata:

¬(5 < n) ∧
(

n∧

i=0

pi

)

∧
⎛

⎝
m∧

j=6

¬pi
⎞

⎠ ∧ 0 ≤ m (12)

The literal pi (¬pi) is relatively pure in this example.

We will refer to a schema as relatively pure if all the literals in the schema are
either relatively pure or in the IIDNF of the schema they only occur in clauses
being indexed by a single parameter. The non-IIDNF form of a relatively pure
schema is also relatively pure. Given a set of regular schemata Φ, let clrpO (Φ) be
the set of all schema which can be constructed using the logical connectives O
such that they are relatively pure.

Definition 15 (The class of Pure Overlap Schemata). Let us consider
the class Λ of all finite sets Φ of regular schemata. We define the class of pure
overlap schemata as

POS =
⋃

Φ∈Λ

clrpO

⎛

⎝
⋃

φ∈Φ

P(φ)

⎞

⎠

It should be noted that even though the definition of relatively pure literals uses
the IIDNF of a positional schema it is not the case that members of POS must
be in IIDNF.

Example 9. Both Ex. 8 and Eqn. 10 are in the class of pure overlap schemata.

Lemma 4. If ϕ is a linked schema, then it is a pure overlap schema.

Proof. A linked schema is a pure overlap schema where each propositional vari-
able is indexed by only one parameter. �

Theorem 3. The class of linked schemata is contained but not equal to the class
of pure overlap schemata.

Proof. Eqn. 10 is a pure overlap schema but not a linked schema. �

5 A Decision Procedure for POS

We now introduce a decision procedure for the class POS of schemata, by using
and extending results of [4], as follows.

72 D. Cerna

Algorithm 1 (STPOS Procedure). Given a schema ϕ ∈ POS in negation
normal form. The following algorithm, called the STPOS procedure, decides the
satisfiability of ϕ:

1) Apply STAB propositional extension rules with highest priority until no more
can be applied. This results in m sets of atoms and iterations referred to as
B1, . . . , Bm.

2) For each Bi, we separate Bi into n (the number of parameters in Bi) sub-
branches B(i,1), · · ·B(i,n), where each B(i,j) contains iterations and atoms
indexed by a single parameter. Atoms without a free parameter in the indices
can be added to every B(i,j). We will mark such a sub-branching with ⊗n

where n is the number of parameters on the branch.
3) Run the ST procedure on the sub-branch B(i,j).
4) For any branch Bi, if one of its sub-branches B(i,j) has a closed tableau after

following the ST procedure, then the branch Bi is closed.

Let us make the following observation about the STPOS decision procedure.
When it comes to constructing the interpretation for a formula in POS we
specifically defined the class such that the procedure to construct the model
would be precisely the procedure used for regular schemata, except the num-
ber of possible models would increase. For linked schemata this is obvious, the
propositional symbols are distinct in every sub-branch. However, for pure overlap
schemata two distinct sub-branches (of the same branch) can contain the same
propositional symbol, but by Def. 14 the occurrences are distinct from each other
arithmetically if one occurrence is negated and the other occurrence is not. Thus,
when a propositional symbol occurs on two distinct sub-branches and the two
occurrences are not arithmetically distinct, the two occurrences must be of the
same polarity. In this case when one sub-branch forces the propositional variable
using the positional symbol to be true (false in the case of a negated literal), the
other sub-branches will also interpret this literal as true. In some sense one can
consider it as a local tautology which can be removed from consideration when
constructing the model.

Theorem 4. The STPOS procedure terminates for POS.

Proof. The key to the termination is that we only need to decompose the mem-
bers of POS using the procedure outlined above. This decomposition process
always terminates being that we are, up to this point, only applying propositional
tableaux extension rules. When the formulae are completely decomposed we use
the ST procedure on each sub-branch. The procedure is known to terminate for
regular schemata [4] and each of the sub-branches is regular. �

In regards to the soundness and completeness of STPOS the procedure, it
was shown that STAB is sound and complete for all propositional schemata [4]
(Sec. 5.4). The propositional schemata we introduce in this paper are constructed
using exactly the same language as in the work by Aravantinos et al. [4] Our
extension of STAB with the sub-branching rule does not change the soundness
and completeness results being that the sub-branching rule, rather than being an

A Tableaux-Based Decision Procedure 73

additional tableaux rule, is more a method to enforce termination. It essentially
states that instead of considering the given branch as a whole we consider it in
parts using the same tableaux rules introduced for STAB in prior work.

Theorem 5. The STPOS decision procedure is sound and complete for all propo-
sitional schemata ψ ∈ POS.

Example 10. We conclude this section by illustrating our STPOS decision pro-
cedure on the following formula ψ:

p0 ∧
(((∧k

i=0 ¬qi
)
∨
(∧n

i=0 ¬pi ∨ pi+1

)
∧ ¬pn+1

)
∨

((∧m
i=0 ¬pi−1 ∨ pi

)
∧ pm+1 ∧ ¬qw+3

))

Applying STPOS on the above formula, we obtain the following branching tree
(corresponding to the run of STPOS):

p0∧
(((

∧k
i=0 ¬qi) ∨ (

∧n
i=0 ¬pi ∨ pi+1) ∧ ¬pn+1)∨

((
∧m

i=1 ¬pi−1 ∨ pi) ∧ pm+1 ∧ qw+3))

p0,

(((
∧k

i=0 ¬qi) ∨ (
∧n

i=0 ¬pi ∨ pi+1) ∧ ¬pn+1)∨
((
∧m

i=1 ¬pi−1 ∨ pi) ∧ pm+1 ∧ qw+3))
����������

����������
p0

((
∧k

i=0 ¬qi)∨
(
∧n

i=0 ¬pi ∨ pi+1) ∧ ¬pn+1)

⊗2�����
					

p0
(
∧k

i=0 ¬qi)
ST

p0
(
∧n

i=0 ¬pi ∨ pi+1)
,¬pn+1

ST on Ex.4

p0
((
∧m

i=1 ¬pi−1 ∨ pi)∧
pm+1 ∧ qw+3)

p0
(
∧m

i=1 ¬pi−1 ∨ pi)
, pm+1, qw+3

⊗2����
����

p0
(
∧m

i=1 ¬pi−1 ∨ pi)
pm

ST

p0, qw+3

ST

Interesting result of this derivation is that the assignment to w influences the
interpretation modelling the formula. If an interpretation I assigns q−1 = T ,q0 =
F ,p0 = T ,p−1 = F , p5 = F ,w ← −4 , n ← −2 , k ← 0, and m ← 5 then I |= ψ.
But if I assigns to n ← 0 keeping the same propositional variable assignments,
then I �|= ψ.

74 D. Cerna

6 Conclusion and Future Work

In this work we have shown that the ST procedure of Aravantinos et al. [4]
can be extended to handle more expressive classes of schemata which allow for
restricted use of multiple free parameters. The two classes shown, though their
construction is awkward, are simple to conceptually understand and work with.
Also, neither requires the heavy machinery of normalized clause sets, nor do the
classes require a conversion of the schemata into a clausal normal form. Also,
the introduced decision procedure STPOS is sound, complete, and terminates for
all propositional schemata in the class POS. Though an advantage normalized
clause sets have over both of the introduced classes of schemata is that they
can handle propositional variables being indexed by multiple free parameters
without restriction. This is one of the significant advantages to separating the
propositional part from the equational part, and using a levelled resolution cal-
culus. When it is not required to have unrestricted usage of the propositional
variables it suffices to use STAB. This also has the added value of compression
being that it is possible for clausal form to result in an exponential increase in
the size of the formula.

As for future work, further increase in expressivity by relaxing the purity
constraint does not seem feasible as this would require two parameters to be
active in the same branch. This is when the undecidability result for proposi-
tional schemata [4] stops us in our tracks. However, investigating how the new
classes outlined here can interact with the class of regular nested schemata [3]
could lead to new expressivity results. In particular, we are interested in the re-
lationship between alternation-free μ-calculus [11] and such a class of schemata.
Also, Aravantinos et al. [5] investigated the relationship between LTL and reg-
ular schemata. Being that pure overlap schemata are a super class of regular
schemata it is quite possible that a more expressive temporal logic is related to
pure overlap schemata or linked schemata. In either case this work has broaden
the scope of application of propositional schemata.

Acknowledgements. I would like to give special thanks to Daniel Weller1

and Alexander Leitsch2 for their help with constructing a concise mathematical
formalism, as well as Giselle Reis 3 for help with editing of the formalisms.

References

1. Aczel, P.: An introduction to inductive definitions. In: Barwise, J. (ed.) Handbook
of Mathematical Logic. Studies in Logic and the Foundations of Mathematics,
vol. 90, pp. 739–782. Elsevier (1977)

2. Aravantinos, V., Caferra, R., Peltier, N.: A schemata calculus for propositional
logic. In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS, vol. 5607, pp.
32–46. Springer, Heidelberg (2009)

1 http://www.logic.at/staff/weller/index.html
2 http://www.logic.at/people/leitsch/
3 http://www.logic.at/staff/giselle/

http://www.logic.at/staff/weller/index.html
http://www.logic.at/people/leitsch/
http://www.logic.at/staff/giselle/

A Tableaux-Based Decision Procedure 75

3. Aravantinos, V., Caferra, R., Peltier, N.: A decidable class of nested iterated
schemata. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 293–
308. Springer, Heidelberg (2010)

4. Aravantinos, V., Caferra, R., Peltier, N.: Decidability and undecidability results
for propositional schemata. J. Artif. Int. Res. 40(1), 599–656 (2011)

5. Aravantinos, V., Caferra, R., Peltier, N.: Linear temporal logic and propositional
schemata, back and forth. In: Proceedings of the 2011 Eighteenth International
Symposium on Temporal Representation and Reasoning, TIME 2011, pp. 80–87.
IEEE Computer Society, Washington, DC (2011)

6. Aravantinos, V., Echenim, M., Peltier, N.: A resolution calculus for first-order
schemata. Fundamenta Informaticae (2013)

7. Baaz, M.: Note on the generalization of calculations. Theoretical Computer Sci-
ence 224(1-2), 3–11 (1999)

8. Baaz, M., Hetzl, S., Leitsch, A., Richter, C., Spohr, H.: Ceres: An analysis of
Fürstenberg’s proof of the infinity of primes. Theor. Comput. Sci. 403(2-3), 160–
175 (2008)

9. Baaz, M., Zach, R.: Short proofs of tautologies using the schema of equivalence. In:
Börger, E., Gurevich, Y., Meinke, K. (eds.) CSL 1993. LNCS, vol. 832, pp. 33–35.
Springer, Heidelberg (1994)

10. Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Springer
(1997)

11. Bradfield, J.C.: The modal mu-calculus alternation hierarchy is strict. In: Monta-
nari, U., Sassone, V. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 233–246. Springer,
Heidelberg (1996)

12. Comon, H.: Inductionless induction. In: Robinson, J.A., Voronkov, A. (eds.) Hand-
book of Automated Reasoning (in 2 volumes), pp. 913–962. Elsevier and MIT Press
(2001)

13. Cooper, D.: Theorem proving in arithmetic without multiplication. Machine Intel-
ligence (1972)

14. Corcoran, J.: Schemata: The concept of schema in the history of logic. Bulletin of
Symbolic Logic (2), 219–240

15. Dunchev, C., Leitsch, A., Rukhaia, M., Weller, D.: Ceres for first-order schemata.
CoRR, abs/1303.4257 (2013)

16. Gentzen, G.: Fusion of several complete inductions. In: Szabo, M.E. (ed.) The
Collected Papers of Gerhard Gentzen. Studies in Logic and the Foundations of
Mathematics, vol. 55, pp. 309–311. Elsevier (1969)

17. Giesl, J., Kapur, D.: Decidable classes of inductive theorems. In: Goré, R.P., Leitsch,
A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 469–484. Springer,
Heidelberg (2001)

18. Kapur, D., Subramaniam, M.: Extending decision procedures with induction
schemes. In: McAllester, D. (ed.) CADE-17. LNCS, vol. 1831, pp. 324–345.
Springer, Heidelberg (2000)

19. Kraj́ıček, J., Pudlák, P.: The number of proof lines and the size of proofs in first
order logic. Archive for Mathematical Logic 27(1), 69–84 (1988)

20. Orevkov, V.P.: Proof schemata in Hilbert-type axiomatic theories. Journal of Soviet
Mathematics 55(2), 1610–1620 (1991)

21. Parikh, R.J.: Some results on the length of proofs. Transactions of the American
Mathematical Society 177, 29–36 (1973)

22. Takeuti, G.: Proof Theory. Studies in logic and the foundations of mathematics,
vol. 81. American Elsevier Pub. (1975)

	A Tableaux-Based Decision Procedurefor Multi-parameter Propositional Schemata
	1 Introduction
	2 Background
	2.1 Propositional Schemata
	2.2 Basics of STAB and the ST Procedure

	3 Linked Schemata
	3.1 Construction

	4 Pure Overlap Schemata
	4.1 Construction

	5 A Decision Procedure for POS
	6 Conclusion and Future Work
	References

