
Stephen M. Watt James H. Davenport
Alan P. Sexton Petr Sojka
Josef Urban (Eds.)

 123

LN
AI

 8
54

3

International Conference, CICM 2014
Coimbra, Portugal, July 7–11, 2014
Proceedings

Intelligent
Computer Mathematics

Lecture Notes in Artificial Intelligence 8543

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

Stephen M. Watt James H. Davenport
Alan P. Sexton Petr Sojka
Josef Urban (Eds.)

Intelligent
ComputerMathematics

International Conference, CICM 2014
Coimbra, Portugal, July 7-11, 2014
Proceedings

13

Volume Editors

Stephen M. Watt
The University of Western Ontario
London, ON, Canada
E-mail: stephen.watt@uwo.ca

James H. Davenport
University of Bath, UK
E-mail: j.h.davenport@bath.ac.uk

Alan P. Sexton
University of Birmingham
Edgbaston, Birmingham, UK
E-mail: a.p.sexton@cs.bham.ac.uk

Petr Sojka
Masaryk University
Brno, Czech Republic
E-mail: sojka@fi.muni.cz

Josef Urban
Radboud University Nijmegen
GL Nijmegen, The Netherlands
E-mail: josef.urban@gmail.com

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-08433-6 e-ISBN 978-3-319-08434-3
DOI 10.1007/978-3-319-08434-3
Springer Cham Heidelberg NewYork Dordrecht London

Library of Congress Control Number: 2014941699

LNCS Sublibrary: SL 7 – Artificial Intelligence

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of thework.Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

As computers and communications technology advance, greater opportunities
arise for intelligent mathematical computation. While computer algebra,
automated deduction, mathematical publishing and mathematical user interfaces
individually have long and successful histories, we are now seeing increasingly
fruitful interaction among these areas. For the past several years, the Confer-
ences on Intelligent Computer Mathematics (CICM) event has been a primary
venue for discussing these areas and their interplay.

CICM was first held as a joint meeting in 2008, co-locating related conferences
and workshops, and has been held annually since, evolving to a multi-track
conference. Previous CICM meetings have been held in Birmingham (UK 2008),
Grand Bend (Canada 2009), Paris (France 2010), Bertinoro (Italy 2011), Bremen
(Germany 2012) and Bath (UK 2013). This volume contains the papers presented
at CICM 2014, held 7–11 July 2014 at the University of Coimbra, Portugal.

The CICM 2014 meeting was organized with five invited presentations, four
main tracks, a number of workshops, a doctoral mentoring program and an
informal track to share work in progress. The program of the meeting, as well as
additional materials, have been made available at http://cicm-conference.

org/2014/cicm.php.

Invited Speakers

The meeting was pleased to have five distinguished invited speakers to making
presentations on a set of subjects, each touching on several CICM topics. Each
of the invited speakers has been kind enough to provide a record in this volume:

– Yves Bertot, Inria, “Links between homotopy theory and type theory”

– Jaime Carvalho e Silva, University of Coimbra, “What international stud-
ies say about the importance and limitations of using computers to teach
mathematics in secondary schools”

– António Leal Duarte, University of Coimbra, “Teaching tiles”

– Herbert Van de Sompel, Los Alamos National Laboratory, “Towards robust
hyperlinks for web-based scholarly communication”

– Eric Weisstein, Wolfram|Alpha,“Computable data, mathematics, and digital
libraries in Mathematica and Wolfram|Alpha”

The presentations of Yves Bertot and António Leal Duarte are represented by
abstracts following this preface, while those of Jaime Carvalho e Silva, Herbert
Van de Sompel and Eric Weisstein are recorded in these proceedings as full
invited papers. The invited presentation of António Leal Duarte was held jointly
with the 10th International Workshop on Automated Deduction in Geometry.

VI Preface

Main tracks

The main tracks of the CICM meeting this year were Calculemus, Digital Math-
ematics Libraries (DML), Mathematical Knowledge Management (MKM), and
Systems and Projects (S&P).

The Calculemus track of CICM examines the integration of symbolic compu-
tation and mechanized reasoning. This year, the track continued the tradition
of eliciting and publishing papers on the boundary of theorem-proving and com-
puter algebra, using a variety of tools, often within individual contributions as
well as across the range. A novelty this year was the papers applying symbolic
reasoning, viewed broadly, to new application areas.

The Digital Mathematics Libraries track has evolved from the DML workshop
series as a forum for the development of math-aware technologies, standards, al-
gorithms and processes towards the fulfillment of the dream of a global DML.
As in previous years, a blended mix of papers by computer scientists (D), math-
ematicians (M) and librarians of the digital age (L) was accepted to complement
the DML related reports and papers in the S&P and MKM tracks, and an invited
paper by Herbert Van de Sompel on the topic of robust scholarly communication
in the digital era.

The Mathematical Knowledge Management track of CICM is concerned with
all aspects of managing mathematical knowledge in the informal, semi-formal,
and formal settings. This year a relatively large number of the MKM papers were
devoted to novel methods for managing formal mathematical libraries developed
with proof assistants such as HOL Light, Mizar, Isabelle and Coq. This was
complemented by papers devoted to search over informal mathematical corpora,
querying repositories of geometric knowledge, and integration of MKM services
into user applications. A number of MKM-related system and project descrip-
tions were also submitted to the Systems and Projects track of CICM. The track
featured an invited talk by Yves Bertot on the relation between homotopy theory
and type theory.

The Systems and Projects track provides a medium to present short descrip-
tions of existing systems or on-going projects in the areas of the other tracks of
the conference. All accepted papers in this track were presented in the conference
via short talks, posters and, most importantly, demonstrations, thus providing
a hands-on view of the developments and applications in this field. This year
the three other tracks were well represented with very high quality submissions,
testifying to the vibrancy of practical and applied work in the areas of math-
ematical knowledge management, theorem proving and computer algebra, and
digital mathematics libraries.

Prior to the creation of the CICM, two of the present tracks already had
a significant history: there had been 15 previous Calculemus meetings and 6
MKM conferences. In 2007, when Calculemus and MKM were held together in
Hagenberg, Austria, as part of the RISC Summer, it was decided to continue
to hold these meetings together. This led to the first CICM in 2008. The DML
track has been present since that first CICM, at first as a workshop, and the
Systems and Projects track was added in 2011.

Preface VII

This year there were 55 articles submitted for consideration in response to
the call for papers. Of these, 41 were full papers submitted to the Calculemus,
DML and MKM tracks, and 14 were short descriptions submitted to the Systems
and Projects track. A small number of papers were moved between tracks when
it was felt there would be a more natural fit. Each submission received at least
three reviews, and in several cases one or two further opinions were obtained. The
review cycle included a response period, in which authors could clarify points
raised by the referees. This made for a highly productive round of deliberations
before the final decisions were taken. In the end, the track Program Committees
decided to accept 26 full papers and 9 Systems and Projects descriptions.

The Program Committee work for the main tracks was managed using the
EasyChair system. This allowed Committee members to declare actual or po-
tential conflicts of interest, and thereby be excluded from any deliberations on
those papers. Submissions on which track chairs had conflicts were handled by
the general program chair. In this way, Committee members could (and did!)
submit papers for consideration without compromising the peer review process.

Workshops and Related Programs

As in previous years, several workshops and informal programs were organized
in conjunction with the CICM. This year these were:

– CICM Doctoral Program, providing a dedicated forum for PhD students to
present their on-going or planned research and receive feedback, advice and
suggestions from a dedicated research advisory board.

– CICM Work-in-Progress Session, a forum for the presentation of original
work not yet in a suitable form for communication as a formal paper.

– Workshop on Mathematical User Interfaces to share ideas and experiences
on how users interact with mathematics represented on a computer.

– OpenMath Workshop, centered on the refinement of the OpenMath data
language for the exchange of mathematical expressions, its deployment in
various contexts, and developing mathematical “content dictionaries”.

– Workshop on The Notion of Proof, devoted to discussions on the state-of-the-
art of automated theorem proving from the computer science, mathematical
and philosophical points of view, with a special emphasis on proof checking,
proof representation and the intuitive notion of mathematical proof.

– ThEdu 2014: Theorem Proving Components for Educational Software, with
the goal to combine and focus systems from theorem proving, computer
algebra and dynamic geometry to enhance existing educational software and
the design of the next generation of mechanised mathematics assistants.

Appreciation

We thank all those who have contributed to this meeting. We are grateful for
the support of our generous Portuguese sponsors — the Center for Informatics

VIII Preface

and Systems of the University of Coimbra (CISUC), the Center for Research
and Development in Mathematics and Applications (CIDMA) of the University
of Aveiro, the Fundação para a Ciência e a Tecnologia (FCT) of the Ministério
da Educação e Ciência — and of Maplesoft. We thank Andrei Voronkov for the
EasyChair system which we found indispensable, and for his amazing respon-
siveness in dealing with it. Most fundamentally, we thank the invited speakers,
the contributing authors, the referees, the members of the Program Committee
and the local organizers, all of whose efforts contributed to the practical and
scientific success of the meeting.

May 2014 Stephen M. Watt
James H. Davenport

Alan P. Sexton
Petr Sojka

Josef Urban

Organization

CICM Steering Committee

Serge Autexier (Publicity/Workshop Officer)
Thierry Bouche (DML Delegate)
Jacques Carette (CICM PC Chair 2013)
Bill Farmer (Treasurer)
Michael Kohlhase (Secretary)
Florian Rabe (MKM Delegate)
Renaud Rioboo (Calculemus Delegate)
Stephen Watt (CICM PC Chair 2014)

CICM 2014 Organizing Committee

General Program Chair

Stephen M. Watt

Local Arrangements Chair

Pedro Quaresma

Calculemus Track Chair

James H. Davenport

DML Track Chair

Petr Sojka

MKM Track Chair

Josef Urban

S&P Track Chair

Alan P. Sexton

Doctoral Program Chair

David Wilson

Publicity and Workshops Chair

Serge Auxtexier

X Organization

CICM 2014 Local Arrangements Committee

Reinhard Kahle New University of Lisbon, Portugal
Pedro Quaresma University of Coimbra, Portugal
Eugénio Rocha University of Aveiro, Portugal
Vanda Santos CISUC Coimbra, Portugal
Carlota Simões University of Coimbra, Portugal

Calculemus Track Program Committee

James H. Davenport University of Bath, UK
Matthew England University of Bath, UK
Dejan Jovanović New York University, USA
Laura Kovacs Chalmers University of Technology, Sweden
Assia Mahboubi Inria, France
Adam Naumowicz University of Bia�lystok, Poland
Grant Passmore University of Cambridge and University

of Edinburgh, UK
Florian Rabe Jacobs University Bremen, Germany
Claudio Sacerdoti Coen University of Bologna, Italy
Freek Wiedijk Radboud University Nijmegen,

The Netherlands

DML Track Program Committee

Akiko Aizawa National Institute of Informatics, Japan
�Lukasz Bolikowski ICM, University of Warsaw, Poland
Thierry Bouche Université Joseph Fourier, Grenoble, France
Yannis Haralambous Inst. Mines-Télécom/Télécom Bretagne &

CNRS, France
Janka Chleb́ıková University of Portsmouth, UK
Michael Kohlhase Jacobs University Bremen, Germany
Jǐŕı Rákosńık Institute of Mathematics AS CR,

Czech Republic
David Ruddy Cornell University, USA
Petr Sojka Masaryk University Brno, Czech Republic
Volker Sorge University of Birmingham, UK
Frank Tompa University of Waterloo, Canada
Richard Zanibbi Rochester Institute of Technology, USA

MKM Track Program Committee

Rob Arthan Queen Mary University of London, UK
David Aspinall University of Edinburgh, UK
Michael Beeson San Jose State University, USA

Organization XI

Thomas Hales University of Pittsburgh, USA
Johan Jeuring Open Universiteit Nederland/Universiteit

Utrecht, The Netherlands
Peter Jipsen Chapman University, USA
Cezary Kaliszyk University of Innsbruck, Austria
Michael Kohlhase Jacobs University Bremen, Germany
Christoph Lange University of Bonn/Fraunhofer IAIS,

Germany
Paul Libbrecht Weingarten University of Education, Germany
Ursula Martin University of Oxford, UK
Bruce Miller National Institute of Standards and

Technology, USA
Adam Naumowicz University of Bialystok, Poland
Florian Rabe Jacobs University Bremen, Germany
Claudio Sacerdoti Coen University of Bologna, Italy
Alan P. Sexton University of Birmingham, UK
Enrico Tassi Inria, France
Josef Urban Radboud University Nijmegen,

The Netherlands
Stephen M. Watt University of Western Ontario, Canada
Makarius Wenzel Université Paris-Sud 11, France
Freek Wiedijk Radboud University Nijmegen,

The Netherlands

Systems and Projects Track Program Committee

Jesse Alama Technical University of Vienna, Austria
Rob Arthan Queen Mary University of London, UK
Deyan Ginev Jacobs University Bremen, Germany
Jónathan Heras University of Dundee, UK
Mateja Jamnik University of Cambridge, UK
Predrag Janičić University of Belgrade, Serbia
Christoph Lange University of Bonn and Fraunhofer IAI,

Germany
Christoph Lüth DFKI and University of Bremen, Germany
Bruce Miller National Institute of Standards and

Technology, USA
Alan P. Sexton University of Birmingham, UK
Hendrik Tews TU Dresden, Germany

XII Organization

Additional Referees

Accattoli B.
Adams M.
Brain M.J.
Caprotti O.
Chyzak F.
Eder C.
Ferreira M.
Graham-Lengrand S.
Guidi F.
Heijltjes W.B.
Iancu M.
Ion P.
Jucovschi C.
Kahl W.
Khan-Afshar S.
Kohlhase A.
Kühlwein D.

Krebbers R.
Lee M.
Lelay C.
Ĺı̌ska M.
Mörtberg A.
O’Connor R.
van Oostrom V.
Peltier N.
Prodescu C.-C.
Recio T.
Růžička M.
Schürmann C.
So C.
Subramaniam M.
Verbeek F.
Whiteside I.
Zengler C.

Links between Homotopy Theory and Type

Theory

Yves Bertot

Inria
2004 route des lucioles
06902 Sophia Antipolis

France

In the recent history of computer verified proof, we observe the conjunction of
two domains that are seemingly extraordinarily distant: homotopy theory and
type theory.

Type theory [6] is the realm of the motto “proof as programs, propositions as
types”, also often referred to as the Curry-Howard isomorphism. In this approach,
proofs are objects of the logical discourse like any other object (number, program,
statement) and their type is the proposition that they prove. For instance, a
bounded integer can be encoded as a pair of an integer and a proof that this
integer is within the prescribed bounds. This novelty also brings new problems:
while we understand perfectly that there are several numbers in the same type
of natural numbers, it is not immediately clear what we should do with several
(distinct) proofs of the same statement. For instance, what should we do with
two instances (3, p1) and (3, p2) describing the value 3 bounded by 4, where p1
and p2 are distinct proofs that 3 is smaller than 4.

The question of proof unicity (also called proof irrelevance) is especially im-
portant for proofs of equality between two values. This was studied at the end
of the 1990s by Hoffmann and Streicher [5], and the conclusion was twofold.
First, the unicity of proofs of equality is not a consequence of type theory’s in-
herent foundations so that this property should be added as an axiom (which
they named axiom K) if it is desired for all types; second, the type of equali-
ties between elements of a given type can be endowed with a structure already
known in mathematics as a groupoid structure. At about the same time, Hed-
berg [4] showed that proofs of equalities are unique in any type where equality
is decidable. This result is put to efficient use in Mathematical Components [2].

Meanwhile, mathematics is also traversing crises of its own, first because some
mathematical facts are now established with the help of intensive computations
performed mechanically [3], second because some areas of mathematics reach
a level of internal complexity where too few experts are competent to exert
a critical eye. Bringing in computer verified proofs is a means to improve the
confidence one can have in proofs that are otherwise refereed by too few people.

Homotopy theory is one of the topics where computer verified proof is being
tested. Homotopy theory is about paths between objects, and it is well know
that collections of paths also respect a groupoid structure. It thus feels natural
to attempt to use directly the equality types of type theory to represent the paths

XIV Y. Bertot

used in homotopy theory. It turns out that this experiment works surprisingly
well [1, 8]. For example, homotopy theory naturally considers higher-dimension
paths (paths between paths) but similarly type theory is very well suited to con-
sider equalities between equality proofs. Most of the notions around homotopies
can be described around equality types and the whole system seems to provide
a nice context to perform synthetic homotopy theory in the same spirit that
Euclid’s, Hilbert’s, or Tarski’s axiom systems can be used to perform synthetic
geometry.

Type theory was already trying to pose as a new foundation for mathematics,
but the question of giving a status to several proofs of the same statement was
an unresolved issue. Insights from homotopy theory help clarifying this question:
multiplicity of proofs should be encouraged, even though the collection of types
where unicity of equality proofs is guaranteed should be given a specific status,
as it simply corresponds to the sets of traditional mathematics. For these sets
where unicity of equality proofs are guaranteed, one should be able to benefit
from most of the machinery already developed in Mathematical Components for
types with decidable equality.

New experiments are made possible in this homotopy type theory and new
questions arise. In turn, these questions lead to the proposal of new extensions
[7]. One such extension is the univalence axiom, which simply states that two
homotopically equivalent types should be considered equal; another extension is
the concept of higher inductive type, where inductive types can be equiped with
paths between constructors. These extensions bring questions of consistency and
computability that are still being studied.

References

1. Awodey, S., Warren, M.A.: Homotopy theoretic models of identity types. Math.
Proc. Cambridge Philos. Soc. 146(1), 45–55 (2009)

2. Gonthier, G., et al.: A machine-checked proof of the odd order theorem. In: Blazy,
S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 163–
179. Springer, Heidelberg (2013)

3. Hales, T.C.: Cannonballs and honeycombs. Notices of the AMS 47(4), 440–449
(2000)

4. Hedberg, M.: A Coherence Theorem for Martin-Löf’s Type Theory. Journal of
Functional Programming 8(4), 413–436 (1998)

5. Hofmann, M., Streicher, T.: The groupoid interpretation of type theory. In:
Twenty-five Years of Constructive Type Theory (Venice, 1995). Oxford Logic
Guides, vol. 36, pp. 83–111. Oxford Univ. Press, New York (1998)

6. Martin-Löf, P.: Intuitionistic type theories. Bibliopolis (1984)
7. The Univalent Foundations Program. Homotopy Type Theory: Univalent
Foundations of Mathematics. Institute for Advanced Study (2013), http://

homotopytypetheory.org/book
8. Voevodsky, V.: Univalent foundations project (2010), http://www.math.ias.

edu/~vladimir/Site3/Univalent_Foundations_files/univalent_foundations_

project.pdf

Teaching Tiles (Azulejos que Ensinam)

António Leal Duarte

CMUC/Departament of Mathematics, University of Coimbra
P-3001-454 Coimbra, Portugal

Abstract. The mathematical glazed tiles (azulejos) of the Jesuit College
in the city of Coimbra, in Portugal, are remarkable and unique artifacts.
They seem to be the only known example of glazed tiles for classroom
use displaying geometrical diagrams of true mathematical (Euclidian)
demonstrations. Scientific motifs as decorative elements in buildings were
widely used in Europe and, in particular, in spaces built by the Society
of Jesus. Panels of azulejos using ornamental mathematical motifs are
well known in Portugal and elsewhere. But the mathematical azulejos
of Coimbra are unique in that they are genuine didactical aids to the
teaching of mathematics and not merely decorative artifacts.

The majority of the Coimbra mathematical azulejos display strictly ge-
ometrical (Euclidian) matters, while a few concern other scientific mat-
ters. The Euclidian diagrams are drawn from one of André Tacquet’s
famous and very popular editions of Euclid’s Elements, which were ex-
tensively used in Jesuit schools. The first edition, with the title Elementa
geometriæ planæ ac solidæ quibus accedunt selecta ex Archimede theore-
mata was published in 1654; many other editions and translations were
published in the next decades.
A Portuguese translation of Tacquet’s Elements appeared in 1735, thus
roughly at the same time as when the tiles were created, and it is tempt-
ing to relate the two events and assume that they were drawn from this
edition. However, a closer examination reveals that this is not the case.
It is clear today that the diagrams in the azulejos were copied from one
(or more) of Tacquet’s Latin editions.

Table of Contents

Invited Talks

What International Studies Say about the Importance and Limitations
of Using Computers to Teach Mathematics in Secondary Schools 1

Jaime Carvalho e Silva

Towards Robust Hyperlinks for Web-Based Scholarly Communication . . . 12
Herbert Van de Sompel, Martin Klein, and Harihar Shankar

Computable Data, Mathematics, and Digital Libraries in Mathematica
and Wolfram|Alpha . 26

Eric Weisstein

Calculemus

Towards the Formal Reliability Analysis of Oil and Gas Pipelines 30
Waqar Ahmad, Osman Hasan, Sofiène Tahar, and
Mohammad Salah Hamdi

Problem Formulation for Truth-Table Invariant Cylindrical Algebraic
Decomposition by Incremental Triangular Decomposition 45

Matthew England, Russell Bradford, Changbo Chen,
James H. Davenport, Marc Moreno Maza, and
David Wilson

A Tableaux-Based Decision Procedure for Multi-parameter
Propositional Schemata . 61

David Cerna

Detecting Unknots via Equational Reasoning, I: Exploration 76
Andrew Fish and Alexei Lisitsa

Applying Machine Learning to the Problem of Choosing a Heuristic to
Select the Variable Ordering for Cylindrical Algebraic Decomposition . . . 92

Zongyan Huang, Matthew England, David Wilson,
James H. Davenport, Lawrence C. Paulson, and
James Bridge

Hipster: Integrating Theory Exploration in a Proof Assistant 108
Moa Johansson, Dan Rosén, Nicholas Smallbone, and Koen Claessen

Formalization of Complex Vectors in Higher-Order Logic 123
Sanaz Khan Afshar, Vincent Aravantinos, Osman Hasan, and
Sofiène Tahar

XVIII Table of Contents

A Mathematical Structure for Modeling Inventions 138
Bernd Wegner and Sigram Schindler

Digital Mathematics Library

Search Interfaces for Mathematicians . 153
Andrea Kohlhase

A Data Model and Encoding for a Semantic, Multilingual Terminology
of Mathematics . 169

Michael Kohlhase

PDF/A-3u as an Archival Format for Accessible Mathematics 184
Ross Moore

Which One Is Better: Presentation-Based or Content-Based Math
Search? . 200

Minh-Quoc Nghiem, Giovanni Yoko Kristianto, Goran Topić, and
Akiko Aizawa

POS Tagging and Its Applications for Mathematics 213
Ulf Schöneberg and Wolfram Sperber

Mathoid: Robust, Scalable, Fast and Accessible Math Rendering for
Wikipedia . 224

Moritz Schubotz and Gabriel Wicke

Mathematical Knowledge Management

Set Theory or Higher Order Logic to Represent Auction Concepts in
Isabelle? . 236

Marco B. Caminati, Manfred Kerber, Christoph Lange, and
Colin Rowat

Realms: A Structure for Consolidating Knowledge about Mathematical
Theories . 252

Jacques Carette, William M. Farmer, and Michael Kohlhase

Matching Concepts across HOL Libraries . 267
Thibault Gauthier and Cezary Kaliszyk

Mining State-Based Models from Proof Corpora . 282
Thomas Gransden, Neil Walkinshaw, and Rajeev Raman

Querying Geometric Figures Using a Controlled Language, Ontological
Graphs and Dependency Lattices . 298

Yannis Haralambous and Pedro Quaresma

Table of Contents XIX

Flexary Operators for Formalized Mathematics . 312
Fulya Horozal, Florian Rabe, and Michael Kohlhase

Interactive Simplifier Tracing and Debugging in Isabelle 328
Lars Hupel

Towards an Interaction-based Integration of MKM Services into
End-User Applications . 344

Constantin Jucovschi

Towards Knowledge Management for HOL Light . 357
Cezary Kaliszyk and Florian Rabe

Automated Improving of Proof Legibility in the Mizar System 373
Karol P ↪ak

A Vernacular for Coherent Logic . 388
Sana Stojanović, Julien Narboux, Marc Bezem, and Predrag Janičić

An Approach to Math-Similarity Search . 404
Qun Zhang and Abdou Youssef

Systems and Projects

Digital Repository of Mathematical Formulae . 419
Howard S. Cohl, Marjorie A. McClain, Bonita V. Saunders,
Moritz Schubotz, and Janelle C. Williams

NNexus Reloaded . 423
Deyan Ginev and Joseph Corneli

E-books and Graphics with LATExml . 427
Deyan Ginev, Bruce R. Miller, and Silviu Oprea

System Description: MathHub.info . 431
Mihnea Iancu, Constantin Jucovschi, Michael Kohlhase, and
Tom Wiesing

Developing Corpus-Based Translation Methods between Informal
and Formal Mathematics: Project Description . 435

Cezary Kaliszyk, Josef Urban, Jǐŕı Vyskočil, and Herman Geuvers

System Description: A Semantics-Aware LATEX-to-Office Converter 440
Lukas Kohlhase and Michael Kohlhase

Math Indexer and Searcher Web Interface: Towards Fulfillment of
Mathematicians’ Information Needs . 444

Martin Ĺı̌ska, Petr Sojka, and Michal R̊užička

XX Table of Contents

SAT-Enhanced Mizar Proof Checking . 449
Adam Naumowicz

A Framework for Formal Reasoning about Geometrical Optics 453
Umair Siddique and Sofiène Tahar

Author Index . 457

. E1
Erratum to: Towards the Formal Reliability Analysis of
Oil and Gas Pipelines

Waqar Ahmad, Osman Hasan, Tah ar, and

Mohammad Salah Hamdi

.

Sofiène

What International Studies Say

about the Importance and Limitations
of Using Computers to Teach Mathematics

in Secondary Schools

Jaime Carvalho e Silva

Departamento de Matemática, Universidade de Coimbra,
Apartado 3008, EC Santa Cruz, 3001-501 Coimbra, Portugal

jaimecs@mat.uc.pt

http://www.mat.uc.pt/~jaimecs/pessoal/

Abstract. The use of technology in schools has been one of the most
debated topics around mathematics education. In some countries there
is a huge investment, in others there is a downscaling. Malaysia decided
in 2013 to put its 10 million students to use Google laptops and Google
apps, while Australia in the same year decided it would not continue
funding their own high school laptop program. Who is right from the
educational point of view? The last major curriculum document writ-
ten in the world to date, the Common Core State Standards-CCSS in
the United States, whose mathematics part is coordinated by the well
known mathematician William McCallum, sets as one of its standards
for mathematical practice: ”Mathematically proficient students consider
the available tools when solving a mathematical problem. These tools
might include pencil and paper, concrete models, a ruler, a protractor, a
calculator, a spreadsheet, a computer algebra system, a statistical pack-
age, or dynamic geometry software.” Strong moves need substantiation
from research, including the analysis of the existing situation in differ-
ent countries. What does research say about the use of computers in
schools in present time and the use of different pieces of software from
spreadsheets to computer algebra systems?

Keywords: mathematics education.

1 Introduction

It is extremely frequent to see heated debates on the pros and cons of using
computers in the classroom, be it the primary school classroom, the middle
school classroom, the secondary school classroom or even the higher education
classroom.

For example [12] in the The New York Times, on June 10, 2010, Randall
Stross, a professor of business at San Jose State University, quotes some stud-
ies about the impact of computers and technology on student’s test scores to
conclude that

S.M. Watt et al. (Eds.): CICM 2014, LNAI 8543, pp. 1–11, 2014.
c© Springer International Publishing Switzerland 2014

http://www.mat.uc.pt/~jaimecs/pessoal/

2 J. Carvalho e Silva

Middle school students are champion time-wasters. And the personal
computer may be the ultimate time-wasting appliance. Put the two to-
gether at home, without hovering supervision, and logic suggests that
you wont witness a miraculous educational transformation.

One of the studies he quotes was published in the Quarterly Journal of Eco-
nomics and carried out in Romania, comparing families that in 2009 received
vouchers to buy computers against families that did not receive that voucher.
Results showed that students in the first group showed significantly lower school
grades in math, English and Romanian. This is a good example of bad use of
statistics. You carry out a large scale collection of data, isolating a few variables
and ignoring most of them and then imply there is a cause-effect relation be-
tween the variables you isolated. Anybody that works closely within education
knows you cannot draw simple conclusions from complex data. Another study
of a similar kind arrives at similar conclusions: a working paper published by
the National Bureau of Economic Research correlates data relative to the intro-
duction of broadband services in the american state of North Carolina between
2000 and 2005 to the results of middle school test scores during that period.
This time they conclude that the ”negative effects” were limited to low income
households.

In a recent analysis [11] published also in The New York Times, Carlo Rotella,
director of American studies at Boston College, discusses in detail the position of
Joel Klein, chief executive of an IT company and former chancellor of New York
Citys public schools from 2002 to 2011. In short, Joel Klein believes that teachers
and students need new and interesting tools that help them teach and learn.
When asked about evidence for his claims he just says that tablets ”will help
teachers do” what educational research shows is important, that ”an individual
student will learn more if you can tailor the curriculum to match her learning
style, pace and interests.” Of course, he did not prove that tablets will indeed
accomplish this goal.

Lots of countries are investing hard in introducing some kind of high tech tools
in the classroom. John Koetsier reports [5], on the digital news site VentureBeat,
that the Malaysian government is investing massively in introducing computers,
internet access software and ”Google Apps” in all 10 thousand schools in the
country totaling 10 million students, teachers, and parents. Why was this choice
made? Because ”Google Apps” are, for educational use, completely free. Is this
the best software for educational use? Will students learn better mathematics
with this environment? This is not stated.

It is clear that we have lots of options on the use of IT technology in schools
(including not using it at all), but we need clear ideas before accepting or re-
jecting hardware, software and communications in the classroom.

2 International Studies

We live in a society where technology is in a rapid evolution, with new tools
arriving at the consumer market every year. It is more than natural that these

Importance and Limitations of Using Computers to Teach Mathematics 3

tools are also offered at the school level. Two main reasons can be stated in favor
of this: first of all the school has never been as efficient as the society desires and
so new approaches are normally welcome (at least by most people); secondly, if
the school is to prepare students for ”real life” and for some professional activity,
then teaching should somehow incorporate the technological tools that students
will find someday in their adult life.

In education, things are never simple. Several authors, like Luc Trouche [13],
already pointed out we should make a distinction between an artifact and an
instrument. This means that you may have some artifact in the classroom (like a
technological tool, hardware or software) but it may have no effect at all unless
you are able to integrate it in your activity, and then it becomes an instrument
for you. This is not a useless distinction because we have important examples of
this difference and the PISA OECD studies give us one of these.

2.1 Digital Reading

PISA is a program conducted by the OECD to study the extent to which 15-year-
old students (normally near the end of compulsory education) have acquired the
knowledge and skills that are essential for full participation in modern society,
focusing mainly in mathematics, reading and science. This program began in
the year 2000 and is applied in numerous countries every three years. A lot of
data is collected about the students, the teachers, the schools and the student’s
environment. Also some other studies are conducted in parallel, at least in some
of the countries participating in the main PISA study. In 2012 a total of 65
countries and economies participated in the PISA data collecting but only 44
countries and economies participated in a computer-based assessment of problem
solving; 32 of them also participated in a computer-based assessment of reading
and mathematics.

For the first time, the PISA 2009 survey also assessed 15-year-old students
ability to read, understand and apply digital texts. These texts are very different
from printed ones, namely at the level of their organisation. In 19 countries and
economies students were given questions via computer to assess this ability. The
PISA 2009 results [9] about digital reading show something striking. They show
that even when guidance on navigation is explicit, significant numbers of students
still cannot locate crucial pages.

Digital reading poses new problems to users: indexing and retrieval techniques
are new because of the virtual nature of page contents and formats; also hyper-
links are introduced and new multipage documents are used in a networked
structure that may confuse the reader. So, a completely new environment comes
up and PISA digital reading assessment offers powerful evidence that todays
15-year-olds, the ”digital natives”, do not automatically know how to operate
effectively in the digital environment, contrarily to what we could have thought.

4 J. Carvalho e Silva

2.2 Computer-Based Assessment of Mathematics

For the first time in 2012, PISA included an optional computer-based assess-
ment of mathematics. 32 of the 65 countries and economies participated in this.
Specially designed PISA questions were presented on a computer, and students
responded on the computer, although they could also use pencil and paper as
they worked out through the test questions. The PISA 2012 report [10] justifies
this part of the PISA program:

(...) computer-based items can be more interactive, authentic and en-
gaging than paper-based items. They can be presented in new formats
(e.g. drag-and-drop), include real-world data (such as a large, sortable
dataset), and use colour, graphics and movement to aid comprehension.
Students may be presented with a moving stimulus or representations
of three-dimensional objects that can be rotated, or have more flexi-
ble access to relevant information. New item formats can expand re-
sponse types beyond verbal and written, giving a more rounded picture
of mathematical literacy. (...) computers have become essential tools for
representing, visualising, exploring, and experimenting with all kinds of
mathematical objects, phenomena and processes, not to mention for re-
alising all types of computations at home, at school, and at work.[10]

Fourty one specially designed computer-based items were developed for this
assessment. These items were designed so that mathematical reasoning and pro-
cesses would take precedence over the ability of using the computer as a tool.
The report details the approach used:

Each computer-based item involves three aspects:
- the mathematical demand (as for paper-based items);
- the general knowledge and skills related to information and commu-
nication technologies (ICT) that are required (e.g. using keyboard and
mouse, and knowing common conventions, such as arrows to move for-
ward). These are intentionally kept to a minimum;
- competencies related to the interaction of mathematics and ICT, such
as making a pie chart from data using a simple ”wizard”, or planning
and implementing a sorting strategy to locate and collect desired data
in a spreadsheet.[10]

The conclusion of this part of the study is that ”there is a high degree of con-
sistency in student performance on items delivered on paper and by computer”
but with some important exceptions:

In the field of mathematics, one participant (Shanghai-China) saw a large
difference, of around 50 score points, in favour of the paper based format.
Three other countries and economies showed substantial differences in
the same direction - Poland (28-point difference), Chinese Taipei (22-
point difference) and Israel (20-point difference). Conversely, there are

Importance and Limitations of Using Computers to Teach Mathematics 5

also countries for which computer delivery of the assessment appears to
have been advantageous. The largest difference, of about 30 score points,
was seen in Brazil. Colombia also saw a difference of about 20 points in
the same direction. The United States, the Slovak Republic and Italy
also saw marked, albeit smaller, differences in favour of the computer
delivery of the assessment. Across OECD countries, the performance
advantage of the computer-based assessment is slightly higher for boys
than for girls. ([10], p. 491)

This is a quite recent report and these differences are not yet discussed in terms
of the nature of the tasks, of the mode of delivery, or of the student familiarity
with computers. In the PISA 2015 program, the computer-based assessment
will be the primary mode of delivery for mathematics literacy and all the other
domains, but the use of paper-based assessment instruments is an option for
countries choosing to do so. In some years we will have then more data for our
discussion.

2.3 Improvements in Performance

Another important question we need to answer, and is raised by a lot of people, is
wether students perform better or worse in a computer environment (at school
and at home). Some PISA studies also address this question. The PISA 2003
study discusses the relation between the frequency of use of computers at home
and student performance in mathematics. And the conclusion is very clear:

(...) in every country, students reporting rare or no use of computers at
home (on average 18% of students) score much lower than their coun-
terparts reporting moderate use or frequent use. [7]

The PISA 2006 study compares the PISA scores and the use of ICT. In [8]
students are grouped according to frequency of ICT use and then the average
performances of each group are compared. Of course this does not tell the whole
story because some factors that affect computer use also affect student perfor-
mance. In order to give a clear picture the PISA 2006 study includes questions
about the location and frequency of student computer use. Trying to include a
number of relevant variables the PISA 2006 study concludes that:

A higher frequency of computer use is associated with higher average
science scores in all countries considered. Among OECD countries, the
largest effect of using a computer almost every day was found in Ice-
land, Japan, The Netherlands, Norway, Poland and Spain. Among part-
ner countries, the largest effect of using computer almost every day was
found in Bulgaria; Macao, China; and Slovenia. ([8], p. 150) (...) in a
large majority of countries, the benefits from higher computer use tend
to be greater at home than at school. Therefore, despite the better en-
vironment and support that schools are expected to provide, computer
use tends to have less impact at school than at home. ([8], p. 156)

6 J. Carvalho e Silva

Having this in mind the PISA study recommends concrete actions regrading
ICT use in schools:

(...) the analysis has shown that computer use increases student perfor-
mance but that this increase is not the same for all students. (...) as the
benefits from computer use depend on the characteristics of each stu-
dent, policies to increase ICT use need to be tailored to students. (...)
the positive effects of computer use on student performance are greatest
when they are supported by a sufficient level of capital. Skills, interests
and attitudes affect students engagement with ICT, the activities they
carry out on the computer and how well. An increase in ICT use that
is not supported by an increase in capital would have a lower impact on
student performance. ([8], p. 156)

Of course, it is clear from these studies that the simple use of ICT does not
guarantee an improvement in performance:

(...) the apparently negative association between performance and some
kinds of computer usage, shown by PISA 2003 and now PISA 2006,
carries a warning not to assume that more is better for students perfor-
mance. ([8], p. 158)

It is clear form these studies that the use of ICT has generally very positive
effects on student performance at the mathematics and science level. Only in-
complete studies will conclude that the use of ICT has a negative influence in
student performance. These OECD big scale studies examine the educational
situation in great detail and include very different political and social realities in
the big number of countries involved so that their conclusions are very reliable.
What we loose in these huge statistical studies is the detail. We need now to
know what works and what does not work in each situation.

3 ICMI Studies

ICMI, the International Commission on Mathematical Instruction, founded in
1908 to foster efforts to improve the quality of mathematics teaching and learning
worldwide, has produced two large studies that discuss in detail the impact and
use of ICT in mathematics education. These were:

– ICMI Study 1. The Influence of Computers and Informatics on Mathematics
and its Teaching
Study Conference held in Strasbourg, France, March 1985.
Study Volume published by Cambridge University Press, 1986, eds: R.F.
Churchhouse et al. (ICMI Study Series)
Second edition published by UNESCO, 1992, eds: Bernard Cornu and An-
thony Ralston. (Science and Technology Education No. 44)

Importance and Limitations of Using Computers to Teach Mathematics 7

– ICMI Study 17. Digital Technologies and Mathematics Teaching and Learn-
ing: Rethinking the Terrain
Study Conference held in Hanoi, Vietnam, December 2006.
Study Volume published by Springer, 2010: Mathematics Education and
Technology-Rethinking the Terrain. The 17th ICMI Study Series: New ICMI
Study Series, Vol. 13. Hoyles, Celia; Lagrange, Jean-Baptiste (Eds.) (New
ICMI Study Series 13)

These studies point out some directions for the integration of ICT in mathe-
matics education, but it is also clear that much more research needs to be done:

The way digital technologies can support and foster today collaborative
work, at the distance or not, between students or between teachers, and
also between teachers and researchers, and the consequences that this
can have on students learning processes, on the evolution of teachers
practices is certainly one essential technological evolution that educa-
tional research has to systematically explore in the future. ([4], p. 473)

Numerous examples are described and quoted in this 500-page volume but we
need to have in mind what I consider to be the main conclusion:

Making technology legitimate and mathematically useful requires modes
of integration (...) requires tasks and situations that are not simple adap-
tation of paper and pencil tasks, often tasks without equivalent in the
paper and pencil environment, thus tasks not so easy to design when you
enter in the technological world with your paper and pencil culture. ([4],
p. 468)

The range of hardware and software considered in this Study is huge, from
Dynamic Geometry Environments to Computer Algebra Systems, including An-
imation Microworlds, Games and Spreadsheets, showing that the use of ICT in
the mathematics classroom is not limited to any particular kind of software and
offers thus many possibilities for mathematics teaching and learning.

Another important point visible in this Study is the need to find an answer to
the ”wrong-doing” of certain technologies. How to deal with the pitfalls of nu-
merical analysis, namely dealing with rounding errors? How to correctly identify
a tangent to a circle in a Dynamic Geometry Environment that has difficulties
with the continuity? The Study calls for a reasonable

(...) basic understanding of the inner representation of mathematics (e.g.,
numbers, equations, stochastics, graphical representations, and geomet-
ric figures) within a computer and a global awareness of problems related
to the difference between conceptual and computational mathematics.
([4], p. 153)

4 First Conclusion

What we discussed from these international studies allows us to conclude that
the CCSS are right in investing decidedly in the use of ICT in the classroom:

8 J. Carvalho e Silva

Standards for Mathematical Practice (...) 5 Use appropriate tools strate-
gically. Mathematically proficient students consider the available tools
when solving a mathematical problem. These tools might include pencil
and paper, concrete models, a ruler, a protractor, a calculator, a spread-
sheet, a computer algebra system, a statistical package, or dynamic ge-
ometry software. Proficient students are sufficiently familiar with tools
appropriate for their grade or course to make sound decisions about when
each of these tools might be helpful, recognizing both the insight to be
gained and their limitations. For example, mathematically proficient high
school students analyze graphs of functions and solutions generated using
a graphing calculator. They detect possible errors by strategically using
estimation and other mathematical knowledge. When making mathemat-
ical models, they know that technology can enable them to visualize the
results of varying assumptions, explore consequences, and compare pre-
dictions with data. Mathematically proficient students at various grade
levels are able to identify relevant external mathematical resources, such
as digital content located on a website, and use them to pose or solve
problems. They are able to use technological tools to explore and deepen
their understanding of concepts.[6]

Most of the countries in the world have a clear vision of what needs to be
done. For example the official curriculum for Singapore reads:

AIMS OF MATHEMATICS EDUCATION IN SCHOOLS: (...) (6) Make
effective use of a variety of mathematical tools (including information
and communication technology tools) in the learning and application of
mathematics. (...)
(...) The use of manipulatives (concrete materials), practical work, and
use of technological aids should be part of the learning experiences of
the students.
SKILLS: (...) Skill proficiencies include the ability to use technology
confidently, where appropriate, for exploration and problem solving.[3]

What happens in the real classroom is not so simple.

5 A Difficult Task

In a national examination in Portugal for the 12th grade, a mathematical mod-
eling problem involved the study of the function:

d(x) = 149.6(1− 0.0167 cosx) (1)

Graphing Calculators (GC) are allowed in national examinations in Portugal
and so the students can use them to study this function. The biggest challenge
here for the student, and it has been proven to be a big obstacle, is to find a
viewing window to obtain the graph for this function. Of course you can get the

Importance and Limitations of Using Computers to Teach Mathematics 9

Fig. 1. Using the AUTO feature to draw a simple graph of d(x) in a GC

help of the AUTO function of the calculator but then you are not sure you get
all the details you need in graph that shows up.

The second more difficult group of questions in the national 12th grade ex-
aminations in Portugal, were the ones requiring the use of graphing calculators,
some of them also involving modeling problems. In a previous study [1] we con-
cluded that these problems all involve the need to choose a viewing window.
There is no algorithm that can guarantee you get the best viewing window. You
can produce a table of values to help you but you will need always to experiment
or know some properties of the function in order to be sure you get a ”complete”
graph. In more difficult situations you may need to use more than one graph to
capture the details of the graph of the function you want to study.

Another similar difficulty is discussed by Luc Trouche in his paper [13] in the
journal Educational Studies in Mathematics. If a student tries to use a GC to
study the limit of a function when the independent variable goes to +∞ he will
try to graph the function ”as far as possible”. But if he is faced with a function
like

f(x) = lnx+ 10 sinx (2)

10 J. Carvalho e Silva

he will think it will not have a limit, when the limit is really +∞. The graph
will give him a dangerous message:

Fig. 2. Graphing function f(x) in the viewing window [100, 200]× [−15, 20]

Luc Trouche concludes that the complexity of the transformation of this new
artifact into a useful instrument for the work of the student is related with the
sophistication of the artifact, namely when it comes to a GC with CAS-Computer
Algebra System. This is a big educational challenge and should be kept in mind
when some hardware or software is selected to be used in the classroom.

In the same paper Luc Trouche warns against the lack of investment in the
use of ICT in the classroom, observing that the use in the classroom is too
limited, in France and other countries, and consequently the ”learning of the use
of instruments is made most of the time alone or between friends” ([13], p. 190)
with all its dangers. It is clear from the international studies that the use of ICT
can produce an improvement in student performance, but to arrive at that point
of improvement, a lot of research, experimentation and planning must be made.

We conclude with a recommendation made by Seymour Papert, the inventor
of the educational programming language LOGO, in the plenary talk he gave
at the Study Conference included in ICMI Study 17. Seymour Papert ended his
talk asking us to spend reasonable part of our time and energy thinking about
possible futures, freeing our minds from the current constraints.

References

1. Balsa, J., Carvalho e Silva, J.: Uma análise do papel da calculadora gráfica nos
exames nacionais. In: Actas do XIII Seminário de Investigação em Educação
Matemática, pp. 237–242. APM, Lisboa (2002)

2. Carvalho e Silva, J.: A formação de professores em novas tecnologias da in-
formação e comunicação no contexto dos novos programas de Matemática
do Ensino Secundário. Comunicação apresentada no 2. Simpósio “Inves-
tigação e Desenvolvimento de Software Educativo”, D.E.I., Coimbra (1997),
http://lsm.dei.uc.pt/simposio/pdfs/c11.pdf

http://lsm.dei.uc.pt/simposio/pdfs/c11.pdf

Importance and Limitations of Using Computers to Teach Mathematics 11

3. Curriculum Planning and Development Division, Secondary Mathematics Syl-
labuses, Ministry of Education, Singapore (2006)

4. Hoyles, C., Lagrange, J.-B. (eds.): Mathematics Education and Technology - Re-
thinking the Terrain: The 17th ICMI Study (New ICMI Study Series). Springer,
Berlin (2010)

5. Koetsier, J.: Google: 10 million Malaysian students, teachers, and parents will
now use Google Apps for Education. VentureBeat, April 10 (2013),
http://venturebeat.com/2013/04/10/google-10-million-malaysian

-students-teachers-and-parents-will-now-use-google-apps-for-education/

6. McCallum, W., et al.: Common Core State Standards for Mathematics. National
Governors Association Center for Best Practices & Council of Chief State School
Officers, Washington, DC (2010)

7. OECD, Are Students Ready for a Technology-Rich World? What PISA Studies
Tell Us. OECD Publishing, Paris (2006)

8. OECD, Are the New Millennium Learners Making the Grade?, Technology Use
and Educational Performance in PISA 2006. OECD Publishing, Paris (2010)

9. OECD, PISA 2009 Results: Students on Line: Digital Technologies and Perfor-
mance (vol. VI). OECD Publishing, Paris (2011)

10. OECD, PISA 2012 Results: What Students Know and Can Do - Student Perfor-
mance in Mathematics, Reading and Science (vol. I, Revised edition, February
2014). OECD Publishing, Paris (2014)

11. Rotella, C.: No Child Left Untableted. The New York Times, September 12 (2013),
http://www.nytimes.com/2013/09/15/magazine/no-child-left-untableted

.html

12. Stross, R.: Computers at Home: Educational Hope vs. Teenage Reality. The New
York Times, July 10 (2010), http://www.nytimes.com/2010/07/11/business/
11digi.html

13. Trouche, L.: Environnements Informatisés et Mathématiques: quels usages pour
quels apprentissages? Educational Studies in Mathematics 55, 181–197 (2004)

http://venturebeat.com/2013/04/10/google-10-million-malaysian-students-teachers-and-parents-will-now-use-google-apps-for-education/
http://venturebeat.com/2013/04/10/google-10-million-malaysian-students-teachers-and-parents-will-now-use-google-apps-for-education/
http://www.nytimes.com/2013/09/15/magazine/no-child-left-untableted.html
http://www.nytimes.com/2013/09/15/magazine/no-child-left-untableted.html
http://www.nytimes.com/2010/07/11/business/11digi.html
http://www.nytimes.com/2010/07/11/business/11digi.html

Towards Robust Hyperlinks for Web-Based

Scholarly Communication

Herbert Van de Sompel�, Martin Klein, and Harihar Shankar

Los Alamos National Laboratory, Los Alamos NM 87545, USA
{herbertv,mklein,harihar}@lanl.gov

Abstract. As the scholarly communication system evolves to become
natively web-based, hyperlinks are increasingly used to refer to web re-
sources that are created or used in the course of the research process.
These hyperlinks are subject to reference rot: a link may break or the
linked content may drift and eventually no longer be representative of
the content intended by the link. The Hiberlink project quantifies the
problem and investigates approaches aimed at alleviating it. The presen-
tation will provide an insight in the project’s findings that result from
mining a massive body of scholarly literature spanning the period from
1997 to 2012. It will also provide an overview of components of a possible
solution: pro-active web archiving, links with added attributes, and the
Memento “Time Travel for the Web” protocol.

Keywords: scholarly communication, web archiving, reference rot, dig-
ital preservation.

1 Introduction: The Brittleness of Web-Based Scholarly
Communication

Traditionally, references in scholarly communication point to published articles
or books. But, as the scholarly communication system evolves to become natively
web-based, hyperlinks are increasingly used to refer to web resources that are
created or used in the course of the research process. This includes scholarly arti-
facts such as software, datasets, websites, presentations, blogs, videos, scientific
workflows, and ontologies. In addition, as exemplified by the work on Research
Objects [1], scholarly communication objects become increasingly compound,
consisting of multiple inter-related constituent resources.

The dynamic, compound, and inter-related nature of scholarly communication
objects yields significant challenges for the fulfilment of the archival function that
is essential for any system of scholarly communication [2]. In order to illustrate
this, consider a comparison between the print era of the journal system and the
natively web-based scholarly communication system that is emerging.

Figure 1 depicts the journal system era. A published journal article references
other articles, published in the same or other journals. The referencing as well

� http://public.lanl.gov/herbertv/

S.M. Watt et al. (Eds.): CICM 2014, LNAI 8543, pp. 12–25, 2014.
c© Springer International Publishing Switzerland 2014

http://public.lanl.gov/herbertv/

Towards Robust Hyperlinks for Web-Based Scholarly Communication 13

Fig. 1. Publications link to publications

as the referenced articles are preserved as part of journal collections managed by
libraries, worldwide. In order to revisit the article and its context of referenced
articles some time after publication, it suffices to pay a visit to the appropriate
library stacks and pull the relevant journal issues. Since the content was printed
on paper and is fixed, the combination of the article and its surrounding context
of referenced articles remains the same as it was on the day of the article’s
publication. Gathering the entire context surrounding the referencing article
may require some travel, but the original information bundle can accurately be
recreated.

Figure 2 reconsiders this scenario for web-based scholarly communication.
The scenario is conservative in that it still takes a journal article, rather than
another scholarly object such as software, as its starting point. Nevertheless, it
still serves as a sufficient illustration. The web-based article not only references
other articles but also links to a variety of web resources including software,
data, scientific blogs, project web sites. Recreating the information bundle made
up of the article and its surrounding context some time after publication is now
far less trivial. Challenges are introduced by the dynamic nature of the web,
the malleability of digital content, and the dynamic nature of scholarly objects,
especially the ones created in the course of the research process. The links in
the article are subject to reference rot, a term coined in the Hiberlink1 project
to refer to the combination of link rot and content drift. Link rot, also known as

1 http://hiberlink.org

http://hiberlink.org

14 H. Van de Sompel, M. Klein, and H. Shankar

Fig. 2. Publications link to a variety of dynamic resources

“404 Page Not Found”, describes the scenario where a link is no longer accessible
and the HTTP request results in an error, typically a 404. Content drift describes
the evolution of a web resource’s content away from what it was at the moment
it was linked, possibly up to a point that it becomes unrepresentative of the
content intended by the link.

2 Hiberlink: Investigating Reference Rot

The Mellon-funded Hiberlink project, a collaboration between the Los Alamos
National Laboratory and the University of Edinburgh, explores the aforemen-
tioned reference rot along a research track and a solutions track.

2.1 Hiberlink Research Track

A research track aims at characterizing and quantifying reference rot in web
based scholarly communication at unprecedented scale. This work is inspired
by a 2011 pilot study [5] that investigated 160, 000 URIs extracted from two
open access scholarly collections: arXiv.org and the electronic thesis repository
of the University of Northern Texas. It was by far the most extensive link rot
study ever conducted. Hiberlink goes beyond that and mines vast open access

Towards Robust Hyperlinks for Web-Based Scholarly Communication 15

Fig. 3. The workflow used for assessing the current and archival status of URI refer-
ences

and commercial scholarly corpora spanning publication dates between 1997 and
2012 for millions of HTTP URIs. In a process as depicted in Figure 3 the current
and archival status of these URI references are investigated:

– Based on the assumption that the core scholarly literature is adequately
archived by platforms such as Portico2 and CLoCKSS3, URI references to
journal articles are discarded and only URIs of web at large resources are
maintained.

– For each remaining reference, the combination of a URI and the referencing
datetime, the current status of the URI is checked: is the URI still operational
or not?

– For each remaining reference, web archives are also consulted using the Me-
mento “Time Travel for the Web” protocol [4], to determine whether archived
versions of the referenced URI exist with an archival datetime that is within
1 day, 7 days, 14 days, 30 days, and 6 months of the referencing date, re-
spectively. Understanding the dynamic nature of web resources, the rep-
resentativeness of these archival resources diminishes as the time between
referencing and archiving increases.

The findings are dramatic and indicate that millions of scholarly papers suffer
from reference rot.
2 http://portico.org
3 http://www.clockss.org/

http://portico.org
http://www.clockss.org/

16 H. Van de Sompel, M. Klein, and H. Shankar

Fig. 4. Potential points of intervention for pro-active archiving in an article’s lifecycle

2.2 Hiberlink Solutions Track

A solutions track aims at identifying and prototyping approaches that can ame-
liorate the reference rot problem. This work has two strands.

A first strand investigates possible approaches to pro-actively archive web
resources that are referenced in scholarly articles. Various significant moments
in an article’s lifecycle are considered as possible intervention points (Figure 4)
and the approach in which archiving will be conducted at each may differ. The
time at which pro-active archiving occurs has an obvious impact on the accuracy
of the archived snapshot vis-à-vis the version of the referenced resource that
the author observed: the closer the snapshot time is to the observation time,
the better. These are examples of archival approaches for different intervention
points:

– During the note-taking or authoring phase of a paper, an extension for a
bibliographic reference manager used by an author can not only record in-
formation about a web resource but also deposit a snapshot in web archive.
This approach was prototyped4 for the Zotero5 browser extension.

– When a paper draft is submitted to a manuscript management system, a
special-purpose module can extract the URIs of referenced web resources
and archive them. Experiments are ongoing using the Open Journal Systems6

platform.
– When a new paper becomes available in a repository, a third party archival

service can be notified. The service can then collect the paper, extract refer-
enced URIs and archive them. This approach is followed by the HiberActive
system (Figure 5) developed at LANL [3].

4 Wincewicz, R. https://www.youtube.com/v/ZYmi_Ydr65M%26vq
5 https://www.zotero.org/
6 http://pkp.sfu.ca/ojs/

https://www.youtube.com/v/ZYmi_Ydr65M%26vq
https://www.zotero.org/
http://pkp.sfu.ca/ojs/

Towards Robust Hyperlinks for Web-Based Scholarly Communication 17

Fig. 5. HiberActive architecture for archiving referenced web resources

– Resources can also be archived as the paper that references them is being
interacted with. For example, a tweet about a paper can trigger a process
that is similar to the aforementioned HiberActive.

A second strand investigates what links to referenced resources should look
like if both the actual URI and the URI of an archived version exist. Further
details about the challenge involved and possible approaches to address it are
provided in the next section.

3 The Missing Link Proposal

This section details Hiberlink’s Missing Link Proposal aimed at extending
HTML’s anchor element with an attribute that contains information aimed at
increasing link robustness over time.

3.1 Motivation

A common approach to address reference rot consists of the combination of:

1. Creating a snapshot of the linked resource using an on-demand web archiving
service as provided by, among others, WebCite7, archive.today8, perma.cc9.
The result of creating a snapshot, is a copy of the linked resource with the con-
tent that was intended to be linked to and, obviously, a URI for the snapshot in
the web archive. For example, http://perma.cc/0Hg62eLdZ3T is an archived
snapshot ofhttp://blogs.law.harvard.edu/futureoftheinternet/2013/
09/22/perma/ taken on October 2nd 2013 and hosted by the perma.cc web
archive.

7 http://www.webcitation.org/
8 http://archive.today
9 http://perma.cc

http://perma.cc/0Hg62eLdZ3T
http://blogs.law.harvard.edu/futureoftheinternet/2013/09/22/perma/
http://blogs.law.harvard.edu/futureoftheinternet/2013/09/22/perma/
http://www.webcitation.org/
http://archive.today
http://perma.cc

18 H. Van de Sompel, M. Klein, and H. Shankar

2. Linking to the snapshot instead of to the original resource. This approach is
illustrated in the New York Times article on link rot: In Supreme Court Opin-
ions, Web Links to Nowhere10. Towards the end of this article, the link on
the text a new, permanent link points to the archived snapshot http://
perma.cc/0Hg62eLdZ3T, but not to the original resource http://blogs.

law.harvard.edu/futureoftheinternet/2013/09/22/perma/. This com-
mon replacement approach is illustrated by the difference between Original
Link and Link Replaced by Link to Archived Snapshot in Figure 6.

There is good news and bad news regarding this common approach to address
reference rot:

– The good news is that a snapshot of the linked resource is taken and stored
in a web archive. The more snapshots of a resource, the better our record
that documents its evolution over time.

– The bad news is that in order for the link to the archived snapshot to work,
the archive that hosts the snapshot (perma.cc in the ongoing example) needs
to remain permanently operational, a rather unrealistic expectation. If that
archive goes temporarily or permanently off-line, the link to the archived
snapshot stops working: one link rot problem was replaced by another.

Not surprisingly, archived snapshots of the original resource also exist in
archives other than perma.cc. They can be found by searching web archives
for the original URI http://blogs.law.harvard.edu/futureoftheinternet/
2013/09/22/perma/. For example:

– Internet Archive has result for that search at https://web.archive.org/

web/*/http://blogs.law.harvard.edu/futureoftheinternet/2013/09/

22/perma/

– archive.today has result for that search at http://archive.today/blogs.
law.harvard.edu/futureoftheinternet/2013/09/22/perma/

More generally, every existing web archive supports searching for archived
snapshots by means of the URI of the original resource of which the archive
took (a) snapshot(s). Also, all major web archives support the Memento protocol
[4] that allows accessing archived snapshots by using the URI of the original
resource. In addition, some web archives have bespoke APIs that provide such
functionality. Using the ongoing example, this means that, in case perma.cc
would temporarily or permanently go off-line, snapshots can still exist in other
web archives.

However, in the common approach to address reference rot, the original URI
is replaced by the URI of the archived snapshot. As a result, this approach
prohibits finding snapshots in other web archives, making its functioning totally
dependent on the continued existence of the web archive that assigned the URI

10 http://www.nytimes.com/2013/09/24/us/politics/

in-supreme-court-opinions-clicks-that-lead-nowhere.html

http://perma.cc/0Hg62eLdZ3T
http://perma.cc/0Hg62eLdZ3T
http://blogs.law.harvard.edu/futureoftheinternet/2013/09/22/perma/
http://blogs.law.harvard.edu/futureoftheinternet/2013/09/22/perma/
http://blogs.law.harvard.edu/futureoftheinternet/2013/09/22/perma/
http://blogs.law.harvard.edu/futureoftheinternet/2013/09/22/perma/
https://web.archive.org/web/*/http://blogs.law.harvard.edu/futureoftheinternet/2013/09/22/perma/
https://web.archive.org/web/*/http://blogs.law.harvard.edu/futureoftheinternet/2013/09/22/perma/
https://web.archive.org/web/*/http://blogs.law.harvard.edu/futureoftheinternet/2013/09/22/perma/
http://archive.today/blogs.law.harvard.edu/futureoftheinternet/2013/09/22/perma/
http://archive.today/blogs.law.harvard.edu/futureoftheinternet/2013/09/22/perma/
http://www.nytimes.com/2013/09/24/us/politics/in-supreme-court-opinions-clicks-that-lead-nowhere.html
http://www.nytimes.com/2013/09/24/us/politics/in-supreme-court-opinions-clicks-that-lead-nowhere.html

Towards Robust Hyperlinks for Web-Based Scholarly Communication 19

for the archived snapshot. From the perspective of web persistence this can
hardly be regarded as a satisfactory solution. In order to maximize chances of
future retrieval of snapshots of a linked resource, that resource’s original URI
must be maintained when linking to it.

3.2 Citing Web Resources

When citing web resources in scholarly literature or in Wikipedia articles, a
practice exists to not only include the URI of the cited resource in the citation
but also one or more of the following information elements:

– The date the cited resource was visited.
– The URI of an archival version of the cited resource, typically available from

a web archive.
– The date the cited resource was archived.

Indeed, in order to cite a web resource, Wikipedia’s Simple Citation Tem-
plate11 and most scholarly citation styles including the Chicago citation style12,
the American Psychological Association style13, and the American Chemical
Society style14 list the URI and the access date of the cited resource as neces-
sary information. In addition, Wikipedia’s Full Citation Template15 includes the
URI of an archival version of the resource. The latter also includes the date the
archival version of the cited resource was created.

3.3 Reference Rot and Temporal Context

Inclusion of this temporal context information - access date, archive url, and
archive date - is motivated by the understanding that the web is ephemeral,
that the URI of the cited resource - from now on referred to as linkedurl - is
subject to reference rot.

The temporal context information provided in these web citations serves the
following purposes:

– The date the cited resource was visited, from now on referred to as ver-
siondate, serves as a reminder that one should not assume that the content
at the cited resource will be the same when visiting it some time after that
date.

– The URI of an archival version of the cited resource, from now on referred
to as versionurl, allows revisiting a version of the page as it was when it
was cited.

– The date the cited resources was archived is somehow informative from a
documentation perspective but seems less crucial as this information is typ-
ically also available when visiting the archived version of the resource.

11 http://en.wikipedia.org/wiki/Template:Citation#Simple_citation
12 http://www.bibme.org/citation-guide/Chicago/website
13 http://www.studygs.net/citation.htm
14 http://library.williams.edu/citing/styles/acs.php
15 http://en.wikipedia.org/wiki/Template:Citation#Full_citation_parameters

http://en.wikipedia.org/wiki/Template:Citation#Simple_citation
http://www.bibme.org/citation-guide/Chicago/website
http://www.studygs.net/citation.htm
http://library.williams.edu/citing/styles/acs.php
http://en.wikipedia.org/wiki/Template:Citation#Full_citation_parameters

20 H. Van de Sompel, M. Klein, and H. Shankar

3.4 The Case for Structured Temporal Context on Links

This temporal context information has, so far, been included in a way that is
helpful for human consumption only. Despite the many variations in expressing
the information that is relevant for a web citation, a user can interpret it and
connect the dots. Also, temporal context information has so far only been in-
cluded in formal web citations. However, since all links are subject to reference
rot, addition of such information should not be limited to formal citations of
web resources, but should rather be applicable to all links to web resources.

There are compelling reasons to express temporal context information in a
structured manner on links to support use by applications such as browsers,
crawlers, search engines:

– The many variations in expressing web citation information makes machine
interpretation challenging.

– In the current representation of information, the linkedurl and the versionurl
look like two independent URIs despite the tight - temporal - relationship
between them.

– The approach used for formal web citations can not be used for links in
general because it would e.g. require adding two links to the same anchor
text.

– The versionurl, if provided in a structured manner, can be used by appli-
cations such as browsers, to indicate and provide the option to retrieve the
archived snapshot of the linked resource.

– The combination of the linkedurl and the versiondate, if provided in a struc-
tured manner, can be used by applications such as browsers, to indicate and
provide the option to obtain an archived snapshot of the linked resource that
is temporally near to the versiondate, even if no versionurl is provided. The
Memento protocol [4] that specifies content negotiation in the datetime di-
mension provides this functionality in an interoperable manner, but it could
also be provided by leveraging bespoke APIs of web archives.

The question then arises how to best convey the temporal context informa-
tion so that applications can use it. And how to do so in a uniform manner,
i.e. a manner that is independent on the venue conveying the information. With
this regard, it is interesting to observe that in 1995, the definition of the anchor
element16 included an optional URN attribute, possibly/likely provided to ad-
dress concerns regarding web persistence. The attribute was deprecated and it
is probably a fair guess that this happened because no infrastructure existed to
act upon URNs. The meanwhile disappeared HTML5 development page for the
anchor element17 included a reminder that the URN attribute is obsolete.

16 http://www.w3.org/MarkUp/1995-archive/Elements/A.html
17 Original URI http://dev.w3.org/html5/markup/a.html, Snapshot URI dated Jan-
uary 1st 2014 https://web.archive.org/web/20140101022041/http://dev.w3.

org/html5/markup/a.html

http://www.w3.org/MarkUp/1995-archive/Elements/A.html
http://dev.w3.org/html5/markup/a.html
https://web.archive.org/web/20140101022041/http://dev.w3.org/html5/markup/a.html
https://web.archive.org/web/20140101022041/http://dev.w3.org/html5/markup/a.html

Towards Robust Hyperlinks for Web-Based Scholarly Communication 21

There are several reasons to revisit the inclusion of attributes related to web
persistence in select HTML elements, most importantly the anchor element.

First, there is a growing concern regarding persistence at least in some pockets
of the web:

– Wikipedia has an active Link rot thread18 looking into the problem domain.
– The Hiberlink project and CrossRef’s OpCit explore the problem for schol-

arly communication. The pilot study [5] that led to Hiberlink found discon-
certing percentages of link rot and lack of archival versions for web resources
referenced in the arXiv.org preprint collection and the thesis repository of
the University of North Texas.

– Reference rot has become a significant concern in legal cases that depend on
web resources [7].

– The Modern Language Association style19 for citing web resources no longer
mandates the inclusion of the cited URI because Web addresses are not
static.

Second, infrastructure has emerged that can play a role in achieving an in-
creased degree of web persistence including:

– Web archives such as the Internet Archive20, the UK Web Archive21, the
Icelandic web archive22.

– Versioning systems such as MediaWiki23 and GitHub24.
– Approaches for pro-active archiving of resources as they are being cited as

intended by Wikipedia’s WebCiteBOT effort25, and Hiberlink’s Solutions
Track.

– Services that support on-demand archiving for web authors that link to
resources as provided by WebCite26, archive.today27, perma.cc28.

– The Memento protocol [4] that uses content negotiation in the datetime
dimension to provide access to prior versions of resources by means of their
original URI and the date of the desired version.

18 http://en.wikipedia.org/wiki/Wikipedia_talk:Link_rot
19 https://owl.english.purdue.edu/owl/resource/747/08/
20 http://archive.org/web/
21 http://www.webarchive.org.uk/ukwa/info/about#what_uk_archive
22 http://vefsafn.is/index.php?page=english
23 http://www.mediawiki.org/wiki/MediaWiki
24 https://github.com/
25 https://en.wikipedia.org/wiki/User:WebCiteBOT
26 http://www.webcitation.org/
27 http://archive.today
28 http://perma.cc

http://en.wikipedia.org/wiki/Wikipedia_talk:Link_rot
https://owl.english.purdue.edu/owl/resource/747/08/
http://archive.org/web/
http://www.webarchive.org.uk/ukwa/info/about#what_uk_archive
http://vefsafn.is/index.php?page=english
http://www.mediawiki.org/wiki/MediaWiki
https://github.com/
https://en.wikipedia.org/wiki/User:WebCiteBOT
http://www.webcitation.org/
http://archive.today
http://perma.cc

22 H. Van de Sompel, M. Klein, and H. Shankar

3.5 Structured Expression of Temporal Context on Links

When attempting to express temporal context information for links in HTML,
a major design characteristic should be that the linkedurl be considered the
central information element, to be conveyed as the value of the href attribute of
the anchor element. The major motivation for this approach is that the linkedurl
is the URI by which the linked resource is known throughout the web, including
in web archives. Displacing the linkedurl as central information element is akin
to throwing away the resource’s key.

Another significant consideration in the design of a technical solution is the
extent to which it stands a credible chance for standardization and hence support
in browsers. Although reference rot is considered a significant problem in some
pockets of the web, many consider it only remotely relevant. Hence, a generic
technical approach that allows addressing issues related to web persistence but
also enables other novel use cases may be more acceptable for the web community
at large:

– The early thinking in the Hiberlink project was along the lines of a spe-
cific solution, dedicated at addressing reference rot only. For example, one
proposal29, illustrated as Link Augmented with Attributes from Miss-
ing Link Proposal in Figure 6, consisted of adding both a versiondate
and versionurl attribute with aforementioned semantics to HTML’s anchor
element.

– However, independent from the above Hiberlink perspective, the Internet
Robustness project at Harvard University30 developed a similar reasoning
regarding the need for an additional attribute for HTML’s anchor element
to be able to point at a cached version of a resource in order to allow a
user to still access required information even if the hosting server is under a
distributed denial of service attack. While both pointing to an archived and a
cached resource resort aim at increased web persistence, they are significantly
different cases, featuring augmented links with different semantics.

– This insight led to the consideration that the most generic solution might
be one that allows expressing links about links (typed links that pertain
to the URI expressed in the anchor’s href attribute). Indeed, inspired by the
way that Web Links [6] allow a resource to express typed links that pertain to
itself in HTTP headers, HTML could allow expressing typed links pertaining
to resources that are linked from a page. Such an approach would, for exam-
ple, also allow expressing links to alternate representations of the resource
provided in href, including links to mobile versions. This approach is illus-
trated as Link Augmented with Typed Link Proposal to an Archived
Snapshot in Figure 6, whereby the memento relation type originates in
the Memento protocol [4] and indicates an archived snapshot.

29 http://mementoweb.org/missing-link/#option1
30 http://cyber.law.harvard.edu/research/internetrobustness

http://mementoweb.org/missing-link/#option1
http://cyber.law.harvard.edu/research/internetrobustness

Towards Robust Hyperlinks for Web-Based Scholarly Communication 23

– A precedent for the extension of HTML for the purpose of referencing alter-
nates exists in the recently proposed srcset31 extension that allows conveying
alternatives for embedded images.

At the time of writing, a broader collaboration has been launched that in-
cludes Hiberlink partners as well as Harvards perma.cc web archive, Harvards
Berkman Center, and Old Dominion University and that aims at devising and
standardizing a solution that allows augmenting links in HTML. The primary
focus is on adding information in support of web persistence, but the eventual
technical solution might cover a broader range of use cases.

3.6 Applications

Temporal context information can be put to use in various applications. Search
engines could use it, for example, to highlight frequently referenced snapshots of
a resource. Also, when a web author adds versiondate information to a link, this
could be taken as a hint for a pro-active archiving application that the linked
resource should be archived. Such an application could be integrated with a
desktop authoring tool, or a content management system like a MediaWiki, or
it could be a crawler-based third party service, for example operated by a web
archive that is looking to extend its archival collection.

A major use case for temporal context information is browsers. A challenge in
using the information is the way in which to make it actionable by the user. One
way to do so is by means of a right click on a linked resource. As illustrated in a
demonstration video32, the Memento extension for Chrome33 uses this approach
to present the following options in the context menu:

– Retrieve a snapshot of the resource as it existed around the date set in a
calendar user interface element.

– Retrieve the most recent snapshot of the resource, a feature that is especially
helpful in case of 404 responses.

Using the nomenclature of the Missing Link proposal, the following options
could be added to the context menu to leverage temporal context information:

– Retrieve the archived snapshot with the provided versionurl.
– Retrieve the archived snapshot that is temporally closest to the provided

versiondate.

31 http://www.w3.org/TR/html-srcset/
32 Van de Sompel, H. Memento extension for Chrome: A preview

https://www.youtube.com/watch?v=WtZHKeFwjzk
33 Shankar, H. Memento Time Travel for Chrome

http://bit.ly/memento-for-chrome

http://www.w3.org/TR/html-srcset/
https://www.youtube.com/watch?v=WtZHKeFwjzk
http://bit.ly/memento-for-chrome

24 H. Van de Sompel, M. Klein, and H. Shankar

Fig. 6. Existing and proposed approaches to link to archived snapshots of resources

4 Conclusion

The transition of the scholarly communication system to a natively web-based
endeavor is ongoing and brings along challenges that did not exist in its paper-
based predecessor but are inherited from the very nature of the web. Reference
rot is one such challenge. It is a result of the dynamic and ephemeral nature of
the web. While reference rot may be acceptable to certain web communities, it
is of significant concern from the perspective of the long-term integrity of the
web-based scholarly record. The Hiberlink project quantifies reference rot at a
vast and unprecedented scale but also explores solutions aimed at ameliorating
the problem. This paper, which accompanies an invited conference presentation,
focused on the latter and paid special attention to challenges related to linking to
resources for which archived snapshots are pro-actively created. The status quo
with this regard is unsatisfactory as it is itself subject to reference rot. Efforts

Towards Robust Hyperlinks for Web-Based Scholarly Communication 25

are underway aimed at augmenting links with information that can improve web
persistence and hence the persistence of the web-based scholarly record.

Acknowledgments. Hiberlink is funded by the AndrewW. Mellon Foundation.
The authors would like to acknowledge the Hiberlink partners at the University
of Edinburgh: the Language Technology Group at Informatics for their contribu-
tions to the Research Track and Edina for their developments under the Solutions
Track. The authors would like to acknowledge their colleagues at Harvard Uni-
versity - the perma.cc effort at the Law Library and the Internet Robustness
effort at the Berkman Center - for the collaboration on enhancing HTML with
robustness information. The authors would also like to thank Robert Sanderson,
formerly of the Los Alamos National Laboratory and now at Stanford University,
for the Pilot Study that inspired Hiberlink and for contributions to the Missing
Link Proposal.

References

1. Bechhofer, S., De Roure, D., Gamble, M., Goble, C., Buchan, I.: Research Ob-
jects: Towards Exchange and Reuse of Digital Knowledge. Nature Precedings (2010),
http://dx.doi.org/10.1038/npre.2010.4626.1

2. Roosendaal, H., Geurts, P.: Forces and functions in scientific communication: an
analysis of their interplay. In: Proceedings of Cooperative Research Information Sys-
tems in Physics 1997 (CRISP 1997) (1997), http://www.physik.uni-oldenburg.
de/conferences/crisp97/roosendaal.html

3. Klein, M., Shankar, H., Wincewicz, R., Van de Sompel, H.: HiberActive: Pro-Active
Archiving of Web References from Scholarly Articles. Open Repositories (to appear,
2014)

4. Van de Sompel, H., Nelson, M.L., Sanderson, R.: RFC7089: HTTP Framework for
Time-Based Access to Resource States – Memento (2013), http://tools.ietf.
org/html/rfc7089

5. Sanderson, R., Phillips, M., Van de Sompel, H.: Analyzing the Persistence of Ref-
erenced Web Resources with Memento (2011), http://arxiv.org/abs/1105.3459

6. Nottingham, M.: RFC5988: Web Linking (2010), http://tools.ietf.org/html/
rfc5988

7. Zittrain, J., Albert, K., Lessig, L.: Perma: Scoping and Addressing the Problem of
Link and Reference Rot in Legal Citations. Harvard Law Review (2014),
http://harvardlawreview.org/2014/03/perma-scoping-and-addressing-the-

problem-of-link-and-reference-rot-in-legal-citations/

http://dx.doi.org/10.1038/npre.2010.4626.1
http://www.physik.uni-oldenburg.de/conferences/crisp97/roosendaal.html
http://www.physik.uni-oldenburg.de/conferences/crisp97/roosendaal.html
http://tools.ietf.org/html/rfc7089
http://tools.ietf.org/html/rfc7089
http://arxiv.org/abs/1105.3459
http://tools.ietf.org/html/rfc5988
http://tools.ietf.org/html/rfc5988
http://harvardlawreview.org/2014/03/perma-scoping-and-addressing-the-problem-of-link-and-reference-rot-in-legal-citations/
http://harvardlawreview.org/2014/03/perma-scoping-and-addressing-the-problem-of-link-and-reference-rot-in-legal-citations/

Computable Data, Mathematics, and Digital

Libraries in Mathematica and Wolfram|Alpha

Eric Weisstein

Wolfram|Alpha
Champaign, IL, 61820, USA

eww@wolfram.com

Abstract. This talk will focus on the infrastructure developed for
representing and accessing data (especially mathematical data) in Wol-
fram|Alpha, as well as on the technologies and language extensions de-
veloped in the most recent version of Mathematica for making this data
even more computationally accessible. Based on experiences using these
technologies to create a prototype semantic digital library for a subset of
mathematics, we believe the ambitious dream of creating of a semantic
digital library for all of mathematics is now within reach.

1 Introduction

Wolfram|Alpha (http://www.wolframalpha.com) is a freely available website
that contains hand-curated data sets taken from hundreds of technological, scien-
tific, sociological, and other domains, including a core set of mathematical ones.
This data has hitherto been accessible either directly via the website, through
its API, or through a number of other specialized sources (such as various apps
and SIRI). More recently, a large portion of this information has been exposed
through the Wolfram Language itself via a set of built-in functions centered
around an entity-property approach to information representation. The tech-
nology developed for Wolfram|Alpha has also recently been used and extended
with the help of funding from the Sloan and Wolfram Foundations to create a
prototype digital mathematics library covering known results and identities in
the specific area of continued fractions. A recent US National Research Council
report has identified approaches it believes could enable the creation of a substan-
tial digital mathematics library, and we are currently investigating partnerships
and technologies that could help turn this ambitious dream into a reality.

2 Computable Data in Wolfram|Alpha

Wolfram|Alpha was unveiled in 2009. In the ensuing years, it has become known
for its ability to perform an extensive variety of computations in mathematics as
well as many other fields. It currently answers millions of users queries per day.
Whereas the traditional use of mathematical software is to carry out computa-
tions and the traditional use of encyclopedias is to give static information about

S.M. Watt et al. (Eds.): CICM 2014, LNAI 8543, pp. 26–29, 2014.
c© Springer International Publishing Switzerland 2014

Computable Data, Mathematics, and Digital Libraries 27

a certain entity or property, the goal of this website is to bring these two modes
(purely dynamic and computational versus purely static and informational) to-
gether to dynamically generate knowledge about known structures.

Wolfram|Alpha’s knowledge comes from a combination of Mathematica com-
putations, roughly 1000 curated data sets, and links to a number of real-time
data sources. Mathematical domains known to Wolfram|Alpha include graphs,
groups, polyhedra, knots, curves, surfaces, and others. For querying computa-
tional knowledge, Wolfram|Alpha implements natural language encoding and
processing. Finally, while results are by default displayed into a web browser,
they are also available in a number of different formats including text, MathML,
LATEX, XML, images, together with Mathematica and its several data formats.

3 Computable Data in Mathematica

Starting in Version 6 (released in 2007), Mathematica itself has included a set
of approximately 20 curated data collections covering mathematical, scientific,
geographic, and a number of other domains. Five years after the release of Wol-
fram|Alpha and seven years after the released of Mathematica 6, the original
concept of Mathematica data collections and the extensive additional functional-
ity, coverage, and development work done for Wolfram|Alpha have been reunited
in the recently released Mathematica 10.

There are several components to this integration, the first being the exten-
sive augmentation of the set of available data collections. However, rather than
bundling all the additional data into Mathematica itself, the integration has been
accomplished using the Wolfram|Alpha API to expose a selected set of its data
sets to Mathematica over an internet connection. One benefit of this approach is
that data is updated, extended, and improved on the Wolfram|Alpha site much
more frequently (usually weekly) than Mathematica itself is released.

An even greater step forward is the introduction of entity, entity class, prop-
erty, and related built-in symbols as a means to represent and manipulate com-
putable data in Mathematica. Each curated object in an available data set is as-
signed a domain (say "PlaneCurve") and a canonical name (say "Ellipse"). Us-
ing this framework, objects can be easily referenced and acted open using functions
such as EntityValue[Entity["PlaneCurve", "Ellipse"], EntityProperty[

"PlaneCurve", "Area"], EntityValue[Entity ["PlaneCurve", "Ellipse"],

"Classes"], and so on. Similarly, a command like EntityList[EntityClass[

"PlaneCurve", "Conic"]] can be used to list entities in the plane curve domain
belonging to entity class conic.

There are also a number of convenient ways to construct or discover canonical
entity, entity class, and property names from within Mathematica. The first is a
revamped implementation of Mathematica’s “free-form input” functionality. To
wit, by preceding an input with a special character or keystroke (= for a simple
Wolfram|Alpha result, == for a full result including all output pods, and CTRL-=

for an in-line result), it becomes a natural language query to a Wolfram|Alpha
server whose result is returned directly into the current notebook. For example,

28 E. Weisstein

simply typing CTRL-= ellipse into aMathematica front-end returns the expres-
sion for the ellipse plane curve entity, while typing CTRL-= ellipse area gives
the corresponding entity-property expression. As a trivial example, in the lat-
ter case, the resulting expression can be directly evaluated to give the expected
formula Function[{a., b.}, π a. b.].

Not only does free-form input provide a simple interface for users to access
data, it also provides a disambiguation mechanism in the event that multiple in-
terpretations are available. For example, CTRL-= mercury defaults to a chemical
element but presents the user with a set of assumptions for the plant, periodical,
word, city, and given name. In a more computational setting, a programmatic
approach is available using either SemanticInterpretation (which returns a
single best semantic interpretation of the specified free-form string as a Wol-
fram Language expression) or Interpreter (which tries to interpret the natural
language input as an object of the specified form).

The resulting synthesis of data representation, exposure, and access provides
a powerful, flexible, and extensible framework which is practically applicable to
virtually any domain of interest.

4 Prototype Semantic Digital Math Library: The eCF
Project

Given the existence of the Wolfram|Alpha framework, it is natural to ask how
difficult it would be to create from scratch a semantic digital library covering
some specific domain of interest.

Precisely this question was addressed in the recently completed eCF (“e-
Continued Fraction”) project, undertaken from March 2012 to September 2013.
The project resulted in the collection, semantic encoding, and exposure on the
internet of significant results from the mathematical corpus concerning continued
fractions. This work was supported by the Sloan Foundation with the goal of cre-
ating a new type of free digital archive for mathematical data that both ensures
preservation and promotes dissemination of a targeted segment of mathematical
knowledge for the public good.

Continued fractions presented an ideal subject for this proof-of-concept as
they constitute a subset of mathematics that is historically rich, well-defined,
and nontrivial, yet at the same time manageable in scope. Work completed in-
cludes a nearly exhaustive collection of continued fraction identities, a normal-
ized representative bibliographic database of relevant books and articles, and an
extensive collection of hand-curated theorems and results. All of these entities
can be queried using a natural language syntax and provide additional link-
ing and cross-entity entraining. In addition, many offer both visualizations and
traditionally typeset versions, thus combining familiar traditional mathematical
markup with modern tools for computational exploration.

This work was implemented using extensions of the framework developed for
the Wolfram|Alpha computational knowledge engine and website. As such, it
is generalizable to any area of knowledge where information is encodable and

Computable Data, Mathematics, and Digital Libraries 29

computable. It differed from previous efforts by treating individual results (not
papers) as entities of interest. Our methodology consisted of the following: 1)
mine papers from archives of ∼ 800 historical articles, together with results
from books and the newer literature, 2) extract theorems and other results,
encode them in semantic form, and store them in computer-readable (and if
possible, computational) form, 3) tag author, publication, reference, and subject
information, 4) link to the original literature, 5) present in a coherent and unified
form, 6) verify by human and computer, and 7) encode and access all data using
extensions of the framework developed for Wolfram|Alpha.

At the completion of this work last year, approximately 400 theorems, conjec-
tures, and other results were encoded and exposed. Results also include the first
ever comprehensive table of continued fraction identities, containing∼ 1,300 core
and ∼ 11,000 derived continued fractions. All results are searchable using a nat-
ural language interface and are easily and freely accessible via Wolfram|Alpha.

5 Future Work

Our experience both with eCF and in other domains for which we have previously
curated computable data in Wolfram|Alpha suggests it is feasible to develop tools
and processes that allow a significant portion of mathematical knowledge to be
mined, encoded, and exposed semi-automatically via crowdsourcing.

The Future World Heritage Digital Mathematics Library symposium took
place in Washington, DC on June 1–3, 2012. After nearly two years of consider-
ation, the National Research Council has now published their final report, which
is available the arXiv e-print service (http://arxiv.org/abs/1404.1905).

While the NRC report is very detailed, touches on many aspects of relevance
to the realization of a WMDHL, and in particular identifies approaches it believes
could enable the creation of a substantial digital mathematics library, concrete
steps that could be undertaken in the near-term to turn this dream into a reality
remain elusive. A a result, the Sloan Foundation and Wolfram Foundation are
currently investigating partnerships, technologies, and constituent components
that could help turn the ambitious dream of creating a successful, comprehensive,
and authoritative digital library for mathematics into a reality.

Acknowledgments. I thank the CICM organizers for the opportunity to share
this work. I also express appreciation to Daniel Goroff, the Alfred P. Sloan
Foundation, Stephen Wolfram, and the Wolfram Foundation for their support of
the eCF project. I thank my eCF co-investigators Michael Trott, Oleg Marichev,
Todd Rowland, and intern Christopher Stover. Finally, I thank Michael Trott
and André Kuzniarek for helping spearhead the nascent effort to make the giant
leap from “continued fractions” to “all of mathematics.”

Towards the Formal Reliability Analysis

of Oil and Gas Pipelines

Waqar Ahmad1 , Osman Hasan1 ,
Sofiène Tahar2, and Mohammad Salah Hamdi3

1 School of Electrical Engineering and Computer Science (SEECS)
National University of Sciences and Technology (NUST)

Islamabad, Pakistan
{12phdwahmad,osman.hasan}@seecs.nust.edu.pk

2 Electrical and Computer Engineering Department
Concordia University, Montreal, Canada

tahar@ece.concordia.ca
3 Information Systems Department

Ahmed Bin Mohammed Military College, Doha, Qatar
mshamdi@abmmc.edu.qa

Abstract. It is customary to assess the reliability of underground oil
and gas pipelines in the presence of excessive loading and corrosion ef-
fects to ensure a leak-free transport of hazardous materials. The main
idea behind this reliability analysis is to model the given pipeline sys-
tem as a Reliability Block Diagram (RBD) of segments such that the
reliability of an individual pipeline segment can be represented by a ran-
dom variable. Traditionally, computer simulation is used to perform this
reliability analysis but it provides approximate results and requires an
enormous amount of CPU time for attaining reasonable estimates. Due
to its approximate nature, simulation is not very suitable for analyzing
safety-critical systems like oil and gas pipelines, where even minor anal-
ysis flaws may result in catastrophic consequences. As an accurate alter-
native, we propose to use a higher-order-logic theorem prover (HOL) for
the reliability analysis of pipelines. As a first step towards this idea, this
paper provides a higher-order-logic formalization of reliability and the
series RBD using the HOL theorem prover. For illustration, we present
the formal analysis of a simple pipeline that can be modeled as a series
RBD of segments with exponentially distributed failure times.

Keywords: Reliability Block Diagrams, Formal Methods, Theorem
Proving, Oil and Gas pipeline.

1 Introduction

On April 20, 2010, methane gas leakage on the Deepwater Horizon oil rig op-
erated by Transocean, a subcontractor of British Petroleum (BP), caused a big
explosion [1]. This leakage not only killed 11 workers instantly but destroyed
and sank the rig, and caused millions of gallons of oil to pour into the Gulf of

S.M. Watt et al. (Eds.): CICM 2014, LNAI 8543, pp. 30–44, 2014.
c© Springer International Publishing Switzerland 2014

The original version of this chapter was revised. The spelling of the author
Waqar Ahmad has been corrected. The erratum to this chapter is available at
DOI: 10.1007/978-3-319-08434-3 39

http://dx.doi.org/10.1007/978-3-319-08434-3_39

Towards the Formal Reliability Analysis of Oil and Gas Pipelines 31

Mexico. The gushing well, about a mile under the sea, was finally brought un-
der control after more than three months of frenetic attempts. The spill, which
is considered to be the largest accidental marine oil spill in the history of the
petroleum industry, caused extensive damage to marine and wildlife habitats as
well as the Gulf’s fishing and tourism industries and its impact still continues.
Just like the BP pipeline, there are tens of thousands of miles long oil and gas
pipelines around the world. All of these pipelines are aging and are becoming
more and more susceptible to failures, which may lead to disasters like the BP
one. Hence, it is very important to do rigorous reliability analysis of oil and gas
pipelines to detect and rectify potential problems.

The reliability analysis of a pipeline system involves a three-step process: (i)
partitioning the given pipeline into segments and constructing its equivalent
reliability block diagram (RBD), (ii) assessing the reliability of the individual
segments and (iii) evaluating the reliability of the complete pipeline system based
on the RBD and the reliability of its individual segments. The reliability of an
individual segment is usually expressed in terms of its failure rate λ and a random
variable, like exponential [2] or Weibull random variable [3], which models the
failure time. A single oil or gas pipeline can be simply modeled as a series
RBD [2]. However, in many cases, these pipeline systems have either reserved
components or subsystems and such pipeline systems exhibit a combination of
series and parallel RBDs [4].

The reliability analysis of oil and gas pipelines has predominantly been ac-
complished by first gathering data from in-line inspection tools to detect cracks,
corrosion or damage [5, 6]. This information is then manipulated using the paper-
and-pencil based analytical analysis and computer simulations to deliver diag-
nostics and insightful pipeline integrity reports (e.g. [2, 4, 7]). However, due
to the complex nature of large pipeline system analysis, paper-and-pencil proof
methods are error prone and the exhaustive testing of all possible system be-
haviors using simulation is almost impossible. Thus, these traditional analysis
techniques cannot guarantee accurate results, which is a severe limitation in the
case of oil and gas pipelines as an uncaught system bug may endanger human
and animal life or lead to a significant financial loss.

The inaccuracy limitations of traditional analysis techniques can be overcome
by using formal methods [8], which use computerized mathematical reasoning to
precisely model the system’s intended behavior and to provide irrefutable proof
that a system satisfies its requirements. Both model checking and theorem prov-
ing have been successfully used for the precise probabilistic analysis of a broad
range of systems (e.g. [9–13]). However, to the best of our knowledge, no formal
analysis approach has been used for the reliability analysis of oil and gas pipelines
so far. The foremost requirement for conducting the formal reliability analysis
of underground oil and gas pipelines is the ability to formalize RBDs recur-
sively and continuous random variables. Model checking is a state-based formal
method technique. The inherent limitations of model checking is the state-space
explosion problem and the inability to model complex datatypes such as trees,
lists and recursive definitions [14]. On the other hand, higher-order logic [15] is a

32 W. Ahmad et al.

system of deduction with a precise semantics and can be used to formally model
any system that can be described mathematically including recursive definitions,
random variables, RBDs, and continuous components. Similarly, interactive the-
orem provers are computer based formal reasoning tools that allow us to verify
higher-order-logic properties under user guidance. Higher-order-logic theorem
provers can be used to reason about recursive definitions using induction meth-
ods [16]. Thus, higher-order-logic theorem proving can be used to conduct the
formal analysis of oil and gas pipelines.

A number of higher-order-logic formalizations of probability theory are avail-
able in higher-order logic (e.g. [17–19]). Hurd’s formalization of probability the-
ory [17] has been utilized to verify sampling algorithms of a number of commonly
used discrete [17] and continuous random variables [20] based on their proba-
bilistic and statistical properties [21, 22]. Moreover, this formalization has been
used to conduct the reliability analysis of a number of applications, such as mem-
ory arrays [23], soft errors [24] and electronic components [25]. However, Hurd’s
formalization of probability theory only supports having the whole universe as
the probability space. This feature limits its scope and thus this probability the-
ory cannot be used to formalize more than a single continuous random variable.
Whereas, in the case of reliability analysis of pipelines, multiple continuous ran-
dom variables are required. The recent formalizations of probability theory by
Mhamdi [18] and Hölzl [19] are based on extended real numbers (including ±∞)
and provide the formalization of Lebesgue integral for reasoning about advanced
statistical properties. These theories also allow using any arbitrary probability
space that is a subset of the universe and thus are more flexible than Hurd’s
formalization. However, to the best of our knowledge, these foundational theo-
ries have not been used to formalize neither reliability and RBDs nor continuous
random variables so far.

In this paper, we use Mhamdi’s formalization of probability theory [18], which
is available in the HOL theorem prover [26], to formalize reliability and the com-
monly used series RBD, where its individual segments are modeled as random
variables. Our formalization includes various formally verified properties of re-
liability and series RBD that facilitate formal reasoning about the reliability of
some simple pipelines using a theorem prover. To analyze more realistic models of
pipelines, it is required to formalize other RBDs, such as parallel, series-parallel
and parallel-series [27]. In order to illustrate the utilization and effectiveness of
the proposed idea, we utilize the above mentioned formalization to analyze a
simple pipeline that can be modeled as a series RBD with an exponential failure
time for individual segments.

2 Preliminaries

In this section, we give a brief introduction to theorem proving in general and
the HOL theorem prover in particular. The intent is to introduce the main
ideas behind this technique to facilitate the understanding of the paper for the
reliability analysis community. We also summarize Mhamdi’s formalization of
probability theory [18] in this section.

Towards the Formal Reliability Analysis of Oil and Gas Pipelines 33

2.1 Theorem Proving

Theorem proving [28] is a widely used formal verification technique. The system
that needs to be analysed is mathematically modelled in an appropriate logic
and the properties of interest are verified using computer based formal tools.
The use of formal logics as a modelling medium makes theorem proving a very
flexible verification technique as it is possible to formally verify any system that
can be described mathematically. The core of theorem provers usually consists
of some well-known axioms and primitive inference rules. Soundness is assured
as every new theorem must be created from these basic or already proved axioms
and primitive inference rules.

The verification effort of a theorem in a theorem prover varies from trivial to
complex depending on the underlying logic [29]. For instance, first-order logic
[30] utilizes the propositional calculus and terms (constants, function names and
free variables) and is semi-decidable. A number of sound and complete first-
order logic automated reasoners are available that enable completely automated
proofs. More expressive logics, such as higher-order logic [15], can be used to
model a wider range of problems than first-order logic, but theorem proving
for these logics cannot be fully automated and thus involves user interaction to
guide the proof tools. For reliability analysis of pipelines, we need to formalize
(mathematically model) random variables as functions and their distribution
properties are verified by quantifying over random variable functions. Hence-
forth, first-order logic does not support such formalization and we need to use
higher-order logic to formalize the foundations of reliability analysis of pipelines.

2.2 HOL Theorem Prover

HOL is an interactive theorem prover developed at the University of Cambridge,
UK, for conducting proofs in higher-order logic. It utilizes the simple type the-
ory of Church [31] along with Hindley-Milner polymorphism [32] to implement
higher-order logic. HOL has been successfully used as a verification framework
for both software and hardware as well as a platform for the formalization of
pure mathematics.

The HOL core consists of only 5 basic axioms and 8 primitive inference rules,
which are implemented as ML functions. Soundness is assured as every new
theorem must be verified by applying these basic axioms and primitive inference
rules or any other previously verified theorems/inference rules.

We utilized the HOL theories of Booleans, lists, sets, positive integers, real
numbers, measure and probability in our work. In fact, one of the primary mo-
tivations of selecting the HOL theorem prover for our work was to benefit from
these built-in mathematical theories. Table 1 provides the mathematical interpre-
tations of some frequently used HOL symbols and functions, which are inherited
from existing HOL theories, in this paper.

34 W. Ahmad et al.

Table 1. HOL Symbols and Functions

HOL Symbol Standard Symbol Meaning

∧ and Logical and

∨ or Logical or

¬ not Logical negation

:: cons Adds a new element to a list

++ append Joins two lists together

HD L head Head element of list L

TL L tail Tail of list L

EL n L element nth element of list L

MEM a L member True if a is a member of list L

λx.t λx.t Function that maps x to t(x)

SUC n n+ 1 Successor of a num

lim(λn.f(n)) lim
n→∞

f(n) Limit of a real sequence f

2.3 Probability Theory and Random Variables in HOL

Mathematically, a measure space is defined as a triple (Ω,Σ, μ), where Ω is a
set, called the sample space, Σ represents a σ-algebra of subsets of Ω, where
the subsets are usually referred to as measurable sets, and μ is a measure with
domain Σ. A probability space is a measure space (Ω,Σ, Pr), such that the
measure, referred to as the probability and denoted by Pr, of the sample space
is 1. In Mhamdi’s formalization of probability theory [18], given a probability
space p, the functions space and subsets return the corresponding Ω and Σ,
respectively. This formalization also includes the formal verification of some of
the most widely used probability axioms, which play a pivotal role in formal
reasoning about reliability properties.

Mathematically, a random variable is a measurable function between a proba-
bility space and a measurable space. A measurable space refers to a pair (S,A),
where S denotes a set and A represents a nonempty collection of sub-sets of
S. Now, if S is a set with finite elements, then the corresponding random vari-
able is termed as a discrete random variable and else it is called a continuous
one. The probability that a random variable X is less than or equal to some
value x, Pr(X ≤ x) is called the cumulative distribution function (CDF) and it
characterizes the distribution of both discrete and continuous random variables.
Mhamdi’s formalization of probability theory [18] also includes the formaliza-
tion of random variables and the formal verification of some of their classical
properties using the HOL theorem prover.

3 Reliability

In reliability theory [27], reliability R(t) of a system or component is defined as
the probability that it performs its intended function until some time t.

R(t) = Pr(X > t) = 1− Pr(X ≤ t) = 1− FX(t) (1)

Towards the Formal Reliability Analysis of Oil and Gas Pipelines 35

where FX(t) is the CDF. The random variableX , in the above definition, models
the time to failure of the system. Usually, this time to failure is modeled by the
exponential random variable with parameter λ that represents the failure rate
of the system. Now, the CDF can be modeled in HOL as follows:

Definition 1: Cumulative Distributive Function

� ∀ p X x. CDF p X x = distribution p X {y | y ≤ Normal x}
where p represents the probability space, X is the random variable and x repre-
sents a real number. The function Normal converts a real number to its corre-
sponding value in the extended−real data-type, i.e, the real data-type including
the positive and negative infinity. The function distribution accepts a proba-
bility space p, a random variable X and a set and returns the probability of X
acquiring all the values of the given set in the probability space p. Now, Defini-
tion 1 can be used to formalize the reliability definition, given in Equation 1, as
follows:

Definition 2: Reliability

� ∀ p X x. Reliability p X x = 1 - CDF p X x

We used the above mentioned formal definition of reliability to formal verify
some of the classical properties of reliability in HOL. The first property in this
regard relates to the fact that the reliability of a good component is 1, i.e.,
maximum, prior to its operation, i.e., at time 0. This property has been verified
in HOL as the following theorem.

Theorem 1: Maximum Reliability

� ∀ p X. prob space p ∧ (events p = POW (p space p)) ∧
(∀ y. X y �= NegInf ∧ X y �= PosInf) ∧
(∀ z. 0 ≤ z ⇒ (λx. CDF p X x) contl z) ∧
(∀ x. Normal 0 ≤ X x) ⇒
(Reliability p X 0 = 1)

The first two assumptions of the above theorem ensure that the variable p rep-
resents a valid probability space based on the formalization of Mhamdi’s prob-
ability theory [18]. The third assumption constraints the random variable to
be well-defined, i.e., it cannot acquire negative or positive infinity values. The
fourth assumption states that the CDF of the random variable X is a continuous
function, which means that X is a continuous random variable. This assumption
utilizes the HOL function contl, which accepts a lambda abstraction function
and a real value and ensures that the function is continuous at the given value.
The last assumption ensures that the random variable X can acquire positive
values only since in the case of reliability this random variable always models
time, which cannot be negative. The conclusion of the theorem represents our
desired property that reliability at time=0 is 1.

The proof of the Theorem 1 exploits some basic probability theory axioms
and the following property according to which the probability of a continous
random variable at a point is zero.

36 W. Ahmad et al.

The second main characteristic of the reliability function is its decreasing
monotonicity, which is verified as the following theorem in HOL:

Theorem 2: Reliability is a Monotone Function

� ∀ p X a b. prob space p ∧ (events p = POW (p space p)) ∧
(∀ y. X y �= NegInf ∧ X y �= PosInf) ∧
(∀ x. Normal 0 ≤ X x) ∧ a ≤ b ⇒
(Reliability p X (b)) ≤ (Reliability p X (a))

The assumptions of this theorem are the same as the ones used for Theorem 1
except the last assumption, which describes the relationship between variables a
and b. The above property clearly indicates that the reliability cannot increase
with the passage of time.

The formal reasoning about the proof of Theorem 2 involves some basic axioms
of probability theory and a property that the CDF is a monotonically increasing
function.

Finally, we verified that the reliability tends to 0 as the time approaches
infinity. This property is verified under the same assumptions that are used for
Theorem 1.

Theorem 3: Reliability Tends to Zero As Time Approaches Infinity

� ∀ p X. prob space p ∧ (events p = POW (p space p)) ∧
(∀ y. X y �= NegInf ∧ X y �= PosInf) ∧ (∀ x. Normal 0 ≤ X x) ⇒

(lim (λn. Reliability p X (&n)) = 0)

The HOL function limmodels the limit of a real sequence. The proof of Theorem
3 primarily uses the fact that the CDF approches to 1 as its argument approaches
infinity.

These three theorems completely characterize the behavior of the reliability
function on the positive real axis as the argument of the reliability is time and
thus cannot be negative. The formal verification of these properties based on our
definition ensure its correctness. Moreover, these formally verified properties also
facilitate formal reasoning about reliability of systems, as will be demonstrated in
Section 5 of this paper. The proof details about these properties can be obtained
from our proof script [33].

4 Formalization of Series Reliability Block Diagram

In a serially connected system [27], depicted in Figure 1, the reliability of the
complete system mainly depends upon the failure of a single component that
has the minimum reliability among all the components of the system. In other
words, the system stops functioning if any one of its component fails. Thus,
the operation of such a system is termed as reliable at any time t, if all of its
components are functioning reliably at this time t. If the event Ai(t) represents
the reliable functioning of the ith component of a serially connected system

Towards the Formal Reliability Analysis of Oil and Gas Pipelines 37

with N components at time t then the overall reliability of the system can be
mathematically expressed as [27]:

Rseries(t) = Pr(A1(t) ∩ A2(t) ∩ A3(t) · · · ∩ AN (t)) (2)

Fig. 1. System with a Series Connection of Components

Using the assumption of mutual independence of individual reliability events of
a series system [27], the above equation can be simplified as:

Rseries(t) =
N∏
i=1

Ri(t) (3)

Moreover, an intrinsic property of a series system is that its overall reliability
is always less than or equal to the reliability of the sub-component with the least
reliability.

Rseries(t) ≤ min(Ri(t)) (4)

We proceed with the formalization of the series RBD by first formalizing the
notion of mutual independence of more than two random variables, which is
one of the most essential prerequisites for reasoning about the simplified expres-
sions for RBD. Two events A and B are termed as mutually independent iff
Pr(A ∩ B) = Pr(A)Pr(B). All the events involved in reliability modeling are
generally assumed to be mutually independent. Since we often tackle the relia-
bility assessment of systems with more than two components, we formalize the
mutual independence of a list of random variables in this paper as follows:

Definition 3: Mutual Independence of Events

� ∀ p L. mutual indep p L =

∀ L1 n. PERM L L1 ∧ 2 ≤ n ∧ n ≤ LENGTH L ⇒
prob p (inter set p (TAKE n L1)) =

list prod (list prob p (TAKE n L1))

The function mutual indep takes a list of events or sets L along with the prob-
ability space p as input and returns True if the given list of events are mutually
independent in p. The formal definitions for the HOL functions used in the
above definition are given in Table 1. The predicate PERM ensures that its two
list arguments form a permutation of one another, the function LENGTH returns
the length of a list, the function TAKE returns a list that contains the first n
elements of its argument list, the function inter set performs the intersection
of all the sets in a list of sets and returns the probability space in case of an

38 W. Ahmad et al.

empty list argument, the function list prob returns a list of probabilities as-
sociated with the given list of events in the given probability space and the
function list prod recursively multiplies all the elements of its argument list
of real numbers. Thus, using these functions the function mutual indep ensures
that for any 2 or more elements n, taken in any order, of the given list of events
L, the property Pr(

⋂n
i=0 Li) =

∏n
i=0 Pr(Li) holds.

Table 2. HOL Functions used in Definition 3

Function Name HOL Definition

PERM � ∀ L1 L2. PERM L1 L2 =

∀ x. FILTER ($= x) L1 = FILTER ($= x)L2

LENGTH � (LENGTH [] = 0) ∧
∀ h t. LENGTH (h::t) = SUC (LENGTH t)

TAKE � (∀ n. TAKE n [] = []) ∧
∀ n x xs. TAKE n (x::xs) = if n = 0 then [] else

x::TAKE (n - 1) xs

inter set � (∀ p. inter set p [] = p space p) ∧
∀ p h t. inter set p (h::t) = h ∩ inter set p t

list prod � (∀ list prod [] = 1) ∧
∀ h t. list prod (h::t) = h * list prod t

list prob � (∀ p. list prob p [] = []) ∧
∀ p h t. list prob p (h::t) =

prob p (h ∩ p space p) * list prob p t

min � ∀ x y. min x y = if x ≤ y then x else y

min rel � (∀ f. min rel f [] = 1) ∧
∀ f h t. min rel f (h::t) = min (f h) (min rel f t)

Next, we propose to formalize the RBDs in this paper by using a list of
events, where each event models the proper functioning of a single component
at a given time based on the corresponding random variable. This list of events
can be modeled as follows:

Definition 4: Reliability Event List

� ∀ p x. rel event list p [] x = [] ∧
∀ p x h t. rel event list p (h::t) x =

PREIMAGE h {y | Normal x < y} ∩ p space p :: rel event list p t x

The function rel event list accepts a list of random variables, representing
the time to failure of individual components of the system, and a real number
x, which represents the time index where the reliability is desired, and returns
a list of sets corresponding to the events that the individual components are
functioning properly at the given time x. This list of events can be manipulated,
based on the structure of the complete system, to formalize various RBDs.

Similarly, the individual reliabilities of a list of random variables can be mod-
eled as the following recursive function:

Towards the Formal Reliability Analysis of Oil and Gas Pipelines 39

Definition 5: Reliability of a List of Random Variables

� ∀ p x . rel list p [] x = [] ∧
∀ p h t x. rel list p (h::t) x =

Reliability p h x :: rel list p t x

The function rel list takes a list of random variables and a real number x,
which represents the time index where the reliability is desired, and returns a list
of the corresponding reliabilities at the given time x. It is important to note that
all the above mentioned definitions are generic enough to represent the behavior
of any RBD, like series, parallel, series-parallel and parallel-series.

Now, using Equation (2), the reliability of a serially connected structure can
be defined as:

Definition 6: System with a Series Connection of Components

� ∀ p L. rel series p L = prob p (inter set p L)

The function rel series takes a list of random variables L, representing the
failure times of the individual components of the system, and a probability space
p as input and returns the intersection of all the events corresponding to the
reliable functioning of these components using the function inter set, given in
Table 2. Based on this definition, we formally verified the result of Equation (2)
as follows:

Theorem 4: Reliability of a System with Series Connections

� ∀ p L x. prob space p ∧ (events p = POW (p space p)) ∧
0 ≤ x ∧ 2 ≤ LENGTH (rel event list p L x) ∧

mutual indep p (rel event list p L x) ⇒
(rel series p (rel event list p L x) = list prod (rel list p L x))

The first two assumptions ensure that p is a valid probability space based on
Mhamdi’s probability theory formalization [18]. The next one ensures that the
variable x, which models time, is always greater than or equal to 0. The next two
assumptions of the above theorem guarantee that we have a list of at least two
mutually exclusive random variables (or a system with two or more components).
The conclusion of the theorem represents Equation (2) using Definitions 4 and 6.
The proof of Theorem 4 involves various probability theory axioms, the mutual
independence of events and the fact that the probability of any event that is in
the returned list from the function rel event list is equivalent to its reliability.
More proof details can be obtained from our proof script [33].

Similarly, we verified Equation (4) as the following theorem in HOL:

Theorem 5: Reliability of a System depends upon the minimum reliability of
the connected components

� ∀ p L x. prob space p ∧ (events p = POW (p space p)) ∧
0 ≤ x ∧ 2 ≤ LENGTH (rel event list p L x) ∧
mutual indep p (rel event list p L x) ⇒
(rel series p (rel event list p L x) ≤

min rel (λ L. Reliability p L x) L)

40 W. Ahmad et al.

The proof of the Theorem 5 uses several probability theory axioms and the
fact that any subset of a mutually independent set is also mutually independent.

The definitions, presented in this section, can be used to model parallel RBD
[27] and formally verify the corresponding simplified reliability relationships as
well. The major difference would be the replacement of the function inter set

in Definition 6 by a function that returns the union of a given list of events.

5 Reliability Analysis of a Pipeline System

A typical oil and gas pipeline can be partitioned into a series connection of
N segments, where these segments may be classified based on their individual
failure times. For example, a 60 segment pipeline is analyzed in [2] under the
assumption that the segments, which exhibit exponentially distributed failure
rates, can be sub-divided into 3 categories according to their failure rates (λ),
i.e., 30 segments with λ = 0.0025, 20 segments with λ = 0.0023 and 10 segments
with λ = 0.015. The proposed approach for reliability analysis of pipelines allows
us to formally verify generic expressions involving any number of segments and
arbitrary failure rates. In this section, we formally verify the reliability of a simple
pipeline, depicted in Figure 2, with N segments having arbitrary exponentially
distributed failure times.

Fig. 2. A Simple Pipeline

We proceed with the formal reliability analysis of the pipeline, shown in Figure
2, by formalizing the exponential random variable in HOL.

Definition 7: Exponential Distribution Function

� ∀ p X l. exp dist p X l =

∀ x. (CDF p X x = if 0 ≤ x then 1 - exp (-l * x) else 0)

The predicate exp dist ensures that the random variable X exhibits the CDF
of an exponential random variable in probability space p with failure rate l.
We classify a list of exponentially distributed random variables based on this
definition as follows:

Definition 8: List of Exponential Distribution Functions

� ∀ p L. list exp p [] L = T ∧
∀ p h t L. list exp p (h::t) L =

exp dist p (HD L) h ∧ list exp p t (TL L)

The list exp function accepts a list of failure rates, a list of random variables
L and a probability space p. It guarantees that all elements of the list L are

Towards the Formal Reliability Analysis of Oil and Gas Pipelines 41

exponentially distributed with corresponding failure rates given in the other list
within the probability space p. For this purpose, it utilizes the list functions HD
and TL, which return the head and tail of a list, respectively.

Next, we model the pipeline, shown in Figure 2, as a series RBD as follows:

Definition 9: Reliability of Series Pipeline System

� ∀ p L . pipeline p L = rel series p L

Now, we can use Definition 8 to guarantee that the random variable list argument
of the function pipeline contains exponential random variables only and thus
verify the following simplified expression for the pipeline reliability.

Theorem 6: Series Pipeline System

� ∀ p L x C. prob space p ∧ (events p = POW (p space p)) ∧
0 ≤ x ∧ 2 ≤ LENGTH (rel event list p L x) ∧
mutual indep p (rel event list p L x) ∧
list exp p C L ∧ (LENGTH C = LENGTH L) ⇒
(pipeline p (rel event list p L x) = exp (-list sum C * x))

The first five assumptions are the same as the ones used in Theorem 5. The sixth
assumption list exp p C L ensures that the list of random variable L contains
all exponential random variables with corresponding failure rates given in list
C. The next assumptions guarantees that the lengths of the two lists L and C
are the same. While the conclusion of Theorem 6 represents desired reliability
relationship for the given pipeline model. Here the function list sum recursively
adds the elements of its list argument and is used to add the failure rates of all
exponentially distributed random variables, which are in turn used to model the
individual segments of the series RBD of the pipeline. The proof of Theorem 6 is
based on Theorem 4 and some properties of the exponential function exp. The
reasoning was very straightforward (about 100lines of HOL code) compared to
the reasoning for the verification of Theorem 4 [33], which involved probability-
theoretic guidance. This fact illustrates the usefulness of our core formalization
for conducting the reliability analysis of pipelines.

The distinguishing features of this formally verified result include its generic
nature, i.e., all the variables are universally quantified and thus can be specialized
to obtain the reliability of the given pipeline for any given parameters, and its
guaranteed correctness due to the involvement of a sound theorem prover in its
verification, which ensures that all the required assumptions for the validity of
the result are accompanying the theorem. Another point worth mentioning is
that the individual failure rates of the pipeline segments can be easily provided
to the above theorem in the form of a list, i.e., C. The above mentioned benefits
are not shared by any other computer based reliability analysis approach for
oil and gas pipelines and thus clearly indicate the usefulness of the proposed
approach.

42 W. Ahmad et al.

6 Conclusions

Probabilistic analysis techniques have been widely utilized during the last two
decades to assess the reliability of oil and gas pipelines. However, all of these
probability theoretic approaches have been utilized using informal system anal-
ysis methods, like simulation or paper-and-pencil based analytical methods, and
thus do not ensure accurate results. The precision of results is very important in
the area of oil and gas pipeline condition assessment since even minor flaws in
the analysis could result in the loss of human lives or heavy damages to the en-
vironment. In order to achieve this goal and overcome the inaccuracy limitation
of the traditional probabilistic analysis techniques, we propose to build upon our
proposed formalization of RBDs to formally reason about the reliability of oil
and gas pipelines using higher-order-logic theorem proving.

Building upon the results presented in this paper, the formalization of other
commonly used RBDs, including parallel, series-parallel and parallel-series, and
the Weibull random variable is underway. These advanced concepts are widely
used in the reliability analysis of pipelines. However, their formalization requires
some advanced properties of probability theory. For example, for formalizing the
reliability block diagrams of the series-parallel and parallel-series structures, we
need to first formally verify the principle of inclusion exclusion [34]. We also plan
to formalize the underlying theories to reason about more realistic series pipeline
systems, such as multi-state variable piping systems, where each subcomponent
of the pipeline system consists of many irreversible states from good to worst. We
also plan to investigate artificial neural networks in conjunction with theorem
proving to develop a hybrid semi-automatic pipeline reliability analysis frame-
work. Besides the pipeline reliability analysis, the formalized reliability theory
foundation presented in this paper, may be used for the reliability analysis of a
number of other applications, including hardware and software systems.

Acknowledgments. This publication was made possible by NPRP grant #
[5 - 813 - 1 134] from the Qatar National Research Fund (a member of Qatar
Foundation). The statements made herein are solely the responsibility of the
author[s].

References

1. BP Leak the World’s Worst Accidental Oil Spill, London Telegraph (August 03,
2010), http://www.telegraph.co.uk/finance/newsbysector/energy/oilandgas
/7924009/bp-leak-the-worlds-worst-accidental-oil-spill.html (2014)

2. Zhang, Z., Shao, B.: Reliability Evaluation of Different Pipe Section in Different
Period. In: Service Operations and Logistics, and Informatics, pp. 1779–1782. IEEE
(2008)

3. Kolowrocki, K.: Reliability and Risk Analysis of Multi-State Systems With De-
grading Components. Electronic Journal of International Group on Reliability 2(1),
86–104 (2009)

http://www.telegraph.co.uk/finance/newsbysector/energy/oilandgas/7924009/bp-leak-the-worlds-worst-accidental-oil-spill.html
http://www.telegraph.co.uk/finance/newsbysector/energy/oilandgas/7924009/bp-leak-the-worlds-worst-accidental-oil-spill.html

Towards the Formal Reliability Analysis of Oil and Gas Pipelines 43

4. Soszynska, J.: Reliability and Risk Evaluation of a Port Oil Pipeline Transportation
System in Variable Operation conditions. International Journal of Pressure Vessels
and Piping 87(2-3), 81–87 (2010)

5. Pipeline Integrity Solution GE-Energy (2014), http://www.ge-energy.com/
products and services/services/pipeline integrity services/

6. Pipecheck - Pipeline Integrity Assessment Software (2014), http://www.
creaform3d.com/en/ndt-solutions/pipecheck-damage-assessment-software

7. Pandey, D.: Probabilistic Models for Condition Assessment of Oil and Gas
Pipelines. Independent Nondestructive Testing and Evaluation International 31(3),
349–358 (1998)

8. Boca, P., Bowen, J., Siddiqi, J.: Formal Methods: State of the Art and New Direc-
tions. Springer (2009)

9. Hasan, O., Tahar, S.: Performance Analysis of ARQ Protocols using a Theorem
Prover. In: International Symposium on Performance Analysis of Systems and
Software, pp. 85–94. IEEE Computer Society (2008)

10. Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic Model Checking for Sys-
tems Biology. In: Symbolic Systems Biology, pp. 31–59. Jones and Bartlett (2010)

11. Elleuch, M., Hasan, O., Tahar, S., Abid, M.: Formal Analysis of a Scheduling
Algorithm for Wireless Sensor Networks. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011.
LNCS, vol. 6991, pp. 388–403. Springer, Heidelberg (2011)

12. Hasan, O., Patel, J., Tahar, S.: Formal Reliability Analysis of Combinational Cir-
cuits using Theorem Proving. J. Applied Logic 9(1), 41–60 (2011)

13. Fruth, M.: Formal Methods for the Analysis of Wireless Network Protocols. PhD
thesis, Oxford University, UK (2011)

14. Kaufman, M.: Some Key Research Problems in Automated Theorem Proving for
Hardware and Software Verification. Revista de la Real Academia de Ciencias
Exactas, F́ısicas y Naturales. Serie A: Matemáticas 98(1), 181 (2004)

15. Brown, C.: Automated Reasoning in Higher-order Logic. College Publications
(2007)

16. Kapur, D., Subramaniam, M.: Lemma Discovery in Automating Induction. In:
McRobbie, M.A., Slaney, J.K. (eds.) CADE 1996. LNCS, vol. 1104, pp. 538–552.
Springer, Heidelberg (1996)

17. Hurd, J.: Formal Verification of Probabilistic Algorithms. PhD Thesis, University
of Cambridge, UK (2002)

18. Mhamdi, T., Hasan, O., Tahar, S.: On the Formalization of the Lebesgue Integra-
tion Theory in HOL. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS,
vol. 6172, pp. 387–402. Springer, Heidelberg (2010)

19. Hölzl, J., Heller, A.: Three Chapters of Measure Theory in Isabelle/HOL. In:
van Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS,
vol. 6898, pp. 135–151. Springer, Heidelberg (2011)

20. Hasan, O., Tahar, S.: Formalization of Continuous Probability Distributions. In:
Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 3–18. Springer, Hei-
delberg (2007)

21. Hasan, O., Tahar, S.: Verification of Tail Distribution Bounds in a Theorem Prover.
In: Numerical Analysis and Applied Mathematics, vol. 936, pp. 259–262. American
Institute of Physics (2007)

22. Hasan, O., Abbasi, N., Akbarpour, B., Tahar, S., Akbarpour, R.: Formal Reasoning
about Expectation Properties for Continuous Random Variables. In: Cavalcanti,
A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 435–450. Springer, Heidelberg
(2009)

http://www.ge-energy.com/products_and_services/services/pipeline_integrity_services/
http://www.ge-energy.com/products_and_services/services/pipeline_integrity_services/
http://www.creaform3d.com/en/ndt-solutions/pipecheck-damage-assessment-software
http://www.creaform3d.com/en/ndt-solutions/pipecheck-damage-assessment-software

44 W. Ahmad et al.

23. Hasan, O., Tahar, S., Abbasi, N.: Formal Reliability Analysis using Theorem Prov-
ing. IEEE Transactions on Computers 59(5), 579–592 (2010)

24. Abbasi, N., Hasan, O., Tahar, S.: Formal Analysis of Soft Errors using Theorem
Proving. In: Symbolic Computation in Software Science. EPTCS, vol. 122, pp.
75–84 (2013)

25. Abbasi, N., Hasan, O., Tahar, S.: An Approach for Lifetime Reliability Analysis
using Theorem Proving. Journal of Computer and System Sciences 80(2), 323–345
(2014)

26. Slind, K., Norrish, M.: A Brief Overview of HOL4. In: Mohamed, O.A., Muñoz, C.,
Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 28–32. Springer, Heidelberg
(2008)

27. Bilintion, R., Allan, R.: Reliability Evaluation of Engineering System. Springer
(1992)

28. Gordon, M.: Mechanizing Programming Logics in Higher-Order Logic. In: Current
Trends in Hardware Verification and Automated Theorem Proving, pp. 387–439.
Springer (1989)

29. Harrison, J.: Formalized Mathematics. Technical Report 36, Turku Centre for Com-
puter Science (1996)

30. Fitting, M.: First-Order Logic and Automated Theorem Proving. Springer (1996)
31. Church, A.: A Formulation of the Simple Theory of Types. Journal of Symbolic

Logic 5, 56–68 (1940)
32. Milner, R.: A Theory of Type Polymorphism in Programming. Journal of Com-

puter and System Sciences 17, 348–375 (1977)
33. Ahmad, W.: Formalization of Reliability Block Diagram for Analyzing Oil and Gas

Pipelines (2014), http://save.seecs.nust.edu.pk/wahmad/frsaogp.html
34. Trivedi, K.S.: Probability and Statistics with Reliability, Queuing and Computer

Science Applications, 2nd edn. John Wiley and Sons Ltd., Chichester (2002)

http://save.seecs.nust.edu.pk/wahmad/frsaogp.html

Problem Formulation for Truth-Table Invariant
Cylindrical Algebraic Decomposition

by Incremental Triangular Decomposition

Matthew England1, Russell Bradford1, Changbo Chen2, James H. Davenport1,
Marc Moreno Maza3, and David Wilson1

1 University of Bath, Bath, BA2 7AY, U.K.
2 Chongqing Key Laboratory of Automated Reasoning and Cognition, Chongqing

Institute of Green and Intelligent Technology, CAS, Chongqing, 400714, China
3 University of Western Ontario, London, N6A 5B7, Canada

{R.J.Bradford,J.H.Davenport,M.England,D.J.Wilson}@bath.ac.uk,
changbo.chen@hotmail.com, moreno@csd.uwo.ca

Abstract. Cylindrical algebraic decompositions (CADs) are a key tool
for solving problems in real algebraic geometry and beyond. We recently
presented a new CAD algorithm combining two advances: truth-table in-
variance, making the CAD invariant with respect to the truth of logical
formulae rather than the signs of polynomials; and CAD construction by
regular chains technology, where first a complex decomposition is con-
structed by refining a tree incrementally by constraint. We here consider
how best to formulate problems for input to this algorithm. We focus
on a choice (not relevant for other CAD algorithms) about the order in
which constraints are presented. We develop new heuristics to help make
this choice and thus allow the best use of the algorithm in practice. We
also consider other choices of problem formulation for CAD, as discussed
in CICM 2013, revisiting these in the context of the new algorithm.

Keywords: cylindrical algebraic decomposition, truth table invariance,
regular chains, triangular decomposition, problem formulation.

1 Introduction

A cylindrical algebraic decomposition (CAD) is: a decomposition of Rn, meaning
a collection of cells which do not intersect and whose union is Rn; cylindrical,
meaning the projections of any pair of cells with respect to a given variable
ordering are either equal or disjoint; and, (semi)-algebraic, meaning each cell
can be described using a finite sequence of polynomial relations.

CAD was introduced by Collins in [11], such that a given set of polynomials
had constant sign on each cell. This meant that a single sample point for each
cell was sufficient to conclude behaviour on the whole cell and thus it offered a
constructible solution to the problem of quantifier elimination. Since then a range
of other applications have been found for CAD including robot motion planning

S.M. Watt et al. (Eds.): CICM 2014, LNAI 8543, pp. 45–60, 2014.
c© Springer International Publishing Switzerland 2014

46 M. England et al.

[23], epidemic modelling [8], parametric optimisation [18], theorem proving [22]
and reasoning with multi-valued functions and their branch cuts [14].

In [3] the present authors presented a new CAD algorithm combining two
recent advances in CAD theory: construction by first building a cylindrical de-
composition of complex space, incrementally refining a tree by constraint [9];
and the idea of producing CADs such that given formulae has invariant truth on
each cell [4]. Experimental results in [3] showed this new algorithm to be superior
to its individual components and competitive with the state of the art. We now
investigate the choices that need to be made when using the new algorithm.

We conclude the introduction with the necessary background theory and then
in Section 2 we demonstrate how constraint ordering affects the behaviour of the
algorithm. No existing heuristics discriminate between these orderings and so we
develop new ones, which we evaluate in Section 3. In Section 4 we consider other
issues of problem formulation, revisiting [6] in the context of the new algorithm.

1.1 Background on CAD
The first CAD algorithm, introduced by Collins [11] with a full description in
[1], works in two phases. First in the projection phase a projection operator is
repeatedly applied to the set of polynomials (starting with those in the input),
each time producing another set in one fewer variables. Then in the lifting phase
CADs are built incrementally by dimension. First R1 is decomposed according to
the real roots of the univariate polynomials. Then R2 is decomposed by repeating
the process over each cell in R1 using the bivariate polynomials evaluated at a
sample point, and so on. Collins’ original projection operator was chosen so that
the CADs produced could be concluded sign-invariant with respect to the input
polynomials, meaning the sign of each polynomial on each cell is constant.

Such decompositions can contain far more information than required for most
applications, which motivated CAD algorithms which consider not just polyno-
mials but their origin. For example, when using CAD for quantifier elimination
partial CAD [13] will avoid lifting over a cell if the solution there is already ap-
parent. Another key adaptation is to make use of an equational constraint (EC):
an equation logically implied by an input formula. The algorithm in [21] ensures
sign-invariance for the polynomial defining an EC, any any other polynomials
only when that constraint is satisfied. A discussion of the first 20 years of CAD
research is given in [12]. Some of the subsequent developments are discussed
next, with others including the use of certified numerics when lifting [19, 24].

1.2 TTICAD by Regular Chains
In [3] we presented a new CAD algorithm, referred to from now on as RC-TTICAD.
It combined the following two recent advances.
Truth-table invariant CAD: A TTICAD is a CAD produced relative to a

list of formulae such that each has constant truth value on every cell.
The first TTICAD algorithm was given in [4], where a new projection operator
was introduced which acted on a set of formulae, each with an EC.

Problem Formulation for TTICAD 47

TTICADs are useful for applications involving multiple formulae like branch
cut analysis (see for example Section 4 of [16]), but also for building truth-
invariant CADs for a single formula if it can be broken into sub-formulae with
ECs. The algorithm was extended in [5] so that not all formulae needed ECs,
with savings still achieved if at least one did. These algorithms were implemented
in the freely available Maple package ProjectionCAD [17].
CAD by regular chains technology: A CAD may be built by first forming

a complex cylindrical decomposition (CCD) of Cn using triangular decompo-
sition by regular chains, which is refined to a CAD of Rn.

This idea to break from projection and lifting was first proposed in [10]. In [9]
the approach was improved by building the CCD incrementally by constraint,
allowing for competition with the best projection and lifting implementations.
Both algorithms are implemented in the Maple RegularChains Library, with
the algorithm from [10] currently the default CAD distributed with Maple.

RC-TTICAD combined these advances by adapting the regular chains compu-
tational approach to produce truth-table invariant CCDs and hence CADs. This
new algorithm is specified in [3] where experimental results showed a Maple im-
plementation in the RegularChains Library as superior to the two advances
independently, and competitive with the state of the art. The CCD is built using
a tree structure which is incrementally refined by constraint. ECs are dealt with
first, with branches refined for other constraints in a formula only is the ECs
are satisfied. Further, when there are multiple ECs in a formula branches can be
removed when the constraints are not both satisfied. See [3, 9] for full details.

The incremental building of the CCD offers an important choice on prob-
lem formulation: in what order to present the constraints? Throughout we use
A → B to mean that A is processed before B, where A and B are polynomi-
als or constraints defined by them. Existing CAD algorithms and heuristics do
not discriminate between constraint orderings [6, 15] and so a new heuristic is
required to help make an intelligent choice.

2 Constraint Ordering

The theory behind RC-TTICAD allows for the constraints to be processed in any
order. However, the algorithm as specified in [3] states that equational con-
straints should be processed first. This is logical as we need only consider
the behaviour of non-ECs when corresponding ECs are satisfied, allowing for
savings in computation.

We also advise processing all equational constraints from a formula in
turn, i.e. not processing one, then moving to a different formula before returning
to another in the first. Although not formally part of the algorithm specification,
this should avoid unnecessary computation by identifying when ECs have a
mutual solution before more branches have been created.

There remain two questions to answer with regards to constraint ordering:
Q1) In what order to process the formulae?
Q2) In what order to process the equational constraints within each formula?

48 M. England et al.

Fig. 1. Visualisations of the four TTICADs which can be built using RC-TTICAD for
Example 1. The figures on the top have φ1 → φ2 and those on the bottom φ2 → φ1.
The figures on the left have f1 → f2 and those on the right f2 → f1.

2.1 Illustrative Example

The following example illustrates why these questions matter.

Example 1. We assume the ordering x ≺ y and consider

f1 := x2 + y2 − 1, f2 := 2y2 − x, f3 := (x − 5)2 + (y − 1)2 − 1,

φ1 := f1 = 0 ∧ f2 = 0, φ2 := f3 = 0.

The polynomials are graphed within the plots of Figure 1 (the circle on the left
is f1, the one on the right f3 and the parabola f2). If we want to study the truth
of φ1 and φ2 (or a parent formula φ1∨φ2) we need a TTICAD to take advantage
of the ECs. There are two possible answers to each of the questions above and
so four possible inputs to RC-TTICAD. The corresponding outputs are1:
φ1 → φ2 and f1 → f2: 37 cells in 0.095 seconds.
φ1 → φ2 and f2 → f1: 81 cells in 0.118 seconds.
φ2 → φ1 and f1 → f2: 25 cells in 0.087 seconds.
φ2 → φ1 and f2 → f1: 43 cells in 0.089 seconds.
The plots in Figure 1 show the two-dimensional cells in each of these TTICADs.

First compare the induced CADs of R1 (how the real line is dissected). Observe
the following similarities in all four images:

– The points 1
4 (−1∓√

17) (approximately -1.28 and 0.78) are always identified.

The latter is at the intersection of f1 and f2 and so is essential for the output to
be correct as the truth of φ1 changes here. The former is the other root of the
resultant of f1 and f2 and so marks an intersection with complex y-value.
1 All timings in this paper were obtained on a Linux desktop (3.1GHz Intel processor,

8.0Gb total memory) using Maple 18.

Problem Formulation for TTICAD 49

– The points 4 and 6 are always identified. These mark the endpoints of f3,
required for cylindricity and obtained as roots of the discriminant of f3.

Now we observe the differences in the induced CADs of the real line:

– If f1 → f2 we identify ±1, marking the ends of the circle f1. Similarly if
f2 → f1 then we identify 0, marking the end of the parabola f2.

These are identified as the roots of a discriminant and are included to ensure
cylindricity. If f1 is processed first then f2 = 0 is only considered when f1 = 0.
Since their intersection is only a single value of x the discriminant of f2 is not
required (or more accurately it is trivial). Similarly, if we process f2 first then
the discriminant of f1 is only calculated for two values of x, where it is constant.

– If f2 → f1 then we identify the two real roots of the resultant of f2 and f3
(approximately 4.10 and 5.72) marking the real intersection of those curves.

If we process f2 first and then f1 the algorithm ensures their intersections are
identified to maintain truth-table invariance. For this example it is not necessary
since when we process f1 we find there are no intersections of the set where φ1 is
true with f3, but this was not known beforehand. If instead f1 → f2 since there
is no intersection the extra cells are avoided. However, note that the resultant of
f1 and f3 is still calculated and the complex tree is split accordingly. This may
explain why the timings for the orderings with φ2 → φ1 are so similar.

Finally compare the CADs of R2. We see that in all four TTICADs the output
is sign invariant for f3, while if φ1 → φ2 then the output is also sign invariant for
whichever of f1 and f2 was processed first. The first constraint to be processed
will always be sign-invariant for the output. The tree is initially refined into cases
where its polynomial is zero or not and although these branches are split further
that invariance is maintained. Similarly, the first constraint from a formula to be
processed will usually be sign-invariant in the output, but this may be avoided
if a formula has more than one EC. In this case the tree may be refined to the
cases where either both are satisfied or not (as with φ1 in this example).

2.2 Developing a Heuristic for Equational Constraint Ordering

The following propositions are illustrated by Example 1 and can be verified from
the algorithm specification in [3].

Proposition 1. The output of RC-TTICAD is always sign-invariant with respect
to the discriminant of the first EC in each formula.

Other discriminants will be calculated, but their impact is lesser. E.g. the dis-
criminant of the second EC in a formula will be considered modulo the first.

Proposition 2. The output of RC-TTICAD is always sign-invariant with respect
to the cross-resultants of the set of first ECs in each formula.

50 M. England et al.

Other resultants will be calculated. Some of them have lesser impact, such as
the resultant of the first EC in formula A with the second in formula B which
is considered modulo the first EC in formula B. Other will be considered for all
constraint orderings, such as the resultant of a pair of ECs in a formula.

Considering (1) and (2) leads us to suggest minimising the following sets under
some measure when making a choice about constraint ordering.

Definition 1. For a given constraint ordering o let P be the set of ECs which
are ordered first in each formula. Then define the constraint ordering set Co

as the discriminants and cross resultants in the main variable of the ordering:

Co :=
(⋃

p∈P

{
disc(p)

})
∪

(⋃
p,q∈P,p �=q

{
res(p, q)

})
.

For Example 1 the constraint ordering sets are

Cf1→f2 = {discy(f1), discy(f3), resy(f1, f3)}
= {−4x2 + 4, −4x2 + 40x − 96, 104x2 − 520x + 672},

Cf2→f1 = {discy(f2), discy(f3), resy(h, f2)}
=

{
8x, −4x2 + 40x − 96, 4x4 − 76x3 + 561x2 − 1908x + 2500

}
.

A natural way to measure these would be to compare sotds, the sum of to-
tal degrees of each monomial in each polynomial, since this was shown to help
with other CAD choices [6,15]. For Example 1 the sets above have sotd 8 and 14
respectively and thus the ordering f1 → f2 is suggested. Regardless of which for-
mula is processed first, this is the better choice. However, the following example
demonstrates that sotd may not be so suitable in general.

Example 2. [2014 x-axis ellipse problem] A well studied test problem for
CAD is the x-axis ellipse problem defined in [2] and specialising a problem
in [20]. They concern an ellipse and seek to determine for what values of its
parameters (the principal semi-axes and centre) it lies within the unit circle.

We propose a new problem, inspired by the original but requiring multiple
formulae and hence a TTICAD. Suppose the ellipse is centred at (c, 0) with
principal semi-axes a ∈ (0, 2) and b = 1. The problem is to determine for what
values of (c, a) the ellipse intersects either of a pair of unit circles, centred on
the x-axis at ±2. Define the polynomials

f1 := (x − 2)2 + y2 − 1, f2 := (x + 2)2 + y2 − 1, h := (x − c)2 + a2y2 − a2.

Then we seek to eliminate the quantifiers from Φ := (∃y)(∃x)φ1 ∨ φ2 where

φ1 := (f1 = 0 ∧ h = 0 ∧ a > 0 ∧ a < 2), φ2 := (f2 = 0 ∧ h = 0 ∧ a > 0 ∧ a < 2).

The problem can be solved using a TTICAD for φ1 and φ2. We assume vari-
able ordering y � x � a � c. There are eight possible constraint orderings for
RC-TTICAD as listed in Table 1. The best choice is to process h first in each for-
mula (then the formula ordering makes no difference) which is logical since h has

Problem Formulation for TTICAD 51

Table 1. Details on the TTICADs that can be built using RC-TTICAD for Example 2

Constraint Ordering o TTICAD Co

Formula order φ1 order φ2 order Cells Time (sec) sotd deg
φ1 → φ2 h → f1 h → f2 24545 86.082 16 2
φ1 → φ2 h → f1 f2 → h 73849 499.595 114 8
φ1 → φ2 f1 → h h → f2 67365 414.314 114 8
φ1 → φ2 f1 → h f2 → h 105045 1091.918 8 6
φ2 → φ1 h → f1 h → f2 24545 87.378 16 2
φ2 → φ1 h → f1 f2 → h 67365 401.598 114 8
φ2 → φ1 f1 → h h → f2 73849 494.888 114 8
φ2 → φ1 f1 → h f2 → h 105045 1075.568 8 6

no intersections with itself to identify. However, using sotd as a measure on the
constraint ordering set will lead us to select the very worst ordering. Consider
the constraint ordering sets for these two cases:

Cf1→h,f2→h = {discy(f1), discy(f2), resy(f1, f2)}
= {−4x2 + 16x − 12, −4x2 − 16x − 12, 64x2},

Ch→f1,h→f2 = {discy(h), resy(h, h)} =
{

4a2(a2 − c2 + 2cx − x2), 0
}

.

Although the first has three polynomials and the second only one, this one has
a higher sotd than the first three summed. This is because only h contained
the parameters (a, c) while f1 and f2 did not, but their presence was not as
significant as the complexity in x alone. A more suitable measure would be the
sum of degrees in x alone (shown in the final column in Table 1) in which the
first has 6 and the second only 2.

Remark 1. It is not actually surprising that sotd is inappropriate here while
working well in [6,15]. In those studies sotd was measuring projection sets (either
the whole set or at one stage in the projection) while here we are measuring
only the subset which changes the most with the ordering. Sotd is principally
a measure of sparseness. Sparseness of the entire projection set indicates less
complexity while sparseness of one level is likely to lead to sparseness at the
next. However, the constraint ordering set being sparse does not indicate that
the other polynomials involved at that stage or subsequent ones will be.

Heuristic Definition 1. Define the EC ordering heuristic as selecting the
first EC to be processed in each formula such that the corresponding constraint
ordering set has lowest sum of degrees of the polynomials within (all taken in the
second variable of the ordering).

Heuristic 1 follows from the analysis above and we evaluate it in Section 3. We
can already see three apparent shortcomings:

(i) How to break ties if the sum of degrees are the same?
(ii) What to do if the complex geometry is different to the real geometry?
(iii) How to order remaining equational constraints?

52 M. England et al.

Fig. 2. Visualisations of two TTICADs built using RC-TTICAD for Example 3. They
both have φ2 → φ1, with the first having f1 → f2 and the second f2 → f1.

One answer to (i) is to break ties with sotd. A tie with Heuristic 1 is a good
indication that the complex geometry in the highest dimension is of the same
complexity and so further discrimination will require lower dimensional compo-
nents. In fact, these are also needed to address (iii). Suppose a formula contained
three ECs and we had determined which to process first. Then the choice of which
is second means comparing the resultant of the first with each of the others mod-
ulo the first. In our experience such formulae tend to give similar output for the
different orderings due to the simplifications in the tree so many ECs offer.

Heuristic 1 can be misled as suggested by (ii) and demonstrated next.

Example 3. Consider the polynomials and formulae from Example 1 but with
f2 and g2 shifted under y �→ y + 1. The possible outputs from RC-TTICAD are:
φ1 → φ2 and f1 → f2: 39 cells in 0.094 seconds.
φ1 → φ2 and f2 → f1: 49 cells in 0.081 seconds.
φ2 → φ1 and f1 → f2: 27 cells in 0.077 seconds.
φ2 → φ1 and f2 → f1: 23 cells in 0.073 seconds.
Since f2 no longer intersects h the best choice is the fourth instead of the third.
Figure 2 compares these two TTICADs. The only difference now is whether the
endpoints of the left circle or the parabola are identified. Since the parabola has
only one endpoint it becomes the better choice. However, the constraint ordering
set has the same degree in x or sotd and so still suggests f1 → f2.

Heuristic 1 is misled here because the degree is a measure only of the behaviour
in complex space, which did not change significantly between the examples.
In [6] we demonstrated similar issues for CAD (and TTICAD) by projection
and lifting. There we devised an alternative heuristic: the number of distinct real
roots of the univariate polynomials (ndrr) which meant essentially comparing the
induced CADs of the real line. However, RC-TTICAD does not start by directly
computing all polynomials involved in the computation (the projection phase).
Example 3 is in only two dimensions and so the ndrr could easily be applied
to the univariate constraint ordering sets to suggest the best ordering. But for
higher dimensional examples it is not so clear what or how to measure. Further,
the complex geometry does have a direct effect on RC-TTICAD not present in the
projection and lifting algorithms since we first build a CCD.

Problem Formulation for TTICAD 53

2.3 Developing a Heuristic for Formulae Ordering

Heuristic 1 helps with ordering ECs in formulae but not how to order the for-
mulae themselves. In Example 1 the main difference between formulae orderings
was which polynomial is ensured sign-invariant in the output. In Example 1 there
was a clear choice to process φ2 first since its sole EC would be sign-invariant
regardless. In general we advise placing a formula with only one EC first.

Remark 2. In fact, the analysis so far suggests that the best choice would be
to process a non-EC from a formula with no ECs first. This is because all the
non-ECs in such a formula will always be sign-invariant in the output and so
dealing with them first would occur no cost but possibly allow savings from
another formulae with multiple ECs. The algorithm as specified in [3] does not
allow this but we intend to investigate this possibility in future work.

We now seek a heuristic to help with formulae ordering when no obvious
choice is available. Ideally, we require an (efficient) measure of how large the
(real) projection is of a polynomial out of its main variable, but such a measure
is not clear to us. Instead we explore an alternative approach. As discussed, the
CAD algorithms based on regular chains technology first build a CCD before
refining to a CAD. It has been observed that the refinement to real space usually
takes the most time (involving real root isolation), but that the timings of the
two stages are correlated. Hence, we consider building the CCD first for multiple
orderings and then choosing the smallest one.

Heuristic Definition 2. Define the CCD size heuristic as selecting a con-
straint ordering by constructing the CCD for each, extracting the set of poly-
nomials used in each tree, and choosing the one to refine to a CAD whose set
has the lowest sum of degree of the polynomials within (each taken in the main
variable of that polynomial).

We evaluate this heuristic in the next section. It clearly requires far more com-
putation than Heuristic 1 and so the relative costs will have to be considered.
This leads us to suggest a third heuristic combining the approaches.

Heuristic Definition 3. Define the constraint ordering heuristic as using
Heuristic 1 to suggest the best subset of constraint orderings and then having
Heuristic 2 pick from these, splitting any further ties by picking lexicographically.

3 Evaluating the Heuristics

3.1 Experiments and Data

We tested the effectiveness of the heuristic using 100 random systems of the form

φ1 := (f1 = 0 ∧ f2 = 0 ∧ g1 > 0), φ2 := (f3 = 0 ∧ f4 = 0 ∧ g2 > 0).

54 M. England et al.

Table 2. How the CADs selected by the heuristics compare on cell count

Heuristic Cell Count Saving % Saving
Heuristic 1 1589.67 428.61 26.73
Heuristic 2 1209.10 809.18 47.70
Heuristic 3 1307.63 710.65 40.97

Table 3. How the CADs selected by the heuristics compare on timings (in seconds)

Heuristic Timing Saving % Saving Net Saving % Net Saving
Heuristic 1 14.48 22.02 37.17 22.01 37.12
Heuristic 2 9.02 27.47 49.45 -150.59 -215.31
Heuristic 3 9.42 27.08 43.84 -20.02 0.77

The polynomials were randomly generated using Maple’s randpoly command
as sparse polynomials in the ordered variables x ≺ y ≺ z with maximum degree 3
and integer coefficients . Each problem has three questions of constraint ordering:
- Process φ1 first or φ2? - Process f1 first or f2? - Process f3 first or f4?

Hence each problem has eight possible orderings. We build TTICADs using
RC-TTICAD for each ordering and compare the number of cells and computation
time. We set a time limit of 40 minutes per problem (so an average of 5 minutes
per CAD) in which 92 of the problems could be studied. The average CAD had
2018.3 cells and was computed in 36.5 seconds, but there were several outliers
bringing the average up. The median values were 1554.1 cells and 6.1 seconds.

For each problem we considered how Heuristics 1, 2 and 3 performed. We
start by comparing cell counts in Table 2. For each problem we calculated:

(a) The average cell count of the 8 TTICADs computed.
(b) The average cell count of the TTICADs selected by each heuristic (but note

that Heuristic 3 always selects only one).
(c) The average saving from using each heuristic, computed as (a)−(b).
(d) The average percentage saving to the cell count, calculated as 100(c)/(a).

The figures in Table 2 show the values of (b)−(d) for each heuristic, averaged over
the 92 problems. To compare timings we calculated (a′)−(d′) as the equivalent
of (a)−(d) for timings. Then for each problem we also calculated:

(e′) The time taken to run each heuristic.
(f′) The net saving calculated as (a′)−(b′)−(e′).
(g′) The net percentage saving calculated as 100(f′)/(a′).

Table 3 shows the values of (b′)−(d′),(f′),(g′) averaged over the 92 problems.
Tables 4 and 5 shows where the selections made by each heuristic lie on the

spread of possible outputs (where 1 is the CAD with the smallest and 8 the one
with the biggest). In the event of two CADs having the same value a selection
is recorded with the higher ranking. Since Heuristics 1 and 2 can pick more
than one ordering we also display the figures as percentages. So for example, a
selection by the first heuristic was the very best ordering 24% of the time.

Problem Formulation for TTICAD 55

Table 4. How the heuristics selections rank out of the possible CADs for cell counts

Heuristic 1 2 3 4 5 6 7 8 Total

Heuristic 1 # 60 46 44 26 21 17 17 15 246
% 24.39 18.70 17.89 10.57 8.54 6.91 6.91 6.10 100.01

Heuristic 2 # 55 19 12 5 5 2 0 0 98
% 56.12 19.39 12.24 5.10 5.10 2.04 0 0 99.99

Heuristic 3 # 44 22 7 6 4 4 3 2 92
% 47.83 23.91 7.61 6.52 4.35 4.35 3.26 2.17 100.00

Table 5. How the heuristics selections rank out of the possible CADs for timings

Heuristic 1 2 3 4 5 6 7 8 Total

Heuristic 1 # 64 51 33 24 23 25 13 13 246
% 26.02 20.73 13.41 9.76 9.35 10.16 5.29 5.29 100.01

Heuristic 2 # 44 29 12 4 1 4 1 3 98
% 44.90 29.59 12.24 4.08 1.02 4.08 1.02 3.06 99.99

Heuristic 3 # 37 26 9 4 1 6 7 2 92
% 40.22 28.26 9.78 4.35 1.09 6.52 7.61 2.17 100.00

3.2 Interpreting the Results

First we observe that all three heuristics will on average make selections on
constraint ordering with substantially lower cell counts and timings than the
problem average. As expected, the selections by Heuristic 2 are on average better
than those by Heuristic 1. In fact, the measure used by Heuristic 2 seems to be
correlated to both the cell counts and timings in the final TTICAD.

To consider the correlation we recorded the value of the measures used by
Heuristics 1 and 2 and paired these with the corresponding cell counts and
timings. This was done for each CAD computed (not just those the heuristics
selected). The values were scaled by the maximum for each problem. (Note that
Heuristic 3 did not have its own measure, it was a combination of the two.) Figure
3 shows the plots of these data. The correlation coefficients for the first measure
were 0.43 with cell count and 0.40 with timing, while for the second measure
0.78 and 0.68. Since the second measure essentially completes the first part of
the algorithm the correlation may not seem surprising. However, it suggests that
on average the geometry of the real and complex decomposition are more closely
linked than previously thought. This will be investigated in future work.

Although Heuristic 2 makes good selections, its cost is usually larger than any
potential time savings (roughly 6 times larger on average). Further, this cost will
rise with the number of orderings far quicker than the cost of the others. We note
that the magnitude of this cost is inflated by the outliers, the average cost being
178.06 seconds while the median only 13.43. Heuristic 1 is far cheaper, essentially
zero. Although the savings were not as high they were still significant, with most
selections being among the best. We recommend Heuristic 1 as a cheap test to
use before running the algorithm and it will likely become part of the default
implementation.

56 M. England et al.

Fig. 3. These plots compare the measures used by the heuristics with the CADs com-
puted in Section 3. The plots on the left have cell count on the vertical axis, and those
on the right timings. The horizontal axes have the sum of degrees of polynomials in a
set. On the top this is the constraint ordering set and on the bottom the polynomials
in the CCD. All values are scaled to the problem they originate from.

The results for Heuristic 3 which used a mixture of the approaches are partic-
ularly interesting. It offers substantially more savings than Heuristic 1, almost
achieving those those Heuristic 2 but its cost is on average 47.10 seconds (with a
median value of 7.55), far less than those of Heuristic 2. On average Heuristic 3
took more time in total to compute than its time savings, but when we consider
the percentage saving the average is (just) positive. This is not a mistake: the
results are as stated because a number of outliers had a very high cost while for
most examples the cost was significantly less than the savings.

We can see situations where all three heuristics could be of use:
Use Heuristic 1 if lowest computation time is prioritised, for example if many
CADs must be computed or this is just a small step in a larger calculation.
Use Heuristic 2 if lowest cell count is prioritised, for example if only one CAD
must be computed but then much work will be performed with its cells.
Use Heuristic 3 for a mixed approach, for example if a low cell count is required
but the problem size makes Heuristic 2 infeasible.

4 Other Issues of Problem Formulation

For the original TTICAD algorithm (by projection and lifting) [4] the ordering of
the constraints is not important, but other issues are, as investigated in [6]. We
revisit two of those issues to see if further consideration is needed for RC-TTICAD.

Problem Formulation for TTICAD 57

4.1 Equational Constraint Designation

The TTICAD algorithm by projection and lifting [4] made use of a single desig-
nated EC per formula (any others were treated the same as non-ECs). Indeed,
this projection operator generalised the one in [21] for a formula with one EC
and in either case the user needs to make this designation before running the
algorithm. RC-TTICAD [3] (and the algorithm in [9]) can take advantage of more
than one EC per formula and so the user only needs to choose the order they
are used in. We observe that the choice of which EC to process first is analogous
to choosing which to designate. For example, consider two formulae of the form

φi := f1 = 0 ∧ f2 = 0 ∧ g1 < 0, φ2 := f3 = 0 ∧ g2 = 0.

Then the resultants and discriminants that must be calculated for the first pro-
jection phase using the operator in [21] are

{res(fi, fj), res(fi, g1), res(fi, f3), disc(fi), disc(f3)}
if fi is designated and fj not. All polynomials from the constraint ordering
set are contained here, as can be shown for the general case. A good choice of
designation for the projection and lifting algorithm is hence likely to correspond
to a good choice of which EC from a formula to process first in the regular chains
algorithm. We hope to investigate this further in the future.

4.2 Composing Sub-formulae

Consider Φ := (f1 = 0 ∧ ψ1) ∨ (f2 = 0 ∧ ψ2). where ψ1, ψ2 are conjunctions. We
seek a truth-invariant CAD for Φ but neither of the equations are ECs (at least
not explicitly without knowledge of ψ1 and ψ2). One option would be to use
f1f2 = 0 as an EC (this is logically implied by Φ). Another option is to define

φ1 := f1 = 0 ∧ ψ1, φ2 := f2 = 0 ∧ ψ2

and construct a TTICAD for them (any TTICAD for φ1, φ2 is truth-invariant for
Φ). For the projection and lifting algorithms the second approach is preferable as
the projection set for the latter is contained in the former. RC-TTICAD requires
as input semi-algebraic systems each representing a single conjunctive formula.
Hence here there is not even an analogue of the former approach.

However, there was a similar question posed in [6, Section 4] which we now
investigate in reference to RC-TTICAD. Consider the single conjunctive formulae,
Φ̂ := f1 = 0 ∧ ψ1 ∧ f2 = 0 ∧ ψ2, where ψ1, ψ2 are again conjunctions. We could
build a CAD for Φ̂ or a TTICAD for φ1, φ2 as above. While the projection set
for the latter is in general smaller, the following example gives an exception.

Example 4 (Example 6 in [6]). Let x ≺ y and consider the formula Φ̂ above with

f1 := (y − 1) − x3 + x2 + x, ψ1 := g1 < 0, g1 := y − x
4 + 1

2 ,

f2 := (−y − 1) − x3 + x2 + x, ψ2 := g2 < 0, g2 := −y − x
4 + 1

2 .

58 M. England et al.

Fig. 4. Visualisations of CADs that can be built for Example 4

The polynomials are plotted in the images of Figure 4 where the solid curve is
f1, the solid line g1, the dashed curve f2 and the dashed line g2. Various CADs
may be computed for this problem:

– A CAD for Φ̂ using projection and lifting with the operator from [21] desig-
nating f1: 39 cells as visualised in the first image.

– As above but designating f2: 39 cells. Similar to first image but 2 dimensional
cell divisions over f2 instead of f1.

– A TTICAD for φ1, φ2 using projection and lifting with the operator from [4]:
31 cells as visualised in the second image.

– A CAD for Φ̂ using RC-TTICAD (equivalent here to the algorithm in [9]): 9
cells (under any constraint ordering) as visualised in the third image.

– A TTICAD for φ1, φ2 using RC-TTICAD [3]: 29 cells (under any constraint
ordering) as visualised in the fourth image.

The important observation is that f1 has many intersections with g2 and
f2 many intersections with g1. The projection and lifting algorithms can avoid
considering those pairs together by splitting into sub-formulae. In the first image
only one EC is sign-invariant while in the second both are, but this was a price
worth paying to avoid the intersections. It is not necessary for RC-TTICAD as this
can take advantage of multiple ECs in a formula. It first identifies the intersection
of f1 and f2 and the non-ECs are only considered modulo this set. Hence, even
though they are in the same formula, those intersections are never computed.

In general, RC-TTICAD requires a parent formula to be broken into conjunctive
sub-formulae before use, but would never benefit from further decomposition.

5 Final Thoughts

We developed new heuristics to choose constraint orderings for RC-TTICAD [3],
finding that the choice of which to use may depend on the priorities of the user.
A dynamic heuristic (such as one like Heuristic 2 but making choices based on
the CCT after each increment) may offer further improvements and will be a
topic of future work.

We also revisited other questions of problem formulation questions from [6],
finding that they did not require further consideration for RC-TTICAD. However,

Problem Formulation for TTICAD 59

there was one important issue we did not address, the variable ordering, for
which there may be a free or constrained choice. For example, when using CAD
for quantifier elimination we must order the variables as they are quantified but
we may change the ordering within quantifier blocks. It has long been noted that
problems which are easy in one variable ordering can be infeasible in another,
with [7] giving problems where one variable ordering leads to a CAD with a
cell count constant in the number of variables and another a cell count doubly
exponential. The analysis was valid for any CAD regardless of the algorithm
that produced it and so affects RC-TTICAD. A key area of our future work will
be to analyse how best to choose a variable ordering, and to investigate whether
an existing heuristic, or the new ones developed here can help.

Acknowledgements. This work was supported by the EPSRC (EP/J003247/1),
the NSFC (11301524), and the CSTC (cstc2013jjys0002).

References

1. Arnon, D., Collins, G.E., McCallum, S.: Cylindrical algebraic decomposition I: The
basic algorithm. SIAM J. Comput. 13, 865–877 (1984)

2. Arnon, D.S., Mignotte, M.: On mechanical quantifier elimination for elementary
algebra and geometry. J. Symb. Comp. 5(1-2), 237–259 (1988)

3. Bradford, R., Chen, C., Davenport, J.H., England, M., Moreno Maza, M., Wilson,
D.: Truth table invariant cylindrical algebraic decomposition by regular chains
(submitted, 2014), Preprint: http://opus.bath.ac.uk/38344/

4. Bradford, R., Davenport, J.H., England, M., McCallum, S., Wilson, D.: Cylindrical
algebraic decompositions for boolean combinations. In: Proc. ISSAC 2013, pp. 125–
132. ACM (2013)

5. Bradford, R., Davenport, J.H., England, M., McCallum, S., Wilson, D.: Truth
table invariant cylindrical algebraic decomposition (submitted, 2014), Preprint:
http://opus.bath.ac.uk/38146/

6. Bradford, R., Davenport, J.H., England, M., Wilson, D.: Optimising problem for-
mulation for cylindrical algebraic decomposition. In: Carette, J., Aspinall, D.,
Lange, C., Sojka, P., Windsteiger, W. (eds.) CICM 2013. LNCS (LNAI), vol. 7961,
pp. 19–34. Springer, Heidelberg (2013)

7. Brown, C.W., Davenport, J.H.: The complexity of quantifier elimination and cylin-
drical algebraic decomposition. In: Proc. ISSAC 2007, pp. 54–60. ACM (2007)

8. Brown, C.W., El Kahoui, M., Novotni, D., Weber, A.: Algorithmic methods for
investigating equilibria in epidemic modelling. J. Symbolic Computation 41, 1157–
1173 (2006)

9. Chen, C., Moreno Maza, M.: An incremental algorithm for computing cylindri-
cal algebraic decompositions. In: Proc. ASCM 2012. Springer (2012) (to appear),
Preprint: arXiv:1210.5543v1

10. Chen, C., Moreno Maza, M., Xia, B., Yang, L.: Computing cylindrical algebraic
decomposition via triangular decomposition. In: Proc. ISSAC 2009, pp. 95–102.
ACM (2009)

11. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic
decomposition. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp.
134–183. Springer, Heidelberg (1975)

http://opus.bath.ac.uk/38344/
http://opus.bath.ac.uk/38146/

60 M. England et al.

12. Collins, G.E.: Quantifier elimination by cylindrical algebraic decomposition – 20
years of progress. In: Quantifier Elimination and Cylindrical Algebraic Decompo-
sition. Texts & Monographs in Symbolic Computation, pp. 8–23. Springer (1998)

13. Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier
elimination. J. Symb. Comp. 12, 299–328 (1991)

14. Davenport, J.H., Bradford, R., England, M., Wilson, D.: Program verification
in the presence of complex numbers, functions with branch cuts etc. In: Proc.
SYNASC 2012, pp. 83–88. IEEE (2012)

15. Dolzmann, A., Seidl, A., Sturm, T.: Efficient projection orders for CAD. In: Proc.
ISSAC 2004, pp. 111–118. ACM (2004)

16. England, M., Bradford, R., Davenport, J.H., Wilson, D.: Understanding Branch
Cuts of Expressions. In: Carette, J., Aspinall, D., Lange, C., Sojka, P., Windsteiger,
W. (eds.) CICM 2013. LNCS (LNAI), vol. 7961, pp. 136–151. Springer, Heidelberg
(2013)

17. England, M.: An implementation of CAD in Maple utilising problem formulation,
equational constraints and truth-table invariance. Uni. Bath, Dept. Comp. Sci.
Tech. Report Series, 2013-04 (2013), http://opus.bath.ac.uk/35636/

18. Fotiou, I.A., Parrilo, P.A., Morari, M.: Nonlinear parametric optimization us-
ing cylindrical algebraic decomposition. In: Proc. CDC-ECC 2005, pp. 3735–3740
(2005)

19. Iwane, H., Yanami, H., Anai, H., Yokoyama, K.: An effective implementation of
a symbolic-numeric cylindrical algebraic decomposition for quantifier elimination.
In: Proc. SNC 2009, pp. 55–64 (2009)

20. Kahan, W.: Problem #9: an ellipse problem. SIGSAM Bull. 9(3), 11–12 (1975)
21. McCallum, S.: On projection in CAD-based quantifier elimination with equational

constraint. In: Proc. ISSAC 1999, pp. 145–149. ACM (1999)
22. Paulson, L.C.: MetiTarski: Past and future. In: Beringer, L., Felty, A. (eds.) ITP

2012. LNCS, vol. 7406, pp. 1–10. Springer, Heidelberg (2012)
23. Schwartz, J.T., Sharir, M.: On the “Piano-Movers” Problem: II. General tech-

niques for computing topological properties of real algebraic manifolds. Adv. Appl.
Math. 4, 298–351 (1983)

24. Strzeboński, A.: Cylindrical algebraic decomposition using validated numerics. J.
Symb. Comp. 41(9), 1021–1038 (2006)

http://opus.bath.ac.uk/35636/

A Tableaux-Based Decision Procedure

for Multi-parameter Propositional Schemata

David Cerna

Technical University of Vienna�, Austria
cernadavid1@logic.at

http://www.logic.at/people/cernadavid1/

Abstract. The class of regular propositional schemata, discovered by
Aravantinos et al. [4], is a major advancement towards more expres-
sive classes of inductive theorems with a decidable satisfiability prob-
lem. Though more expressive than previously known decidable classes
outlined by Kapur & Giesl[17], it still requires the burdensome restric-
tion of induction with only one free parameter. In general, unrestricted
usage of multiple free parameters in schematic formulae is undecidable
for satisfiability [2]. In later work, Aravantinos et al. [6] introduced nor-
malized clause sets which have a decision procedure for satisfiability and
allow for restricted usage of multiple parameters. In our work, we in-
vestigate classes of propositional schemata which allow for multiple free
parameters and are more expressive than regular schemata. Specifically,
the classes we investigate have a decision procedure for satisfiability
testing without requiring the additional theoretical machinery of normal-
ized clause sets. Thus, allowing one to avoid conversion to CNF formu-
lae. Both of the classes we introduce, linked schemata and pure overlap
schemata use the machinery introduced in the earlier works of Aravanti-
nos et al.[4] with only a slight change to the decision procedure.

1 Introduction

The concept of schema has been pervasive throughout the history of logic [14].
First-order Peano arithmetic’s usage of an induction schema is a well known
example of schema in mathematical logic [22]. There are many other less known
examples where schemata were used in both propositional and first-order logic
to attain proof theoretic results. For example, results pertaining to proof length,
unification, construction of ‘proof skeletons’, and first-order schematic Hilbert-
type systems [7,9,21,19,20]. Also, in the analysis of the Fürstenberg’s proof of
the infinitude of primes [8], cut elimination resulted in a schema of proofs where
the free parameter indexed the number of prime numbers. Very recently, work
has been done on schematizing cut-elimination so that an arbitrary number of
cuts can be eliminated without instantiating the free parameter of the proof [15].

The usage of schemata that we will focus on for the majority of this paper is
schemata as an object level construction iterating propositional formulae. This

� This work was funded by the Vienna PhD School of Informatics.

S.M. Watt et al. (Eds.): CICM 2014, LNAI 8543, pp. 61–75, 2014.
c© Springer International Publishing Switzerland 2014

http://www.logic.at/people/cernadavid1/
http://www.informatik.tuwien.ac.at/teaching/phdschool

62 D. Cerna

work was pioneered by Aravantinos et al. [4] with application to the field of
repeated circuit verification. This construction has also resulted in discoveries
in the field of inductive theorem proving, namely, construction of classes of in-
ductively defined formulae which have a decidable satisfiability problem and are
more expressive than those currently known in the field [4,17,18]. Namely, theses
classes are bounded-linear schemata, regular schemata, nested regular schemata,
and a multiple free parameter generalization of regular schemata through nor-
malized clause set representation, [6]. Decidable classes of inductive theorems
discovered by Kapur et al. [17,18], the most prominent work in this area, were
mainly universally quantified. Propositional schemata can express both bounded
existential and universal quantification through ∧ and ∨ iterations.

Our main results are formalizations of the class of linked schemata and pure
overlap schemata, both being multiple free parameter extension of regular schema,
together with a decision procedure for both classes. This decision procedure is a
simple extension of the ST procedure for STAB[4]. Our decision procedure allows
one to avoid the conversion of propositional schemata to normalized clause sets [6].
Our work is of a similar vein as Gentzen’s work [16] in which he provided a method
to fuse multiple inductions together in Peano arithmetic.

Though both classes of schemata we introduce are subclasses of the schemata
representable by normalized clause sets and benefit from the satisfiability pro-
cedure of normalized clauses sets [6], the existence of a tableaux-based decision
procedure for satisfiability testing for these classes remained an open problem.
The benefit of a tableaux-based decision procedure is that one does not need
to convert the propositional schemata into CNF form to test satisfiability. Note
that, if one wants to keep logical equivalence between the original formula and
the CNF form, the conversion can result in an exponential increase in formula
size.

In this paper, we consider multiple regular schemata (each with its own pa-
rameter) such that the propositional symbols of one schema are not found in the
other regular schemata. When this property holds, we can use the parts (i.e. the
iterations and propositional variables not found in the iterations) to construct
a formula with multiple free parameters–we refer to this class as the class of
linked schemata. Essentially, we build formulae using the pieces of several regu-
lar schemata. Although, this idea is quite simple, it provides a class of schemata
extending regular schemata which still has a tableaux-based decision procedure
for satisfiability.

Next we investigate when it is possible for the propositional symbols to oc-
cur in two or more linked regular schemata, i.e. the same propositional symbol
has occurrences indexed by two different parameters. To answer this question,
we develop the concept of relative pure literals, literals which are pure when
considering occurrences indexed by another parameter. This concept is used to
construct the class of pure overlap schemata.

Both linked and pure overlap schemata are extensions of regular schemata,
but after applying several tableaux extension rules to the constructed tableau,
It is possible to reduce the branches of the constructed tableau to tableaux

A Tableaux-Based Decision Procedure 63

branches which are decidable using the decision procedure for regular schemata.
Essentially, they are both propositional extensions of the class. It is not com-
pletely clear if these classes of schemata are the most expressive classes such
that their satisfiability problem can be reduced to the satisfiability problem for
regular schemata. An open problem regarding this point is whether the purity
constraint can be relaxed and retain the reduction– results of Aravantinos et al.
[4] (Thm. 6.2) suggests that this is not going to be the case.

Overall, our paper provides a simpler and more natural alternative to normal-
ized clause set representation when deciding satisfiability for certain classes of
multiple-parameter schemata.

The rest of this paper is structured as follows, Sec. 2 will be necessary back-
ground material from Aravantinos et al. [4], in Sec. 3 we formalize the construc-
tion of linked schemata, in Sec. 4 we formalize the construction of pure overlap
schemata , in Sec. 5 we provide a decision procedure for the satisfiability problem
of pure overlap schemata. Finally, in Sec. 6 we conclude the paper and shortly
discuss the open problems.

2 Background

2.1 Propositional Schemata

The indexing language for standard schematic propositional logic as considered
in Aravantinos et al. [4] is the set of linear arithmetic terms (denoted by Z)
built using the language {0, s(·),+,−} and a countably infinite set of variables
V . Multiplication is considered as a shorthand for terms of the form x+x+x+x =
4 ·x and is not a real operator in the language, nor is it a necessary one. To stick
to the framework of Aravantinos et al. [4] Z is considered as the standard model
of the terms in Z.

Definition 1 (Indexed Proposition[4]). Let P be a fixed and countably infi-
nite set of propositional symbols. An indexed proposition is an expression of the
form pa where p ∈ P and a ∈ Z. An indexed proposition pa s.t. a ∈ Z is called
a propositional variable.

Definition 2 (Formula Schemata[4]). The set of formula schemata is the
smallest set satisfying the following properties.

– ⊥,� are formula schemata.

– If a,b ∈ Z then a < b is a formula schema.

– Each indexed proposition is a formula schema.

– If φ1, φ2 are formula schemata then φ1 ∧ φ2, φ1 ∨ φ2, ¬φ1 are formula
schemata.

– If φ is a formula schema not containing <, and if a,b ∈ Z , where i is an
arithmetic variable, then

∧b
i=a φ,
∨b

i=a φ are formula schemata.

64 D. Cerna

Example 1. Consider the formula:

ϕ = q1 ∧
n∧

i=0

⎛⎝pi+2n ∧

⎛⎝2n+1∨
j=n

¬qn−j ∨ qj+1

⎞⎠⎞⎠ ∧ 0 ≤ n

ϕ is a formula schema.

Formula schemata are inherently finite. We will label the indexed propositions,
�, ⊥ and statements of the form a < b, as atoms. Formula schemata of the form∧b

i=a φ and
∨b

i=a φ will be called iterations. A formula schema whose constituents
are any of the following: �, ⊥, and a < b, is an arithmetic formula. Also, it is
taken as a standard that arithmetic formulae of the form a < b can only occur
outside of iterations. This constraint is necessary being that a < b is interpreted
as an iteration, i.e.

a < b ≡
b∨

i=a+1

� (1)

Also, we use a = b as an abbreviation for ¬(b < a) ∧ ¬(a < b) and a ≤ b as an
abbreviation for ¬(b < a). Iterations have both free and bound variables, where
free variable and parameter are synonymous. A bound variable i is a variable in
the scope of an iteration Πb

i=aφi where Π = {
∨
,
∧
}. A substitution is a function

mapping all the free variables to linear expressions. If a substitution σ is applied
to a schema ϕ, i.e ϕσ such that the domain of σ is every free variable in ϕ, then
the linear expressions of ϕ are integer terms, i.e. all indices in ϕ are variable free.

Definition 3 (Interpretation [4]). An interpretation of the schematic lan-
guage is a function mapping every parameter to an integer and every proposi-
tional variable to a truth value T or F. The substitution and interpretation will
be denoted as σ and I, respectively.

Example 2. An Interpretation I such that ϕ from Ex. 1 is modelled by I would
be σ ≡ {n← 0} and q1 = T, p0 = T, q0 = T, q−1 = T, q1 = F, q2 = T

Definition 4 (Semantics of Schematic Formulae [4]). The semantics of a
schematic formula ϕ in a given interpretation I, denoted by �ϕ�I , is defined as
follows:

– ���I = T and �⊥�I = F
– �a < b�I = T⇔ �a�I <Z �b�I
– �Pa�I = I(P�a�I) for P ∈ P
– �¬ϕ�I = T⇔ �ϕ�I = F
– �ϕ ∨ ψ�I = T⇔ �ϕ�I = T or �ψ�I = T
– �ϕ ∧ ψ�I = T⇔ �ϕ�I = T and �ψ�I = T

– �
∨b

i=a ϕi�I = T⇔ ∃α ∈ Z such that �a�I ≤Z α ≤Z �b�I and �ϕi�I[α�i] = T

– �
∧b

i=a ϕi�I = T⇔ ∀α ∈ Z , �a�I ≤Z α ≤Z �b�I implies �ϕi�I[α�i] = T

A Tableaux-Based Decision Procedure 65

In the above definition, by �ϕi�I[α�i] we mean every occurrence of i in ϕi is
replaced by α. A propositional schema ϕ is valid (respectively satisfiable) iff for
all (exists an interpretation) interpretations I s.t. �ϕ�I = T . I is called a model
of ϕ, written as I |= ϕ. Two schemata ϕ, ψ are equivalent (written ϕ ≡ ψ) iff
I |= ϕ ⇔ I |= ψ. ϕ and ψ are sat-equivalent (written ϕ ≡S ψ) iff ϕ and ψ are
both satisfiable or both unsatisfiable (not necessarily by the same model).

Definition 5 (Unrolling Iterations [4]). The following set S of rewrite rules
is used to unroll the iterations of a given schematic formula ϕ:

S =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∨b
i=a ψ −→ ⊥ a,b ∈ Z and b <Z a∧b
i=a ψ −→ � a,b ∈ Z and b <Z a∨b
i=a ψ −→

(∨b−̇1
i=a ψ
)
∨ ψ [b�i] a,b ∈ Z and a ≤Z b∧b

i=a ψ −→
(∧b−̇1

i=a ψ
)
∧ ψ [b�i] a,b ∈ Z and a ≤Z b

(2)

By ≤Z we are referring to the standard ordering over the integers.

Definition 6 (Regular Schemata (as written in [4])). A propositional
schema φ is regular if it has a unique parameter n and if it is flat, of bounded
propagation and aligned on [α, n− β]:

1) A schema is flat if every Πb
i=aψ occurring in the schema ψ does not contain

an iteration, , where Π ∈ {
∨
,
∧
}.

2) A schema is of bounded propagation if every atom that occurs in an iteration
Πb

i=aψ is of the form Pi+γ for some γ ∈ Z, where Π ∈ {
∨
,
∧
} .

3) A schema is aligned on [c, d] if all iterations occurring in the schema are of
the form Πd

i=cψ, where Π ∈ {
∨
,
∧
}.

Example 3. Consider the following schema:

ϕ = p0 ∧
(

n∧
i=0

¬pi ∨ pi+1

)
∧ ¬pn ∧ 0 ≤ n (3)

ϕ is a regular schemata.

2.2 Basics of STAB and the ST Procedure

We now overview the main ingredients of the ST decision procedure of the STAB
framework introduced in Aravantinos et al. [4]. In this paper, we only rely on the
existence of the ST procedure and the propositional tableaux extension rules to
define an extended decision procedure for our newly defined classes of schemata.

Definition 7 (Tableau). A tableau is a tree T s.t. each node N occurring in
T is labelled by a set of schemata written ΦT (N).

Definition 8 (Extension Rules). The extension rules of the STAB procedure
are as follows:

66 D. Cerna

Propositional Rules

• ϕ ∧ ψ ⇒ ϕ, ψ
• ϕ ∨ ψ ⇒ ϕ | ψ

Iteration Rules

•
∧b

i=a ϕ⇒ a ≤ b, ϕ [b�i] ∧
∧b−1

i=a ϕ
∣∣∣ b < a

•
∨b

i=a ϕ⇒ a ≤ b, ϕ [b�i] ∨
∨b−1

i=a ϕ

Closure Rule

• pa,¬pb ⇒ pa,¬pb, a �= b

The way the STAB extension rules work is by extending currently constructed
tableau with new leaves containing all the formulae of the prior node minus the
formula ϕ on which the extension rule was applied. The parts of ϕ will be added
to the leaves in accordance with the extension rule definitions. The symbol | in
the extension rules means that the constructed tableau branches when this rule
is applied. The closure rule, rather than extending the constructed tableau, tells
us that there is no need to extend the considered branch because it contains an
unsatisfiable sub-branch.

Theorem 1. There is a decision procedure for satisfiability testing of regular
schemata (ST procedure) based on the STAB extension rules (Def. 8) and an
additional rule to deal with looping, which terminates on every regular schema.
The procedure is sound and complete for regular schemata.

Example 4. We provide an example of the ST procedure producing a closed
tableau for the regular schema of example 3. Note that not every available for-
mula is passed down the constructed tableau in the diagram.

(1)

p0 ∧ (
∧n−1

i=0 ¬pi ∨ pi+1) ∧ ¬pn ∧ 0 ≤ n

p0, (
∧n−1

i=0 ¬pi ∨ pi+1),¬pn, 0 ≤ n

n �= 0
����

����
n ≥ 1

(
∧n−2

i=0 ¬pi ∨ pi+1)
¬pn−1 ∨ pn

�
��

�
��

¬pn−1

�1

pn
×

n < 1
×

A Tableaux-Based Decision Procedure 67

The symbol �1 at the bottom of the left-most branch represents the looping
rule. Essentially it means that the branch at the denoted point is the same as
the branch at (1) (the top of the tableau), but for n − 1 instead of n. We will
not delve deeper into the theory behind the looping rule as we only rely on
the existence of such a rule for our procedure to work– for more details on the
looping we refer to [4].

Finally, we recall the following two concepts over a set Φ of schemata: the
interval constraints (IC(Φ)) and the conjunction of arithmetic formulae in Φ
(ΦZ). The formula IC(Φ) is the conjunction of the arithmetic formulaeminφ(i) ≤
i∧ i ≤ maxφ(i) for each φ ∈ Φ and for each bound variable in φ. We assume that
all bound variables are distinct in Φ and minφ(i) is defined as the minimal value
that can be assigned to the bound variable i, whereas maxφ(i) is the maximum
value that can be assigned to the bound variable i.

Definition 9 (Pure Literal). A literal pa (respectively ¬pa) is pure in a set
of schemata Φ iff for every occurrence of a literal ¬pb (respectively pb) in Φ, the
arithmetic formula ΦZ ∧ IC(Φ) ∧ a = b is unsatisfiable.

This definition will be modified to formalize the class of pure overlap schemata.

3 Linked Schemata

The class of linked schemata is an extension of regular schemata based on the
following observation:(

n∧
i=1

pi

)
∧

⎛⎝ m∨
j=n+1

¬pi

⎞⎠ ≡S

(
n∧

i=1

pi

)
∧

⎛⎝ m∨
j=1

¬qi

⎞⎠ . (4)

Simply, we choose the interpretations such that �pn+k�I = �qk�I for k ∈ [1,m].
By the finiteness of the language, we can separate the integers into two distinct
parts, those greater than n and those less than n. Thus, the propositional variable
p in the interval [1, n] is invariant to the labelling of the propositional variable
in the interval [n+1,m]. They can share the same name or not, the assignment
will not influence the interpretations which model the schema. This observation
is similar to the reduction from monadic predicate logic with monadic function
symbols to monadic predicate logic without monadic function symbols, as out-
lined in Sec. 6.2 of “The Classical Decision Problem”[10].

3.1 Construction

The simplest way to understand the construction of the class of linked schemata
is that any regular schema consists of atoms (specifically, ones not contained
in iterations) and iterations. We will refer to these “parts” as the principal
objects, denoted by P(φ) of a schema φ. We consider sets Φ of regular schemata,
such that the propositional symbols are distinct with regards to the regular

68 D. Cerna

schemata in the set, i.e. if φ, ψ ∈ Φ and φ contains a propositional variable using
the symbol p then ψ cannot contain propositional variables using this symbol.
We can compute

⋃
φ∈Φ P(φ) without any propositional symbols occuring in two

iterations indexed by different free parameters. Using this set of “parts” and the
propositional connectives ¬, ∨ , and ∧ we can construct new formulae. The rest
of this section will be focused on the formalization of this concept.

Definition 10. Let p ∈ P be a propositional symbol and ϕ a formula schema,
then occ(p, ϕ) = 1 iff p occurs in ϕ, otherwise it is occ(p, ϕ) = 0

Definition 11 (principal Objects). Given a schema ϕ we can construct the
set of principal objects P(ϕ) using the following inductive definition:

• P(Pa) ⇒ {Pa}
• P(
∨b

i=a ψ) ⇒
{∨b

i=a ψ
}

• P(
∧b

i=a ψ) ⇒
{∧b

i=a ψ
}

• P(¬ψ) ⇒ P(ψ)
• P(φ ∨ ψ) ⇒ P(φ) ∪ P(ψ)
• P(φ ∧ ψ) ⇒ P(φ) ∪ P(ψ)

One can consider P(ϕ) as a specially constructed set of formula schema.

Example 5. Let use compute the set of principal objects of the following regular
schema:

ϕ ≡ (0 ≤ n) ∧ P0 ∧
n∧

i=1

(¬Pi−1 ∨ Pi) ∧ ¬Pn (5)

We get P(ϕ) = {(0 ≤ n), P0,
∧n

i=1 (¬Pi−1 ∨ Pi) , Pn}

We will abbreviate the set of propositional connectives used as O = {∧,∨,¬}.
By ψ ∈ clO(Φ), we mean that ψ can be constructed using the set of formula
schema Φ and the logical connective set O.

Example 6. Using the principal object set from Ex. 5 and the set of operators
O = {∧,∨,¬}, some of the formulae we can construct are:

ψ1 = (0 ≤ n) ∧ P0 ∧
n∧

i=1

(¬Pi−1 ∨ Pi) ∧ ¬Pn (6)

ψ2 = ((0≤n)∧P0∧
∧n

i=1(¬Pi−1∨Pi)∧¬Pn)∨((0≤n)∧¬P0∧
∧n

i=1(¬Pi−1∨Pi)∧Pn) (7)

It is not necessary that the constructed formulae are valid, satisfiable, or unsat-
isfiable. One can check that both ψ1, ψ2 ∈ clO(P(ϕ)).

Lemma 1. If ϕ is a regular schema, then all ψ ∈ clO(P(ϕ)) have the same
aligned interval as ϕ.

A Tableaux-Based Decision Procedure 69

Proof. Assuming that ϕ has an aligned interval [α, n− β], then any, of its parts
must have an aligned interval of at most [α, n− β] and are themselves regu-
lar schema. Thus, ψ is a boolean combination with the same aligned interval,
implying that its aligned interval must be the same. �

Using this simple result we will define the class of linked schemata, as follows.

Definition 12 (The class of Linked Schemata). Let us consider the class Λ
of all finite sets Φ of regular schemata such that for all propositional symbols p,

we have that
(∑

φ∈Φ occ(p, φ)
)
is either 1 or 0, we define the class LS of linked

schemata as

LS =
⋃
Φ∈Λ

clO

⎛⎝⋃
φ∈Φ

P(φ)

⎞⎠
Lemma 2. If ϕ is a regular schema, then it is a linked schema.

Proof. By definition 12, we can consider the set Φ = {ϕ}, also, ϕ ∈ clO (P(ϕ)),
and thus, ϕ ∈ LS. �
Theorem 2. The class of regular schemata is contained but not equal to the
class of linked schemata.

Proof. We prove this by providing an example, see Ex. 7, of a linked schema
which is not a regular schema. �
Example 7. Let us consider Φ containing the following three regular schemata.
In what follows, we write A↔ B as an abbreviation for (¬A ∨B) ∧ (¬B ∨ A):

ϕ1 =
k∨

i=1

¬Pi ∧ ¬
k∨

i=1

¬Pi (8a)

ϕ2 =

m∨
i=1

Qi ∧
m∨
i=1

Ri ∧
m∧
i=1

Qi ↔ Ri (8b)

ϕ3 =
n∧

i=1

Mi (8c)

We can construct the following LS formula using Φ:

((
k∨

i=1

¬Pi →
m∨
i=1

Qi

)
∧
(

m∨
i=1

Ri →
n∧

i=1

Mi

)
∧

m∧
i=1

(Qi ↔ Ri)

)
→(

k∨
i=1

¬Pi →
n∧

i=1

Mi

)
.

(9)

Formula 9 gives a formalization of the composition of certain boolean functions
when one function’s range has the same number of bits as another function’s
domain. This formula is obviously not regular, but it is linked. This concludes
the proof of Thm. 2.

70 D. Cerna

4 Pure Overlap Schemata

In this section we show how one can weaken the restriction that propositional
symbols occur indexed by only one parameter. Consider the following formula
schema ψ:

0 ≤ n ∧
(

n∧
i=0

pi

)
∨
(

m∧
i=0

¬pi

)
∧ 0 ≤ m (10)

It is not a linked schema because p occurs indexed by two different parameters,
however, using the tableaux extension rule for propositional ∨ we see that the
occurrences are handled by two different branches, thus each parameter can be
handled separately. It is also important to note that

0 ≤ n ∧
(

n∧
i=0

pi

)
∨
(

m∧
i=0

¬qi

)
∧ 0 ≤ m (11)

Replacing p with q in Eqn. 10 results in Eqn. 11, which changes the formula
from valid to satisfiable (only when 0 ≤ n,m). Thus, we cannot reduce this
formula to linked schemata without changing its semantic properties. To deal
with this problem we introduce relatively pure literals, based on the observation
that if the negation of a literal occurs in the same branch indexed by a different
parameter then the literal must not be of arithmetic importance. We then show
that relatively pure literals can be dropped without effecting satisfiability of the
considered pure overlap schemata.

4.1 Construction

We first introduce the notion of relatively pure literals and detail the construction
of pure overlap schemata.

Definition 13 (Iteration Invariant DNF (IIDNF)). The Iteration Invari-
ant disjunctive normal form of a linked schema is a schema of the form:

(ϕ1,1 ∧ · · · ∧ ϕ1,n1) ∨ · · · ∨ (ϕm,1 ∧ · · · ∧ ϕm,nm)

where m,n1, · · · , nm ∈ N (note they are not free parameters, but rather meta
variables) and ϕi,j is either an iteration, an atom, or negated atom. We will
refer to the formula (ϕi,1 ∧· · · ∧ϕi,ni) as clauses Ci for i ∈ [1,m], That is, given
a formula ϕ in IIDNF we will write Ci ∈ ϕ as the ith clause of ϕ.

Lemma 3. Given a set of regular schemata Φ, for all ψ ∈ clO
(⋃

φ∈Φ P(φ)
)

there exists an IIDNF of ψ.

Proof. Since, iterations are not unfolded in the creation of an IIDNF form of ψ,
the problem reduces to showing that all propositional formulae have a DNF form,
which is a well known result. Also, it is possible to put a regular schemata into
Negation Normal Form (NNF) because negation can be passed over iterations,

i.e ¬
∧b

i=a φi ≡|=
∨b

i=a ¬φi and ¬
∨b

i=a φi ≡|=
∧b

i=a ¬φi. �

A Tableaux-Based Decision Procedure 71

Definition 14 (Relatively Pure Literal). Given a set of regular schemata

Φ, let ψ ∈ clO
(⋃

φ∈Φ P(φ)
)

and ψ′ be the IIDNF of ψ. A literal pa (¬pa) is

relatively pure in ψ iff for every clause C ∈ ψ′ and for any two distinct regular
schemata ϕ1, ϕ2 ∈ Φ used to construct ψ, where pa ∈ C (¬pa ∈ C), ¬pb ∈ C
(pb ∈ C), pa ∈ ϕ1 (¬pa ∈ ϕ1) and ¬pb ∈ ϕ2 (pb ∈ ϕ2), the arithmetic formula
ΦZ ∧ IC(Φ) ∧ a = b is unsatisfiable, where Φ = P(C).

Example 8. Consider the schemata:

¬(5 < n) ∧
(

n∧
i=0

pi

)
∧

⎛⎝ m∧
j=6

¬pi

⎞⎠ ∧ 0 ≤ m (12)

The literal pi (¬pi) is relatively pure in this example.

We will refer to a schema as relatively pure if all the literals in the schema are
either relatively pure or in the IIDNF of the schema they only occur in clauses
being indexed by a single parameter. The non-IIDNF form of a relatively pure
schema is also relatively pure. Given a set of regular schemata Φ, let clrpO (Φ) be
the set of all schema which can be constructed using the logical connectives O
such that they are relatively pure.

Definition 15 (The class of Pure Overlap Schemata). Let us consider
the class Λ of all finite sets Φ of regular schemata. We define the class of pure
overlap schemata as

POS =
⋃
Φ∈Λ

clrpO

⎛⎝⋃
φ∈Φ

P(φ)

⎞⎠
It should be noted that even though the definition of relatively pure literals uses
the IIDNF of a positional schema it is not the case that members of POS must
be in IIDNF.

Example 9. Both Ex. 8 and Eqn. 10 are in the class of pure overlap schemata.

Lemma 4. If ϕ is a linked schema, then it is a pure overlap schema.

Proof. A linked schema is a pure overlap schema where each propositional vari-
able is indexed by only one parameter. �

Theorem 3. The class of linked schemata is contained but not equal to the class
of pure overlap schemata.

Proof. Eqn. 10 is a pure overlap schema but not a linked schema. �

5 A Decision Procedure for POS

We now introduce a decision procedure for the class POS of schemata, by using
and extending results of [4], as follows.

72 D. Cerna

Algorithm 1 (STPOS Procedure). Given a schema ϕ ∈ POS in negation
normal form. The following algorithm, called the STPOS procedure, decides the
satisfiability of ϕ:

1) Apply STAB propositional extension rules with highest priority until no more
can be applied. This results in m sets of atoms and iterations referred to as
B1, . . . , Bm.

2) For each Bi, we separate Bi into n (the number of parameters in Bi) sub-
branches B(i,1), · · ·B(i,n), where each B(i,j) contains iterations and atoms
indexed by a single parameter. Atoms without a free parameter in the indices
can be added to every B(i,j). We will mark such a sub-branching with ⊗n

where n is the number of parameters on the branch.
3) Run the ST procedure on the sub-branch B(i,j).
4) For any branch Bi, if one of its sub-branches B(i,j) has a closed tableau after

following the ST procedure, then the branch Bi is closed.

Let us make the following observation about the STPOS decision procedure.
When it comes to constructing the interpretation for a formula in POS we
specifically defined the class such that the procedure to construct the model
would be precisely the procedure used for regular schemata, except the num-
ber of possible models would increase. For linked schemata this is obvious, the
propositional symbols are distinct in every sub-branch. However, for pure overlap
schemata two distinct sub-branches (of the same branch) can contain the same
propositional symbol, but by Def. 14 the occurrences are distinct from each other
arithmetically if one occurrence is negated and the other occurrence is not. Thus,
when a propositional symbol occurs on two distinct sub-branches and the two
occurrences are not arithmetically distinct, the two occurrences must be of the
same polarity. In this case when one sub-branch forces the propositional variable
using the positional symbol to be true (false in the case of a negated literal), the
other sub-branches will also interpret this literal as true. In some sense one can
consider it as a local tautology which can be removed from consideration when
constructing the model.

Theorem 4. The STPOS procedure terminates for POS.

Proof. The key to the termination is that we only need to decompose the mem-
bers of POS using the procedure outlined above. This decomposition process
always terminates being that we are, up to this point, only applying propositional
tableaux extension rules. When the formulae are completely decomposed we use
the ST procedure on each sub-branch. The procedure is known to terminate for
regular schemata [4] and each of the sub-branches is regular. �

In regards to the soundness and completeness of STPOS the procedure, it
was shown that STAB is sound and complete for all propositional schemata [4]
(Sec. 5.4). The propositional schemata we introduce in this paper are constructed
using exactly the same language as in the work by Aravantinos et al. [4] Our
extension of STAB with the sub-branching rule does not change the soundness
and completeness results being that the sub-branching rule, rather than being an

A Tableaux-Based Decision Procedure 73

additional tableaux rule, is more a method to enforce termination. It essentially
states that instead of considering the given branch as a whole we consider it in
parts using the same tableaux rules introduced for STAB in prior work.

Theorem 5. The STPOS decision procedure is sound and complete for all propo-
sitional schemata ψ ∈ POS.

Example 10. We conclude this section by illustrating our STPOS decision pro-
cedure on the following formula ψ:

p0 ∧
(((∧k

i=0 ¬qi
)
∨
(∧n

i=0 ¬pi ∨ pi+1

)
∧ ¬pn+1

)
∨((∧m

i=0 ¬pi−1 ∨ pi

)
∧ pm+1 ∧ ¬qw+3

))
Applying STPOS on the above formula, we obtain the following branching tree
(corresponding to the run of STPOS):

p0∧
(((
∧k

i=0 ¬qi) ∨ (
∧n

i=0 ¬pi ∨ pi+1) ∧ ¬pn+1)∨
((
∧m

i=1 ¬pi−1 ∨ pi) ∧ pm+1 ∧ qw+3))

p0,

(((
∧k

i=0 ¬qi) ∨ (
∧n

i=0 ¬pi ∨ pi+1) ∧ ¬pn+1)∨
((
∧m

i=1 ¬pi−1 ∨ pi) ∧ pm+1 ∧ qw+3))
����������

����������
p0

((
∧k

i=0 ¬qi)∨
(
∧n

i=0 ¬pi ∨ pi+1) ∧ ¬pn+1)

⊗2�����
					

p0
(
∧k

i=0 ¬qi)
ST

p0
(
∧n

i=0 ¬pi ∨ pi+1)
,¬pn+1

ST on Ex.4

p0
((
∧m

i=1 ¬pi−1 ∨ pi)∧
pm+1 ∧ qw+3)

p0
(
∧m

i=1 ¬pi−1 ∨ pi)
, pm+1, qw+3

⊗2����
����

p0
(
∧m

i=1 ¬pi−1 ∨ pi)
pm

ST

p0, qw+3

ST

Interesting result of this derivation is that the assignment to w influences the
interpretation modelling the formula. If an interpretation I assigns q−1 = T ,q0 =
F ,p0 = T ,p−1 = F , p5 = F ,w ← −4 , n← −2 , k ← 0, and m← 5 then I |= ψ.
But if I assigns to n ← 0 keeping the same propositional variable assignments,
then I �|= ψ.

74 D. Cerna

6 Conclusion and Future Work

In this work we have shown that the ST procedure of Aravantinos et al. [4]
can be extended to handle more expressive classes of schemata which allow for
restricted use of multiple free parameters. The two classes shown, though their
construction is awkward, are simple to conceptually understand and work with.
Also, neither requires the heavy machinery of normalized clause sets, nor do the
classes require a conversion of the schemata into a clausal normal form. Also,
the introduced decision procedure STPOS is sound, complete, and terminates for
all propositional schemata in the class POS. Though an advantage normalized
clause sets have over both of the introduced classes of schemata is that they
can handle propositional variables being indexed by multiple free parameters
without restriction. This is one of the significant advantages to separating the
propositional part from the equational part, and using a levelled resolution cal-
culus. When it is not required to have unrestricted usage of the propositional
variables it suffices to use STAB. This also has the added value of compression
being that it is possible for clausal form to result in an exponential increase in
the size of the formula.

As for future work, further increase in expressivity by relaxing the purity
constraint does not seem feasible as this would require two parameters to be
active in the same branch. This is when the undecidability result for proposi-
tional schemata [4] stops us in our tracks. However, investigating how the new
classes outlined here can interact with the class of regular nested schemata [3]
could lead to new expressivity results. In particular, we are interested in the re-
lationship between alternation-free μ-calculus [11] and such a class of schemata.
Also, Aravantinos et al. [5] investigated the relationship between LTL and reg-
ular schemata. Being that pure overlap schemata are a super class of regular
schemata it is quite possible that a more expressive temporal logic is related to
pure overlap schemata or linked schemata. In either case this work has broaden
the scope of application of propositional schemata.

Acknowledgements. I would like to give special thanks to Daniel Weller1

and Alexander Leitsch2 for their help with constructing a concise mathematical
formalism, as well as Giselle Reis 3 for help with editing of the formalisms.

References

1. Aczel, P.: An introduction to inductive definitions. In: Barwise, J. (ed.) Handbook
of Mathematical Logic. Studies in Logic and the Foundations of Mathematics,
vol. 90, pp. 739–782. Elsevier (1977)

2. Aravantinos, V., Caferra, R., Peltier, N.: A schemata calculus for propositional
logic. In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS, vol. 5607, pp.
32–46. Springer, Heidelberg (2009)

1 http://www.logic.at/staff/weller/index.html
2 http://www.logic.at/people/leitsch/
3 http://www.logic.at/staff/giselle/

http://www.logic.at/staff/weller/index.html
http://www.logic.at/people/leitsch/
http://www.logic.at/staff/giselle/

A Tableaux-Based Decision Procedure 75

3. Aravantinos, V., Caferra, R., Peltier, N.: A decidable class of nested iterated
schemata. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 293–
308. Springer, Heidelberg (2010)

4. Aravantinos, V., Caferra, R., Peltier, N.: Decidability and undecidability results
for propositional schemata. J. Artif. Int. Res. 40(1), 599–656 (2011)

5. Aravantinos, V., Caferra, R., Peltier, N.: Linear temporal logic and propositional
schemata, back and forth. In: Proceedings of the 2011 Eighteenth International
Symposium on Temporal Representation and Reasoning, TIME 2011, pp. 80–87.
IEEE Computer Society, Washington, DC (2011)

6. Aravantinos, V., Echenim, M., Peltier, N.: A resolution calculus for first-order
schemata. Fundamenta Informaticae (2013)

7. Baaz, M.: Note on the generalization of calculations. Theoretical Computer Sci-
ence 224(1-2), 3–11 (1999)

8. Baaz, M., Hetzl, S., Leitsch, A., Richter, C., Spohr, H.: Ceres: An analysis of
Fürstenberg’s proof of the infinity of primes. Theor. Comput. Sci. 403(2-3), 160–
175 (2008)

9. Baaz, M., Zach, R.: Short proofs of tautologies using the schema of equivalence. In:
Börger, E., Gurevich, Y., Meinke, K. (eds.) CSL 1993. LNCS, vol. 832, pp. 33–35.
Springer, Heidelberg (1994)

10. Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Springer
(1997)

11. Bradfield, J.C.: The modal mu-calculus alternation hierarchy is strict. In: Monta-
nari, U., Sassone, V. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 233–246. Springer,
Heidelberg (1996)

12. Comon, H.: Inductionless induction. In: Robinson, J.A., Voronkov, A. (eds.) Hand-
book of Automated Reasoning (in 2 volumes), pp. 913–962. Elsevier and MIT Press
(2001)

13. Cooper, D.: Theorem proving in arithmetic without multiplication. Machine Intel-
ligence (1972)

14. Corcoran, J.: Schemata: The concept of schema in the history of logic. Bulletin of
Symbolic Logic (2), 219–240

15. Dunchev, C., Leitsch, A., Rukhaia, M., Weller, D.: Ceres for first-order schemata.
CoRR, abs/1303.4257 (2013)

16. Gentzen, G.: Fusion of several complete inductions. In: Szabo, M.E. (ed.) The
Collected Papers of Gerhard Gentzen. Studies in Logic and the Foundations of
Mathematics, vol. 55, pp. 309–311. Elsevier (1969)

17. Giesl, J., Kapur, D.: Decidable classes of inductive theorems. In: Goré, R.P., Leitsch,
A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 469–484. Springer,
Heidelberg (2001)

18. Kapur, D., Subramaniam, M.: Extending decision procedures with induction
schemes. In: McAllester, D. (ed.) CADE-17. LNCS, vol. 1831, pp. 324–345.
Springer, Heidelberg (2000)

19. Kraj́ıček, J., Pudlák, P.: The number of proof lines and the size of proofs in first
order logic. Archive for Mathematical Logic 27(1), 69–84 (1988)

20. Orevkov, V.P.: Proof schemata in Hilbert-type axiomatic theories. Journal of Soviet
Mathematics 55(2), 1610–1620 (1991)

21. Parikh, R.J.: Some results on the length of proofs. Transactions of the American
Mathematical Society 177, 29–36 (1973)

22. Takeuti, G.: Proof Theory. Studies in logic and the foundations of mathematics,
vol. 81. American Elsevier Pub. (1975)

Detecting Unknots via Equational Reasoning,

I: Exploration

Andrew Fish1 and Alexei Lisitsa2

1 School of Computing, Engineering and Mathematics, University of Brighton
2 Department of Computer Science, The University of Liverpool

Andrew.fish@brighton.ac.uk, A.Lisitsa@csc.liv.ac.uk

Abstract. We explore the application of automated reasoning tech-
niques to unknot detection, a classical problem of computational topol-
ogy. We adopt a two-pronged experimental approach, using a theorem
prover to try to establish a positive result (i.e. that a knot is the unknot),
whilst simultaneously using a model finder to try to establish a negative
result (i.e. that the knot is not the unknot). The theorem proving ap-
proach utilises equational reasoning, whilst the model finder searches
for a minimal size counter-model. We present and compare experimen-
tal data using the involutary quandle of the knot, as well as comparing
with alternative approaches, highlighting instances of interest. Further-
more, we present theoretical connections of the minimal countermodels
obtained with existing knot invariants, for all prime knots of up to 10
crossings: this may be useful for developing advanced search strategies.

1 Introduction

One of the most well-known and intriguing problems in computational topology
is unknot detection (UKD): given a knot, which is a closed loop without self-
intersection embedded in 3-dimensional Euclidean space R3, is it possible to
deform R3 continuously such that the knot is transformed into a trivial unknotted
circle without passing through itself? Knots are often studied as a diagrammatic
system: (i) a knot diagram is a regular projection of the knot onto a plane,
having a finite number of singularities, all of which are transverse double points
annotated to indicate which strand is passing over and which is passing under
at each crossing; (ii) knots are equivalent if and only if their diagrams differ by
a finite sequence of Reidemesiter moves [20]. Figure 1 shows the diagrams of two
knots with a negative a) and positive b) answers to the unknottedness question.
All work and results stated assume that knots are tame (a common technical
requirement which is generally imposed on knots, ruling out pathological cases
such as permitting infinite sequences of trefoil-like knot pieces of decreasing sizes
glued together within a knot); see [26] for more details, for instance.

The unknot detection (or unknot recognition) problem has attracted a lot of
attention, but some of the fundamental questions about it still remain open. In
particular, it is unknown whether it is possible to recognize unknots in PTIME.
It is known, though, that the problem lies in NP ∩ coNP [12,16] (membership

S.M. Watt et al. (Eds.): CICM 2014, LNAI 8543, pp. 76–91, 2014.
c© Springer International Publishing Switzerland 2014

Detecting Unknots via Equational Reasoning, I: Exploration 77

Fig. 1. a) Non-trivial trefoil knot and b) trivial knot or unknot

in coNP is subject to generalized Riemann hypothesis holding). There has been
a slow but steady development of algorithms for unknot detection and their
experimental evaluation. An early algorithm, presented by W. Haken in his proof
of the decidability of UKD [11], was developed for theoretical purposes and was
deemed to be impractical due to being too complex to attempt to implement
it. Since then various algorithms for unknot detection have been proposed with
various degrees of implementability and efficiency [7]. The algorithms based on
monotone simplifications [7] provide practically fast recognition of unknots but
do not necessarily yield a decision procedure. The algorithms based on normal
surface theory, implemented in Regina system [3], provide efficient recognition
of non-trivial knots. In particular, it is reported that every non-trivial knot with
crossing number ≤ 12 is recognized as such by the procedure from [3] in under 5
minutes. There still are efficiency problems with the existing algorithms, which in
the worst case are exponential, and it appears that establishing that a particular
diagram with a few hundred (or even dozens of) crossings represents a non-trivial
knot may well be out of reach of the available procedures. Thus the exploration
of alternative procedures for unknot detection is an interesting and well-justified
task.

In this paper we explore the following route to the efficient practical algorithms
for unknot detection. The unknotedness property can be faithfully characterized
by the properties of algebraic invariants associated with knot projections. We
attempt to establish the properties of concrete invariants by using methods and
procedures developed in the automated reasoning area. A key observation is that
the task of unknot detection can be reduced to the task of (dis)proving a first-
order formulae, and for this there are efficient generic automated procedures,
notwithstanding the fact that generally first-order-order validity is undecidable.

2 Involutory Quandles and Unknot Detection

We provide relevant background definitions; for example, see [9,15,19,6] for fur-
ther details.

Definition 1. Let Q be a set equipped with a binary operation � (product) such
that the following hold:

78 A. Fish and A. Lisitsa

Q1 x � x = x for all x ∈ Q.
Q2 For all x, y ∈ Q, there is a unique z ∈ Q such that x = z � y.
Q3 For all x, y, z ∈ Q, we have (x � y) � z = (x � z) � (y � z).

Then Q is called a quandle 1. If Q additionally satisfies the identity Q2′ below,
then Q is called an involutory quandle:

Q2’ (x � y) � y = x for all x, y ∈ Q.

Remark 1. For a quandle Q, the unique element z ∈ Q from axiom 2 is denoted
by z = x�−1 y, and �−1 also defines a quandle structure. However, for involutory
quandles, we have � = �−1, which can be taken as an equivalent definition of
involutory; axiom 2’ supersedes axiom 2.

Definition 2. A function φ : Q1 → Q2 between quandles is a homomorphism if
(a � b)φ = (a)φ � (b)φ for any a, b ∈ Q1.

Given a knot K (i.e. a circle embedded in R3), a well known invariant is the
knot group of K, which is π(K) = π1(R

3 − K), the fundamental group of the
complement of the knotK in R3 (i.e. homotopy class of paths in the complement
of the knot). One can compute a presentation of the knot group, in terms of gen-
erators and relations, from a knot diagram, following Wirtinger (e.g. see [26] for
details). An analogous construction can be used to construct a presentation of
the quandle of the knot, Q(K) (e.g. see [19] for details). One acquires the pre-
sentation of the knot group from the presentation of the quandle by considering
the generators and relations in the group, and imposing the quandle operation
to be conjugation. Since we focus primarily on involutory quandles, we provide
the simplified construction for these below; a method for generalising to (not in-
volutory) quandles is to assign an orientation to the knot, which yields a sign for
each crossing according to the relative orientations of the involved curves, and
then the relation assigned to the crossing is either a�b = c or a�−1 b = c accord-
ing to the sign of the crossing. Interpreting the quandle relation � as conjugation
in the knot group (i.e. a � b = b1ab), and �−1 as its inverse (i.e. a �−1 b = bab1)
returns the well known Wirtinger presentation of the knot group.

Definition 3. A presentation of the involutory knot quandle, IQ(K) for a knot
K, is obtained from a diagram D for K as follows: a solid arc of the diagram is
an unbroken line of the diagram with an undercrossings at each of its ends; every
solid arc of the diagram is labelled by an unique label; all labels of D form the
set GD of generators; to every crossing of D one associates a relation, as shown
in Figure 2; denote the set of all such relations by RD. Then the presentation
〈GD | RD〉 defines the involutory quandle IQ(D). This is a quotient of the free
involutory quandle modulo the equational theory defined by RD.

The three equalities Q1, Q2′ and Q3 form an equational theory of involutory
quandles, which we denote by Eiq.

1 A rack [9] is such a Q that satisfies Q2 and Q3 but not necessarily Q1.

Detecting Unknots via Equational Reasoning, I: Exploration 79

Fig. 2. (a) Left: A labelled crossing and its corresponding relation a�b = c; here a and
c are the labels of the underarcs at this crossing, whilst b is the label of the overarc,
and we often identify the arcs with their labels to simplify language in discussions.
(b) Right: The trefoil knot diagram, with solid arcs a,b,c.

Example 1. Let Dtr be the diagram of the trefoil knot K shown in Figure 2.
The involutory quandle of Dtr is defined by the presentation IQ(Dtr) = 〈a, b, c |
a�b = c, b�c = a, c�a = b〉. For comparison, the quandle Q(Dtr) has presentation
Q(Dtr) = 〈a, b, c | a �−1 b = c, b �−1 c = a, c �−1 a = b〉, whilst the knot group
has presentation G(K) = 〈a, b, c | bab−1 = c, cbc−1 = a, aca−1 = b〉. In detail,
consider the crossing of the diagram in which a and c are underarcs, whilst b is
an overarc; i.e. match up the crossing locally with (a rotated version of) Figure
2(a). This gives rise to either the relation a �−1 b = c or a � b = c, depending
on whether the sign of the crossing is negative or positive, respectively. One
method for reading off the sign is to choose an orientation of the knot (i.e.
pick a direction on the knot, often depicted using an arrowhead) and if a is the
approaching underarc, following orientation (one can traverse a knot, or part of
a knot, intuitively being a walk around the knot along the arcs; then following
orientation means that one is traversing the arc in the direction determined by
the orientation), check if one turns left or right, respectively, when passing onto
the overarc b, following orientation. In this case, all three crossings are negative;
a mirror of the diagram (i.e. exchanging all over and under crossings) would
have the above presentation for knot quandle, but with �−1 replaced by �, and
similarly for the knot group.

2.1 Overview of the Approach

The importance of involutory quandles, in the context of unknot detection, relies
on the following properties [14,15,19]:

– Involutory quandle is a knot invariant, i.e. it does not depend on the choice
of diagram;
[Theorem 15.1 of [14] shows that the quandle Q(K) of knot K is an invariant
of the knot type of K, and the involutory quandle IQ(K) is a homomorphic
image of Q(K)]

– Involutory quandle IQ(K) of a knot K is trivial (i.e. it contains a single
element e with e ∗ e = e) if and only if K is the unknot.
[Theorem 5.2.5 of [19]].

80 A. Fish and A. Lisitsa

K Q(K) π(K)

DK 〈Q(K)〉DK 〈π(K)〉DK

〈IQ(K)〉DK

X C

Fig. 3. An overview of the objects related to the unknot detection programme

These properties suggest the following approach to unknot detection. Given
a knot diagram, one can try to decide whether its associated involutory quan-
dle is trivial. Notice that an involutory quandle of a knot can be an infinite
set [19]. Not much progress has been made towards the development of specific
decision procedures for such a problem, apart of that presented in the thesis
of S. Winker [19]; the diagrammatic method presented there, together with de-
tails and explanations, allows one to construct the involutory quandles for many
knot diagrams, and in our opinion, is a very good starting point for develop-
ing algorithmic procedures directly dealing with the involutary quandles. In this
paper, we take an alternative route and propose, instead of applying a specific
involutory quandles decision procedure, to tackle unknot detection as follows:

– Given a knot diagram, compute its involutary quandle presentation;

– Convert the task of involutary quandle triviality detection into the task of
proving a first-order equational formula;

– Concurrently, apply generic automated reasoning tools for first-order equa-
tional logic to tackle the (dis)proving task

Thus, we concurrently search for a proof and for a model to disprove the
formula. After explaining the details, we apply these methods in parallel, present
empirical data for many knots, and compare the countermodels with existing
knot invariants that are encoded in the smallest homomorphic image of the
involutory quandle of the knot. As an overview of the related objects, Figure 3
shows the following. In the top row, we have the knot K, fundamental quandle of
the knot,Q(K), and the projection fromQ(K) onto the fundamental group π(K)
obtained by forgetting information (peripheral subgroup and meridian, discussed
later), and essentially setting the quandle operation to be conjunction. In the
second row, the diagramDK of the knot K, together with presentations of Q(K)
and π(K) obtained from those diagrams. The third row shows the involutory
quandle presentation IQ(K) obtained by identifying the quandle operation with
its inverse. Here C is a finite involutory quandle that is the homomorphic image
of the involutory quandle of the knot. Then, if X is any quandle, one can ask if
imposing the involutory condition on X can yield such a C.

Detecting Unknots via Equational Reasoning, I: Exploration 81

2.2 Unknot Detection by Equational Reasoning

Given a knot diagram D, with n arcs, consider its involutory quandle repre-
sentation IQ(D) = 〈GD | RD〉 with GD = {a1, . . . , an}. Denote by Eiq(D) an
equational theory of IQ(D), i.e. Eiq(D) = Eiq∪RD. It is known that the axioms
of (involutory) quandles are algebraic counterparts of the Reidemeister moves
(see further discussion of that in Section 6).

Proposition 1. A knot diagram D is a diagram of the unknot if and only if
Eiq(D) � ∧i=1...n−1(ai = ai+1), where � denotes derivability in the equational
logic (or, equivalently in the first-order logic with equality).

Proof. (Sketch) D is a diagram of unknot iff IQ(D) is a trivial involutive quan-
dle [19]. The proposition “IQ(D) is a trivial involutory quandle iff Eiq(D) �
∧i=1...n−1(ai = ai+1)” is an easy consequence of the soundness and complete-
ness of equational logic (Birkhoff Theorem) [4]. See also Lemma 4.2.7 p. 30 of
[19]. The case of first-order logic with equality follows from the conservativity of
first-order logic with equality over equational logic for equational theories. ��

Now, if Eiq(D) � ∧i=1...n−1(ai = ai+1) holds true, then this fact can be estab-
lished by a proof of the formula Eiq(D) → ∧i=1...n−1(ai = ai+1) by a complete
automated theorem prover for first-order logic with equality, of which there are
many around, see e.g. [2]. By a complete theorem prover we mean an automated
procedure which, given a valid formula, terminates with a proof of the formula.

For an introduction to automated theorem proving see e.g. [10]. In order to
show that Eiq(D) � ∧i=1...n−1(ai = ai+1) does not hold, it suffices to disprove
Eiq(D) → ∧i=1...n−1(ai = ai+1). We propose to do this by the application of
generic finite model finding procedures [5,18] to find a finite countermodel to the
formula, or equivalently a finite model for Eiq(D)∧¬∧i=1...n−1 (ai = ai+1). So,
the unknot detection procedure P which we propose here consists of the parallel
composition of

– automated proving Eiq(D)→ ∧i=1...n−1(ai = ai+1), and
– automated disproving Eiq(D) → ∧i=1...n−1(ai = ai+1) by a finite model

finder.

It is obvious that the parallel composition above provides with at least a semi-
decision algorithm for unknotedeness. If D is a diagram of the unknot then the
termination of the theorem proving is guaranteed by the completeness of a the-
orem prover. On the other hand, if D is a diagram of a non-trivial knot then the
termination can be guaranteed only if a finite countermodel exists. In general,
in the first-order logic, there are formulae which can only be refuted on infi-
nite countermodels, so for arbitrary formulae the termination of the automated
disproving cannot be guaranteed.

For the specific type of formulae Eiq(D) → ∧i=1...n−1(ai = ai+1) we con-
jecture that they have finite countermodel property, that is if there exists a
countermodel for a formula of this form at all, then there is a finite counter-
model too. Since a countermodel for Eiq(D)→ ∧i=1...n−1(ai = ai+1) is a model

82 A. Fish and A. Lisitsa

for Eiq(D) ∧ ¬ ∧i=1...n−1 (ai = ai+1), it follows that: 1) such a countermodel
is a homomorphic image of the involutory quandle IQ(D) of D, by satisfac-
tion of Eiq(D); and 2) it is non-trivial involutory quandle, by satisfaction of
¬ ∧i=1...n−1 (ai = ai+1).

Thus the required finite countermodel property, for the programme to yield
a decision procedure, is equivalent to the property of the involutory quandles of
knots being residually finite, as formulated in the following conjecture.

Conjecture 1 (Involutory quandles are finitely residual). For any knot diagram
D, if IQ(D) is not trivial (i.e. consists of more than 1 element), then there is a
finite non-trivial involutory quandle Q which is a homomorphic image of IQ(D).

We remark on the conjecture. Following Hempel and Thurston, we know that
knot groups are residually finite. Thurston [21] states that “It is a standard fact
that a finitely generated subgroup of GLn(Q) (the general linear group with
coefficients in the rationals) is residually finite. Using this, one easily sees that
the fundamental group of any geometric 3-manifold is residually finite. After a
certain amount of fussing, one can assemble finite quotients of the fundamental
groups of pieces of a geometric decomposition of a 3-manifold to obtain finite
quotients of the fundamental group of the entire manifold.”. The question of
whether the proof can be lifted to quandles is another matter. Since the knot
quandle contains the same information as a group system which is the triple
(G,P,m) consisting of the knot group G, a peripheral subgroup P , and a merid-
ian m in P , one would require that the group system (see e.g. [19,14]) is somehow
preserved, and the finite homomorphic image has an induced quandle structure.

Theorem 1. The unknot detection procedure, P , given above, is a decision pro-
cedure if conjecture 1 holds and a semi-decision procedure otherwise.

In the next section we illustrate the practical applicability of the proposed
(semi)-decision procedure to various instances of unknot detection problem. In
the experiments, we use an automated theorem prover Prover9 and a finite model
finder Mace4, both by W. McCune [18]. We present some examples of the results
of the approach on unknots with interesting properties.

3 Experiments: Detecting Unknots

Culprit Unknot. is shown in Figure 4. This is an interesting unknot which, dur-
ing any untangling of it by Reidemeister moves, necessarily requires an increase in
the number of crossings. The formula of the form Eiq(D)→ ∧i=1...n−1(ai = ai+1)
for the culprit unknot diagram in the syntax of Prover9/Mace4 (with ∗ denoting
involutory quandle operation �) is presented to the right of the figure. Prover9
proves the formula in 0.03 seconds demonstrating thereby that culprit is indeed
the unknot. The entire proof can be found in [17].

Detecting Unknots via Equational Reasoning, I: Exploration 83

Fig. 4. Culprit Unknot

Assumptions:

%Involutory quandle axioms

x * x = x.

(x * y) * y = x.

(x * z) * (y * z) = (x * y) * z.

%Culprit unknot

a1 = a9 * a7.

a3 = a1 * a2.

a2 = a3 * a4.

a5 = a2 * a10.

a6 = a5 * a4.

a7 = a6 * a1.

a8 = a7 * a4.

a10 = a8 * a9.

a4 = a10 * a3.

a9 = a4 * a8.

Goals:

(a1 = a2) & (a2 = a3) &

(a3 = a4) & (a4 = a5) &

(a5 = a6) & (a6 = a7) &

(a7 = a8) & (a8 = a9) &

(a9 = a10).

Haken’s Gordian unknot diagram has 141 crossings, and is the one of the
most well-known concrete, hard-to-detect, unknots; see Figure 4. Prover9 pro-
duces the proof of the formula of the form Eiq(D) → ∧i=1...n−1(ai = ai+1)
for this diagram in just under 15 seconds, demonstrating that indeed it is the
unknot. The input, and the proof produced by the prover, can be found in [17].

The only alternative approach capable of detecting unknotedness of Haken’s
Gordian Unknot in practice, that we are aware of, is Dynnikov’s algorithm based
on monotone simplifications [7,8,1].

We have experimented also with the detection of other well-known hard un-
knots, such as Goerlitz unknot, Thistlethwaite unknot, Friedman’s Twisted un-
knot. In all of these cases Prover9 was able to establish unknotedness in under
a second. See further details in [17]. This can be compared with the times “in
only a few seconds” required to detect unknotedness of these instances by the
Heegaard tool, reported by the author in [27].

4 Experiments: Detecting Non-trivial Knots

We first provide an example of the output from the counter-model finder for a
non-trivial knot. Next, we present a table containing the time taken for each of
the prime knots in the knot tables, for up to 10 crossings. We will compare the
output sizes with the known invariant of knots, called the determinant of the
knot, later.

Trefoil. (Figure 1 a) is the simplest non-trivial knot; the countermodel found
is:

84 A. Fish and A. Lisitsa

Fig. 5. Haken’s Gordian Unknot

interpretation(3, [number=1, seconds=0], [

function(a1, [0]),

function(a2, [1]),

function(a3, [2]),

function(*(_,_), [

0, 2, 1,

2, 1, 0,

1, 0, 2])

]).

The table of prime knots, the size of the minimal countermodel found, and
the time taken to find, is given in the Appendix.

Comparisons. For the collection of prime non-trivial knots of up to 12 cross-
ings from [22], the system in [3], based on linear programming in conjunction
with normal surface theory, claims to massively improve on previous approaches,
claiming to solve all cases efficiently (in under 5 minutes). Their time-based data
is subsequent to highly optimised polynomial time pre-processing simplifications
and uses an encoding based on triangulations of the complement of the knot.
Bearing in mind the differences in encodings we have compared the performance
of the Regina unknot detection algorithm with our approach using Mace4 on the
knots with 10 crossings. For the five special cases 1083, 1091, 1092, 10117, 10119 for
which our approach does not terminate in a reasonable time, Regina completed
the work in under 3 minutes per knot. For the remaining cases the average time
was 47 seconds for Regina, and 1230 seconds for our approach. In general our
approach demonstrates much higher discrepancy in timing data: it was very effi-
cient for the cases when small countermodels were found. For countermodel sizes
of up to 15-17 our detection time is under a second – this holds in more than

Detecting Unknots via Equational Reasoning, I: Exploration 85

70% of the instances, and here our approach outperforms Regina’s algorithm. In
a few cases with large countermodels (e.g 1088, 1094, 10115) our approach takes
40000-80000 seconds to complete the search. Further comparisons on the large
sets of knots is a subject of ongoing and future work.

5 Countermodels and Knot Invariants

Any countermodel found is a finite quandle, C, which is a homomorphic image
of IQ(K). Thus it a homomorphic image of Q(K) which factors through IQ(K).
Such finite quandles may be constructed via “involutising” quandles which are
homomorphic images of Q(K). The countermodel search process finds the small-
est such finite quandle C, and we see that these do not all arise via the same
known quandles. We present results which demonstrate that the majority, but
not all, of the small alternating knots (of size up to 10) arise as quotients of the
dihedral quandle. The question of how the other minimal size finite quandles
arise is still open, but this demonstrates that the methodology is particularly
interesting in that it is discovering the smallest size quandle invariant, over all
such invariants, for each case, as opposed to computing each invariant in turn,
as per the common approach using invariants.

Definition 4 (dihedral quandle). Let Rn be the set of reflections in the dihe-
dral group D2n of order 2n (which one can regard as the symmetry group of the
regular n-gon). Then Rn forms a quandle of order n, called the dihedral quandle
of order n.

Proposition 2. For any knot K, with determinant not equal to ±1, Rp is a fi-
nite non-trivial involutory quandle which is the image of the fundamental quandle
of the knot, where p is smallest prime divisor of the determinant of the knot.

Proof. For more details on racks and quandles, and this construction, see [9]. A
homomorphic image of the fundamental quandle of the knot K into Rn may be
given by colouring the arcs of any diagram of K with n colours 0, 1, . . . , n − 1
such that at each crossing if xa, xb, xc are the three colours assigned to the arcs
labelled a, b, c, with b the overarc, then xc ≡ 2xb − xa mod n. If n is prime,
then it is well known that these equations have a non-constant solution if and
only if n divides det(K) the determinant of K (obtainable as the evaluation of
the Alexander polynomial at t = −1, sometimes denoted Δ(−1)). In general, a
representation into any finite quandle can be interpreted as a suitable colour-
ing scheme for the diagram. Since the elements of the dihedral quandle are all
reflections, the quandle is involutory by definition.

The experimental computation, together with comparison of the determinant
of the knot gives us the following, where as usual, the numbering convention is
that generally adopted for prime knots in the knot tables; see [22] for example.

Proposition 3. Out of the 251 prime, alternating knots of up to 10 crossings,
from the knot tables, a smallest non-trivial involutory quandle which is a homo-
morphic image of the fundamental quandle of the knot is: of size 15 for 22 knots:

86 A. Fish and A. Lisitsa

922, 925, 930, 936, 944, 945, 1046, 1047, 1049, 1070, 1072, 1073, 1079, 1080, 1093, 10102,
10124, 10126, 10127, 10148, 10149, 10153; of size 28 for 11 knots: 1050, 1051, 1052, 1053,
1054, 1055, 1057, 10131, 10135, 10150, 10151; of size 31 for 1 knot: 10115; of size 32
for 1 knot: 10118; of size 36 for 1 knot: 10110; of size equal to the smallest prime
divisor of the determinant of the knot for the remaining 213 knots.

Corollary 1. For 213 of the 251 prime, alternating knots of up to 10 cross-
ings, there is no smaller non-trivial involutory quandle which is a homomorphic
image of the fundamental quandle of the knot than the dihedral rack on p ele-
ments, where p is smallest prime divisor of the determinant of the knot. For the
remaining 38 knots, there is a smaller such non-trivial involutory quandle.

5.1 Discussion: Countermodels and Small Quandles

Winker [19] remarks that for a certain class of knots (technically, those which
are the closure of 4-strand braids), the involutory quandle IQ(K) is finite and
has order equal to the knot determinant |K| (or det(K)), citing [14], and that
since every prime knot of 7 or fewer crossings is 4-strand it has finite involu-
tory quandle. On the other hand, IQ(816) and IQ(935) are infinite, as are the
(k,m, n)-pretzel knots (knots obtainable by a construction involving a certain
process of k twists, m twists and n twists) when 1/k + 1/m + 1/n ≤ 1; knots
85 = K2,3,3 and 935 = K3,3,3 are examples of such pretzel knots. There does
not appear to be an existing complete classification of involutory quandles. We
observe that for any knot K which has a finite involutory quandle IQ(K), this
involutory quandle itself would be a countermodel, as would the projection onto
the quandle arising from each of the colouring numbers. Whilst we we may find
the homomophic image of the quandle with size the smallest prime divisor of
det(K), corresponding to the smallest colouring number, this does not, a priori,
rule out smaller homomorphic images of involutory quandles that arise in other
ways. Furthermore, there are some prime knots K with det(K) = ±1. The knots
10124 and 10153 are the only such prime alternating knots with up to 10 cross-
ings. For both of these knots we find a smallest homomorphic image of involu-
tory quandle of size 15. In [9], they observe that the representation in a reflection
rack, whose elements are the edges of a dodecahedron, can be used to distinguish
knots which have determinant ±1 and so have no non trivial representation to
Rn, giving 10124 an an example. Similarly, in [14], they present the knot 10124
with determinant 1, indicating that AbQ2(K) is trivial (this is the abelian, invo-
lutory quandle on K, where abelian means that (w�x)�(y�z) = (w�y)�(x�z)).
But the involutory quandle IQ(K) = Q2(K) is non-trivial and has order 30, and
may be faithfully represented on a sphere as the 30 midpoints of the edges of a
dodecahedron projected onto the sphere.

In [23], they use the Library for Automated Deduction Research in the endeav-
our of identifying isomorphism classes of small quandles, and they present several
families of quandles; as well as considering the dihedral quandle, they also refer
to linear quandles, the Alexander quandles, and transposition quandles. These
are candidate classes to consider in the identification of the countermodels. For

Detecting Unknots via Equational Reasoning, I: Exploration 87

instance, the transposition quandle, Tn, has size n(n − 1)/2, and so these are
candidates to explain our countermodels arising at sizes 15, 28 and 36. The
identification and understanding of exactly which quandle families have small-
est homomorphic image is an intriguing open problem to be explored in future
work, with guidance from the countermodel finder approach adopted. Further-
more, Proposition 11.2 of [14] says that every involutory quandle is representable
as an involutory quandle with geodesics, and so the construction of the smallest
such involutory quandle with geodesics for a knot K will, in fact, correspond to
our search for minimal countermodel.

Winker [19] states that the involutory quandle of a knot or link is either finite
or “not too infinite”, and gives examples to show that knots can have different
knot groups but the same involutory quandle (e.g. the Figure of Eight knot and
the (5, 2) torus knot), and that the involutory quandle of a particular prime link
(the Borromean rings) is infinite.

6 Equational Reasoning and Untangling Unknots

Recall Proposition 1: a knot diagram D is a diagram of the unknot if and only
if Eiq(D) � ∧i=1...n−1(ai = ai+1), where � denotes derivability in the equational
logic (or, equivalently in the first-order logic with equality). We adopt the ab-
breviation TRIV ≡ ∧i=1...n−1(ai = ai+1) for the generators a1, . . . , an. Then
the condition above will be rewritten as Eiq �?TRIV . The axioms of involutory
quandles can be seen as algebraic counterparts of the Reidemeister moves:

1. x � x = x for all x ∈ Q (∼ RM1)
2. (x � y) � y = x for all x, y ∈ Q (∼ RM2)
3. (x � z) � (y � z) = (x � y) � z for all x, y, z ∈ Q (∼ RM3)

For I ⊆ {1, 2, 3}, denote by EI
iq an equational theory formed by the corre-

sponding subset of the axioms 1 − 3 given above. In particular E
{1,2,3}
iq = Eiq .

Reidemeister’s theorem [20] says that a diagram D is a diagram of an unknot if
and only if D can be transformed to a trivial diagram DU by a finite sequence of
Reidemeister moves. Denote by D →I D′ the fact that D can be transformed to
D′ using the Reidemeister moves drawn only from I. In this section we explore
possible connections between equational proofs and Reidemeister transforma-
tions. The following proposition expresses the fact that the equational proof can
simulate simplifications by Reidemeister moves.

Proposition 4. For any non-empty I ⊆ {1, 2, 3}, if D →I DU then EI
iq �

TRIV . Furthermore an equational proof can be constructively built by a simple
procedure from the untangling sequence of Reidemeister moves.

Proof. (Sketch) Consider the case of I = {1, 2, 3}. Assume that for a dia-
gram D we have D →I DU . That is, there is a sequence of diagrams D =
D1, . . . , Di, . . . , Dn = DU such that every diagram in the sequence is obtained
from the previous one by a single application of a Reidemeister move. Let

88 A. Fish and A. Lisitsa

IQ(D) = 〈GD | RD〉 be a presentation of the involutary quandle of D with
the set of generators GD and set of relators RD. Denote by T (D) the set of all
terms built upon the set of constants, identified with the generatorsGD, together
with the involutory quandle operation � as the only term construct. Denote by
A(Di) the set of solid arcs of the diagram Di. A labelling L of a diagram Di is
a mapping L : A(Di)→ T (D). Now we demonstrate the inductive construction
of a sequence of pairs (E(Di), Li), associating with each Di a set of equations
E(Di) and a labelling Li : A(Di)→ T (D) satisfying the following properties:

1. E(Di) ⊆ E(Di+1);
2. E(Di) � E(Di+1);
3. Li is consistent w.r.t. involutory quandle labelling rules on solid arcs of

A(Di), meaning E(Di) � Li(a) � Li(b) = Li(c) for all a, b, c ∈ A(Di) posi-
tioned as shown in Figure 2 (a);

4. If t ∈ T (D) is in Li(A(Di)) but not in Li+1(A(Di+1)), and |A(Di) |> 1 then
there exist an s in Li+1(A(Di+1)) and t = s in E(Di+1).

The intuition is that the equation set grows, adding statements of equality
which are derived from the axioms, according to the progress in the unknotting
sequence. The condition on the size of the arc set in Property 4 is required since
one can still apply RM moves to untangle a diagram which has only one arc,
but there is no more equational rewriting to perform.

Assume that the above four properties are satisfied. Then, in any untangling
sequence of diagrams the last diagram DU is a trivial diagram of the unknot.
Then DU has just one arc with a label τ , say. Let Dk be the last diagram in the
sequence which has this property of having just one arc with label τ . Then, by
Property 4, the label ρ of the last removed arc (in the diagram Dk−1 preceding
Dk in the sequence) is provably equal to τ , that is, E(Dk−1) � (τ = ρ), and
(τ = ρ) ∈ E(Dk−1). Unwinding the process backwards (and formally applying
induction) we obtain that the labels of all of the removed arcs are provably
equal to each other, including all of the generators. Thus, the required n − 1
pairwise equalities of the n generators are derivable from E(DU), and the result
follows. The details of the construction of the sequence (E(Di), Li) can be found
in the Appendix of the extended version of this paper in [17]. For any I which is
a proper subset of {1, 2, 3} the proof follows the same route using the property
that the construction of (E(Di+1), Li+1) depends only on (E(Di), Li) and a type
of RM used to transform Di into Di+1.

The approach can be used to investigate which of the Reidemeister moves are
required in a proof of unknottedness.

Proposition 5. Culprit unknot (see above) needs all three Reidemeister moves
to untangle.

Proof. For I = {2, 3}, {1, 3}, {1, 2} one can disprove EI
iq � TRIV by finding

countermodels by Mace4 automatically of sizes 2,3,4, respectively.
An interesting question: is it possible to make a simulation in the opposite

direction, that is, to extract an untangling sequences of Reidemeister moves

Detecting Unknots via Equational Reasoning, I: Exploration 89

from equational proofs? Although we don’t have a definite answer here, in some
simple cases one can indeed extract the moves from the proofs. We leave the
development of systematic Reidemester move extraction procedures for future
work.

7 Conclusion

We presented the basis for a new method for unknot detection, based on parallel
application of theorem prover and (counter)-model finder. It appears interest-
ing, in that it has different abilities to existing approaches. In particular, the
countermodel finder is producing the smallest non-trivial homomorphic image
of the involutory quandle of the knot; thus it is, in some sense, finding the small-
est invariant which distinguishes it from the unknot. Furthermore, the approach
lends itself to new avenues of research, such as the exploration of the correla-
tions between the equational proofs provided by the theorem provers and the
corresponding sequences of labelled diagrams in an unknotting sequence. Thus,
whilst we have provided some interesting examples of unknot detection, explor-
ing the whole spectrum of unknots and the relative difficulty of their detection,
in comparison with other methodologies, will be an interesting avenue to explore.
Furthermore, developing any correspondences between quandle-labelled diagram
transformations and the unknotting proofs produced may provide interesting in-
sights, potentially leading to more advanced tailored reasoning strategies.

Another direction is to explore automated deduction approach using different
knot invariants such as knot groups and (non-involutory) quandles. In terms of
groups, unknotedness corresponds to commutativity deciding which can also be
reduced to the equational theorem (dis)proving. We have early indications that
using involutory quandles, as explored in this paper, might be more efficient than
using knot groups; for example, for a torus knot T3,5 disproving using involutory
quandles took less than a second and produced a countermodel of size 15, whilst
disproving commutativity of the group of T3,5 did not finish in 500 seconds and
no countermodels of size less than 120 were found.

References

1. Andreeva, M., Dynnikov, I., Koval, S., Polthier, K., Taimanov, I.: Book Knot Sim-
plifier, http://www.javaview.de/services/knots/doc/description.html (ac-
cessed March 14, 2014)

2. The CADE ATP System Competition, The World Championship for Automated
Theorem Proving, http://www.cs.miami.edu/~tptp/CASC/ (accessed June 07,
2013)

3. Burton, B.A., Olzen, M.: A fast branching algorithm for unknot recognizion with
experimental polynomial-time behaviour. arXiv:1211.1079 [math.GT]

4. Birkhoff, G.: On the structure of abstract algebras. Proc. Cambridge Philos.
Soc. 31, 433–454 (1935)

5. Caferra, R., Leitsch, A., Peltier, N.: Automated Model Building. Applied Logic
Series, vol. 31. Kluwer (2004)

http://www.javaview.de/services/knots/doc/description.html
http://www.cs.miami.edu/~tptp/CASC/

90 A. Fish and A. Lisitsa

6. Scott Carter, J.: A survey of quandle ideas. arXiv:1002.4429 [math.GT]
7. Dynnikov, I.A.: Recognition algorithms in knot theory. Uspekhi Mat.
Nauk 58(6(354)), 45–92 (2003)

8. Dynnikov, A.: Three-page link presentation and an untangling algorithm. In: Proc.
of the International Conference Low-Dimensional Topology and Combinatorial
Group Theory, Chelyabinsk, Kiev, July 31-August 7, pp. 112–130 (1999, 2000)

9. Fenn, R., Rourke, C.: Racks and Links in Codimension two. J. Knot Theory Ram-
ifications 01, 343 (1992)

10. Goubault-Larrecq, J., Mackie, I.: Proof Theory and Automated Deduction. Applied
Logic Series, vol. 6. Kluwer (2001)

11. Haken, W.: Theorie der Normal achen. Acta Math. 105, 245–375 (1961)
12. Hass, J., Lagarias, J.C., Pippenger, N.: The computational complexity of knot and

link problems. J. Assoc. Comput. Mach. 46(2), 185–211 (1999)
13. Hempel, J.: Residual finiteness for 3-manifolds. In: Combinatorial Group Theory

and Topology (Alta, Utah, 1984). Ann. of Math. Stud., vol. 111, pp. 379–396.
Princeton Univ. Press, Princeton (1987)

14. Joyce, D.: A Classifying Invariant of Knots, the Knot Quandle. Journal of Pure
and Applied Algebra 23, 37–65 (1982)

15. Joyce, D.: Simple Quandles. Journal of Algebra 79, 307–318 (1982)
16. Kuperberg, G.: Knottedness is in NP, modulo GRH, Preprint, arXiv:1112.0845

(November 2011)
17. Unknot detection by equational reasoning,

http://www.csc.liv.ac.uk/~alexei/unknots/ (accessed April 14, 2014)
18. McCune, W.: Prover9 and Mace4, http://www.cs.unm.edu/~mccune/mace4/
19. Winker, S.N.: Quandles, Knot Invariants and the N-fold Branching Cover. PhD

Thesis, University of Illinois at Chicago (1984)
20. Reidemeister, K.: Elementare Begründung der Knotentheorie. Abh. Math. Sem.

Univ. Hamburg 5, 24–32 (1926)
21. Thurston, W.P.: Three-dimensional manifolds, Kleinian groups and hyperbolic ge-

ometry. Bull. Amer. Math. Soc. (N.S.) 6(3), 357–381 (1982)
22. Cha, J.C., Livingston, C.: KnotInfo: Table of knot invariants,

http://www.indiana.edu/~knotinfo (accessed January 2014)
23. Wu, Z.S.: Computable Invariants for Quandles. Thesis, Bard College, New York

(2012)
24. Wallace, S.D.: Homomorphic images of link quandles. MA thesis, Houston, Texas

(2004)
25. Manoim, B.: Toward an Online Knowledgebase for Knots and Quandles. Technical

report, http://asclab.org/asc/sites/default/files/docs/
Online%20database%20knots%20%26%20quandles.pdf

26. Rolfsen, D.: Knots and Links. AMS Chelsea Publishing (2004)
27. http://mathoverflow.net/questions/144158/what-is-the-state-of-the-art-

for-algorithmic-knot-simplification

http://www.csc.liv.ac.uk/~alexei/unknots/
http://www.cs.unm.edu/~mccune/mace4/
http://www.indiana.edu/~knotinfo
http://asclab.org/asc/sites/default/files/docs/Online%20database%20knots%20%26%20quandles.pdf
http://asclab.org/asc/sites/default/files/docs/Online%20database%20knots%20%26%20quandles.pdf
http://mathoverflow.net/questions/144158/what-is-the-state-of-the-art-for-algorithmic-knot-simplification
http://mathoverflow.net/questions/144158/what-is-the-state-of-the-art-for-algorithmic-knot-simplification

Detecting Unknots via Equational Reasoning, I: Exploration 91

Appendix

The table below shows the experimental data obtained so far for the knots in the
standard knot tables of at most 10 crossings. For each case, we present the size
of the minimal countermodel to unknottedness which is found, together with the
time taken to find this countermodel. In the majority of these cases the size of
the countermodel is the smallest prime divisor of the determinant of the knot.
In a few cases, the process was manually terminated after a certain time had
elapsed, as indicated.

Table 1. Experimental data for the time taken to find the minimal countermodels for
the knots in the standard knot tables of at most 10 crossings.

Knot 31 41 51 52 61 62 63 71 72 73 74 75 76 77 81 82
Size 3 5 5 7 3 11 13 7 11 13 3 17 19 3 13 17
T ime 0.0 0.01 0.01 0.0 0.0 0.01 0.01 0.01 0.03 0.03 0. 0 0.08 0.16 0.01 0.06 0.11

Knot 83 84 85 86 87 88 89 810 811 812 813 814 815 816 817 818
Size 17 19 3 23 23 5 5 3 3 29 29 31 3 5 37 3
T ime 0.12 0.17 0.01 0.41 0.47 0.01 0.01 0.01 0.01 1.31 2.11 2.06 0.01 0.01 37.66 0.03

Knot 819 820 821 91 92 93 94 95 96 97 98 99 910 911 912 913
Size 3 3 3 3 3 19 3 23 3 29 31 31 3 3 5 37
T ime 0.00 0.01 0.01 0.00 0.00 0.12 0.00 0.45 0.00 1.53 3.77 1.50 0.00 0.01 0.01 3.77

Knot 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
Size 37 3 3 3 41 41 41 43 15 3 3 15 47 7 3 3
T ime 4.28 0.00 0.01 0.00 5.97 12.0 122.73 20.83 0.11 0.00 0.00 0.11 13.20 0.00 0.03 0.00

Knot 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
Size 15 5 59 61 3 3 15 3 3 5 3 7 7 13 15 15
T ime 0.09 0.00 1498.44 670 0.00 0.00 0.11 0.03 0.05 0.01 0.01 0.01 0.01 0.06 0.08 0.08

Knot 946 947 948 949 101 102 103 104 105 106 107 108 109 1010 1011 1012
Size 3 3 3 5 17 23 5 3 3 37 43 29 3 3 43 47
T ime 0.03 0.01 0.03 0.05 0.09 0.72 0.03 0.01 0.03 8.38 16.94 22.52 0.01 0.01 554 21.50

Knot 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
Size 53 3 43 47 41 5 3 5 3 7 59 5 5 61 71 53
T ime 90.53 0.03 16.22 11.84 18.14 0.01 0.03 0.00 0.00 0.01 144.42 0.01 0.00 1000 153 73.41

Knot 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
Size 3 67 3 3 5 37 7 3 53 59 61 3 71 3 73 79
T ime 0.01 298.11 0.03 0.00 0.03 11.38 0.03 0.03 36.98 157.08 76.25 0.00 554.25 0.01 728.36 968

Knots 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
Size 89 15 15 7 15 28 28 28 28 28 28 5 28 5 3 5
T ime 2629.41 0.11 0.11 0.01 0.14 4.12 6.33 4.76 5.94 3.28 8.53 0.03 5.51 0.01 0.03 0.01

Knot 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
Size 3 3 3 3 3 3 3 3 3 15 7 15 15 3 3 3
T ime 0.01 0.01 0.03 0.01 0.03 0.01 0.01 0.01 0.01 0.09 0.00 0.12 0.09 0.03 0.01 0.00

Knots 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092

Size 3 3 15 15 5 3 ≥ 42 3 3 5 3 101 3 7 ≥ 34 ≥ 62
T ime 0.03 0.01 0.12 0.14 0.00 0.01 ≥ 21170 0.00 0.00 0.00 0.03 63849 0.00 0.03 ≥ 20828 ≥ 62848

Knot 1093 1094 1095 1096 1097 1098 1099 10100 10101 10102 10103 10104 10105 10106 10107 10108
Size 15 71 7 3 3 3 3 5 5 15 3 7 7 3 3 3
T ime 0.62 40879.72 0.01 0.00 0.01 0.01 0.01 0.01 0.01 1.01 0.00 0.01 0.03 0.03 0.00 0.00

Knot 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126
Size 7 3 3 3 31 5 ≥ 37 32 ≥ 41 3 5 3 11 15 11 15
T ime 0.00 0.00 0.00 0.03 85098 0.01 ≥ 150410 28 ≥ 261100 0.00 0.00 0.03 0.12 0.08 0.03 0.11

Knot 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142
Size 15 11 5 17 28 5 19 23 28 3 5 5 3 3 3 3
T ime 0.11 0.03 0.01 0.28 6.5 0.03 0.62 1.50 3.80 0.03 0.00 0.03 0.01 0.03 0.03 0.01

Knots 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158
Size 3 3 3 3 3 15 15 28 28 11 15 13 5 5 7 3
T ime 0.00 0.01 0.01 0.01 0.00 0.12 0.11 6.72 6.36 0.06 0.12 0.08 0.00 0.01 0.03 0.01

Knot 10159 10160 10161 10162 10163 10164 10165
Size 3 3 5 5 3 3 3
T ime 0.01 0.03 0.01 0.03 0.03 0.01 0.01

Applying Machine Learning to the Problem
of Choosing a Heuristic to Select the Variable

Ordering for Cylindrical Algebraic Decomposition

Zongyan Huang1, Matthew England2, David Wilson2, James H. Davenport2,
Lawrence C. Paulson1, and James Bridge1

1 University of Cambridge Computer Laboratory, Cambridge CB3 0FD, U.K.
2 University of Bath, Department of Computer Science, Bath, BA2 7AY, U.K.

{zh242,lp15,jpb65}@cam.ac.uk,
{J.H.Davenport,M.England,D.J.Wilson}@bath.ac.uk

Abstract. Cylindrical algebraic decomposition(CAD) is a key tool in
computational algebraic geometry, particularly for quantifier elimination
over real-closed fields. When using CAD, there is often a choice for the
ordering placed on the variables. This can be important, with some prob-
lems infeasible with one variable ordering but easy with another. Machine
learning is the process of fitting a computer model to a complex func-
tion based on properties learned from measured data. In this paper we
use machine learning (specifically a support vector machine) to select
between heuristics for choosing a variable ordering, outperforming each
of the separate heuristics.

Keywords: machine learning, support vector machine, symbolic com-
putation, cylindrical algebraic decomposition, problem formulation.

1 Introduction

Cylindrical algebraic decomposition (CAD) is a key tool in real algebraic geom-
etry. It was first introduced by Collins [18] to implement quantifier elimination
over the reals, but has since been applied to applications including robot motion
planning [49], programming with complex valued functions [22], optimisation [28]
and epidemic modelling [15]. Decision methods for real closed fields are of great
use in theorem proving [25]. MetiTarski [1], for example, decides the truth of
statements about special functions using CAD and rational function bounds.

When using CAD, we often have a choice over which variable ordering to use.
It is well known that this choice is very important and can dramatically affect
the feasibility of a problem. In fact, Brown and Davenport [14] presented a class
of problems in which one variable ordering gave output of double exponential
complexity in the number of variables and another output of a constant size.
Heuristics have been developed to help with this choice, with Dolzmann et al. [23]
giving the best known study. However, in CICM last year [8], it was shown that
even the best known heuristic could be misled. Although that paper provided

S.M. Watt et al. (Eds.): CICM 2014, LNAI 8543, pp. 92–107, 2014.
c© Springer International Publishing Switzerland 2014

Applying Machine Learning to the Problem of Choosing a Heuristic 93

an alternative heuristic, this had its own shortcomings, and it now seems likely
that no one heuristic is suitable for all problems.

Our thesis is that the best heuristic to use is dependent upon the problem
considered. However, the relationship between the problems and heuristics is far
from obvious and so we investigate whether machine learning can help with these
choices. Machine learning is a branch of artificial intelligence. It uses statistical
methods to infer information from supplied data which is then used to make
predictions for previously unseen data [2]. We have applied machine learning
(specifically a support vector machine) to the problem of selecting a variable
ordering for both CAD itself and quantifier elimination by CAD, using the nlsat
dataset [50] of fully existentially quantified problems. Our results show that the
choices made by machine learning are on average superior to both any individual
heuristic and to picking a heuristic at random. The results also provide some
new insight on the heuristics themselves. This appears to be the first application
of machine learning to problem formulation for computer algebra, although it
follows recent application to theorem proving [10, 31].

We conclude the introduction with background theory on CAD and machine
learning. Then in Sections 2, 3 and 4 we describe our experiment, its results
and how they may be extended in the future. Finally in Section 5 we give our
conclusions and ideas for future work.

1.1 Quantifier Elimination and CAD

Let Qi ∈ {∃, ∀} be quantifiers and φ be some quantifier free formula. Then given

Φ(x1, . . . , xk) := Qk+1xk+1 . . . Qnxn φ(x1, . . . , xn),

quantifier elimination (QE) is the problem of producing a quantifier free formulae
ψ(x1, . . . , xk) equivalent to Φ. In the case k = 0 this reduces to the decision prob-
lem, is Φ true? Tarski proved that QE was possible for semi-algebraic formulae
(polynomials and inequalities) over R [47]. However, the complexity of Tarski’s
method is non-elementary (indescribable as a finite tower of exponentials) and so
CAD was a major breakthrough when introduced, despite complexity doubly ex-
ponential in the number of variables. For some problems QE is possible through
algorithms with better complexity (see for example the survey by Basu [5]), but
CAD implementations remain the best general purpose approach.

Collins’ algorithm [3] works in two stages. First, projection calculates sets of
projection polynomials Si in variables (x1, . . . , xi). This is achieved by repeatedly
applying a projection operator onto a set of polynomials, producing a set with
one variable fewer. We start with the polynomials from φ and eliminate variables
this way until we have the set of univariate polynomials S1.

Then in the lifting stage, decompositions of real space in increasing dimensions
are formed according to the real roots of those polynomials. First, the real line is
decomposed according to the roots of the polynomials in S1. Then over each cell
c in that decomposition, the bivariate polynomials S2 are taken at a sample point
and a decomposition of c × R is produced according to their roots. Taking the

94 Z. Huang et al.

union gives the decomposition of R2 and we proceed this way to a decomposition
of Rn. The decompositions are cylindrical (projections of any two cells onto
their first i coordinates are either identical or disjoint) and each cell is a semi-
algebraic set (described by polynomial relations). Collins’ original algorithm used
a projection operator which guaranteed CADs of Rn on which the polynomials
in φ had constant sign, and thus φ constant truth value, on each cell. Hence
only a single sample point from each cell needed to be tested and the equivalent
quantifier free formula ψ could be generated from the semi-algebraic sets defining
the cells in the CAD of Rk for which Φ is true.

Since the publication of the original algorithm, there have been numerous
improvements, optimisations and extensions of CAD (with a summary of the first
20 years given by Collins [19]). Of great importance is the improvement to the
projection operator used. Hong [29] proved that a refinement of Collins’ operator
was sufficient and then McCallum [37] presented a further refinement which
could only be used for input that was well-oriented and was in turn improved
by Brown [11]. Further refinements are possible by removing the need for sign-
invariance of polynomials while maintaining truth-invariance of a formula, with
McCallum [38] presenting an operator for use when an equational constraint
is present (an equation logically implied by a formula) and Bradford et al. [7]
extending this to the case of multiple formulae. Collins and Hong [20] described
Partial CAD for QE, where lifting over a cell is aborted if there already exists
sufficient information to determine the truth of φ on that cell. Other recent CAD
developments of particular note include the use of symbolic-numeric techniques
in the lifting stage [33, 45] and the alternative to projection and lifting offered
by decompositions of complex space via regular chains technology [17].

When using CAD we have to assign an ordering to the variables (the labels i
on the xi in the discussion above). This dictates the order in which the variables
are eliminated during projection and thus the sub-spaces for which CADs are
produced en route to a CAD of Rn. For some applications this order is fixed
but for others there may be a free or constrained choice. When using CAD for
QE we must project quantified variables before unquantified ones. Further, the
quantified variables should be projected in the order they occur, unless successive
ones have the same quantifier in which case they may be swapped. The ordering
can have a big effect on the output and performance of CAD [8,14, 23].

1.2 Machine Learning

Machine learning [2] deals with the design of programs that can learn rules from
data. This is often a very attractive alternative to manually constructing them
when the underlying functional relationship is very complex. Machine learning
techniques have been widely used in many fields, such as web searching [6], text
categorization [42], robotics [44], expert systems [27] and many others.

Various machine learning techniques have been developed. McCulloch and
Pitts [39] created the first computational model for neural networks called thresh-
old logic. Following that, Rosenblatt [40] proposed the perceptron as an iterative
algorithm for supervised classification of an input into one of several possible

Applying Machine Learning to the Problem of Choosing a Heuristic 95

non-binary outputs. A later development was the decision tree [2], which is a
simple representation for classifying examples. The main idea here is to apply
serial classifications which refine the output state. At the same time as the deci-
sion tree was being developed, the multi-layer perceptron [30] was explored. It is
a modification of the standard linear perceptron and can distinguish data that
are non-linearly separable.

In the last decade, the use of machine learning has spread rapidly following the
invention of the Support Vector Machine (SVM) [41]. This was a development
of the perceptron approach and gives a powerful and robust method for both
classification and regression. Classification refers to the assignment of input ex-
amples into a given set of classes (the output being the class labels). Regression
refers to a supervised pattern analysis in which the output is real-valued. The
SVM technology can deal efficiently with high-dimensional data, and is flexible
in modelling diverse sources of data. The standard SVM classifier takes a set of
input data and predicts one of two possible classes from the input. Given a set
of examples, each marked as belonging to one of two classes, an SVM training
algorithm builds a model that assigns new examples into one of the classes. The
examples used to fit the model are called training examples.

An important concept in the SVM theory is the use of a kernel function [43],
which maps data into a high dimensional kernel-defined feature space and then
separates samples in the transformed space. Kernel functions enable operations
in feature space without ever computing the coordinates of the data in that
space. Instead they simply compute the inner products between all pairs of data
vectors. This operation is generally computationally cheaper than the explicit
computation of the coordinates.

The machine learning experiment described in this paper uses SVM-Light

(see Joachims [34]) which is an implementation of SVMs in C. The SVM-Light

software consists of two programs: SVM learn and SVM classify. SVM

learn fits the model parameters based on the training data and user inputs
(such as the kernel function and the parameter values). SVM classify uses the
generated model to classify new samples. It calculates a hyperplane of the n-
dimensional transformed feature space, which is an affine subspace of dimension
n−1 dividing the space into two corresponding to the two distinct classes. SVM

classify outputs margin values which are a measure of how far the sample
is from this separating hyperplane. Hence the margins are a measure of the
confidence in a correct prediction. A large margin represents high confidence in
a correct prediction. The accuracy of the generated model is largely dependent
on the selection of the kernel functions and parameter values.

2 Methodology

2.1 CAD Implementation and Heuristics

For the machine learning experiment we decided to focus on a single CAD im-
plementation, Qepcad [12]. We note that other CAD implementations are avail-
able, as discussed further in Section 4.

96 Z. Huang et al.

Qepcad is an interactive command line program written in C for performing
Quantifier Elimination with Partial CAD. It was chosen as it is a competitive
implementation of both CAD and QE that also allows the user some control
and information during its execution. We used Qepcad with its default settings
which implement McCallum’s projection operator [37] and partial CAD [20]. It
can also makes use of an equational constraint automatically (via the projection
operator [38]) when one is explicit in the formula, (where explicit means the
formula is a conjunction of the equational constraint with a sub-formula).

In the experiment we used three existing heuristics for picking a CAD variable
ordering:

Brown: This heuristic chooses a variable ordering according to the following
criteria, starting with the first and breaking ties with successive ones:
(1) Eliminate a variable first if it has lower overall degree in the input.
(2) Eliminate a variable first if it has lower (maximum) total degree of those

terms in the input in which it occurs.
(3) Eliminate a variable first if there is a smaller number of terms in the

input which contain the variable.
It is labelled after Brown who suggested it [13].

sotd: This heuristic constructs the full set of projection polynomials for each
permitted ordering and selects the ordering whose corresponding set has
the lowest sum of total degrees for each of the monomials in each of the
polynomials. It is labelled sotd for sum of total degree and was suggested
by Dolzmann, Seidell and Sturm [23], whose study found it to be a good
heuristic for both CAD and QE by CAD.

ndrr: This heuristic constructs the full set of projection polynomials for each
ordering and selects the ordering whose set has the lowest number of distinct
real roots of the univariate polynomials within. It is labelled ndrr for number
of distinct real roots and was suggested by Bradford et al. [8]. Ndrr was shown
to assist with examples where sotd failed.

Brown’s heuristic has the advantage of being very cheap, since it acts only on the
input and checks only simple properties. The ndrr heuristic is the most expensive
(requiring real root isolation), but is the only one to explicitly consider the real
geometry of the problem (rather than the geometry in complex space).

All three heuristics may identify more than one variable ordering as a suitable
choice. In this case we took the heuristic’s choice to be the first of these after
they had been ordered lexicographically.1

1 This final choice may depend on the convention used for displaying the variable
ordering. Qepcad and the notes where Brown introduces his heuristic [13] use the
convention of ordering variables from left to right so that the last one is projected
first. On the other hand, Maple and the papers introducing sotd and ndrr [8, 23]
use the opposite convention. The heuristics were implemented in Maple and so
ties were broken by picking the first lexicographically on the second convention.
This corresponds to picking the first under a reverse lexicographical order under the
Qepcad convention. The important point is that all three heuristics had ties broken
under the same convention and so were treated fairly.

Applying Machine Learning to the Problem of Choosing a Heuristic 97

2.2 Problem Data

Problems were taken from the nlsat dataset [50], chosen over more traditional
CAD problem sets (such as Wilson et al. [48]) as these did not have sufficient
numbers of problems for machine learning. 7001 three-variable CAD problems
were extracted for our experiment. The number of variables was restricted for
two reasons. First to make it feasible to test all possible variable orderings and
second to avoid the possibility that Qepcad will produce errors or warnings
related to well-orientedness with the McCallum projection [37].

Two experiments were undertaken, applying machine learning to CAD itself
and to QE by CAD. QE is clearly very important throughout engineering and
the sciences, but increasingly CAD has been applied outside of this context,
as discussed in the introduction. We performed separate experiments since for
quantified problems Qepcad can use the partial CAD techniques to stop the
lifting process early if the outcome is already determined, while the full process
is completed for unquantified ones and the two outputs can be quite different.

The problems from the nlsat dataset are all fully existential (satisfiability or
SAT problems). A second set of problems for the quantifier free experiment was
obtained by simply removing all quantifiers. An example of the Qepcad input
for a SAT problem is given in Figure 1 with the corresponding input for the
unquantified problem in Figure 2. Of course, for such quantified problems there
are better alternatives to building a CAD (see for example the work of Jovanovic
and de Moura [36]). However, our decision to use only SAT problems was based
on availability of data rather than it being a requirement of the technology, and
so we focus on CAD only here and discuss how we might generalise our data in
Section 4. For both experiments, the problems were randomly split into training
sets (3545 problems in each), validation sets (1735 problems in each) and test
sets (1721 problems in each) 2.

2.3 Evaluating the Heuristics

Since each problem has three-variables and all the quantifiers are the same, all
six possible variable orderings are admissible. For each ordering we had Qepcad

build a CAD and measured the number of cells. The best ordering was defined as
the one resulting in the smallest cell count, (and if more than one ordering gives
the minimal both orderings are considered the best). The decision to focus on
cell counts (rather than say computation time) was made so that our experiment
could validate the use of machine learning to CAD theory, rather than just the
Qepcad implementation. Further, it is usually the case that cell counts and
timings are strongly correlated.

The heuristics (Brown, sotd and ndrr) have been implemented in Maple (as
part of the freely available ProjectionCAD package [26]) and for each problem
the orderings suggested by the heuristics were recorded and compared to the cell

2 The data is available at http://www.cl.cam.ac.uk/∼zh242/data.

98 Z. Huang et al.

(x0,x1,x2)
0
(Ex0)(Ex1)(Ex2)[[((x0 x0) + ((x1 x1) + (x2 x2))) = 1]].
go
go
go
d-stat
go
finish

Fig. 1. Sample Qepcad input for a quantified problem

(x0,x1,x2)
3
[[((x0 x0) + ((x1 x1) + (x2 x2))) = 1]].
go
go
d-proj-factors
d-proj-polynomials
go
d-fpc-stat
go

Fig. 2. Sample Qepcad input for a quantifier free problem

counts produced by Qepcad
3. Note that all three heuristics do not discriminate

on the structure of any quantifiers. As discussed above, some heuristics are more
expensive than others. However, since none of the costs were prohibitive for our
data set they are not considered here.

Machine learning was applied to predict which of the three heuristics will
give an optimal variable ordering for a given problem, where optimal means the
lowest cell count of the selected CADs. Note that in the quantified case Qepcad

can collapse stacks when sufficient truth values for the constituent cells have
been discovered to determine a truth value for the base cell. Hence, since our
problems are all fully existential, the output for all quantified problems is always
a single cell: true or false. Therefore, in these cases it was not the number of cells
in the output that was used but instead the number of cells constructed during
the process (hence the statistics commands in Figures 1 and 2 differ).

3 When comparing care must be taken when changing between the different variable
ordering conventions (see Footnote 1).

Applying Machine Learning to the Problem of Choosing a Heuristic 99

2.4 Problem Features

To apply machine learning, we need to identify features of the CAD problems
that might be relevant to the correct choice of the heuristics. A feature is an
aspect or measure of the problem that may be expressed numerically. Table 1
shows the 11 features that we identified, where (x0, x1, x2) are the three variable
labels used in all our problems. The number of features is quite small, compared
to other machine learning experiments. They were chosen as easily computable
features of the problems which could affect the performances of the heuristics.
Other features were considered (such as the maximum coefficient and the pro-
portion of constraints that were equations) but were not found to be useful.
Further investigation into feature selection may be a topic of our future work.

Table 1. Description of the features used. The proportion of a variable occurring in
polynomials is the number of polynomials containing the variable divided by total num-
ber of polynomials. The proportion of a variable occurring in monomials is the number
of terms containing the variable divided by total number of terms in polynomials.

Feature number Description

1 Number of polynomials.
2 Maximum total degree of polynomials.
3 Maximum degree of x0 among all polynomials.
4 Maximum degree of x1 among all polynomials.
5 Maximum degree of x2 among all polynomials.
6 Proportion of x0 occurring in polynomials.
7 Proportion of x1 occurring in polynomials.
8 Proportion of x2 occurring in polynomials.
9 Proportion of x0 occurring in monomials.
10 Proportion of x1 occurring in monomials.
11 Proportion of x2 occurring in monomials.

Each feature vector in the training set was associated with a label, +1 (positive
examples) or −1 (negative examples), indicating in which of two classes it was
placed. To take Brown’s heuristic as an example, a corresponding training set was
derived with each problem labelled +1 if Brown’s heuristic suggested a variable
ordering with the lowest number of cells, or −1 otherwise.

The features could all be easily calculated from the problem input using
Maple. For example. if the input formula is defined using the set of polyno-
mials

{−6x2
0 − x3

2 − 1, x4
0x2 + 9x1, x0 + x2

0 − x2x0 − 5}
then the problem will have the feature vector[

3, 5, 4, 1, 3, 1,
1

3
, 1,

5

9
,
1

9
,
1

3

]
.

100 Z. Huang et al.

After the feature generation process, the training data (feature vectors) were
normalized so that each feature had zero mean and unit variance across the set.
The same normalization was then also applied to the validation and test sets.

2.5 Parameter Optimization

SVM-Light was used to do the classification for this experiment. As stated
in Section 1.2, SVMs use kernel functions to map the data into higher dimen-
sional spaces where the data may be more easily separated. SVM-Light has
four standard kernel functions: linear, polynomial, sigmoid tanh and radial basis
function. For each kernel function, there are associated parameters which must
be set. An earlier experiments applying machine learning to an automated the-
orem prover [9] found the radial basis function (RBF) kernel performed well in
finding a relation between the simple algebraic features and the best heuristic
choice. Hence the same kernel was selected for this experiment (other kernel
functions may be tested in future work). The RBF function is defined as:

K(x, x′) = exp
(
−γ||x− x′||2

)
where K is the kernel function, x and x′ are feature vectors. There is a single
parameter γ in the RBF kernel function. Besides the parameter γ, two other
parameters are involved in the SVM fitting process. The parameter C governs
the trade-off between margin and training error, and the cost factor j is used
to correct imbalance in the training set and we set it equal to the ratio between
negative and positive samples. Given a training set, we can easily compute the
value of parameter j by looking at the sign of the samples. However, it is not
that trivial to find the optimal values of γ and C.

In machine learning, Matthew’s correlation coefficient (MCC) [4] is often used
to evaluate the performance of the binary classifications. It takes into account
true and false positives and negatives:

MCC =
TP ∗ TN− FP ∗ FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

In this equation, TP is the number of true positives, TN is the number of true
negatives, FP is the number of false positives and FN is the number of false
negatives. The denominator is set to 1 if any sum term is zero. This measure has
the value 1 if perfect prediction is attained, 0 if the classifier is performing as a
random classifier, and −1 if the classifier exactly disagrees with the data.

A grid-search optimisation procedure was used with the training and valida-
tion set, involving a search over a range of (γ, C) values to find the pair which
would maximize MCC. We tested a commonly used range of value of γ (varied
between 2−15, 2−14, 2−13, . . . , 23) and C (varied between 2−5, 2−4, 2−3, . . . , 215)
in our grid search process [32]. Following the completion of the grid-search, the
values for kernel function and model parameters giving optimal MCC results
were selected for each individual CAD heuristic classifier. We also performed a

Applying Machine Learning to the Problem of Choosing a Heuristic 101

similar calculation, selecting parameters to maximise the F1-score [35], but the
results using MCC were superior.

The classifiers with optimal (γ, C) were applied to the test set to output the
margin values [21]. In an ideal case, only one classifier would return a positive
result for any problem, where selecting a best heuristic is just a case of observing
which classifier returns a positive result. However, in practice, more than one
classifier will return a positive result for some problems, while no classifiers may
return a positive for others. Thus, instead we used the relative magnitudes of the
classifiers in our experiment. The classifier with most positive (or least negative)
margin was selected to indicate the best decision procedure for the selection.

3 Results

The experiment was run as described in Section 2. We use the number of prob-
lems for which a selected variable ordering is optimal to measure the efficacy of
each heuristic separately, and of the heuristic selected by machine learning.

Table 2 breaks down the results into a set of mutually exclusive outcomes
that describe all possibilities. The column headed ‘Machine Learning’ indicates
the heuristic selected by the machine learned model with the next three columns
indicating each of the fixed heuristics tested. For each of these four heuristics, we
may ask the question “Did this heuristic select the optimal variable ordering?” A
‘Y’ in the table indicates yes and an ‘N’ indicates no, with each of the 13 cases
listed covering all possibilities. Note that at least one of the fixed heuristics must
have a ‘Y’ since, by definition, the optimal ordering is obtained by at least one
heuristic while if they all have a Y it is not possible for machine learning to
fail. For each of these cases we list the number of problems for which this case
occurred for both the quantifier free and quantified experiments.

For many problems more than one heuristic selects the optimal variable or-
dering and the probability of a randomly selected heuristic giving the optimal
ordering depends on how many pick it. For example, a random selection would
be successful 1/3 of the time if one heuristic gives the optimal ordering or 2/3
of the time if two heuristics do so.

In Table 2, case 1 is where machine learning cannot make any difference as
all heuristics are equally optimal. We compare the remaining cases pairwise. For
each pair, the behaviour of the fixed heuristics are identical and the difference
is whether or not machine learning picked a winning heuristic (one of the ones
with a Y). We see that in each case machine learning succeeds far more often
than fails. For each pair we can compare with a random heuristic selection. For
example, consider cases 2 and 3 where sotd and ndrr are successful heuristics and
Brown is not. A random selection would be successful 2/3 of the time. For the
quantifier free examples, machine learned selection is successful 146/(146 + 39)
or approximately 79% of the time, which is significantly better.

We repeated this calculation for the quantified case and the other pairs, as
shown in Table 3. In each case the values have been compared to the chance of
success when picking a random heuristic, and so there are two distinct sets in

102 Z. Huang et al.

Table 2. Categorising the problems into a set of mutually exclusive cases characterised
by which heuristics were successful

Case Machine Learning sotd ndrr Brown Quantifier Free Quantified

1 Y Y Y Y 399 573
2 Y Y Y N 146 96
3 N Y Y N 39 24
4 Y Y N Y 208 232
5 N Y N Y 35 43
6 Y N Y Y 64 57
7 N N Y Y 7 11
8 Y Y N N 106 66
9 N Y N N 106 75
10 Y N Y N 159 101
11 N N Y N 58 89
12 Y N N Y 230 208
13 N N N Y 164 146

Table 3. Proportion of examples where machine learning picks a successful heuristic

sotd ndrr Brown Quantifier Free Quantified

Y Y N 79% (>67%) 80% (>67%)
Y N Y 86% (>67%) 84% (>67%)
N Y Y 90% (>67%) 84% (>67%)
Y N N 50% (>33%) 47% (>33%)
N Y N 73% (>33%) 53% (>33%)
N N Y 58% (>33%) 59% (>33%)

Table 3: those where only one heuristic was optimal and those where two are. We
see that machine learning did better for some classes of problems than others.
For example in quantifier free examples, when only one heuristic is optimal
machine learning does considerably better if that one is ndrr, while if only one is
not optimal machine learning does worse if is Brown. Nevertheless, the machine
learning selection is better than random in every case in both experiments.

By summing the numbers in Table 2 in which Y appears in a row for the
machine learned selection and each individual heuristic, we get Table 4. This
compares, for both the quantifier free and quantified problem sets, the learned
selection with each of the CAD heuristics on their own.

Of the three heuristics, Brown seems to be the best, albeit by a small margin.
Its performance is a little surprising, both because the Brown heuristic is not so

Applying Machine Learning to the Problem of Choosing a Heuristic 103

Table 4. Total number of problems for which each heuristic picks the best ordering

Machine Learning sotd ndrr Brown

Quantifier free 1312 1039 872 1107
Quantified 1333 1109 951 1270

well known (having never been formally published) and because it requires little
computation (taking only simple measurements on the input).

For the quantifier free problems there were 399 problems where every heuristic
picked the optimal, 499 where two did and 823 where one did. Hence for this
problem set the chances of picking a successful heuristic at random is

100

1721

(
399 + 499 ∗ 2

3 + 823 ∗ 1
3

)
 58%

which compares with 100∗1312/1721 76% for machine learning. For the quan-
tified problems the figures are 64% and 77%. Hence machine learning performs
significantly better than a random choice in both cases. Further, if we were to
use only the heuristic that performed the best on this data, the Brown heuristic,
then we would pick a successful ordering for approximately 64% of the quanti-
fier free problems and 74% of the quantified problems. So we see that a machine
learned choice is also superior to using any one heuristic.

4 Possibilities for Extending the Experiment

Although a large data set of real world problems was used, we note that in some
ways the data was quite uniform. A key area of future work is experimentation
on a wider data set to see if these results, both the benefit of machine learning
and the superiority of Brown’s heuristic, are verified more generally. An initial
extension would be to relax the parameters used to select problems from the
nlsat dataset, for example by allowing problems with more variables.

One key restriction with this dataset is that all problems have one block of ex-
istential quantifiers. Note that our restriction to this case followed the availability
of data rather than any technical limitation of the machine learning. Possible
ways to generalise the data include randomly applying quantifiers to the the
existing problems, or randomly generating whole problems. However, this would
mean the problems no longer originate from real applications, and it has been
noted in the past that random problems for CAD can be unrepresentative.

We do not suggest SVM as the only suitable machine learning method for this
experiment, but overall a SVM with the RBF kernel worked well here. It would
be interesting to see if other machine learning methods could offer similar or even
better selections. Further improvements may also come from more work on the
feature selection. The features used here were all derived from the polynomials
involved in the input. One possible extension would be to consider also the type

104 Z. Huang et al.

of relations present and how they are connected logically (likely to be particularly
beneficial if problems with more variables or more varied quantifiers are allowed).

A key extension for future work will be the testing of other heuristics. For
example the greedy sotd heuristic [23] which chooses an ordering one variable at
a time based on the sotd of new projection polynomials or combined heuristics,
(where we narrow the selection with one and then breaking the tie with another).
We also note that there are other questions of CAD problem formulation besides
variable ordering [8] for which machine learning might be of benefit.

Finally, we note that there are other CAD implementations. In addition to
Qepcad there is ProjectionCAD [26], RegularChains [17] and SyNRAC [33] in
Maple, Mathematica [46] and Redlog [24] in Reduce. Each implementation
has its own intricacies and often different underlying theory so it would be inter-
esting to test if machine learning can assist with these as it does with Qepcad.

5 Conclusions

We have investigated the use of machine learning for making the choice of which
heuristic to use when selecting a variable ordering for CAD, and quantifier elim-
ination by CAD. The experimental results confirmed our thesis, drawn from
personal experience, that no one heuristic is superior for all problems and the
correct choice will depend on the problem. Each of the three heuristics tested
had a substantial set of problems for which they were superior to the others and
so the problem was a suitable application for machine learning.

Using machine learning to select the best CAD heuristic yielded better re-
sults than choosing one heuristic at random, or just using any of the individual
heuristics in isolation, indicating there is a relation between the simple algebraic
features and the best heuristic choice. This could lead to the development of a
new individual heuristic in the future.

The experiments involved testing heuristics on 1721 CAD problems, certainly
the largest such experiment that the authors are aware of. For comparison, the
best known previous study on such heuristics [23] tested with six examples. We
observed that Brown’s heuristic is the most competitive for our example set, and
this is despite it involving less computation than the others. This heuristic was
presented during an ISSAC tutorial in 2004 (see Brown [13]), but does not seem
to be formally published. It certainly deserves to be better known.

Finally, we note that CAD is certainly not unique amongst computer algebra
algorithms in requiring the user to make such a choice of problem formulation.
More generally, computer algebra systems (CASs) often have a choice of possible
algorithms to use when solving a problem. Since a single formulation or algorithm
is rarely the best for the entire problem space, CASs usually use meta-algorithms
to make such choices, where decisions are based on some numerical parameters
[16]. These are often not as well documented as the base algorithms, and may be
rather primitive. To the best of our knowledge, the present paper appears to be
the first applying machine learning to problem formulation for computer algebra.
The positive results should encourage investigation of similar applications in the
field of symbolic computation.

Applying Machine Learning to the Problem of Choosing a Heuristic 105

Acknowledgements. This work was supported by the EPSRC grant:
EP/J003247/1 and the China Scholarship Council (CSC). The authors thank
the anonymous referees for useful comments which improved the paper.

References

1. Akbarpour, B., Paulson, L.: MetiTarski: An automatic theorem prover for real-
valued special functions. Journal of Automated Reasoning 44(3), 175–205 (2010)

2. Alpaydin, E.: Introduction to machine learning. MIT Press (2004)
3. Arnon, D., Collins, G., McCallum, S.: Cylindrical algebraic decomposition I: The

basic algorithm. SIAM Journal of Computing 13, 865–877 (1984)
4. Baldi, P., Brunak, S., Chauvin, Y., Andersen, C.A., Nielsen, H.: Assessing the accu-

racy of prediction algorithms for classification: an overview. Bioinformatics 16(5),
412–424 (2000)

5. Basu, S.: Algorithms in real algebraic geometry: A survey (2011),
www.math.purdue.edu/~sbasu/raag_survey2011_final.pdf

6. Boyan, J., Freitag, D., Joachims, T.: A machine learning architecture for optimizing
web search engines. In: AAAI Workshop on Internet Based Information Systems,
pp. 1–8 (1996)

7. Bradford, R., Davenport, J., England, M., McCallum, S., Wilson, D.: Cylindrical
algebraic decompositions for boolean combinations. In: Proc. ISSAC 2013, pp. 125–
132. ACM (2013)

8. Bradford, R., Davenport, J.H., England, M., Wilson, D.: Optimising problem for-
mulation for cylindrical algebraic decomposition. In: Carette, J., Aspinall, D.,
Lange, C., Sojka, P., Windsteiger, W. (eds.) CICM 2013. LNCS (LNAI), vol. 7961,
pp. 19–34. Springer, Heidelberg (2013)

9. Bridge, J.P.: Machine learning and automated theorem proving. University of
Cambridge Computer Laboratory Technical Report UCAM-CL-TR-792 (2010),
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-792.pdf

10. Bridge, J., Holden, S., Paulson, L.: Machine learning for first-order theorem prov-
ing. Journal of Automated Reasoning, 1–32 (2014)

11. Brown, C.: Improved projection for cylindrical algebraic decomposition. Journal of
Symbolic Computation 32(5), 447–465 (2001)

12. Brown, C.: QEPCAD B: A program for computing with semi-algebraic sets using
CADs. ACM SIGSAM Bulletin 37(4), 97–108 (2003)

13. Brown, C.: Companion to the Tutorial: Cylindrical algebraic decomposition. Pre-
sented at ISSAC 2004 (2004), www.usna.edu/Users/cs/wcbrown/
research/ISSAC04/handout.pdf

14. Brown, C., Davenport, J.: The complexity of quantifier elimination and cylindrical
algebraic decomposition. In: Proc. ISSAC 2007, pp. 54–60. ACM (2007)

15. Brown, C., Kahoui, M.E., Novotni, D., Weber, A.: Algorithmic methods for in-
vestigating equilibria in epidemic modelling. Journal of Symbolic Computation 41,
1157–1173 (2006)

16. Carette, J.: Understanding expression simplification. In: Proc. ISSAC 2004, pp.
72–79. ACM (2004)

17. Chen, C., Maza, M.M., Xia, B., Yang, L.: Computing cylindrical algebraic decom-
position via triangular decomposition. In: Proc. ISSAC 2009, pp. 95–102. ACM
(2009)

www.math.purdue.edu/~sbasu/raag_survey2011_final.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-792.pdf

106 Z. Huang et al.

18. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic
decomposition. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp.
134–183. Springer, Heidelberg (1975)

19. Collins, G.: Quantifier elimination by cylindrical algebraic decomposition – 20 years
of progress. In: Quantifier Elimination and Cylindrical Algebraic Decomposition.
Texts & Monographs in Symbolic Computation, pp. 8–23. Springer (1998)

20. Collins, G., Hong, H.: Partial cylindrical algebraic decomposition for quantifier
elimination. Journal of Symbolic Computation 12, 299–328 (1991)

21. Cristianini, N., Shawe-Taylor, J.: An introduction to support vector machines and
other kernel-based learning methods. Cambridge University Press (2000)

22. Davenport, J., Bradford, R., England, M., Wilson, D.: Program verification in the
presence of complex numbers, functions with branch cuts etc. In: Proc. SYNASC
2012, pp. 83–88. IEEE (2012)

23. Dolzmann, A., Seidl, A., Sturm, T.: Efficient projection orders for CAD. In: Proc.
ISSAC 2004, pp. 111–118. ACM (2004)

24. Dolzmann, A., Sturm, T.: REDLOG: Computer algebra meets computer logic.
SIGSAM Bulletin 31(2), 2–9 (1997)

25. Dolzmann, A., Sturm, T., Weispfenning, V.: Real quantifier elimination in practice.
In: Algorithmic Algebra and Number Theory, pp. 221–247. Springer (1998)

26. England, M.: An implementation of CAD in Maple utilising problem for-
mulation, equational constraints and truth-table invariance. University of
Bath Department of Computer Science Technical Report 2013-04 (2013),
http://opus.bath.ac.uk/35636/

27. Forsyth, R., Rada, R.: Machine learning: Applications in expert systems and in-
formation retrieval. Halsted Press (1986)

28. Fotiou, I., Parrilo, P., Morari, M.: Nonlinear parametric optimization using cylin-
drical algebraic decomposition. In: 2005 European Control Conference on Decision
and Control, CDC-ECC 2005, pp. 3735–3740 (2005)

29. Hong, H.: An improvement of the projection operator in cylindrical algebraic de-
composition. In: Proc. ISSAC 1990, pp. 261–264. ACM (1990)

30. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are uni-
versal approximators. Neural Networks 2(5), 359–366 (1989)

31. Huang, Z., Paulson, L.: An application of machine learning to rcf decision proce-
dures. In: Proc. 20th Automated Reasoning Workshop (2013)

32. Hsu, C., Chang, C., Lin, C.: A practical guide to support vector classification
(2003)

33. Iwane, H., Yanami, H., Anai, H., Yokoyama, K.: An effective implementation of
a symbolic-numeric cylindrical algebraic decomposition for quantifier elimination.
In: Proc. SNC 2009, pp. 55–64 (2009)

34. Joachims, T.: Making large-scale SVM learning practical. In: Advances in Kernel
Methods - Support Vector Learning, pp. 169–184. MIT Press (1999)

35. Joachims, T.: A support vector method for multivariate performance measures. In:
Proc. 22nd Intl. Conf. on Machine Learning, pp. 377–384. ACM (2005)

36. Jovanović, D., de Moura, L.: Solving non-linear arithmetic. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 339–354. Springer, Hei-
delberg (2012)

37. McCallum, S.: An improved projection operation for cylindrical algebraic decompo-
sition. In: Quantifier Elimination and Cylindrical Algebraic Decomposition. Texts
& Monographs in Symbolic Computation, pp. 242–268. Springer (1998)

38. McCallum, S.: On projection in CAD-based quantifier elimination with equational
constraint. In: Proc. ISSAC 1999, pp. 145–149. ACM (1999)

http://opus.bath.ac.uk/35636/

Applying Machine Learning to the Problem of Choosing a Heuristic 107

39. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous
activity. The Bulletin of Mathematical Biophysics 5(4), 115–133 (1943)

40. Rosenblatt, F.: The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological Review 65(6), 386 (1958)

41. Schölkopf, B., Tsuda, K., Vert, J.-P.: Kernel methods in computational biology.
MIT Press (2004)

42. Sebastiani, F.: Machine learning in automated text categorization. ACM Comput-
ing Surveys (CSUR) 34(1), 1–47 (2002)

43. Shawe-Taylor, J., Cristianini, N.: Kernel methods for pattern analysis. Cambridge
University Press (2004)

44. Stone, P., Veloso, M.: Multiagent systems: A survey from a machine learning per-
spective. Autonomous Robots 8(3), 345–383 (2000)

45. Strzeboński, A.: Cylindrical algebraic decomposition using validated numerics.
Journal of Symbolic Computation 41(9), 1021–1038 (2006)

46. Strzeboński, A.: Solving polynomial systems over semialgebraic sets represented
by cylindrical algebraic formulas. In: Proc. ISSAC 2012, pp. 335–342. ACM (2012)

47. Tarski, A.: A decision method for elementary algebra and geometry. In: Quantifier
Elimination and Cylindrical Algebraic Decomposition. Texts and Monographs in
Symbolic Computation, pp. 24–84. Springer (1998)

48. Wilson, D., Bradford, R., Davenport, J.: A repository for CAD examples. ACM
Communications in Computer Algebra 46(3), 67–69 (2012)

49. Wilson, D., Davenport, J., England, M., Bradford, R.: A “piano movers” problem
reformulated. In: Proc. SYNASC 2013. IEEE (2013)

50. The benchmarks used in solving nonlinear arithmetic. New York University (2012),
http://cs.nyu.edu/~dejan/nonlinear/

http://cs.nyu.edu/~dejan/nonlinear/

Hipster: Integrating Theory Exploration

in a Proof Assistant

Moa Johansson, Dan Rosén, Nicholas Smallbone, and Koen Claessen

Department of Computer Science and Engineering,
Chalmers University of Technology

{jomoa,danr,nicsma,koen}@chalmers.se

Abstract. This paper describes Hipster, a system integrating theory
exploration with the proof assistant Isabelle/HOL. Theory exploration
is a technique for automatically discovering new interesting lemmas in
a given theory development. Hipster can be used in two main modes.
The first is exploratory mode, used for automatically generating basic
lemmas about a given set of datatypes and functions in a new theory
development. The second is proof mode, used in a particular proof at-
tempt, trying to discover the missing lemmas which would allow the
current goal to be proved. Hipster’s proof mode complements and boosts
existing proof automation techniques that rely on automatically select-
ing existing lemmas, by inventing new lemmas that need induction to be
proved. We show example uses of both modes.

1 Introduction

The concept of theory exploration was first introduced by Buchberger [2]. He
argues that in contrast to automated theorem provers that focus on proving
one theorem at a time in isolation, mathematicians instead typically proceed by
exploring entire theories, by conjecturing and proving layers of increasingly com-
plex propositions. For each layer, appropriate proof methods are identified, and
previously proved lemmas may be used to prove later conjectures. When a new
concept (e.g. a new function) is introduced, we should prove a set of new conjec-
tures which, ideally, “completely” relates the new with the old, after which other
propositions in this layer can be proved easily by “routine” reasoning. Mathe-
matical software should be designed to support this workflow. This is arguably
the mode of use supported by many interactive proof assistants, such as Theo-
rema [3] and Isabelle [17]. However, they leave the generation of new conjectures
relating different concepts largely to the user. Recently, a number of different
systems have been implemented to address the conjecture synthesis aspect of
theory exploration [15,13,16,5]. Our work goes one step further by integrating
the discovery and proof of new conjectures in the workflow of the interactive the-
orem prover Isabelle/HOL. Our system, called Hipster, is based on our previous
work on HipSpec [5], a theory exploration system for Haskell programs. In that
work, we showed that HipSpec is able to automatically discover many of the
kind of equational theorems present in, for example, Isabelle/HOL’s libraries for

S.M. Watt et al. (Eds.): CICM 2014, LNAI 8543, pp. 108–122, 2014.
c© Springer International Publishing Switzerland 2014

Hipster: Integrating Theory Exploration in a Proof Assistant 109

natural numbers and lists. In this article we show how similar techniques can be
used to speed up and facilitate the development of new theories in Isabelle/HOL
by discovering basic lemmas automatically.

Hipster translates Isabelle/HOL theories into Haskell and generates equa-
tional conjectures by testing and evaluating the Haskell program. These con-
jectures are then imported back into Isabelle and proved automatically. Hipster
can be used in two ways: in exploratory mode it quickly discovers basic proper-
ties about a newly defined function and its relationship to already existing ones.
Hipster can also be used in proof mode, to provide lemma hints for an ongoing
proof attempt when the user is stuck.

Our work complements Sledgehammer [18], a popular Isabelle tool allowing
the user to call various external automated provers. Sledgehammer uses relevance
filtering to select among the available lemmas those likely to be useful for proving
a given conjecture [14]. However, if a crucial lemma is missing, the proof attempt
will fail. If theory exploration is employed, we can increase the success rate of
Isabelle/HOL’s automatic tactics with little user effort.

As an introductory example, we consider the example from section 2.3 of the
Isabelle tutorial [17]: proving that reversing a list twice produces the same list.
We first apply structural induction on the list xs.

theorem rev_rev : "rev(rev xs) = xs"

apply (induct xs)

The base case follows trivially from the definition of rev, but Isabelle/HOL’s
automated tactics simp, auto and sledgehammer all fail to prove the step case.
We can simplify the step case to:

rev(rev xs) = xs =⇒ rev((rev xs) @ [x]) = x#xs

At this point, we are stuck. This is where Hipster comes into the picture. If we
call Hipster at this point in the proof, asking for lemmas about rev and append
(@), it suggests and proves three lemmas:

lemma lemma_a: "xs @ [] = xs"

lemma lemma_aa : "(xs @ ys) @ zs = xs @ (ys @ zs)"

lemma lemma_ab : "(rev xs) @ (rev ys) = rev (ys @ xs)"

To complete the proof of the stuck subgoal, we need lemma ab. Lemma ab
in turn, needs lemma a for its base case, and lemma aa for its step case. With
these three lemmas present, Isabelle/HOL’s tactics can take care of the rest.
For example, when we call Sledgehammer in the step case, it suggests a proof by
Isabelle/HOL’s first-order reasoning tactic metis [11], using the relevant function
definitions as well as lemma ab:

theorem rev_rev : "rev(rev xs) = xs"

apply (induct xs)

apply simp

sledgehammer

by (metis rev.simps(1) rev.simps(2) app.simps(1) app.simps(2) lemma_ab)

110 M. Johansson et al.

The above example shows how Hipster can be used interactively in a stuck
proof attempt. In exploratory mode, there are also advantages of working in an
interactive setting. For instance, when dealing with large theories that would
otherwise generate a very large search space, the user can instead incrementally
explore different relevant sub-theories while avoiding a search space explosion.
Lemmas discovered in each sub-theory can be made available when exploring
increasingly larger sets of functions.

The article is organised as follows: In section 2 we give a brief overview of
the HipSpec system which Hipster uses to generate conjectures, after which we
describe Hipster in more detail in section 3, together with some larger worked
examples of how it can be used, both in proof mode and exploratory mode.
In section 4 we describe how we deal with partial functions, as Haskell and
Isabelle/HOL differ in their semantics for these. Section 5 covers related work
and we discuss future work in section 6.

2 Background

In this section we give a brief overview of the HipSpec system which we use as
a backend for generating conjectures, and of Isabelle’s code generator which we
use to translate Isabelle theories to Haskell programs.

2.1 HipSpec

HipSpec is a state-of-the-art inductive theorem prover and theory exploration
system for Haskell. In [5] we showed that HipSpec is able to automatically dis-
cover and prove the kind of equational lemmas present in Isabelle/HOL’s li-
braries, when given the corresponding functions written in Haskell.

HipSpec works in two stages:

1. Generate a set of conjectures about the functions at hand. These conjectures
are equations between terms involving the given functions, and have not yet
been proved correct but are nevertheless extensively tested.

2. Attempt to prove each of the conjectures, using already proven conjectures
as assumptions. HipSpec implements this by enumerating induction schemas,
and firing off many proof obligations to automated first-order logic theorem
provers.

The proving power of HipSpec comes from its capability to automatically dis-
cover and prove lemmas, which are then used to help subsequent proofs.

In Hipster we can not directly use HipSpec’s proof capabilities (stage (2)
above); we use Isabelle/HOL for the proofs instead. Isabelle is an LCF-style
prover which means that it is based on a small core of trusted axioms, and
proofs must be built on top of those axioms. In other words, we would have to
reconstruct inside Isabelle/HOL any proof that HipSpec found, so it is easier to
use Isabelle/HOL for the proofs in the first place.

Hipster: Integrating Theory Exploration in a Proof Assistant 111

The part of HipSpec we directly use is its conjecture synthesis system (stage
(1) above), called QuickSpec [6]), which efficiently generates equations about a
given set of functions and datatypes.

QuickSpec takes a set of functions as input, and proceeds to generate all type-
correct terms up to a given limit (usually up to depth three). The terms may
contain variables (usually at most three per type). These parameters are set
heuristically, and can be modified by the user. QuickSpec attempts to divide the
terms into equivalence classes such that two terms end up in the same equivalence
class if they are equal. It first assumes that all terms of the same type are
equivalent, and initially puts them in the same equivalence class. It then picks
random ground values for the variables in the terms (using QuickCheck [4])
and evaluates the terms. If two terms in the same equivalence class evaluate
to different ground values, they cannot be equal; QuickSpec thus breaks each
equivalence class into new, smaller equivalence classes depending on what values
their terms evaluated to. This process is repeated until the equivalence classes
stabilise. We then read off equations from each equivalence class, by picking
one term of that class as a representative and equating all the other terms to
that representative. This means that the conjectures generated are, although
not yet proved, fairly likely to be true, as they have been tested on several
hundred different random values. The confidence increases with the number of
tests, which can be set by the user. The default setting is to first run 200 tests,
after which the process stops if the equivalence classes appear to have stabilised,
i.e. if nothing has changed during the last 100 tests. Otherwise, the number of
tests are doubled until stable.

As an example, we ask QuickSpec to explore the theory with list append, @,
the empty list, [], and three list variables xs, ys, zs. Among the terms it will
generate are (xs @ ys) @ zs, xs @ (ys @ zs), xs @ [] and xs. Initially, all
four will be assumed to be in the same equivalence class. The random value
generator for lists from QuickCheck might for instance generate the values: xs
!→ [], ys !→ [a] and zs !→ [b], where a and b are arbitrary distinct con-
stants. Performing the substitutions of the variables in the four terms above and
evaluating the resulting ground expressions gives us:

Term Ground Instance Value
1 (xs @ ys) @ zs ([] @ [a]) @ [b] [a,b]

2 xs @ (ys @ zs) [] @ ([a] @ [b]) [a,b]

3 xs @ [] [] @ [] []

4 xs [] []

Terms 1 and 2 evaluate to the same value, as do terms 3 and 4. The initial
equivalence class will therefore be split in two accordingly. After this, whatever
variable assignments QuickSpec generates, the terms in each class will evaluate to
the same value. Eventually, QuickSpec stops and the equations for associativity
and right identity can be extracted from the resulting equivalence classes.

112 M. Johansson et al.

2.2 Code Generation in Isabelle

Isabelle/HOL’s code generator can translate from Isabelle’s higher-order logic
to code in several functional programming languages, including Haskell [9,8].
Isabelle’s higher-order logic is a typed λ-calculus with polymorphism and type-
classes. Entities like constants, types and recursive functions are mapped to
corresponding entities in the target language. For the kind of theories we consider
in this paper, this process is straightforward. However, the code generator also
supports user-given code lemmas, which allows it to generate code from non-
executable constructs, e.g. by replacing sets with lists.

3 Hipster: Implementation and Use

We now give a description of the implementation of Hipster, and show how it
can be used both in theory exploration mode and in proof mode, to find lemmas
relevant for a particular proof attempt. An overview of Hipster is shown in figure
1. The source code and examples are available online1.

Fig. 1. Overview of Hipster

Starting from an Isabelle/HOL theory, Hipster calls Isabelle/HOL’s code gen-
erator [9,8] to translate the given functions into a Haskell program. In order to
use the testing framework from QuickCheck, as described in the previous section,
we also post-process the Haskell file, adding generators, which are responsible for
producing arbitrary values for evaluation and testing. A generator in Haskell’s
QuickCheck is simply a function which returns a random ground value for a

1 https://github.com/moajohansson/IsaHipster

https://github.com/moajohansson/IsaHipster

Hipster: Integrating Theory Exploration in a Proof Assistant 113

particular datatype [4]. In our case, the generators pick a random constructor
and then recursively generate its arguments. To ensure termination, the genera-
tors are parametrised by a size; the generator reduces the size when it invokes
itself recursively and when the size reaches zero, it always picks a non-recursive
constructor.

Another important issue in the translation is the difference in semantics for
partial functions between Isabelle/HOL and Haskell. In order for HipSpec not
to miss equations that hold in Isabelle/HOL, but not in Haskell, we have to trans-
late partial functions specially. This is explained in more detail in
section 4.

Once the Haskell program is in place, we run theory exploration and generate
a set of equational conjectures, which HipSpec orders according to generality.
More general equations are preferred, as we expect these to be more widely
applicable as lemmas. In previous work on HipSpec, the system would at this
stage apply induction on the conjectures and send them off to some external
prover. Here, we instead import them back into Isabelle as we wish to produce
checkable LCF-style proofs for our conjectures.

The proof procedure in Hipster is parametrised by two tactics, one for easy
or routine reasoning and one for difficult reasoning. In the examples below, the
routine reasoning tactic uses Isabelle/HOL’s simplifier followed by first-order
reasoning by Metis [11], while the difficult reasoning tactic performs structural
induction followed by simplification and first-order reasoning. Metis is restricted
to run for at most one second in both the routine and difficult tactic. If there
are several possible variables to apply induction on, we may backtrack if the first
choice fails. Both tactics have access to the theorems proved so far, and hence
get stronger as the proof procedure proceeds through the list of conjectures.

As theory exploration produces rather many conjectures, we do not want to
present them all to the user. We select the most interesting ones, i.e. those that
are difficult to prove, and filter out those that follow only by routine reasoning.
Depending on the theory and application we can vary the tactics for routine and
difficult reasoning to suit our needs. If we want Hipster to produce fewer or more
lemmas, we can choose a stronger or weaker tactic, allowing for flexibility.

The order in which Hipster tries to prove things matters. As we mentioned, it
will try more general conjectures first, with the hope that they will be useful to
filter out many more specific routine results. Occasionally though, a proof will
fail as a not-yet-proved lemma is required. In this case, the failed conjecture is
added back into the list of open conjectures and will be retried later, after at
least one new lemma has been proved. Hipster terminates when it either runs
out of open conjectures, or when it can not make any more progress, i.e. when
all open conjectures have been tried since it last proved a lemma.

Below we give two typical use cases for Hipster. In both examples, Hipster
has been instantiated with the routine and difficult reasoning tactics that we
described above.

114 M. Johansson et al.

3.1 Exploring a Theory of Binary Trees

This example is about a theory of binary trees, with data stored at the leaves:

datatype ’a Tree =

Leaf ’a

| Node "’a Tree" "’a Tree"

Let us define some functions over our trees: mirror swaps the left and right
subtrees everywhere, and tmap applies a function to each element in the tree.

fun mirror :: ’a Tree => ’a Tree

where

mirror (Leaf x) = Leaf x

| mirror (Node l r) = Node (mirror r) (mirror l)

fun tmap :: (’a => ’b) => ’a Tree => ’b Tree

where

tmap f (Leaf x) = Leaf (f x)

| tmap f (Node l r) = Node (tmap f l) (tmap f r)

Now, let us call theory exploration to discover some properties about these two
functions. Hipster quickly finds and proves the two expected lemmas:

lemma lemma_a [thy_expl]: "mirror (tmap x y) = tmap x (mirror y)"

by (tactic {* Hipster_Tacs.induct_simp_metis . . .*})

lemma lemma_aa [thy_expl]: "mirror (mirror x) = x"

by (tactic {* Hipster_Tacs.induct_simp_metis . . . *})

The output produced by Hipster can be automatically pasted into the proof
script by a mouseclick. Recall that Hipster discards all lemmas that can be proved
by routine reasoning (here, without induction). The tactic induct simp metis

appearing in the proof script output is the current instantiation of “difficult
reasoning”. Note that the lemmas discovered are tagged with the attribute
thy expl, which tells Hipster which lemmas it has discovered so far. If theory
exploration is called several times, we can use these lemmas in proofs and avoid
rediscovering the same things. The user can also inspect what theory exploration
has found so far by executing the Isabelle command thm thy expl.

Next, let us also define two functions extracting the leftmost and rightmost
element of the tree:

fun rightmost :: ’a Tree => ’a

where

rightmost (Leaf x) = x

| rightmost (Node l r) = rightmost r

fun leftmost :: ’a Tree => ’a

where

leftmost (Leaf x) = x

| leftmost (Node l r) = leftmost l

Hipster: Integrating Theory Exploration in a Proof Assistant 115

Asking Hipster for lemmas about all the functions defined so far, it provides one
additional lemma, namely:

lemma lemma_ab [thy_expl]: "leftmost (mirror x2) = rightmost x2"

by (tactic {* Hipster_Tacs.induct_simp_metis . . . *})

Finally, we define a function flattening trees to lists:

fun flat_tree :: ’a Tree => ’a list

where

flat_tree (Leaf x) = [x]

| flat_tree (Node l r) = (flat_tree l) @ (flat_tree r)

We can now ask Hipster to explore the relationships between the functions on
trees and the corresponding functions on lists, such as rev, map and hd. Hipster
produces four new lemmas and one open conjecture:

lemma lemma_ac [thy_expl]: "flat_tree (tmap x y) = map x (flat_tree y)"

by (tactic {* Hipster_Tacs.induct_simp_metis . . . *})

lemma lemma_ad [thy_expl]: "map x (rev xs) = rev (map x xs)"

by (tactic {* Hipster_Tacs.induct_simp_metis . . . *})

lemma lemma_ae [thy_expl]: "flat_tree (mirror x) = rev (flat_tree x)"

by (tactic {* Hipster_Tacs.induct_simp_metis . . . *})

lemma lemma_af [thy_expl]: "hd (xs @ xs) = hd xs"

by (tactic {* Hipster_Tacs.induct_simp_metis . . . *})

lemma unknown: "hd (flat_tree x) = leftmost x"

oops

Lemmas ad and af are perhaps not of much interest, as they only relate functions
on lists. In fact, lemma ad is already in Isabelle/HOL’s list library, but is not
labelled as a simplification rule, which is why Hipster rediscovers it. Lemma af is
a variant of a conditional library-lemma: xs �= [] =⇒ hd(xs @ ys) = hd xs.
Observe that lemma af holds due to the partiality of hd. Hipster can not discover
conditional lemmas, so we get this version instead.

In addition to the four lemmas which have been proved, Hipster also outputs
one interesting conjecture (labelled unknown) which it fails to prove. To prove
this conjecture, we need a lemma stating that, as the trees store data at the
leaves, flat tree will always produce a non-empty list: flat tree t �= []. As
this is not an equation, it is not discovered by Hipster.

This example shows that Hipster can indeed find most of the basic lemmas
we would expect in a new theory. The user has to provide the constants Hipster
should explore, and the rest is fully automatic, thus speeding up theory devel-
opment. Theory exploration in this example takes just a few seconds, no longer
than it takes to run tools like Sledgehammer. Even if Hipster fails to prove some
properties, they may still be interesting, and the user can choose to prove them
interactively.

116 M. Johansson et al.

Exploring with different Tactics. To illustrate the effects of choosing a
slightly different tactic for routine and difficult reasoning, we also experimented
with an instantiation using only Isabelle/HOL’s simplifier as routine reasoning
and induction followed by simplification as difficult reasoning. The advantage of
this instantiation is that the simplifier generally is faster than Metis, but less
powerful. However, for this theory, it turns out that the simplifier is sufficient to
prove the same lemmas as above. Hipster also suggests one extra lemma, namely
rightmost (mirror x) = leftmost x, which is the dual to lemma ab above.
When we used Metis, this lemma could be proved without induction, by routine
reasoning, and was thus discarded. Using only the simplifier, difficult reasoning
and induction is required to find a proof, and the lemma is therefore presented
to the user.

3.2 Proving Correctness of a Small Compiler

The following example is about a compiler to a stack machine for a toy expression
language2. We show how theory exploration can be used to unblock a proof on
which automated tactics otherwise fail due to a missing lemma.

Expressions in the language are built from constants (Cex), values (Vex) and
binary operators (Bex):

type_synonym ’a binop = ’a => ’a => ’a

datatype (’a, ’b) expr =

Cex ’a

| Vex ’b

| Bex "’a binop" "(’a,’b) expr" "(’a,’b) expr"

The types of values and variables are not fixed, but given by type parameters
’a and ’b. To evaluate an expression, we define a function value, parametrised
by an environment mapping variables to values:

fun value :: (’b => ’a) => (’a,’b) expr => ’a

where

value env (Cex c) = c

| value env (Vex v) = env v

| value env (Bex f e1 e2) = f (value env e1) (value env e2)

A program for our stack machine consists of four instructions:

datatype (’a, ’b) program =

Done

| Const ’a "(’a, ’b) program"

| Load ’b "(’a, ’b) program"

| Apply "’a binop" "(’a, ’b) program"

A program is either empty (Done), or consists of one of the instructions Const,
Load or Apply, followed by the remaining program. We further define a function
sequence for combining programs:

2 This example is a slight variation of that in §3.3 in the Isabelle tutorial [17].

Hipster: Integrating Theory Exploration in a Proof Assistant 117

fun sequence :: (’a, ’b) program => (’a, ’b) program => (’a, ’b) program

where

sequence Done p = p

| sequence (Const c p) p’ = Const c (sequence p p’)

| sequence (Load v p) p’ = Load v (sequence p p’)

| sequence (Apply f p) p’ = Apply f (sequence p p’)

Program execution is modelled by the function exec, which given a store for
variables and a program, returns the values on the stack after execution.

fun exec :: (’b => ’a) => (’a,’b) program => ’a list => ’a list

where

exec env Done stack = stack

| exec env (Const c p) stack = exec env p (c#stack)

| exec env (Load v p) stack = exec env p ((env v)#stack)

| exec env (Apply f p) stack =

exec env p ((f (hd stack) (hd(tl stack)))#(tl(tl stack)))

We finally define a function compile, which specifies how expressions are com-
piled into programs:

fun compile :: (’a,’b) expr => (’a,’b) program

where

compile (Cex c) = Const c Done

| compile (Vex v) = Load v Done

| compile (Bex f e1 e2) =

sequence (compile e2) (sequence (compile e1) (Apply f Done))"

Now, we wish to prove correctness of the compiler, namely that executing a
compiled expression indeed results in the value of that expression:

theorem "exec env (compile e) [] = [value env e]"

If we try to apply induction on e, Isabelle/HOL’s simplifier solves the base-case
but neither the simplifier or first-order reasoning by Sledgehammer succeeds in
proving the step-case. At this stage, we can apply Hipster’s theory exploration
tactic. It will generate a set of conjectures, and interleave proving these with
trying to prove the open sub-goal. Once Hipster succeeds in finding a set of
lemmas which allow the open goal to be proved by routine reasoning, it presents
the user with a list of lemmas it has proved, in this case:

Try first proving lemmas:

lemma lemma_a: "sequence x Done = x"

by (tactic {* Hipster_Tacs.induct_simp_metis . . . *})

lemma lemma_aa: "exec x y (sequence z x1) xs = exec x y x1 (exec x y z xs)"

by (tactic {* Hipster_Tacs.induct_simp_metis . . . *})

lemma lemma_ab: "exec x y (compile z) xs = value x y z # xs"

by (tactic {* Hipster_Tacs.induct_simp_metis . . . *})

118 M. Johansson et al.

Our theorem is a trivial instance of lemma_ab, whose proof depends on
lemma_aa. Hipster takes about twenty seconds to discover and prove the lemmas.
Pasting them into our proof script we can try Sledgehammer on our theorem
again. This time, it succeeds and suggests the one-line proof:

theorem "exec env (compile e) [] = [value env e]"

by (metis lemma_ab)

4 Dealing with Partial Functions

Isabelle is a logic of total functions. Nonetheless, we can define apparently partial
functions, such as hd:

fun hd :: ’a list => ’a where

hd (x#xs) = x

How do we reconcile hd being partial with Isabelle functions being total? The
answer is that in Isabelle, hd is total, but the behaviour of hd [] is unspecified:
it returns some arbitrary value of type ’a. Meanwhile in Haskell, head is partial,
but the behaviour of head [] is specified: it crashes. We must therefore translate
partially defined Isabelle functions into total but underspecified Haskell functions.

Hipster uses a technique suggested by Jasmin Blanchette [1] to deal with
partial functions. Whenever we translate an Isabelle function that is missing
some cases, we need to add a default case, like so:

hd :: [a] -> a

hd (x:xs) = x

hd [] = ???

But what should we put for the result of hd []? To model the notion that
hd [] is unspecified, whenever we evaluate a test case we will pick a random
value for hd []. This value will vary from test case to test case but will be
consistent within one run of a test case. The idea is that, if an equation involving
hd in Haskell always holds, for all values we could pick for hd [], it will also
hold in Isabelle, where the value of hd [] is unspecified.

Suppose we define the function second, which returns the second element of
a list, as

second (x#y#xs) = y

It might seem that we should translate second, by analogy with hd, as

second :: [a] -> a

second (x:y:xs) = y

second _ = ???

and pick a random value of type a to use in the default case. But this translation
is wrong! If we apply our translated second to a single-element list, it will give

Hipster: Integrating Theory Exploration in a Proof Assistant 119

the same answer regardless of which element is in the list, and HipSpec will
discover the lemma second [x] = second [y]. This lemma is certainly not
true of our Isabelle function, which says nothing about the behaviour of second
on single-element lists, and Hipster will fail to prove it.

We must allow the default case to produce a different result for different
arguments. We therefore translate second as

second :: [a] -> a

second (x:y:xs) = y

second xs = ??? xs

where ??? is a random function of type [a] -> a. (QuickCheck can generate
random functions.) As before, whenever we evaluate a test case, we instantiate
??? with a new random function3. This second translation mimics Isabelle’s
semantics: any equation that holds in Haskell no matter how we instantiate the
??? functions also holds in Isabelle.

In Hipster, we first use Isabelle/HOL’s code generator to translate the theory
to Haskell. Then we transform every function definition, whether it is partial
or not, in the same way we transformed second above. If a function is already
total, the added case will simply be unreachable. This avoids having to check
functions for partiality. The extra clutter introduced for total functions is not a
problem as we neither reason about nor show the user the generated program.

5 Related Work

Hipster is an extension to our previous work on the HipSpec system [5], which
was not designed for use in an interactive setting. HipSpec applies structural
induction to conjectures generated by QuickSpec and sends off proof obligations
to external first-order provers. Hipster short-circuits the proof part and directly
imports the conjectures back into Isabelle. This allows for more flexibility in the
choice of tactics employed, by letting the user control what is to be considered
routine and difficult reasoning. Being inside Isabelle/HOL provides the possibil-
ity to easily record lemmas for future use, perhaps in other theory developments.
It gives us the possibility to re-check proofs if required, as well as increased relia-
bility as proofs have been run through Isabelle’s trusted kernel. As Hipster uses
HipSpec for conjecture generation, any difference in performance (e.g. speed,
lemmas proved) will depend only on what prover backend is used by HipSpec
and what tactic is used by Hipster.

There are two other theory exploration systems available for Isabelle/HOL,
IsaCoSy [13] and IsaScheme [16]. They differ in the way they generate con-
jectures, and both discover similar lemmas as HipSpec/Hipster. A comparison
between HipSpec, IsaCoSy and IsaScheme can be found in [5], showing that all

3 To avoid having to retranslate the Isabelle theory every time we evaluate a test case,
in reality we parametrise the generated program on the various ??? functions. That
way, whenever we evaluate a test case, we can cheaply change the default cases.

120 M. Johansson et al.

three systems manage to find largely the same lemmas on theories about lists
and natural numbers. HipSpec does however outperform the other two systems
on speed. IsaCoSy ensures that terms generated are non-trivial to prove by only
generating irreducible terms, i.e. conjectures that do not have simple proofs by
equational reasoning. These are then filtered through a counter-example checker
and passed to IsaPlanner for proof [7]. IsaScheme, as the name suggests, fol-
lows the scheme-based approach first introduced for algorithm synthesis in The-
orema [3]. IsaScheme uses general user-specified schemas describing the shape of
conjectures and then instantiates them with available functions and constants.
It combines this with counter-example checking and Knuth-Bendix completion
techniques in an attempt to produce a minimal set of lemmas.

Unfortunately, the counter-example checking in IsaCoSy and IsaScheme is of-
ten too slow for use in an interactive setting. Unlike IsaCoSy, Hipster may gener-
ate reducible terms, but thanks to the equivalence class reasoning in QuickSpec,
testing is much more efficient, and conjectures with trivial proofs are instead
quickly filtered out at the proof stage. None of our examples takes more than
twenty seconds to run.

Neither IsaCoSy or IsaScheme has been used to generate lemmas in stuck
proof attempts, but only in fully automated exploratory mode. Starting from
stuck proof attempts allows us to reduce the size of the interesting background
theory, which promises better scalability.

Proof planning critics have been employed to analyse failed proof attempts
in automatic inductive proofs [12]. The critics use information from the failure
in order to try to speculate a missing lemma top-down, using techniques based
on rippling and higher-order unification. Hipster (and HipSpec) takes a less
restricted approach, instead constructing lemmas bottom-up, from the symbols
available. As was shown in our previous work [5], this succeeds in finding lemmas
that the top-down critics based approach fails to find, at the cost of possibly also
finding a few extra lemmas as we saw in the example in section 3.2.

6 Further Work

The discovery process is currently limited to equational lemmas. We plan to
extend the theory exploration to also take side conditions into account. If theory
exploration is called in the middle of a proof attempt, there may be assumptions
associated with the current sub-goal, which could be a useful source of side
conditions. For example, if we are proving a lemma about sorting, there will
most likely be an assumption involving the “less than” operator; this suggests
that we should look for equations that have “less than” in a side condition. Once
we have a candidate set of side conditions, it is easy to extend QuickSpec to find
equations that assume those conditions.

The parameters for Hipster, e.g. the number of QuickSpec generated tests, the
runtime for Metis and so on, are largely based on heuristics from development
and previous experience. There is probably room for fine-tuning these heuristics
and possibly adapt them to the theory we are working in. We plan to add and

Hipster: Integrating Theory Exploration in a Proof Assistant 121

experiment with additional automated tactics in Hipster. Again, we expect that
different tactics will suit different theories.

Another interesting area of further work in theory exploration is reasoning
by analogy. In the example in section 3.1, theory exploration discovers lemmas
about mirror and tmap which are analogous to lemmas about lists and the func-
tions rev and map. Machine learning techniques can be used to identify similar
lemmas [10], and this information could then be used to for instance suggest
new combinations of functions to explore, new connections between theories or
directly suggest additional lemmas about trees by analogy to those on lists.

7 Summary

Hipster integrates lemma discovery by theory exploration in the proof assistant
Isabelle/HOL. We demonstrated two typical use cases of how this can help and
speed up theory development: by generating interesting basic lemmas in explo-
ration mode or as a lemma suggestion mechanism for a stuck proof attempt in
proof mode. The user can control what is discovered by varying the background
theory, and by varying Hipster’s “routine reasoning” and “difficult reasoning”
tactics; only lemmas that need difficult reasoning (e.g. induction) are presented.

Hipster complements tools like Sledgehammer: by discovering missing lem-
mas, more proofs can be tackled automatically. Hipster succeeds in automating
inductive proofs and lemma discovery for small, but non-trivial, equational Is-
abelle/HOL theories. The next step is to increase its scope, to conditional equa-
tions and to bigger theories: our goal is a practical automated inductive proof
tool for Isabelle/HOL.

Acknowledgements. The third author’s research was supported by the EU
FP7 Collaborative project PROWESS, grant number 317820.

References

1. Blanchette, J.C.: Personal communication (2013)
2. Buchberger, B.: Theory exploration with Theorema. Analele Universitatii Din
Timisoara, ser. Matematica-Informatica 38(2), 9–32 (2000)

3. Buchberger, B., Creciun, A., Jebelean, T., Kovacs, L., Kutsia, T., Nakagawa,
K., Piroi, F., Popov, N., Robu, J., Rosenkranz, M., Windsteiger, W.: Theorema:
Towards computer-aided mathematical theory exploration. Journal of Applied
Logic 4(4), 470–504 (2006), Towards Computer Aided Mathematics

4. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. In: Proceedings of ICFP, pp. 268–279 (2000)

5. Claessen, K., Johansson, M., Rosén, D., Smallbone, N.: Automating inductive
proofs using theory exploration. In: Bonacina, M.P. (ed.) CADE 2013. LNCS,
vol. 7898, pp. 392–406. Springer, Heidelberg (2013)

6. Claessen, K., Smallbone, N., Hughes, J.: QuickSpec: Guessing formal specifica-
tions using testing. In: Fraser, G., Gargantini, A. (eds.) TAP 2010. LNCS, vol. 6143,
pp. 6–21. Springer, Heidelberg (2010)

122 M. Johansson et al.

7. Dixon, L., Fleuriot, J.D.: Higher order rippling in IsaPlanner. In: Slind, K.,
Bunker, A., Gopalakrishnan, G.C. (eds.) TPHOLs 2004. LNCS, vol. 3223, pp. 83–
98. Springer, Heidelberg (2004)

8. Haftmann, F., Bulwahn, L.: Code generation from Isabelle/HOL theories (2013),
http://isabelle.in.tum.de/doc/codegen.pdf

9. Haftmann, F., Nipkow, T.: Code generation via higher-order rewrite systems. In:
Blume, M., Kobayashi, N., Vidal, G. (eds.) FLOPS 2010. LNCS, vol. 6009, pp.
103–117. Springer, Heidelberg (2010)

10. Heras, J., Komendantskaya, E., Johansson, M., Maclean, E.: Proof-pattern recog-
nition and lemma discovery in ACL2. In: McMillan, K., Middeldorp, A., Voronkov,
A. (eds.) LPAR-19. LNCS, vol. 8312, pp. 389–406. Springer, Heidelberg (2013)

11. Hurd, J.: First-order proof tactics in higher-order logic theorem provers. In: Design
and Application of Strategies/Tactics in Higher Order Logics (STRATA), number
NASA/CP-2003-212448 in NASA Technical Reports, pp. 56–68 (2003)

12. Ireland, A., Bundy, A.: Productive use of failure in inductive proof. Journal of
Automated Reasoning 16, 79–111 (1996)

13. Johansson, M., Dixon, L., Bundy, A.: Conjecture synthesis for inductive theories.
Journal of Automated Reasoning 47(3), 251–289 (2011)

14. Kühlwein, D., Blanchette, J.C., Kaliszyk, C., Urban, J.: MaSh: Machine learning
for Sledgehammer. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013.
LNCS, vol. 7998, pp. 35–50. Springer, Heidelberg (2013)

15. McCasland, R.L., Bundy, A., Smith, P.F.: Ascertaining mathematical theorems.
Electronic Notes in Theoretical Computer Science 151(1), 21–38 (2006)

16. Montano-Rivas, O., McCasland, R., Dixon, L., Bundy, A.: Scheme-based theorem
discovery and concept invention. Expert Systems with Applications 39(2), 1637–
1646 (2012)

17. Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL. LNCS, vol. 2283. Springer,
Heidelberg (2002)

18. Paulson, L.C., Blanchette, J.C.: Three years of experience with Sledgehammer, a
practical link between automatic and interactive theorem provers. In: IWIL 2010
(2010)

http://isabelle.in.tum.de/doc/codegen.pdf

Formalization of Complex Vectors
in Higher-Order Logic

Sanaz Khan Afshar, Vincent Aravantinos, Osman Hasan, and Sofiène Tahar

Dept. of Electrical & Computer Engineering, Concordia University
1455 de Maisonneuve W., Montreal, Quebec, H3G 1M8, Canada

{s_khanaf,vincent,o_hasan,tahar}@ece.concordia.ca
http://hvg.ece.concordia.ca

Abstract. Complex vector analysis is widely used to analyze continu-
ous systems in many disciplines, including physics and engineering. In
this paper, we present a higher-order-logic formalization of the complex
vector space to facilitate conducting this analysis within the sound core
of a theorem prover: HOL Light. Our definition of complex vector builds
upon the definitions of complex numbers and real vectors. This extension
allows us to extensively benefit from the already verified theorems based
on complex analysis and real vector analysis. To show the practical use-
fulness of our library we adopt it to formalize electromagnetic fields and
to prove the law of reflection for the planar waves.

1 Introduction

Vector analysis is one of the most useful branches of mathematics; a highly sci-
entific field that is used in practical problems arising in engineering and applied
sciences. Not only the real vectors but the complex vectors are a convenient tool
to describe natural and physical phenomena, including waves. They are thus
used in fields as diverse as optics, electromagnetics, quantum mechanics, nuclear
physics, aerospace, and communications. Therefore, a concrete development of
(real and complex) vector analysis by formal methods can be a huge asset in the
development and application of formal methods in connection with a variety of
disciplines, e.g., physics, medicine, control and signal processing.

The theory of vector analysis is formalized in many theorem provers, e.g.,
HOL Light [7], Isabelle/HOL [3], PVS [8], and Coq [12]. However, these works
are either limited to real vector analysis or provide very abstract formalizations
which are useful for the formalization of mathematics but lack many notions re-
quired for applied sciences. For instance, Coq [12] provides a general, axiomatic,
formalization of linear algebras. However, this work lacks many notions that are
useful for applications. In PVS [8], real vector spaces are formalized but the
work does not support complex vectors. Another example is the Isabelle/HOL
[3] with a library of real vector analysis ported from the formalization of mul-
tivariate analysis available in the HOL Light theorem prover [7]. To the best
of our knowledge, the only work addressing complex vectors is [10], where the

S.M. Watt et al. (Eds.): CICM 2014, LNAI 8543, pp. 123–137, 2014.
c© Springer International Publishing Switzerland 2014

http://hvg.ece.concordia.ca

124 S. Khan Afshar et al.

authors present a formalization of complex vectors, using the concept of com-
plex function spaces in HOL Light. However, their formalization is very abstract
and is focused on infinite dimension linear spaces: those definitions and prop-
erties which are only meaningful in a finite dimension are not addressed in the
formalization presented in [10], e.g., cross product.

In this paper we present an alternate formalization of complex vectors us-
ing the HOL Light theorem prover. HOL Light is an interactive theorem prover
which is based on classical higher-order logic with axioms of infinity, extensional-
ity, and choice in the form of Hilbert’s ε operator [6]. HOL Light uses functional
programming language Objective CAML (OCaml) as both the implementation
and interaction language. This theorem prover has been particularly successful in
verifying many challenging mathematical theorems by providing formal reason-
ing support for different mathematical theories, including real analysis, complex
analysis and vector calculus. The main motivation behind choosing HOL Light
for the formalization of complex vector analysis is the availability of rich libraries
of multivariate analysis, e.g., complex analysis [5] and Euclidean space [7].

Our formalization of complex vectors is inspired by the concept of bivectors,
originally introduced by the famous American physicist J. William Gibbs, in
his famous pamphlet “Elements of Vector Analysis” [4]. We adopt a great part
of definition and properties of vector analysis and extend them to our formal-
ization of complex vectors. Then, we prove many of complex vectors properties
by introducing componentwise operators, and inheriting properties of complex
analysis from HOL Light multivariate libraries [5]. Our formalization thus over-
comes the limitations of [10] by providing the support of finite vector spaces, in
two of the most widely used representations of vectors in applied sciences: vector
of complex numbers and bivectors. In general, the subject of vector analysis can
be sub-divided into three distinct parts [4], i.e, the algebra of vectors, the theory
of the linear vector function, and the differential and integral calculus of vector
functions. In this paper, we mainly focus on the first two parts.

The rest of the paper is organized as follows: In Section 2 we introduce two
sets of operators, which are extensively used in our formalization to make use
of the multivariate libraries of HOL Light. Section 3 presents our formalization
of complex vector algebra followed by the formalization of linearity and infinite
summation of complex vector functions. Finally, Section 4 provides an applica-
tion that illustrates the usage of our current development of complex vectors by
the formalization of some basics of electromagnetics: In particular, the law of
reflection and the law of plane of incidence for plane electromagnetic waves have
been verified.

All the source codes corresponding to the work presented in this paper are
available at: http://hvg.ece.concordia.ca/projects/optics/cxvec/.

2 Complex Vectors vs. Bivectors

Complex vectors, by definition, are vectors whose components are complex num-
bers. One approach to formalize complex vectors is as a pair of two real vectors,

http://hvg.ece.concordia.ca/projects/optics/cxvec/

Formalization of Complex Vectors in Higher-Order Logic 125

very similar to the definition of bivectors by J. William Gibbs [4]. Adopting this
approach, first, we instantly inherit all the topological and analytic apparatus
of Euclidean Space, described in [7], for real and imaginary parts of complex
vectors. Next, we can adopt the approach used for developing complex analysis
based on real analysis [5] to extend our libraries for complex vector analysis.

However, in many analytical problems, we need to have access to each element
of complex vectors as a complex number. For instance, in the standard definition
of complex vector derivative, derivative exists if and only if a function of complex
variable is complex analytic, i.e., if it satisfies the Cauchy-Riemann equations
[9]. However, this condition is very strong and in practice, many systems, which
are defined as a non-constant real-valued functions of complex variables, are not
complex analytic and therefore are not differentiable in the standard complex
variables sense. In these cases, it suffices for the function to be only differentiable
in directions of the co-ordinate system, i.e., in case of cartesian co-ordinate sys-
tems, for the x, y, and z. In these cases, it is preferred to define the complex
vector as a vector of complex numbers.

In order to have the advantages of both approaches, we define a set of oper-
ators which makes a one to one mapping between these two representations of
complex vectors.

First, we formalize the concept of vector operators, with no restriction on the
data type1:

Definition 1 (Unary and Binary Componentwise Operators)

� ∀(k : A). vector_const k = lambda i. k : AN

� ∀(f : A→ B)(v : AN). vector_map f v = lambda i. f(v$i) : BN

� ∀(f : A→ B→ C)(v1 : AN)(v2 : BN).
vector_map2 f v1 v2 = lambda i. f(v1$i)(v2$i) : CN

where v$i returns the ith component of v and lambda i. f(v$i) applies the
unary operator f on each component of v and returns the vector which has
f(v$n) as its nth component, i.e., f(v$1) as its first component, f(v$2) as its
second component, and so on.

In Section 3, we will show how to verify all the properties of “componentwise”
operations of one (complex) vector space by its counterpart field (complex num-
bers) using Definition 1. For instance, after proving that:

� ∀i f v. (vector_map f v)$i = f(v$i)

it is trivial to prove that real vector negation is vector_map of real negation:

� (−−) : realN → realN = vector_map((−−) : real→ real).

Next, we extract the real and imaginary parts of a complex vector with type
complexN as two realN vectors, by cvector_re and cvector_im, respectively,

1 In order to improve readability, occasionally, HOL Light statements are written by
mixing HOL Light script notations and pure mathematical notations.

126 S. Khan Afshar et al.

and also import the real and imaginary parts of a complex vector into its original
format by complex_vector, as follows:

Definition 2 (Mapping between complexN and realN × realN)

� cvector_re = vector_map Re

� cvector_im = vector_map Im

� ∀v1 v2. complex_vector (v1, v2) =
vector_map2 (λ x y.Cx x+ ii ∗ Cx y) v1 v2

Finally, we formally define a bijection between complex vectors and real vec-
tors with even size, as follows:

Definition 3 (Flatten and Unflatten)
� ∀v. flatten (v : complexN) : real(N,N)finite_sum =

pastecart (cvector_re v) (cvector_im v)

� ∀v. unflatten (v : real(N,N)finite_sum) : complexN =
complex_vector (fstcart v, sndcart v)

where type : real(N,N)finite_sum refers to a real vector with size N+ N. All three
functions pastecart, fstcart, and sndcart are HOL Light functions. The func-
tion flatten, takes a complex vector with size N and returns a real vector with
size N+ N in which the first N elements provide the real part of the original vector
and the second N elements provide the imaginary part of the original complex
vector. The unflatten is an inverse function of flatten. The most important
properties of flatten and unflatten are presented in Table 1. The first two
properties in Table 1, i.e., Inverse of Flatten and Inverse of Unflatten, guarantee
that flatten and unflatten are bijective. The second two properties ensure

Table 1. Mapping Complex Vectors and Real Vectors

Property Formalization
Inv. of Flatten � unflatten o flatten = I : complexN → complexN

Inv. of Unflatten � flatten o unflatten = I : real(N,N)finite_sum → real(N,N)finite_sum

Flatten map � ∀f g. f = vector_map g ⇒
∀x. flatten(vector_map f x) = vector_map g (flatten x)

Flatten map2 � ∀f g. f = vector_map2 g ⇒
∀x y. flatten(vector_map2 f x y) =

vector_map2 g (flatten x)(flatten y)

that as long as an operator is a map from complexN to realN, applying this
operator in the complexN domain, and flattening the result will give the same
result as flatten operand(s) and applying the operation in the realN domain.
This property is very helpful to prove componentwise properties of complex vec-
tors from their counterparts in real vectors analysis.

Formalization of Complex Vectors in Higher-Order Logic 127

3 Complex Vector Algebra

The first step towards the formalization of complex vector algebra is to formalize
complex vector space. Note that the HOL Light built-in type of vectors does
not represent, in general, elements of a vector space. Vectors in HOL Light are
basically lists whose length is explicitly encoded in the type. Whereas a vector
space is a set S together with a field F and two binary operators that satisfy
eight axioms of vector spaces[13] (Table 2). Therefore, we have to define these
operators for complexN and prove that they satisfy the linear space axioms.

Vector Space

Now, it is easy to formally define “componentwise” operations of complex vectors
using their counterparts in complex field, including addition and scalar multipli-
cation:

Definition 4 (Arithmetics over complexN)

� cvector_add = vector_map2 (+ : complex→ complex)
� cvector_mul (a : complex) = vector_map ((∗ : complex→ complex) a)

Table 2. Vector Space Axioms for Complex Vectors

Property Formalization
Addition associativity � ∀ u v w. u+ v+ w = (u+ v) + w

Addition commutativity � ∀ u v. u+ v = v+ u

Addition unit � ∀ u. u+ cvector_zero = u

Addition inverse � ∀ u. u+ (−− u) = cvector_zero

Vector distributivity � ∀ a u v. a % (u+ v) = a % u+ a % v

Scalar distributivity � ∀ a b u. (a+ b) % u = a % u+ b % u

Mul. associativity � ∀ a b u. a % b % u = (a ∗ b) % u

Scalar mul. unit � ∀ u. Cx(&1) % u = u

We developed a tactic, called CVECTOR_ARITH_TAC, which is mainly adapted
from VECTOR_ARITH_TAC [7] and is able to prove simple arithmetics properties
of complex vectors automatically. Using this tactic we prove all eight axioms
of vector spaces, indicated in Table 2, plus many other basic but useful facts.
In Table 2, the symbol (&) and the function (Cx) are HOL Light functions for
typecasting from integer to real and from real to complex, respectively. The
symbol (%) and (−−) are overloaded by scalar multiplication and complex vector
negation, respectively, and cvector_zero is a complex null vector. The negation
and cvector_zero are formalized using componentwise operators vector_map

and vector_const (Definition 1), respectively.

128 S. Khan Afshar et al.

Vector Products

Two very essential notions in vector analysis are cross product and inner product.
The cross product between two vectors u and v of size 3 is classically defined

as (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1). This is formalized as follows2:

Definition 5 (Complex Cross Product)

� ∀u v : complex3. u× v : complex3 =
vector [u$2 ∗ v$3− u$3 ∗ v$2; u$3 ∗ v$1− u$1 ∗ v$3; u$1 ∗ v$2− u$2 ∗ v$1]

where vector is a HOL Light function taking a list as input and returning
a vector. Table 3 presents some of the properties we proved about the cross
product.

Table 3. Cross Product Properties

Property Formalization
Left zero � ∀ u. cvector_zero× u = cvector_zero

Right zero � ∀ u. u× cvector_zero = cvector_zero

Irreflexivity � ∀ u. u× u = cvector_zero

Asymmetry � ∀ u v.−−(u× v) = v× u

Left-distributivity over addition � ∀ u v w. (u+ z)× w = u× w+ z× w

Right-distributivity over addition � ∀ u v w. u× (v+ w) = u× v+ u× w

Left-distributivity over scalar mul. � ∀ a u v. (a%u)× v = a%(u× v)

Right-distributivity over scalar mul. � ∀ a u v. u× (a%v) = a%(u× v)

The inner product is defined for two complex vectors u and v of dimension
N as
∑N

i=1 uivi, where x denotes the complex conjugate of x. This is defined in
HOL Light as follows:

Definition 6 (Complex Vector Inner Product)

� ∀(u : complexN) (v : complexN).
u cdot v = vsum (1..dimindex(: N)) (λi. u$i ∗ cnj(v$i))

where cnj denotes the complex conjugate in HOL Light, and vsum s f denotes∑
x∈s f x, dimindex s is the number of elements of s, and (: N) is the set of all

inhabitants of the type N (the “universe” of N, also written UNIV).
Proving properties for the inner product space, presented in Table 4, are quite

straightforward except for the positive definiteness, which involves inequalities.
The inner product of two complex vector is a complex number. Hence, to prove
the positive definiteness, we first prove that � ∀x. real(x cdot x), where real

is a HOL Light predicate which returns true if the imaginary part of a com-
plex number is zero. Then, by introducing function real_of_complex, which
2 The symbol “×” indicates ccross in our codes.

Formalization of Complex Vectors in Higher-Order Logic 129

returns a complex number with no imaginary part as a real number, we formally
prove the positive definiteness. This concludes our formalization of complex inner
product spaces.

Table 4. Inner Product Space

Property Formalization
Conjugate Symmetry � ∀x y. x cdot y = cnj(y cdot x)

Linearity (scalar multiplication) � ∀c x y. (c % x) cdot y = c ∗ (x cdot y)

Linearity (vector addition) � ∀x y z. (x+ y) cdot z = (x cdot z) + (y cdot z)

Zero length � ∀x. x cdot x = Cx(&0)⇔ x = cvector_zero

Positive definiteness � ∀x. &0 ≤ real_of_complex(x cdot x)

Norm, orthogonality, and the angle between two vectors are mathematically
defined using the inner product. Norm is defined as follows:

Definition 7 (Norm of Complex Vectors)
� cnorm = sqrt o cnorm2

where � ∀x. cnorm2 x = real_of_complex(x cdot x). Then the norm is over-
loaded with our new definition of cnorm.

We also define the concept of orthogonality and collinearity, as follows:

Definition 8 (Orthogonality and Collinearitiy of Complex Vectors)

� ∀x y. corthogonal x y⇔ x cdot y = Cx(&0)
� ∀x y. collinear_cvectors x y ⇔ ∃a. (y = a%x) ∨ (x = a%y)

Next, the angle between two complex vectors is formalized just like its coun-
terpart in real vectors. Obviously, defining the vector angle between any complex
vector and cvector_zero as Cx(pi/&2) is a choice, which is widely used and
accepted in literature. Note that in a very similar way we define Hermitian angle
and the real angle [11].

Definition 9 (Complex Vector Angle)

� ∀x y : complexN.
cvector_angle x y = if x = cvector_zero ∨ y = cvector_zero

then Cx(pi/&2)
else cacs((x cdot y)/Cx(norm x ∗ norm y))

In Table 5, some of the properties related to norm and analytic geometry are
highlighted.

We also define many basic notions of linear algebra, e.g., the canonical ba-
sis of the vector space, i.e., the set of vectors (1, 0, 0, 0, . . .), (0, 1, 0, 0, . . .),
(0, 0, 1, 0, . . .), and so on. This is done as follows:

130 S. Khan Afshar et al.

Table 5. Highlights of properties related to vector products

Property Formalization
Cross product & collinearity � ∀x y. x× y = cvector_zero ⇔

collinear_cvectors x y

Cauchy-Schwarz inequality � ∀x y. norm(x cdot y) ≤ norm x ∗ norm y

Cauchy-Schwarz equality � ∀x y. collinear_cvectors x y ⇔
norm(x cdot y) = norm x ∗ norm y

Triangle inequality � ∀x y. norm(x+ y) ≤ norm x+ norm y

Pythagorean theorem � ∀x y. corthogonal x y ⇔
cnorm2(x+ y) = cnorm2 x+ cnorm2 y

Dot product and angle � ∀x y. x cdot y = Cx(norm x ∗ norm y)∗
ccos(cvector_angle x y)

Vector angle range � ∀x y. ¬collinear_cvectors x y ⇒
&0 < Re(cvector_angle x y) ∧

Re(cvector_angle x y) < pi

Definition 10 � ∀k. cbasis k = vector_to_cvector (basis k) : complexN

With this definition cbasis 1 represents (1, 0, 0, 0, . . .), cbasis 2 represents
(0, 1, 0, 0, . . .), and so on.

Another essential notion of vector spaces is the one of matrix. Matrices are
essentially defined as vectors of vectors: a M × N matrix is formalized by a
value of type (complexN)M. Several arithmetic notions can then be formalized
over matrices, again using the notions of operators, presented in Definition 1.
Table 6 presents the formalization of complex matrix arithmetics. The formal
definition of arithmetics in matrix is almost identical to the one of complex
vectors, except for the type. Hence, in Table 6, we specify the type of functions,
where C represents the type complex.

Table 6. Complex Matrix Arithmetic

Operation Types Formalization
Negation : CNM → C

NM � cmatrix_neg = vector_map (−−)
Conjugate : CNM → C

NM � cmatrix_cnj = vector_map (cvector_cnj)

Addition : CNM → C
NM → C

NM � cmatrix_add = vector_map2 (+)

Scalar Mul. : C → C
NM → C

NM � cmatrix_smul = vector_map o (%)

Mul. : CNM → C
PN → C

PM � ∀m1 m2. cmatrix_mul =

lambda i j.vsum(1..dimindex(: N)) (λk.m1ik ∗ m2kj)

Finally, we formalize the concepts of summability and infinite summation, as
follows:

Formalization of Complex Vectors in Higher-Order Logic 131

Definition 11 (Summability and Infinite Summation)

� ∀(s : num→ bool)(f : num→ complexN).
csummable s f⇔ summable s(cvector_re o f) ∧

summable s (cvector_im o f)

� ∀(s : num→ bool)(f : num→ complexN).
cinfsum s f = vector_to_cvector (infsum s (λx.cvector_re (f x)))

+ ii%vector_to_cvector(infsum s (λx.cvector_im (f x)))

We, again, prove that summability and infinite summation can be addressed
by their counterparts in real vector analysis. Table 7 summarizes the key prop-
erties of summability and infinite summation, where the predicate clinear f is
true if and only if the function f : complexM → complexN is linear. As it can be
observed in Table 7, to extend the properties of summability and infinite summa-
tion of real vectors to their complex counterparts, the two functions of flatten
and unflatten are used. When we flatten a complex vector, the result would
be a real vector which can be accepted by infsum. Since summation is a com-
ponentwise operand and, as presented in Table 1, unflatten is the inverse of
flatten, unfalttening the result of infsum returns the desired complex vector.

Table 7. Linearity and summability of complex vector valued functions

Properties Formalization
Linearity � ∀f. clinear f ⇔ linear (flatten o f o unflatten)

Summability � ∀s f. csummable s f ⇔ summable s (flatten o f)

Infinite Summation � ∀s f. csummable s f ⇒
(cinfsum s f = unflatten (infsum s (flatten o f)))

In summary, we successfully formalized 30 new definitions and proved more
than 500 properties in our libraries of complex vectors. The outcome of our
formalization is a set of libraries that is very easy to understand and to be
adopted for the formalization of different applications, in engineering, physics,
etc. Our proof script consists of more than 3000 lines of code and took about
500 man-hours for the user-guided reasoning process.

Infinite Dimension Complex Vector Spaces

As mentioned earlier in Section 1, in [10], the infinite-dimension complex vector
spaces are formalized using function spaces. However, this definition brings un-
necessary complexity to the problems in the finite space. As a result, we chose
to develop our library of complex vectors then prove that there exist an isomor-
phism between our vector space and a finite vector space developed based on
the work presented in [10].

The complex-valued functions, in [10], are defined as functions from an arbi-
trary set to complex, i.e., values of type cfun = A→ complex, where A is a type

132 S. Khan Afshar et al.

variable. In general, complex vector spaces can be seen as a particular case of
complex function spaces. For instance, if the type A in A→ complex is instanti-
ated with a finite type, say a type with three inhabitants one, two, three, then
functions mapping each of one, two, three to a complex number can be seen
as 3-dimension complex vectors. So, for a type t with n inhabitants, there is a
bijection between complex-valued functions of domain t and complex vectors of
dimension n.

This bijection is introduced by Harrison [7], defining the type constructor
(A)finite_image which has a finite set of inhabitants. If A is finite and has n

elements then (A)finite_image also has n elements. Harrison also defines two
inverse operations, as follows:

� mk_cart : ((A)finite_image→ B)→ BA

� dest_cart : BA → ((A)finite_image→ B)

where BA is the type of vectors with as many coordinates as the number of
elements in A.

By using the above inverse functions, we can transfer complex vector func-
tions, for instance, cfun addition to the type complexN as follows:

v+complexN w = mk_cart (dest_cart v+cfun dest_cart w)

where the indices to the + provides the type information. This definition ba-
sically takes two vectors as input, transforms them into values of type cfun,
computes their cfun-addition, and transforms back the result into a vector.
This operation can actually be easily seen to be equivalent to cvector_add

in Definition 4. Therefore, not only we have a bijection between the types
(N)finite_image→ complex and complexN, but also an isomorphism between
the structures ((N)finite_image→ complex,+cfun) and (complexN,+complexN).

We use these observations to develop a framework proving that there exists
an isomorphism between the two type A→ complex and complexN when A has
N elements. This development results in a uniform library addressing both finite
and infinite dimension vector spaces. The details of this development can be
found in [1].

In order to show the effectiveness of our formalization, in the next section we
formally describe monochromatic light waves and their behaviour at an interface
between two mediums. Then we verify the laws of incidence and reflection. We
intentionally developed our formalization very similar to what one can find in
physics textbooks.

4 Application: Monochromatic Light Waves

In the electromagnetic theory, light is described by the same principles that
govern all forms of electromagnetic radiations. The reason we chose this applica-
tion is that vector analysis provides an elegant mathematical language in which
electromagnetic theory is conveniently expressed and best understood. In fact,
in the literature, the two subjects, electromagnetic theory and complex vector

Formalization of Complex Vectors in Higher-Order Logic 133

analysis, are so entangled, that one is never explained without an introduction to
the other. Note that, although physically meaningful quantities can only be rep-
resented by real numbers, in analytical approaches, it is usually more convenient
to introduce the complex exponential rather than real sinusoidal functions.

An electromagnetic radiation is composed of an electric and a magnetic field.
The general definition of a field is “a physical quantity associated with each point
of space-time”. Considering electromagnetic fields (“EMF”), the “physical quan-
tity” consists of a 3-dimensional complex vector for the electric and the magnetic
field. Consequently, both those fields are defined as complex vector valued func-
tions E(r, t) and H(r, t), respectively, where r is the position and t is the time.
Points of space are represented by 3-dimensional real vectors, so we define the type
point as an abbreviation for the type real3. Instants of time are considered as
real so the type time represents type real in our formalization. Consequently, the
type field (either magnetic or electric) is defined as point→ time→ complex3.
Then, since an EMF is composed of an electric and a magnetic field, we define
the type emf to represent point→ time→ complex3 × complex3. The electric
and magnetic fields are therefore complex vectors. Hence their formalization and
properties make use of the complex vectors theory developed in Section 3.

One very important aspect in the formalization of physics is to make sure
that all the postulates enforced by physics are formalized. We call these sets of
definitions as “constraints”. For instance, we define a predicate which ensures that
the electric and magnetic field of an electromagnetic field are always orthogonal,
as follows:

Constraint 1 (Valid Electromagnetic Field)
� ∀emf. is_valid_emf emf⇔

(∀r t. corthogonal (e_of_emf emf r t) (h_of_emf emf r t))

where e_of_emf and h_of_emf are two helpers returning the electric field and
magnetic field of an emf, respectively.

An electromagnetic plane wave can be expressed as U(r, t) = a(r)ejφ(r)ejωt,
where U can be either the electric or magnetic field at point r and time t, a(r)
is a complex vector called the amplitude of the field, and φ(r) is a complex
number called its phase. In monochromatic plane waves (i.e., waves with only
one frequency ω), the phase φ(r) has the form −k ·r, where “ ·” denotes the inner
product between real vectors. We call k the wavevector of the wave; intuitively,
this vector represents the propagation direction of the wave. This yields the
following definition:

Definition 12 (Monochromatic Plane Wave)
� plane_wave (k : real3) (ω : real) (E : complex3) (H : complex3) : emf

= λ(r : point) (t : time). (e−ii(k·r−ωt)E, e−ii(k·r−ωt)H)

where, again we accompany this physical definition with its corresponding Con-
straint 2, is_valid_wave, which ensures that a plane wave U is indeed an
electromagnetic field and the wavevector is indeed representing the propagation
direction of the wave. This former condition will be satisfied, if and only if, the
wavevector k, electric field, and magnetic field of the wave are all perpendicular.

134 S. Khan Afshar et al.

Constraint 2 (Valid Monochromatic Wave)
� ∀emf. is_valid_wave wave⇔

(is_valid_emf wave ∧
(∃k w e h.
&0 < w ∧ ¬(k = vec 0) ∧ wave = plane_wave k w e h ∧
corthogonal e (vector_to_cvector k) ∧
corthogonal h (vector_to_cvector k))

where, vector_to_cvector is a function from realN to complexN, mapping a
real vector to a complex vector with no imaginary part.

Now, focusing on electromagnetic optics, when a light wave passes through
a medium, its behaviour is governed by different characteristics of the medium.
The refractive index, which is a real number, is the most dominant among these
characteristics, therefore the type medium is defined simply as the abbreviation
of the type real. The analysis of an optical device is essentially concerned with
the passing of light from one medium to another, hence we also define the plane
interface between the two mediums, as medium× medium× plane× real3, i.e.,
two mediums, a plane (defined as a set of points of space), and an orthonormal
vector to the plane, indicating which medium is on which side of the plane.

Fig. 1. Plane Interface Between Two Mediums

In order to show how the effectiveness of our formalization, we prove some prop-
erties of waves at an interface (e.g., the law of reflection, i.e., a wave is reflected in
a symmetric way to the normal of the surface) derived from the boundary condi-
tions on electromagnetic fields. These conditions state that the projection of the
electric and magnetic fields shall be equal on both sides of the interface plane. This
can be formally expressed by saying that the cross product between those fields
and the normal to the surface shall be equal:

Formalization of Complex Vectors in Higher-Order Logic 135

Definition 13 (Boundary Conditions)

� boundary_conditions emf1 emf2 n p t⇔
n× e_of_emf emf1 p t = n× e_of_emf emf2 p t ∧
n× h_of_emf emf1 p t = n× h_of_emf emf2 p t

We then formalize a plane interface between two mediums, in the presence of a
plane wave, shown in Fig. 1, with the following predicate:

Constraint 3 (Plane Wave and a Plane Interface)

� is_plane_wave_at_interface i emfi emfr emft ⇔
is_valid_interface i ∧ is_plane_wave emfi ∧
is_plane_wave emfr ∧ is_plane_wave emft ∧
let (n1, n2, p, n) = i in

let (ki, kr, kt) = map_triple k_of_w (emfi, emfr, emft) in
let (ei, er, et) = map_triple (norm ◦ e_of_w) (emfi, emfr, emft) in
let (hi, hr, ht) = map_triple (norm ◦ k_of_w) (emfi, emfr, emft) in
0 ≤ (ki · norm_of_plane p) ∧ (kr · norm_of_plane p) ≤ 0 ∧
0 ≤ (kt · norm_of_plane p) ∧
(∀pt. pt ∈ p⇒
∀t. boundary_conditions (emfi + emfr) emft n pt t) ∧
∃k0. norm ki = k0n1 ∧ norm kr = k0n1 ∧ norm kt = k0n2 ∧
∃η0. hi = ein1/η0 ∧ hr = ern1/η0 ∧ ht = etn2/η0 ∧ ei �= 0 ∧ er �= 0

where map_triple f (x, y, z) = (f x, f y, f z), norm denotes the norm of a com-
plex vector (defined by using the inner product), e_of_w (shorthand for “electric
field of wave”) is a helper function allowing to retrieve the electric amplitude of a
wave, and k_of_w allows us to retrieve the wavevector of a wave. The predicate
of Constraint 3 takes an interface i and three EMFs ei, er, and et, intended
to represent the incident wave, the reflected wave, and the transmitted wave,
respectively. The first four atoms of the predicate ensure that the arguments are
well-formed, i.e., i is a valid interface and the three input fields exist and are
plane waves (we refer to the implementation for details about these predicates).
From this predicate, which totally describes the interface in Fig. 1, we can prove
several foundational properties of plane waves. For instance, the incident, re-
flected, and transmitted waves all lie in the same plane (the so-called “plane of
incidence”):

Theorem 1 (Law of Plane of Incidence)

� ∀i emfi emfr emft x y z.
is_plane_wave_at_interface i emfi emfr emft ∧
is_incident_basis (x, y, z) emfi i ⇒
k_of_w emfi · x = 0 ∧ k_of_w emfr · x = 0 ∧ k_of_w emft · x = 0

where is_incident_basis (x, y, z) emfi i asserts that (x, y, z) is a basis of
the incident plane, i.e., the plane characterized by the wavevector of emfi and

136 S. Khan Afshar et al.

the normal to i (note that if these two vectors are collinear then there is an
infinity of planes of incidence). Another non-trivial consequence is the fact that
the reflected wave is symmetric to the incident wave with respect to the normal
to the surface:

Theorem 2 (Law of reflection)

� ∀i emfi emfr emft.
is_plane_wave_at_interface i emfi emfr emft ⇒

are_sym_wrt (−(k_of_w emfi)) (k_of_w emfr)
(norm_of_plane (plane_of_interface i))

where are_sym_wrt u v w formalizes the fact that u and v are symmetric with
respect to w (this is easily expressed by saying that v = 2 ∗ (u · w)w− u). Referring
to Fig. 1, Theorem 2 just means that θi = θr, which is the expression usually
found in textbooks.

The proofs of these results make an extensive use of the formalization of
complex vectors and their properties presented in Section 3: the arithmetic of
complex vectors is used everywhere as well as the dot and cross product. Our
proof script for the application consists of approximately 1000 lines of code.
Without availability of the formalization of complex vectors, this reasoning would
not have been possible, which indicates the usefulness of our work.

5 Conclusion

We presented formalization of complex vectors in HOL Light. The concepts of
linear spaces, norm, collinearity, orthogonality, vector angles, summability, and
complex matrices which are all elements of more advanced concepts in complex
vector analysis are formalized. An essential aspect of our formalization is to keep
it engineering and applied science-oriented. Our libraries developed originally
upon two different representations of complex vectors: vector of complex numbers
(complexN) and bivectors (realN × realN), which were verified to be isomorphic.
We favoured the notions and theorems that are useful in applications, and we
provided tactics to automate the verification of most commonly encountered
expressions. We then illustrated the effectiveness of our formalization by formally
describing electromagnetic fields and plane waves, and we verified some classical
laws of optics: the law of the plane of incidence and of reflection.

Our future works is extended in three different directions. The first is to enrich
the libraries of complex vector analysis. We have not yet addressed differential
and integral calculus of vector functions. Second, we plan to formally address
practical engineering systems. For instance, we already started developing elec-
tromagnetic applications, particularly in the verification of optical systems [2].
Finally, to have our formalization to be used by engineers, we need to develop
more tactics and introduce automation to our libraries of complex vectors.

Formalization of Complex Vectors in Higher-Order Logic 137

References

1. Afshar, S.K., Aravantinos, V., Hasan, O., Tahar, S.: A toolbox for complex linear
algebra in HOL Light. Technical Report, Concordia University, Montreal, Canada
(2014)

2. Afshar, S.K., Siddique, U., Mahmoud, M.Y., Aravantinos, V., Seddiki, O., Hasan,
O., Tahar, S.: Formal analysis of optical systems. Mathematics in Computer Sci-
ence 8(1) (2014)

3. Chaieb, A.: Multivariate Analysis (2014), http://isabelle.in.tum.de/repos/
isabelle/file/tip/src/HOL/Multivariate_Analysis

4. Gibbs, J.W.: Elements of Vectors Analysis. Tuttle, Morehouse & Taylor (1884)
5. Harrison, J.: Formalizing basic complex analysis. In: From Insight to Proof:

Festschrift in Honour of Andrzej Trybulec. Studies in Logic, Grammar and
Rhetoric, pp. 151–165. University of Białystok (2007)

6. Harrison, J.: HOL Light: An Overview. In: Berghofer, S., Nipkow, T., Urban, C.,
Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 60–66. Springer, Heidelberg
(2009)

7. Harrison, J.: The HOL Light theory of Euclidean space. Journal of Automated
Reasoning 50(2), 173–190 (2013)

8. Herencia-Zapana, H., Jobredeaux, R., Owre, S., Garoche, P.-L., Feron, E., Perez,
G., Ascariz, P.: PVS linear algebra libraries for verification of control software
algorithms in C/ACSL. In: Goodloe, A.E., Person, S. (eds.) NFM 2012. LNCS,
vol. 7226, pp. 147–161. Springer, Heidelberg (2012)

9. LePage, W.R.: Complex variables and the Laplace transform for engineers. Dover
Publications (1980)

10. Mahmoud, M.Y., Aravantinos, V., Tahar, S.: Formalization of infinite dimension
linear spaces with application to quantum theory. In: Brat, G., Rungta, N., Venet,
A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 413–427. Springer, Heidelberg (2013)

11. Scharnhorst, K.: Angles in complex vector spaces. Acta Applicandae Mathemat-
ica 69(1), 95–103 (2001)

12. Stein, J.: Linear Algebra (2014), http://coq.inria.fr/pylons/contribs/view/
LinAlg/trunk

13. Tallack, J.C.: Introduction to Vector Analysis. Cambridge University Press (1970)

http://isabelle.in.tum.de/repos/isabelle/file/tip/src/HOL/Multivariate_Analysis
http://isabelle.in.tum.de/repos/isabelle/file/tip/src/HOL/Multivariate_Analysis
http://coq.inria.fr/pylons/contribs/view/LinAlg/trunk
http://coq.inria.fr/pylons/contribs/view/LinAlg/trunk

AMathematical Structure for Modeling Inventions

Bernd Wegner and Sigram Schindler

Mathematical Institute, TU Berlin, TELES Patent Rights International GmbH, Germany

Abstract. The paper is the first of several ones [14,17] describing a mathematical
structure developed in the FSTP project, mathematically modeling Substantive
Patent Law (“SPL“) and its US Highest Courts‘ precedents primarily for emerg-
ing technologies inventions. Chapter 2 presents this mathematical structure com-
prising particularly, 3 abstraction levels - each comprising “inventive concepts“,
their “subset coverings“, “concept transformations“, “induced concept relations‘,
and “refinements“. Chapters 3 and 4 explain its practical application in describing
an invention respectively testing it by an Innovation Expert System (IES) for its
satisfying SPL.

Using the notion of “inventive concepts“ for precisely describing emerging
technologies inventions has been introduced into SPL precedents by the US
Supreme Court during its ongoing “SPL initiative“ - marked by its KSR/Bilski/
Mayo/ Myriad decisions. It induced, into the FSTP project, a rigorous mathemat-
ical analysis of allegedly new problems caused by these Highest Courts‘ SPL de-
cisions about emerging technologies inventions. This analysis proved extremely
fertile by enabling not only clarifying/removing obscurities in such problems but
also developing powerful “patent technology“ in the FSTP project.

1 Introduction

This FSTP project paper addresses the community of mathematicians not that much
interested in the most recent problems in SPL precedents about emerging technologies
inventions, but in contributing to its scientification in an unquestionable manner, i.e. in
exerting rigorous mathematical scrutiny to it. It hence deals with providing a mathe-
matical fundament - established by a sophisticated mathematical structure - for a very
topical area of greatest socio/economic importance for the world‘s wealthy countries, as
controlling the flow of annually several 100 billions of US Dollars [15], just as for sup-
porting the transfer into emerging countries the know-how about innovativity enabling
this wealth.

The FSTP project comprises, on the one side, a range of publications about de-
veloping the “patent/innovation technology“ for a cutting edge prototype, the “Inno-
vation Expert System (IES)“, as technologically today possible. In the future such
IESes will be indispensable for the efficiency of the everyday professional activities
of the hundred thousands of patent/innovation professionals of all kinds - in particu-
lar researchers/inventors, their R&D managers, R&D investors, patent/license lawyers,
patent examiners, judges, product managers, marketing managers, . . ., in all kinds of
emerging technologies, be it telecommunications/nano/genetics/drugs/./business/
sports/. . . technologies. These publications deal with leveraging on the capability of

S.M. Watt et al. (Eds.): CICM 2014, LNAI 8543, pp. 138–152, 2014.
c© Springer International Publishing Switzerland 2014

A Mathematical Structure for Modeling Inventions 139

precisely describing emerging technologies inventions, as required by the US Supreme
Court‘s SPL precedents during its ongoing “SPL initiative“, i.e. its famous line of
KSR/Bilski/Mayo/Myriad decisions. It thus induced, on the FSTP project, a rigorous
mathematical analysis of the thereby arising new decision problems in SPL precedents.
Its scrutiny proved extremely fertile and enabled clarifying and removing the notional
and legal obscurities in SPL stirred up by emerging technologies, i.e. having been lin-
gering in SPL since ever, as well as developing “patent/innovation technology“ based
on that scientific approach to creativity/innovativity.

On the other side, there are FSTP publications just as this one, elaborating on the
mathematical foundation of this new technology for ascertaining its well- definedness,
e.g. for excluding allegedly correct legal statements about an invention but evidently
contradicting each other - as it recently repeatedly occurred in the CAFC. The research
results published by them deal with groundbreakingmathematical/theoretical modeling
issues by Advanced IT for enabling these practical developments in the area of stimu-
lating/supporting/protecting/commercializing such emerging technology innovations.

This paper, in particular, reports about a sophisticated mathematical structure en-
abling deciding in an unquestionable as mathematically assured - and hence consistent
and predictable - way about the patent eligibility and patentability of a developing/
claimed/reexamined/licensed/infringed/. . . invention represented by a patent/ applica-
tion /contract/. . .. To this end, this new mathematical structure has been designed such
as to facilitate precisely modeling the interpretation of SPL by the Highest Courts and
their respective precedents as to emerging technologies inventions, just as the techni-
cal/factual needs arising from such inventions.

The established classical interpretations of SPL in all industrial nations are strongly
depending on the tangibility/visibility of inventions and hence prove vastly deficient
when dealing with emerging technologies inventions, as these are virtually always in-
tangible and invisible, i.e. “model based‘. They hence may be “indefinite“ and/or “pre-
emptive“ as their scopes of patent monopoly are ambiguous resp. potentially comprise
inventions not yet known at all when granting them - or just socially unwanted, e.g. as
felt threatening - all these being new reasons of their non-patent-eligibility.

But the main purpose the here presented mathematical structure must serve, for
emerging technologies inventions just as for classical ones, is to facilitate modeling
the metes and bounds of any patent analysis and achieving its objectives, namely to
support deciding correctly and semi-automatically whether it satisfies SPL. In its above
mentioned SPL initiative, more precisely in its Mayo decision, the US Supreme Court
introduced into SPL precedents the key notion of “inventive concepts“ and required
using them for construing, for any claimed emerging technologies invention its (thus
refined) claim construction, being a shorter way than saying “using its inventive con-
cepts in checking whether it meets the requirements stated by SPL“ - as explained in
legal terms in [8,9] and will mathematically be presented in detail in this and the fol-
lowing mathematical paper(s). [17]

To conclude and summarize these introductory remarks: The aim of this paper is to
present in mathematical rigor the mathematical structure developed in the FSTP project
as fundament of any IES, not just the present IES prototype, and to briefly indicate how
this mathematical frame work is motivated by and related to the everyday legal business

140 B. Wegner and S. Schindler

of patent professionals. All publications about the FSTP project and its IES prototype
are available on www.fstp-expert-system.com.

2 Concepts and Mathematical Structure

In principle, an inventive concept, in-C, is a pair of a legal concept and a technical alias
factual concept, i.e. in-C = (le-C, cr-C), the latter one supposed to be creative, hence
its name. In this Chapter totally focused on mathematical structures, only their creative
concept are considered, and for further simplification they are temporarily called just
concepts - in Section 9 these simplifications are elaborated on. In any practical applica-
tion this bisection of inventive concepts must be preserved, for sake of the quite different
beings of the notions of creative and legal concepts, i.e. for thereby establishing a legal
and factual clarity often disregarded hitherto.

1. As a first step we define the mathematical structure for a description of a concept:

Definition 1: A concept C is given by a triple of data

C = (DC, V C,UC),

where DC is a non-empty set called the domain of C, V C is a non-empty finite set of
non-empty sets vC ∈ V C, V C being called the set of value sets vC of C and where
a vC is called a value set of C, UC is a map from DC to V C, represented by a non-
empty relation from DC to V C, i.e., UC ⊆ DC × V C, each d ∈ DC is related to
some vC ∈ V C and no d ∈ DC is related to two different value sets in V C. UC is
called the universe of C.

A concept is called binary concept if V C has exactly two value sets, one being
identified with T = True and the other with F = False. This is abbreviated by
V C = {T, F}. In the following only binary concepts will be considered.
2. A binary concept has three equivalent descriptions:

i) The usual one as a triple C = (DC, {T, F}, UC), whereDC is the domain of the
concept and UC is a relation between DC and {T, F}. As defined above UC has to
satisfy the following requirements: a) each d ∈ DC is related to some vC ∈ {T, F}
and b) no d ∈ DC is related to T and F .

ii) A binary concept may be expressed by a triple C = (DC,MC, {T, F}), where
MC : DC −→ {T, F} is the map connected with UC by UC = {(d,MC(d)) | d ∈
DC}.

iii) The third description is given by the separation of the domainDC into the truth-
set TS(C), being the complete preimage of T under MC, and the false-set FS(C)
being the complete preimage of F underMC, i.e. C = (DC, TS(C), FS(C)), where
DC = TS(C) ∪ FS(C) and TS(C) ∩ FS(C) = ∅.

These descriptions are linked by the following equations:

UC = (TS(C)× {T }) ∪ (FS(C) × {F}),

where the universe UC now also is represented as a set, and the sets TS(C)×{T } and
FS(C)× {F} represent a partition of UC into two disjoint subsets, MC decomposes

A Mathematical Structure for Modeling Inventions 141

into two constant maps MC|TS(C) having the value T and MC|FS(C) having the
value F , andDC = p1(UC), p1 denoting the projection ofDC × {T, F} onto its first
factorDC.

3. Today, everyday business of a patent practitioner deals with only information in natu-
ral language or simple graphics representation, which the posc considers to be lawfully
disclosed by the document providing it (whereby the posc represents the fictional “per-
son of ordinary skill and creativity“ pertinent alias familiar to the subject area of the
patent preparation/application/prosecution/licensing - at issue, i.e. is the perfect rep-
resentative of the pertinent ordinary skill and creativity, and hence of no extraordinary
qualification). Advanced IT (e.g. Semantics, Natural Language,KnowledgeRepresenta-
tion, Compiler/Interpreter research) tells that on this information representation “level“
precise statements are impossible. For deriving from this imprecise original informa-
tion representation to a precise one, two preciseness increasing steps are indispensable
in FSTP alias Patent Technology today to be performed by the posc:

• Firstly, transforming the original and NL syntax based information representation,
e.g. of a patent specification, into a NL terms but some FOL syntax based information,
and
• secondly transforming the latter representation using compound inventive concepts

as “alphabet“ (consisting of these NL terms) - by preserving its exact FOL syntax -
into a refined knowledge representation, again using NL terms, but refined ones such
as to achieve that anyone of these non- refined NL terms is logically equivalent to
the conjunction of certain ones of these refined NL terms (in total defining the refined
alphabet).

In order to link to each other these three different kinds/representations of inven-
tive concepts of (often) different preciseness of an invention - as generated by the posc
by its refinement process - we need transformations between the sets of such associated
binary concepts. These transformations are given by bijections between underlying sub-
set coverings of the union of the universes for each concept set. Subset coverings are
defined by the following:

Definition 2: Let Cset be a finite set of concepts. A finite subset collection of the
union of the universes of the concepts belonging to Cset is given by a finite sequence
SSU = (ssU1, . . . , ssUΛ) of Λ non-empty sets

ssUλ ⊆
⋃
{UC | C ∈ Cset}

whereby the union is considered as (concept-wise) disjoint. Such a subset collection is
called a finite subset covering SSCov = (ssCov1, . . . , ssCovΛ) of the union of the
universes of the concepts in Cset, iff the following covering condition is satisfied:⋃

{ssCovλ | 1 ≤ λ ≤ Λ} =
⋃
{UC | C ∈ Cset}.

The choice of a finite sequence of subsets for the collection instead of just choosing
a finite number of subsets is motivated by the fact that for the transformation to be
defined below some subsets may have to be considered several times, which requires to
distinguish several copies of the same set formally for these cases. We may describe a

142 B. Wegner and S. Schindler

subset covering in the form SSCov = {ssCov1, . . . , ssCovΛ}, if multiple copies of
the same set do not occur.

4. Every element ssCovλ of a subset covering SSCov = (ssCov1, . . . , ssCovΛ) of
the union of the universes of the concepts in Cset can be interpreted as the universe
of a binary concept CssCovλ := (DCssCovλ, {T, F}, ssCovλ), where DCssCovλ
still has to be defined. The following equations and inclusions shows that ssCovλ is a
relation between

⋃
{DC | C ∈ Cset} and {T, F}:

ssCovλ = ssCovλ ∩ (
⋃
{UC | C ∈ Cset}) =

⋃
{ssCovλ ∩ UC | C ∈ Cset} ⊆⋃

{DC × {T, F} | C ∈ Cset} = (
⋃
{DC | C ∈ Cset})× {T, F}.

For the domain, which has not been defined so far, we get

DCssCovλ :=
⋃
{p1(ssCovλ ∩ UC) | C ∈ Cset},

where p1 denotes the projection onto the first factor of a product of sets. The partition
ofDCssCovλ into a truth- and a false-set is given by

TS(CssCovλ) :=
⋃
{p1(ssCovλ ∩ UC) ∩ TS(C) | C ∈ Cset} and

FS(CssCovλ) :=
⋃
{p1(ssCovλ ∩ UC) ∩ FS(C) | C ∈ Cset}.

5. Definition 3: Let Cset and Cset′ be two sets of concepts equipped with subset
coverings SSCov and SSCov′ of their unions of universes. A concept transformation
between Cset and Cset′ is given by a bijection Z from SSCov to SSCov′. Hence we
have the consequences:

i) The lengths Λ and Λ′ of SSCov and SSCov′ are the same.
ii) There is a permutation σ of the natural numbers from 1 to Λ such thatZ(ssCovλ)

= ssCov′σ(λ) for all 1 ≤ λ ≤ Λ.

Remark: i) Each concept transformation has an inverse given by Z−1(ssCov′λ) =
ssCovσ−1(λ).

6. Definition 4: A concept transformationZ between a concept set Cset and a concept
set Cset′ leads to an induced concept relation Ind(Z) from Cset to Cset′ as follows:
(C,C′) ∈ Ind(Z) ⊆ Cset × Cset′, if and only if there exists a λ, 1 ≤ λ ≤ Λ, such
that UC ∩ ssCovλ �= ∅ and UC′ ∩ Z(ssCovλ) = UC′ ∩ ssCov′σ(λ) �= ∅.

Remarks: i) The induced concept relation for Z−1 is given by the inverse relation of
Ind(Z), Ind(Z−1) = (Ind(Z))T .

ii) For the next paragraph we have to investigate the case that the induced relation
Ind(Z) on the concept level is a map. This implies extra properties for Z . The unique-
ness of the values of the map Ind(Z) leads to the condition, that for each C ∈ Cset
and each λ, 1 ≤ λ ≤ Λ, satisfying UC ∩ ssCovλ �= ∅, we have

UC′ ∩ Z(ssCovλ) = UC′ ∩ ssCov′σ(λ) = ∅ for all C′ ∈ Cset′ \ {(Ind(Z))(C)}.

This implies that ssCov′σ(λ) is a subset of the universe of (Ind(Z))(C). Hence
SSCov′ consists of subsets of the universes of the concepts in Cset′ and splits up

A Mathematical Structure for Modeling Inventions 143

into mutually disjoint subsequences, each of them consisting of subsets of the uni-
verse of the same concept in Cset′. The covering condition for SSCov′ implies, that
the subsequence of those ssCov′τ , which are contained in the universe UC′ of a fixed
C′ ∈ Cset′, are covering UC′.

Another consequence is that UC0 ∩ ssCovλ �= ∅ implies UC ∩ ssCovλ = ∅ for
all {C ∈ Cset | (Ind(Z))(C) �= (Ind(Z))(C0)}, i.e., SSCov splits up into mutually
disjoint subsequences, such that the sets in each subsequence are subsets of the union
of the universes of those concepts in Cset, which have the same image under Ind(Z).
Hence the concept transformation given byZ−1 may be called a refining transformation
and Cset may be called a refinement of Cset′.

Definition 5: Let Cset and Cset′ be two sets of concepts equipped with subset cov-
erings SSCov and SSCov′ of their unions of universes, Z a concept transforma-
tion between Cset and Cset′, given by a bijection Z from SSCov to SSCov′, let
Gλ : DCssCovλ −→ DCssCov′σ(λ), 1 ≤ λ ≤ Λ, be a system of maps between the
domains of the covering sets, whereZ(ssCovλ) = ssCov′σ(λ) and where the sets of the
coverings are interpreted as concepts (see paragraph 4). Then the transformation given
by Z and the system of maps Gλ, 1 ≤ λ ≤ Λ, are called truth-preserving, if

Gλ(TS(CssCovλ)) = TS(CssCov′σ(λ)), 1 ≤ λ ≤ Λ, and
Gλ(FS(CssCovλ)) = FS(CssCov′σ(λ)), 1 ≤ λ ≤ Λ.

These conditions imply that Gλ is surjective for all 1 ≤ λ ≤ Λ.

8. In connection with a concept transformation Z between a concept set Cset and a
concept set Cset′ we have the possibility to enhance the concepts in Cset by parts of
concepts in Cset′. Such an extension is constructed as follows:

i) As a first step the induced relation Ind(Z) of a concept transformation is used to
enhance each concept C = (DC, {T, F}, UC) in Cset to an extended concept Ce =
(DCe, {T, F}, UCe) in the following way:

DCe = DC ∪ (
⋃
{p1(UC′ ∩ ssCov′σ(λ)) | 1 ≤ λ ≤ Λ and (C,C′) ∈ Ind(Z)}),

UCe = UC ∪ (
⋃
{UC′ ∩ ssCov′σ(λ) | 1 ≤ λ ≤ Λ and (C,C′) ∈ Ind(Z)}).

ii) Having extended all concepts in Cset in this way, we get the extension Csete of
Cset. Simultaneously we get the extended subset covering SSCove for Csete defined
by (ssCove)slyλ = ssCovλ ∪ ssCov′σ(λ) for all 1 ≤ λ ≤ Λ. The extended concept
transformation Ze is given by just selecting the second set from the disjoint union, i.e.
Ze((ssCove)λ) = ssCov′σ(λ) = Z((ssCov)λ).

Everything just mentioned also holds, if the above restriction “. . . by parts of con-
cepts in Cset“ is left away. Then it becomes evident that the simplification performed
at the beginning of Section 1, of considering of inventive concepts just their therein
embedded creative concepts, is easily reversed: Simply by extending any inventive con-
cept - wherever it occurs - in the way just described by its legal concept component.
An alternative way of looking at that phenomenon is to ignore the just quoted initial

144 B. Wegner and S. Schindler

simplification as well as that an inventive concept is a pair of a creative concept and a
legal concept - as further going explained in Chapter 3.

To put it in other words: Anyone of the 3 components DC, VC, UC of an inventive
concept is a pair of a technical/factual space and a legal space. For facilitating grasping
the elaborations of this Chapter, we initially abstracted and may abstract also in what
follows from the inventive concepts being bifid - i.e. mentally just leave their bisection
aside - though in the end both spaces are indispensable for matching the needs of patent
jurisprudence, in particular Highest Courts‘ SPL precedents.

9. Important for these knowledge representations and their transformations is also, what
restriction of concept sets and concept transformations are induced by the needs arising
from the mathematical structures representing a patent, more precisely: the legally and
technically in-depth description of an invention/innovation - also as explained in Chap-
ter 3. Let Z be a concept transformation between the concept set Cset and the concept
set Cset′ given as a bijection from a subset covering SSCov for Cset to a subset cov-
ering SSCov′ for Cset′. Let Cset′r be a subset of Cset′. We assume without loss of
generality that

(ssCov′)λ ∩
⋃
{UC′ | C′ ∈ Cset′r} �= ∅ for all 1 ≤ λ ≤ Λr and

(ssCov′)λ ∩
⋃
{UC′ | C′ ∈ Cset′r} = ∅ for all 1 + Λr ≤ λ ≤ Λ.

Then the sets (ssCov′r)λ ∩
⋃
{UC′ | C′ ∈ Cset′r}, 1 ≤ λ ≤ Λr provide a subset

covering SSCov′r = {(ssCov′r)λ | 1 ≤ λ ≤ Λr} for Cset′r, called the restriction of
SSCov′ to Cset′r. Applying the inverse induced concept relation (Ind(Z))T to Cset′r,
i.e. looking for all C ∈ Cset being in relation Ind(Z) to concepts in Cset′r, we get
the preliminary restriction Csetpr := (Ind(Z))T (Cset′r) of Cset corresponding to
Cset′r. Finally we get with σ as in Definition 4 the restriction SSPCovr of SSCov by
setting (ssPCovr)λ := ssCovσ−1(λ) ∩

⋃
{UC | C ∈ Csetr} for all 1 ≤ λ ≤ Λr. The

definition of Ind(Z) implies that (ssPCovr)λ �= ∅ for all 1 ≤ λ ≤ Λr and even more:
For every C ∈ Csetr there exists a λ, 1 ≤ λ ≤ Λr such that (ssPCovr)λ ∩ UC �= ∅.
Setting Zr((ssPCovr)λ) := (ssCov′r)λ for 1 ≤ λ ≤ Λr we get a bijection Zr from
SSPCovr to SSCov′r.

In order to guarantee that SSPCovr is a covering we have to reduce the universes of
the concepts in Csetpr as follows:

UCnew = UC ∩ (
⋃
{(ssPCovr)λ | 1 ≤ λ ≤ Λr})

for all C ∈ Csetpr. Then SSPCovr will be a subset covering of the discrete union
of the new universes. If we want the universes of the new concepts to be surjective
on the domains, which means that the corresponding maps are defined on the whole
domains, then the domains should be modified as follows: DCnew = p1(UCnew)
for all C ∈ Csetpr. Defining Csetr := {Cnew | C ∈ Csetpr}, where Cnew has
the universe UCnew and the domain DCnew, the bijection Zr from SSPCovr to
SSCov′r represents a concept transformation from Csetr to Cset′r. Truth- and false-
sets for theCnew are obtained by TS(Cnew) = DCnew∩TS(C) and FS(Cnew) =
DCnew ∩ FS(C).

A Mathematical Structure for Modeling Inventions 145

3 Construing an Invention‘s Mathematical Structure

As mathematically introduced by Chapter 2, three levels of abstraction for the represen-
tations of all inventive concepts of an invention are defined, as usual in Semantics [10].
Next, the representation of these semantics and their preciseness associated with these
three levels is explained in some more detail. In Chapter 4 then also is indicated, how
subsets of an invention‘s concept set must be limited for being meaningful as well as
how to define different interpretations of a claimed invention, defining also the scope of
this claim claiming it 1.

But, let‘s put it simple. First, by the below 3 bullet points colloquially describe the 3
levels of granularity of the notional resolution of their inventive concepts alias “inCs“
of the invention at issue. Thereafter, Sections 10-12 describe the 3 level, once more
and more precisely, in terms of the mathematical structure introduced in Chapter 2.
For any level trivially holds that a concept is inventive iff skill does not know a set of
concepts and how to combine them such that this combination factually is equivalent to
the former concept.

• OCset is defined to denote and comprise the invention‘s inventive concepts, the O-
inCs, disclosed for the posc by reading the original documents containing them and
grasping the technical teaching they infer within it. I.e.: The layman does not exist in
this context - its understanding of the invention or of the specification or of the claim
or of the terms therein is completely irrelevant, though it may coincide with that of
the posc. As explained elsewhere, e.g. [5,6,16] and outlined in Chapter 4, the meaning
of O-inCs in isolation is often principally not definable precisely, as it may depend on
the invention‘s set of concepts selected on the BED level, as indicated in Chapter 2
by Section 3 - but even for a claim(ed invention) with only a single interpretation the
meanings of compound O-inCs are, due to natural language deficiencies, often blur-
ring/imprecise/indefinite.
• BADset is defined to denote and comprise the invention‘s binary aggregated dis-
closed inventive concepts, the BAD-inCs. Due to the limitations imposed on their gen-
eral expressiveness explained in Sect 3, and in any SPL test case to be approved by
the posc, the refined meanings of BAD-inCs (logically modeling their resp. O-inCs)

1 It is important to see already here - this has been presented in [13,17] and will be mathe-
matically elaborated on in detail in [18] - that a patent may comprise several independent
inventions, anyone claimed by an independent claim of the patent. In particular in patents
dealing with emerging technology inventions - being just model based, as explained above -
such a claim(ed invention) may have several different interpretations, anyone identified by its
BID-inC generating it. These different interpretations of this claim(ed invention) are called iso-
morphic iff their respective generative BID-inCs are isomorphic. For any claim(ed invention)‘s
interpretation exactly one scope is defined, thus also identified by its generative BID-inC.
This raises for emerging technology inventions several important new questions - actually,
these question existed for classical technologies inventions, too, but due to their tangibil-
ity/visibility never became virulent or at least noticed - such as: How to prevent granting pre-
emptive claim(ed invention)s and/or how to separate patent-eligible from non-patent-eligible
issues in a claim(ed invention) and/or what makes different but isomorphic interpretations of
a claim(ed invention) patent-eligible and patentable separately from each other (i.e. treat them
as non-isomorphic), . . .?

146 B. Wegner and S. Schindler

are precise/definite - at least, if their interpretation dependency just mentioned may be
disregarded, otherwise only the next step of refining them (then e.g. interpretation de-
pendent or otherwise dependent on other BAD-inCs, as outlined in Chapter 4 and FIG
1) will achieve their preciseness/definiteness, as required anyway for the claim(ed in-
vention)‘s SPL test.
• BEDset is defined to denote and comprise the invention‘s binary elementary dis-
closed inventive concepts, the BED-inCs. As to their refinement explained in Sect 3
holds that the refined meanings of BED-inCs (conjunctions of which logically model
the BAD-inCs) are precise/definite - possibly achieved by defining for components of
BAD-inCs different BED-inCs, e.g. being interpretation specific (see footnote 1). But
the fundamental requirement to be met by the claim(ed invention)‘s inventive concepts
on this level of notional refinements is that they are identified/defined such they show
the maximal number of distinctions as to concepts known by skill (i.e. a further refining
of a BED-inC into a set of BEDBED-inCs is either factually not possible, at all, or all
these BEDBED-inCs were known by skill already just as how to combine them such as
to be factually equivalent to BED-inC, which contradicts BED-inC being inventive by
the definition of in-Cs).

Next is shown, by Sections 10-12, that the mathematical structure defined in Chap-
ter 2 assures that the total information represented on the 3 levels always is the same
and that the respective various chunks of this information on the 3 levels are properly
mapped onto each other by concept transformations, as defined by Sections 3-9.

10. OCset: The concepts in OCset are based on the mark-up items, MUIs, taken
in accordance with the legal requirements from the patent application doc0. The legal
requirements provide the rules fromwhich parts of doc0 theMUIs can (must) be taken:
Denoting by SMUI the set of all MUIs selected from doc0, sets SSMUIh, h =
1, . . . , H , of subsets of SMUI are identified as clusters for the domainsDOCh of the
O-level concepts OCh, h = 1, . . . , H . If in a cluster more than one copy of the same
set ofMUIs will be of relevance, because this set will have different interpretations in
BADset, then we have to distinguish these copies by adding labels. Having selected
all SSMUIh there may be a non-empty remainder

RM := SMUI \
⋃
{
⋃
{sMUI | sMUI ∈ SSMUIh} | h = 1, . . . , H}.

Then OCh is defined as follows: TS(OCh) is given by the finite set of subsets in
SSMUIh having a meaning with respect to the corresponding concept BADCh and
FS(OCh) := {RM} ∪ (SSMUIh \ TS(OCh)). The rules for selecting the sets in
TS(OCh) will be made more precise in connection with the related concept BADCh

in BADset. Having defined the partition for D(OCh) in a truth- and a false-set, all
other data for OCh can be concluded easily as has been explained in paragraph 2.

11. BADset and OCset to BADset: The concepts in BADset are set up in bijec-
tive correspondenceMOAD : OCset −→ BADset with those in OCset. BADCh =
MOAD(OCh) is the conceptual reference set of a (possibly) aggregated statement mak-
ing the corresponding O-level concepts more precise. The elements of the truth-set
TS(BADCh) of the domain of BADCh are given by sets of MUIs belonging to
SSMUIh, each of them being combined with a meaning or technical notion they

A Mathematical Structure for Modeling Inventions 147

are related with. These sets of MUIs are in bijective correspondence MOADDh :
TS(OCh) −→ TS(BADCh) with the sets of MUIs in TS(OCh), or more pre-
cisely, each d ∈ TS(OCh) is exactly the set of MUIs defining MOADDh(d) ∈
TS(BADCh). This closes the gap left in the setup of OCset, because the selec-
tion of the subsets of SSMUIh for TS(OCh) is delegated to the selection of sets of
MUIs for TS(BADCh) related with some meaning or technical notion. For complet-
ing the partition of D(BADCh) into a truth- and a false-set, we set FS(BADCh) :=
{RM} ∪ (SSMUIh \ TS(OCh)).

All other data for BADCh can be concluded easily as we have explained in para-
graph 2. OCset and BADset are connected by the following bijections:

MOAD : OCset −→ BADset and MOADDh : D(OCh) −→ D(BADCh),
h = 1, . . . , H , where MOADDh is extended to the false-sets by the corresponding
identity mapMOADDh(d) := d for all d ∈ {RM}∪ (SSMUIh \TS(OCh)). Hence
MOADDh is truth-preserving for all h = 1, . . . , H .

12. BEDset and BADset to BEDset: The concepts (more precisely concept repre-
sentations) in BEDset (binary elementary disclosed) are obtained by disaggregating
those in BADset into elementary concepts, which could not be disaggregated further
in a reasonable way, still represent the properties of the invention and are formulated in
a non-ambiguous or definite way.

This procedure is represented as a concept transformation ZBAD between BADset
and BEDset by a bijection ZBAD : SSCBAD −→ SSCBED from a subset cov-
ering SSCBAD of BADset to a special subset covering SSCBED of BEDset.
SSCBED is simple in the sense that it is given by the set of universes of the con-
cepts in BEDset, i.e. each ssCBED in SSCBED is the universe of a concept in
BEDset, there are no duplications and all universes of concepts in BEDset are cov-
ered. This implies that the length of the sequence SSCBAD is given by the number of
concepts in BEDset. Furthermore Ind(Z−1

BAD) has to be a map on the concept level.
Hence according to the remarks in paragraph 6 the disaggregation of the concepts in
BADset is based on a concept wise subdivision of the union of the universes of the
concepts in BADset. Hence we have a mapping Ref : {1, . . .Λ} −→ BADset such
that ssCBADλ ⊆ Ref(λ). This leads to a mapping from BEDset to BADset given
byRef ◦Z−1

BAD. The covering condition for SSCBAD implies the covering condition

UC =
⋃
{ssCBADλ | Ref(λ) = C} for all C ∈ BADset.

Remark. Starting in the way described aboveZBAD does not comprise any information
whether or how the ssCBAD are mapped to the U(BEDC). If in each case there is
an underlying mapping, which may be a bijection in addition, the condition of being
truth-preserving can be imposed on ZBAD, like it has been explained in paragraph 7.

Remark: The condition for a concept to be elementary needs a confirmation. The same
applies to the condition that the set of concepts still describes the invention. Though
some automatized (and still to be developed) support from semantics may apply, this
decision more or less depends on the person of posc.

13. BIDset, and BEDset to BIDset: BEDset as constructed in paragraph 12 may
contain almost similar concepts or concepts having parts, which represent parts of

148 B. Wegner and S. Schindler

concepts in the same collection. In the next chapter this will be formulated more pre-
cisely by the notion of a dependent set of concepts. If the creative parts ofBIDset should
pass the independency test being part of the 10 tests representing SPL in the final chap-
ter, concepts leading to dependencies in BEDset have to be removed from BEDset.
In addition, in order that BIDset will be able to pass the novelty/nonobviousness test,
the creative parts of BIDset should not include concepts, which are anticipated by all
doc.i representing the prior art under consideration.Hence the creative parts ofBIDset,
calledBIDset for short in the following considerations, are obtained by removing con-
cepts from BEDset until we arrive at a set of binary independent, not totally antici-
pated disclosed concepts. This procedure will be explained in the next chapter. For the
following considerations the starting point is just that BIDset is a subset of BEDset.
Applying the restriction procedure introduced in paragraph 9 with respect to BIDset
to ZBAD and then to a still to be defined concept (representation) transformation ZOC

from the O-representation level to the BAD-representation level, we will be able to es-
tablish similar transformations for the new concept sets, as we initially had for OCset,
BADset and BEDset. This will be described explicitly in the next paragraphs.

14. Adjusting BADset to BIDset: As a next step we are using the restriction con-
struction given in paragraph 9 for reducingBADset toBADsetr, such that the restric-
tion ZBAD,r of the concept transformation ZBAD is a concept transformation between
BADsetr andBIDset. According to paragraph 12 Z−1

BAD induces a map Ind(Z−1
BAD)

from BEDset to BADset. Hence the concepts of the restriction BADsetr resulting
from the restriction of BEDset to BIDset is given by modifications of the concepts
in Ind(Z−1

BAD)(BIDset) as follows: The universes of the concepts in BADsetr are
obtained from universes of the concepts in (Ind(Z−1

BAD))(BIDset) by removing all
covering subsets mapped by ZBAD to the universes of concepts inBEDset\BIDset.
ZBAD,r is just the restriction of ZBAD to the remaining covering subsets. By definition
of the induced concept relation none of the universes obtained in this way can be empty.

15. Adjusting OCset to BADsetr: This is quite obvious. We only have to restrict the
inverse maps of the bijections
MOAD : OCset −→ BADset andMOADDh : D(OCh) −→ D(BADCh)
to the restricted sets inBADsetr, which finally leads to OCsetr. This also can be used
to transfer the covering sets of BADsetr to OCsetr, leading in an obvious way to a
concept transformation ZOC between OCsetr and BADsetr.

16. So far we have ignored the so-called elements Xin, 0 ≤ i ≤ I , 1 ≤ n ≤ N , describ-
ing roughly said the general properties of the patent application, derived from doc0 in
terms of aggregated concepts X0n, 1 ≤ n ≤ N combined with mirror FOL predicates
X0n, 1 ≤ n ≤ N , and the general properties of the prior art, derived from the docu-
ments doci, 1 ≤ i ≤ I , in terms of aggregated concepts Xin, 1 ≤ i ≤ I , 1 ≤ n ≤ N
combined with mirror FOL predicates Xin, 1 ≤ i ≤ I , 1 ≤ n ≤ N . Every FOL
predicateX0n can be represented by the conjunction of mirror predicates of a uniquely
determined subset of concepts in BADsetr, where these subsets of BADsetr are mu-
tually disjoint and provide a covering of BADsetr. Hence we have a surjective map

A Mathematical Structure for Modeling Inventions 149

ElBAD : BADsetr −→ {1, . . . , N}, separating BADsetr into N mutually disjoint
subsets BADsetr,n = El−1

BAD(n), 1 ≤ n ≤ N . Composing ElBAD with MOAD,r

and Ind(Z−1
BAD,r) we get the same kind of decompositions OCsetr,n and BIDsetn,

1 ≤ n ≤ N , for OCsetr and BIDset respectively. It is easy to see that the maps
MOAD,r and Ind(Z

−1
BAD,r) and the chain given by the maps ZOC and ZBAD,r decom-

pose element wise in accordance with the decompositions of the sets of concepts.

4 The Usefulness of This Mathematical Structure

“Claim construction“ is a key notion of US SPL precedents. Yet, as to emerging tech-
nologies inventions, this classical notion of claim construction has proven to be defi-
cient: In a whole series of CAFC decisions these notional deficiencies led to situations,
which its Chief Judge recently - in a case remanded to it by the Supreme Court for re-
consideration in the light of Mayo - called irreconcilable within the CAFC. A “refined
claim construction“, as implicitly required by the Supreme Court‘s Mayo decision - for
mathematicallymodeling of which themathematical structure of Chapter 2 has been de-
veloped - completes the established/classical notion of claim construction in the sense
describable as follows:

A claimed invention passes its SPL test
⇐⇒ it passes the FSTP-Test

⇐⇒ the refined claim construction is construable for it
⇐⇒ the “refined mathematical structure“ is construable for it.

The conclusion is: A claimed invention passes its SPL test ⇐⇒ the “refined mathe-
matical structure“ is construable for it.

The next paragraphs outline, by what extensions of the mathematical structure of
an invention (as defined in Chapter 2 and established for the invention in Chapter 3) it
becomes the refined mathematical structure, which will be mathematically presented in
[17]. Yet, the above 3 equivalences indicate already here: If the mathematical structure
modeling a claimed invention is a substantial part of its refined mathematical structure,
it also models a substantial part of its SPL test - and therefore is already very useful 2,
though it will unfold its full usefulness only as refined mathematical structure.

What the mathematical structure of Chapter 2 of an invention requires for becoming
its refined mathematical structure - i.e. for modeling its refined claim construction, i.e.
for modeling its SPL test - is outlined by the next two bullet points: It must

• extend its analysis (in Chapters 2 and 3) of solely an invention respectively its tech-
nical teaching (“TT.0“) to the analysis of a PTR, being defined to be a “pair of TT.0
over RS“. Thereby a “reference set“ RS is a finite set of prior art documents, doc.i‘s,
the TT.i‘s of which allegedly anticipate TT.0 or make it obvious over a combination of
them, and
2 It is important to see that, for most inventions, the seemingly plausible implication Its refined

mathematical structure models its refined claim construction ⇒ Its mathematical structure
models its claim construction is principally wrong; the reason being that the (classical) claim
construction principally has no in-Cs, at all. Practically, any limitation of a claim(ed invention)
is the cr-C of one of its in-Cs, but it may have more different in-Cs than such limitations [13].

150 B. Wegner and S. Schindler

• complete this extended analysis - and hence the correspondingly extended mathemat-
ical structure, as defined by the preceding bullet point - by the subtests FSTP test.o,
2 ≤ o ≤ 10 , of the FSTP-Test (see the list given by FIG 1), as the extended mathemat-
ical structure for this invention performs only FSTP test.1.

The FSTP-Test in FIG 1, is here simply quoted from [12] and hence it cannot be
understood completely - in [14,17] it will be described in the mathematical style as the
above description of the mathematical structure. Yet its principle of working may be
figured out already, here, by footnote 2 and the following 3 hints:

• Anyone of the finitely many “set of inCs, SoI“ identifies a different interpretation
of the claim(ed invention) (see footnote 2), for which the execution of all 10 FSTP
test.o is attempted to complete, 2 ≤ o ≤ 10. The {SoI} of the claim(ed invention)
is assumed to be determined prior to starting the FSTP-Test. On any prompt by the
FSTP-Test, the user must input into it the information it prompted for. If for a specific
claim interpretation alias SoI the execution of one of the 10 test.o cannot be completed,
because the user cannot provide the input prompted for by test.o, this SoI is abandoned
and another SoI is tested. In any case all SoIs are executed, completely or partially only.
• Any input provided by the user may be augmented by its correctness confirmation by
the posc.
• The problem P.0SoI of the NAIO test is an EPC notion, in the US SPL to be re-
placed by the total usefulness modeled by the generative {inCs} (see footnote 2) of the
claim(ed invention) identified by SoI.

FIG 1: The FSTP-Test,
whereby several of the FSTP test.o are solely indicated by their headlines.

test.1: The FSTP-Test is executed for all claim interpretations (see footnote 2), with the
posc justified definite disaggregation of the compound inventive concepts, after the
posc justified these as definite for the set of interpretations, SoI, selected in 2) and 3),
comprising the steps: It

1. prompts the user for the claim(ed invention)‘s and prior art‘s docs with their
“marked-up items, MUIs“;

2. prompts for all SoI and for any SoI‘s ∀
BADSoI −Xin ::=

∧
1≤SoI.in≤SoI.IN BAD − crCinSoI.in in doc.i-MUI‘s,

0 ≤ i ≤ I , 1 ≤ n ≤ N ;
3. prompts for the posc’s definiteness justification of ∀ compound inCs in SoI, i.e. of
∀ AD − crCinSoI.in;

4. prompts to disaggregate ∀ AD − crCinSoI.in ∀ 0 ≤ i ≤ I , 0 ≤ n ≤ N into
{BED − crCinkSoI.in | 1 ≤ kSoI.in ≤ KSoI.IN} :
BAD − crCinSoI.in =∧

1≤kSoI.in≤KSoI.IN BED − crCinkSoI.in ∧ BED − crCinkSoI.in �=
BED − crCinkSoI.in′ ∀ kSoI.in �= kSoI.in′

;
5. prompts for the posc‘s definiteness justification of its disaggregation in 4);
6. Set KSoI ::=

∑
1≤0n≤0N K0n, SSoI ::= {BED − crC0nkSoI.0n | 1 ≤ k0n ≤

K0N}, withKSoI = |{BED − crC0nkSoI.0n | 1 ≤ k0n ≤ K0N}|;

A Mathematical Structure for Modeling Inventions 151

test.2: Prompts for justifying ∀ BED-crCs in SSoI : Their lawful disclosures;

test.3: Prompts for justifying ∀ BED-inCs in SSoI : Their definiteness under §112.6;

test.4: Prompts for justifying ∀ BED-inCs in SSoI : Their enablement;

test.5: Prompts for justifying ∀ BED-inCs in SSoI : Their independence;

test.6: Prompts for justifying ∀ BED-inCs in SSoI : Their posc-nonequivalence:

1. if |RS| = 0 then BED∗ − inC0k ::= “dummy“;
2. else performing c-f ∀ 1 ≤ i ≤ |RS|;
3. It prompts to disaggregate ∀ BAD −Xin into

∧
1≤kn≤Kn BED − inCikn ;

4. It prompts to define BED∗ − inCikn ::=
either BED − inC0kn iff
BED − inCikn = BED − inC0kn ∧ disclosed ∧ definite ∧ enabled,
else “dummy(ikn)“;

5. It prompts for JUSposc(BED∗ − inCikn).

test.7: Prompts for justifying by NAIO test (see i) below) on (SSoI : P.0SoI): TT.0 is
not an abstract idea only;

test.8: Prompts for justifying ∀ BED-inCs in SSoI : TT.0 is not natural phenomena
solely;

test.9: Prompts for justifying ∀ BED-inCs on (SSoI : P.0SoI): TT.0 is novel and
nonobvious by NANO test (see ii) below) on the pair (S, if |RS| = 0 then {BED∗−
inC0k|1 ≤ k ≤ K} else {BED∗ − inCik|1 ≤ k ≤ K, 1 ≤ i ≤ |RS|});

test.10: Prompts for justifying ∀ BED-inCs in SSoI : TT.0 is not idempotent by NANO
test (see ii) below) on the pair S′ ⊆ S .

i) The “Not an Abstract Idea Only, NAIO“ test basically comprises 4 steps [4, 6, 7,
8, 9, 25], ignoring RS:

1. verifying the specification discloses a problem,P.0SoI , to be solved by the claim(ed
invention) as of SSoI ;

2. verifying, using the inventive concepts of SSoI , that the claimed invention solves
P.0SoI ;

3. verifying that P.0SoI is not solved by the claim(ed invention), if a BED-inC of
SSoI is removed or relaxed;

4. if all verifications 1)-3) apply, then this pair (claim(ed invention), SSoI) is “not an
abstract idea only“.

ii) The “Novel And Not Obvious, NANO“ test basically comprises 3 steps, checking
all “binary anticipation combinations, BACSols“ derivable from the prior art docu-
ments in RS for the invention defined by SSoI :

152 B. Wegner and S. Schindler

1. generating the ANCSol matrix, its lines representing for any prior art document.i,
i = 1, 2, . . . , I , the relations between its inventioni.Sol‘s BED-inCs to their peers
of TT.0Sol, represented by its columns;

2. automatically deriving from the ANCSol matrix the set of {ACSols} with the
minimal numberQplcs/SoI ;

3. automatically delivering (Qplcs/SoI , {ACSol}), indicating the creativity of the pair
(claim(ed invention), SoI).

References

[1] “Advanced IT” denotes IT research areas such as AI, Semantics, KR, DL, NL
[2] Brachmann, R., Levesque, H.: Knowledge Representation & Reasoning. Elsevier (2004)
[3] The Description Logic Handbook. Cambridge UP (2010)
[4] Schindler, S.: Mathematically Modeling Substantive Patent Law (SPL) Top- Down vs.

Bottom-Up, Yokohama, JURISIN 2013 (2013) ∗)
[5] SSBG pat. appl.: THE FSTP EXPERT SYSTEM ∗)
[6] SSBG pat. appl.: AN INNOVATION EXPERT SYS., IES, & ITS DATA STRUC., PTR-

DS ∗)
[7] SSBG’s Amicus Brief to the CAFC in LBC (2013) ∗)
[8] SSBG Amicus Brief to the Supreme Court in CLS (October 07, 2013) ∗)
[9] SSBG Amicus Brief to the Supreme Court in WildTangent (September 23, 2013) ∗)
[10] Schindler, S., Paschke, A., Ramakrishna, S.: Formal Legal Reasoning that an Invention

Satisfies SPL, Bologna, JURIX 2013 (2013) ∗)
[11] Schindler, S.: Substantive Trademark Law (STL), Substantive Copyright Law (SCL), and

SPL - STL Tests Are True SCL Subtests, Which Are True SPL Subtests (in prep.)
[12] Schindler, S.: Boon and Bane of Inventive Concepts and Refined Claim Construction in the

Supreme Court’s New Patent Precedents, Hawaii, IAM-2014 (2014) ∗)
[13] SSBG’s Amicus Brief to the Supreme Court as to its (In)Definiteness Questions (March 3,

2014) ∗)
[14] Wegner, B., Schindler, S.: Unabbreviated Version of “A Mathematical Structure for Model-

ing Inventions, Coimbra, CICM-2014”, http://www.fstp-expert-system.com
[15] Fiacco, B.: Amicus Brief to the CAFC in VERSATA v. SAP & USPTO (March 24, 2014)

∗)
[16] Schindler, S.: The Supreme Court’s ‘SPL Initiative’: Scientizing Its SPL Interpretation

Clarifies Three Initially Evergreen SPL Obscurities (submitted for publ., 2014) ∗)
[17] Wegner, B., Schindler, S.: A Refined Mathematical Structure for Modeling Inventions (in

prep.)
[18] Schindler, S., Shipley, H.: Petition for Certiorari to the Supreme Court in the 902 case

∗) available at www.fstp-expert-system.com

http://www.fstp-expert-system.com

Search Interfaces for Mathematicians

Andrea Kohlhase

Jacobs University Bremen and FIZ Karlsruhe, Germany

Abstract. Access to mathematical knowledge has changed dramatically
in recent years, therefore changing mathematical search practices. Our
aim with this study is to scrutinize professional mathematicians’ search
behavior. With this understanding we want to be able to reason why
mathematicians use which tool for what search problem in what phase
of the search process. To gain these insights we conducted 24 reper-
tory grid interviews with mathematically inclined people (ranging from
senior professional mathematicians to non-mathematicians). From the
interview data we elicited patterns for the user group “mathematicians”
that can be applied when understanding design issues or creating new
designs for mathematical search interfaces.

1 Introduction

Mathematical practices are changing due to the availability of mathematical
knowledge on the Web. This paper deals with the question whether mathemati-
cians have special needs or preferences when accessing this knowledge and if yes,
what are those? In particular, we focus on how mathematicians think of search
on the Web: what are their cognitive categories, what kinds of searches do they
distinguish, and which attributes do they associate with tools for math access?

The usability study [10] conducted interviews with mathematicians and es-
sentially stated that mathematicians didn’t know how to use the offerings of
mathematical search interfaces. To get a better understanding we wanted to dig
deeper. In [27] Zhao concentrates on user-centric and math-aware requirements
for math search. The former are based on mathematicians’ specific information
needs and search behaviors, the latter are the needs for structured indizes by the
system. In contrast, we focus on eliciting attributions of existing math search in-
terfaces by mathematicians versus non-mathematicians. We hope to learn what
exactly sets mathematicians apart, since from this knowledge we can deduce
implications for future mathematical designs.

We decided on using repertory grid interviews as main methodology to elicit
evaluation schemes with respect to selected math search interfaces (“mSI”) and
to understand how mathematicians classify those mSIs. The main advantage of
the method is its semi-empirical nature. On the one hand, it allows to get deep
insights into the topic at hand through deconstruction and intense discussion of
each subject’s idiosyncratic set of constructs and their resp. mapping to the set
of mSIs. On the other hand, the grids produced in such RGI sessions can be
analyzed with a General Procrustes Analysis to obtain statistically significant

S.M. Watt et al. (Eds.): CICM 2014, LNAI 8543, pp. 153–168, 2014.
c© Springer International Publishing Switzerland 2014

154 A. Kohlhase

correlations between the elicited constructs or the chosen mSIs. We used the
Idiogrid [3] and the OpenRepGrid [21] software for this.

Information search is not a single act, but a process with many strategies and
options: “In fact, we move fluidly between models of ask, browse, filter, and search

without noting the shift. We scan feeds, ask questions, browse answers, and search

again.” [19, p.7]. Therefore, we can consider the term “search” as an umbrella
term for (at least) the following approaches:

Finding = already knowing what one is looking for ([20, 23] call it “fact-
finding”)

Browsing = getting an overview over a topic or an idea of a concept ([20] calls
it “exploration of availability”)

Surfing = surrendering to the links, drifting from one to another (see [26])
Solving/Information Gathering = creating a search plan, i.e., specifying a

sequence of actions that achieves the solution of a problem (see [22, 65ff.], [8])
Asking = posing a question to find an answer (see [25])

Our question here is, what search approach is used with which assessment at-
tributes for what kind of math search tool? The answer could enable us to design
specifically for more math search approaches by learning from the used ones.

We start out in Section 2 with a description of the RGI study. In Section 3
we present the elicited interview data and note the patterns that emerge from
this data. The patterns state interesting, prototypical attributions of mathemati-
cians, which separate the data gathered from the group of mathematicians from
the one of non-mathematicians. To demo the utility of such patterns, we apply
them in a discussion of an interesting, confusing evaluation of two specific mSIs
in Section 4. We conclude in Section 5 by hinting at general design implications
for mathematical (search) interfaces based on the found set of patterns.

2 The Study

The aim of our study was to find out what distinguishes mathematicians from
non-mathematicians when using a web interface for searching relevant content,
here math content. From the outset it was clear that observational methods
wouldn’t work as the working context of a mathematician is typically neither
restrained to certain locations nor time slots. Surveys (or structured interviews)
were out of question as the answers require a deep insight of subjects into their
own math search behavior, which cannot be assumed in general. Unstructured
interviews could have been made use of to get such deep insights, but we would
either have to do too many to be able to soundly interpret them or too few to
draw general conclusions. Finally, the option of semi-structured interviews as
methodology was discarded, since it became clear in the first pilot study trials
that mathematicians tend to describe “truths” and “falsities”. In particular,
they try to scrutinize the interview or interviewer and manipulate the outcome
towards what they think is the correct answer. Thus, the interviewer has to trade
her observational stance with a continuously sparring stance, which hinders the
process of gaining deep insights.

Search Interfaces for Mathematicians 155

In the end, we opted for the methodology of repertory grid interviews, as they
allow a semi-empirical analysis, and interviewees understand quickly that they
are not asked to decide on rights or wrongs. The Repertory Grid Interview
(RGI) Technique [4, 7, 9] explores personal constructs, i.e., how persons per-
ceive and understand the world around them. It has been used as a usability/user
experience method to research users’ personal constructs when interacting with
software artifacts (see [5, 6, 24] for examples). RGI has the advantage that it
can deliver valuable insights into the perception of users even with relative low
numbers of study subjects (seeo [12] for more details).

Table 1. The RGI Elements in the Study

Element
Name

Short Description URL

zbMathNew “an abstracting and reviewing service in pure and
applied mathematics”

zbMath.org

zbMathOld the former interface of zbMathNew not available

MathSciNet “searchable database of reviews, abstracts and bib-
liographic information for much of the mathemat-
ical sciences literature”

ams.org/mathscinet

Google-Scho-
lar

“search of scholarly literature across many disci-
plines and sources”

scholar.google.com

Google “Search the world’s information, including web-
pages, images, videos and more”

google.com

myOffice the personal office as math search interface —

TIB The online catalogue of the Uni Hannover Library tib.uni-hannover.de

vifamath “The Virtual Library of Mathematics” - a meta
online catalogue

vifamath.de

myLibrary a physical library known by the subject —

arXiv “Open e-print archive with over [. . .] 10000 [arti-
cles] in mathematics”

arxiv.org

ResearchGate “a network dedicated to science and research” researchgate.net

mathoverflow “a question and answer site for professional math-
ematicians”

mathoverflow.net

myColleagues personal colleagues as math search interface —

MSC-Map “accessing math via interactive maps” based on an
MSC metric

map.mathweb.org

arXiv-Catchup an interface for catching up with the newest arti-
cles in math

arxiv.org/catchup

FormulaSearch “allows to search for mathematical formulae in
documents indexed in zbMath”

zbmath.org/formulae

Bibliography a bibliography as math search interface

2.1 The RGI Elements

As we want to cover a broad range of different types of math search interfaces we
opted for a set of 17 mSIs as RGI elements – ranging from standard mSIs like

zbMath.org
ams.org/mathscinet
scholar.google.com
google.com
tib.uni-hannover.de
vifamath.de
arxiv.org
researchgate.net
mathoverflow.net
map.mathweb.org
arxiv.org/catchup
zbmath.org/formulae

156 A. Kohlhase

“Zentralblatt Mathematik (zbMath)” or “MathSciNet” via social media plat-
forms like “mathoverflow” to scientific prototypes like the “MSC map” interface
(MSC = Math Subject Classification, see [17]). To avoid being limited to digital
mSIs, we included traditional search situations like asking colleagues or personal
office spaces as well. Table 1 summarizes the 17 elements used in the RGIs and
gives short descriptions – the ones from their websites where available – and their
web addresses if applicable. Note that wikis (e.g., “Wikipedia” or “PlanetMath”)
were excluded as the tension between searching for articles versus encyclopedia
entries was perceived problematic in the pilot study, so we opted for the former.
As we were only interested in the search behavior of mathematicians we disre-
garded mathematical software whose main task is computation or verification.

2.2 The RGI Set-Up

At the beginning of each interview the interviewer introduced the interviewee to
all mSIs based on print-outs. Both the home page with its search facilities and
the search result pages were discussed. The front page of each print-out presented
the homepage initialized with the phrase “Cauchy sequence” in the search box
if applicable. The back page displayed the search result wrt to this query. For
mSIs with special features extra pages were attached. For FormulaSearch the
LATEX query corresponding to ?a?n ∈ N was used.

An RGI interview iterates the following process until the interviewee’s indi-
vidual construct space seems to be exhausted:

i. The interviewee randomly chooses three RGI elements.
ii. He declares which two of the three elements seem more similar.
iii. He determines the aspect under which these two are more similar and the as-

pect under which the third one is different. Those aspects are the “poles” of
an interviewee-dependent evaluation dimension, the so-called “construct”.

To get a sense of what the users consider important properties of mSIs, we
extended this set-up by encouraging most interviewees to judge the “fitness”
of each mSI for mathematical search. As is typical with RGIs, the interviews
were very intense. Therefore, the findings are not only based on the actual data
elicited in the RGI but also on the deep discussions taking place during each
interview.

2.3 The RGI Data

We conducted interviews with 24 people, all of which were interested in accessing
math on the web. Out of these, 18 had a degree in mathematics. For the final
analysis we decided to use 22 RGIs: interviews with a group of 11 professional
mathematicians working in a scientific environment (“inMATH”), a group of 5
content experts for mathematical information (“infoMATH”), and a group of 6
non-mathematicians (“noMATH”). Only 3 of the participants were female.

Each interview took between 1.75 and 3 hours, in which an average of 4
constructs were elicited. The inMATH group created 50 constructs, infoMATH

Search Interfaces for Mathematicians 157

reported 28 constructs and noMATH 29 constructs. The rating scale for these
107 elicited constructs was a 7-point Likert scale.

3 Findings

As already mentioned, the RGI method is semi-empirical. This means that there
will be a quantitative and a qualitative analysis of the data gathered. Due to
space limitations we will focus on presenting and interpreting the most inter-
esting, statistically significant quantitative results in form of dendrograms and
qualitative results in form of patterns. Note that here, the theory emerges from
the data, thus, it provides us with patterns but not with proofs.

With the Generalized Procrustes Analysis (GPA) method (see [2]) 3-
dimensional data matrices can be analyzed with a multivariate statistical tech-
nique. In particular, in our RGI we can compare the individual (dim 1) natural
language constructs (dim 2) rated on our fixed set of mSIs (dim 3). We conducted
a GPA with Idiogrid for each data set and refer to [11] for a detailed description
of an analoguous GPA procedure. To provide a shared set of (virtual) standard
constructs on which the individual ratings of the RGI elements of each inter-
viewee can be compared, the GPA method produces “abstract constructs” of
the form “Con i - ConOpo i” with poles “Con i” and “ConOpo i”.

Fig. 1. Dendogram of the Abstract Construct Clusters (wrt. Euclidean distance and
Ward clustering) of inMATH, infoMATH and noMATH: we can clearly discern a
“common” cluster, which is equally shared by all three, a strong inMATH cluster and
a fairly strong noMATH cluster.

Based on a pre-study we suspected a distinction of the interviewee group
not only into mathematicians and non-mathematicians, but into research math-
ematicians, mathematics practitioners and non-mathematicians. Therefore we

158 A. Kohlhase

compared the element evaluations of the inMATH, infoMATH, and noMATH

group. We subjected the union of the group-specific sets of abstract constructs
to a cluster analysis run by OpenRepGrid resulting in the dendrogram in Fig. 1.
Recall that dendrograms are a visual representation of correlation data. Two
constructs in Fig. 1 are closely correlated, if their scores on the RGI elements
are similar. The distance to the next upper level of two constructs/groups of
constructs indicates this relative closeness. Please note that we left out the scale
in the dendrograms, as we are not interested in the absolute numbers, only in
their relative groupings. This also means, that we won’t use arguments in our
discussion of findings based on this scale. Nevertheless, we can for example, con-
clude from Fig. 1 that Con 6 inMATH and Con 7 inMATH are the most correlated
constructs. For the conversion of Idiogrid data to OpenRepGrid data we developed
the according software.

The interview data seen in Fig. 1 indeed suggest a difference between how peo-
ple in the inMATH, infoMATH and the noMATH group think about mSIs. The
infoMATH interviewees’ point of view lies between the one of inMATH and no-

MATH subjects. In particular, there are infoMATH abstract constructs in every
cluster and there is no cluster dominated by the infoMATH abstract constructs.
As this user group dilutes possible similarities or dissimilarities wrt the user
group in focus – the professional mathematicians – we further on only analyzed
the inMATH and noMATH data in depth. From here on we will call inMATH

members “mathematicians” and noMATH members “non-mathematicians”.

Fig. 2. Cluster Dendrograms of mSI Elements for inMATH and noMATH

Fig. 2 gives a visualization of the element clusters of group inMATH resp.
noMATH as dendrograms. The difference between the clusters is evident; we
will elaborate the interpretations in the next paragraphs.

There are three main element clusters for inMATH in Fig. 2. Clearly, one of
these contains the mSI elements whose main purpose it is to find mathematical
content (“math search cluster”). In the math search cluster both, Formula-

Search and MSC-Map, are innovative mathematical services, nevertheless they are

Search Interfaces for Mathematicians 159

identified as being most similar to the standard mSIs zbMathNew, MathSciNet and
zbMathOld. This shows that

Pattern 1: “Mathematicians do not assess mSIs based on familiarity.”

Another cluster includes all mSI elements that provide a personal touch in the
search process (“personal search cluster”). Here, the term “personal” labels
the interactive adaptation and customization of the search or search results in
a process driven by human interactions. In the interviews it became quite clear,
that anything involving human beings or communities was highly distinctive and
predominantly highly appreciated. So

Pattern 2: “Mathematicians trust human and community resources.”

Note that we don’t mean a naive trust here, but a trust given the sensible
precautions. Even though the element clusters of the noMATH interviewees also
include a personal search cluster (see Fig. 2), the elements Bibliography and
ResearchGate are missing and replaced by myLibrary. The inMATH participants
explicitly commented that they don’t have confidence in the librarians’ expertise
in math. Interestingly, mathematicians showed a lot of skepticism wrt Research-

Gate but not because they could not rely on the links the ResearchGate members
would provide, but rather because they mistrusted ResearchGate’s competence
in judging the relevance of links. An indication of this is also given by the well-
known observation that mathematicians like anecdotes about fellow mathemati-
cians like no other community of practice.

The third cluster groups the remaining elements. Noticeably Google and Goo-

gle-Scholar, which mathematicians nowadays use heavily for mathematical
searches, are in this cluster. Nevertheless, these elements are not specific to
math search, therefore we label this cluster as the “general search cluster”.

According to Zhao’s usability study in [27], mathematicians use “three main

approaches: general keyword search, browsing math-specific resources and personal con-

tact.” This can also be seen in our three clusters for the inMATH group.
For the noMATH element clusters we only want to point out that the clusters

are indeed very different from the ones in the inMATH dendrogram. For example,
for mathematicians the mSIs MathSciNet, zbMathNew and zbMathOld correlate the
highest, whereas for non-mathematicians each of them correlates more with a
different element than with each other. The only similarities seem to be the
obvious correlation between Google and Google-Scholar, and the same very high
correlation distance between the personal search cluster and the others.

For a more precise qualitative analysis consider the dendrogram in Fig. 3.
First we decided on fitting categories/subcategories for each cluster. We looked,
for instance, at the first main cluster and decided on the category “fit for math”.
Then we elaborated on its four subclusters, e.g., for the fourth cluster we selected
“preconditions for search” as a subcategory. Note that there are blue-colored
abstract constructs “Con i - ConOpo i” among the constructs. We can interpret
them now as characteristic constructs of the corresponding major subcluster, so
we associate each abstract construct with its subcategory. Out of convenience,

160 A. Kohlhase

Fig. 3. Cluster Dendrogram of Construct Clusters in inMATH. The first two levels of
the dendrogram were contracted for a more readable image. Moreover, the numbers in
parentheses in each construct encode the individual interviewee issuing it.

we call them by their explicit pole name together with the corresponding data
set, thus we say for example, “Con 4 inMATH ‘means’ math specificity”.

According to Kuhltau et al. in [13, 14] the information search process can
be described by a six-phase framework consisting of initiation (prompting a
search), selection (identifying information needs), exploration (pondering avail-
able tools and thus search strategies), formulation (formalizing search queries),
collection (gathering information and goal-oriented cherry picking in search re-
sults), and search closure (giving up on the search). In our study we are not
interested in the entire search process, but in the interactions with the user in-
terface, so we focus on the iterative acts of selection, exploration, formulation
and collection. In these phases a user seeking information translates a search
intension into a query or series of queries optimizing for the relevance of the
final collection of search results. Interestingly, the four phases are mirrored in
the construct clusters of the inMATH group (see Fig. 3 on the left).

Search Interfaces for Mathematicians 161

Fig. 4. Abstract Construct Ranking in inMATH via Structure Coefficients

To obtain a ranking for the abstract constructs consider the structure
coefficients of the abstract constructs (wrt their ratings on the three main princi-
pal components PCi) for each interviewee group in Fig. 4 and 5. The Euclidean
length of the resp. 3-dimensional construct vector indicates its construct’s rel-
evance. To distinguish between two abstract constructs that are in the same
subcluster in Fig. 3, we compare their structure coefficients. For any distinctive
deviation we take a closer look in the biplots for the resp. PC-dimension and
elaborate on its meaning.

It is obvious that the rankings of the inMATH group are distinct from the
ones of the noMATH group. What mathematicians care about the most is the
relevance of the search result with respect to their search intension. So they
seek interfaces and databases that allow them to formulate precisely that in
accordance with the respective search philosophy they want to apply (Con 6-

inMATH , Con 7 inMATH , Con 5 inMATH , Con 1 inMATH). As this describes a search
process that enables the user to find exactly what he is looking for, we have

Pattern 3: “Finding is the primary mathematical search task.”

Note that the math search cluster of the inMATH group in Fig. 2 also has
a clear focus on “finding”. For the noMATH math search cluster this is much
less clear, e.g., the vifamath mSI, which concentrates on collecting mathemat-
ical information (from legacy math articles to images of mathematicians), but
not on its findability, thus mimicking a physical math library without noticeable
presence of other people. The interviewer observed that interviewees aligned the
distinct kinds of search like finding, browsing or solving with the clusters, but
that the evaluation of search activities was different for mathematicians and
non-mathematicians. The former had a clear preference for finding, followed by
browsing and solving/asking, and even a hint of rejection for surfing. In contrast,
the noMATH participants indicated a preference for browsing and surfing, fol-
lowed by solving/asking and finally finding. Note that the position of “finding”
in this ranking may be well due to the fact, that only one participant in the
noMATH group worked in a scientific environment.

It is conspicuous that even though there was an obvious mSI cluster with re-
spect to “people” (the personal search cluster) for the inMATH group in Fig. 3,
there is no appreciation of “socialness” in their ranked list of constructs in Fig. 4.

162 A. Kohlhase

In particular, mathematicians distinguish certain mSIs, i.e., the tools, as so-
cially driven, but as professionals they do not appreciate “socialness” as a value
per se in their evaluation schemes. In the theory of “Communities of Practice
(CoP)” [15], practices are not only typical customs shared within a community,
but they are tools that define the community. Whereas in other CoPs social in-
teraction is a tool for achieving social bindings, in the mathematical CoP, social
interaction is a tool for doing mathematics, i.e., it is a mathematical practice.
Therefore, we note that

Pattern 4: “Mathematicians appreciate social interaction as a mathematical

tool. In particular, it is a mathematical practice to collaborate and exchange

feedback.”

In this sense, we confirm Brown’s dictum in [1] that mathematicians may rely
more heavily on their social network than other disciplines.

Fig. 5. Abstract Construct Ranking in noMATH via Structure Coefficients

Let us recall from Fig. 1, that some mSI elements were in a subcluster shared
by all three user groups. That is, with respect to these constructs the inMATH,
infoMATH as well as noMATH interviewees agreed on the evaluation of the given
mSIs. In particular, mSI scores correlate on Con 3 infoMATH (“usability”), Con 1-

noMATH (“input design”), Con 5 infoMATH (“simple design”), Con 6 noMATH (“us-
ability and interactivity”), and Con 2 inMATH (“supportiveness:result”), Con 1-

inMATH (“adequacy: search philosophy”).
We note the different flavor of the non-inMATH constructs versus the inMATH

constructs. Where the former aim for design aspects, the latter are only con-
cerned with fitness of the mSI for achieving the search intension. It becomes even
clearer if we consider the phrasing “usability” in the non-inMATH group and
“supportiveness” in the inMATH group: Whereas usability is a neutral measure
for all kinds of qualities while using an object, supportiveness is a task-oriented
requirement in the use-flow of a human person. The media-theoretic difference
is that the first doesn’t tell us anything about whether the user adopts a mSI
as a mere tool or as a medium (in the sense of McLuhan as “any extension of

the human body [. . .] as a side-effect of a technology” [18, p. 564], i.e., a technology
that empowers its users):

Pattern 5: “Mathematicians aim at adopting a search tool as a medium.”

Search Interfaces for Mathematicians 163

One consequence is that once they have adopted it as a medium, they won’t
easily change to other media. Not surprisingly, this shared construct cluster also
supports a long-standing belief that

Pattern 6: “Mathematicians appreciate function over form.”

Even though the mSI elements’ scores were highly correlated in the shared
cluster, their respective conceptualization can still disagree. To understand the
conceptualization, we look at the meanings of the distinct constructs and the
location of an element wrt constructs. For instance, for mathematicians Goo-

gle-Scholar enables a top-down approach (as search philosophy =Con 1 inMATH

) by using a very general technique of ranking the search results (high support-
iveness for presenting search results =Con 2 inMATH), but offers a very textual
input design (=Con 1 noMATH) and a medium-rated effectiveness (as part of us-
ability = Con 6 noMATH) for non-mathematicians. Here, note that the evaluation
by the mathematicians concerns the outcome, whereas the non-mathematicians
rather assess it by the input. This argument can be made more generally, as the
resp. construct clusters for the inMATH resp. noMATH groups favor the result
resp. the input. Interestingly one cluster category of the inMATH group didn’t
make it into the consensus grid. In particular, the category “supportiveness of
input” has no representative among the abstract constructs of inMATH. We
conclude

Pattern 7: “Mathematicians care more for the outcome than the input.”

This also means that mathematicians seem to be willing to trade input hard-
ships (like more complex interfaces) for output satisfaction (i.e., having perfect
precision – all found results fit the search intension– and recall – all fitting
results were found).

In Fig. 1 we observe that the constructs Con 5 inMATH , Con 6 inMATH , Con 7-

inMATH , and Con 8 inMATH are part of an abstract construct cluster only con-
taining inMATH constructs; they are the enhanced (yellow colored) constructs
in Fig. 4. Here, the math interfaces scored similarly according to the attributes
“relevance of results: driven by user”, “relevance of results: driven by data”,
“precision of input”, and “preconditions of search”. Thus, we can interpret that
a mathematical search interface that empowers the user by enabling him to fine-
tune the search query is considered to strongly improve the relevance of the
result. This interpretation is supported by Pattern 7, thus we note that

Pattern 8: “Mathematicians want to be empowered in the search process.”

Moreover, mathematicians obviously realize that this precision comes at a
cost: the underlying data have to be structured enough. Therefore, if the data
do not allow such a fine-tuning right away, they are willing to iteratively refine
their query themselves. A direct consequence seems to be that mathematicians
want as much support in formulating a search query as they can get. Whereas
non-mathematicians will agree that Pattern 7 is different from their own ap-
proach, wrt the above consequence their attitude might be different as the pat-
tern describes the disregard of input facilities by mathematicians and the latter

164 A. Kohlhase

the total investment of time and energy towards satisfying the search intension.
We already observed that this is a cluster of elements marked by mathematicians
only. That is, this kind of evaluation scheme didn’t occur to non-mathematicians,
thus it isn’t a dominant one.

For Pattern 3 we argued with the abstract construct ranking within Fig. 4. In-
terestingly, three of the four first ranked items in that list belong to the uniquely
mathematical cluster. The fourth one (Con 8 inMATH , “preconditions for search”)
occurred in the inMATH group only, that is, it discriminates between mathemati-
cians’ and non-mathematicians’ search behavior ever more. As mathematicians
take the preconditions for search into account in the exploration phase of an
information search process, they value their anticipation of the search outcome.
This has two consequences:

Pattern 9: “Mathematicians base their information search process on trans-

parency of the search result.”

Additionally, if they put a lot of thought into the exploration phase, they
expect to be rewarded by a good search result. So we hold

Pattern 10: “Mathematicians expect to find meaningful information in the

search result.”

In the interviews, it was striking how much awe Google evoked. Pattern 10 solves
this riddle: Considering the low amount of work to be invested in the exploration
phase, the expectations towards the search results are really low. Therefore, the
relevance of Google searches amazes mathematicians tremendously.

4 Understanding the Mathematical Perspective on mSIs:
an Example

To see the utility of the elicited patterns, we will now discuss the mSIs MathSci-

Net and zbMathNew under a mathematical perspective, which is informed by our
elicited patterns.

Fig. 6. mSI of MathSciNet

Let us start with MathSciNet

as seen in Fig. 6 and zbMathNew

shown in Fig. 7. From above
we know that mathematicians
don’t discern between MathSci-

Net and zbMathNew. This imme-
diately raises the question why
this might be the case. Evi-
dently both layouts use a lot
of vacuity to focus the users’
attention and use bright col-
ors sparingly. But we know be-
cause of Pattern 6, that the

Search Interfaces for Mathematicians 165

form is not important to mathematicians, so the reason for their alignment can-
not stem from these observations. Unfortunately, at first glance the similarity
of the start page already ends here: zbMathNew provides a simple search, i.e., a
one-step search, MathSciNet a multi-dimensional, structured search. Moreover,
zbMathNew offers innovative extra services like mathematical software search and
formula search, MathSciNet an extra citation service. The former offers inline
search fields to specify the search. The latter provides social media connections.
If we look at the search result page of each, we will find that there are as many
differences.

Now let us take a closer look, for example, at the difference between zbMath-

New’s simple search and MathSciNet’s structured search. We know because of Pat-
tern 7, that mathematicians value the outcome higher than the input. Therefore,
as zbMathNew offers not only the functionality of MathSciNets multi-dimensional
search via inline search fields in the simple search but also choicewise a link to
a structured search, the functionality seems to be the same for mathematicians.
The input inefficiencies can be neglected, the potential outcome is the same.

Fig. 7. mSI of zbMathNew

What about the clear differ-
ences in functionality in these
mSIs? Note that the social me-
dia links weren’t recognized
once in the interviews with the
mathematicians, which also
fits Pattern 4, stating that
they appreciate the commu-
nities’ practices, but not the
links to a community them-
selves. Then, it seems rather
evident that zbMathNew offers
more functionality, as MathSci-
Net’s extra functionality con-
sists only of the citations in-
dex. So shouldn’t Pattern 8
kick in and lead to a distinctive
perception of both systems?

We can counter-argue with two patterns. On the one hand, Pattern 3 tells
us that finding is the major kind of search a mathematician is conducting. The
additional services zbMathNew provides the user with are essentially no services
that support finding, they rather support browsing. This is clear for the mathe-
matical software search. The facetted search with its abilities to refine a search in
the process also supports browsing behavior explicitly. In contrast, the formula
search feature was designed for finding, but in the interviews, mathematicians
indicated that they simply don’t believe in the finding capability of the software
(unfair as it is). In [27], interestingly, a similar phenomenon was observed. The
underlying reason for this disbelief could lie in Pattern 5, namely that they have
adopted zbMathNew as a medium, and that uses string search. Therefore, their
conceptualization of this service doesn’t fit yet and is a challenge to change.

166 A. Kohlhase

On the other hand, zbMathNew is rather new. The older version didn’t have
as many relevant extra features as this new one. Thus, Pattern 5 strikes again.
Quite a few interviewees reported that they use MathSciNet and even when they
became aware that zbMathNew has more to offer now, they didn’t mention any
intention to change over.

We can summarize that the patterns help us understand the perception of
mathematicians much better. This new-found understanding in turn triggers
new design challenges and ultimately better, more math-oriented designs.

5 Conclusion

We have presented an RGI study that was concerned with mathematical search
interfaces. To be able to understand the idiosyncracies of mathematicians, we
interviewed mathematicians as well as non-mathematicians, with a focus on the
former. From the quantitative data and its qualitative interpretation several
patterns emerged:

P 1 “Mathematicians do not assess mSIs based on familiarity.”
P 2 “Mathematicians trust human and community resources.”
P 3 “Finding is the primary mathematical search task.”
P 4 “Mathematicians appreciate social interaction as a mathematical tool. In partic-

ular, it is a mathematical practice to collaborate and exchange feedback.”
P 5 “Mathematicians aim at adopting a search tool as a medium.”
P 6 “Mathematicians appreciate function over form.”
P 7 “Mathematicians care more for the outcome than the input.”
P 8 “Mathematicians want to be empowered in the search process.”
P 9 “Mathematicians base their information search process on transparency of the

search result.”
P 10 “Mathematicians expect to find meaningful information in the search result.”

With these patterns many design issues for mSIs can be understood and elabo-
rated on much deeper now.

For instance, Libbrecht posed in[16] the question whether (mathematical)
search queries may become too precise (so that the search result becomes too
small). But this question does only make sense for browsing queries not for
finding queries. The Pattern 8 suggests that the solutions should be finetuned
to the distinct kind of searches. If that is not possible, the default case should
be “finding” because of Pattern 3.

Pattern 5 indicates that a change from one tool to another is not easily done by
mathematicians. In particular, a change of media will only occur if the innovation
is disruptive, a mere incremental innovation won’t suffice. Therefore, phrasing a
major change (like the one from zbMathOld to zbMathNew) as a mere update won’t
convince mathematicians to switch, and because of Pattern 7, neither will an
announcement of change that essentially points to the new Google-like layout of
the homepage.

Search Interfaces for Mathematicians 167

Moreover, our data suggest that the search approach “finding” is used by
mathematicians predominantly when interacting with elements from the math
search cluster, “browsing” when interacting with mSIs in the general search
cluster and “solving/asking” when using elements in the personal search cluster.
Thus, we can look for the properties of the resp. cluster to extend mSIs by more
search approaches. Note that Google is best-known for its browsing qualities,
only for specific kinds of queries it is now also successful in finding. Under this
aspect Google is also often used by mathematicians.

Our future work is concerned with general design implications based on the
foundational work conducted in this paper. For example, one simple consequence
concerns the development process of math user interface development: Specify
the user group of your math service beforehand and appreciate the credo of
“participatory design” that strongly admonishes developers to acknowledge the
fact that “You are not the user!”. In our study, e.g., the mathematics practi-
tioners turned out to be different from the professional mathematicians. Another
consequence might be that we should make mathematicians more effective by
supporting their interventions in formulating a search query.

Finally, we like to note that the RGI methodology – even though strenuous
at times – seems to be a worthy methodology for use with mathematicians.

Acknowledgement. I thank all my interviewees for their motivation and pa-
tience with the RGI method. Moreover, I appreciated the supportive work en-
vironment at zbMath, especially discussions with Wolfram Sperber. This work
has been funded by the Leibniz association under grant SAW-2012-FIZ.

References

[1] Brown, C.M.: Information Seeking Behavior of Scientists in the Electronic In-
formation Age: Astronomers, Chemists, Mathematicians, and Physicists. JA-
SIS 50(10), 929–943 (1999)

[2] Gower, J.: Generalized procrustes analysis. Psychometrika 40, 33–51 (1975) ISSN:
0033-3123

[3] Grice, J.W.: Idiogrid: Software for the management and analysis of repertory
grids. Behavior Research Methods, Instruments, & Computers 34, 338–341 (2002)

[4] Hassenzahl, M., Wessler, R.: Capturing Design Space From a User Perspec-
tive: The Repertory Grid Technique Revisited. International Journal of Human-
Computer Interaction. 3rd ser. 12, 441–459 (2000) ISSN: 1044-7318

[5] Heidecker, S., Hassenzahl, M.: Eine gruppenspezifische Repertory Grid Analyse
der wahrgenommenen Attraktivität von Universitätswebsites. In: Gross, T. (ed.)
Mensch & Computer, pp. 129–138. Oldenbourg Verlag (2007)

[6] Hertzum, M., Clemmensen, T.: How do usability professionals construe usability?
Int. J. Hum.-Comput. Stud. 70(1), 26–42 (2012)

[7] Jankowicz, D.: The Easy Guide to Repertory Grids. Wiley (2003) ISBN:
0470854049

[8] Kellar, M., Watters, C.R., Shepherd, M.A.: A field study characterizing Web-
based information-seeking tasks. JASIST 58(7), 999–1018 (2007)

168 A. Kohlhase

[9] Kelly, G.: A Brief Introduction to Personal Construct Theory. In: International
Handbook of Personal Construct Technology, pp. 3–20. John Wiley & Sons (2003)

[10] Kitchen, T.: The European Digital Mathematics Library: Usability Study,
https://wiki.eudml.eu/eudml-w/images/D6.1.pdf (visited on March 14, 2014)

[11] Kohlhase, A.: Framings of Information: Readers’ Perception of Information
Sources in Spreadsheets. Tech. rep. 30. Jacobs University (March 2013),
kwarc.info/ako/pubs/tr_hsi_2013.pdf

[12] Kohlhase, A.: Human-Spreadsheet Interaction. In: Kotzé, P., Marsden, G.,
Lindgaard, G., Wesson, J., Winckler, M. (eds.) INTERACT 2013, Part IV. LNCS,
vol. 8120, pp. 571–578. Springer, Heidelberg (2013)

[13] Kuhlthau, C.C., Heinström, J., Todd, R.J.: The information search process revis-
ited: is the model still useful? IR Information Research 13(4) (2008)

[14] Kuhlthau, C.C.: Seeking meaning. A process approach to library and information
services, 2nd edn., XVII, 247 p. Libraries Unlimited (2004)

[15] Lave, J., Wenger, E.: Situated Learning: Legitimate Peripheral Participation
(Learning in Doing: Social, Cognitive and Computational Perspectives S.). Cam-
bridge University Press (1991)

[16] Libbrecht, P.: Escaping the Trap of Too Precise Topic Queries. In: Carette, J.,
Aspinall, D., Lange, C., Sojka, P., Windsteiger, W. (eds.) CICM 2013. LNCS
(LNAI), vol. 7961, pp. 296–309. Springer, Heidelberg (2013),
http://ceur-ws.org/Vol-1010

[17] Mathematics Subject Classification (MSC) SKOS (2012), http://msc2010.

org/resources/MSC/2010/info/ (visited on August 31, 2012)
[18] McLuhan, M.: Understanding Media: The Extensions of Man (Critical Edition),

edited by W. Terrence Gordon. Gingko Press, Corte Madera (1964) (2003)
[19] Morville, P., Callender, J.: Search Patterns: Design for Discovery. O’Reilly Media

(2010) ISBN: 9781449383060
[20] Navarro-Prieto, R., Scaife, M., Rogers, Y.: Cognitive strategies in web searching.

In: Proceedings of the 5th Conference on Human Factors & the Web (1999)
[21] OpenRepGrid.org, http://www.openrepgrid.org (visited on March 14, 2014)
[22] Russell, S.J., Norvig, P.: Artificial Intelligence — A Modern Approach. Prentice

Hall, Upper Saddle River (1995)
[23] Shneiderman, B., Byrd, D., Croft, W.B.: Clarifying Search: A User-Interface

Framework for Text Searches (1997) ISSN: 1082-9873
[24] Tan, F.B., Gordon Hunter, M.: The Repertory Grid Technique: A Method for the

Study of Cognition in Information Systems. English. MIS Quarterly 26(1), 39–57
(2002) ISSN: 02767783

[25] Taylor, R.S.: The process of Asking Questions. American Documentation 13(4),
391–396 (1962), doi:10.1002/asi.5090130405

[26] Wise, K., Kim, H.J., Kim, J.: The effect of searching versus surfing on cognitive
and emotional responses to online news. Journal of Media Psychology: Theories,
Methods, and Applications 21(2), 49–59 (2009), doi:10.1027/1864-1105.21.2.49

[27] Zhao, J., Kan, M.-Y., Theng, Y.L.: Math Information Retrieval: User Require-
ments and Prototype Implementation. In: Proceedings of the 8th ACM/IEEE-CS
Joint Conference on Digital Libraries, JCDL 2008, pp. 187–196. ACM, Pittsburgh
(2008) ISBN: 978-1-59593-998-2

https://wiki.eudml.eu/eudml-w/images/D6.1.pdf
kwarc.info/ako/pubs/tr_hsi_2013.pdf
http://ceur-ws.org/Vol-1010
http://msc2010.org/resources/MSC/2010/info/
http://msc2010.org/resources/MSC/2010/info/
http://www.openrepgrid.org

A Data Model and Encoding for a Semantic,

Multilingual Terminology of Mathematics

Michael Kohlhase

Computer Science, Jacobs University Bremen
http://kwarc.info/kohlhase

Abstract. To understand mathematical language we have to under-
stand the words of mathematics. In particular, for machine-supported
knowledge management and digital libraries, we need machine-actionable
terminology databases (termbases). However, terminologies for Mathe-
matics and related subjects differ from vocabularies for general natural
languages in many ways. In this paper we analyze these and develop a
data model for SMGloM the Semantic, Multilingual Glossary of Math-
ematics and show how it can be encoded in the OMDoc/MMT theory
graph model. This structured representation naturally accounts for many
of the terminological and ontological relations of a semantic terminology
(aka. glossary). We also demonstrate how we can account for multilin-
guality in this setting.

1 Introduction

Text-based information systems for mathematics and the linguistics of mathe-
matics are still in their infancy due to the inherent complexity of mathematical
documents, domains, and knowledge. One issue of particular importance is the
problem of dealing with mathematical vocabularies, since they are intimately
linked with both the underlying domain of mathematical knowledge and the
linguistic structures that make up the particular documents. In general nat-
ural language processing, the establishment of machine-actionable terminology
databases has kick-started so many applications and systems that the field is un-
thinkable without such resources. The SMGloM (Semantic Multilingual Glossary
for Mathematics) is an attempt to jump-start similar applications.

The SMGloM system [SMG] builds on the MMT API [Rab13] and MathHub.
info [CICM1414] for archiving and editing support. It supplies glossary-oriented
web services that answer termbase queries, e.g. for terminological relations, def-
initions, or translations and generates glossaries for sub-corpora. The current
glossary contains

– ca. 150 glossary entries from elementary mathematics, to provide a basis for
further development and

– ca. 350 are special concepts from number theory to explore the suitability of
the SMGloM for more advanced areas of mathematics.

In this paper we analyze the special needs of terminologies for Mathematics and
related subjects and develop a data model for the SMGloM. This structured

S.M. Watt et al. (Eds.): CICM 2014, LNAI 8543, pp. 169–183, 2014.
c© Springer International Publishing Switzerland 2014

http://kwarc.info/kohlhase

170 M. Kohlhase

representation naturally accounts for many of the terminological and ontological
relations of a semantic terminology (aka. glossary).

Let us briefly recap the relevant linguistic and epistemological issues involved
in terminological databases to ground our discussion of the special case of math-
ematical terminologies.

Glossaries Traditionally, a glossary consists of a list of technical/non-standard
terms with short definitions ordered alphabetically or in the chronology of the
document it illustrates. Figure 1 shows an example from Mathematics.

braid . . .
branch has multiple meanings:

1. In complex analysis, a branch (also called a sheet) is a portion of the
range of a multivalued function over which the function is single-valued.

2. In a directed graph G = 〈V,E〉 we call E the set of edges or branches
in G.

3. If T = 〈V,E〉 is a tree and u ∈ V , then the branch at u is the maximal
subtree with root u (Harary 1994, p. 35).

4. . . .
branch curve . . .

Fig. 1. A Glossary Entry for Mathematics

Terminologies Modern glossaries are usually generated from terminologies or
termbases – i.e. special ontologies that organize terms and their definitions by
terminological relations and/or the inherent structure of the underlying domain.

Terms are words and compound words that in specific contexts are given
specific meanings. These may deviate from the meaning the same words have in
other contexts and in everyday language. More specifically, we consider terms
as lexemes which summarize the various inflectional variants of a word or com-
pound word into a single unit of lexical meaning. Lexemes are usually referenced
by their lemma (or citation form) – a particular form of a lexeme that is
chosen by convention to represent a canonical form of a lexeme. Grammatical
information about a lexeme is represented in a lexicon – a listing of the lexemes
of a language or sub-language organized by lemmata.

Terminological relations are semantic relations between terms1. The ones com-
monly used in terminologies are the following:

synonymy two terms are synonymous, if they have the same meaning, i.e. they
are interchangeable in a context without changing the truth value of the
proposition in which they are embedded.

1 In linguistics, these relations are usually called “semantic relations”, but in the
context of this note, the term “semantic” is so convoluted that we will highlight the
fact that they are relations between terms.

A Data Model and Encoding for a Semantic, Multilingual Terminology 171

hypernymy term Y is a hypernym of term X if every X is a (kind of) Y .
hyponymy the converse relation of hypernymy
meronomy term Y is a meronym of term X if Y is a part of X
holonymy the converse relation of meronomy
homonymy two terms are homonyms if they have the same pronunciation and

spelling (but different meanings).
antonomy two terms are antonyms, if they have opposite meanings: one is the

antithesis of the other.

We will call a termbase semantic, if it contains terminological relations and/or
a representation of the domain relations.

The paradigmatic example of a termbase organized along terminological re-
lations is WordNet [Fel98; WN]. In WordNet the synonymy relation is treated
specially: the set of synonyms – called a synset – is taken to represent a specific
entity in the world – a semantic object – and forms the basic representational
unit of digital vocabularies. Indeed, all other terminological relations are inher-
ited between synonyms, so it is sensible to quotient out the synonymy relation
and use synsets.

Semantic terminologies are very useful linguistic resources: WordNet been
used as the basis for many different services and components in information
systems, including word sense disambiguation, information retrieval, automatic
text classification, automatic text summarization, and machine translation. Note
that WordNet and related lexical resources do not model the relations of the
objects the terms describe other than via the terminological relations above.
For instance, WordNet is ignorant of the fact that a “son” is “male”2 and a
“child” of another “man”. In particular, definitions are not first-class citizens in
WordNet-like resources, they are included into the data set for the purposes doc-
umentation, primarily so that human lexicographers can delineate the synsets.
But to fully “understand” terms in their contexts – e.g. to automate process-
ing of documents that involve such terms, and drawing inferences from them –
domain relations like the ones above are crucial.

Domain Relations. Semantic glossaries and digital vocabularies usually make
some relations between entries explicit, so that they can be used for reasoning and
applications. Linguistically, the domain relations – i.e. the relations between the
(classes of) objects denoted by words – come into play in the form of semantic
roles – the thematic relations that express the role that a noun phrase plays
with respect to the action or state described by a sentence’s verb. The basic idea
is that one cannot understand the meaning of a single word without access to
all the essential knowledge that relates to that word.

Prominent examples of termbases with semantic roles include FrameNet [FN10;
FN] and PropBank [PKG05; PB]. The former collects the semantic roles into
frames like Being born with a role Child, and additional roles like Time, Place,
Relatives, etc. Such resources allow additional natural language processing steps

2 Do not confuse that with the grammatical gender of the word “son” is masculine or
the fact that “man” is a hypernym of “son”.

172 M. Kohlhase

like “semantic role labeling”, which in turn allow the extraction of facts from texts,
e.g. in the formofRDFtripleswhich can thenbeused for textual entailmentqueries,
question answering, etc.; see e.g. [Leh+13] for applications and references.

A Semantic, Multilingual Termbase for Mathematics. For the SMGloM data
model we will essentially start with the intuitions from term bases above, but
adapt them to the special situation of mathematical vernacular, the everyday
language used in writing mathematics in textbooks, articles, and to blackboards.
This is a mixture of natural language, formulae, and diagrams3 all of which utilize
special, domain-dependent, and dynamically extensible vocabularies. SMGloM
differs from resources like FrameNet in the domain representation: we will reuse
the OMDoc/MMT format for representing mathematical domains.

2 A Data Model for SMGloM

The data model of SMGloM is organized as a semantic term base with strong
terminological relations and an explicit and expressive domain ontology. The
terms are used as “named mathematical entities” in the sense that they are
rigid designators in Kripke’s sense, rather than univalent descriptions.

2.1 Components of Terminology in Mathematics

Whereas in general natural language word meanings are grounded in the per-
ceived world, the special vocabularies used in mathematics are usually grounded
by (more or less rigorous) definitions of the mathematical objects and concepts
they denote: We have learned to reliably and precisely recognize an object as a
“chair” even though we have a hard time when asked to give a precise definition4

of what constitutes a “chair”, but we cannot directly experience a “symplectic
group” and are left only with its definition to determine its meaning. In both
cases, the word references an object or a set of objects that are uniform in some
way so they can be subsumed under a concept; we will consider both as se-
mantic objects. As mathematical objects can still have multiple “names” with
which designate them, we will use the definitions themselves as the representa-
tives of the respective semantic objects. Every definition will have an identifier
which we call the symbol and use it for identifying the semantic object.

Note that even though the symbol name will in practice usually be derived
from (the lemma of) the definiens of the definition, they are not (conceptually)
the same. The technical terms normally found in glossaries arise as “verbaliza-
tions” (see Section 2.6) of symbols in diverse languages. In general there is a
many-to-many relationship between terms and symbols: several terms pointing

3 Even though diagrams and their structural and lexical components are very inter-
esting subject of study, we leave them to future work.

4 Arguably such definitions exist – take for instance Wikipedia’s page on chairs, but
they are usually post-hoc and have little to do with our day-to-day use of the word
and its meaning derived from this practice.

A Data Model and Encoding for a Semantic, Multilingual Terminology 173

to the same definition, as well as several definitions communicated via the same
term. In this way, symbols roughly correspond to synsets in WordNet.

But mathematical vernacular also contains formulae as special phrasal struc-
tures.We observe that formulae are complex expressions that describe mathemat-
ical objects in terms of symbols. In fact, they can be “read out” into equivalent
verbal phrases, e.g. for visually impaired recipients. In this transformation, spe-
cific and characteristic parts of the formulae correspond to the symbols involved.
We call these their notations, they act as an additional lexical component. Fi-
nally, we have the terminological and domain relations as above, only that we have
to re-interpret them to the more rigorous and structured domain of mathematical
knowledge.

For the purposes of SMGloM a glossary entry consists of five kinds of infor-
mation, which we will describe in the rest of this section.

1. a symbol identified by a definition (see Section 2.2)
2. its verbalizations (common names; see Section 2.6)
3. its various notations (formula representations; see 2.5)
4. terminological relations to other glossary entries. (see 3.5)
5. domain relations to other glossary entries. (see 3.6)

2.2 Symbols and their Definitions

A definition consists of a definiendum – the term introduced in the definition
– and a definiens – a text fragment that gives the definiendum its meaning.
In the simplest of all cases, the definiens is an expression or formula that does
not contain the definiendum and we can directly associate a symbol for the
definiendum with the definition as an identifier. We call this case a simple
definition.

Definition: A directed graph (or digraph) is a pair 〈V,E〉 such that V is a set
of vertices (or nodes) and E ⊆ V × V is the set of its edges.

Fig. 2. A Definition for multiple concepts

We will rely on the reader’s mathematical experience and forego a classifica-
tion of definitional forms here, but note that definitions of structured mathemati-
cal objects often naturally define more than one term. Take, for instance, the def-
inition of a graph in Figure 2. This introduces three concepts: “directed graph”,
“vertex”, and “edge”, which we take as symbols and the synonyms “digraph”
for “directed graph” and “node” for “vertex”. We can allow such definitions in
SMGloM without losing the principal one-definition-one-symbol invariant if we
understand them as aggregated forms. The one in Figure 2 is an aggregation
of the three definitions (one per symbol) in Figure 3. But the separation of the
definitions in Figure 3 is awkward and artificial, and arguably readers would
prefer to see the single definition in Figure 2 in a glossary over one of the ones
in Figure 3.

174 M. Kohlhase

Def : A directed graph (or digraph) is a pair 〈V,E〉 of sets, such that E ⊆ V ×V .
Def : Let G = 〈V,E〉 be a digraph, then V is the set of vertices (or nodes) of G.
Def : Let G = 〈V,E〉 be a digraph, then we call E the set of edges of G.

Fig. 3. The Definition from Figure 2 separated into Simple Definitions

2.3 Glossary Modules

To further support grouping symbols into semantic fields, SMGloM provides
modules: groups of definitions that belong together conceptually. SMGloMmod-
ules are conceptually similar toOpenMath content dictionaries [Bus+04] (CDs),
and we follow the lead of OpenMath and identify symbols by their module name
(c) and their symbol name s (and their CD base g, the base URI of the CDs)
and write this as g?c?s following MMT conventions [RK13].

Note that there is a non-trivial design decision in taking the definitions as
representatives of mathematical semantic objects in SMGloM as there are of-
ten multiple, equivalent ways of defining the “same” mathematical objects. For
instance, a group can be defined as a base set with a binary i) associative op-
eration ◦ that admits a unit and inverses or ii) cancellative operation /. These
two definitions are logically equivalent, since we can define a/b as a ◦ b−1 and
a ◦ b as a/(b/(b/b)). As this example already shows, logical equivalence can be
non-trivial, and in many cases is only discovered a long time after the definition
of the mathematical objects themselves. Therefore different definitions receive
different glossary entries in SMGloM with different symbols.

In our example the two definitions give rise to two symbols group1 and
group2, and we do not consider them synonyms (they are in different synsets),
but homonyms words that have different “meanings” (which are logically equiv-
alent in this case). In a sense, the two symbols model how an objects appears to
the observer, similarly to the “evening star” and the “morning star” which both
refer to the planet Venus. It seems reasonable to conserve this level of modeling
in a linguistic/semantic resource like SMGloM.

2.4 Symbols and Multilinguality

Another SMGloM design decision is that we allowmathematical vernacular for def-
initions. As written/spoken mathematical language is tied to a particular natu-
ral language, we abstract from this arbitrary choice by allowing translations of
the definition in different languages, which we consider “indistinguishable” for a
SMGloMmodule.

Den Dde D...

Dsig

=l =l

Fig. 4. Language Equality

In Figure 4 we see a situation where the
content of a glossary entry Dsig is charac-
terized as the equivalence class of definitions
in specific languages D∗ that are translations
of each other – we call the translation rela-
tion language equality and we depict it by
=l; see [KK06] for an in-depth discussion on
language-equality and related issues.

A Data Model and Encoding for a Semantic, Multilingual Terminology 175

Concretely, a glossary module is represented as n+1 glossary components:
– one for the language-independent part (called the module signature, it

introduces the symbols, their dependencies, and notations, since they are
largely independent of the natural language), and

– n language bindings, which introduce the definitions – they are written in
a particular mathematical vernacular – and the language-specific verbaliza-
tions of symbols. We could imagine “language bindings” for different logical
systems as a possible future extension of the SMGloM, which adds formal-
izations. These would behave just like the regular language bindings, only
that they are fully formal.

The reason for this construction is that the vocabulary of mathematics is
language-independent, because it is grounded in definitions, which can be trans-
lated – unlike general natural language vocabularies where semantic fields do
not necessarily coincide.

2.5 Notations

Many mathematical objects have special symbols or formula fragments that iden-
tify them. For instance, Euler’s number is written as e and the imaginary unit
of complex numbers is written as i (in mathematics, in electrical engineering it
is written as j; “standard” notations vary with the community). Parameterized
or functional mathematical objects, often have complex notations, e.g. the n-th
Bernoulli number is written as Bn and the special linear group of degree n over
a field F is traditionally written as SL(n, F). In SMGloM, we treat notations
as mathematical objects themselves and reify them into notation definitions,
since we want to model them in glossary components. Notation definitions are
pairs 〈C,P〉, where C is a content schema (a representation of a formula with
metavariables – here indicated by ?x) paired with a presentation P of the same
schema. For instance, the notation for a functional symbols like the special linear
group above, the head is a pattern of the form @(slg; ?n, ?f)5 and the body is the
formula SL(?n, ?f). Notation definitions are useful in two ways: used left-to-right
(i.e. given a content representation) they can be used for styling, i.e. transforming
content representations (here Content MathML) to presentations (here Presen-
tation MathML). In the other direction, they can be used for notation-based
parsing – i.e. context-sensitive parsing with a dynamic (formula) lexicon.

2.6 Verbalizations

Abstract mathematical concepts (named mathematical entities; NMEs) may
have multiple names – at least one per language, e.g. the English nouns “ver-
tex” and “node” in the example in Figure 2 and the corresponding German
noun“Knoten”. We specify this symbol-to-phrase relation via verbalization
definitions, which are symbol-phrase pairs. As the NMEs are often not part of

5 We will use @(a; l) to denote a content MathML application of a function a to an
argument list l.

176 M. Kohlhase

the regular lexicon of a language, we often need to specify syntactic/semantic
information about the phrases. We do this in the form of verbalization defini-
tions. Similarly to a notation definition, a verbalization definition is a pair
〈C,N〉, where the head C is a content schema and the body N is a natural
language phrase schema, i.e. a phrase with metavariables. For simple cases like
the verbalization “node” for the symbol vertex the verbalization definition is
rather simple, it is just the pair 〈vertex, node〉. For functional symbols like the
special linear group above, the head is a pattern of the form @(slg; ?n, ?f) and
the body is the text schema

[special linear group][of degree ?n][over the field ?f]

where phrases are delimited by square brackets. Note that verbalization defini-
tions can be used in both directions like notation definitions. We use them as a
linguistic resource for parsing, but also for the generation of standard glossaries
or wikifiers. We abstract from grammatical information here and reduce terms
and phrases to their lemmata, assuming a suitable lexicon component that man-
ages information about inflection and aggregation schemata. For instance, with
suitable notation and verbalization definitions we can generate or parse aggre-
gated declarations like “SL(n,R) and SL(m,C) are the special linear groups of
orders n and m over the fields R and C”.

3 Implementing the Data Model in OMDoc/MMT

We (re)-interpret the data model introduced in the last section in terms of the
OMDoc/MMT theory graph (see [RK13] for a discussion of MMT theory graphs,
the formal core of OMDoc). A theory graph is a graph, where the nodes are the-
ories and the edges are theory morphisms: truth-preserving mappings from ex-
pressions in the source theory to expressions in the target theory. OMDoc/MMT
theories are essentially collections of

– concept declarations, together with
– axioms (in particular definitions) that state what properties the concepts

have, and
– notation definitions that specify the presentation of symbols.

Theory morphisms come in four forms:

– structures which define their target theory to be an extension of the source
theory; inclusions are those structures whose mapping is the identity,

– views which interpret the mathematical objects of the source theory as such
of the target theory (for instance, the natural numbers with addition can be
interpreted as a monoid if we interpret 0 as the unit element).

– metatheory-relations which import the symbols of the meta-language into
a theory.

Note that the notion theory morphism is rather strong in OMDoc/MMT, as
it allows renaming of concepts. Structures and the meta theory relation are
truth/meaning-preserving by virtue of the extension property, essentially the

A Data Model and Encoding for a Semantic, Multilingual Terminology 177

target theory is defined so that they are: all symbols and axioms are in the
target after translation. To establish a view, we need to prove all the source
axioms (after translation) in the target theory.

3.1 Glossary Components as OMDoc/MMT Theories

We can implement the SMGloM data model directly in OMDoc/MMT theory
graphs – indeed the MMT API drives the SMGloM system. Note that the setup
in Figure 4 can directly represented by giving theories for the module signature
and its language bindings and interpreting the dependencies as OMDoc/MMT
inclusions. There is however one problem we still need to solve: the module
signatures introduce the symbols of the glossary module, but their meaning is
specified in the language bindings, which include them. Therefore we need to ex-
tend MMT with a new feature: adoptions, i.e. views from the language bindings
to the module signatures that are definitional – they establish the meaning of the
symbols in the module signature by postulating that definitions in the language
bindings hold there. Note that in this sense, adoptions are similar to structures
– only that meaning travels in the reverse direction. Like these, adoptions do
not induce proof obligations. The lower half of Figure 5 shows the situation,
the double squiggly arrows are the adoptions. Note that the adoptions can only
work, if the definitions in the various language bindings are translations – indeed
the adoptions postulate them, but we cannot check them in the SMGloM system.

Den Dde D...

Dsig

=l =l

MVen MVde MV...

MVsig

=l =l

Len Lde L...=l =l

Fig. 5. The Language Metalevel

But we can use the theory graph
to even more advantage in SMGloM,
if we take the MMT meta-level into
account. We can model the fact that
e.g. the language binding Den is writ-
ten in English by specifying the the-
ory MVen (English mathematical ver-
nacular) as its meta-theory. In Fig-
ure 5, we find the module/bindings
construction of Figure 4 at the bot-
tom layer, and their vernaculars in
the layer above. These, inherit from
generic language theories L∗ and a
module signatureMV for mathematical vernacular6. Note that the mathematical
vernacular meta-level (the middle layer in Figure 5) is structurally isomorphic
to the domain level. In particular, we can think of MV as a signature of math-
ematical vernacular: it contains symbols for meta-mathematical concepts like
quantification, connectives, definitional equality, etc. In future extensions of the
SMGloM by formal content, this is the spaces, where the logics would live –
see [Cod+11].

The third level in Figure 5 contains the generic (i.e. non-mathematical) vo-
cabularies of the respective natural languages. They are just stubs in SMGloM

6 Actually, what we have depicted as a single theory here is a whole theory graph of
inter-dependent theories.

178 M. Kohlhase

that can be coupled with non-math-specific linguistic/lexical resources in the
future.

3.2 Multilingual Theory Morphisms

MS

MS.en MS.de

NVS

NVS.en NVS.de

σ

σ.e σ.d

Fig. 6. A multilingual view

In the SMGloM, where glos-
sary items are structured,
multilingual modules (see Fig-
ure 4), theory morphisms are
similarity structured. Con-
sider the situation on the
right, where we have a mod-
ule MS for metric spaces, and
another (NVS) for metric vector spaces. It is well-known that a normed vector
space 〈V, ‖ · ‖〉 induces a distance function d(x, y) := ‖x − y‖ and thus a met-
ric space 〈V, d〉. The OMDoc/MMT views that make up this structured relation
between glossary modules is represented by the three wavy arrows in Figure 6.
Here σ is the translation that assigns the base set V to itself and d(x, y) to
‖x− y‖. The two OMDoc/MMT views σ.e and σ.d include σ and add the proofs
(in English and German respectively) for the proof obligations induced by the
metric space axioms.

3.3 Notations and Verbalizations

We employ OMDoc notation definitions which directly implement the content/
presentation pairs in XML syntax (see [Koh10] for details). It turns out that the
for the structurally similar verbalization definitions introduced in Section 2.6, we
re-use the OMDoc/MMT notation definitions mechanism, only that the “presen-
tation” component is not presentation MathML, but in natural language phrase
structures (in the respective languages).

3.4 Synsets: Direct Synonymy

We have two forms of “synonyms” in SMGloM: direct synonyms that are
directly given in definitions, and induced ones (see below). For example, the
definition in Figure 2 introduces the terms “vertex” and “node” as direct syn-
onyms. Indeed, the definiendum markup gives rise to the verbalization definitions
〈dgraph?vertex, vertex〉 and 〈dgraph?vertex, node〉 respectively, i.e. the lemmata
“vertex” and “node” refer to the symbol vertex in the theory dgraph. In essence
we use symbol-synchronization for the representation of direct synonyms, and
thus we can use the symbols as representations of synsets of the SMGloM term
base. Note that this interpretation also sees translations as special cases of syn-
onyms, as they also refer to the same (language-independent) symbol. In SMGloM
we identify synsets with symbols and thus model terminological relations as re-
lations between symbols. This allows us to model them as theory morphisms

A Data Model and Encoding for a Semantic, Multilingual Terminology 179

and use the OMDoc/MMT machinery to explain their contributions and prop-
erties. For the moment we restrict ourselves to inclusions and leave structures
and views to Section 3.6.

3.5 Direct Terminological Relations

In OMDoc/MMT theory graphs, we often have a systematic dualism between the
theory T as a structured object and the mathematical structure7 it introduces,
we call it the primary object and denote it with T , all other symbols are
called secondary. Consider for instance the case of directed graphs above, where
the theory has secondary symbols for vertices and edges; and incidentally, the
primary object of the glossary module in Figure 2 is the concept a digraph,
i.e. the structure 〈V,E〉 which consists of (sets of) vertices and edges (both
secondary concepts). Similarly, the theory of groups has a primary object made
up of its secondary objects: the base set, the operation, the unit, and the inverse
operation.

In our experience, secondary symbols mostly (all?) seem to be functional
objects whose first argument is the primary symbol. For instance the “edges
of” a graph. This makes the setup of SMGloM modules very similar to classes in
object-oriented classes, where the secondary objects correspond to methods, and
(more importantly for a linguistic resource like SMGloM) to frames in FrameNet,
where the secondary symbols correspond to the semantic roles. We will conduct
a survey on this on the SMGloM corpus once its more mature.

Hyper/Hyponomy. For the hyponomy and hyperonymy relations, we employ
the notion of theory morphisms from OMDoc/MMT. If there is an import from S
to T , then T is a hypernym of S and that a hyponym of S. Consider for instance,
the notion of a “tree” as a digraph with special properties (a unique initial node
and in-degree 1 on all others). Extending the digraph glossary module to one
for trees naturally gives rise to an inclusion morphism that maps the principal
symbol digraph to the new principal symbol tree. Thus the term “tree” is a
hypernym of “digraph” (and “directed graph”, since that is a direct synonym).

For the secondary symbols we have a related effect. They are usually inherited
along theory morphisms together with the primary symbols, but they keep their
meaning, only that their domain is restricted to the more specialized primary
symbol. This relation which we tentatively call domain restriction is related
to the notion of selectional restriction in lexical semantics – cf. [Ash14] for a
recent contribution that seems compatible with the SMGloM data model.

Meronomy. Note that the inclusion relation we have encountered above is very
naturally a theory morphism by construction: all objects and their properties of
the source theory are imported into the target theory. As the imports relation
is invoked whenever a mathematical object is referenced (used) in the definiens
of another, we interpret the inclusion relation as the SMGloM counterpart of

7 We have an unfortunate name clash with MMT “structures” here we mean the
mathematical object, e.g. the pair 〈V,E〉 in Figure 2.

180 M. Kohlhase

the meronymy relation: if there is an import from theory S to theory T , then
S is part of T . Take for instance a definition of a ring ring = 〈R,+, 0,−, ∗, 1〉
via an inclusion from a commutative group grp = 〈R,+, 0,−〉 and a monoid
mon = 〈R, ∗, 1〉. This directly gives us two meronomy relations: The monoid mon
and the commutative group grp are both “parts of” the ring. As a consequence,
inclusions where the primary symbol of the source is not mapped to the primary
symbol of the target theory give rise to meronomy relations between the primary
symbols.

3.6 Induced Terminological Relations

We now turn to the other kind of theory morphisms: structures and views and
their contribution to terminological relations. We first observe that structures
and views bridge a greater conceptual distance than inclusions and adoptions,
since the induced mapping is not the identity. Note that the distinction made
here between inclusions and structures is a gradual one based on the complexity
of the mapping. In particular, structures with injective symbol mappings may
seem closer to inclusions than to structures that map to complex terms. More-
over, while inclusions and structures are definitional (their targets are defined in
terms of them), views carry proof obligations that show their truth-preserving
nature; this translates into an even greater cognitive distance of the induced
terminological relations.

Homonymy. Logical equivalence of glossary modules – i.e. homonymy of the
terms that verbalize the primary symbols – is just a case of theory isomorphism.
In the example with the two groups from Section 2.3 we have two SMGloM
modules which are represented OMDoc/MMT theories. Their equivalence can be
encoded by a theory isomorphism: two views which compose to the identity. As
any logical equivalence can be expressed as theory isomorphisms (given suitable
glossary modules), homonymy is conservative over OMDoc/MMT theory graphs.

View-Induced Hyponomy (aka. Examples). We have already seen that
theory inclusions induce hyponomy (the “isa relation”) between the principal
symbols, e.g. a group “is a” monoid. The “induced hyponomy relation” – e.g.
〈N,+〉 “is a” monoid if we interpret 0 as the unit element is very salient in
mathematics: we consider 〈N,+, 0〉 as an example of a monoid. The proof obli-
gations of the underlying view verify that this is indeed true. Giving examples
– and counter-examples – from other mathematical areas is an important math-
ematical practice necessary for fully understanding mathematical concepts and
fostering intuitions about applications. Regular hyponyms are usually not con-
sidered good examples, since they are too direct.

Induced Synonymy. In a graph definition in [Har69] we find the terms “0-
simplex” for the nodes and “1-simplex” for the edges of a graph. We interpret
such “synonyms” as metaphoric. Given a definition

A Data Model and Encoding for a Semantic, Multilingual Terminology 181

Definition: A k-simplex is a k-dimensional polytope which is the convex
hull of k + 1 affinely independent points in k-space.

Harary’s definition makes sense if we map nodes to 0-simplices and edges to
1-simplices. In SMGloM we would model this via a glossary module for simplices
and a view from the graph module to that. Then we can understand Harary’s
names as synonyms induced by this view. Note that in order for these to the
“synonyms” in the sense of this paper, we also need a (partial) view back from
simplices to edges (that is defined on them), but that is also easy to do. The view
directly accounts for the metaphoric character. We “borrow” terms for graphs
from a related (via the view) field of simplices.

As the conceptual gap covered by views can vary greatly – the identity endo-
morphism covers none – the distinction between direct- and view-induced syn-
onyms is flexible (and in the mind of the beholder). A first delineation could be
whether the analogy mappings that give rise to the (originally metaphoric) names
are inner-mathematical or extra-mathematical. If they are inner-mathematical
then we should state the views, if they are not, then we cannot really. An ex-
ample of synonyms introduced by an extra-mathematical (from plant anatomy)
view is the junction/branch metaphor for vertices/edges in graphs. Given these
criteria, it becomes debatable whether to interpret the synonyms point/line for
vertex/edge via a view into point/line geometry.

A very positive effect of interpreting synonyms via views is that this also gives
an account of the coordination of synonyms. We observe that verbalizations are
coordinated in “conceptual systems”. In particular, we will seldom find “mixed
metaphors” in Math, where people use the word “point” for the concept of a
vertex and “branch” for an edge in the same situation. Requiring the existence
a view that maps the whole situation into a coherent glossary module explains
this observation nicely. Similar consideration should hold for notations, but we
will leave their study to future work.

4 Conclusion

We have presented a data model model for a mathematical termbase. As math-
ematical terminologies are based in definitions not in perceptions of the physi-
cal world, modeling the mathematical domain becomes as important as model-
ing the terminological relations for a machine-actionable resource. We integrate
both aspects by modeling glossary terms by OMDoc/MMT symbols, glossary
modules (semantic fields of terms correlated by their meaning) as theories, and
terminological relations by theory morphisms, so that we can make use of the
OMDoc/MMT machinery – and even implementation – for a glossary system.

Our treatment of multilinguality has some similarlity to the GF Mathematical
Library (MGF [SX11]), but that concentrates on grammatical aspects where we
focus on terminological relations and definitions. An extension of SMGloM by
GF-based grammatical information seems an attractive avenue of future research
as the OMDoc/MMT domain model is an extension of the OpenMath CDs used

182 M. Kohlhase

in MGF and the GF framework is based on a type theory that is similar to the
meta-level of OMDoc/MMT.

Currently, the SMGloM only contains a handful of views to establish the con-
cept and serve as examples. As we have seen above, views give rise to interesting
semantic/linguistic phenomena, so this is where we have to invest most of the
curation efforts.

Eventually, we will support multiple surface syntaxes for OMDoc, but initially,
we use sTEX, a semantical variant of LATEX; see [Koh08; sTeX].

An feature of mathematical domain modeling which we have not included in
the SMGloM is the assignment of sorts/types to mathematical concepts. This is
probably the most immediate next step after consolidating the initial corpus to
the data model described in this paper: Sortal and type-restrictions are impor-
tant cognitive devices in semantic domains and representing them significantly
enhances the expressivity and adequacy of lexical/linguistic as well as logical
modeling. But the integration of linguistic and logical constraints – in partic-
ular selectional restrictions of verbs and adjectives – into a universal sort/type
system for mathematics is no small feat, therefore we leave it to future work.
But we conjecture that the SMGloM data model of a mathematical term base
with a theory graph structure is the right setting to investigate selectional re-
striction in lexical semantics. We plan to use all “unary predicate symbols” in
SMGloM as possible types and study what this means for the selection restric-
tions taking [Ash14] into account as a departure for this work.

Acknowledgements. Work on the concepts presented here has been partially
supported by the Leibniz association under grant SAW-2012-FIZ KA-2 and the
German Research Foundation (DFG) under grant KO 2428/13-1. The develop-
ment of the data model has profited from discussions with Deyan Ginev, Wolfram
Sperber, and Mihnea Iancu.

References

[Ash14] Asher, N.: Selectional Restrictions, Types, and Categories. Journal of
Applied Logic 12(2), 75–87 (2014)

[Bus+04] Buswell, S., et al.: The Open Math Standard, Version 2.0. Tech. rep. The
OpenMath Society (2004), http://www.openmath.org/standard/om20

[CICM1414] Iancu, M., Jucovschi, C., Kohlhase, M., Wiesing, T.: System Description:
MathHub.info. In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P.,
Urban, J. (eds.) CICM 2014. LNCS, vol. 8543, pp. 436–439. Springer,
Heidelberg (2014),
http://kwarc.info/kohlhase/submit/cicm14-mathhub.pdf

[Cod+11] Codescu, M., Horozal, F., Kohlhase, M., Mossakowski, T., Rabe, F.:
Project Abstract: Logic Atlas and Integrator (LATIN). In: Davenport,
J.H., Farmer, W.M., Urban, J., Rabe, F. (eds.) Calculemus/MKM 2011.
LNCS (LNAI), vol. 6824, pp. 289–291. Springer, Heidelberg (2011)

[Fel98] Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database. MIT Press
(1998)

http://www.openmath.org/standard/om20
http://kwarc.info/kohlhase/submit/cicm14-mathhub.pdf

A Data Model and Encoding for a Semantic, Multilingual Terminology 183

[FN] Frame Net, https://framenet.icsi.berkeley.edu (visited on February
06, 2014)

[FN10] Ruppenhofer, J., et al.: FrameNet II: Extended Theory and Practice
(2010), https://framenet2.icsi.berkeley.edu/docs/r1.5/book.pdf

[Har69] Harary, F.: Graph Theory. Addison Wesley (1969)
[KK06] Kohlhase, A., Kohlhase, M.: An Exploration in the Space of Mathe-

matical Knowledge. In: Kohlhase, M. (ed.) MKM 2005. LNCS (LNAI),
vol. 3863, pp. 17–32. Springer, Heidelberg (2006),
http://kwarc.info/kohlhase/papers/mkm05.pdf

[Koh08] Kohlhase, M.: Using LATEXas a Semantic Markup Format. Mathematics
in Computer Science 2(2), 279–304 (2008),
https://svn.kwarc.info/repos/stex/doc/mcs08/stex.pdf

[Koh10] Kohlhase, M.: An Open Markup Format for Mathematical Documents
OMDoc [Version 1.3]. Draft Specification (2010), https://svn.omdoc.
org/repos/omdoc/branches/omdoc-1.3/doc/spec/main.pdf

[Leh+13] Lehmann, J., et al.: DBpedia - A Large-scale, Multilingual Knowl-
edge Base Extracted from Wikipedia. Semantic Web Journal, 29 (2013),
http://www.semantic-web-journal.net/system/files/swj558.pdf

[PB] Proposition Bank, http://verbs.colorado.edu/ mpalmer/projects/

ace.html (visited on February 06, 2014)
[PKG05] Palmer, M., Kingsbury, P., Gildea, D.: The Proposition Bank: An Anno-

tated Corpus of Semantic Roles. Computational Linguistics 31(1), 71–106
(2005), doi:10.1162/0891201053630264

[Rab13] Rabe, F.: The MMT API: A Generic MKM System. In: Carette, J.,
Aspinall, D., Lange, C., Sojka, P., Windsteiger, W. (eds.) CICM 2013.
LNCS (LNAI), vol. 7961, pp. 339–343. Springer, Heidelberg (2013)

[RK13] Rabe, F., Kohlhase, M.: A Scalable Module System. Information & Com-
putation (230), 1–54 (2013),
http://kwarc.info/frabe/Research/mmt.pdf

[SMG] SMGloM Glossary, http://mathhub.info/mh/glossary (visited on April
21, 2014)

[sTeX] Semantic Markup for LATEX. Project Homepage,
http://trac.kwarc.info/sTeX/ (visited on February 22, 2011)

[SX11] Saludes, J., Xambó, S.: The GF Mathematics Library. In: Quaresma,
P., Back, R.-J. (eds.) THedu. EPTCS, vol. 79, pp. 102–110 (2011),
doi:10.4204/EPTCS.79.6

[WN] WordNet: A lexical database for English, https://wordnet.
princeton.edu/ (visited on May 26, 2013)

https://framenet.icsi.berkeley.edu
https://framenet2.icsi.berkeley.edu/docs/r1.5/book.pdf
http://kwarc.info/kohlhase/papers/mkm05.pdf
https://svn.kwarc.info/repos/stex/doc/mcs08/stex.pdf
https://svn.omdoc.org/repos/omdoc/branches/omdoc-1.3/doc/spec/main.pdf
https://svn.omdoc.org/repos/omdoc/branches/omdoc-1.3/doc/spec/main.pdf
http://www.semantic-web-journal.net/system/files/swj558.pdf
http://verbs.colorado.edu/~mpalmer/projects/ace.html
http://verbs.colorado.edu/~mpalmer/projects/ace.html
http://kwarc.info/frabe/Research/mmt.pdf
http://mathhub.info/mh/glossary
http://trac.kwarc.info/sTeX/
https://wordnet.princeton.edu/
https://wordnet.princeton.edu/

PDF/A-3u as an Archival Format

for Accessible Mathematics

Ross Moore

Macquarie University, Sydney, Australia
ross.moore@mq.edu.au

Abstract. Including LATEX source of mathematical expressions, within
the PDF document of a text-book or research paper, has definite benefits
regarding ‘Accessibility’ considerations. Here we describe three ways in
which this can be done, fully compatibly with international standards
ISO32000, ISO19005-3, and the forthcoming ISO32000-2 (PDF 2.0).
Two methods use embedded files, also known as ‘attachments’, hold-
ing information in either LATEX or MathML formats, but use different
PDF structures to relate these attachments to regions of the document
window. One uses structure, so is applicable to a fully ‘Tagged PDF’
context, while the other uses /AF tagging of the relevant content. The
third method requires no tagging at all, instead including the source cod-
ing as the /ActualText relacement of a so-called ‘fake space’. Information
provided this way is extracted via simple Select/Copy/Paste actions, and
is available to existing screen-reading software and assistive technologies.

1 Introduction

PDF/A is being adopted by publishers and Government agencies for the long-
term preservation of important documents in electronic form. There are a few
variants, which pay more or less regard to Accessibility considerations; i.e., ‘a’ for
accessible, ‘b’ for basic, ‘u’ for (presence of) unicode mappings for all font charac-
ters. Later versions [3,4] of this ISO standard [2] allow for other file attachments
in various data formats. In particular, the PDF/A-3u variant allows the inclu-
sion of embedded files of arbitrary types, to convey supplementary descriptions
of technical portions of a document’s contents.

‘Accessibility’ is more relevant for reports and text-books than for research
outputs. In fact in some countries it is a legal requirement that when a visually-
impaired student enrols in unit of study for which a text-book is mandated as
‘Required’, then a fully accessible version of the contents of that book must be
made available. Anecdotally, visually-impaired students of mathematics and re-
lated fields much prefer mathematical material to be made available as LATEX
source, to any other format. With a Braille reader, this is text-based and suffi-
ciently compact that expressions can be read and re-read with ease, until a full
understanding has been achieved. This is often preferable to having an audio
version [13,14], which is less-easy to navigate. Of course having both a well-
structured audio version, as well as textual source, is even more useful. The

S.M. Watt et al. (Eds.): CICM 2014, LNAI 8543, pp. 184–199, 2014.
© Springer International Publishing Switzerland 2014

PDF/A-3u as an Archival Format for Accessible Mathematics 185

PDF example [12] accompanying this paper1 in fact has both, though here we
concentrate on how the latter is achievable within PDF documents.

Again anecdotally, the cost of reverse-engineering2 all the mathematical ex-
pressions within a complete textbook is typically of the order of £10,000 or
AUD30,000 or CAD10,000. This cost would have been dramatically reduced if
the PDF had originally been created to include a LATEX or MathML description
of each expression3, attached or embedded for recovery by the PDF reader or
other assistive technology. How to do this in PDF is the purpose of this paper.

The method of Associated Files, which is already part of the PDF/A-3 stan-
dard [4], is set to also become part of the ISO 32000-2 (PDF 2.0) standard [6],
which should appear some time in 2014 or 2015. In Sect. 3 this mechanism is
discussed in more detail, showing firstly how to include the relevant information
as attachments, which can be extracted using tools in the PDF browser. The
second aspect is to relate the attachments to the portion of content as seen on-
screen, or within an extractable text-stream. This can be specified conveniently
in two different ways. One way requires structure tagging to be present (i.e., a
‘Tagged PDF’ document), while the other uses direct tagging with an /AF key
within the content stream. In either case a PDF reader needs to be aware of the
significance of this /AF key and its associated embedded files.

With careful use of the /ActualText attribute of tagged content, LATEX (or
other) source coding of mathematical expressions can be included within a PDF
document, virtually invisibly, yet extractable using normal Select/Copy/Paste
actions. A mechanism, using very small space characters inserted before and
after each mathematical expression, is discussed in Sect. 4. This is applicable
with any PDF file, not necessarily PDF/A. It is important that these spaces not
interfere with the high-quality layout of the visual content in the document, so
we refer to them as ‘fake spaces’.

The various Figures in this paper illustrate the ideas and provide a look at the
source coding of a PDF document1 that includes all the stated methods, thus
including the LATEX source of each piece of mathematical content. (Where ex-
plicit PDF coding is shown, the whitespace may have been massaged to conserve
space within the pages of this paper.) Indeed the example document includes as
many as 7 different representations of each piece of mathematical content:

– the visual form, as typically found in a PDF document;
– the LATEX source, in two different ways; i.e, an attachment associated with

a /Formula structure tag and also associated directly to the (visual) content,
and as the /ActualText replacement of a ‘fake space’.

– a MathML version as an attachment, also associated to the /Formula struc-
ture tag and also associated directly to the (visual) content;

1 . . . should be attached prior to the ‘References’, else downloadable online; see [12].
2 . . . with prior permission granted by the publisher . . .
3 This is distinct from including the complete LATEX source of the whole document.
There are many reasons why an author, and hence the publisher, might not wish to
share his/her manuscript; perhaps due to extra information commented-out through-
out the source, not intended for general consumption.

186 R. Moore

– a MathML representation through the structure tagging;
– words for a phonetic audio rendering, to be spoken by ‘Read Out Loud’;
– the original LATEX source of the complete document, as a file attachment

associated with the document as a whole.

In practice not all these views need be included to satisfy ‘Accessibility’ or other
requirements. But with such an array of representations, it is up to the PDF
reading software to choose those which it wants to support, or which to extract
according to particular requirements of end-users. It is remarkable that a sin-
gle document can be so enriched, yet still be conforming with a standard such
as PDF/A-3u, see [4]. Indeed, with all content being fully tagged, this docu-
ment1 would also validate for the stricter PDF/A-3a standard, apart from the
lack of a way to specify the proper rôle of MathML structure tagging, so that
tags and their attributes are preserved under the ‘Save As Other ... XML 1.0’
export method when using Adobe’s ‘Acrobat Pro’ software. This deficiency will
be addressed in PDF2.0 [6].

Methods used to achieve the structure tagging in the example document1 have
been the subject of previous talks and papers [10,9] by the author. It is not the
intention here to promote those methods, but rather to present the possibilities
for mathematical publishing and ‘Accessibility’ that have been opened up by the
PDF/A-3 and PDF/UA standards [4,7], and the ‘fake spaces’ idea. The example
document [12] is then just a ‘proof-of-concept’ to illustrate these possibilities.

Since the PDF/A-3 standard [4] is so recent, and with PDF2.0 [6] yet to
emerge, software is not yet available that best implements the ‘Associated Files’
concept. The technical content of the Figures is thus intended to assist PDF
software developers in building better tools in support of accessible mathemat-
ics. It details (i) exactly what kind of information needs to be included; (ii) the
kind of structures that need to be employed; and (iii) how the information and
structures relate to each other. For those less familiar with PDF coding, the
source snippets have been annotated with high-lighting4 and extra words indi-
cating the ideas and intentions captured within each PDF object. Lines are used
to show relationships between objects within the same Figure, or ‘see Fig. Xx’ is
used where the relationship extends to parts of coding shown within a different
Figure. Section 2 is supplied to give an overview of the PDF file structure and
language features so that the full details in the Figures can be better understood
and their rôle appreciated.

2 Overview of the PDF File Format

PDF files normally come employing a certain amount of compression, to reduce
file-size, so appear to be totally intractable to reading by a human. Software
techniques exist to undo the compression, or the PDF file may have been created
without using any. The example document1 was created without compression,
so can be opened for reading in most editing software.

The overall structure of an uncompressed PDF file consists of:

4 . . . with consistent use of colours, in the PDF version of this paper . . .

PDF/A-3u as an Archival Format for Accessible Mathematics 187

(a) a collection of numbered objects: written as <num> 0 obj . . . endobj

where the ‘ . . . ’ can represent many, many lines of textual (or binary) data
starting on a new line after obj and with endobj on a line by itself. The
numbering need not be sequential and objects may appear in any order. An
indirect reference sequence of the form <num> 0 R5 is used where data
from one object is required when processing another. A cross-reference table
(described next), allows an object and its data to be located precisely. Such
indirect references are evident throughout the coding portions of Figures 1–5.

(b) the cross-reference table: listing of byte-offsets to where each numbered
object occurs within the uncompressed PDF file, together with a linked
listing of unused object numbers. (Unused numbers are available for use by
PDF editing software.)

(c) the trailer, including: (i) total number of objects used; (ii) reference to
the document’s /Catalog, see Fig. 3c; (iii) reference to the /Info dictionary,
containing file properties (i.e., basic metadata); (iv) byte-offset to the cross-
reference table; (v) encryption and decryption keys for handling compression;
(vi) end-of-file marker.

Thus the data in a PDF file is contained within the collection of objects, using
the cross-reference table to precisely locate those objects. A PDF browser uses
the /Catalog object (e.g., object 2081 in Fig. 3c) to find the list of /Page objects
(e.g., object 5 in Fig. 3b), each of which references a /Contents object. This
provides each page’s contents stream of graphics commands, which give the
details of how to build the visual view of the content to be displayed. A small
portion of the page stream for a particular page is shown in Figures 1b, 3a, 5a.

Character strings are used in PDF files in various ways; most commonly
for ASCII strings, in the form (. . .); see Figures 1a, 1b, 2b, 2c, 3a, 3c, and
5a. Alternatively, a hexadecimal representation with byte-order mark <FEFF. . . >
can be used, as in Figures 1b, 3a, 5a. This is required particularly for Unicode
characters above position 255, with ‘surrogate pairs’ used for characters outside
the basic plane, as with the k variable name in those figures. Below 255 there is
also the possibility of using 3-byte octal codes within the (. . .) string format;
see footnote 11 in Sect. 4. For full details, see §7.3.4 of PDF Specifications [1,5].

PDF names of the form /〈name〉, usually using ordinary letters, have a
variety of uses, including (i) tag-names in the content stream (Figures 1b, 3a,
5a); (ii) identifiers for named resources (Fig. 3b within object 20 and in the
/AF tagging shown in Fig. 3a); and extensively as (iii) dictionary keys (in all
the Figures 1, 2, 3, 5) and frequently as dictionary values (see below).

Other common structures used within PDF objects are as follows.

(i) arrays, represented as [〈item〉 〈item〉 . . . 〈item〉], usually with similar
kinds of 〈item〉, (see e.g., Figures 1a, 3b, 3c) or alternating kinds (e.g., the
filenames array of Fig. 2b.

5 The ‘0’ is actually a revision number. In a newly constructed PDF this will always
be 0; but with PDF editing software, higher numbers can result from edits.

188 R. Moore

(ii) dictionaries of key–value pairs, similar to alternating arrays, but repre-
sented as <<〈key1〉 〈value1〉 〈key2〉 〈value2〉 . . . >>. The 〈key〉 is always
a PDFname whereas the 〈value〉 may be any other element (e.g., string,
number, name, array, dictionary, indirect reference). The key–value pairs
may occur in any order, with the proviso that if the same 〈key〉 occurs
more than once, it is the first instance whose 〈value〉 is used. A /Type key,
having a PDFname as value, is not always mandatory; but when given,
one refers to the dictionary object as being of the type of this name. See
Figures 1a, 2b, 2c, 3b, 3c and 5b for examples.

(iii) stream objects consist of a dictionary followed by an arbitrarily-long de-
limited stream of data, having the form << ... >> stream ... endstream,
with the stream and endstream keywords each being on a separate line
by themselves (see objects 26 and 28 in Fig. 2c). The dictionary must in-
clude a /Length key, whose value is the integer number of bytes within the
data-stream. With the length of the data known, between the keywords on
separate lines, there is no need for any escaping or special encoding of any
characters, as is frequently needed in other circumstances and file-formats.
See §7.3.8 of [1,5] for more details; e.g., how compression can be used.

(iv) graphics operators which place font characters into the visual view oc-
cur inside a page contents stream, within portions delimited by BT . . . ET

(abbreviations for Begin/EndText); see Figures 1b, 3a, 5a. These include
coding /〈fontname〉 〈size〉 Tf for selecting the (subsetted) font, scaled to
a particular size, and [〈string〉]TJ for setting the characters of the string
with the previously selected font. See §9.4 of [1,5] for a complete description
of the available text-showing and text-positioning operators.

Dictionaries and arrays can be nested; that is, the 〈value〉 of a dictionary item’s
〈key〉 may well be another dictionary or array, as seen in objects 20 and 90 within
Fig. 3b. Similarly one or more 〈item〉s in an array could well be a dictionary,
another array, or an indirect reference (regarded as a ‘pointer’ to another object).

With the use of PDFnames, objects, and indirect references a PDF file is like
a self-contained web of interlinked information, with names chosen to indicate
the kind of information referenced or how that information should be used.

The use of objects, dictionaries (with key–value pairs) and indirect references
makes for a very versatile container-like file format. If PDF reader software does
not recognise a particular key occurring within a particular type of dictionary,
then both the key and its value are ignored. When that value is an indirect
reference to another object, such as a stream object, then the data of that stream
may never be processed, so does not contribute to the view being built. Thus
PDF producing or editing software may add whatever objects it likes, for its own
purposes, without affecting the views that other PDF reading software wish to
construct. This should be contrasted with HTML and XML when a browser
does not recognise a custom tag. There that tag is ignored, together with its
attributes, but any content of that tag must still be handled.

It is this feature of the PDF language which allows different reader software
to support different features, and need not use all of the information contained

PDF/A-3u as an Archival Format for Accessible Mathematics 189

within a PDF file. For example, some browsers support attachments; others do
not. A PDF format specification now consists mostly of saying which tags and
dictionary keys must be present, what others are allowed, and how the informa-
tion attached to these keys and tags is intended to be used. Hence the prolif-
eration of different standards: PDF/A, PDF/E, PDF/VT, PDF/UA, PDF/X,
perhaps with several versions or revisions, intended for conveying different kinds
of specialised information most relevant within specific contexts.

2.1 Tagging within PDF Documents

Two types of tagging can be employed within PDF files. ‘Tagged PDF’ docu-
ments use both, with content tags connected as leaf-nodes of the structure tree.

Tagging of content is done as /〈tag〉 〈dict〉 BDC . . . EMC within a contents
stream. Here the BDC and EMC stand for ‘Begin Dictionary Content’ and ‘End
Marked Content’ respectively, with the 〈dict〉 providing key-value pairs that
specify ‘properties’ of the marked content, much like ‘attributes’ in XML
or HTML tagging6. The 〈tag〉 can in principle be any PDFname; however,
in §14.6.1 of the specifications [1,5] it stipulates that “All such tags shall be
registered with Adobe Systems (see Annex E) to avoid conflicts between differ-
ent applications marking the same content stream.” Thus one normally uses a
standard tag, such as /Span, or in the presence of structure tagging (see below)
choose the same tag name as for the parent structure node. Figures 1b, 3a, 5a
show the use of Presentation-MathML content tag names, which are expected
to be supported in PDF2.0 [6]. Typical attributes are the /ActualText and /Alt
strings, which allow replacement text to be used when content is extracted from
the document using Copy/Paste or as ‘Accessible Text’ respectively. The /MCID
attribute allowsmarked content to be linked to document structure, as discussed
below. A variant of this tagging uses a named resource for the 〈dict〉 element.
This is illustrated with /AF content tagging in Sect. 3.2.

Tagging of structure. requires building a tree-like structural description of a
document’s contents, in terms of Parts, Sections, Sub-sections, Paragraphs, etc.
and specialised structures such as Figures, Tables, Lists, List-items, and more
[1,5, §14.8.4]. Each structure node is a dictionary of type /StructElem having
keys /S for the structure type, /K an array of links to any child nodes (or Kids)
including marked content items, and /P an indirect reference to the parent node.
Optionally there can be a /Pg key specifying an indirect reference to a /Page
dictionary, when this cannot be deduced from the parent or higher ancestor.
Also, the /A key can be used to specify attributes for the structure tag when the
document’s contents are exported in various formats; e.g., using ‘Save As Other
... XML 1.0’ export from Adobe’s ‘Acrobat Pro’ browser/editor. Fig. 1a shows
the MathML tagging of some inline mathematical content. The tree structure is
indicated with lines connecting nodes to their kids; reverse links to parents are

6 Henceforth we use the term ‘attribute’, rather than ‘property’.

190 R. Moore

<mo>

<mi>

<mi>

<mrow>

<math>

<Formula>

𝑘

∈

ℝ

see Fig. 3

see Fig. 3

see Fig. 3

portion of page stream, see Fig. 3b

see Fig. 2b,c

(a) PDF coding of the /Formula structure node showing the reference to ‘Associated
Files’ via the /AF key in object 112. The indirect references (27 and 29) correspond to
/Filespec dictionaries, as shown in Fig. 2. (In the coding ‘ . . . ’ indicates parts omitted
due to not being relevant to this structure; these portions are discussed in Sect. 4.) The
corresponding marked content is specified via the /K [...] numbers (9, 10, 11) in the
child structure nodes; i.e., objects 114 (<mi>), 116 (<mo>) and 118 (<mi>), which are
children of object 121 (<mrow>) under object 120 (<math>).

(b) Portion of the PDF page content stream showing the /MCID numbers (9, 10, 11)
of the actual content portions of the mathematical expression. These correspond to
leaf-nodes of the structure tree as presented in part (a).

Fig. 1. PDF coding for portions of (a) the structure tree and (b) the page content
stream, corresponding to the mathematics shown as selected in Fig. 1a. It is through
the /MCID numbers that the association is made to the /Formula structure tag for the
corresponding piece of mathematical content.

PDF/A-3u as an Archival Format for Accessible Mathematics 191

not drawn, as this would unduly clutter the diagram. Other keys, such as /ID
and /T can provide an identifier and title, for use primarily in editing software
to locate specific nodes within appropriately ordered listings.

The link between structure and marked content (as leaf-nodes to the structure
tree, say) is established using the /MCID number attribute. A numeric integer
entry in the /K Kids array corresponds to an /MCID number occurring within
the contents stream for that page specified via a /Pg entry, either of the structure
node itself or the closest of its ancestors having such a key. Fig. 1b shows this
linking via /MCID with lines drawn to the corresponding structure nodes shown
in Fig. 1a. The interplay of structure with content was addressed in the author’s
paper [10], with Figure 1 of that paper giving a schematic view of the required
PDF structural objects.

3 ‘Associated Files’, Carrying LATEX and MathML Views
of Mathematical Content

There are several ways in which file attachments may be associated with specific
portions of a PDF document, using the ‘Associated Files’ technique [4, Annex E].
The file is embedded/attached and then associated, by a method, either to:

(i) the document as a whole [4, §E.3], [6, §14.13.2] — e.g. the full LATEX source,
or preamble file used when converting snippets of mathematical content
into a MathML presentation of the same content;

(ii) a specific page within the document [4, §E.4], [6, §14.13.3] or to a (perhaps
larger) logical document part using PDF2.0 [6, §14.13.7];

(iii) graphic objects in a content stream [4, §E.5], [6, §14.13.4] — when structure
is available, this is not the preferred method7;

(iv) a structure node [4, §E.7], [6, §14.13.5] such as /Figure, /Formula, /Div, etc.
(v) an /XObject [4, §E.6], [6, §14.13.6] such as an included image of a formula

or other mathematical/technical/diagrammatic content;
(vi) an annotation [4, §E.8] — but this method can be problematic with regard

to validation for PDF/A [4, §6.3], and PDF/UA [7, §7.18] standards8.

Fig. 2a shows how attachments are presented within a separate panel of a browser
window, using information from an array of filenames; see Fig. 2b. This is inde-
pendent of the page being displayed, so the array must be referenced from the

7 In the PDF/A-3 specifications [4, §E.5] the final paragraph explicitly states “When
writing a PDF, the use of structure (and thus associating the /AF with the structure
element, see [4, §E.7]) is preferred instead of the use of explicit marked content.”
with a corresponding statement also in [6, §14.13.4].

8 The method of indicating an attachment with a ‘thumb tack’ annotation located at a
specific point within a document, is deprecated in the PDF/A-3 standard, as it does
not provide a proper method to associate with the portion of content. Besides, the
appearance of such thumb-tacks all over paragraphs containing inline mathematics
is, well, downright ugly.

192 R. Moore

(a) Listing of attachments, indicating how one is associated to some inline content.

L T X sourceE

MathML description

A

Kids see Fig. 5b

see Fig. 3cg

array of filenames of embedded files

<Formula>

file specifier

file specifier

(b) A portion of the PDF coding of the /Names array (upper) for embedded files, and
coding of the /Formula structure element (lower), showing the /AF key with array of
two ‘Associated’ files given as indirect references. The /Names array is used to produce
the listing in (a) and provides indirect links to /Filespec entries, as shown in (c).

(c) PDF source of /Filespec dictionaries and /EmbeddedFile objects which hold the
streams of LATEX and MathML coding for the mathematical content indicated in (a).

Fig. 2. Embedded files associated with a /Formula structure element

PDF/A-3u as an Archival Format for Accessible Mathematics 193

document level. This is seen in Fig. 3c using the /Names key of the /Catalog
dictionary, which references object 2080, whose /EmbeddedFiles key then refer-
ences the filenames array (object 1860 in Fig. 2b). One can also see in Fig. 2b
how each filename precedes an indirect reference to the /Filespec dictionary [6,
§7.11.3, Tables 44 and 45] for the named file; see Fig. 2c. This dictionary contains
a short description (/Desc) of the type of content as well as the filename to use
on disk, and a link via the /EF key to the actual EmbeddedFile stream object.

That a file is ‘Associated’ is indicated by the /AFRelationship key, whose value
is a PDF name indicating how the file is related to visible content. Options here
are /Source as used with the LATEX source coding, or /Supplement as used with
the MathML description. Other possibilities are /Data (e.g., for tabular data)
and /Alternative for other representations such as audio, a movie, projection
slides or anything else that may provide an alternative representation of the
same content. /Unspecified is also available as a non-specific catch-all.

Not all attachments need be ‘Associated’ and conversely not all ‘Associated
Files’ need be displayed in the ‘Attachments’ panel, so there is another array
(object 1859) as shown in Fig. 3c, linked to the /MarkInfo sub-dictionary of
the /Catalog dictionary. Files associated with the document as a whole, as in
method (i) above, link via the /AF key in the /Catalog dictionary (see Fig. 3c).

For the LATEX source of a mathematical expression method (iv) is preferred,
provided structure tagging is present within the PDF. This is discussed below in
Sect. 3.1. Method (iii) also works, provided the expression is built from content
confined to a single page. This is described in Sect. 3.2.

As ‘Associated Files’ have only been part of published PDF/A standards [4]
since late 2012, it may be some time before PDF readers provide a good interface
for ‘Associated Files’, beyond using the ‘Attachments’ pane. This ought to include
interfaces to view the contents of attached files, do searching within the files,
and make the file’s contents available to assistive technology. One possible way
to display this association is apparent in earlier work [11], whereby a bounding
rectangle appears as the mouse enters the appropriate region.

3.1 Embedded Files Associated with Structure

With an understanding of how structure tagging works, as in Sect. 2.1, then
associating files to structure is simply a matter of including an /AF key in the
structure node’s dictionary, as shown in Figures 1a and 2b. The value for this
key is an array of indirect references to /Filespec objects for the relevant files.

There is nothing in the content stream in Fig. 1b to indicate that there is
a file associated with this structure node. Rather the browser, knowing that
‘Associated’ files are present, needs to have gone through some pre-processing
to first locate the node (if any) to which it is associated, then trace down the
structure tree to the deepest child nodes (objects 114, 116, 118). From their /K
entries (viz., 9, 10, 11 resp.), the relevant marked content in the page’s contents
stream is located using these /MCID numbers.

194 R. Moore

𝑘
ℝ

see Fig. 1b

see Fig. 1b

see Fig. 2b

portion of page stream, see Fig. 3b

reference to page stream

Page dictionaryPage Resources

Document Catalog

see Fig. 2b

array of references to Associated embedded files

dictionary of named resources — associated file arrays

dictionary of name types

(a) A portion of the PDF content stream associating content with embedded files
for the mathematical expression indicated in Fig. 2a, using a marked content tag /AF
to refer to a named resource /inline-1. All content down to the final EMC is associated.

(b) A portion of the /Properties dictionary (upper, object 20) which is linked to a
/Page object (lower right, object 5) via its /Resources key (see lower left, object 90).
Thus a name (such as /inline-1) is associated with an array of /Filespec references (viz.
[27 0 R 29 0 R]), which lead to the LATEX and MathML files seen in Fig. 2c.

(c) The document’s /Catalog (object 2081) indicates presence of embedded files via
the /Names key (object 2080). This references the array (object 1860 in Fig. 2b), to
establish the correspondence between filenames and /Filespec dictionaries. Embedded
files which are ‘Associated’ to content portions are also listed in an array (object 1859)
referenced from the /AF key in the /MarkInfo dictionary.

Fig. 3. Embedded files associated with specific content

PDF/A-3u as an Archival Format for Accessible Mathematics 195

3.2 Embedded Files Associated with Content

With an understanding of how content tagging works, as in Sect. 2.1, and the fact
that marked content operators may be nested, then associating files to content is
also quite simple. One simply uses an /AF tag within the page’s content stream
with BDC . . . EMC surrounding the content to be marked, as shown in Fig. 3a.
This employs the named resource variant (here /inline-1) to indicate the array
of ‘Associated’ files. Fig. 3b shows how this name is used as a key (in dictionary
object 20) having as value an array of indirect references to /Filespec objects (27
and 29). These resources can be specific to a particular page dictionary (object 5),
but in the example document1 the named resources are actually made available
to all pages, since this accords with not including multiple copies of files when a
mathematical expression is used repeatedly.

Finally Fig. 3c shows the coding required when embedded files, some of which
may also be associated to content or structure, are present within a PDF docu-
ment. One sees that the array (object 1859) of indirect object references in the
lower part of Fig. 3c refer to the same /Filespec objects (27 and 29) as the named
resources (object 20) in the upper part of Fig. 3b. These are the same references
using /AF keys seen in Fig. 1b and Fig. 2b to the objects themselves in Fig. 2c.

This mechanism makes it easier for a PDF reader to determine that there are
files associated to a particular piece of content, by simply encountering the /AF
tag linked with a named resource. This should work perfectly well with a PDF file
that is not fully tagged for structure. However, if the content is extended (e.g.,
crosses a page-boundary) then it may be harder for a PDF writer to construct
the correct content stream, properly tagging two or more portions.

4 Access-Tags: Attaching LATEX Source to ‘Fake’ Spaces

A third method allows inclusion of the LATEX source of mathematics so that it
may be readily extracted, using just the usual Select/Copy/Paste actions. This
works with some existing PDF reader applications, including the freely available
‘Adobe Reader’. It is achieved by making use of the /ActualText attribute [5,
§14.9.4] for a piece ofmarked content, whether or not structure tagging is present.
It can be done by existing PDF-writing software that supports tagging of content,
as in Sect. 2.1, and specification of a value for the /ActualText attribute.

Fig. 4 shows how this works, by tagging a ‘fake space’ character immediately
before mathematical content, and another immediately afterwards. By select-
ing (see Fig. 4a) then Copy/Paste the content into text-editing software, the
result should be similar to Fig. 4b. The PDF reader must recognise9 /Actual-
Text and replace the copied content (e.g. a single font character) with its value.
The PDFname /AccessTag tags a single ‘space’ character [()]Tf as marked
content, having replacement text in the /ActualText attribute; see Fig. 5a. An

9 Adobe’s ‘Reader’ and ‘Acrobat Pro’ certainly do, along with other software applica-
tions, but Apple’s standard PDF viewers currently do not support /ActualText.

196 R. Moore

(a) Selection across mathematical content

(b) Pasted text from the selection

(c) Access-tags selected in the ‘Tags’ tree, to show ‘fake spaces’.

Fig. 4. This shows how the selection in (a), when copied and pasted into a text file,
recovers the LATEX source (b) that was used to specify the visual appearance of the
mathematical content. In (c) we see structure within a /Formula node, (see also Fig. 5b)
with leaf-nodes of /accesstag structure nodes being marked content of type /AccessTag.
This consists of a single space character carrying an /ActualText attribute which holds
the replacement text; as seen explicitly in the coding shown in Fig. 5a. The ‘fake spaces’
are very narrow; when selected they can be seen very faintly in (c) within the ovals
indicated, at the outer edge of the the bounding rectangles of the outermost math
symbols.

PDF/A-3u as an Archival Format for Accessible Mathematics 197

𝑘

∈

ℝ
fake space

fake space

<math> <Formula>

Kids

see Fig. 3bsee Fig. 3b

see Fig. 2a

see Fig. 1b

see Fig. 1b

see Fig. 1b

portion of page stream, see Fig. 3b

<accesstag><accesstag>

see Fig. 2b,c

(a) Complete portion of the content stream corresponding to the mathematics shown
as selected in Fig. 4a. This is the same content as in Figures 1b and 3a but with the
‘ ...’ parts there now showing the /AccessTag coding of a ‘fake space’ with /ActualText
attribute. The /AF ... BDC ... EMC wrapping of Fig. 3a is also shown. Being part of
the document’s content, these space characters are also assigned /MCID numbers to be
linked to structure nodes, as in (b) below.

(b) Portion of the structure tree as in Fig. 1a, but now showing how the ‘fake spaces’
can be linked to structure nodes, here /accesstag. The missing portions of Fig. 1a,
indicated there by ‘ ...’ are now filled-in, but leaving out other parts whose purpose
has already been explained. Fig. 4c, shows the tagging opened out within the ‘Tags’
navigation panel, with the /accesstag structure nodes selected.

Fig. 5. File content included as /ActualText for a ‘fake space’, which itself can be tagged
as marked content linked to an /accesstag structure node.

198 R. Moore

/MCID number is not needed for this technique to work; these are included in
the example document1 which is fully tagged10.

We refer to these tagged ‘fake spaces’ as ‘Access-tags’, since a motivation for
their use is to allow Assistive Technology (e.g., a Braille reader) access to the
LATEX source of mathematical content. The spaces are ‘fake’ in the sense that
they are just 1pt in height and have nearly zero width. This makes them hard to
select by themselves, but nearly impossible to separate from the mathematical
content which they accompany; see Fig. 4c. They act as ordinary spaces when
copied, but this is substituted with the /ActualText replacement, if supported.
Another aspect of their ‘fakeness’ is that they take no part in the typesetting,
when using pdf-LATEX (post-2014). Of course the same idea could be implemented
in different ways with different PDF-producing software.

One places into the initial ‘Access-tag’ text of the LATEX source — with care
given to encode special characters11 — as the value of its /ActualText attribute.
The source coding is preceded by the string <latex> and followed by </latex>

and <content>, with return-characters (in octal \015) to allow these ‘delimiters’
to ultimately copy onto lines by themselves. The trailing ‘Access-tag’ just takes
</content>. As a result, the eventual Paste gives text as shown in Fig. 4b.

Assistive Technology (e.g., a Braille reader) works either by (a) emulating
Copy/Paste of on-screen portions of the document’s window; or (b) by directly ac-
cessing the ‘Accessible Text’ view of the PDF document’s contents. In both cases
the /ActualText replacements are extracted. (The ‘Accessible Text’ view can be
exported directly using Adobe’s ‘Acrobat Pro’ software, see [12].) For mathe-
matical symbols, where Figures 1b, 3a and 5a show the presence of both /Alt
and /ActualText attributes, then the /Alt contributes to the ‘Accessible Text’,
whereas /ActualText supplies what is copied to the Clipboard for Copy/Paste.
In either case, a human reader when encountering <latex> on a line by itself
can choose whether to read (or listen to) the following lines of LATEX coding,
else use a Find action to skip down to where the next </latex> occurs. This is
followed by a line containing <content>. Similarly the human can read/listen
or skip down to where </content> occurs.

Acknowledgements. The author wishes to acknowledge James Davenport and
Emma Cliffe, at the University of Bath, for valuable discussions regarding the
needs of mathematics students having a visual disability. The ‘fake space’ idea
emerged as a result. Thanks also to reviewers for suggesting, among other ideas,
inclusion of the PDF language overview as in Sect. 2, allowing later sections to
be written more succinctly. Finally, I wish to thank members of ISO TC 171 for
encouragement and support regarding ‘fake spaces’ and other aspects.

“The committee is really happy to have someone actually implementing math accessibility
in PDF . . . ” [15] — Neil Soiffer, Senior Scientist, Design Science Inc., 12 April 2014.

10 In PDF2.0 this will also need an association of /accesstag to /Custom within the
/RoleMap dictionary. The /AccessTag PDFname can be replaced by /Span.

11 Octal codes: \134 for backslash, \050 for ‘(’ and \051 for ‘)’, \015 for line-end.

PDF/A-3u as an Archival Format for Accessible Mathematics 199

References

1. Adobe Systems Inc.; PDF Reference 1.7 (November 2006), Also available as [5],
http://www.adobe.com/devnet/pdf/pdf_reference.html

2. ISO 19005-1:2005; Document Management — Electronic document file format for
long term preservation — Part 1: Use of PDF 1.4 (PDF/A-1); Technical Com-
mittee ISO/TC 171/SC 2 (September 2005). Revisions via Corrigenda: ISO19005-
1:2005/Cor 1:2007 (March 2007); ISO 19005-1:2005/Cor 2:2011 (December 2011),
http://www.iso.org/iso/catalogue_detail?csnumber=38920

3. ISO 19005-2:2011; Document Management — Electronic document file format for
long term preservation — Part 2: Use of ISO 32000-1 (PDF/A-2); Technical Com-
mittee ISO/TC 171/SC 2 (June 2011), http://www.iso.org/iso/catalogue
detail?csnumber=50655

4. ISO 19005-3:2012; Document Management — Electronic document file format for
long term preservation — Part 3: Use of ISO 32000-1 with support for embed-
ded files (PDF/A-3); Technical Committee ISO/TC 171/SC 2 (October 2012),
http://www.iso.org/iso/catalogue_detail?csnumber=57229

5. ISO 32000-1:2008; Document management — Portable document format (PDF
1.7); Technical Committee ISO/TC 171/SC 2 (July 2008), Also available as [1],
http://www.iso.org/iso/catalogue_detail?csnumber=51502

6. ISO 32000-2-20140220; Document management — Portable document format —
Part 2: PDF 2.0; Technical Committee ISO/TC 171/SC 2, in draft form (February
2014)

7. Document management applications — Electronic document file format enhance-
ment for accessibility — Part 1: Use of ISO 32000-1 (PDF/UA-1); Technical Com-
mittee ISO/TC 171/SC 2 (July 2012), http://www.iso.org/iso/home/store/
catalogue tc/catalogue detail.htm?csnumber=54564

8. Technical Implementation Guide; AIIM Global Community of Information Profes-
sionals, http://www.aiim.org/Research-and-Publications/standards/
committees/PDFUA/Technical-Implementation-Guide. Also available as [7]

9. Moore, R.R.: Tagged Mathematics in PDFs for Accessibility and other purposes.
In: CICM-WS-WiP 2013, Workshops and Work in Progress at CICM. CEURWork-
shops Proceedings (2013), http://ceur-ws.org/Vol-1010/paper-01.pdf

10. Moore, R.R.: Ongoing efforts to generate “tagged PDF” using pdf TEX. In: Sojka,
P. (ed.) DML 2009, Towards a Digital Mathematics Library, Proceedings. Muni
Press, Masaryk University (2009) ISBN 978-80-20-4781-5, Reprinted as: TUGboat
30(2), 170–175 (2009), http://www.tug.org/TUGboat/tb30-2/tb95moore.pdf

11. Moore, R.R.: serendiPDF, with searchable math-fields in PDF documents.
TUGboat 23(1), 65–69 (2002), http://www.tug.org/TUGboat/tb23-1/moore.pdf

12. Moore, R.R.: DMTH237 Assignment 2 Solutions, with tagged PDF; web address
for downloading the example document having attachments and ‘fake spaces’; also
other views of this document’s contents exported using ‘Acrobat Pro’ software,
http://rutherglen.science.mq.edu.au/~maths/CICM/

13. Raman, T.V.: An Audio View of (LA) TEXDocuments. TUGboat 13(3), 372–379
(1992), http://tugboat.tug.org/TUGboat/tb13-3/raman.pdf

14. Raman, T.V.: An Audio View of (LA)TEXDocuments–Part II. TUGboat 16(3),
310–314 (1995), http://tugboat.tug.org/TUGboat/tb16-3/tb48rama.pdf

15. Soiffer, N.: Posting to ‘PDF-Access’ mailing list server, April 12 (2014),
http://listserv.aiim.org/scripts/wa.exe?A0=PDF-ACCESS

http://www.adobe.com/devnet/pdf/pdf_reference.html
http://www.iso.org/iso/catalogue_detail?csnumber=38920
http://www.iso.org/iso/catalogue_detail?csnumber=50655
http://www.iso.org/iso/catalogue_detail?csnumber=50655
http://www.iso.org/iso/catalogue_detail?csnumber=57229
http://www.iso.org/iso/catalogue_detail?csnumber=51502
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=54564
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=54564
http://www.aiim.org/Research-and-Publications/standards/committees/PDFUA/Technical-Implementation-Guide
http://www.aiim.org/Research-and-Publications/standards/committees/PDFUA/Technical-Implementation-Guide
http://ceur-ws.org/Vol-1010/paper-01.pdf
http://www.tug.org/TUGboat/tb30-2/tb95moore.pdf
http://www.tug.org/TUGboat/tb23-1/moore.pdf
http://tugboat.tug.org/TUGboat/tb13-3/raman.pdf
http://tugboat.tug.org/TUGboat/tb16-3/tb48rama.pdf
http://listserv.aiim.org/scripts/wa.exe?A0=PDF-ACCESS
http://rutherglen.science.mq.edu.au/~maths/CICM/2013-Assign2-soln-3u-broken.pdf

Which One Is Better: Presentation-Based

or Content-Based Math Search?

Minh-Quoc Nghiem1,4, Giovanni Yoko Kristianto2,
Goran Topić3, and Akiko Aizawa2,3

1 Ho Chi Minh City University of Science, Vietnam
2 The University of Tokyo, Japan

3 National Institute of Informatics, Japan
4 The Graduate University for Advanced Studies, Japan
{nqminh,giovanni,goran_topic,aizawa}@nii.ac.jp

Abstract. Mathematical content is a valuable information source and
retrieving this content has become an important issue. This paper com-
pares two searching strategies for math expressions: presentation-based
and content-based approaches. Presentation-based search uses state-of-
the-art math search system while content-based search uses semantic
enrichment of math expressions to convert math expressions into their
content forms and searching is done using these content-based expres-
sions. By considering the meaning of math expressions, the quality of
search system is improved over presentation-based systems.

Keywords: Math Retrieval, Content-based Math Search, MathML.

1 Introduction

The issue of retrieving mathematical content has received considerable critical
attention [1]. Mathematical content is a valuable information source for many
users and is increasingly available on the Web. Retrieving this content is becom-
ing more and more important.

Conventional search engines, however, do not provide a direct search mech-
anism for mathematical expressions. Although these search engines are useful
to search for mathematical content, these search engines treat mathematical ex-
pressions as keywords and fail to recognize the special mathematical symbols
and constructs. As such, mathematical content retrieval remains an open issue.

Some recent studies have proposedmathematical retrieval systems based on the
structural similarity of mathematical expressions [2–7]. However, in these studies,
the semantics of mathematical expressions is still not considered. Because math-
ematical expressions follow highly abstract and also rewritable representations,
structural similarity alone is insufficient as a metric for semantic similarity.

Other studies [8–13] have addressed semantic similarity of mathematical for-
mulae, but this required content-based mathematical formats such as content
MathML [14] and OpenMath [15]. Because almost all mathematical content
available on the Web is presentation-based, these studies used two freely avail-
able toolkits, SnuggleTeX [16] and LaTeXML [17], for semantic enrichment of

S.M. Watt et al. (Eds.): CICM 2014, LNAI 8543, pp. 200–212, 2014.
c© Springer International Publishing Switzerland 2014

Which One Is Better: Presentation-Based or Content-Based Math Search? 201

mathematical expressions. However, much uncertainty remains about the rela-
tion between the performance of mathematical search system and the perfor-
mance of the semantic enrichment component.

Based on the observation that mathematical expressions have meanings hid-
den in their representation, the primary goal of this paper is making use of
mathematical expressions’ semantics for mathematical search. To accomplish
this problem of retrieving semantically similar mathematical expressions, we use
the results of state-of-the-art semantic enrichment methods. This paper seeks
the answers to two questions.

– What is the contribution of semantic enrichment of mathematical expressions
to content-based mathematical search systems?

– Which one is better: presentation-based or content-based mathematical
search?

To implement a mathematical search system, various challenges must be over-
come. First, in contrast to text which is linear, mathematical expressions are
hierarchical: operators have different priorities, and expressions can be nested.
The similarity between two mathematical expressions is decided first by their
structure and then by the symbols they contain [18, 19]. Therefore, current
text retrieval techniques cannot be applied to mathematical expressions because
they only consider whether an object includes certain words. Second, mathe-
matical expressions have their own meanings. These meanings can be encoded
using special markup languages such as Content MathML or OpenMath. A few
existing mathematical search systems also make use of this information. Such
markup, however, is rarely used to publish mathematical knowledge related to
the Web [18]. As a result, we were only able to use presentation-based markup,
such as Presentation MathML or TEX, for mathematical expressions.

This paper presents an approach to a content-based mathematical search sys-
tem that uses the information from semantic enrichment of mathematical expres-
sions system. To address the challenges described above, the proposed approach
is described below. First, the approach used Presentation MathML markup,
a widely used markup for mathematical expressions. This makes our approach
more likely to be applicable in practice. Second, a semantic enrichment of mathe-
matical expressions system is used to convert mathematical expressions to Con-
tent MathML. By getting the underlying semantic meanings of mathematical
expressions, a mathematical search system is expected to yield better results.

The remainder of this paper is organized as follows. Section 2 provides a brief
overview of the background and related work. Section 3 presents our method.
Section 4 describes the experimental setup and results. Section 5 concludes the
paper and points to avenues for future work.

2 Mathematical Search System

As the demand for mathematical searching increases, several mathematical re-
trieval systems have come into use [20]. Most systems use the conventional text

202 M.-Q. Nghiem et al.

search techniques to develop a new mathematical search system [2, 3]. Some sys-
tems use specific format for mathematical content and queries [4–7, 11]. Based on
the markup schema they use, current mathematical search systems are divisible
into presentation-based and content-based systems. Presentation-based systems
deal with the presentation form whereas content-based systems deal with the
meanings of mathematical formulae.

2.1 Presentation-Based Systems

Springer LaTeXSearch. Springer offers a free service, Springer LATEX Search
[3], to search for LaTeX code within scientific publications. It enables users to
locate and view equations containing specific LATEX code, or equations containing
LATEX code that is similar to another LATEX string. A similar search in Springer
LATEX Search ranks the results by measuring the number of changes between a
query and the retrieved formulae. Each result contains the entire LaTeX string,
a converted image of the equation, and information about and links to its source.

MathDeX. MathDeX (formerly MathFind [21]) is a math-aware search engine
under development by Design Science. This work extends the capabilities of ex-
isting text search engines to search mathematical content. The system analyzes
expressions in MathML and decomposes the mathematical expression into a se-
quence of text-encoded math fragments. Queries are also converted to sequences
of text and the search is performed as a normal text search.

Digital Library of Mathematical Functions. The Digital Library of Math-
ematical functions (DLMF) project at NIST is a mathematical database avail-
able on the Web [2, 22]. Two approaches are used for searching for mathematical
formulae in DLMF. The first approach converts all mathematical content to a
standard format. The second approach exploits the ranking and hit-description
methods. These approaches enable simultaneous searching for normal text as
well as mathematical content.

In the first approach [4], they propose a textual language, Textualization,
Serialization and Normalization (TexSN). TeXSN is defined to normalize non-
textual content of mathematical content to standard forms. User queries are also
converted to the TexSN language before processing. Then, a search is performed
to find the mathematical expressions that match the query exactly. As a result,
similar mathematical formulae are not retrieved.

In the second approach [23], the search system treats each mathematical ex-
pression as a document containing a set of mathematical terms. The cited paper
introduces new relevance ranking metrics and hit-description generation tech-
niques. It is reported that the new relevance metrics are far superior to the con-
ventional tf-idf metric. The new hit-descriptions are also more query-relevant
and representative of the hit targets than conventional methods.

Other notable math search systems include Math Indexer and Searcher [24],
EgoMath [25], and ActiveMath [26].

Which One Is Better: Presentation-Based or Content-Based Math Search? 203

2.2 Content-Based Systems

Wolfram Function. The Wolfram Functions Site [8] is the world’s largest col-
lection of mathematical formulae accessible on the Web. Currently the site has
14 function categories containing more than three hundred thousand mathemat-
ical formulae. This site allows users to search for mathematical formulae from its
database. The Wolfram Functions Site proposes similarity search methods based
on MathML. However, content-based search is only available with a number of
predefined constants, operations, and function names.

MathWebSearch. The MathWebSearch system [10, 12] is a content-based
search engine for mathematical formulae. It uses a term indexing technique de-
rived from an automated theorem proving to index Content MathML formulae.
The system first converts all mathematical formulae to Content MathMLmarkup
and uses substitution-tree indexing to build the index. The authors claim that
search times are fast and unchanged by the increase in index size.

MathGO! [9] proposed a mathematical search system called the MathGO!
Search System. The approach used conventional search systems using regular
expressions to generate keywords. For better retrieval, the system clustered
mathematical formula content using K-Som, K-Means, and AHC. They did ex-
periments on a collection of 500 mathematical documents and achieved around
70–100 percent precision.

MathDA. Yokoi and Aizawa [11] proposed a similarity search method for math-
ematical expressions that is adapted specifically to the tree structures expressed
by MathML. They introduced a similarity measure based on Subpath Set and
proposed a MathML conversion that is apt for it. Their experiment results
showed that the proposed scheme can provide a flexible system for searching
for mathematical expressions on the Web. However, the similarity calculation is
the bottleneck of the search when the database size increases. Another short-
coming of this approach is that the system only recognizes symbols and does not
perceive the actual values or strings assigned to them.

System of Nguyen et al. [13] proposed a math-aware search engine that can
handle both textual keywords and mathematical expressions. They used Finite
State Machine model for feature extraction, and representation framework cap-
tures the semantics of mathematical expressions. For ranking, they used the
passive–aggressive on-line learning binary classifier. Evaluation was done us-
ing 31,288 mathematical questions and answers downloaded from Math Over-
flow [27]. Experimental results showed that their proposed approach can perform
better than baseline methods by 9%.

3 Methods

The framework of our system is shown in Fig. 1. First, the system collects
mathematical expressions from the web. Then the mathematical expressions are

204 M.-Q. Nghiem et al.

converted to Content MathML using the semantic enrichment of mathematical
expressions system of Nghiem et. al [28]. Indexing and ranking the mathemat-
ical expressions are done using Apache Solr system [29] following the method
described in Topić et. al [30]. When a user submits a query, the system also
converts the query to Content MathML. Then the system returns a ranked list
of mathematical expressions corresponding to the user’s queries.

Content MathML expressions

Presentation MathML
expressions

Indexing

Semantic
Enrichment

Ranking

Fig. 1. System Framework

3.1 Data Collection

Performance analysis of a mathematical search system is not an easy task because
few standard benchmark datasets exist, unlike other more common information
retrieval tasks. Mathematical search systems normally build their own mathe-
matical search dataset for evaluation by crawling and downloading mathematical
content from the web. Direct comparison of the proposed approach with other
systems is also hard because they are either unavailable or inaccessible.

Recently, simpler and more rapid tests of mathematical search system have
been developed. The NTCIR-10 Math Pilot Task [1] was the initial attempt to
develop a common workbench for mathematical expressions search. Currently,
the NTCIR-10 dataset contains 100,000 papers and 35,000,000 mathematical
expressions from ArXiv [31] which includes Content MathML markup. The task
was completed as an initial pilot task showing a clear interest in the mathemat-
ical search. However, the Content MathML markup expressions are generated
automatically using the LaTeXML toolkits. Therefore, this dataset is unsuitable
to serve as the gold standard for the research described in the present paper.

As Wolfram Functions Site [8] is the only website that provides high-quality
Content MathML markup for every expression, data for the search system was
collected from this site. The Wolfram Functions Site data have numerous at-
tractive features, including both Presentation and Content MathML markups,

Which One Is Better: Presentation-Based or Content-Based Math Search? 205

and category for each mathematical expression. In the experiment, the perfor-
mance of semantic enrichment of mathematical expressions component will be
compared directly with the system performance obtained using correct Content
MathML expressions on Wolfram Functions Site data.

3.2 Semantic Enrichment of Mathematical Expressions

The mathematical expressions were preprocessed according to the procedure
described in Nghiem et. al [28]. Given a set of training mathematical expressions
in MathML parallel markup, rules of two types are extracted: segmentation
rules and translation rules. These rules are then used to convert mathematical
expressions from their presentation to their content form. Translation rules are
used to translate (sub)trees of Presentation MathML markup to (sub)trees of
Content MathML markup. Segmentation rules are used to combine and reorder
the (sub)trees to form a complete tree.

After using mathematical expression enrichment system to convert the expres-
sions into content MathML, we use these converted expressions for indexing. The
conversion is not a perfect conversion, so there are terms that could not be con-
verted. The queries submitted to the search system are also processed using the
same conversion procedure.

3.3 Indexing

The indexing step was prepared by adapting the procedure used by Topić et.
al [30]. This procedure used pq-gram-like indexing for Presentation MathML
expressions. We modified it for use with Content MathML expressions. There
are three fields used to encode the structure and contents of a mathematical
expression: opaths, upaths, and sisters. Each expression is transformed into
a sequence of keywords across several fields. opaths (ordered paths) field gath-
ers the XML expression tree in vertical paths with preserved ordering. upaths
(unordered paths) works the same as opaths without the ordering information.
sisters lists the sister nodes in each subtree. Figure 2 presents an example
of the terms used in the index of the expression sin(π8):< apply >< sin/ ><
apply >< times/ >< pi/ >< apply >< power/ >< cntype = “integer” > 8 <
/cn >< cntype = “integer” > −1 < /cn >< /apply >< /apply >< /apply >.

3.4 Searching

In the mathematical search system, users can input mathematical expressions
using presentation MathML as a query. The search system then uses the semantic
enrichment of mathematical expressions module to convert the input expressions
to Content MathML. Figure 3 presents an example of the terms used in the query
of the expression sin(π8). Matching is then performed using eDisMax, the default
query parser of Apache Solr. Ranking is also done using the default modified
TF/IDF scores and length normalization of Apache Solr.

206 M.-Q. Nghiem et al.

opaths:
1#1#apply 1#1#1#sin 1#1#2#apply 1#1#2#1#times 1#1#2#2#pi

1#1#2#3#apply 1#1#2#3#1#power 1#1#2#3#2#cn#8 1#1#2#3#3#cn#-1

opaths:
1#apply 1#1#sin 1#2#apply 1#2#1#times 1#2#2#pi 1#2#3#apply

1#2#3#1#power 1#2#3#2#cn#8 1#2#3#3#cn#-1

opaths:
apply 1#sin 2#apply 2#1#times 2#2#pi 2#3#apply 2#3#1#power 2#3#2#cn#8

2#3#3#cn#-1

opaths: sin

opaths: times

opaths: pi

opaths: apply 1#power 2#cn#8 3#cn#-1

opaths: power

opaths: cn#8

opaths: cn#-1

upaths:
##apply ###sin ###apply ####times ####pi ####apply #####power

#####cn#8 #####cn#-1

upaths:
#apply ##sin ##apply ###times ###pi ###apply ####power ####cn#8

####cn#-1

upaths:
apply #sin #apply ##times ##pi ##apply ###power ###cn#8 ###cn#-1

upaths: sin

upaths: apply #times #pi #apply ##power ##cn#8 ##cn#-1

upaths: times

upaths: pi

upaths: apply #power #cn#8 #cn#-1

upaths: power

upaths: cn#8

upaths: cn#-1

sisters: power cn#8 cn#-1

sisters: times pi apply

sisters: sin apply

sisters: apply

Fig. 2. Index terms of the expression sin(π
8
)

4 Experimental Results

4.1 Evaluation Setup

We collected mathematical expressions for evaluation from the Wolfram Func-
tion Site. At the time collected, there were more than 300,000 mathematical
expressions on this site. After collection, we filtered out long expressions con-
taining more than 20 leaf nodes to speed up the semantic enrichment because
the processing time increases exponentially with the length of the expressions.

Which One Is Better: Presentation-Based or Content-Based Math Search? 207

opaths:
1#1#apply 1#1#1#sin 1#1#2#apply 1#1#2#1#times 1#1#2#2#pi

1#1#2#3#apply 1#1#2#3#1#power 1#1#2#3#2#cn#8 1#1#2#3#3#cn#-1

upaths:
##apply ###sin ###apply ####times ####pi ####apply #####power

#####cn#8 #####cn#-1

upaths:
#apply ##sin ##apply ###times ###pi ###apply ####power ####cn#8

####cn#-1

sisters: power cn#8 cn#-1

sisters: times pi apply

sisters: sin apply

sisters: apply

Fig. 3. Query terms of the expression sin(π
8
)

The number of mathematical expressions after filtering is approximately 20,000.
Presumably, this number is adequate for evaluating the mathematical search
system.

Evaluation was done by comparing three systems:

– Presentation-based search with PresentationMathML (PMathML): indexing
and searching are based on the Presentation MathML expressions.

– Content-based search with semantic enrichment (SE): indexing and search-
ing are based on the Content MathML expressions. The Content MathML
expressions are extracted automatically using semantic enrichment module.

– Content-based search with correct Content MathML (CMathML): indexing
and searching are based on the Content MathML expressions. The Content
MathML expressions are those from the Wolfram Function Site.

We used the same data to train the semantic enrichment module by 10-fold
cross validation method. The data is divided into 10 folds. The semantic en-
richment result of each fold was done by using the other 9 folds as training
data.

4.2 Evaluation Methodology

We used “Precision at 10” and “normalized Discounted Cumulative Gain” met-
rics to evaluate the results. In a large-scale search scenario, users are interested
in reading the first page or the first three pages of the returned results. “Pre-
cision at 10” (P@10) has the advantage of not requiring the full set of relevant
mathematical expressions, but its salient disadvantage is that it fails to incorpo-
rate consideration of the positions of the relevant expressions among the top k.
In a ranked retrieval context, normalized Discounted Cumulative Gain (nDCG)
as given by Equation 1 is a preferred metric because it incorporates the order of
the retrieved expressions. In Equation 1, Discounted Cumulative Gain (DCG)

208 M.-Q. Nghiem et al.

can be calculated using the Equation 2, where reli is the graded relevance of the
result at position i. Ideal DCG (IDCG) is calculable using the same equation,
but IDCG uses the ideal result list which was sorted by relevance.

nDCGp =
DCGp

IDCGp
(1)

DCGp = rel1 +

p∑
i=2

reli
log2(i)

(2)

For performance analysis of the mathematical search system, we manually
created 15 information needs (queries) and used them as input queries of our
mathematical search system. The queries are created based on NTCIR queries
with minor modification. Therefore, the search system always gets at least one
exact match. Table 1 shows the queries we used. The top 10 results of each query
were marked manually as relevant (rel = 1), non-relevant (rel = 0), or partially
relevant (rel = 0.5). The system then calculates P@10 and an nDCG value based
on the manually marked results.

Table 1. Queries

No. Query

1
∫∞
0

x dx
2 x2 + y2

3
∫∞
0

e−x2

dx
4 arcsin(x)
5 k2

6 cosh ez+sinh ez
e

7 RzΨ
ν(z), ∞̃

8
∫

ad+bz

z
dz

9 limν→∞
Lα+ν

Lν

10 BPzB
μ
ν (z)

11 ν ∈ N

12 Ψν(z)
13 log(z + 1)
14 Hn(z)
15 1

π

∫ π

0
(cos tn− z sin t)dt

4.3 Experimental Results

Comparisons among the three systems were made using P@10 and nDCG scores.
Table 2 and figure 5 show the P@10 and nDCG scores obtained from the search.
Figure 4 depicts the top 10 precision of the search system. The x axis shows
the k number, which ranges from 1 to 10. The y axis shows the precision score.
The precision score decreased, while k increased, which indicates that the higher
results are more relevant than lower results.

Which One Is Better: Presentation-Based or Content-Based Math Search? 209

Table 2. nDCG and P@10 scores of the search systems

Method nDCG P@10

PMathML 0.941 0.707
CMathML 0.962 0.747
SE 0.951 0.710

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10

Precision at k

PMathML CMathML SE

Fig. 4. Top 10 precision of the search system

In the experiment, a strong relation between semantic enrichment of math-
ematical expressions and content-based mathematical search system was found.
As shown in Nghiem et. al [28], the error rate of semantic enrichment of math-
ematical expressions module is around 29 percent. With current performance,
using this module for the mathematical search system still improves the search
performance. The system gained 1 percent in nDCG score and 0.3 percent in
P@10 score compared to the Presentation MathML-based system. Overall, the
system using perfect Content MathML yielded the highest results. In direct com-
parison using nDCG scores, the system using semantic enrichment is superior
to the Presentation MathML-based system, although not by much. Out of 15
queries, the semantic enrichment system showed better results than Presenta-
tion MathML-based system in 7 queries, especially when the mathematical sym-
bols contain specific meanings, e.g. Poly-Gamma function (query 10), Hermite-H
function (query 14). In case the function has specific meaning but there is no
ambiguity representing the function, e.g. Legendre-Q function (query 12), both
systems give similar results. Presentation MathML system, however, produced
better results than semantic enrichment systems in 5 queries when dealing with
elementary functions (query 2, 8, 15), logarithm (query 13), and trigonomet-
ric functions (query 6) because of its simpler representation using Presentation

210 M.-Q. Nghiem et al.

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

PMathML

CMathML

SE

P@10 nDCG

Fig. 5. Comparison of different systems

MathML. One exception is the case of query 4, when there is more than one
way to represent an expression with a specific meaning, e.g. sin−1 and arcsin,
Presentation MathML system gives unstable results.

This finding, while preliminary, suggests that we can choose either search
strategy depending on the situation. We can use Presentation MathML sys-
tem for elementary functions or when there is no ambiguity in the Presentation
MathML expression. Otherwise, we can use a Content MathML system while
dealing with functions that contain specific meanings. Another situation in which
we can use a Content MathML system is when there are many ways to present
an expression using Presentation MathML markup.

The average time for searching for a mathematical expression is less than one
second on our Xeon 32 core 2.1 GHz 32 GB RAM server. The indexing time,
however, took around one hour for 20,000 mathematical expressions. Because of
the unavailability of standard corpora to evaluate content-based mathematical
search systems, the evaluation at this time is quite subjective and limited. Al-
though this study only uses 20,000 mathematical expressions for the evaluation,
the preliminary experimentally obtained results indicated that the semantic en-
richment approach showed promise for content-based mathematical expression
search.

5 Conclusion

By using semantic information obtained from semantic enrichment of mathe-
matical expressions system, the content-based mathematical search system has
shown promising results. The experimental results confirm that semantic infor-
mation is helpful to the mathematical search. Depending on the situation, we
can choose to use either presentation-based or content-based strategy for search-
ing. However, this is only a first step; many important issues remain for future

Which One Is Better: Presentation-Based or Content-Based Math Search? 211

studies. Considerably more work will need to be done using a larger collection of
queries. In addition, there are many other valuable features that are worth con-
sidering besides the semantic markup of an expression, such as the description
of the formula and its variables.

Acknowledgments. This work was supported by JSPS KAKENHI Grant
Numbers 2430062, 25245084.

References

1. Aizawa, A., Kohlhase, M., Ounis, I.: NTCIR-10 Math pilot task overview. In:
National Institute of Informatics Testbeds and Community for Information access
Research 10 (NTCIR-10), pp. 654–661 (2013)

2. National Institute of Standards and Technology: Digital library of mathematical
functions, http://dlmf.nist.gov (visited on March 01, 2014)

3. Springer: Springer LaTeX Search, http://www.latexsearch.com/ (visited on
March 01, 2014)

4. Youssef, A.S.: Information search and retrieval of mathematical contents: Issues
and methods. In: The ISCA 14th International Conference on Intelligent and Adap-
tive Systems and Software Engineering, pp. 100–105 (2005)

5. Altamimi, M.E., Youssef, A.S.: A math query language with an expanded set of
wildcards. Mathematics in Computer Science 2, 305–331 (2008)

6. Youssef, A.S., Altamimi, M.E.: An extensive math query language. In: SEDE, pp.
57–63 (2007)

7. Miner, R., Munavalli, R.: An approach to mathematical search through query
formulation and data normalization. In: Kauers, M., Kerber, M., Miner, R., Wind-
steiger, W. (eds.) MKM/CALCULEMUS 2007. LNCS (LNAI), vol. 4573, pp. 342–
355. Springer, Heidelberg (2007)

8. Wolfram: The Wolfram Functions Site, http://functions.wolfram.com/ (visited
on March 01, 2014)

9. Adeel, M., Cheung, H.S., Khiyal, S.H.: Math go! prototype of a content based
mathematical formula search engine. Journal of Theoretical and Applied Informa-
tion Technology 4(10), 1002–1012 (2008)

10. Kohlhase, M., Sucan, I.: A search engine for mathematical formulae. In: Calmet,
J., Ida, T., Wang, D. (eds.) AISC 2006. LNCS (LNAI), vol. 4120, pp. 241–253.
Springer, Heidelberg (2006)

11. Yokoi, K., Aizawa, A.: An approach to similarity search for mathematical expres-
sions using mathml. In: 2nd Workshop Towards a Digital Mathematics Library,
DML 2009, pp. 27–35 (2009)

12. Kohlhase, M., Prodescu, C.C.: Mathwebsearch at NTCIR-10. In: National Insti-
tute of Informatics Testbeds and Community for Information access Research 10
(NTCIR-10), pp. 675–679 (2013)

13. Nguyen, T.T., Chang, K., Hui, S.C.: A math-aware search engine for math question
answering system. In: Proceedings of the 21st ACM International Conference on
Information and Knowledge Management (CIKM 2012), pp. 724–733 (2012)

14. Ausbrooks, R., Buswell, S., Carlisle, D., Chavchanidze, G., Dalmas, S., Devitt,
S., Diaz, A., Dooley, S., Hunter, R., Ion, P., et al.: Mathematical markup lan-
guage (MathML) version 3.0. W3C recommendation. World Wide Web Consortium
(2010)

http://dlmf.nist.gov
http://www.latexsearch.com/
http://functions.wolfram.com/

212 M.-Q. Nghiem et al.

15. Buswell, S., Caprotti, O., Carlisle, D.P., Dewar, M.C., Gaetano, M., Kohlhase, M.:
The openmath standard. Technical report, version 2.0. The Open Math Society
(2004)

16. McKain, D.: SnuggleTeX version 1.2.2, http://www2.ph.ed.ac.uk/snuggletex/
(visited on March 01, 2014)

17. Miller, B.R.: LaTeXML a LaTeX to XML converter, http://dlmf.nist.gov/

LaTeXML/ (visited on March 01, 2014)
18. Kamali, S., Tompa, F.W.: Improving mathematics retrieval. In: 2nd Workshop

Towards a Digital Mathematics Library, pp. 37–48 (2009)
19. Kamali, S., Tompa, F.W.: Structural similarity search for mathematics retrieval.

In: Carette, J., Aspinall, D., Lange, C., Sojka, P., Windsteiger, W. (eds.) CICM
2013. LNCS (LNAI), vol. 7961, pp. 246–262. Springer, Heidelberg (2013)

20. Zanibbi, R., Blostein, D.: Recognition and retrieval of mathematical expressions.
IJDAR 15, 331–357 (2012)

21. Munavalli, R., Miner, R.: Mathfind: a math-aware search engine. In: Proceedings
of the 29th Annual International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, p. 735. ACM (2006)

22. Miller, B.R., Youssef, A.S.: Technical aspects of the digital library of mathematical
functions. Annals of Mathematics and Artificial Intelligence 38, 121–136 (2003)

23. Youssef, A.S.: Methods of relevance ranking and hit-content generation in
math search. In: Kauers, M., Kerber, M., Miner, R., Windsteiger, W. (eds.)
MKM/Calculemus 2007. LNCS (LNAI), vol. 4573, pp. 393–406. Springer, Hei-
delberg (2007)

24. Sojka, P., Ĺı̌ska, M.: The Art of Mathematics Retrieval. In: Proceedings of the
ACM Conference on Document Engineering, DocEng 2011, Mountain View, CA,
pp. 57–60. Association of Computing Machinery (2011)

25. Mǐsutka, J., Galamboš, L.: System description: EgoMath2 as a tool for mathe-
matical searching on wikipedia.org. In: Davenport, J.H., Farmer, W.M., Urban, J.,
Rabe, F. (eds.) Calculemus/MKM 2011. LNCS, vol. 6824, pp. 307–309. Springer,
Heidelberg (2011)

26. Siekmann, J.: Activemath, http://www.activemath.org/eu/ (visited on March
01, 2014)

27. MathOverflow: Math overflow, http://mathoverflow.net/ (visited on March 01,
2014)

28. Nghiem, M.Q., Kristianto, G.Y., Aizawa, A.: Using mathml parallel markup cor-
pora for semantic enrichment of mathematical expressions. Journal of the Institute
of Electronics, Information and Communication Engineers E96-D(8), 1707–1715
(2013)

29. Apache: Apache solr, http://lucene.apache.org/solr/ (visited on March 01,
2014)

30. Topic, G., Kristianto, G.Y., Nghiem, M.Q., Aizawa, A.: The MCAT math retrieval
system for NTCIR-10 Math track. In: National Institute of Informatics Testbeds
and Community for Information access Research 10 (NTCIR-10), pp. 680–685
(2013)

31. Cornell University Library: arxiv, http://arxiv.org/ (visited on March 01, 2014)

http://www2.ph.ed.ac.uk/snuggletex/
http://dlmf.nist.gov/LaTeXML/
http://dlmf.nist.gov/LaTeXML/
http://www.activemath.org/eu/
http://mathoverflow.net/
http://lucene.apache.org/solr/
http://arxiv.org/

POS Tagging and Its Applications for Mathematics
Text Analysis in Mathematics

Ulf Schöneberg and Wolfram Sperber

FIZ Karlsruhe/Zentralblatt MATH, Franklinstr. 11, 10587 Berlin, Germany

Abstract. Content analysis of scientific publications is a nontrivial task, but a
useful and important one for scientific information services. In the Gutenberg
era it was a domain of human experts; in the digital age many machine-based
methods, e.g., graph analysis tools and machine-learning techniques, have been
developed for it. Natural Language Processing (NLP) is a powerful machine-
learning approach to semiautomatic speech and language processing, which is
also applicable to mathematics. The well established methods of NLP have to be
adjusted for the special needs of mathematics, in particular for handling math-
ematical formulae. We demonstrate a mathematics-aware part of speech tagger
and give a short overview about our adaptation of NLP methods for mathemati-
cal publications. We show the use of the tools developed for key phrase extraction
and classification in the database zbMATH.

1 Methods and Tools

1.1 Part of Speech Tagging and Noun Phrases

We describe our approach for Part Of Speech (POS) tagging and Noun Phrases (NPs)
extraction of mathematical documents as basic tool for key phrase identification and
classification of mathematical publications. NLP methods arising from the field of com-
puter linguistics constitute a statistics- and rule-based machine-learning approach to the
processing of speech and language. Natural language analysis and understanding is a
central aim of NLP. In western languages, Noun Phrases (NPs) are the most signifi-
cant parts of sentences. Extraction of the NPs and finding rules for which of them are
relevant are the key aspects of automatic key phrase extraction in documents.

An important part of capturing NPs from a text is POS tagging. It presupposes the
availability of information about the tokens in a sentence, especially the linguistic types
of the tokens. Almost all state-of-the-art POS taggers rely on dictionaries. Some NLP
tools are provided as Open Source software. In our project, the Stanford POS tagger [9]
is used. We extended the dictionaries of the POS tagger with large amounts of math-
ematical text data. We put a lot of work into these dictionaries as we already men-
tioned [4] at CICM 2013. Especially, they contain names of mathematicians, acronyms
and special terms that only exist in the domain of mathematics.

The Stanford tagger uses the Penn Treebank POS scheme [3], a classification scheme
of linguistic types with 45 tags for tokens and punctuation symbols. This scheme has
a relevant drawback for mathematical texts: there is no special tag for mathematical
symbols or mathematical formulae (in the following we subsume both to mathematical

S.M. Watt et al. (Eds.): CICM 2014, LNAI 8543, pp. 213–223, 2014.
c© Springer International Publishing Switzerland 2014

214 U. Schöneberg and W. Sperber

formulae). We did not change that. Formulae are handled by an auxiliary construct.
This simple and straightforward method allows a slim and easy maintenance of the
POS tagging software.

In our approach, mathematical formulae (which are available as TeX code) are trans-
formed to unique but random character sequences.

POS tagging has two main problems: new words and the ambiguity of POS tags
(many tokens of the corpus can belong to more than one word class) are addressed by
determining a suitable POS tag of a token using contextual statistical models and the
Viterbi algorithm, a dynamic programming technique. The Viterbi algorithm uses infor-
mation about the surrounding tokens to predict the probable POS tag of the ambiguous
or unknown token, e.g., a formula is mainly tagged as an adjective or a noun.

We illustrate that sequence of substitutions in the following example. It starts with
the original LaTeX sentence and ends with the tagged sequence. The original sentence:

The classical Peano theorem states that in finite dimensional
spaces the Cauchy problem $x’(t)=f(t,x(t))$, $x(t\sb 0)=x\sb 0$,
has a solution provided f is continuous.

The TeX formulae are translated into unique, but randomly generated, character sequences:

The classical Peano theorem states that in finite dimensional
spaces the Cauchy problem formula-kqnompjyomsqomppsk,
formula-kqomolugwpjqolugwk, has a solution provided formula-kyk
is continuous.

This sentence is fed into the POS tagger. The Stanford tagger assigns an appropriate tag to
ervey token.

The_DT Classical_JJ Peano_NNP theorem_NN states_VBZ that_IN
in_IN finite_JJ dimensional_JJ spaces_NNS the_DT Cauchy_NNP
problem_NN formula-kqnompjyomsqomppsk_NN,
formula-kqomolugwpjqolugwk_NN ,_, has_VBZ a_DT solution_NN
provided_VBN formula-kyk_NN is_VBZ continuous_JJ ._.

The tagged text is transformed back to its TeX representation without touching the tags:

The_DT Classical_JJ Peano_NNP theorem_NN states_VBZ that_IN
in_IN finite_JJ dimensional_JJ spaces_NNS the_DT Cauchy_NNP
problem_NN $x’(t)=f(t,x(t))$_NN,
$x(t\sb 0)=x\sb 0$_NN ,_, has_VBZ a_DT solution_NN
provided_VBN k_NN is_VBZ continuous_JJ ._.

NP extraction is done by chunking with regular expressions for special patterns of
POS tags. A very basic form of such a regular expression is:

<DT>?<JJ>*<NN>

This rule means that an NP chunk should be formed whenever the chunker finds an
optional determiner (DT) followed by any number of adjectives (JJ) and then a noun
(NN). However, it is easy to find many more complicated examples which this rule will

POS Tagging and Its Applications for Mathematics 215

not cover. The actual set of expressions we used is much more complex. Especially,
NPs can be combinations of tokens and formulae, e.g., ’the Cauchy problem x′(t) =
f(t, x(t)), x(t0) = x0’. After identifying the NPs in a document, we get a collection of
NPs in the first step.

If you would like to experiment with our solution we provide a web-based demo at
http://www.zentralblatt-math.org/mathsearch/rs/postagger

1.2 Noun Phrase and Key Phrase Extraction

A key phrase in our context, information retrieval in the mathematical literature, is a
phrase that captures the essence of the topic of a document [7].

Mathematical publications, especially journal articles, have a more or less standard-
ized metadata-structure covering important bibliographic data: authors, title, abstract,
keywords (key phrases) and sometimes also a classification corresponding to the Math-
ematical Subject Classification (MSC). Typically, key phrases are short phrases charac-
terizing

– embedding a publication in its general mathematical context as Diophantine equa-
tions or optimal control

– special objects, methods, and results of a publication as bipartite complex networks,
k-centroids clustering

Often key phrases are descended form the title, the abstract or review or the fulltext,
but this is not mandatory. key phrases of a document must not be part of the document.

NPs are natural candidates for key phrases. Key phrase identification via noun phrases
is an usual technique. [5]

1.3 Classification with NPs

Classification is also an important task within NLP. The normal approachwhich uses the
full text of a document and favours stemming and Term Frequency/Inverse Document
Frequency (TF/IDF) to get rid of redundant words, but we chose a different approach.
We use the extracted noun phrases from the texts, and than apply text classification
methods.We tested several machine learning techniques. The best results were provided
by a Support Vector Machine (SVM). The SVM we used is John Platt’s sequential
minimal optimization algorithm for support vector classifiers, the kernel is a polynomial
kernel, the training data was every item from the database zbMATH from the beginning
to the end of 2013. In particular, we used the Sequential Minimal Optimisation (SMO)
technique from WEKA.

1.4 The Big Picture

A fewwords about the Fig. 1 block diagram:We start with an article, it is then tokenised
into sentences. For every sentence the formulae have to be preprocessed: if there is
an acronym in the sentence, it needs to be expanded. After that, the POS tagger runs
and the noun phrases are extracted. The NPs extracted are sent to the classifier. The

http://www.zentralblatt-math.org/mathsearch/rs/postagger

216 U. Schöneberg and W. Sperber

Fig. 1. The tagger with it’s related processes

candidates for key phrases and classification codes are laid before to human experts.
Their evaluations are used to improve our machine-learning techniques. The POS block
in the middle of the diagram is really big in terms of complexity. As said above it, if
a new release comes from Stanford, the new block can easily be integrated into our
system.

General remark: There are a couple of emerging machine-learning techniques which
have also been used for semantic analysis of documents. They work with Deep Belief
Networks (deep Neural Networks) and the outcomes of these experiments are more than
promising.

2 Reviewing Services in Mathematics

Reviewing journals have a long tradition in mathematics, and nowadays take the form
of electronic databases. Today zbMATH and MathSciNet are the most important bib-
liographic mathematics databases. They are important tools used by the mathematical
community in searching for relevant publications. These databases provide the most
comprehensive bibliographic information about mathematics enhanced by a deep con-
tent analysis of the publications. In the Gutenberg era, all this information was created
manually. The digital age has changed the situation dramatically. The digitisation of
information allows automation like that we are developing to make the production of
databases more efficient and uniformly to improve the quality of the database zbMATH.

The math databases have three different layers which are directly geared towards
content analysis of a publication:

– bottom layer: reviews or abstracts
– second layer: key phrases
– top level: classification

POS Tagging and Its Applications for Mathematics 217

Every layer has its own characteristics, but these layers interact. We will show in
the following how we have used reviews or abstracts for key phrase extraction and
classification.

3 Key Phrase Extraction in zbMATH

The relevance of NPs for key pheases identification is also valid for our data. The Zen-
tralblatt Math, today the database zbMATH, has reacted to the increasing number of
key phrases in the mathematical literature and has collected them since the 70s. The
field UT Uncontrolled Terms was introduced to accentuate single terms or phrases)
of a publication, e.g., marginal function, quasi-differentiable function, directional dif-
ferentiability, distance function. This field lists key phrases created by authors and/or
reviewers and/or editors of zbMATH. Typically, key phrases of authors will be extended
by reviewers and editors within the workflow of zbMATH. The key phrases presented in
zbMATH are searchable (by the specification ut : in the search field) and clickable. The
key phrases in zbMATH are different in size and quality. The current number of all key
phrases in the database zbMATH is greater than (not disjunct) 10,200,000 entities. That
means, the average number of key phrase of a publication is not more than 3, which is
not sufficient for a description of the content below the MSC level.

The dominant majority of key phrases in zbMATH are noun phrases including for-
mulae as C∗-algebra. Only, a small number of the manually created key phrases are
single adjectives as key phrases, e.g., quasiconvex. No verbs were used as key phrases.
So, we have focused us to identification of noun phrases (with formulae) as the most
important candidates for key phrases until now.

For automatic creation of key phrases, typically only the titles and reviews or ab-
stracts are available. This has the advantage that the number of noun phrases which
is the list of candicates is small. Moreover, titles and reviews or abstracts are perfectly
suited to detecting and extracting key phrases because they are generally understandable
and summarise the content of a publication in a highly condensed form.

But of course, the NLP methods using tokenizing, POS tagging, and chunking, have
to be adapted to specific requirements of our data.

3.1 Problems

Relevance: The NPs extracted are of different values for content analysis. Such phrases
as in the following paper (chapter etc.) or an important theorem are of marginal value
for content analysis. Therefore we allocate a weight to each extracted noun phrase. A
noun phrase is given a very high score if it is

– a named mathematical entity which is defined in a mathematical vocabulary such as
Wikipedia, PlanetMath, Encyclopaedia of Mathematics, etc. The number of named
mathematical entities in these vocabularies is limited, and not more than 50,000
entities. Typically, such phrases are important in assigning the publication to its
mathematical context.

– identical with a proposed key phrase of the publication. Most mathematical publi-
cations have a (limited) number of key phrases created by the author(s).

218 U. Schöneberg and W. Sperber

– identical with an existing key phrase in zbMATH. The existing key phrases describe
general or special aspects. (The total number of existing key phrases in the database
zbMATH is more than 10,200,000, the number of distinct key phrases is 2,900,000.)

high score if it

– contains names of mathematicians: if a noun phrase contains names of mathemati-
cians, it is an indicator that the noun phrase is a name for a special conjecture,
theorem, approach or method.

– is a acronym: Acronyms are artificial words and have a special spelling. Acronyms
are used as abbreviations for longer noun phrases. Acronyms are per se relevant
noun phrases. We compare the extracted candidates for acronyms with our dictio-
nary and resolve them. Generally, the resolution is not unique and depends from
the area; some acronyms have up to 20 different meanings.

– is or contains specific mathematical formulae: A special mathematical formula in
a term, e.g., H∞-control, is a relevant noun. At least all formulae which are not
one-character mathematical notations, are important.

marginal or negative score

– if it provides no additional information about the content. Then, the extracted noun
phrase is removed from the candidate list.

Incomplete Chunking: Sometimes, relevant mathematical key phrases involve a larger
number of tokens, e.g., Browder–Ky Fan and Ky Fan–Glicksberg fixed-point theorems.
Sometimes, the extracted phrases are incomplete. To solve these problems, the rules for
chunking have to be adapted permanently.

3.2 Processing of NPs

In the following, the used methods are listed:

– Weighting: The weighting of key phrases is done as described above.
– Redundancy: Very often, some of the extracted NPs are similar. A simple mea-
sure for the similarity is the number of different tokens between two phrases. The
method used is the LCS (Longest Common Subsequence) algorithm. The NPs are
grouped by similarity.

– Filtering: Groups of similar phrases are replaced by a representative. Selecting a
representative is done by using the base vocabulary. Existing key phrases and other
resources (e.g., the labels of the MSC classes) are used to select the most suitable
phrase.

– Evaluation by experts: The resulting list of possible key phrases is shown to human
experts, e.g., editors or reviewers who can remove, change or add phrases.

3.3 Results

Number of Key Phrases and Quality: In the average, 3 – 4 key phrases were assigned
manually to a publication. The average number of extracted NPs is significantly higher:
10 – 20 NPs. By the methods described above, the number of candidates is reduced to
7 – 10 phrases for a publication.

POS Tagging and Its Applications for Mathematics 219

Up to now, the evaluation of key phrase extraction by human experts has been started
only for particular classes because it means additional expense for human involvement.
In the first phase, under 40% of the phrases were accepted by the experts. The feedback
led to a redesign and essential improvements of the methods. The acceptable propor-
tion of automatically generated key phrases increased to more than 60% by removing
irrelevant phrases. It is planned to integrate the machine-based key phrase extraction in
a semiautomatic workflow for zbMATH.

Of course, the quality of the proposed key phrases is dependent on the title and
review (abstract).

Controlled vocabulary: We applied our tools to the complete zbMATH database.
All resulting key phrases and all changes are stored and used for further enrichment and
improvement of key phrases. The set of all positive evaluated key phrases is a first con-
trolled vocabulary of mathematics; the irrelevant noun phrases define the bad list. The
first version of the prototype of the controlled vocabulary contains 3,500,000 different
phrases. The controlled vocabulary can be structured by topic (MSC classification, see
below) and weighted by frequency.

3.4 Further Remarks

Key Phrases and Classification: The automatically created key phrases were also used
for classification as will be described below in detail. Basing classifiers on the extracted
key phrases instead of on reviews has significantly improved the quality of automatic
classification.

Structuring key Phrases: Using our method we get only key phrases which are within
a text. For a further enhancement of the key phrases and the controlled vocabulary,
we have to know additional relations between the phrases, e.g., synonyms, hypernyms,
hyponyms, meronyms. Such ontological relations could be used for structuring and
improving the extracted key phrases.

Deeper Analysis of Mathematical Formulae: Mathematical symbols and formulae
form an important part of mathematical publications but they are more important in the
full texts of publications than in reviews.

An analysis of the symbols and formulae found in zbMATH has shown that the
reviews, or abstracts, contain over 10,000,000 symbols and formulae. Most of them are
simple one-character symbols. Nevertheless, the analysis of symbols and formulae and
its combinationwith text analysis is of great interest, e.g., the correspondence between a
text phrase and a formula seems relevant. Formulae were integrated in POS tagging and
noun phrase extraction as described above. A deeper analysis of mathematical symbols
and formulae is planned in cooperation with the MathSearch project.

4 Classification in zbMATH

Classification is a well-established concept for organising information and knowledge.
Although it is a well knownmethod, it is not a trivial task. The reasons for difficulties are
numerous. Two main reasons are the classification scheme and the classifying process.

220 U. Schöneberg and W. Sperber

Classes are defined by one or more common properties of the members. Abstracting
from individual objects, classification schemes assign the objects to classes. Classifica-
tion schemes are not given a priori, they are intellectually designed and depend on the
topic, aims, time, interests and views of the developers of the classification scheme.

The MSC was designed by the American Mathematical Society in the 1970s. The
primary goal was to support subject-oriented access to the increasing number of mathe-
matics-relevant publications, e.g., zbMATH lists 35,958 journal articles, books and
other publications in mathematics and application areas in 1975. For a sufficiently fine-
grained access to these thousands of documents annually, a hierarchical three-level deep
classification scheme with more than 5,000 classes was developed. In particular, the top
level of the MSC has 63 classes.

Typically, the classes of a classification scheme are not pairwise disjoint. Often, an
overlapping of classes is part of a concept. This is also valid for the MSC, e.g., Navier-
Stokes equations are listed in two main topics: 35-XX Partial differential equations
(this is the mathematical point of view) and 76-XX Fluid mechanics (here, the appli-
cation aspect is dominant). The MSC shows not only hierarchical relations but also
different kinds of similarity. Moreover, an object can possess the properties of different
classes. Typically, a mathematical publication cannot be reduced to a unique aspect or
property. Publications develop or analyse mathematical models or objects investigated,
make quality statements about them, or develop methods or tools to solve problems.
This implies that a publication can be a member of more than one class.

A second reason for the difficulties is the classification process. This means that
the classification codes (the handles indexing the classes) assigned an object, e.g., the
MSC classification codes given a mathematical publication, are subjective (there is a
certain range for classification codes). The classifications can be weighted: zbMATH
and MathSciNet differentiate between primary and secondary MSC classifications.

What is the true classification of an object? What is the most important class? Are
the classification codes given complete? Generally, there are often no objective answers
to these questions. The uncertainty of the classification scheme and the subjectivity of
the human experts work against the objective value of classification. For the reviewing
services in mathematics, authors, editors and reviewers are involved in the classification
process. In more detail, the final classification codes in zbMATH are the result of the
workflow process. This means, each classification of the author(s) is checked by the
reviewer and the editor. This workflow reduces the impact of subjective decision.

To the best of our knowledge, there has been no serious analysis of the quality and re-
liability of assigned classification codes. Checking classification would cover two steps
a.) correctness of a proposed classification code b.) completeness of proposed classifi-
cation codes (often a publication belongs to more than one class, e.g., look for a control
system described by ordinary differential equations and its stability is investigated).

But for the development and evaluation of automatic classifiers we are assuming to
start with that the classification in zbMATH is correct.

One aim of our work is to provide tools for automatic classifying, especially SVM
methods. In detail, we took 63 different SVM classifiers, one for every top-level of the
MSC and trained them on key phrases from the corresponding sections of the zbMATH
database.

POS Tagging and Its Applications for Mathematics 221

4.1 Quality

Quality of classification is usually measured by precision & recall and the F1-score
which is their harmonic mean. Precision is the proportion of all publications of a class
which are assigned to a specific class by the automatic classifier. For recall we look at
all publications which are not in a class (in the complement of the class: this means the
publication is in some other class) but assigned to this class by the automatic classifier.

4.2 Results

The results of the classification provide a differentiated picture. Roughly speaking; the
precision is sufficient (for 26 of the 63 top-level classes the precision is higher than 0.75
and only for 4 classes is it smaller than 0.5), the recall is not. In other words publications
which were classified as elements of a particular MSC class i are mostly correctly clas-
sified. The classifier is precision weighted: for all MSC classes the precision is higher
than recall.

In the following, we discuss the results in more detail. A central idea in discussing
the quality is the overlapping of classes. Therefore we have built a matrix, indexed by
the top-level classes of the MSC, which lists the numbers of publications according
to the following definition: Let aii be the number of publications which are classified
exclusively with the MSC class i and aij the number of publications with the primary
classification i and secondary classification j.

We normalize the elements aij of the matrix by with aij/Ai where Ai denotes the
number of all publications with primary MSC code i

As a first result, it becomes clear that there is a correlation between the overlapping
of classes and the results of the automatic classifier.

Fig. 2. The axes are the MSC class numbers, and the entries express the degrees of overlap aij ;
white indicates no overlap; the darker the cell the more the overlap

Easy Classes: If aii/Ai is near 1, then both precision and recall are high. The overlap
with other classes is small and the vocabulary differs significantly from the vocabulary

222 U. Schöneberg and W. Sperber

of other classes. Giving examples of such classes are those publications which have
primary classifications from an application areas. This seems to be natural, because
each application area has its own specific language and terminology.

Difficult Classes: There are have different types of overlap. Overlap with other classes
can be focused on some MSC classes, e.g., for the class 31-XX Potential theory and
43 Harmonic analysis, or distributed, e.g., MSC 97-XXMathematical education. In the
first case, we propose to further cluster some MSC classes which are similar.

In addition, the total number of all publications with the primary classification i
is relevant: a small number of documents has a negative impact on the classification
quality. It seems that vocabulary and terminology of these classes may not be stable
enough. The difficult classes have less than a few thousand documents.

4.3 Remarks

Use of Classification: A high precision means a high reliability that publications of the
class i will be also automatically assigned to this class. This is important for preclassifi-
cation where precision is more important than recall. Until nowwe have been deploying
the classification tool for preclassification of publications.We propose to improve recall
by a second step of classification analysis. The key phrases of each publication assigned
to the class i by the automatic classifier will be analyzed in more detail.

Controlled Vocabulary and Classification: Classification is – in addition to key
phrases – an important piece of metadata in the content analysis of a publication. Each
zbMATH item can bear more than one classification code. The database zbMATH does
not contain a relation between key phrases and classification codes. It is a n : m re-
lation. Also the hierarchical structure of the MSC is a problem too. To begin we have
applied to top classes and assign a MSC class to a key phrase if the MSC classification
(at the top level) is unique. This allows creating a first vocabulary for each top MSC
class which has a higher precision of the definition of a MSC class as the existing.
Moreover, the structure of the MSC scheme can be analyzed e.g. by the studying the
intersection between the controlled vocabularies of different MSC classes.

5 Conclusion and Next Steps

It seems that the machine-based methods we have developed for key phrase extraction
and classification are already useful in improving the content analysis of mathemati-
cal publications and making the workflow at zbMATH more efficient. We note some
positive effects:

– Quantity and quality of key phrases is increased by automatic key phrase extraction.
– The integration of formulae into key phrase extraction lays the foundations for in-
cluding formulae in content analysis. This could essentially improve content anal-
ysis of mathematical documents.

– Results of classification can be used to redesign and improve the MSC.
– The use of standardized methods guarantees a balanced and standardized quality of
content analysis in zbMATH.

POS Tagging and Its Applications for Mathematics 223

References

1. The database zbMATH, http://www.zentralblatt-math.org/zbmath/
2. Mathematics Subject Classification (MSC 2010), http://www.msc2010.org
3. Santorini, B.: Part-of-Speech-Tagging guidelines for the Penn Treebank Project (3rd Revi-

sion, 2nd printing) (June 1990), ftp://ftp.cis.upenn.edu/pub/
treebank/doc/tagguide.ps.gz

4. Schöneberg, U., Sperber, W.: The DeLiVerMATH project: Text analysis in mathe-
matics. In: Carette, J., Aspinall, D., Lange, C., Sojka, P., Windsteiger, W. (eds.)
CICM 2013. LNCS (LNAI), vol. 7961, pp. 379–382. Springer, Heidelberg (2013),
http://arxiv.org/pdf/1306.6944.pdf

5. Nguyen, T.D., Kan, M.-Y.: Keyphrase extraction in scientific publications. In: Goh, D.H.-L.,
Cao, T.H., Sølvberg, I.T., Rasmussen, E. (eds.) ICADL 2007. LNCS, vol. 4822, pp. 317–326.
Springer, Heidelberg (2007)

6. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA
Data Mining Software: An Update. SIGKDD Explorations 11(1) (2009)

7. Wikipedia contributors, ‘Index term’, Wikipedia, The Free Encyclopedia (January 13, 2014),
http://en.wikipedia.org/wiki/Index_term

8. Platt, J.C.: Fast Training of Support Vector Machines Using Sequential Minimal Optimiza-
tion. MIT Press, Cambridge (1999)

9. Samuelsson, C., Voutilainen, A.: Comparing a linguistic and a stochastic tagger. In: Pro-
ceedings of the 35th Annual Meeting of the Association for Computational Linguistics, pp.
246–253 (1997)

10. Encyclopedia of Mathematics, http://www.encyclopediaofmath.org/index.
php/Main Page

11. PlanetMath, http://planetmath.org/

http://www.zentralblatt-math.org/zbmath/
http://www.msc2010.org
ftp://ftp.cis.upenn.edu/pub/treebank/doc/tagguide.ps.gz
ftp://ftp.cis.upenn.edu/pub/treebank/doc/tagguide.ps.gz
http://arxiv.org/pdf/1306.6944.pdf
http://en.wikipedia.org/wiki/Index_term
http://www.encyclopediaofmath.org/index.php/Main_Page
http://www.encyclopediaofmath.org/index.php/Main_Page
http://planetmath.org/

Mathoid: Robust, Scalable, Fast and Accessible

Math Rendering for Wikipedia

Moritz Schubotz1 and Gabriel Wicke2

1 Database Systems and Information Management Group,
Technische Universität Berlin, Einsteinufer 17, 10587 Berlin, Germany

schubotz@tu-berlin.de
2 Wikimedia Foundation, San Francisco, California, U.S.A.

gwicke@wikimedia.org

Abstract. Wikipedia is the first address for scientists who want to recap
basic mathematical and physical laws and concepts. Today, formulae in
those pages are displayed as Portable Network Graphics images. Those
images do not integrate well into the text, can not be edited after copy-
ing, are inaccessible to screen readers for people with special needs, do
not support line breaks for small screens and do not scale for high res-
olution devices. Mathoid improves this situation and converts formulae
specified by Wikipedia editors in a TEX-like input format to MathML,
with Scalable Vector Graphics images as a fallback solution.

1 Introduction: Browsers Are Becoming Smarter

Wikipedia has supported mathematical content since 2003. Formulae are entered
in a TEX-like notation and rendered by a program called texvc. One of the first
versions of texvc announced the future of MathML support as follows:

“As of January 2003, we have TeX markup for mathematical formulas on
Wikipedia. It generates either PNG images or simple HTML markup,
depending on user prefs and the complexity of the expression. In the
future, as more browsers are smarter, it will be able to generate enhanced
HTML or even MathML in many cases.” [11]

Today, more then 10 years later, less than 20% of people visiting the English
Wikipedia, currently use browsers that support MathML (e.g., Firefox) [27].
In addition, texvc, the program that controls math rendering, has made lit-
tle progress in supporting MathML. Even in 2011, the MathML support was
“rather pathetic” (see [17]). As a result, users expected MathML support within
Wikipedia to be a broken feature. Ultimately, on November 28, 2011, the user
preference for displaying MathML was removed [24].

Annoyed by the Portable Network Graphics (PNG) images, in December 2010,
user Nageh published a script, User:Nageh/mathJax.js, that enables client-side
MathJax rendering for individual Wikipedia users [23]. Some effort and technical
expertise was required to use the script. The user had to install additional fonts

S.M. Watt et al. (Eds.): CICM 2014, LNAI 8543, pp. 224–235, 2014.
c© Springer International Publishing Switzerland 2014

Mathoid: Robust, Scalable, Fast and Accessible Math Rendering 225

on his system manually, to import the script, into his Wikipedia account settings
and to change the Math setting in his Wikipedia user account page to “Leave
it as TEX”. With client-side MathJax rendering, the visitor was able to choose
from the context menu of each equation with the PNG image being replaced by
either: (1) a Scalable Vector Graphics (SVG) image, (2) an equivalent HTML +
CSS representation, or (3) MathML markup (this requires a MathML capable
browser).

MathJax needs a significant amount of time to replace the TEX-code on the
page with the above replacements. This amount of time is dependent on the op-
erating system, browser, and hardware configuration. For instance, we measured
133.06 s to load the page Fourier transform in client side MathJax mode, as com-
pared to 14.05 s for the page loading without math rendering (and 42.9 s with
PNG images) on a typical Windows laptop with Firefox.1 However, improve-
ments in the layout motivated many users to use that script, and in November
2011, client-side MathJax became an experimental option for registered users
[25].

As of today, there are almost 21M registered Wikipedia users, of which 130k
have been active in the last 30 days. Of these users, 7.8k use the MathJax
rendering option which causes long waiting times for pages with many equations.
Also 47.6k users chose the (currently disabled) HTML rendering mode, which
if possible, tries to use HTML markup to display formula, and the PNG image
otherwise. Furthermore, 10.1k users chose the MathML rendering mode (disabled
in 2011). Thus, the latter 57.7k users are temporarily forced to view PNG images,
even though they explicitly requested against this. This demonstrates that there
is an significant demand for math rendering, other than for the use of PNG
images.

Currently, the MediaWiki Math extension is version 1.0. Our efforts have been
to make an improvement on that extension. We refer to our update of the ex-
tension as version 2.0. Furthermore, we refer to Mathoid as all the ingredients
mentioned in this paper which go into developing Math 2.0. One essential ingre-
dient in Mathoid, is what we refer to as Mathoid-server. This is a tool, which
we describe in this paper, which converts the TEX-like math input used in Medi-
aWiki to various formats that we describe in this paper. Our paper is organized
as follows.

In Section 2, we list the requirements for Math rendering in Wikipedia, explain
how one may contribute to these requirements, and elaborate on how one may
make math accessible for people with special needs. In this section we introduce
the Mathoid-server. In Section 3, we explain how by using Mathoid-server, math
can be displayed in browsers that do not support MathML. In Section 4, we
discuss how math rendering can be offered as a globally distributed service. In
Section 5, we discuss and compare the performance of reviewed rendering tools,

1 The measurement was done on a Lenovo T420 Laptop with the following hardware:
8GB RAM, 500GB HDD, CPU Intel Core i7-2640M, Firefox 24.0 on Windows 8.1,
download speed 98.7 MB/s upload speed 9.8 MB/s, ping to en.wikpedia.org was
25(±1) ms.

https://en.wikipedia.org/wiki/Fourier_transform

226 M. Schubotz and G. Wicke

in regard to layout and speed. Finally, in Section 6, we conclude with results
from our comparison and give an overview of future work.

2 Bringing MathML to Wikipedia

ForWikipedia, the following requirements and performance measures are critical.

coverage: The converter must support all commands currently used in
Wikipedia.

scalability: The load for the converter may vary significantly, since the number
of Wikipedia edits heavily depends on the language. Thus, a converter must
be applicable for both small and large Wikipedia instances.

robustness: Bad user input, or a large number of concurrent requests, must
not lead to permanent failure for the converter.

speed: Fast conversion is desirable for a good user experience.
maintainability: A new tool for a global site the size of Wikipedia must be

able to handle tasks with a large management overhead. Therefore, active
development over a long period of time is desirable.

accessibility: Providing accessible content to everyone is one of the key goals
of Wikipedia.

There are a large variety of TEX to MathML converters [2]. However, most of
them are no longer under active development, or their licenses are not compatible
with MediaWiki. In 2009, [22] showed that LATEXML has the best coverage (but
not a very high conversion speed) as compared to the LATEX converters which
were analysed in that paper. Since 2009, a new converter, MathJax [3], has be-
come popular. After negotiations with Peter Krautzberger (of MathJax) and his
team, we regard MathJax (executed in a headless browser on a web server), as a
useful alternative to LATEXML. One strong point about MathJax with regard to
coverage, is that it is already used by some Wikipedia users on the client-side (as
described in Section 1). Therefore the risk of unexpected behavior is limited. For
LATEXML, Bruce Miller has written a set of custom macros for MediaWiki spe-
cific TEX commands which supports the MediaWiki TEX markup. A test using
these macros based on a Wikipedia dump, has shown very good coverage of the
mathematics commands currently used in Wikipedia. LATEXML is maintained by
the United States Department of Commerce Laboratory, the National Institute
of Standards and Technology (NIST) and MathJax is maintained by the Math-
Jax project which is a consortium of the American Mathematical Society and
the Society for Industrial and Applied Mathematics. We analyze and compare
MathJax and LATEXML in detail, since these are the most promising tools we
could discover.

In regard to accessibility, we note that Wikipedia has recently made serious
efforts to make the site more accessible. However, images which represent equa-
tions are currently not accessible. The only available information from PNG
images (which is not very helpful) is the alt-text of the image that contains
the TEX code. Based upon recent unpublished work of Volker Sorge [21], we
would like to provide meaningful semantic information for the equations. By

http://en.wikipedia.org/wiki/Wikipedia:Accessibility

Mathoid: Robust, Scalable, Fast and Accessible Math Rendering 227

providing this, more people will be able to understand the (openly accessible)
content [5]. One must also consider that there is a large variety of special needs.
People with blindness are only a small fraction of the target group which can
benefit from increased accessible mathematical content. Between 1 and 33% [6,
7] of the population suffer from dyslexia. Even if we calculate with the lower
boundary of 1%, 90,000 people per hour visit the English Wikipedia and some
of them could benefit from improvements of the accessibility while reading arti-
cles that contain math. However, our the main goal with regard to accessibility
is to make Wikipedia accessible for blind people that have no opportunity to
read the formulae in Wikipedia today.

Furthermore, the information provided in the tree structure of mathemat-
ics by using MathML, helps one to orientate complex mathematical equations,
which is useful for general purpose use as well. With regard to accessibility, a
screen reader can repeat only part of an equation to provide details that were
not understood. PNG images do not give screen readers detailed related math-
ematical information [4, 14]. In 2007, [10] states that MathML is optimal for
screen readers. The Faculty Room2 website, lists four screen readers that can
be used in combination with MathPlayer [20] to read Mathematical equations.
Thus Mathoid-server and LATEXML server [8] that generate MathML output,
contribute towards better accessibility within the English Wikipedia.

3 Making Math Accessible to MathML Disabled
Browsers

For people with browsers that do not support MathML, we would like to pro-
vide high quality images as a fallback solution. Both LATEXML and MathJax
provide options to produce images. LATEXML supports PNG images only, which
tend to look rasterized if they are viewed using large screens. MathJax pro-
duces scalable SVG images. For high traffic sites like Wikipedia with 9 million
visitors per hour, it is crucial to reduce the server load generated by each vis-
itor. Therefore rendered pages should be used for multiple visitors. Rendering
of math elements is especially costly. This is related to the nested structure of
mathematical expressions. As a result, we have taken care that the output of
the MediaWiki Math extension should be browser independent. Since MathJax
was designed for client-side rendering, our goal is to develop a new component.
We call this new component the Mathoid-server. Mathoid-server, a tool writ-
ten in JavaScript, uses MathJax to convert math input to SVG images. It is
based on svgtex [9] which uses nodejs and phantomjs to run MathJax in a
headless browser. It exports SVG images. Mathoid-server improves upon the
functionality of svgtex while offering a more robust alternative. For instance,
it provides a restful interface which supports json input and output as well as
the support of MathML output. Furthermore, Mathoid-server is shipped as a
Debian package for easy installation and maintenance. Many new developments
in MediaWiki use JavaScript. This increases the probability of finding volunteers

2 http://www.washington.edu/doit/Faculty/articles?404

http://www.washington.edu/doit/Faculty/articles?404
http://www.washington.edu/doit/Faculty/articles?404

228 M. Schubotz and G. Wicke

to maintain the code and to fix bugs. For general purpose, Mathoid-server can
be used as a stand-alone service which can be used in other content manage-
ment platforms such as Drupal or Wordpress. This implies that Mathoid-server
will have a larger interest group for maintenance in the future. The fact that
Mathoid-server automatically adapts to the number of available processing cores,
and can be installed fully unattended via tools like Puppet, indicates that the
administrative overhead for Mathoid-server instances should be independent of
the number of machines used. In the latest version, the Mathoid-server supports
both LATEX and MathML input and is capable of producing MathML and SVG
output.

To support MathML disabled browsers, we deliver both MathML markup,
and a link to the SVG fallback image, to the visitor’s browser. In order to be
compatible with browsers that do not support SVG images, in addition, we add
links to the old PNG images. In the future those browsers will disappear and
this feature will be removed.

To prevent users from seeing both rendering outputs, the MathML element
is hidden by default, and the image is displayed. For Mozilla based browsers
(these support MathML rendering), we invert the visibility by using a custom
CSS style, hide the fallback images and display the MathML-markup. This has
several advantages. First, no browser detection, neither on the client-side (e.g.,
via JavaScript) nor on server-side is required. This eliminates a potential source
of errors. Our experiments with client-side browser detection showed that the
user will observe a change in the Math elements if pages with many equations are
loaded. Second, since the MathML element is always available on the client-side,
the user can copy equations from the page, and edit it visually with tools such
as Mathematica. If the page content is saved to disk, all information is preserved
without resolving links to images. If afterwards the saved file is opened with
a MathML enabled browser, the equations can be viewed off-line. This feature
is less relevant for users with continuous network connections or with high-end
hardware and software. However, for people with limited resources and unstable
connections (like in some parts of India [1]), they will experience a significant
benefit.

The current Firefox mobile version (28.0) passes the MathML Acid-2 test,
indicating that there is generally good support for MathML on mobile devices.
This allows for customized high quality adaptable rendering for specific device
properties. The W3C MathML specification3 discusses the so called best-fit al-
gorithm for line breaking. According to our experiments, Firefox-mobile (28.0)
does not pass the W3C line break tests. However, as soon this issue is fixed,
mobile users will benefit from the adjusted rendering for their devices. Note that
there is active development in this area by the Mathematics in ebooks project4

lead by Frédéric Wang.

http://www.w3.org/TR/MathML/chapter3.html#presm.linebreaking
http://www.ulule.com/mathematics-ebooks

Mathoid: Robust, Scalable, Fast and Accessible Math Rendering 229

Localhost

Math
2.0

Mathoid-
Server

L

texvc LaTeXML
server

TeX

link to local file

TeX

MathML

TeX or MathML MathML + SVG

Fig. 1. System overview. The 2.0 release of the MediaWiki Math extension offers new
ways to render Math input in MediaWiki. It communicates to LATEXML servers and
to instances of our MathJax-based development of the Mathoid-server. Note that we
preserve backwards compatibility to the MediaWiki Math extension 1.0.

4 A Global Distributed Service for Math Rendering

To use LATEXML and Mathoid-server for Math rendering within Wikipedia, we
have changed the MediaWiki Math extension (see Fig. 1). While preserving
backwards compatibility, we pursue our current development [19] by integrat-
ing LATEXML and Mathoid-server. System administrators can choose which ren-
dering back-ends are selectable in a MediaWiki instance by logged in users.
All rendering modes can be active at the same time, and it is possible to use
Mathoid-server to generate SVG images based on the output of the LATEXML
server.

For texvc, rendering requires one to install a full LATEX distribution (about
1GB) on each web server. This is a huge administrative overhead and the man-
agement of files and permissions has caused a lot of problems. These problems
were hard to solve and resulted in inconsistent behavior of the website from a
user perspective [12, 13, 15, 16]. Furthermore, for MediaWiki instances run by
individuals, it is difficult to set up math support. Therefore, one of our major
requirements is that future versions of the MediaWiki Math extension should not
need to access the file system. Also, one should not need to use shell commands
to directly access the server. This has the potential to introduce major security
risks. With our separation approach, rendering and displaying of mathematics
no longer needs to be done on the same machine. However, for instances with a

3 http://www.w3.org/TR/MathML/chapter3.html
4 http://www.ulule.com/mathematics-ebooks

http://www.w3.org/TR/MathML/chapter3.html
http://www.ulule.com/mathematics-ebooks

230 M. Schubotz and G. Wicke

small load, this would still be possible. Furthermore small MediaWiki instances
can now enable Math support without any configuration or shell access. By
default, public LATEXML and Mathoid-server instances are used. These will be
provided by XSEDE5. With this method, no additional security risk is provided
for individuals. For Mathoid-server, the security risk for the host is limited as
well. This is because the Mathoid process runs on a headless browser on the
server without direct access to the file system.

Caching. There are two main caching layers. In the first layer, the database
caches the rendering result of the math conversion, i.e., the MathML and SVG
output in the database.6 The second caching layer is browser based. Similar to
the SVG rendering process for ordinary SVG images, the MediaWiki Math ex-
tension uses cacheable special pages to deliver SVG images. On the server side,
those pages are cached by squid servers. In addition, even if images occur on
different pages, the browser will only load that image once.

5 Performance Analysis

As a first step towards a visual analysis, we compared our impressions of output
from LATEXML and MathJax using Firefox 24.0. Except for additional mrow

elements in LATEXML, the produced presentation MathML is almost identical.
The differences that we did notice had no influence on the rendering output. In
rare cases, MathJax uses mi elements, whereas LATEXML uses mo elements. In
contrast to LATEXML which uses UTF-8 characters to represent special symbols,
MathJax uses HTML entities. However, there still remain some minor differences
(see Fig. 2).

To illustrate performance differences, we chose a random sample equation,
namely

(x− h)
2

a2
− (y − k)

2

b2
= 1. (1)

With 10 subsequent runs7, the following conversion times were measured:

– LATEXML : TEX → MathML (319ms/220ms);
– Mathoid-server : TEX → SVG+MathML (18ms/18ms);
– texvc : TEX → PNG (99ms/71ms).

Thus compared to the baseline (texvc), Mathoid-server produced a speedup of
5.5 whereas LATEXML is 3.2 times slower. LATEXML and PNG seem to bene-
fit from multiple runs, whereas the rendering time with Mathoid-server stays
constant.
5 https://www.xsede.org
6 To keep the lookup time for equations constant, the key for the cache entry is a hash
of TEX input.

7 All measurements were performed using virtual Wikimedia labs instances, with the
following hardware specifications: number of CPUs 2 , RAM size 4096 Mb, allocated
Storage 40 Gb.

https://www.xsede.org
https://www.xsede.org

Mathoid: Robust, Scalable, Fast and Accessible Math Rendering 231

Fig. 2. This figure displays a comparison of possible rendering outputs for the Me-
diaWiki Math extension rendered with Firefox 24.0. Mathoid-server allows one to use
either a LATEXML or MathJax renderer to generate MathML output with SVG fallback.
The investigation of the listed corner cases shows that the Mathoid-SVG rendering op-
tion, that uses server-side MathJax rendering via phantomjs, produces the best results.
Remark: The authors thank Bruce Miller. He improved the LATEXML implementation
based on a preprint version of this paper. This final version of the paper uses the
LATEXML version of 24th of April 2014.

232 M. Schubotz and G. Wicke

We also converted all of the English Wikipedia articles and measured the
conversion times for each equation therein. The most time consuming equation
was the full form of the Ackermann function A(4, 3). LATEXML8 needs 147 s to
answer the HTTP request for A(4, 3). According to the self reported LATEXML-
log, approximately 136.18 s was used for parsing. The same request was answered
by Mathoid-server in 0.393 s, which is approximately 374 times faster. The old
rendering engine needed 1.598 s to produce the image. This does not include the
41 ms it took to load the image from the server.

6 Conclusion, Outlook and Future Work

In the scope of Mathoid, we updated the retrograde MediaWiki Math extension,
and developed Mathoid-server which replaces the texvc program. This enhanced
the security of MediaWiki as proposed in [19]. It is no longer necessary to pass
user input via shell access using the command-line. Nor is it necessary to move
files on the server via PHP. The MediaWiki Math extension is now capable of us-
ing LATEXML and Mathoid-server to convert TEX-like input to MathML+SVG.
Based on the requirements, the user can choose if he prefers to use LATEXML for
the MathML generation (this has the advantage of content MathML output),
or he can use Mathoid-server which is much faster (but does not produce con-
tent MathML). Mathoid-server takes advantage of LATEXML since it produces
MathML. The MediaWiki math extension, through Mathoid-server, converts
MathML to fallback SVG images.9 For Wikipedia itself, with only a few seman-
tic macros, and no real applications for content MathML produced by LATEXML,
Mathoid-server alone seems to be the best choice.

Table 1. Overview: comparison of different math rendering engines. Values based on
articles containing mathematics in the English Wikipedia.

texvc LATEXML Mathoid

relative speed 1 0.3 5

image output PNG PNG SVG

presentation MathML coverage low high high

content MathML output no no yes

webservice no yes yes

approximate space required on webserver 1GB 0 0

language OCaml Perl JavaScript

maintained by nobody NIST MathJax

We did exhaustive tests to demonstrate the power of Mathoid-server with re-
gard to scalability, performance and enhancement of user experiences. Those test

8 ltxpsgi (LATEXML version 0.7.99; revision ef040f5)
9 This integral feature of Math 2.0 does not require additional source modifications,
and is demonstrated for example at http://demo.formulasearchengine.com.

http://en.wikipedia.org/wiki/Ackermann_function
http://demo.formulasearchengine.com
http://demo.formulasearchengine.com

Mathoid: Robust, Scalable, Fast and Accessible Math Rendering 233

results are summarized in Table 1. Our implementation was finished in October
2013 and is currently being reviewed by the Wikimedia foundation for production
use. Our work on the MediaWiki Math extension and Mathoid-server establishes
a basis for further math related developments within the Wikimedia platform.
Those developments might be realized by individuals or research institutions
in the future. For example, we have considered creating an OpenMath content
dictionary [18] that is based on Wikidata items [26]. This will augment math-
ematical formulae with language independent semantic information. Moreover,
one can use gathered statistics about formulae currently in use in Wikipedia to
enhance the user interface for entering new formulae10. This is common for text
input associated with mobile devices.

In regard to future potential work, one may note the following. There is a
significant amount of hidden math markup in Wikipedia. Many of these have
been entered using HTML workarounds (like subscript or superscript) or by
using UTF-8 characters. This markup is difficult to find and causes problems for
screen readers (since they are not aware that the mode needs to be changed).
If desired by the community, by using gathered statistics and edit history, we
would be able to repair these damages.

The MediaWiki Math extension currently allows limited semantic macros. For
example, one can use \Reals to obtain the symbol R. At the moment, seman-
tic macros are seldomly used in the English Wikipedia (only 17 times). One
could potentially benefit by increased use of semantic macros by taking advan-
tage of the semantic information associated with these. In the future, one could
use this semantic information to take advantage of additional services, such as
MathSearch [19], a global search engine which takes advantage of semantic infor-
mation. Also, the use of semantic macros would provide semantic information,
which would provide improved screen reader output.

Acknowledgments. Thanks to Deyan Ginev, Michael Kohlhase, Peter Krautz-
berger, Bruce Miller and Volker Sorge for fruitful discussions. Thanks also to
FrédéricWang for help with the code review. A special thanks to Howard Cohl for
his editorial work on this paper. M. Schubotz would like to express his gratitude
to Terry Chay and Matthew Flaschen, for their help in organizing his internship
at the Wikimedia Foundation. This work was funded by MediaBotz and the
Wikimedia Foundation.

References

[1] Arunachalam, S.: Open access-current developments in India. In: Proceedings
Berlin 4 Open Access: From Promise to Practice, Potsdam-Golm, Germany, pp.
1–9 (March 2006), http://arizona.openrepository.com/arizona/
bitstream/10150/105554/1/Berlin4SA.pdf

[2] Bos, B.: The W3C MathML software list, http://www.w3.org/Math/Software/
(accessed March 20, 2014)

10 http://www.formulasearchengine.com/node/189

http://www.formulasearchengine.com/node/189
http://arizona.openrepository.com/arizona/bitstream/10150/105554/1/Berlin4SA.pdf
http://arizona.openrepository.com/arizona/bitstream/10150/105554/1/Berlin4SA.pdf
http://www.w3.org/Math/Software/
http://www.formulasearchengine.com/node/189

234 M. Schubotz and G. Wicke

[3] Cervone, D.: MathJax: A Platform for Mathematics on the Web. Notices of the
American Mathematical Society 59(2), 312–316 (2012)

[4] Chisholm, W., Vanderheiden, G., Jacobs, I.: Web Content Accessibility Guidelines
1.0. Interactions 8(4), 35–54 (2001), doi:10.1145/379537.379550, ISSN: 1072-
5520

[5] Cooper, M., Lowe, T., Taylor, M.: Access to Mathematics in Web Resources for
People with a Visual Impairment. In: Miesenberger, K., Klaus, J., Zagler, W.L.,
Karshmer, A.I. (eds.) ICCHP 2008. LNCS, vol. 5105, pp. 926–933. Springer, Hei-
delberg (2008)

[6] Crystal, D.: The Cambridge Encyclopedia of Language, 2nd edn. Cambridge Uni-
versity Press, Cambridge (1997)

[7] Czepita, D., Lodygowska, E.: Role of the organ of vision in the course of develop-
mental dyslexia. Klinika Oczna 108(1-3), 110–113 (2006) ISSN: 0023-2157

[8] Ginev, D., Stamerjohanns, H., Miller, B.R., Kohlhase, M.: The LaTeXML Dae-
mon: Editable Math on the Collaborative Web. In: Davenport, J.H., Farmer,
W.M., Urban, J., Rabe, F. (eds.) Calculemus/MKM 2011. LNCS (LNAI),
vol. 6824, pp. 292–294. Springer, Heidelberg (2011)

[9] Grbin, A., Maloney, C.: Svgtex (2013), https://github.com/agrbin/svgtex (ac-
cessed March 20, 2014)

[10] Maddox, S.: Mathematical equations in Braille. Maths, Stats and Operations Re-
search (MSOR) Connections 7(2), 45–48 (2007),
doi:10.11120/msor.2007.07020045, ISSN: 1473-4869

[11] Mayer, D.: Help: Displaying a formula — Meta, discussion about Wikimedia
projects (2003), http://meta.wikimedia.org/w/index.php?title=Help:
Displaying a formula&oldid=15233 (accessed March 20, 2014)

[12] MediaWiki. Failed to parse (Cannot store math image on filesystem) (2013),
https://www.mediawiki.org/w/index.php?oldid=782277 (accessed March 20,
2014)

[13] MediaWiki. Manual: Troubleshooting math display errors —MediaWiki, The Free
Wiki Engine (2013), https://www.mediawiki.org/w/index.php?oldid=798098

(accessed March 20, 2014)

[14] Miner, R.: The Importance of MathML to Communication. Notices of the Amer-
ican Mathematical Society 52(5) (2005)

[15] Morris, R.: Bug 54367 - intermittent texvc problems (2013), https://bugzilla.
wikimedia.org/show bug.cgi?id=5436 (accessed March 20, 2014)

[16] Murugan, S.: Bug 54456 - Failed to parse (Cannot store math image on filesys-
tem) (2013), https://bugzilla.wikimedia.org/show_bug.cgi?id=54456 (ac-
cessed March 20, 2014)

[17] Netheril96@gmail.com. Option “MathML if possible” doesn’t work (2010),
https://bugzilla.wikimedia.org/show_bug.cgi?id=25646 (accessed March 20,
2014)

[18] Riem, M.N.: The OpenMath Guide. A practical guide on using Open-Math. Avail-
able from the Research Institute for Applications of Computer Algebra (2004)

[19] Schubotz, M.: Making Math Searchable in Wikipedia. In: Conferences on Intelli-
gent Computer Mathematics abs/1304.5475 (2013)

[20] Soiffer, N.: MathPlayer. In: Proceedings of the 7th International Association for
Computing Machinery Special Interest Group on Accessible Computing Confer-
ence on Computers and Accessibility – ASSETS 2005, p. 204. ACM Press, New
York (2005), doi:10.1145/1090785.1090831, ISBN: 1595931597

10.1145/379537.379550
https://github.com/agrbin/svgtex
10.11120/msor.2007.07020045
http://meta.wikimedia.org/w/index.php?title=Help:Displaying_a_formula&oldid=15233
http://meta.wikimedia.org/w/index.php?title=Help:Displaying_a_formula&oldid=15233
https://www.mediawiki.org/w/index.php?oldid=782277
https://www.mediawiki.org/w/index.php?oldid=798098
https://bugzilla.wikimedia.org/show_bug.cgi?id=5436
https://bugzilla.wikimedia.org/show_bug.cgi?id=5436
https://bugzilla.wikimedia.org/show_bug.cgi?id=54456
https://bugzilla.wikimedia.org/show_bug.cgi?id=25646
10.1145/1090785.1090831

Mathoid: Robust, Scalable, Fast and Accessible Math Rendering 235

[21] Sorge, V., et al.: Towards making mathematics a first class citizen in general
screen readers. In: 11th Web for All Conference, Seoul, Korea, April 6-9. ACM
(2014)

[22] Stamerjohanns, H., et al.: MathML-aware article conversion from LATEX, A com-
parison study. In: Sojka, P. (ed.) Towards Digital Mathematics Library, DML
2009 Workshop, pp. 109–120. Masaryk University, Brno (2009)

[23] User: Nageh. User:Nageh/mathJax (2010), https://en.wikipedia.org/w/index.
php?oldid=400482894 (accessed March 20, 2014)

[24] Vibber, B.: Disable the partial HTML and MathML rendering options for Math
extension (2011), https://git.wikimedia.org/commit/
mediawiki%2Fextensions%2FMath/09679f2f39e6c6c00e87757292421b26bfa7022a

(accessed March 20, 2014])
[25] Vibber, B.: Experimental option $wgMathUseMathJax to have Extension:

Math load things via MathJax (2011), http://git.wikimedia.org/commit/

mediawiki%2Fextensions%2FMath/1042006fd4c2cbe6c62619b860e2e234d04d6d38

(accessed March 20, 2014)
[26] Vrandečić, D.: Wikidata: a new platform for collaborative data collection. In:

Proceedings of the 21st International Conference Companion on World Wide Web,
pp. 1063–1064. ACM (2012)

[27] Zachte, E.: SquidReportClients@stats.wikimedia.org (2013), http://stats.

wikimedia.org/archive/squid reports/2013-10/SquidReportClients.htm

(accessed March 20, 2014)

https://en.wikipedia.org/w/index.php?oldid=400482894
https://en.wikipedia.org/w/index.php?oldid=400482894
https://git.wikimedia.org/commit/mediawiki%2Fextensions%2FMath/09679f2f39e6c6c00e87757292421b26bfa7022a
https://git.wikimedia.org/commit/mediawiki%2Fextensions%2FMath/09679f2f39e6c6c00e87757292421b26bfa7022a
http://git.wikimedia.org/commit/mediawiki%2Fextensions%2FMath/1042006fd4c2cbe6c62619b860e2e234d04d6d38
http://git.wikimedia.org/commit/mediawiki%2Fextensions%2FMath/1042006fd4c2cbe6c62619b860e2e234d04d6d38
http://stats.wikimedia.org/archive/squid_reports/2013-10/SquidReportClients.htm
http://stats.wikimedia.org/archive/squid_reports/2013-10/SquidReportClients.htm

Set Theory or Higher Order Logic to Represent
Auction Concepts in Isabelle?�

Marco B. Caminati1, Manfred Kerber1, Christoph Lange1,2, and Colin Rowat3

1 Computer Science, University of Birmingham, UK
2 Fraunhofer IAIS and University of Bonn, Germany

3 Economics, University of Birmingham, UK
http://cs.bham.ac.uk/research/projects/formare/

Abstract When faced with the question of how to represent proper-
ties in a formal proof system any user has to make design decisions. We
have proved three of the theorems from Maskin’s 2004 survey article on
Auction Theory using the Isabelle/HOL system, and we have verified
software code that implements combinatorial Vickrey auctions. A funda-
mental question in this was how to represent some basic concepts: since
set theory is available inside Isabelle/HOL, when introducing new defin-
itions there is often the issue of balancing the amount of set-theoretical
objects and of objects expressed using entities which are more typical of
higher order logic such as functions or lists. Likewise, a user has often to
answer the question whether to use a constructive or a non-constructive
definition. Such decisions have consequences for the proof development
and the usability of the formalization. For instance, sets are usually closer
to the representation that economists would use and recognize, while the
other objects are closer to the extraction of computational content. We
have studied the advantages and disadvantages of these approaches, and
their relationship, in the concrete application setting of auction theory. In
addition, we present the corresponding Isabelle library of definitions and
theorems, most prominently those dealing with relations and quotients.

1 Introduction

When representing mathematics in formal proof systems, alternative founda-
tions can be used, with two important examples being set theory (e.g., Mizar
takes this approach) and higher order logic (e.g., as in Isabelle/HOL). Another
dimension in the representation is the difference between classical and construct-
ive approaches. Again, there are systems which are predominantly classical (as
most first order automated theorem provers) and constructive (e.g., Coq). Isa-
belle/HOL is flexible enough to enable the user to take these different approaches
in the same system (e.g., although it is built on higher order logic, it contains
a library for set theory, Set.thy). For instance, participants in an auction, i.e.

� This work has been supported by EPSRC grant EP/J007498/1 and an LMS Com-
puter Science Small Grant.

S.M. Watt et al. (Eds.): CICM 2014, LNAI 8543, pp. 236–251, 2014.
c© Springer International Publishing Switzerland 2014

http://cs.bham.ac.uk/research/projects/formare/

Set Theory or Higher Order Logic to Represent Auction Concepts 237

bidders, can be represented by a predicate Bidder x or alternatively as a list of
bidders [b1, b2, b3].

The difference between a classical and a constructive definition can be demon-
strated by the example of the argument of the maximum for a function (which
we need for determining the winner of an auction). Classically we can define
it, e.g., as arg_max f A = {x ∈ A. f x = Max(f‘A)}. This definition is easy
to understand but, unlike a constructive one, it does not tell how to compute
arg_max. The constructive definition is more complicated (and has to consider
different cases). It corresponds to a recursive function recurring on the elements
of the domain. From a programming perspective, the two kinds of definitions just
illustrated (classical versus constructive) can be seen respectively as specification
versus implementation.

The approaches coexist in Isabelle/HOL. For example, for a set X one can
apply the higher order function f by the construction f ‘ X to yield the image of
the set. As a result, an author does not have to make a global decision of whether
to use sets or higher order functions, but has fine grained control on what to
use for a new mathematical object (e.g., sets vs. lists or lambda functions).
Such a choice will typically depend on many factors. One factor is the task at
hand (e.g., whether one needs to prove a theorem about an object or needs to
compute its value). Another factor is naturalness of the constructions. This will
typically depend on the authors and their expected audiences. Pragmatically,
users also have to consider which of the possible approaches is more viable given
the support provided by existing libraries for the system being used.

The ForMaRE project [8] applies formal methods to economics. One of the
branches of economics the project focuses on is auction theory, which deals with
the problem of allocating a set of resources among a set of participants while max-
imizing one or more parameters (e.g., revenue, or social welfare) in the process.
ForMaRE has produced the Auction Theory Toolbox (ATT), containing Isabelle
code for a range of auctions and theorems about them.1 Therefore, there is a
good opportunity to practically test the feasibility of the different approaches, as
introduced above, in this concrete setting. We adopted a pragmatic attitude: we
typically took a set theoretic approach, since firstly we felt most familiar with
it and secondly we knew from our ongoing interaction with economists that it
would look more natural to them. However, when we needed to generate code,
this generally excluded set-theoretical constructions such as the set comprehen-
sion notation. As a consequence most of our work was done in the set-theoretical
realm, but some done constructively which allowed us to produce the code we
wanted. The disadvantage of this approach is that we had to provide supple-
mentary ‘compatibility’ proofs to show the equivalence of the set theoretical and
the computable definitions when needed. This means that, as a byproduct of
our efforts, we also generated a good amount of generic set-theoretical mater-

1 See https://github.com/formare/auctions/; the state at the time of this writing
is archived at https://github.com/formare/auctions/tree/
1f1e7035da2543a0645b9c44a5276229a0aeb478.

https://github.com/formare/auctions/
https://github.com/formare/auctions/tree/1f1e7035da2543a0645b9c44a5276229a0aeb478
https://github.com/formare/auctions/tree/1f1e7035da2543a0645b9c44a5276229a0aeb478

238 M.B. Caminati et al.

ial which was neither provided by the Isabelle library nor Isabelle’s Archive of
Formal Proofs (AFP)[6].

In this paper, rather than discussing our progress in the application domain
(auction theory), we illustrate this material and its relationship to the mathem-
atical objects we needed. We will discuss this by the following three concrete
examples that occurred while we were working on the ATT:

1. We model a function indirectly through the set-theoretical notion of the
graph of a relation, rather than directly using the HOL primitive notion of
a lambda-abstracted function. This allowed us to concisely define auction-
related notions through two natural set-theoretical constructions (extension
and restriction of a function). Moreover, this in turn allowed us to generalize
some theorems from functions to relations. We also discuss how this choice
does not necessarily mean giving up the advantage of computability (section
2). Incidentally, this will also give insight into the main differences between
set theory as implemented in Isabelle/HOL and standard set theory.

2. We developed a stand-alone formalization of the definition of functions over
equivalence classes (section 3). This is a common construction when, e.g.,
defining the canonically induced operation on the quotient of a group by
one of its normal subgroups. To define such an operation, we proved the
invariance (or well-definedness) under an equivalence relation.

3. We applied a set-theoretical, non-constructive definition and a constructive
one to the same object (the set of all possible partitions of a set). The two
approaches were used for different purposes (theorem proving and computa-
tion, respectively) and proved formally their equivalence by a ‘compatibility’
theorem (section 4). The same approach is adopted for the set of all possible
injective functions between sets.

In existing proof assistants based on set theory (e.g., Mizar, Metamath), the
desirable quality of being able to compute values of functions (rather than only
the truth value of predicates involving them), is typically lost2.

We will present examples which show that we can retain this Isabelle/HOL-
induced advantage in our developments.

Overview of the Paper

Section 2 introduces and motivates the set-theoretical encoding of functions, as
an alternative to a lambda representation; this is done by commenting on the
relevant Isabelle definitions, and by illustrating a particular theorem regarding
auctions, which employs those definitions. Section 3 brings this approach to a
more abstract level, by showing how it can handle, given an initial function, the
2 We do not know if this is due to how the existing proof assistants are imple-

mented, or to some fundamental limitation of set theory. Reading the recent
“Computational set theory” thread (http://www.cs.nyu.edu/pipermail/fom/2014
-February/017841.html), and its related threads, on the “Foundations of Mathem-
atics” mailing list, we feel the question is currently open.

http://www.cs.nyu.edu/pipermail/fom/2014-February/017841.html
http://www.cs.nyu.edu/pipermail/fom/2014-February/017841.html

Set Theory or Higher Order Logic to Represent Auction Concepts 239

definition of a second function on the corresponding equivalence classes. Since
this was already done in Isabelle’s Equiv_Relations.thy, we also illustrate the
differences with it.

In some cases, defining a mathematical object in purely set-theoretical terms
does not preserve computability of that object: section 4 introduces a technique
for such cases. As mentioned in point 3 above, this technique introduces a par-
allel, computable definition, and then formally proves the equivalence of the
two definitions. In the same section, this technique is presented through two
examples from our ATT; we then discuss how we took advantage from having
preserved both the definitions. Finally, section 5 explains how we applied the
general machinery from section 3 to the ATT.

2 Set-Theoretical Definition of Functions in Isabelle/HOL

In higher order logic, functions, function abstraction, and function application
are primitives [3]; in set theory, the primitive notion is that of a set, and a func-
tion f is represented by its graph, i.e., the set of all the ordered pairs (x, f (x)).
We chose to work mostly with the set-theoretical representation of the functions
even though we are using a tool based on higher order logic. In the following we
give reasons why.

1. A first reason is that a set theoretical representation more easily allows to
enumerate all the (injective) functions from a finite set to another finite set
([4]). In contrast, this seems to be more complicated to do directly in higher
order logic, where all the functions are assumed be total.

2. A second reason is that the set-theoretical, graph-based representation works
even for generic relations, thus often allowing us to extend the results we
proved to the more general situations involving relations, rather than func-
tions (see the next subsection).

3. A third reason is that the operation of function restriction is naturally ex-
pressed in terms of two elementary set operations: cartesian product and
intersection. Indeed, this allows to extend this operation to relations, imme-
diately giving an instance of what we argued in point (2) above. Restriction
is a fundamental operation for representing the concept of weakly dominant
strategy, a key concept in auction theory, see e.g., [10, proposition 2]. The
definition of function restriction is arguably more complicated in standard
higher order logic since functions are always total. That is, restricting them
to a set requires carrying the restricted domain set with the function, e.g. by
forming a pair (R, f |R), whereas the set-theoretical representation naturally
includes this set.

4. Finally, specific partial, finite set theoretical functions can be very concisely
and quickly defined; this made it possible to promptly test Isabelle code while
we were working on it. For example, functions can be written in the form of
a set as {(0,10), (1,11), (2,12)} and fed to the Isabelle definitions very
easily in order to test the correctness of related computations empirically,
whereas a lambda expression would be more complex to define.

240 M.B. Caminati et al.

2.1 Two Basic Operators on Relations: ‘outside’ and Pasting

In this section, we discuss two general mathematical operations we encountered
specifically during formalization of auctions. Assume a set of bidders N and a
function b : N → R that determines the corresponding bids. The first operation
removes one bidder i from the domain N of the bid function. The second op-
eration alters the bid function in one point i of its domain, b +∗ (i, bi), which
is equal to b except for argument i, where the value is changed to bi. In set
theory, a function (or a relation) inherently specifies its domain and range. A
generalization of the first operation is thus obtained by writing (in Isabelle):

definition Outside ::
"(’a × ’b) set ⇒ ’a set ⇒ (’a × ’b) set"
(infix "outside" 75) where
"R outside X = R - (X × Range R)",

where 75 denotes the binding strength of the infix operator. The following spe-
cialization to singletons . . .

abbreviation singleoutside (infix "--" 75) where
"b -- i ≡ b outside {i}",

. . . turned out handy for our purposes.
Another circumstance making the set theoretical approach convenient is that

now the second operation can be obtained in simple terms of the first as follows:

definition paste (infix "+*" 75)
where "P +* Q = (P outside Domain Q) ∪ Q",

which can be specialized to the important case of Q being a singleton function:

abbreviation singlepaste where
"singlepaste F f ≡ F +* {(fst f, snd f)}"
notation singlepaste (infix "+<" 75).

While we often applied outside and +* to functions rather than relations
(i.e., assuming right uniqueness, see section 2.2), many of its properties were
proved for relations in general. For example, the associativity theorem

lemma ll53: "(P +* Q) +* R = P +* (Q +* R)"

has no hypotheses in its statement and holds for general relations.

2.2 Specializing Relations to Functions: Right-Uniqueness and
Evaluation

The operators outside and +* are building blocks on which the statements of
many theorems we proved for auctions are based. In turn, a number of pre-
paratory lemmas have been proven about those objects in the generic case of
relations; however, others only hold when considering relations which actually
are functions. Hence, we need the following predicate for right-uniqueness of a
relation, which we define in terms of the triviality of a set (i.e. being empty or
singleton):

Set Theory or Higher Order Logic to Represent Auction Concepts 241

definition trivial where "trivial x = (x ⊆ {the_elem x})",

where the_elem extracts an element from a set, being undefined when this can-
not be done in a unique way. The predicate for right-uniqueness is called runiq,
and it uses the operator R‘‘X, which yields the image of the set X through the
relation R:

definition runiq :: "(’a × ’b) set ⇒ bool" where
"runiq R = (∀ X . trivial X → trivial (R ‘‘ X))".

We note that, contrary to other proof assistants based on set-theory (e.g.,
Mizar), which in general cannot directly compute values of functions (at most
the truth or falsity of predicates involving those values), we are able to preserve
from Isabelle/HOL the ability of actually computing the evaluation of these set-
theoretical flavoured functions, when they are right-unique, through the following
operator:

fun eval_rel :: "(’a × ’b) set ⇒ ’a ⇒ ’b" (infix ",," 75)
where "R ,, a = the_elem (R ‘‘ {a})"

Now, indeed, set theoretical functions can be evaluated via ,,.This can be tested
through the Isabelle command value: for example we can write

value "{(0::nat,10),(1,11),(1,12::nat)} ,, 0"

and obtain 10 as an answer. This holds also when combining eval_rel with the
operators as from the beginning of this section; for example

value "({(0::nat,10),(1,11),(1,12)} +< (1,13::nat)) ,, 1"

yields the answer 13.
A right-unique relation and a standard higher order logic, lambda abstracted

function represent the same mathematical object, hence it should be possible
to pass from one representation to another. graph from Function_Order.thy,
defined as

definition graph where "graph X f = {(x, f x) | x. x ∈ X}"

does exactly that. The opposite conversion can be achieved easily as follows:

definition toFunction (* inverts graph *)
where "toFunction R = (λ x . (R ,, x))"

However, the degree of computability of set-theoretical functions is less than
with original HOL functions; for example we cannot evaluate

value "(graph {x::nat. x<3} (λx. (10::nat))),,(1::nat)",

while the following works as expected

value "(graph {0,1,2} (λx. (10::nat))),,(1::nat)".

242 M.B. Caminati et al.

We also note that, since Isabelle formalizes set theory inside higher order
logic, types still impose some rigidity, compared to stand-alone set theory: see
section 6. For example, the following alternative Isabelle definition would be
exactly equivalent to eval_rel in a standard (untyped) set theory:

abbreviation "eval_rel2 (R::(’a×(’b set)) set) (x::’a)
≡ ⋃

(R‘‘{x})" notation eval_rel2 (infix ",,," 75),

It is, however, actually defined (and equivalent to it) only for set-yielding rela-
tions:

lemma lll82: assumes "runiq (f::((’a × (’b set)) set))"
"(x::’a) ∈ Domain f" shows "f,,x = f,,,x"

However, when it is applicable, eval_rel2 has the desirable qualities of evaluat-
ing to the empty set outside the domain of f, and in general to something defined
when right-uniqueness does not hold (in which case eval_rel is undefined). This
allowed us to give more concise proofs in such cases.

runiq is a central definition in our formalization; its many possible equivalent
formulations have turned out to be useful in different steps when proving various
lemmas. Here we present the possible alternative definitions we have proven to
be equivalent in the ATT:

lemma lll33: "runiq P=inj_on fst P"

lemma runiq_alt: "runiq R ↔ (∀ x . trivial (R ‘‘ {x}))"

lemma runiq_basic:
"runiq R ←→ (∀ x y y’ . (x, y) ∈ R ∧ (x, y’) ∈ R −→ y = y’)"

lemma runiq_wrt_eval_rel:
"runiq R ←→ (∀x . R ‘‘ {x} ⊆ {R ,, x})"

lemma runiq_wrt_eval_rel’:
"runiq R ←→ (∀x ∈ Domain R . R ‘‘ {x} = {R ,, x})"

lemma runiq_wrt_ex1:
"runiq R ←→ (∀ a ∈ Domain R . ∃! b . (a, b) ∈ R)"

lemma runiq_wrt_THE:
"runiq R ←→ (∀ a b . (a, b) ∈ R −→ b = (THE b . (a, b) ∈ R))"

In general, we found that, especially for basic and ubiquitous concepts such
as runiq, the more equivalent definitions we have, the better. One reason is
that this improves the understandability of the formalization: different readers
will find different definitions easier to grasp. Another reason is that automated
theorem proving tools, such as Sledgehammer3, will be more likely to find auto-
mated justification in single steps of subsequent proofs: by picking the appro-
priate equivalent definition, sledgehammer can find a justification, while, upon
removing that definition, it is no longer able to do that. We actually experienced
this phenomenon with proofs involving runiq: the form of runiq given in lll33
allowed Sledgehammer to find the proof of this technical lemma:

lemma lll34: assumes "runiq P" shows "card (Domain P) = card P".

lemma lll34 above was in turn used to formalize proposition 3 from [10].
3 Sledgehammer is an Isabelle tool that applies automatic theorem provers (ATPs) and

satisfiability-modulo-theories (SMT) solvers to automatically produce proofs [2].

Set Theory or Higher Order Logic to Represent Auction Concepts 243

2.3 Application to Auctions

Next, we give one example of the roles of the operations introduced in this
section in our practical setting of auctions, for the simple case of a single-good
auction. In this case, the input data for the auction are given through a function
b associating to each bidder the amount she bids for the good. Given a fixed
bidder i, the outcome of the auction is determined by two functions, a and p.
Both take b as an argument: the first yields whether that bidder won the item
(a,,b = 1) or not (a,,b = 0); the second, p,,b, yields how much she has to
pay. We take the Isabelle formalization of the second proposition in [10], which
is theorem th10 in file Maskin2.thy. This result proves, given some general
requirements, the logical equivalence of two properties, each binding a and p:

– The first property we called genvick (for generalized Vickrey auction, see
below); it states that the payment imposed to i is the sum of a ‘fee’ term
t(b--i), to be paid irrespectively of the outcome, and of a proper price
term (a,,b - a1)*w(b--i), which is to be added only in case she obtains
the good. Moreover, the first term does not depend on how much i herself
bids, but only on others’ bids. The proper price is determined by the auxiliary
function w, which also does not depend on i’s bid (since Vickrey auctions
are second price auctions). Hence, i’s bid can influence only whether i pays
or not the proper price, but not its amount.

– The second property, called dom4, states that i can never be worse off if she
changes her bid to her real valuation v of the good.

Hence, genvick assumes the following form:

abbreviation genvick where "genvick a p i w ≡
(∃ (a1::allocation) t. (∀ b ∈ Domain a ∩ (Domain p).
p,,b = (a,,b - a1)*w(b--i) + t(b--i)))",

while dom4 is the following inequality:

definition dom4 where "dom4 i a p = (∀ b::bid. ∀ v.(
{b,b+<(i,v)}⊆(Domain a ∩ (Domain p)) ∧ i∈Domain b)−→
v*(a,,b)-(p,,b) ≤ v*(a,,(b<(i,v)))-(p,,(b+<(i,v))))".

The operators -- and +< are central in expressing those two conditions; their
respective general properties (collected in RelationProperties.thy) permitted
to streamline the proof of the theorem, whose thesis reads:

genvick a p i w = dom4 i a p. (1)

3 Quotients between Relations

We built a library of basic facts centred around our new constructs of right-
uniqueness (runiq), evaluation (,,), pasting (+*), and considering a function
outside some subset of its domain. The library also contains more advanced
results. In particular, we describe here our approach to building quotients; then,
we derive functions on equivalence classes of points from functions defined on

244 M.B. Caminati et al.

single points. These methods are common in many areas of mathematics, espe-
cially algebra and topology; they are used when a given property holds on classes
of objects, and one wants to abstract away from the specific representative of
a class, and rather define the given property on the whole class. Such classes
are typically the equivalence classes induced by an equivalence relation over its
domain, which form the quotient of the original set.

For example, in group theory, the operation of a group G is canonically trans-
ported to the set of the cosets yielded by a normal subgroup N . This is what
makes the quotient group G/N a group, and is only possible if the group opera-
tion is class-invariant4: the product of two representative elements of two cosets
must be in the same coset, irrespective of how those representative elements are
selected. This is ensured by the definition of normal subgroup.

In our case, to construct t appearing in the definition of genvick towards
the end of the previous section, we need to define some function taking as an
argument a bid vector with the i-th component removed (where i is a bidder).
The formal way to do that was to aggregate all possible bid vectors differing only
on their i-th component and to define that function on the classes obtained this
way; hence, using quotients naturally emerged as one elegant approach. More
details on this particular application of quotients are in section 5.

As illustrated in [12], existing Isabelle’s theory Equiv_Relations.thy already
introduces tools for these general mathematical techniques. There are, however,
the following problems:

1. The operation of passing from a pointwise function to the ‘abstracted’ version
defined on equivalence classes is done using type-theoretical Abs_ and Rep_.
In paper-based mathematics, on the other hand, everything is done using
set theory; hence, a mathematician would probably not know how to use
this implementation without first getting some knowledge of the underlying
type-theoretical foundations.

2. This operation must be performed ‘manually’ in each separate case: there is
no generic definition to do that given a pair (f,R), where f is the function
to be abstracted and R is an equivalence relation on its domain. In contrast,
in our treatment we introduce a function called quotient doing exactly this.

3. f and R are typed as a lambda function and a set-theoretical relation, re-
spectively, while there is no reason to preemptively preventing f from being
a generic relation (i.e., not necessarily being right unique).

For these reasons, we coded a purely set-theoretical Isabelle implementation
of this machinery, via three simple definitions and one theorem establishing
the right-uniqueness of the abstracted function given basic requirements on the
pointwise function.

The first definition gives a map to pass from a point of the domain of a relation
R to the corresponding equivalence class:

definition projector where
"projector R = {(x,R‘‘{x}) | x. x ∈ Domain R }"

4 In this case we can also say that the group operation is well-defined, or that it respects
the corresponding equivalence relation, or even that it is compatible with it.

Set Theory or Higher Order Logic to Represent Auction Concepts 245

The second definition builds, given a pointwise relation R and two equivalence
relations P, Q (working on its domain and codomain, respectively) the corres-
ponding, abstracted relation on the resulting equivalence classes:

definition quotient where "quotient R P Q =
{(p,q)| p q. q ∈ (Range (projector Q)) ∧
p ∈ Range (projector P) ∧ p × q ∩ R �= {} }".

While this definition is typically given for a function R and equivalence relations
P and Q, it still makes sense if these additional conditions are not satisfied. This
allows us to lift these requirements in some preparatory lemmas before assuming
them in the following main result:

lemma l23: assumes "compatible f P Q" "runiq f" "trans P" "sym P"
"equiv (Domain Q) Q" shows "runiq (quotient f P Q)",

where the predicates equiv X P, trans P, sym P exist in the Isabelle library,
and state, respectively, that P is an equivalence relation over the set X; that P is
a transitive relation; and that P is a symmetric relation.

Note that in Isabelle there is a definition for a quotient of a relation R written
as quotient R as the set of all equivalence classes associated with R. Here,
however, we assume a function (or relation) f with respect to relations P and
Q and define the quotient of f with respect to R as a function with the domain
quotient R.

The notion of compatibility above asks that f respects P and Q:
definition compatible where
"compatible R P Q =
(∀ x . (R‘‘(P‘‘{x}) ⊆ Q‘‘(R‘‘{x})))"

Note that the definition of compatible is a gen-
eralization of the usual commutativity of the ap-
plication of functions as displayed to the right.

R

P

Q

quotient R P Q

It should be noted that this condition is not required at the time of defining
a quotient, which can be defined for any triple of relations; rather, it is only
required when asking that the quotient behaves in the expected way, as stated
by lemma l23 above. This allows us to freely use the construction quotient in
advance, to show a number of intermediate results not requiring compatibility
themselves. For example, the following lemma holds for general relations:

lemma quotientFactors: assumes "equiv (Domain p) p" "equiv (Domain q) q"
shows "quotient r p q = (projector p)− O r O (projector q)".

where R− is the converse of the relation R and O stands for relation composition.
We also note that, for similar reasons, we devised a definition of compatibility

taking any triple of relations as arguments: as in the definition of quotient, one
can use compatible R P Q even before showing that R is right-unique and that P, Q
are equivalence relations. In the latter case, however, the definition of compatib-
ility reduces to asking that any two Q-equivalent points have P-equivalent images
through R.

246 M.B. Caminati et al.

4 Injective Functions and Partitions

In section 2.3, we introduced the mathematical description of a single-good auc-
tion. An important family of more complex schemes is given by combinatorial auc-
tions. In these, there are several objects at stake (a set of goods G), and each bid-
der (of a set N) can bid for each possible combination of them. The outcome of
the auction is still described by a pair of maps (a, p), yielding respectively what
a bidder gets and how much she has to pay. However, now the “what a bidder
gets” part must be represented by a mathematical object more articulate than a
{0, 1}-valued function. It is represented by a partition of G, and by an injective
function (or injection) from that partition to N . Treating the latter function in-
side set-theory gives an advantage: the pair (partition, injection) is conveniently
represented by the injection alone, because the partition of G will be simply the
domain of the former. This allowed us to type the relevant objects plainly as fol-
lows:

type_synonym bidder = "nat"
type_synonym goods = "nat set"
type_synonym allocation_rel = "(goods × bidder) set".

Since we wanted to extract code from our Isabelle formalization, we had to
implement recursive definitions for both the set of all possible partitions of a
finite set and for the set of all possible injections from a finite set to another
finite set. In both cases, those recursive definitions turned out to be inconvenient
when it came to prove mathematical facts involving them. Hence a separate,
more natural definition was needed that is equivalent but not computable.

We illustrate this dual approach in the case of injections.
Table 1. Constructive definition of injection

fun injections_alg ::
"’a list ⇒ ’b::linorder set ⇒ (’a × ’b) set list" where
"injections_alg [] Y = [{}]" |
"injections_alg (x # xs) Y = concat
[[R+*{(x,y)}. y←sorted_list_of_set (Y-Range R)].

R ← injections_alg xs Y]"

In Table 1, we find a definition of all injective functions between two finite
sets X and Y, which recurs on X, while in Table 2 the set of all injective functions
is defined axiomatically.

Table 2. Axiomatic definition of injection
definition injections :: "’a set ⇒ ’b set ⇒ (’a × ’b) set set"
where "injections X Y =
{R. Domain R=X ∧ Range R⊆Y ∧ runiq R ∧ runiq(R−)}"

We use the constructive definition in computations and the axiomatic for
proofs and mathematical manipulations. In order to do that we have to prove
their equivalence in the theorem stated in Table 3.

Table 3. Compatibility of constructive and axiomatic definitions of injection
theorem injections_equiv:
fixes xs::"’a list"
and Y::"’b::linorder set"
assumes non_empty: "card Y > 0"
shows "distinct xs =⇒
(set(injections_alg xs Y)::(’a×’b)set set)=injections (set xs) Y"

Set Theory or Higher Order Logic to Represent Auction Concepts 247

Similarly, we have a constructive and an axiomatic definition for partitions
(see Tables 4 and 5, respectively).

Table 4. Constructive definition of partition
definition insert_into_member_list
:: "’a ⇒ ’a set list ⇒ ’a set ⇒ ’a set list"
where "insert_into_member_list new_el Sets S =

(S ∪ { new_el }) # (remove1 S Sets)"

definition coarser_partitions_with_list
::"’a ⇒ ’a set list ⇒ ’a set list list" where
"coarser_partitions_with_list new_el P = ({ new_el } # P)

#
(map ((insert_into_member_list new_el P)) P)"

definition all_coarser_partitions_with_list
::"’a ⇒ ’a set list list ⇒ ’a set list list" where
"all_coarser_partitions_with_list elem Ps =

concat (map (coarser_partitions_with_list elem) Ps)"

fun all_partitions_list :: "’a list ⇒ ’a set list list" where
"all_partitions_list [] = [[]]" |
"all_partitions_list (e # X) =

all_coarser_partitions_with_list e (all_partitions_list X)"

The constructive definition above represents a partition of a finite set as a
list of (disjoint) subsets of it; it works by induction on the cardinality of the set
to be partitioned, as follows. Given a set of cardinality n + 1, we write it as a
disjoint union X ∪ {x}, and, given a partition P of X , we insert x into each set
belonging to P (this is done by the operator insert_into_member_list above).
We thus obtain |P | many partitions of X ∪ {x}, to which we add the distinct
partition {{x}}∪P . Making P range over all possible partitions of X , we obtain
in this way all possible partitions of X ∪ {x}.

When implementing this idea into the code above, however, we chose to rep-
resent the finite set X as a list (rather than a set) of elements of it, and a
partition of it as a list (rather than a set) of subsets of it. This is because the
algorithm just described is iterated in two ways: first, x is inserted into each set
of a partition; secondly, the construction is iterated for each possible partition
of X . Since iterations are easier with lists than with finite sets [11], we adopted
that choice.

Table 5. Axiomatic definition of partition

definition is_partition where
"is_partition P = (∀ X∈P . ∀ Y∈ P . (X ∩ Y �= {} ↔ X = Y))"

definition is_partition_of (infix "partitions" 75)
where "is_partition_of P A = (

⋃
P = A ∧ is_partition P)"

definition all_partitions where
"all_partitions A = {P . P partitions A}."

It should be noted that passing from a list to a finite set (via the operator
set) is easier than the converse, hence the equivalence theorem for partitions in
Table 6 is stated taking as input data a list xs:

248 M.B. Caminati et al.

Table 6. Compatibility of constructive and axiomatic definitions of partition

theorem all_partitions_paper_equiv_alg:
fixes xs::"’a list"
shows "distinct xs =⇒
set(map set (all_partitions_list xs)) = all_partitions(set xs)"

Thanks to the constructive definitions above, we were able to extract, from
Isabelle code [5], executable code running Vickrey combinatorial auctions [4].
Furthermore, we were able to prove fundamental theoretical properties about
those auctions by using the non-constructive versions of those definitions; for
example, that the price for any bidder is non-negative. The compatibility theor-
ems in Tables 3 and 6 allow to certify that such theoretical properties hold also
for the extracted code.

We note that, while non-constructive versions hold in the general case, con-
structive versions are obviously limited to the finite case (e.g., calculating all the
partitions of a finite set). Therefore, the two compatibility theorems must restrict
to the finite case: this is reflected by the fact that the argument of injections
and all_partitions, appearing in Tables 3 and 6, respectively, is set xs. This
means that such an argument is automatically a finite set, being the result of
converting a list (xs) to a set using the Isabelle function set. We stress the fact
that our approach allows to prove most theorems (e.g., thesis (1) at the end
of section 2) without restricting to the finite case, and to add the additional
hypothesis of finiteness only and exactly for the theorems needing it.

5 Application of Quotients to Auctions

We now give enough formalization details to illustrate the exact point in our
proofs of auction theory in which we needed to employ projector and quotient,
introduced in section 3.

To prove the thesis (1) at the end of section 2, we needed to explicitly build the
t appearing in the definition of genvick. This function is uniquely determined
by a and p; however, the latter takes b as an argument, while t takes b--i (which
represents a bid vector with bidder i’s bid removed, and is called a reduced bid).
The algebraic way to pass from b to b--i is to consider an equivalence relation
associating any two b b’ differing at most in the point i. Correspondingly, to
obtain from p a function on arguments of the form b--i, we form the quotient
of p according to that equivalence relation. The equivalence relation we need is
exactly the kernel5 of the following function:

definition reducedbid:: "bidder ⇒ (bid × allocation) set ⇒
(bid × bidder set × bid × allocation) set"
where "reducedbid i a =
{(b, (Domain b, b outside {i}, a ,, b))| b. b ∈ Domain a}".

5 We recall that the kernel of a function f is the equivalence relation ◦f given by
x1 ◦f x2 ⇐⇒ f (x1) = f (x2). See [1, Definition 1.18]. The kernel notion was
missing in the Isabelle library, and we also provided it in ours.

Set Theory or Higher Order Logic to Represent Auction Concepts 249

So that the explicit construction of t, used inside the proof for (1), ends up as

"λx. reducedprice p i a ,, ({i} ∪ Domain x, x, Min (Range a))",

where
definition reducedprice:: "(bid × price) set ⇒ bidder ⇒
(bid × allocation) set ⇒
((bidder set × bid × allocation) × price) set"
where "reducedprice p i a =
(projector ((reducedbid i a)−)) O
(quotient p (Kernel (reducedbid i a)) Id) O
((projector Id)−)",

Id being the identity function. With this definition in place, an important part
of the theorem consists in showing that reducedprice is right-unique.

This reduces to showing that quotient p (Kernel(reducedbid i a)) Id
appearing in the definition above is right-unique. Thanks to lm23 (see section
3), this in turn means proving the compatibility between p and the equivalence
relation just introduced, i.e., Kernel (reducedbid i a), which is provided by

lemma l24b: assumes "functional (Domain a)" "Domain a ⊆ Domain p"
"dom4 i a p" "runiq p" shows
"compatible p (Kernel (reducedbid i a)) Id".

6 Discussion and Related Work

The work presented here is based on the specific set theory implemented in
Isabelle/HOL, sometimes called simply-typed set theory [14, Section 6.1], [13,
Section 1]. It differs from standard set theories, as Zermelo-Fraenkel (ZF), in that
the primitives of the latter are encoded using primitives of higher order logic, as
follows: a given set p is actually a term p of type τ ⇒ bool, and the writing x ∈ p
is actually the application p x. This means that in Isabelle/HOL one cannot
write a set like {x, {x}} (which is not well-typed): the standard hierarchy of
ZF is no longer constructable. As long as the objective is to formalize ordinary
(as defined in [15, Section I.1]) mathematics, this usually causes no problem:
while this difference prevents the encoding of relevant mathematical objects
(e.g., natural numbers, integers, reals, cartesian products) as usually done in
ZF, those objects can be directly represented in higher order logic. This means
that, for many mathematical branches, what is lost with respect to ZF is limited
to its more technical side-effects, as π ∩Q �= ∅, or 1∩ 2 ⊆ 3. Since the latter are
often regarded as strange or meaningless writings [9], [13, Section 1], this could
even be a desirable consequence.

On the other hand, when trying to exploit technical ZF ‘hacks’, as we tried
to do with eval_rel2, problems can arise: we discussed that in section 2.2.
Moreover, ZF is a more appropriate tool for studying the remaining branches of
mathematics, starting with set theory itself.

The Z pattern catalogue [16, Section IV] allows to represent functions as sets of
pairs, as done here. However, Z is a specification language, while we are interested

250 M.B. Caminati et al.

in both specification and implementation. Mizar is based on untyped set theory,
thus modelling functions and relations as done here, and also provides many
relevant existing theorems in its library; however, it is not possible to extract
code or to do computations in general. The Ssreflect extension library for the
Coq proof assistant is extensive and provides a lot of operations; on the other
hand, most of this material seems to apply to functions as represented by lists,
thereby inherently limiting to the finite case. More details on how Isabelle/HOL
generally compares with other systems are in the comparative study [7].

7 Conclusions

We have built an extensive library of results about functions, represented as
right-unique relations as an alternative to the lambda abstractions that have so
far been typical of Isabelle/HOL. In this paper we explained how we employed
this alternative technique, and the concepts in our library, in the application
domain of auction theory. Our library ranges from simpler constructions such as
pasting a relation onto another, to more sophisticated ones such as quotients.

We described how set-theoretical constructs can concisely express construc-
tions that frequently occur in formalization, giving concrete examples from the
application domain of auction theory. In the particular case of representing func-
tions, we discussed the advantages and disadvantages of the set-theoretical rep-
resentations with respect to the alternative, more natural (given the foundations
of Isabelle/HOL) lambda representation. We also showed that computability, a
typical feature of lambda functions, can be achieved for set-theoretical func-
tions in Isabelle/HOL. Moreover, even in those cases in which it cannot be
achieved, we showed how we were still able to employ a dual approach, giving
non-constructive, more expressive definitions along with constructive (and thus
computable) ones, finally proving their equivalence through compatibility the-
orems. This allows us to obtain the best of both worlds, that is, expressiveness
and proof-friendly definitions together with computability, at the cost of having
to prove the additional compatibility theorems.

Finally, we took our application of this approach to a more advanced, abstract
level by describing in a simple, close-to-paper set-theoretical style notions such as
quotients, compatibility and kernel. We presented a concrete application of this
material in a hands-on case encountered in formalizing auction theory within
the ForMaRE project. We think that our library is rich and generic enough to
be of possible use to other Isabelle users, and we hope that this paper can serve
as a first guiding example to show how it can be employed.

References

1. Bergman, C.: Universal Algebra: Fundamentals and Selected Topics. Chapman &
Hall Pure and Applied Mathematics. Taylor & Francis (2011)

2. Blanchette, J.C., Paulson, L.C.: Hammering Away. A User’s Guide to Sledgeham-
mer for Isabelle/HOL (December 5, 2013),
http://isabelle.in.tum.de/dist/Isabelle2013-2/doc/sledgehammer.pdf

http://isabelle.in.tum.de/dist/Isabelle2013-2/doc/sledgehammer.pdf

Set Theory or Higher Order Logic to Represent Auction Concepts 251

3. Bowen, J., Gordon, M.: Z and HOL. In: Z User Workshop, Cambridge 1994, pp.
141–167. Springer (1994)

4. Caminati, M.B., et al.: Proving soundness of combinatorial Vickrey auctions and
generating verified executable code, arXiv:1308.1779 [cs.GT] (2013)

5. Haftmann, F., Nipkow, T.: Code generation via higher-order rewrite systems. In:
Blume, M., Kobayashi, N., Vidal, G. (eds.) FLOPS 2010. LNCS, vol. 6009, pp.
103–117. Springer, Heidelberg (2010)

6. Klein, G., et al. (eds.): Archive of Formal Proofs (2014), http://afp.sf.net/
(visited on March 14, 2014)

7. Lange, C., Caminati, M.B., Kerber, M., Mossakowski, T., Rowat, C., Wenzel,
M., Windsteiger, W.: A qualitative comparison of the suitability of four theorem
provers for basic auction theory. In: Carette, J., Aspinall, D., Lange, C., Sojka,
P., Windsteiger, W. (eds.) CICM 2013. LNCS (LNAI), vol. 7961, pp. 200–215.
Springer, Heidelberg (2013)

8. Lange, C., Rowat, C., Kerber, M.: The ForMaRE Project – Formal Mathematical
Reasoning in Economics. In: Carette, J., Aspinall, D., Lange, C., Sojka, P., Wind-
steiger, W. (eds.) CICM 2013. LNCS (LNAI), vol. 7961, pp. 330–334. Springer,
Heidelberg (2013), arXiv:1303.4194[cs.CE]

9. Leinster, T.: Rethinking set theory. arXiv preprint arXiv:1212.6543 (2012)
10. Maskin, E.: The unity of auction theory: Milgrom’s master class. Journal of Eco-

nomic Literature 42(4), 1102–1115 (2004), http://scholar.harvard.edu/
files/maskin/files/unity_of_auction_theory.pdf

11. Nipkow, T., Paulson, L.C.: Proof pearl: Defining functions over finite sets. In: Hurd,
J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 385–396. Springer,
Heidelberg (2005)

12. Paulson, L.C.: Defining functions on equivalence classes. ACM Transactions on
Computational Logic (TOCL) 7(4), 658–675 (2006)

13. Paulson, L.C.: Set Theory for Verification: I. From Foundations to Functions.
Journal of Automated Reasoning 11, 353–389 (1993)

14. Paulson, L.C., et al.: Isabelle/HOL. A Proof Assistant for Higher-Order Logic
(2013)

15. Simpson, S.G.: Subsystems of second order arithmetic, vol. 1. Cambridge University
Press (2009)

16. Valentine, S.H., et al.: AZ Patterns Catalogue II-definitions and laws, v0.1 (2004)

http://afp.sf.net/
1303.4194[cs.CE]
http://scholar.harvard.edu/files/maskin/files/unity_of_auction_theory.pdf
http://scholar.harvard.edu/files/maskin/files/unity_of_auction_theory.pdf

Realms: A Structure for Consolidating
Knowledge about Mathematical Theories

Jacques Carette1, William M. Farmer1, and Michael Kohlhase2

1 Computing and Software, McMaster University, Canada
http://www.cas.mcmaster.ca/~carette,
http://imps.mcmaster.ca/wmfarmer

2 Computer Science, Jacobs University Bremen, Germany
http://kwarc.info/kohlhase

Abstract. Since there are different ways of axiomatizing and developing
a mathematical theory, knowledge about a such a theory may reside in
many places and in many forms within a library of formalized mathemat-
ics. We introduce the notion of a realm as a structure for consolidating
knowledge about a mathematical theory. A realm contains several axiom-
atizations of a theory that are separately developed. Views interconnect
these developments and establish that the axiomatizations are equivalent
in the sense of being mutually interpretable. A realm also contains an
external interface that is convenient for users of the library who want
to apply the concepts and facts of the theory without delving into the
details of how the concepts and facts were developed. We illustrate the
utility of realms through a series of examples. We also give an outline of
the mechanisms that are needed to create and maintain realms.

1 Introduction

In [Far11] the second author calls for the establishment of a “universal digital
library of mathematics” (UDLM). In our joint work it is understood that the
UDLM will be organized as a theory graph, i.e., a set of theories (collections of
symbol declarations, definitions, assertions, and their proofs) interconnected by
meaning-preserving views (morphisms). The “little/tiny theories approach” first
put forward in [FGT92] has been very fruitful for formal developments of math-
ematical knowledge, but it has not found its way into mainstream mathematics.
One reason may be that there is a mismatch with the way mathematicians —
the supposed users of the UDLM — think about and work with theories. [CF08]
argues for the development of “high-level theories” that better mesh with these
expectations. We will re-examine the issues involved and propose a solution.

In the mathematical community the term “theory” is used to describe mul-
tiple ideas, from the axiomatic theory of the algebraic structure of a group
to “Group Theory” as an entire discipline, and various gradations in between.
Looked at more closely, this implies a multi-scale organizational structure to
the basic components of mathematics, ranging from individual concepts (e.g., a
group) to whole subareas of mathematics (e.g., Group Theory). Here our interest

S.M. Watt et al. (Eds.): CICM 2014, LNAI 8543, pp. 252–266, 2014.
c© Springer International Publishing Switzerland 2014

http://www.cas.mcmaster.ca/~carette
http://imps.mcmaster.ca/wmfarmer
http://kwarc.info/kohlhase

Realms: A Structure for Consolidating Knowledge 253

in this structure is purely pragmatic: how can it be leveraged to build a better
mechanized mathematics systems and, ultimately, a better UDLM.

We will consider this in a bottom-up manner: what is the most natural struc-
ture on theories that allows us to abstract away from irrelevant details, yet still
allow us to get some practical work done? One such structure is that of mu-
tual interpretability between theories. Basically this is the case when we have
two equivalent theories T1 and T2 (in a sense to be made precise later) with
presentations that can be markedly different.

But why should theory presentations matter at all? Studies of “theories” in
mathematics (e.g., Lawvere theories [Law04; LR11]) or in logic focus on entities
that are complete in some sense. But such completeness generally also implies
that the object at hand is effectively infinite, and thus cannot be directly rep-
resented in software. Hence we are immediately forced to work with finite rep-
resentations of these infinite objects. Furthermore, by Gödel’s incompleteness
theorem, most of the interesting theories will be fundamentally incomplete, in
that no finite representation will be able to adequately represent the complete
whole. The relevance here is that we are forced to deal with (syntactic) repre-
sentations, which will generally be incomplete. As this is forced on us, we need
to gracefully adapt to dealing with theory presentations in place of the theories
they represent.

2 The Setting: Theory Graphs

We will now present an abstract notion of a theory graph that is sufficient to
introduce the notion of a realm without committing ourselves to a particular
approach such as [CO12] or [RK13].

Let a theory be a presentation of an axiomatic theory consisting of a finite
sequence of symbol and formula declarations. The symbols denote concepts and
the formulas denote facts about these concepts. There are three kinds of formula
declarations: axioms, definitions, and theorems.1 We further assume that for
a theory T = [A0, A1, . . . , An], for all i with 0 ≤ i < n, Ai+1 is well formed in
the context of [A0, A1, . . . , Ai]. A theory thus represents an axiomatization of
a mathematical topic. If T is a theory and A is a symbol or formula declara-
tion, T � A wf, means that A is well formed in the context of theory T . When
T � A wf, we define T �A to mean [A0, A1, . . . , An, A]; we also extend � to
apply to sequences of declarations (on the right). If T is a theory and ϕ is a for-
mula, then T |= ϕ means ϕ is a logical consequence of T . A theory is primitive
if it contains only symbol declarations and axioms. A primitive theory repre-
sents a set of concepts and facts without a development structure. The empty
theory is the empty sequence. When T1 = T �A and T2 = T �B, we also
1 If we make use of the Curry-Howard isomorphism — as we do in [RK13], then

we can get by with typed symbol declarations (with optional definitions) only. In
the propositions-as-types paradigm, axioms are typed constant declarations, and
theorems are typed definitions — a proof corresponds to the respective definiens of
a symbol which is of the respective type.

254 J. Carette, W.M. Farmer, and M. Kohlhase

define T1⊕T2 := (T �A)�B whenever A and B are disjoint (i.e., they declare
symbols or formulas with different names). By also extending ⊕ to sequences of
declarations, we get a join operation on theory presentations.

A theory graph is a directed graph in which a node is a theory and we have
edges from a theory T to a theory T �A. If T and T ′ are theories in a theory
graph G, an edge from T to T ′ is designated as T

G−→ T ′. A theory graph is a
modular representation of a formalized body of mathematical knowledge.

An axiomatic development of a theory T to a theory T ′ in G is a subgraph
G′ of G in which T is the only source of G′ and T ′ is the only sink of G′. In this
case, T and T ′ are called the bottom theory and the top theory, respectively.
An axiomatic development is thus a lattice of theories in which the top theory
is the join of the members of the lattice.

Let T1 and T2 be theories in G. A view of T1 in T2 is a homomorphic mapping
Φ of the language of T1 to the language of T2 such that, for each formula ϕ of
T1, T1 |= ϕ implies T2 |= Φ(ϕ). We denote a view by Φ : T1 � T2. A view is
thus a meaning preserving mapping that shows how T1 can be embedded in T2.
It also provides a mapping from the models of T2 to the models of T1 (note the
reversal of order). T1 and T2 are equivalent if there is a view in both directions.
A view Φ : T1 � T2 is faithful if for each formula ϕ of T1, T2 |= Φ(ϕ) implies
T1 |= ϕ. Views give a second (oriented, multi) graph structure on G, making it
into a bigraph. It is important to note that the base theory graph (with edges
but not views) is always acyclic.

Let T and T ′ be theories. T ′ is an extension of T , and T is a subtheory of
T ′, if there exists a sequence S such that T ′ = T � S. In this case, there is a view
Φ : T � T ′ such that Φ is the identity function. We call Φ the inclusion of T
into T ′ and denote it by T T ′. This corresponds to the extensions of [CO12],
identity structures in [RK13], as well as the display maps of categorical type
theory.

An interface for T is a view Φ : T ′ � T such that Φ is injective. T ′ and T are
called, respectively, the front and back of the interface. Each subtheory of T
can be a front of an interface for T . An interface is intended to be a convenient
means for accessing (parts of) T . The front of a good interface includes a carefully
selected set of symbols and formulas that denote orthogonal concepts and facts
that can be easily combined to express the other concepts and facts of T . See
section 5 for some concrete examples.

T

T ′

:=

T

T ′

ιΦ

An extension T ′ of T is conservative if there is a view Φ :
T ′ � T such that Φ is the identity function when restricted
to T (i.e., Φ ◦ ι = IdT where ι is the inclusion of T in T ′). If
T ′ is a conservative extension of T , then for each formula ϕ of
T , T ′ |= ϕ implies T |= ϕ. Common examples of conservative
extensions are extensions by symbol declarations, definitions,
or theorems (with proofs). Obviously, if T ′ is a conservative extension of T ,
then T and T ′ are equivalent. We abbreviate the two arrows in a conservative
extension with a double inclusion arrow in theory graphs. A subgraph G′ of a
theory graph G is conservative if T ′ is a conservative extension of T for each

Realms: A Structure for Consolidating Knowledge 255

edge T G−→ T ′ in G′. A conservative development is an axiomatic development
that is conservative. Note that all the theories in a conservative development are
equivalent to each other. We will write a conservative development with bottom
theory S and top theory T as S T .

Φ : T1 � T2 is expansive if there is a Ψ : T2 � T2 such that (1) the range
of Ψ is the image of Φ and (2) Ψ is the identity on the image of Φ. That is, a
view of T1 in T2 is expansive if, roughly speaking, T2 is a conservative extension
of the view’s image. A view of T is conservative if it is faithful and expansive.
A conservative view of T is a generalization of a conservative extension of T . If
there is a conservative view of T1 in T2, then T1 and T2 are mutually viewable.

3 Motivation: Developers, Students, and Practitioners

The user of a UDLM can play three different roles. As a developer, the user creates
new representations of mathematical knowledge or modifies existing ones in the
library. As a student, the user studies the mathematical knowledge represented in
the library. And, as a practitioner, the user applies the mathematical knowledge
in the library to problems, both theoretical and practical. A user may play
different roles at different times and may even sometimes combine roles.

A theory graph does not fully support all three of the user’s roles. In fact, it
lacks the structure that is necessary to satisfy the following requirements:

R1 There can be many equivalent theories in a theory graph that represent dif-
ferent axiomatizations of the same mathematical topic. As a result, concepts
and facts about this mathematical topic, possibly expressed in different lan-
guages, may be widely distributed across a theory graph. The developer and
the student would naturally want to have these different axiomatic develop-
ments and the set of concepts and facts that are produced by them in one
convenient place and in one convenient language.

R2 Developers prefer developments that start with minimal bottom theories and
are built as much as possible using conservative extensions. This approach
minimizes the chance of introducing inconsistencies (which would render the
developments pointless) and maximizes the opportunities for reusing the de-
velopment in other contexts. While these two benefits may not be of primary
concern for the student and the practitioner, such a careful development is
usually easier to understand and produces concepts and facts that can be
more reliably applied.

R3 The developer would like to create a view from one theory to another in
a convenient manner by starting with a view of a minimal axiomatization
of the theory and then building up the view as needed using conservative
extensions. Also, there is a desire to use the most convenient axiomatization
amongst equivalent presentations.

R4 The application of a mathematical fact usually does not require an under-
standing of how concepts and facts were derived from first principles. Hence
the parts of the theory graph which were needed by the developer may not

256 J. Carette, W.M. Farmer, and M. Kohlhase

be useful to the practitioner, and may well get in the way of the practi-
tioner’s work. The practitioner would naturally want the concept or fact to
be lifted out of this tangled development bramble.

R5 Languages are introduced in a theory graph for the purpose of theory de-
velopment. They may employ vocabulary that is inconvenient for particular
applications. The practitioner would naturally like to have vocabulary cho-
sen for applications instead of development.

In summary, the developer, the student, and the practitioner have different con-
cerns that are not addressed by the structure of a theory graph. These different
concerns lead us to propose putting some additional structure on a theory graph,
a notion we call a “realm”, to meet these five requirements.

4 Realms

In a nutshell, a realm identifies a subgraph of a development graph, equips it
with a carefully chosen interface theory that abstracts from the development,
and supplies the practitioner with the symbols and formulas she needs.

Definition 1. A realm R is a tuple (G,F, C,V , I) where:
1. G is a theory graph.
2. F is a primitive theory in G called the face of the realm R.
3. C is a set {C1, C2, . . . , Cn} of conservative developments in G.
4. V is a set of views that establish that the bottom theories ⊥1,⊥2, . . . ,⊥n of

C1, C2, . . . , Cn, respectively, are pairwise equivalent.
5. I is a set {I1, I2, . . . , In} of conservative interfaces such that F is the front

of Ii and the top theory �i of Ci is the back of Ii for each i with 1 ≤ i ≤ n.
For each i we call (⊥i, Ci,�i) the i-th pillar of R and Ii its interface. Note
that every subset of pillars of a realm R forms a realm together with its interface
and the face of R. We call realms with just one pillar simple and realms with
more than one pillar proper.

⊥1 ⊥2
. . . ⊥n

�1 �2
. . . �n

C1 C2 Cn

F

I1
I2 I... In

Fig. 1. The Architecture of a Realm

Figure 1 shows the general situ-
ation, we depict realms by double
dashed boxes and faces by dashed
ones. All the theories in the realm
R are equivalent to each other since
i) all the bottom theories are equiv-
alent by the views in V , ii) all the
members of a conservative develop-
ment are equivalent, and iii) the
front and back of a conservative in-
terface are equivalent.

To ensure that realms have a pleasant categorical structure (that of a con-
tractible groupoid), we assume that V always contains identity views which show
self-equivalence.

Realms: A Structure for Consolidating Knowledge 257

A realm consolidates a body of formalized mathematics pertaining to one
topic. Each bottom theory ⊥i is a different (ideally minimal) axiomatization
and each conservative development Ci is a family of extensions of ⊥i. F is an
(ideally convenient) presentation of the topic without any development structure
and without any scaffolding, i.e., the concepts and facts that are needed only for
development purposes. Finally, each interface Ii establishes that F is indeed a
presentation of the topic and how it embeds into each �i.

The realm R = (G,F, C,V , I) minus F and I records the development struc-
ture of the topic; we call R := (G, C,V) the body of R. It can be used to study
the development structure of the topic or as a basis for extensions. The face F
exposes the most important and useful concepts and facts pertaining to that
realm. It is also meant to be used as a module for constructing larger bodies of
formalized mathematics. In other words, it can be seen as an export facility that
only exports carefully selected symbols and formulas from the realm, without
duplication or redundancy. Note that, in practice, we will choose for F the “usual
symbols” traditionally used for that theory; these will also often correspond to
the “original symbols” used in (some of) the bottom theories.

In particular, realms offer the infrastructure to satisfy the five requirements for
users of a UDLM described in section 3. R1 is addressed by the set of theories
in the realm R and by the concepts and facts in F . R2 is addressed by the
conservative developments in C. R3 is addressed by the views in V and the
conservative developments in C. R4 and R5 are addressed by F being primitive
and the fact that F is the front of an interface to each top theory.

Example 1 (Trivial realm). Any theory S in G induces a simple realm R =
(G,S, {GS}, {IdS}, {IdS}) where GS is the subgraph G consisting of S alone
and IdS is the identity view on S. Thus S serves as the top and bottom theories
of the trivial conservative development of S, as well as the face of R.

Example 2 (Initial realm). For any theory T in G we can extend G with a copy

FT of T and a conservative interface FT
ι

T , where ι maps any symbol to
its copy to obtain a theory graph G′. We call RT

G := (G′, FT , {GT }, {IdS}, {ι}),
where GT is the subgraph of G consisting of T alone, the initial realm for T
in G.

�1 �2

F1 F2

I1 I2

ṽ

v

Fig. 2. Lifting

We can project any realm R to its face F , forgetting
all developmental structure. Note that we can lift views
between theories to realm morphisms (theory morphisms
between their faces): given two realms R1 and R2 with
two interfaces Ii, fronts Fi, and top theories �i, a view

�1
v �1 induces a partial view F1

ṽ
F2 on the faces,

where ṽ = I−1
2 ◦ v ◦ I1 (see Figure 2). In practice, the lifted

views will almost always be total, since we prefer to use (in
�i and Fi) the original symbols from the bottom theories.

258 J. Carette, W.M. Farmer, and M. Kohlhase

5 Examples

As the development of the last few sections is fairly abstract, we will attempt
to give the reader a better feel for realms through a selection of examples. We
develop the first one in some detail and then give a more intuitive (and thus
shorter) description of the remaining examples.

5.1 Groups

It is well known that groups can alternatively be described in two ways:

Definition 1 [KM79]. A group1 is a set G together with an associative
binary operation ◦ : G × G → G, such that there is a unit element e for ◦
in G, and all elements have inverses.

Definition 2 [Hal59]. A group2 is a set G, together with a (not necessarily
associative) binary operation / : G×G→ G, such that a/a = b/b, a/(b/b) =
a, (a/a)/(b/c) = c/b, and (a/c)/(b/c) = a/b for all a, b, c ∈ G.

For any group1 (G, ◦), we can define a binary operation /◦ by a/◦b := a ◦ b−1

that shows that (G, /◦) is a group2, and vice versa — using a ◦/ b := a/b−1
/ with

b−1
/ := (b/b)/b. Practitioners want to use both group multiplication and division
but are usually indifferent to how and where they are introduced.

In Figure 3, we have assembled this situation into a two-pillar realm with face
group. The two bottom theories group1 and group2 are equivalent via the views
v1 and v2 and the back views of c1 and c1, respectively.2 Note that the views
v1 = ◦ !→ ◦/, e !→ e/, i !→ i/ and v2 = / !→ /◦ carry proof obligations that show
that the newly defined extensions slash1 and circ-i2 behave as expected by the
group3−i. The face group contains “new” symbols, for which we use underlined
symbols, to distinguish them from the ones in the pillars of the realm. The
interface views Ii pick out the respective “original operators” /, ◦, and i, together
with the corresponding axioms (and any theorems that may have been proven
along the way). Here we have

I1 = ◦ !→ ◦, e !→ e, i !→ i, / !→ /◦ and I2 = ◦ !→ ◦/, e !→ e/, i !→ i/, / !→ /

In particular, it is very natural to require that the interfaces of a realm are
conservative since they have access to all symbols in the body of the realm.

5.2 Natural Number Arithmetic

A realm N of natural number arithmetic would naturally contain conservative
developments of several different axiomatizations of the natural numbers with
2 This is a very common situation; the base theories differ mainly in which symbols are

considered primitive, and the conservative developments mainly introduce definitions
for the remaining ones.

Realms: A Structure for Consolidating Knowledge 259

group1
G : set, ◦ : G2 → G
e : G, i : G → G

(a ◦ b) ◦ c = a ◦ (b ◦ c)
a ◦ e = a, a ◦ i(a) = e

group2
G : set, / : G2 → G

a/a = b/b, a/(b/b) = a
(a/a)/(b/c) = c/b
(a/c)/(b/c) = a/b

slash1
/◦ : G2 → G

a/◦b := a ◦ i(b)

circ-i2
◦/ : G2 → G
e/ : G, i/ : G → G

a ◦/ b := a/i/(b)
e/ := b/b, i/(a) := e//a

c1
c2

v1
v2

group
G : set, ◦ : G2 → G, e : G, i : G → G, / : G2 → G

(a◦b)◦c = a◦(b◦c), a ◦ e = a, a◦i(a) = e, a/b = a◦i(b)
a/a = b/b, a/(b/b) = a, (a/a)/(b/c) = c/b, (a/c)/(b/c) = a/b

I1
I2

Fig. 3. A Realm of Groups with Face group

the usual arithmetic operations. One conservative development would certainly
start with Peano’s axiomatization of the natural numbers [Pea89]. The base
theory would contain the symbols 0 and S (the successor function) and the
(second-order) Peano axioms. The conservative development would include re-
cursive definitions of + (addition) and ∗ (multiplication). This development is
particularly useful as it makes the proofs of many properties of the natural num-
bers simple.

Another kind of conservative development would start with a construction of
the natural numbers using machinery available in the underlying logic. There
are many such constructions. Some examples are finite von Neumann ordinals
constructed from sets, Church numerals constructed from lambda expressions,
strings of bits, and various bijective numeration schemes. These constructions
define representations of the natural numbers that are semantically equivalent
but far from equivalent with respect to computational complexity. It is worth
singling out the sequences of machine-sized words representation, which tends
to be the most efficient.

The face FN of N would be restricted to the most basic concepts and facts
about natural number arithmetic. These would naturally include symbols for all
the natural numbers (i.e., natural number numerals) and all the true equations of
the form n1+n2 = n3 and n1∗n2 = n3. Thus FN would contain an infinite number
of symbols and facts. An implementation of FN would require an efficient means
to represent and compute with natural number numerals. Biform theories [Far07]
would be best suited for such a task.

260 J. Carette, W.M. Farmer, and M. Kohlhase

This realm N that we have described is a multi-pillar presentation of the
mathematical topic of natural number arithmetic. It can be used by developers
as a module with which to build more complex theories and by students who are
interested in understanding what are the basic concepts and facts of this topic
and how they are derived from first principles. A realm like N that contains
several pillars and a face of basic concepts and facts is called a foundational
realm. Used for building new theories and for study, a foundational realm would
not be expected to change much over time.

Since the mathematical theory of natural number arithmetic is exceedingly
rich, there are a great many concepts and facts about natural numbers that
could be of use to practitioners. For developers and students, the usefulness
of N would be greatly reduced if there was an attempt to include all of these
concepts and facts in FN. It would be much better for practitioners — who are
primarily interested in applications — to create another single-pillar realm N′

of natural number arithmetic whose face would contain all the useful concepts
and facts about natural numbers that have been derived someplace in the theory
graph. A realm of this type is called a high-level realm. Used for applications,
a high-level realm would be continuously updated as new concepts and facts
are discovered. It would be an implementation of the idea of a high-level theory
discussed in [CF08].

5.3 Real Numbers

The theory of the real numbers covers the algebraic and topological structure
of the real numbers. Rich in concepts and facts, it is one of the most important
theories in all of mathematics. It is important to developers since real numbers
are needed in most mathematical developments. It is important to students since
it includes many of the most important ideas of mathematics. It is important
to practitioners since most mathematical problems involve the real numbers in
some way.

A realm R of the real numbers could be used to consolidate and organize all
the knowledge about the real numbers that resides in a UDLM. R would have
a structure similar to the realm of natural number arithmetic. It would contain
two kinds of conservative developments. The first kind are axiomatizations of a
complete ordered field – all complete ordered fields are isomorphic. The second
kind are constructions of the real numbers, of which there are many. Some ex-
amples are Dedekind cuts in the field of rational numbers, Cauchy sequences of
rational numbers, infinite decimal expansions, the quotient of the finite hyperra-
tionals by the infinitesimal hyperrationals, and as a substructure of the surreal
numbers. It is worth remarking that most of these constructions leverage N, so
that constructing realms is also a modular process.

The realm R would be a foundational realm like N for developers and students.
There should also be a high-level realm R′ like N′ for practitioners. The face of
R would only contain the basic concepts and facts about the real numbers, while
the face of R′ would contain all the useful concepts and facts about the real
numbers that have been derived someplace in the theory graph. The prominent

Realms: A Structure for Consolidating Knowledge 261

role of the real numbers would mean that R or R′ would be the basis of many
of the more sophisticated theories in a UDLM.

5.4 Monads

Category theorists and (advanced) Haskell programmers are familiar with the
expressive power of monads. Most know that there are in fact two equivalent
presentations of the theory of monads, one using a multiplication operation μ
(called join in Haskell) and unit η (return), the other using Kleisli triples with
a lifting operation −∗ (called bind or >>= in Haskell). From there, one can define
a large list of generic combinators that work for any monad.

These two presentations are equivalent, and are again similar in flavor to the
previous ones: one is more convenient for proofs, the other for computational
purposes. Again, these basic theories tend to be followed by a substantial tower of
conservative extensions. In other words, Haskell’s Control.Monad should really
be seen as the face of a realm of monads.

5.5 Modal Logic S4

The modal logic S4 has a large number of equivalent presentations — John
Halleck [Hal] lists 28 of them. This gives developers significant flexibility when
using views (aka requirement R3) to establish that a structure can interpret
S4. And, of course, S4 supports rather significant conservative extensions and
applications of it are found in a variety of places.

5.6 Models of Computation

The Chomsky hierarchy of regular, context-free, context-sensitive and recursively
enumerable languages offer names for (the face of) four more, nested, realms. As
is well known, each of the above languages contains many different formalisms
which are nevertheless equivalent.

Inside the recursively enumerable languages (for example), we would have the
pillars of Turing machines, Register Machines, the Lambda Calculus, certain
automata, etc, as alternatives. It is difficult to design a suitable face theory for
this realm, as the syntax of any high-level programming language could serve;
given the heated debates around what language is “best”, this is one realm whose
face may not settle for a long time.

6 The Realm Idea

The examples of the previous section show the advantages of realms as consoli-
dated structures: a realm hides cumbersome details, while still allowing access to
the details for those (such as developers) who must deal with them. Realms thus
deal with two structural tensions in the design of theory graphs that formalize
a mathematical domain:

262 J. Carette, W.M. Farmer, and M. Kohlhase

Foundational realms can in many ways be understood as the formalization of
the ideas of information hiding and modules coming from software engineering.
The face of a realm corresponds to an interface; its secrets, i.e., what it hides, is
the actual conservative development of the theory; and its representation details
correspond to an axiomatization. Of course, to get substitutivity, we need to
ensure equivalence. In an ad hoc manner, Haskell’s type classes, ML’s modules
and functors, Scala’s traits, Isabelle’s locales (etc) all capture certain aspects of
realms. However, the lack of good support for views really hampers the use of
these proto-realms as a modular development mechanism.

High-level realms give practitioners high-level collections of useful symbols and
formulae that function like a tool-chest for applications based on the tiny theo-
ries developers use as a fine-grained model of dependencies, symbol visibilities,
and consistency. For them theories should be static over time, depicting a com-
pleted axiomatic development of a mathematical topic. This gives a persistent
base (and rigid designators) to develop against. But this means that conservative
extensions (like definitions and theorems) need new theories, leading to a severe
pollution of the theory namespace. Practitioners, on the other hand, would nat-
urally prefer dynamic theories that continuously grow as new concepts and facts
are introduced (another kind of rigid designator).

The contribution of realms is an overlay structure that can implement informa-
tion hiding, and mediates between dynamic high-level theories and an underly-
ing, static theory graph. So users can have their cake and eat it.

7 Representing and Growing Realms in a UDLM

Our work on OMDoc/MMT [MMT; KRZ10] and the MathScheme [CFO11] sys-
tems have given us a decent intuition (or so we feel) regarding the services that
a theory-graph based system should provide. We now extent this to realms.

Marking Up Realms. If we look at the definition of a realm, we see that the
body components are already present in the theory graph given by the existing
axiomatic developments. Thus, given a theory graph G, we can add a realm R by
just tagging a subgraph of G and adding a set of interfaces with their common
front (the face of R); all of these are regular components of theory graphs,
so we only need to extend the theory graph data structures (and representation
languages) by a “realm tagging” functionality. This also shows us that the concept
of realms is conservative over theory graphs.

One can easily envision two methods of syntactically identifying realms: glob-
ally via a theory-level “realm declaration” which specifies the five components
from Definition 1, or locally by extending theory and view declarations with a
field that specifies the realm (or realms) it participates in. Given the little the-
ory approach, we tend to use theory extensions and view declarations when the

Realms: A Structure for Consolidating Knowledge 263

local context is clear (for example, within a single “file”), and the more global ap-
proach when drawing from a wider context. This appears to be a good syntactic
compromise.

An implementation will have to check the internal constraints from Defini-
tion 1, in particular, that interfaces are total. But the idea of simply “discover-
ing” realms that occur in the wild is a bit optimistic. From our case studies, we
expect that realms have to be engineered purposefully: they are grown from a
seed, and grow over time by coordinated (and system-supported) additions of
theories and views.

7.1 Supporting the Life Cycle of Realms

We postulate that three realm-level operations will be needed in practice:
i) realms are initialized by designating chosen theories as initial realms, which
ii) can be extended by adding conservative extensions, and iii) proper realms
are created by merging existing realms. These three operations were sufficient
to explain the complex realms in our case studies. We will now discuss them in
more detail.

⊥

S

�

F

I

�

⊥

S

S′ �

�′

F ′

I ′

realm extension

Initializing Realms. Given a theory graph G, we add any
realm (e.g., the initial realm RT

G for a theory T in G; see
Example 2) as a starting point of development.

Extending Realms by (internal) conservative extensions.
Given a realm R := (G,F, C,V , I), a top theory � of some
C ∈ C, and an interface I for �, then we can extend R by:

i) adding a conservative extension S S′ by declaration
c and a commensurate extension � �′ to C and

ii) (optionally) adding a declaration c to F , giving a new
face F ′, and extending I so that I ′ := I, c !→ c. If we do
– e.g., for a high-level view – we have to apply i) to each
of the pillars of R, so that all their interfaces are total;
the diagram shows the situation for a simple realm.

In particular, an implementation of high-level realms must
provide a registration functionality for conservative extensions
in C that keeps the interface(s) consistent by ensuring new names appear in the
face of the realm. Note that this extension operation does not change the number
of pillars of a realm, in particular, if realms are started by initial realms, they
will only be extended to simple realms. It is predominantly used for high-level
realms.

The next operation merges two realms if they are mutually interpretable. This
operation is mainly used to build up foundational views, the construction makes
sure that all symbols in the face are interpreted in all the pillars.

Merging Realms along Views. Given two realms R1 := (G,F1, C1,V1, I1) and

R2 := (G,F2, C2,V2, I2), and views ⊥1
v ⊥2 and ⊥′

2

w ⊥′
1, where ⊥i and

264 J. Carette, W.M. Farmer, and M. Kohlhase

⊥′
i are (arbitrary) bottom theories in Ci, then we can define the union realm

R1 ∪v
w R2 along v and w as (G,F1 ∪F2, C+w

1 ∪C+v
2 ,V1 ∪V2 ∪{v, w}, I+w

1 ∪I+v
2).

Figure 4 shows the situation for two simple realms. Generally, we define that:
i) C+w

1 is the set of conservative developments {C+w | C ∈ C1}, where C+w

is C extended by a copy3 of the development of ⊥′
2 to �′

2 along w, itself
extended to � ∪ w(�′

2). C+v
2 is defined analogously. In Figure 4, C+v

2 and
C+w
1 are the two diamonds on the left and right.

ii) F1∪F2

I+w
1 �1∪w(�2) is I1∪w◦I2 and F1∪F2

I+v
2 �2∪v(�1) is I2∪v◦I1.

An implementation of this construction would take great care to merge corre-
sponding symbols in the two faces to minimize the union. Moreover, the copying
operation can be optimized to only copy over those conservative extensions that
are mentioned in the interface extension.

⊥1 ⊥2

v

w

�1 �2�2

F1 F2

I1 I2

�

⊥1 ⊥2

v

w

�1 w(�2) v(�1) �2

v

w

�1 ∪ w(�2) �2 ∪ v(�1)

v

w

F1 ∪ F2

I+w
1 I+v

2

Fig. 4. Union Realm

7.2 Modular Realms

Note that the extension and merging operations highlight an internal invariant
of realms that may not have been obvious until now: All pillars of a realm must
interpret the full vocabulary of the face to admit total interfaces. This duplication
can become quite tedious in practice. Therefore it is good practice to modularize
realms in the spirit of a “little realms approach”. For instance, the groups realm
from Figure 3 could be extended by the usual group theorems via conservative
extensions in both pillars. But we can also build a simple realm with base theory
group and extend that conservatively (once per theorem). Unless there are proofs
that directly profit from the particulars of the concrete formulations in the pillars
below, the modular approach is more efficient representationally and thus more
manageable.
3 A copy of a development (sub)graph H along a view v is an isomorphic graph H ′,

where for any theory S in H , S′ in H ′ consists of the declarations c : v(τ) = v(δ),

for all c : τ = δ in S. This construction gives us a view S
v

S′.

Realms: A Structure for Consolidating Knowledge 265

7.3 Interface Matters

As the realms are the main interaction points for mathematicians with the
UDLM, realms must be discoverable and provide a range of convenient infor-
mation retrieval methods (after all, realms will get very large in practice). These
can range from community tools like peer reviewed periodicals (aka. academic
journals) to technical means like intra- and cross-realm search engines (as realms
are built upon theory graphs, specialization of the �search engine [KI12] will be
a good starting point.)

It will be very important to provide a set of interactions for the interface of a
realm that users can understand. It will be important to look up the definienda
and proofs of interface items, even though this will usually mean that we need
to descend into (conservative extensions of) one of the fronts of the interface,
which employ different languages. This needs to be transparent enough to be
understandable to users/mathematicians.

Similarly, the equivalence relation of the (tiny) theories that make up the
realm should be made transparent and easy to browse for the user.

8 Conclusion

We have presented an extension of the theory graph approach to representing
mathematical knowledge. Realms address the mismatch between the successful
practice of the little/tiny theory approach natural for developing theory graphs
and the high-level theories most useful for practitioners utilizing such mathemat-
ical knowledge representations. We have proposed a formal definition for realms
that is conservative over theory graphs and shown its adequacy by applying it
to examples from various areas of mathematics and computation.

As a step towards an implementation we have investigated a set of realm-level
operations that can serve as a basis for system support of realm management.
The next step in our investigation will be to realize and test such support in the
OMDoc/MMT [MMT; KRZ10] and the MathScheme [CFO11] systems, fully
develop the examples sketched in this paper, and test the interactions on devel-
opers, students, and practitioners (see section 3).

References

[CF08] Carette, J., Farmer, W.M.: High-Level Theories. In: Autexier, S.,
Campbell, J., Rubio, J., Sorge, V., Suzuki, M., Wiedijk, F. (eds.)
AISC/Calculemus/MKM 2008. LNCS (LNAI), vol. 5144, pp. 232–245.
Springer, Heidelberg (2008)

[CFO11] Carette, J., Farmer, W.M., O’Connor, R.: MathScheme: Project descrip-
tion. In: Davenport, J.H., Farmer, W.M., Urban, J., Rabe, F. (eds.) Calcule-
mus/MKM 2011. LNCS (LNAI), vol. 6824, pp. 287–288. Springer, Heidelberg
(2011)

266 J. Carette, W.M. Farmer, and M. Kohlhase

[CO12] Carette, J., O’Connor, R.: Theory Presentation Combinators. In: Jeuring,
J., Campbell, J.A., Carette, J., Dos Reis, G., Sojka, P., Wenzel, M., Sorge,
V. (eds.) CICM 2012. LNCS (LNAI), vol. 7362, pp. 202–215. Springer, Hei-
delberg (2012)

[Far07] Farmer, W.M.: Biform Theories in Chiron. In: Kauers, M., Kerber, M., Miner,
R., Windsteiger, W. (eds.) MKM/Calculemus 2007. LNCS (LNAI), vol. 4573,
pp. 66–79. Springer, Heidelberg (2007)

[Far11] Farmer, W.M.: Mathematical Knowledge Management. In: Schwartz, D.,
Te’eni, D. (eds.) Encyclopedia of Knowledge Management, 2nd edn., pp.
1082–1089. Idea Group Reference (2011)

[FGT92] Farmer, W.M., Guttman, J.D., Thayer, F.J.: Little Theories. In: Kapur, D.
(ed.) CADE 1992. LNCS, vol. 607, pp. 567–581. Springer, Heidelberg (1992)

[Hal] Halleck, J.: http://home.utah.edu/ nahaj/logic/structures/systems/s4
.html (accessed: March 14, 2014)

[Hal59] Hall, M.: The Theory of Groups. The Macmillan Company, New York (1959)
[KI12] Kohlhase, M., Iancu, M.: Searching the Space of Mathematical Knowledge.

In: Sojka, P., Kohlhase, M. (eds.) DML and MIR 2012. Masaryk University,
Brno (2012) (in press) ISBN: 978-80-210-5542-1

[KM79] Kargapolov, M.I., Merzljakov, J.I.: Fundamentals of the Theory of Groups.
Graduate Texts in Mathematics. Springer (1979)

[KRZ10] Kohlhase, M., Rabe, F., Zholudev, V.: Towards MKM in the Large: Mod-
ular Representation and Scalable Software Architecture. In: Autexier, S.,
Calmet, J., Delahaye, D., Ion, P.D.F., Rideau, L., Rioboo, R., Sexton, A.P.
(eds.) AISC/Calculemus/MKM 2010. LNCS (LNAI), vol. 6167, pp. 370–384.
Springer, Heidelberg (2010), arXiv:1005.5232v2[cs.OH]

[Law04] Lawvere, W.F.: Functorial Semantics of Algebraic Theories. Reprints in The-
ory and Applications of Categories 4, 1–121 (2004)

[LR11] Lack, S., Rosický, J.: Notions of Lawvere Theory. English. Applied Cate-
gorical Structures 19(1), 363–391 (2011), doi:10.1007/s10485-009-9215-2,
ISSN: 0927-2852

[MMT] Rabe, F.: The MMT Language and System,
https://svn.kwarc.info/repos/MMT (visited on November 10, 2011)

[Pea89] Peano, G.: Arithmetices principia nova methodo exposita. Bocca, Turin
(1889)

[RK13] Rabe, F., Kohlhase, M.: A Scalable Module System. Information & Compu-
tation (230), 1–54 (2013)

http://home.utah.edu/~nahaj/logic/structures/systems/s4.html
http://home.utah.edu/~nahaj/logic/structures/systems/s4.html
1005.5232v2 [cs.OH]
10.1007/s10485-009-9215-2
https://svn.kwarc.info/repos/MMT

Matching Concepts across HOL Libraries

Thibault Gauthier and Cezary Kaliszyk

University of Innsbruck, Austria
{thibault.gauthier,cezary.kaliszyk}@uibk.ac.at

Abstract. Many proof assistant libraries contain formalizations of the
same mathematical concepts. The concepts are often introduced (de-
fined) in different ways, but the properties that they have, and are in
turn formalized, are the same. For the basic concepts, like natural num-
bers, matching them between libraries is often straightforward, because
of mathematical naming conventions. However, for more advanced con-
cepts, finding similar formalizations in different libraries is a non-trivial
task even for an expert.
In this paper we investigate automatic discovery of similar concepts

across libraries of proof assistants. We propose an approach for normal-
izing properties of concepts in formal libraries and a number of similar-
ity measures. We evaluate the approach on HOL based proof assistants
HOL4, HOL Light and Isabelle/HOL, discovering 398 pairs of isomorphic
constants and types.

1 Introduction

Large parts of mathematical knowledge formalized in various theorem provers
correspond to the same informal concepts. Basic structures, like integers, are of-
ten formalized not only in different systems, but sometimes also multiple times
in the same system. There are many possible reasons for this: the user may for
example want to investigate special features available only for certain represen-
tations (like code extraction [4]), or simply check if the formal proofs can be
done in a more straightforward manner with the help of alternate definitions.
With multiple proof assistants, even the definitions of basic concepts may be
significantly different: in Isabelle/HOL [21] the integers are defined as a quotient
of pairs of naturals, while in HOL Light [6] they are a subset of the real num-
bers. Typically the proofs concerning a mathematical concept formalized in one
system are not directly usable in the other, so a re-formalization is necessary.

The idea of exchanging formal developments between systems has been in-
vestigated both theoretically and practically many times [10, 14, 16]. Typically
when a concept from the source systems is translated to a target system, and
the same concept exists in the target system already, a new isomorphic structure
is created and the relation between the two is lost. The properties that the two
admit are the same and it is likely that the user formalized many similar ones.

In this work we investigate automatic discovery of such isomorphic structures
mostly in the context of higher order logic. Specifically the contributions of this
work are:

S.M. Watt et al. (Eds.): CICM 2014, LNAI 8543, pp. 267–281, 2014.
c© Springer International Publishing Switzerland 2014

268 T. Gauthier and C. Kaliszyk

– We define patterns and properties of concepts in a formal library and export
the data about constants and types from HOL Light, HOL4, and Isabelle/HOL
together with the patterns.

– We investigate various scoring functions for automatic discovery of the same
concepts in a library and across formal libraries and evaluate their perfor-
mance.

– We find 398 maps between types and constants of the three libraries and
show statistics about the same theorems in the libraries, together with nor-
malization of the shape of theorems.

There exists a number of translations between formal libraries. The first trans-
lation of proofs that introduced maps between concepts was the one of Obua and
Skalberg [16]. There, two commands for mapping constructs were introduced:
type-maps and const-maps that let a user map HOL Light and HOL4 concepts
to corresponding ones in Isabelle/HOL. Given a type (or constant) in the maps,
during the import of a theorem all occurrences of this type in the source system
are replaced by the given type of the target system. In order for this construction
to work, the basic properties of the concepts must already exist in the target
system, and their translation must be avoided. Due to the complexity of finding
such existing concepts and specifying the theorems which do not need to be
translated, Obua and Skalberg were able to map only small number of concepts
like booleans and natural numbers, leaving integers or real numbers as future
work.

The first translation that mapped concepts of significantly different systems
was the one of Keller and Werner [14]. The translation from HOL Light to Coq
proceeds in two phases. First, the HOL proofs are imported as a defined struc-
tures. Second, thanks to the reflection mechanism, native Coq properties are
built. It is the second phase that allows mapping the HOL concepts like natural
numbers to the Coq standard library type N.

The translation that maps so far the biggest number of concepts has been done
by the second author [10]. The translation process consists of three phases, an
exporting phase, offline processing and an import phase. The offline processing
provides a verification of the (manually defined) set of maps and checks that all
the needed theorems will be either skipped or mapped. This allows to quickly add
mappings without the expensive step of performing the actual proof translation,
and in turn allows for mapping 70 HOL Light concepts to their corresponding
Isabelle/HOL counterparts. All such maps had to be provided manually.

Bortin et al. [1] implemented the AWE framework which allows the reuse of
Isabelle/HOL formalization recorded as a proof trace multiple times for different
concepts. Theory morphisms and parametrization are added to a theorem prover
creating objects with similar properties. The use of theory morphisms together
with concept mappings is one of the basic features of the MMT framework [17].
This allows for mapping concepts and theorems between theories also in different
logics. So far all the mappings have been done completely manually.

Hurd’s OpenTheory [9] aims to share specifications and proofs between dif-
ferent HOL systems by defining small theory packages. In order to write and

Matching Concepts across HOL Libraries 269

read such theory packages by theorem prover implementations a fixed set of
concepts is defined that each prover can map to. This provides highest quality
standard among the HOL systems, however since the procedure requires manual
modifications to the sources and inspection of the libraries in order to find the
mappings, so far only a small number of constants and types could be mapped.
Similar aims are shared by semi-formal standardizations of mathematics, for
example in the OpenMath content dictionaries. For a translation between semi-
formal mathematical representation again concept lookup tables are constructed
manually [2, 19].

The proof advice systems for interactive theorem proving have studied sim-
ilar concepts using various similarity measures. The methods have so far been
mostly restricted to similarity of theorems and definitions. They have also been
limited to single prover libraries. Heras and Komendantskaya in the proof pat-
tern work [8] try to find similar Coq/SSReflect definitions using machine learn-
ing. Hashing of definitions in order to discover constants with same definitions
in Flyspeck has been done in [12]. Using subsumption in order to find duplicate
lemmas has been explored in the MoMM system [20] and applied to HOL Light
lemmas in [11].

The rest of this paper is organized as follows: in Section 2 we describe the
process of exporting the concepts like types and constants from three provers. In
Section 3 we discuss the classification of patterns together with the normalization
of theorems, while in Section 4 we define the scoring functions and an iterative
matching algorithm.We present the results of the experiments in Section 5 and
in Section 6 we conclude and present an outlook on the future work.

2 The Theorem and Constant Data

In this section we shortly describe the data that we will perform our experiments
on and the way the theorems and constants are normalized and exported. We
chose three proof assistants based on higher-order logic: HOL4 [18], HOL Light [6]
and Isabelle/HOL [21]. The sizes of the core libraries of the three are significantly
different, so in order to get more meaningful results we export library parts of
the same order of magnitude. This amounts to all the theories included with
the standard distribution of HOL4. In case of HOL Light we include multivariate
analysis [7], HOL in HOL [5] and the 67 files that include the proofs of the 100
theorems [22] compatible with the two. For Isabelle we export the theory Main.

The way to access all the theorems and constants in HOL Light has been
described in detail in [13] and for HOL4 and Isabelle/HOL accessing values of
theories can be performed using the modules provided by the provers (DB.thms
and @{theory} object respectively). We first perform a minimal normalization of
the forms of theorems (a further normalization will be performed on the common
representation in Section 3) and export the data. We will focus on HOL4, the
procedures in the other two are similar.

The hypotheses of the theorems are discharged and all free variables are gen-
eralized. In order to avoid patterns arising from known equal constants, all

270 T. Gauthier and C. Kaliszyk

theorems of the form � c1 = c2 (in HOL4 four of them are found by calling
DB.match) are used to substitute c1 by c2 in all theorems.

The named theorems and constants are prefixed with theory names and ex-
plicit category classifiers (c for constants, t for theorems) to avoid ambiguities.
Similarly, variables are explicitly numbered with their position of the binding λ
(this is equivalent to the de Bruijn notation, but possible within the data struc-
ture used by each of the three implementations). We decided to include the type
information only at the constant level, and to skip it inside the formulas.

Example 1. ∀x : int. x = x −→ cHOL4.bool.∀ (λV.((cHOL4.min.= V) V))

Analogously, for all the constants their most general types are exported. Type
variables are normalized using numbers that describe their position and type
constructors are prefixed using theory identifiers and an explicit type constructor
classifier.

Example 2. (num, a) −→ tHOL4.pair.prod(tHOL4.num.num,Aa)

The numbers of exported theorems and constants are presented in Table 1.

Table 1. Number of theorems and constants after the exporting phase

HOL Light HOL4 Isabelle/HOL

Number of theorems 11501 10847 18914

Number of constants 871 1962 2214

3 Patterns and Classification

In this section we will look at the concept of patterns created from theorems,
which is crucial in our classification of concepts and the algorithms for deriving
patterns and matching them. In the following we will call the constants and
types already mapped to concepts as defined.

Definition 1 (pattern). Let f be a formula with no free variables and C the
set of its constants. Let D = {d1, . . . , dn} be a set of defined constants and
A = C \D = {a1, . . . , am} a set of undefined constants. Its pattern is defined by:

P (f [a1, . . . , am, d1, . . . , dn]) := λa1 . . . an.f [a1, . . . , an, d1, . . . , dn]

Example 3. The pattern of ∀x y. x ∗ y = y ∗ x is:
- with D = {∀,=}, λa1. ∀x y. a1 x y = a1 y x.
- with D = {∀}, λa1a2. ∀x y. a1(a2 x y)(a2 y x).
- with D = ∅, λa1a2a3. a1 λx y. a2(a3 x y)(a3 y x).

Patterns are equal when they are α-equivalent. In practice, we order the vari-
ables and constants by the order in which they appear when traversing the

Matching Concepts across HOL Libraries 271

formula from top to bottom. This means that checking if two formulas are α-
equivalent amounts to verifying the equality of their patterns with no constants
abstracted.

The formulas exported from all proof assistant libraries are parsed to a stan-
dard representation (λ-terms). The basic logical operators of the different provers
are mapped to the set of defined constants and the theorems are rewritten us-
ing these mappings before further normalization. Finally, the patterns of the
normalized formulas are extracted according to the specified defined constants.

We define three ways in which patterns are derived from the formula, each
corresponding to a certain level of normalization:

norm0 : Given D = ∅ we can define a pattern corresponding to the theorem
without any abstraction (identity).

norm1 : With D = {∀, ∃,∧,∨,⇒,¬,=} (⇔ is considered as =). The procedure
is similar to the normalization done by first order provers (to the conjunctive
normal form) with the omission of transformations on existential quantifiers, as
we do not want do perform skolemization. We additionally normalize associative
and commutative operations. The procedure performs the following steps at
every formula level:

– remove implication,
– move negation in,
– move universal quantifiers out (existential quantifiers are not moved out to

maximize the number of disjunctions in the last step),
– distribute disjunction over conjunctions,
– rewrite based on the associativity of ∀, ∃,∧ and ∨,
– rewrite based on the commutativity of ∀, ∃,∧,∨ and =,
– separate disjunctions at the top formula level (example below).

Example 4. ∀x y. (x ≥ 0 ∧ x ≤ y) −→ (∀x. x ≥ 0) ∧ (∀x y. x ≤ y)

norm2 : Aside from all the normalizations performed by norm1, we additionally
consider a given list of associative and commutative constants (see Table 2 in
Section 5) that is used to further normalize the formula. The set of defined con-
stants stays the same as norm1, which in particular means that the associative
- commutative (AC) constants stay undefined and can be abstracted over.

Given the normalized theorems we will look at patterns relative to constants.
In the following, we will assume that the constants are partitioned in ones that
have been defined (mapped to a constant) and undefined.

Definition 2 (pattern relative to a constant). Let ai−1 be an undefined
constant appearing in a formula f in the ith position. The pattern of f relative
to ai−1 is defined by:

Pai−1(f) := (P (f), i− 1)

272 T. Gauthier and C. Kaliszyk

Example 5. Suppose D = ∅. Then the only two patterns that the reflexivity
principle induces are:

P∀(∀x. x = x) = (λa0a1. a0 (λv0. a1 v0 v0), 0)

P=(∀x. x = x) = (λa0a1. a0 (λv0. a1 v0 v0), 1)

Typically, we will be interested in patterns where D includes the predicate logic
constants, so the reflexivity principle will not produce any patterns. The patterns
will be properties of operations like commutativity or associativity. In order to
find all such properties we define:

Definition 3. The set of patterns associated with a constant c in a library lib
is defined by:

P set(lib, c) =
⋃

f∈lib

Pc(f)

Let (abs, i) be a relative pattern. Its associated set of constants, in library lib, is:

Cset(lib, (abs, i)) := {c ∈ lib, ∃f ∈ lib, Pc(f) = (abs, i))}

We can now define one of the basic measures we will use for comparing similarity
of constants:

Definition 4. The set of common relative patterns shared by a constant c1 in
lib1, and a constant c2 in lib2 is:

P set(lib1, c1) ∩ P set(lib2, c2)

In the remaining part of this paper, we will not always specify if a pattern is
relative or not.

We proceed with forming type patterns. Type patterns are defined in a similar
way to formula patterns. Types are partitioned into already defined types (ini-
tially the type of booleans – propositions) and undefined types. Type variables
are also considered as undefined to enable their instantiation, and the list of leaf
and node types involved is saved to allow matching.

Example 6. Let Dtype = {fun} and a be a type variable. Then:

P type((a→ a, int→ int)) = P type((pair(fun(a, a), fun(int, int))))

= (λa0a1a2. (a0(fun(a1, a1), fun(a2, a2))), [pair, a, int])

Suppose we are given two types with respective patterns (abs1, [t1 . . . tn]) and
(abs2, [u1 . . . um]). They match if abs1 is α-equivalent to abs2. The list of their
derived type matches is [(t1, u1), . . . , (tn, un)], from which the pairs containing
at least one type variable are removed.

Matching Concepts across HOL Libraries 273

4 Matching Concepts across Libraries

In this section, we will investigate measures of similarity in order to find the
same types and constants between libraries. First, we will define a similarity
score for each pair of constants. Then, we will suppose that the best match is
correct and use it to update the similarity scores of the other pairs iteratively.

4.1 Similarity Score

The easiest way to tell if two constants are related is to look at the number of
patterns they share. However, the more a pattern has associated constants, the
less relevant it is. To test each of these possibilities, two weighting functions are
defined:

w0(lib, p) = 1, w1(lib, p) =
1

card(Cset(lib, p))

where p is a pattern in library lib. The weighting functions presented here do
not consider the size of the pattern, nor the numbers of defined and undefined
constants. Considering more complicated weighting functions may be necessary
for formal libraries with significantly different logics.

Based on the weighting functions two scoring functions are defined. Let c1
be a constant from library lib1 and c2 a constant from library lib2. Let P =
{p1, . . . , pk} be the set of patterns c1 and c2 have in common. Then:

score0(c1, c2) =

k∑
i=1

w0(lib1, pi) ∗ w0(lib2, pi)

score1(c1, c2) =

k∑
i=1

w1(lib1, pi) ∗ w1(lib2, pi)

In order to account for the fact that constants with a high number of associated
patterns are more likely to have common patterns with unrelated constants, we
further modify score1. Let n1 be the number of patterns associated to c1 and n2

be the number of patterns associated to c2. We define a third similarity scoring
function by:

score2(c1, c2) =

k∑
i=1

w1(lib1, pi) ∗ w1(lib2, pi)

log(2 + n1 ∗ n2)

4.2 Iterative Approach

In our initial experiments, a direct computation of the scorei functions for all
constants in two libraries after an initial number of correct pairs would find
incorrect pairs (false positive matches). Such pairs can be quickly eliminated if
the information coming from the first successful matches is propagated further.

274 T. Gauthier and C. Kaliszyk

theorems 1 patterns 1

ranked constant pairs

theorems 2 patterns 2

0

0

1

1

2

2

3

3

4

Fig. 1. Graphical representation of the iterative procedure

In order to do this, we propose an iterative approach (presented schematically
in Fig. 1):

The iterative approach returns a sorted list of pairs of constants and a sorted
list of pair of types from two libraries by following this steps:

0. Export theorems from a library as well as constants with their types and
parse them.

1. Normalize theorems and create theorem patterns, constant patterns and type
patterns according to the current defined constants and types.

2. Score every pair of constants.
3. Take the highest ranked pair of constants (c1, c2). Check if their type matches,

if not take the next one and so on. When their type matches, rewrite all the
theorems inside lib1 with the substitution c1 → d and all the theorems inside
lib2 with the substitution c2 → d, where d is a fresh defined constant. Then,
get the derived pairs of types from the pair of constant and substitute every
pair member with the same fresh defined type as for the other member.

4. Return the pairs of constants and the pairs of types, in the order they were
created, when you have reached the number of iteration desired.

The single-pass approach is defined by doing only one iteration, where the list
of pairs of constants are returned ranked by their score. A type check performed
after a single-pass can discard a number of wrong matches efficiently.

In the presented approach, we assume that the constants and types inside
one library are all different, which we tried to ensure by the initial normaliza-
tion. Thus, we will not match constant from the same library. Furthermore, if
a constant is matched, then it can no longer be matched again and the same
reasoning applies for types. This first statement will turn out not to be true for
a few constants in Section 5.

The complexity of the iterative approach is obviously larger than that of the
single-pass approach. On an IntelM 2.66GHz CPU, the single-pass approach be-
tween HOL4 and HOL Light with score2 and norm2 takes 6 minutes to complete.
The main reason is that it has to compare the patterns of all possible pairs of
constants (about two million). Thus, the bottleneck is the time taken by the
comparison function which intersects the set of patterns associated with each
constant and scores the resulting set. However, the iterative method can use

Matching Concepts across HOL Libraries 275

Table 2. Most frequent properties of one constant

HOL Light HOL4 Isabelle/HOL

Pattern Consts Thms Pattern Consts Thms Pattern Consts Thms

Inj 37 37 Inj 54 68 Inj 83 137

Asso 32 36 Asso 50 65 App 17 18

Comm 25 44 Comm 40 48 Inj1 16 16

Refl 22 22 Trans 32 33 Comm 14 51

Lcomm 19 20 Refl 23 23 Inj2 12 35

Idempo 12 12 Idempo 20 15 App2 11 12

the first pass to remove pairs of constants that have no common patterns. This
reduces the number of possible matches to ten thousand. As a consequence, it
takes only 3 minutes more to do 100 iterations.

5 Experiments

In order to verify the correctness of our approach we first investigate the most
common patterns and shapes of theorems in each of the three formal libraries and
then we look at the results of the matching constants across libraries. The data
given by these experiments is available at http://cl-informatik.uibk.ac.at/
users/tgauthier/matching/.

5.1 Single Library Results

Tables 2 and 3 show the most common properties when applying the standard
normalization norm1 of a single constant and of two constants respectively in the
three considered proof assistant libraries. The tables are sorted with respect to
the total number of different constants in the theorems from which the patterns
are derived. In Table 2, Inj stands for injectivity, Asso for associativity and
Comm for commutativity. In Table 3, the pattern Class and Inv are defined by
Class (c0, c1) = c0 c1, Inv(c0, c1) = ∀x0. c0 (c1 x0) = x0.

As expected, HOL Light and HOL4 show the most similar results and injec-
tivity is the most frequent property. Commutativity and associativity are also
very common, and their associated constants are used to apply norm2 as stated
in Section 3.

The common patterns immediately show constants defined to be equivalent
to the defined equality in each of the libraries, through an extensional definition.
There is one such constant in HOL4, one in HOL Light and three in Isabelle/HOL.
In order to avoid missing or duplicate patterns we mapped all these constants
to equality manually.

http://cl-informatik.uibk.ac.at/users/tgauthier/matching/
http://cl-informatik.uibk.ac.at/users/tgauthier/matching/

276 T. Gauthier and C. Kaliszyk

Table 3. Most frequent properties of two constants

HOL Light HOL4 Isabelle/HOL

Pattern Consts Thms Pattern Consts Thms Pattern Consts Thms

Class 71 87 Inv 131 89 Class 188 642

Inv 64 34 Neutr 64 55 Inv 114 75

Imp 52 76 Class 63 70 Equal 58 40

Furthermore, in Table 3, the third row of the Isabelle/HOL column shows 40
equalities between two different constants that were created during the normal-
ization. We have also found 10 such equalities in HOL4 and 1 in HOL Light. Often
a constant with a less general type can be replaced by the other, but without
type-class information in Isabelle/HOL we decided not to do such replacements
in general.

5.2 Cross-Library Results

The way we analyze the quality of the matching, is by looking at the number
of correct matches of types and constants between the libraries, in particular
we consider the occurrence of the first incorrect match, also called false positive
below. It is very hard to spot same concepts in two large libraries, therefore a
manual evaluation of the false negatives (pairs that could be mapped but are
not) is a very hard task and requires the knowledge of the whole libraries.

In the first three experiments, we test how much normalization, scoring, it-
eration and types contribute to better matches. This will be used to choose the
best parameters for matching constants and types between each pair of provers.

The first experiment (Fig. 2) evaluates the similarity of the libraries. We
match the provers using the (a-priori) strongest normalization (norm2) with a
single-pass approach with no types. In this setting, the constant with the most
similar properties is 0 between HOL Light and HOL4, and between HOL4 and Is-
abelle/HOL. And it is ∅ between HOL Light and Isabelle/HOL. Form this perspec-
tive, the most similar pairs of provers are in decreasing order (HOL Light,HOL4),
(HOL4,Isabelle/HOL) and (HOL Light-Isabelle/HOL). We test the four other pa-
rameters relative to the pair of provers (HOL Light, HOL4) as we should have
most common patterns to work with.

The second experiment (Fig. 3) is meant to evaluate the efficiency of nor-
malization on the number of patterns. It is also run as a single-pass with no
types. We observe an increase in number of patterns from norm0 and norm1

which is mostly due to the splitting of disjunctions. Moreover, the difference
between norm2 and norm1 is negligible, which means that associative and com-
mutative constants are used in almost the same way across the two libraries. In

Matching Concepts across HOL Libraries 277

1 50 100

10

20

30

40

50

60

70

80

90

100

First hundred ranked constant pairs

N
u
m
b
er
o
f
co
m
m
o
n
p
a
tt
er
n
s

HOL Light− HOL4

HOL Light− Isabelle/HOL

HOL4− Isabelle/HOL

Fig. 2. Number of patterns by constant pairs in different provers

1 50 100

10

20

30

40

50

60

First hundred ranked constant pairs

N
u
m
b
er
o
f
co
m
m
o
n
p
a
tt
er
n
s

norm0

norm1

norm2

Fig. 3. The normalization effect

the following experiments we will only use norm2 assuming it is the strongest
normalization also in the other scenarios.

We next evaluate the scoring functions, the contribution of iterations, and of
the use of type information. Table 4 shows the effect of iterative method and
scoring function on the occurrence of the first wrong match (false positive). It
has been inspected manually. Fig. 4, shows the positive effects of the iterative
effect on the score1 and score2 curves. Some patterns are ranked higher after
an iteration, as they become more scarce. The iterative method also has an

278 T. Gauthier and C. Kaliszyk

opposite effect that is not directly visible in the figure: the score of pairs of
constants diminishes by removing false pattern matches. Table 5 shows how type
information contributes to matches. Types do help, but become less important
with better scoring functions combined with the iterative approach.

Table 4. Rank of the first wrong match for (HOL Light, HOL4)

score0 score1 score2

Single-pass 39 69 88

Iterative 49 68 113

Table 5. Number of pairs of constants discarded, due to type matching

score0 score1 score2

Single-pass 31 19 21

Iterative 224 18 6

5 50 100

10

20

30

40

50

Ranked constant pairs

P
er
ce
n
ta
g
e
o
f
th
e
b
es
t
sc
o
re

score0
score1
score2

Fig. 4. Effect of different scoring functions on the iterative approach

The last experiment is run with the best parameters found by the previous
experiments, namely norm2, score2 and the iterative approach with types. Three

Matching Concepts across HOL Libraries 279

numbers are presented in each cell of Tables 6 and 7. The first one is the number
of correct matches obtained before the first error. The second one is number
of correct matches we have found. In the case of constants, the third one is
the number of matches we have manually checked. We stop at a point where
a previously found error propagates. In the case of types, the third number is
the rank of the last correct match. As seen previously, the best results come
from comparing the HOL4 and HOL Light libraries, where we have verified 177
constant matches and 16 type matches.

Table 6. Number of constants accurately matched

HOL Light-HOL4 HOL4-Isabelle/HOL HOL Light-Isabelle/HOL

112 177/203 65 109/131 55 78/98

Table 7. Number of types accurately matched

HOL Light-HOL4 HOL4-Isabelle/HOL HOL Light-Isabelle/HOL

11 16/22 8 11/17 6 7/13

6 Conclusion

We have investigated the formal mathematical libraries of HOL Light, HOL4 and
Isabelle/HOL searching for common types and constants. We defined a concept
of patterns that capture abstract properties of constants and types and normal-
ization on theorems that allow for efficient computation of such patterns. The
practical evaluation of the approach on the libraries let us find hundreds of pairs
of common patterns, with a high accuracy.

Formal mathematical libraries contain many instances of the same algebraic
structures. Such instances have many same properties therefore their matching
is non-trivial. Our proposed approach can match such instances correctly, be-
cause of patterns that link such concepts to other concepts. For example integers
and matrices are instances of the algebraic structure ring. However each of the
libraries we analyzed contains a theorem that states that each integers is equal
to a natural number or its negation. A pattern derived from this fact, together
with many other patterns that are unique to integers match them across libraries
correctly.

The work gives many correct matches between concepts that can be directly
used in translations between proof assistants. In particular HOL/Import would
immediately benefit from mapping the HOL Light types and constants to their
Isabelle/HOL counterparts allowing for further merging of the results.

The approach has been tested on three provers based on higher-order logic. In
principle the properties of the standard mathematical concepts defined in many

280 T. Gauthier and C. Kaliszyk

other logics are the same, however it remains to be seen how smoothly does the
approach extend to provers based on different logics.

In order to further decrease the number of false positive matches, more weight-
ing and scoring functions could be considered. One could imagine functions that
take into account the length of formulas, and numbers of mapped concepts per
pattern. Similarly, the scoring functions could penalize pairs of constants with
only one pattern in common (these have been the first false positives in all our
experiments). Further, the equalities between constants created during normal-
ization could be used for further rewriting of theorems into normal forms. Other
ideas include normalizing relatively to distributive constants and trying weaker
kind of matching for example on atoms or subterms.

Building a set of basic mathematical concepts together with their foundational
properties has been on the MKM wish-list for a long time. It remains to be seen
if a set of common concepts across proof assistant libraries can be extended by
minimal required properties to automatically build such “interface theories”, and
if automatically found larger sets of theories can complement the high-quality
interface theories built in the MKM community.

Acknowledgments. We would like to thank Josef Urban for his comments on
the previous version of this paper.

This work has been supported by the Austrian Science Fund (FWF): P26201.

References

1. Bortin, M., Johnsen, E.B., Lüth, C.: Structured formal development in Isabelle.
Nordic Journal of Computing 13, 1–20 (2006)

2. Carlisle, D., Davenport, J., Dewar, M., Hur, N., Naylor, W.: Conversion between
MathML and OpenMath. Technical Report 24.969. The OpenMath Society (2001)

3. Furbach, U., Shankar, N. (eds.): IJCAR 2006. LNCS (LNAI), vol. 4130. Springer,
Heidelberg (2006)

4. Haftmann, F., Krauss, A., Kunčar, O., Nipkow, T.: Data refinement in is-
abelle/HOL. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013.
LNCS, vol. 7998, pp. 100–115. Springer, Heidelberg (2013)

5. Harrison, J.: Towards self-verification of HOL Light. In: Furbach, Shankar (eds.)
[3], pp. 177–191

6. Harrison, J.: HOL Light: An overview. In: Berghofer, S., Nipkow, T., Urban, C.,
Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 60–66. Springer, Heidelberg
(2009)

7. Harrison, J.: The HOL Light theory of euclidean space. J. Autom. Reasoning 50(2),
173–190 (2013)

8. Heras, J., Komendantskaya, E.: Proof pattern search in Coq/SSReflect. arXiv
preprint, CoRR, abs/1402.0081 (2014)

9. Hurd, J.: The OpenTheory standard theory library. In: Bobaru, M., Havelund,
K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 177–191.
Springer, Heidelberg (2011)

10. Kaliszyk, C., Krauss, A.: Scalable LCF-style proof translation. In: Blazy, S., Paulin-
Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 51–66. Springer,
Heidelberg (2013)

Matching Concepts across HOL Libraries 281

11. Kaliszyk, C., Urban, J.: Lemma mining over HOL Light. In: McMillan, K., Middel-
dorp, A., Voronkov, A. (eds.) LPAR-19. LNCS, vol. 8312, pp. 503–517. Springer,
Heidelberg (2013)

12. Kaliszyk, C., Urban, J.: HOL(y)Hammer: Online ATP service for HOL Light. arXiv
preprint abs/1309.4962, accepted for publication in Mathematics in Computer Sci-
ence (2014)

13. Kaliszyk, C., Urban, J.: Learning-assisted automated reasoning with Flyspeck.
arXiv preprint abs/1211.7012, accepted for publication in Journal of Automated
Reasoning (2014)

14. Keller, C., Werner, B.: Importing HOL Light into Coq. In: Kaufmann, M., Paulson,
L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 307–322. Springer, Heidelberg (2010)

15. Mohamed, O.A., Muñoz, C., Tahar, S. (eds.): TPHOLs 2008. LNCS, vol. 5170.
Springer, Heidelberg (2008)

16. Obua, S., Skalberg, S.: Importing HOL into Isabelle/HOL. In: Furbach, Shankar
(eds.) [3], pp. 298–302

17. Rabe, F.: The MMT API: A generic MKM system. In: Carette, J., Aspinall, D.,
Lange, C., Sojka, P., Windsteiger, W. (eds.) CICM 2013. LNCS (LNAI), vol. 7961,
pp. 339–343. Springer, Heidelberg (2013)

18. Slind, K., Norrish, M.: A brief overview of HOL4. In: Mohamed, et al. (eds.) [15],
pp. 28–32

19. So, C.M., Watt, S.M.: On the conversion between content MathML and OpenMath.
In: Proc. of the Conference on the Communicating Mathematics in the Digital Era
(CMDE 2006), pp. 169–182 (2006)

20. Urban, J.: MoMM - fast interreduction and retrieval in large libraries of formalized
mathematics. Int. J. on Artificial Intelligence Tools 15(1), 109–130 (2006)

21. Wenzel, M., Paulson, L.C., Nipkow, T.: The Isabelle framework. In: Mohamed, et
al. (eds.) [15], pp. 33–38

22. Wiedijk, F. (ed.): The Seventeen Provers of the World. LNCS (LNAI), vol. 3600.
Springer, Heidelberg (2006)

Mining State-Based Models from Proof Corpora

Thomas Gransden, Neil Walkinshaw, and Rajeev Raman

Department of Computer Science, University of Leicester, Leicester, UK
tg75@student.le.ac.uk, n.walkinshaw@mcs.le.ac.uk, r.raman@le.ac.uk

Abstract. Interactive theorem provers have been used extensively to
reason about various software/hardware systems and mathematical the-
orems. The key challenge when using an interactive prover is finding a
suitable sequence of proof steps that will lead to a successful proof re-
quires a significant amount of human intervention. This paper presents
an automated technique that takes as input examples of successful proofs
and infers an Extended Finite State Machine as output. This can in turn
be used to generate proofs of new conjectures. Our preliminary experi-
ments show that the inferred models are generally accurate (contain few
false-positive sequences) and that representing existing proofs in such a
way can be very useful when guiding new ones.

Keywords: Interactive Theorem Proving, Model Inference, Extended
State Machines.

1 Introduction

Interactive theorem provers (ITPs) provide a semi-automatic environment in
which a user can reason about the correctness of hardware and software sys-
tems and verify the proofs of significant mathematical theorems. Given a desired
property expressed in a formal logic, provers such as Coq [26] and Isabelle [28]
provide a framework by which to construct higher-order logic proofs in a step-
wise manner, drawing upon libraries of existing proven theorems. In the context
of computer mathematics, ITPs have successfully been used in the verification of
the Four Color Theorem [9], the Kepler Conjecture [13] and the Feit-Thompson
Theorem [10].

ITPs rely on the ability of an expert to choose suitable proof steps to ap-
ply. Clearly this requires not only the selection of the correct proof steps, but
also knowledge about how to sequence these proof steps in order to arrive at
a successful proof. To complicate matters further, the user must select suitable
parameters for these proof steps. In a significant development, the overall proof
effort can contain tens of thousands of lines. For example, Gonthier’s machine
checked proof of the Feit-Thompson theorem amounted to 170,000 lines of code.
This shows that a lot of human effort was needed to complete the proof.

Over the past decade, several semi-automatic tools have been developed to
simplify the verification process [6, 7, 11, 21]. These tools adopt data mining
and heuristic search strategies to identify proof patterns and to conjecture new

S.M. Watt et al. (Eds.): CICM 2014, LNAI 8543, pp. 282–297, 2014.
c© Springer International Publishing Switzerland 2014

Mining State-Based Models from Proof Corpora 283

proofs. One outstanding challenge, recently highlighted by Grov et al. [12], is the
need to identify proof strategies. There is a desire not only to recognize common
syntactic patterns (as achieved by current techniques), but to take this one step
further and to capture the rules that govern the possible ordering of the proof
steps required to yield a successful proof. This is what motivates the work in
this paper.

Accordingly, we present a technique to derive sequential models (in the form
of Extended Finite State Machines (EFSM) [31]) from existing corpora of proofs.
These models can be interpreted as an instance of the proof strategies referred
to by Grov et al. The models capture the reasoning patterns that bind groups
of proofs together, and in doing so capture the possible sequences of proof steps
that have led to successful proofs. Corpora that contain tens or hundreds of
proofs can be collapsed into (relatively) compact, graphical models. We show
how these models can be used to the benefit of interactive theorem prover users.
The specific contributions of this paper are:

– A technique to automatically derive EFSM models from libraries of interac-
tive proofs (Section 3).

– An evaluation that indicates that the models are broadly precise and can be
used as an aid to yield proofs of new propositions, and to shorten existing
ones (Section 4).

All of the example data used in this paper, along with links to EFSM inference
tool can be found online.1.

2 Background and Related Work

This section discusses the problem that ITPs demand a significant amount of
time and effort to complete the proof process. After reviewing some previous
work focussed on aiding with this problem, we introduce Extended Finite State
Machines as a possible mechanism to improve proof development by representing
existing proofs by means of a descriptive, sequential model.

2.1 Interactive Theorem Provers

The expressiveness of interactive theorem provers has led to an abundance of
formal proofs becoming available in proof libraries that are distributed with
each system. These proof libraries can then be used during the development of
new proofs. As with conventional programming languages, developers can build
up and exchange their own libraries of proofs to suit their particular domain.
Nevertheless, most non-trivial proofs still require an extensive manual effort -
Wiedijk states that it takes as long as one week to formalize one page from an
undergraduate mathematics textbook [34].

The emergence of tools such as Sledgehammer [29] has reduced this effort to
an extent, by enabling Isabelle to call on powerful external Automated Theorem

1 http://www.cs.le.ac.uk/people/tg75/efsmdata/

http://www.cs.le.ac.uk/people/tg75/efsmdata/

284 T. Gransden, N. Walkinshaw, and R. Raman

Provers (ATPs) that attempt to solve the goal automatically. Although such
tools have been proven to have great value, they require extensive research into
the translation between different logics as ATPs utilize different logics to the
higher order varieties typically used in ITPs [27]. An empirical study of Sledge-
hammer [3] indicated a success rate of 45% at proving goals from 7 Isabelle
theories (known collectively as the Judgement Day benchmark).

Another method of reducing human intervention is called proof planning [4].
Proof planning allows the encoding of reusable strategies that are used to guide
proof search - for example many inductive proofs follow a similar pattern which
can be encoded as a proof plan. A typical proof plan contains preconditions to
state when then plan is applicable, a postcondition stating the effects of executing
the proof plan, and the relevant proof steps to apply. Proof planning has been
implemented for Isabelle by a tool called IsaPlanner [6].

An interesting strand of research is the use of machine learning techniques
to improve theorem proving by guiding the proof search or suggesting hints
to users. One area that has benefitted greatly from machine learning is the
premise selection problem [1, 18]. Informally, this is the problem of selecting
useful premises (from a large collection) to automatically solve a new proposition.
By utilizing machine learning techniques, the performance of ATPs on large
theory reasoning significantly improved on the state of the art [19]. Recently,
machine learning capabilities have been added to Sledgehammer [22]. By using
the same empirical study (Judgement Day [3]) that was used to evaluate the
original Sledgehammer, it was shown that using machine learning can improve
the percentage of completed proofs to 70%.

Recently, there has been the emergence of a tool called ML4PG [21] that uses
statistical machine learning techniques to identify commonalities between Coq
proofs. Given a proposition that a user is trying to prove, ML4PG can automat-
ically identify clusters of existing lemmas that follow a common proof strategy.
The user can then interpret the results and formulate the proof themselves by
analogy, using the suggestions provided. ML4PG has been shown to work in a
variety of areas such as computer algebra [15] and industrial proofs [16].

2.2 Motivating Scenario

To motivate our work, let us consider the following scenario. A novice user is
trying to prove (in this case using Coq) the following app nil l proposition stating
that an empty list appended to a list l should result in l:

Lemma app nil l: forall l:list A, [] ++ l = l.

We assume that the user will be aware of the possible proof methods available
in Coq. However it may be unclear how one would sequence these proof methods
to arrive at a successful proof. One approach that a user could try might be to
manually scour existing proofs to find a sequence of proof steps that will prove
app nil l. However, keeping track of the relevant proofs and identifying useful
reasoning patterns is time-consuming.

Mining State-Based Models from Proof Corpora 285

Even for this relatively simple example, finding a proof requires some careful
manual processing of the relevant proof libraries. In large scale developments,
the task of manually searching through proof corpora to identify the correct
steps is generally not practical. We present an automated method based on state
machine inference techniques. By providing examples of successful proofs we can
generate a model capturing all of the reasoning patterns that occur within the
chosen corpora of proofs. This model can then be used to drive the proof search
by presenting options to the user about which proof steps to try.

2.3 State Machine Inference

State machine inference techniques can address the challenge of identifying the
rules that govern a particular sequencing of events. The problem of deriving
a model from sequences of events was introduced by Gold in 1967 [8]. Since
then it has become a well-established problem, spawning several families of al-
gorithms for different types of models, learning settings and problem domains.
The archetypal model for sequences of events is the Finite State Machine (FSM).

Definition 1. Finite State Machine A Finite State Machine (FSM) is de-
fined as a tuple (S, s0, F, L, T). S is a set of states, s0 ∈ S is the initial state, and
F ⊆ S is the set of final states. L is as defined as the set of labels. T is the set
of transitions, where each transition takes the form (a, l, b) where a, b ∈ S and
l ∈ L. When referring to FSMs, this paper assumes that they are deterministic.

In the past 40 years numerous algorithms have been developed to infer FSMs
(equivalently regular grammars) from observed sequences of events [2, 23, 33].
These sequences are referred to as traces, and are recorded from the system
under analysis. The challenge is to derive from the set of traces a FSM that
accurately captures the set of all valid sequences of events, even if they do not
belong to the initial set of traces.

Such techniques have previously been applied to proof planning. Jamnik et al.
[17] used an Inductive Logic Programming technique to infer what are ultimately
regular expressions from well chosen sets of proof methods. For example, if we
have the following two proofs (where a-d are proof methods): [a, a, c, d]

and [a, b, d] they may be generalized as the following: [a*, [b|c], d].
The value of even such a basic model is intuitive. Jamnik et al. demonstrated

that the models were useful for the automatic generation of new proofs in the
Ωmega prover. However, the proof steps that were learned in the examples do
not contain any parameters, they are simply method names meaning that this
kind of model is too basic to be applied to provers such as Isabelle and Coq. A
proof in either of these provers not only relies on the sequencing of the proof
steps, but also the values of the parameters provided to these steps.

To combat this problem, this paper explores the use of the Extended Finite
State Machines [5] as a means of modelling examples of successful proofs. EFSMs
extend the traditional FSM. Transitions are labelled with guards on an under-
lying data store (although the update functions on the store are not explicitly
modelled).

286 T. Gransden, N. Walkinshaw, and R. Raman

Definition 2. Extended Finite State Machine An Extended Finite State
Machine (EFSM) M is a tuple (S, s0, F, L, V,Δ, T), where S, s0, F and L are
defined as in a conventional FSM. V is a store represented by a set of variables,
and v represents a set of variable values. Δ is the set of data guards, where
each guard δ takes the form (l, v), where l ∈ L, v ∈ V is the set of possible
data variable configurations specified by the guard. The set of transitions T is
an extension of the conventional FSM version, where transitions take the form
(a, l, δ, b), where a, b ∈ S, l ∈ L, and δ ∈ Δ.

Definition 3. Traces A trace T = 〈e0, . . . , en〉 is a sequence of n trace ele-
ments. Each element e maps to a tuple (l, v), where l is a label representing the
names of function calls or input / output events, and v is a set of corresponding
variable values (this may be empty).

In recent years, algorithms have been developed to infer EFSMs from traces of
events [25,31], where events are paired with a selection of variable values. In this
work we choose the EFSMInfer tool by Walkinshaw et al. [31], which has been
shown to be reasonably accurate when applied to the task of reverse-engineering
models of software modules. We provide a brief overview of the essential steps
of the approach below.

Given a set of traces (see Definition 3), the approach first infers the guard
conditions. For each symbol l ∈ L the trace is scanned, identifying every instance
where l is applied, the variable values v at that instance, and the label of the
subsequent step in the trace. This is used to construct a training set where,
with the use of standard machine learning algorithms (e.g. decision tree learners
like [30]), it is possible to construct a model that predicts from a given pair
label and data configuration what the subsequent label will be. In terms of
EFSMs, this gives us L, V,Δ, and implies some constraints on the order in which
particular configurations of labels and variables can occur.

The subsequent task is to derive an underlying state transition model that
obeys and incorporates these data guards. To achieve this EFSMInfer applies
an augmented version of the standard FSM state merging algorithm (Lang’s
Blue-Fringe algorithm [23]). The set of traces is first arranged as a prefix tree
[33], where traces with the same prefix also share the same path from the root.
Subsequently, states in the tree are merged according to the likelihood that they
represent the same state, based on the similarity of their outgoing paths.

Since this model incorporates data, the merging process includes a step to
ensure that the model remains consistent with the data guards. Each transi-
tion in the tree is mapped to its corresponding variable configurations. Pairs of
states are only merged if the resulting model completely obeys the data classi-
fiers (guard conditions) that were obtained in the previous step. If the inferred
data model predicts that the data value for a given transition is followed by
a label l, any merge involving the target state can only occur if the resulting
state machine contains an outgoing transition that is labelled by l. After each
merge, the resulting state machine is further post-processed to ensure that each
transition is deterministic [31].

Mining State-Based Models from Proof Corpora 287

EFSMInfer has several optional parameters. The most important parameter
is the choice of data classifier algorithm, which is used to infer the guards on the
transitions. For this, EFSMInfer incorporates several standard algorithms that
were implemented as part of the Weka [14] toolset. In our experiments, we will
adopt the default parameters in EFSMInfer.

3 Inferring EFSMs from Proof Corpora

This paper shows how the EFSMInfer tool can be used to derive models from
proofs that not only describe the possible sequences of proof steps that have been
used in existing proofs, but also the necessary parameter values associated with
these proof steps. Although previous work on EFSMs has focussed on program
execution traces, they also appear to be well suited to the domain of interactive
proofs where we want to capture the interplay between control (proof steps) and
data (parameters).

In this section, we describe the process of inferring EFSMs from proofs, and
provide a description about how such a model can be interpreted. We begin by
showing how existing proofs can be converted into traces, before demonstrating
how the model is inferred from these proof traces. The example model shown
in this section is for a set of proofs called ListNat, that contains proofs about
simple properties of lists and natural numbers.

3.1 Turning Existing Proofs into Proof Traces

A typical tactical proof script2 contains many examples of propositions that have
been proven, along with the sequence of proof steps that the expert user entered
to complete the proof. Each proof step has the structure: proof method p1 . . . pn
where proof method refers to a Coq command (e.g. rewrite, apply, intros)
and p1 . . . pn constitutes the parameters provided to the Coq command. The
parameters refer to many different entities such as existing lemmas, rewrite rules
or may be related to variables in the goal.

As shown in Table 1, the encoding of Coq proofs is a straightforward trans-
lation into the trace format shown in Definition 3. With respect to the tuple of
labels and variables (l, v), the proof method would correspond to l whilst the
parameters p1 . . . pn correspond to v. If a proof method doesn’t have any pa-
rameters provided to it, we indicate this by appending 0 to the end of the proof
method (i.e. in Table 1 we see intros0). Also, if proof steps are part of a com-
bination, which is denoted by the presence of a semicolon separating individual
proof steps, we encode this information as part of the trace. If two proof steps
are put in combination, it means that the first proof step is applied, and then
the next one applied to all subgoals generated. Including this information in the
model is useful so that we know when applying proof steps whether they should
be combined.

2 Although this work concentrates on Coq, the method in principle can be applied to
other ITPs.

288 T. Gransden, N. Walkinshaw, and R. Raman

Table 1. Original proof and proof trace for an example lemma

(a) Proof Script (b) Trace

Lemma ex : (n*m = O)->(n=O)\/(m=O).
intros.
induction n.
tauto.
simpl in H.
right.
assert (m <= O);
try omega.
rewrite <- H.
auto with arith.

Qed.

Event e Label l Values v

e0 intros0 〈〉
e1 induction 〈p1 = “n”〉
e2 tauto0 〈〉
e3 simpl 〈p1 = “in H”〉
e4 right0 〈〉
e5 assert 〈p1 = “m ≤ 0”, p2 = “; ”〉
e6 try 〈p1 = “omega”〉
e7 rewrite 〈p1 = “← H”〉
e8 auto 〈p1 = “with arith”〉

3.2 Inferring the Model

After converting each proof into its corresponding trace, it becomes possible to
infer a model from a collection of these traces. We choose the standard config-
uration for the EFSMInfer tool and, for the sake of illustration select the J48
decision tree learner (a Weka implementation of the C4.5 algorithm [30]). Having
chosen the classifier we can run the EFSMInfer tool and generate an EFSM.

To begin with data classifiers are inferred that, for each proof method, pro-
duce a function that uses the parameters to predict the subsequent transition
in the model. An example data classifier can be seen in Figure 1(a) for the
induction proof method. The data classifier is interpreted as follows: if the pa-
rameter p1 is equal to n,a or l, then the subsequent proof method should be
simpl. If p1 is equal to m then the following proof method should be trivial.
Although not the case here, the C4.5 algorithm can produce more complex trees
of if-then-else rules governing the possible value ranges for parameters if neces-
sary.

Once the data classifiers have been inferred, the state merging can commence.
Initially, the set of proof traces is arranged as a prefix tree. The tree for our
example is shown in Figure 1(b). The labels are unreadable, but the purpose is
merely to give an intuition of what the tree might look like, and to illustrate
the ensuing state merging challenge. Each transition in the tree is associated
with a label (which is linked to one of the inferred data classifiers), along with
the variable values that correspond to that transition. The inference challenge
for the merging algorithm is to select compatible pairs of states to be merged.
These states should have similar outgoing paths, should not entail the merging
of states that are incompatible (e.g. accepting and rejecting), and should not
raise contradictions with the inferred data classifiers (as discussed in Section 2).

The final EFSM is shown in Figure 1(c). The constraints on the transitions
detail the parameter configurations that are associated with each transition.
The model is deterministic; for any state there is never more than one outgoing
transition for a given combination of label and variable configuration.

Mining State-Based Models from Proof Corpora 289

MODEL FOR:induction

J48 pruned tree

(p1 = n): simpl

(p1 = a): simpl

(p1 = m): trivial

(p1 = l): simpl

(a) Data rules for induction (b) Prefix tree

(c) Inferred EFSM

Fig. 1. PTA and inferred EFSM for ListNat traces

290 T. Gransden, N. Walkinshaw, and R. Raman

4 Using EFSMs in Interactive Theorem Proving

This section seeks to determine the potential value of inferred EFSMs as a guid-
ance mechanism for users of interactive theorem provers. To assess the EFSMs
when applied to proofs, we conduct an automated experiment to measure the
accuracy of the models, whilst also producing a more informal, qualitative case
study to show how the models can be used to manually derive new proofs. Our
notion of accuracy revolves around the inferred EFSM’s ability to distinguish
whether a proof should be accepted by the model or not. We conclude the sec-
tion by highlighting some future work to improve our current technique.

4.1 Assessing the Accuracy of Inferred EFSMs

Measuring accuracy. Measuring the accuracy of inferred models is challenging,
especially in the absence of “gold-standard” models that could be used as a
reference. In machine learning this problem is common. One of the most popular
evaluation techniques that can be used in such a situation is known as k-folds
cross validation [20]. The dataset is randomly partitioned into k non-overlapping
sets (also known as folds). Over k iterations all bar one of the folds are used to
infer a model, and the remaining fold is used to evaluate the model according to
some metric (discussed below). For each iteration a different fold is used for the
evaluation. The final accuracy score is the average of the k accuracy scores.

Of course, given the probability that the given set of proofs is not “rich
enough”, the accuracy score cannot be interpreted as an absolute score of the
accuracy of the model. However, if we accept that the test set captures a rep-
resentative set of proofs for a given domain, then the resulting scores can be
interpreted as being at least indicative of the actual accuracy score.

To assess ‘accuracy’ there are many metrics that we can choose as a measure-
ment such as precision, sensitivity and specificity. All are computed from the
set of true-positives (TP), true-negatives (TN), false-positives (FP) and false-
negatives (FN). In this experiment we choose sensitivity (TP/(TP+FN)), and
specificity (TN/(TN+FP)).

Negative examples. As indicated above, fully assessing sensitivity and specificity
implies the existence of “negative” proof traces - traces that do not correspond
to valid proofs (and therefore should not lead to accepting states in an inferred
model). For the purposes of this evaluation we have selected some of the positive
examples and mutated the sequences of proof steps by randomizing them. In
addition to this, we provide sequences of proof steps from theories that are
different from the ones we have inferred a model from. In practice, these negative
examples could be captured from proof attempts that have failed to prove a
proposition. In each experiment, we use approximately 30 negative examples.

Evaluation process. To get an idea how accurate our inferred models are we use
k-folds cross validation each of our datasets. We set the number of folds k = 5
to ensure that we have an adequate sized evaluation set at each iteration. At

Mining State-Based Models from Proof Corpora 291

Table 2. Proof libraries, and the accuracy of the inferred models

Data Set Proofs Lines Sensitivity Specificity

ListNat 70 660 0.84 0.81
Bool 100 809 0.95 0.55
Coqlib 100 1326 0.22 0.96
Values 85 1188 0.24 0.98

each iteration of the k-folds an EFSM is inferred from the traces contained in
the training set. We then run the traces from the evaluation set and the negative
traces through the model, logging whether they are accepted or not. From this
we can compute sensitivity and specificity. Since the inference of the guards in
the EFSM depends on the selection of a suitable data classifier algorithm, we
repeat the experiment for five data classifiers provided in EFSMInfer.

Data sets. We chose four sets of Coq proofs, which are listed (along with the num-
ber of proofs and lines of code) in Table 2. ListNat contains proofs regarding the
basic properties of lists and natural numbers. Bool contains proofs about boolean
values. To complement these datasets, we also chose two theories contained in
CompCert [24], which is a formally verified C compiler. The Coqlib theory con-
tains proofs about functions used throughout CompCert, whilst Values focuses
on proofs related to run-time values. All of our datasets are composed of hand
curated proofs so that the models don’t simply contain calls to automated tactics
that may solve the goal instantly.

Results. For each proof set, the choice of data classifier algorithm made a
negligible difference to the results. The five classifiers (all part of the Weka
distribution [14]) were J48, NaiveBayes, NNGE, AdaBoostDiscrete and JRIP.
Our results in Table 2 show the values obtained from using the J48 classifier.
For all systems apart from Bool, the specificity measures are all 85% and above.
In these cases there were very few false-positives (meaning that a low proportion
of negative examples were falsely accepted by the model).

The sensitivity values vary substantially depending on the dataset used. The
ListNat and Bool datasets have reasonably high sensitivity values (both over
80%), indicating that they were good at predicting new proofs that did not be-
long to the training data. Coqlib and Values had low sensitivity scores, meaning
that the inferred models failed to predict a large proportion of proofs that were
not in the training set.

In the cases of Coqlib and Values, the low sensitivity scores are not partic-
ularly surprising and is to an extent inevitable. Whereas the proofs in ListNat

and Bool are relatively homogeneous because they are concerned with specific,
simple data structures, the proofs in Coqlib and Values are highly diverse and
have less common reasoning patterns than the other libraries. Coqlib provides a
general library of proofs that are intended for use in almost any context. Values
provides proofs that apply to the values of variables in a compiler and, given

292 T. Gransden, N. Walkinshaw, and R. Raman

that CompCert is entirely concerned with a compiler verification, plays a central
role in the diverse range of contexts within CompCert.

In such cases, the EFSMInfer tool is inevitably only provided with a small
fraction of the proofs that are required to constitute a truly ‘representative’
training set. Accordingly, the tool is bound to under-generalize, resulting in
models that are too conservative; the proofs that they predict are largely valid,
but they invariably miss out many other proofs that are in fact valid.

4.2 Case Studies

Although the results from the previous section provide us with a qualitative
assessment of the accuracy of the inferred models, they only provide a limited
insight into the practical value of the models from a user’s perspective. We
conclude this section with a detailed walk through the process of how a user
can derive a proof using an EFSM as guidance. We show two case studies that
demonstrate the process of using an EFSM during the proof process.

In the subsequent examples, we model the following scenario. Let us assume
that we have a collection of existing proofs available; ListNat contains proofs
about lists and natural numbers and is used in case study 1. The Bool dataset
contains proofs about boolean values, which we use in case study 2. We then
suppose that we task a Coq user to prove one of the lemmas in the dataset (and
allow them to use the remaining proofs to infer a model from). We demonstrate
that in each case we can be led to a proof using the model as guidance. We then
compare the EFSM based proof with the original proof from each dataset. In
both cases, we see interesting results when we compare.

Example 1. Let us refer back to the motivating example from Section 2, where
the user is tasked with proving the app nil l proposition, which is part of the
ListNat dataset. As an exercise, let us assume that the user has been given
the remainder of the ListNat proofs (minus the proof for app nil l). Figure 1(c)
shows the EFSM associated with this example and was inferred from every proof
in ListNat minus app nil l. The process that one might follow to derive a proof
from the model is as follows:

– Our main choices to start the proof are induction or intros. We know
that typically proofs containing lists begin with induction, and the model
also suggests parameter p1 = l, so we select the first step of the proof as
induction l.

– The first subgoal that needs proving is the base case showing that appending
2 empty lists together results in the empty list. The options that the model
suggests are the following - trivial, simpl or rewrite. This particular
subgoal is a simple equality, so it suffices to choose trivial as the next
proof step.

– We can now move on to the inductive step. The model then presents us with
3 more options - intro, simpl or rewrite. None of the parameters suggested
for rewrite seem to be applicable, they are more suited to natural number

Mining State-Based Models from Proof Corpora 293

proofs. There is nothing we can introduce, so we choose to simplify using
simpl.

– There is only one possible step that can follow, which is rewrite. Besides a
couple of existing lemmas regarding natural numbers, the model seems to be
suggesting rewriting the inductive hypothesis. By analogy with the model
we choose the parameter p1 = <- IHl.

– Finally, we can complete the proof (and arrive at an accept state) by using
trivial.

We have shown by using an EFSM that one way of solving app nil l would be
to use the following sequence of proof steps:

induction l. trivial. simpl. rewrite <- IHl. trivial.

So how does this proof compare against the original proof for the same proposi-
tion in ListNat? The existing proof was the following:

intro l. case l. simpl. trivial. intros a0 l0. simpl. trivial.

Interestingly, the proof found by using the EFSM was two steps shorter, and
also required less effort in identifying the parameters required for the proof
steps. Additionally, the sequence found from traversing the EFSM was (at least
not in its entirety) part of the training data, and was only found as a result of
inferring an EFSM.

Example 2. In our second example, we try to prove the following proposition:
negb(b1 || b2) = negb b1 && negb b2, which states that (for two boolean val-
ues b1 and b2) if b1 or b2 is false, then b1 is false and b2 is false. We infer a
model from all of the other proofs available in the Bool dataset. The correspond-
ing model for this example can be found on the authors webpage1. The process
of using the model to arrive at a proof is the following:

– To begin the proof, the model suggests either destruct or intros. We try
the intros path first as there are quantified variables that we can introduce,
but we are then led to a state where nothing is applicable. So we must use
destruct instead. There are numerous parameters that are suggested, but
we see that we have b1 and b2 in our goal, so it makes sense to choose
parameters that include one of these. We decide to set p1 = b1 and p2 = ;

to make the proof step destruct b1 ;
– We are presented with a number of options, most of which we can rule out

due to not being applicable e.g. rewrite, case. We do have a boolean b2

in our goal, so we follow the suggested step - destruct b2 ;
– At the next node, there are 2 possible paths. One involves the rewrite,case

steps that we still cannot apply. We take the path that uses the simplifying
method simpl and the suggested parameters which are p1 =in |- * and
p2 = ;

– Finally, the model suggests trivial or reflexivity to complete the proof.
Either of these lead to the proof, but we choose the trivial method for the
purposes of this example.

294 T. Gransden, N. Walkinshaw, and R. Raman

We have again been led to a proof by following the guidance provided by the
EFSM. The proof that corresponds to the sequence above is the following:

destruct b1; destruct b2; simpl in |- *; trivial.

The original proof from the Bool dataset corresponds to the following proof
steps:

intros; destruct all bool; simpl in |- *;trivial;try discriminate

Although only 1 step shorter this time, we have again shown that using an EFSM
to complement the proving process can yield useful results. In this particular
example, we have shown that there is a smaller number of distinct proof methods
used in the newly found EFSM based proof than in the original one.

4.3 Threats to Validity

It is important to bear in mind that these results are primarily intended to
be indicative, and as such there are several elements in the design that could
potentially invalidate the results. Firstly, we have only chosen four data sets for
our experiments. Clearly there may be other collections of proofs that could lead
to much better or worse results than the ones described here. Nevertheless, we
chose these data sets to ensure a highly diverse selection that covered a wide
broad variety of examples. Another potential threat is the generation of the
negative examples that factor into the calculation of sensitivity and specificity.
By manually inspecting the generated examples we tried to not select negative
traces that were too easy to identify as such.

4.4 Improvements and Future Work

Although we have shown that inferring models can be useful in the proof pro-
cess, we haven’t yet discussed the current limitations of the approach. We have
identified the following areas where our EFSM-based approach can be improved,
and in doing this can lead us towards our overall aim, which is to automatically
complete proofs using EFSM-based approaches.

The way we choose to represent parameters in the EFSMs can be improved.
Currently everything is treated entirely textually, so an interesting avenue for
future work would be to abstract away from the actual variable names and
investigate the inclusion of the types of the variables instead. This would help
to simplify the models, whilst also making them applicable to a larger range of
propositions.

Another limitation is being able to identify the relevant paths through the
model for any given proof. From a user’s perspective, when presented with a
small model such as the one shown in Section 3) they can simply evaluate the
options and each step and make an informed choice. We are ultimately interested
in a system that can execute the EFSM automatically to derive proofs. This
could be done in a number of ways, for example by using a Breadth-First Search

Mining State-Based Models from Proof Corpora 295

of the EFSM to check the applicability of proof steps, or by using evolutionary
algorithms.

The negative information that we used in the experiments is not entirely
accurate, in the sense that a more robust selection of negative examples could be
actual failed proof attempts. In addition to improving the quality of the negative
examples, we are also interested in the incorporation of this negative information
within the model [32]. By including this information within the model, we may
be able to infer much more accurate models of proofs.

A final consideration is the selection of proofs that we infer EFSMs from. The
approach we use in this paper is to select similar proofs in the sense that proofs
are grouped together because they all deal with a similar data structure, or are
contained within the same theory file. An interesting addition to our tool would
be to make use of proof filtering tools such as ML4PG [21]. By using ML4PG,
we could inspect the proof obligation that we are trying to prove, before being
presented with the most relevant proofs (as suggested by ML4PG). We can then
use these suggestions as input to EFSMInfer, instead of a collection of manually
selected proofs.

5 Conclusion

We have shown how EFSMs can be derived from existing proof corpora. These
state machines have proven to be useful as they can reduce large, complex proof
files into a more manageable, concise representation. In our evaluation, we have
demonstrated that the models are reasonably accurate and that they can be used
to derive new proofs. We have also shown that in comparison to existing proofs,
the EFSM based ones can be shorter and less complex that the original. The
models not only show a user the possible sequencing of proof methods (which is
valuable enough information on its own), but also help to suggest the parameters
that may be useful in completing a proof. Finally, we have highlighted some areas
for improving our technique in the future.

References

1. Alama, J., Heskes, T., Kühlwein, D., Tsivtsivadze, E., Urban, J.: Premise Selection
for Mathematics by Corpus Analysis and Kernel Methods. Journal of Automated
Reasoning 52(2), 191–213 (2014)

2. Biermann, A., Feldman, J.A.: On the Synthesis of Finite-State Machines from
Samples of Their Behavior. IEEE Transactions on Computers C-21(6), 592–597
(1972)

3. Böhme, S., Nipkow, T.: Sledgehammer: Judgement Day. In: Giesl, J., Hähnle, R.
(eds.) IJCAR 2010. LNCS (LNAI), vol. 6173, pp. 107–121. Springer, Heidelberg
(2010)

4. Bundy, A.: The Use of Explicit Plans to Guide Inductive Proofs. In: Lusk, E.,
Overbeek, R. (eds.) CADE 1988. LNCS, vol. 310, pp. 111–120. Springer, Heidelberg
(1988)

296 T. Gransden, N. Walkinshaw, and R. Raman

5. Cheng, K.T., Krishnakumar, A.S.: Automatic Functional Test Generation Using
the Extended Finite State Machine Model. In: Proceedings of the 30th Interna-
tional Design Automation Conference, DAC 1993, pp. 86–91. ACM, New York
(1993)

6. Dixon, L., Fleuriot, J.: IsaPlanner: A Prototype Proof Planner in Isabelle. In:
Baader, F. (ed.) CADE-19. LNCS (LNAI), vol. 2741, pp. 279–283. Springer, Hei-
delberg (2003)

7. Duncan, H.: The Use of Data Mining for the Automatic Formation of Tactics.
Ph.D. thesis, University of Edinburgh (2007)

8. Gold, E.M.: Language Identification in the Limit. Information and Control 10(5),
447–474 (1967)

9. Gonthier, G.: Formal Proof - The Four-Color Theorem. Notices of the American
Mathematical Society 55(11), 1382–1393 (2008)

10. Gonthier, G., et al.: A Machine-Checked Proof of the Odd Order Theorem. In:
Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp.
163–179. Springer, Heidelberg (2013)

11. Grov, G., Kissinger, A., Lin, Y.: A Graphical Language for Proof Strategies. In:
McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR-19. LNCS, vol. 8312, pp.
324–339. Springer, Heidelberg (2013)

12. Grov, G., Komendantskaya, E., Bundy, A.: A Statistical Relational Learning Chal-
lenge – Extracting Proof Strategies from Exemplar Proofs. In: ICML 2012 Work-
shop on Statistical Relational Learning (2012)

13. Hales, T.C.: Introduction to the Flyspeck Project. In: Coquand, T., Lombardi, H.,
Roy, M.F. (eds.) Mathematics, Algorithms, Proofs. Dagstuhl Seminar Proceedings,
vol. 05021. Internationales Begegnungs- und Forschungszentrum für Informatik
(IBFI), Schloss Dagstuhl, Germany (2006)

14. Hall, M., et al.: The WEKA Data Mining Software: An Update. SIGKDD Explo-
rations 11(1), 10–18 (2009)

15. Heras, J., Komendantskaya, E.: ML4PG in Computer Algebra Verification. In:
Carette, J., Aspinall, D., Lange, C., Sojka, P., Windsteiger, W. (eds.) CICM 2013.
LNCS (LNAI), vol. 7961, pp. 354–358. Springer, Heidelberg (2013)

16. Heras, J., Komendantskaya, E., Johansson, M., Maclean, E.: Proof-Pattern Recog-
nition and Lemma Discovery in ACL2. In: McMillan, K., Middeldorp, A., Voronkov,
A. (eds.) LPAR-19. LNCS, vol. 8312, pp. 389–406. Springer, Heidelberg (2013)

17. Jamnik, M., Kerber, M., Pollet, M., Benzmüller, C.: Automatic Learning of Proof
Methods in Proof Planning. Logic Journal of the IGPL 11(6), 647–673 (2003)

18. Kaliszyk, C., Urban, J.: Learning-assisted Automated Reasoning with Flyspeck.
CoRR abs/1211.7012 (2012)

19. Kaliszyk, C., Urban, J.: MizAR 40 for Mizar 40. CoRR abs/1310.2805 (2013)
20. Kohavi, R.: A Study of Cross-Validation and Bootstrap for Accuracy Estimation

and Model Selection. In: IJCAI, pp. 1137–1145. Morgan Kaufmann (1995)
21. Komendantskaya, E., Heras, J., Grov, G.: Machine Learning in Proof General:

Interfacing Interfaces. In: UITP. EPTCS, vol. 118, pp. 15–41 (2013)
22. Kühlwein, D., Blanchette, J.C., Kaliszyk, C., Urban, J.: MaSh: Machine Learning

for Sledgehammer. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013.
LNCS, vol. 7998, pp. 35–50. Springer, Heidelberg (2013)

23. Lang, K.J., Pearlmutter, B.A., Price, R.A.: Results of the Abbadingo One DFA
Learning Competition and a New Evidence-Driven State Merging Algorithm. In:
Honavar, V.G., Slutzki, G. (eds.) ICGI 1998. LNCS (LNAI), vol. 1433, pp. 1–12.
Springer, Heidelberg (1998)

Mining State-Based Models from Proof Corpora 297

24. Leroy, X.: Formal Verification of a Realistic Compiler. Communications of the
ACM 52(7), 107–115 (2009)

25. Lorenzoli, D., Mariani, L., Pezze, M.: Automatic Generation of Software Behavioral
Models. In: ACM/IEEE 30th International Conference on Software Engineering,
ICSE 2008, pp. 501–510 (May 2008)

26. The Coq Development Team: The Coq Proof Assistant Reference Manual. Version
8.4. LogiCal Project, http://coq.inria.fr/refman

27. Meng, J., Paulson, L.C.: Translating Higher-Order Clauses to First-Order Clauses.
Journal of Automated Reasoning 40(1), 35–60 (2008)

28. Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL. LNCS, vol. 2283. Springer,
Heidelberg (2002)

29. Paulson, L.C., Susanto, K.W.: Source-Level Proof Reconstruction for Interactive
Theorem Proving. In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007. LNCS,
vol. 4732, pp. 232–245. Springer, Heidelberg (2007)

30. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)
31. Walkinshaw, N., Taylor, R., Derrick, J.: Inferring Extended Finite State Machine

models from software executions. In: 20th Working Conference on Reverse Engi-
neering (WCRE), pp. 301–310 (October 2013)

32. Walkinshaw, N., Derrick, J., Guo, Q.: Iterative Refinement of Reverse-Engineered
Models by Model-Based Testing. In: Cavalcanti, A., Dams, D. (eds.) FM 2009.
LNCS, vol. 5850, pp. 305–320. Springer, Heidelberg (2009)

33. Walkinshaw, N., Lambeau, B., Damas, C., Bogdanov, K., Dupont, P.: STAMINA:
a competition to encourage the development and assessment of software model
inference techniques. Empirical Software Engineering 18(4), 791–824 (2013)

34. Wiedijk, F.: Formal Proof – Getting Started. Notices of the American Mathemat-
ical Society 55(11), 1408–1414 (2008)

http://coq.inria.fr/refman

Querying Geometric Figures

Using a Controlled Language, Ontological
Graphs and Dependency Lattices

Yannis Haralambous1 and Pedro Quaresma2

1 Institut Mines-Télécom, Télécom Bretagne Computer Science Department
UMR CNRS 6285 Lab-STICC Technopôle Brest Iroise CS 83818,

29238 Brest Cedex 3, France
2 CISUC/Departament of Mathematics, University of Coimbra

P-3001-454 Coimbra, Portugal

Abstract. Dynamic geometry systems (DGS) have become basic tools
in many areas of geometry as, for example, in education. Geometry Au-
tomated Theorem Provers (GATP) are an active area of research and are
considered as being basic tools in future enhanced educational software
as well as in a next generation of mechanized mathematics assistants. Re-
cently emerged Web repositories of geometric knowledge, like TGTP and
Intergeo, are an attempt to make the already vast data set of geometric
knowledge widely available. Considering the large amount of geometric
information already available, we face the need of a query mechanism for
descriptions of geometric constructions.
In this paper we discuss two approaches for describing geometric fig-

ures (declarative and procedural), and present algorithms for querying
geometric figures in declaratively and procedurally described corpora, by
using a DGS or a dedicated controlled natural language for queries.

Introduction

Dynamic geometry systems (DGS) distinguish themselves from drawing pro-
grams in two major ways. The first is their knowledge of geometry: from a
initial set of objects drawn freely in the Cartesian plane (or maybe, on another
model of geometry), one can specify/construct a given geometric figure using
relations between the objects, e.g., the intersection of two non-parallel lines, a
line perpendicular to a given line and containing a given point, etc. Another
major feature of a DGS is its capability to introduce dynamics to a given geo-
metric construction moving a (free) basic object always preserving the geometric
properties of the construction [18].

That is, one uses a DGS by constructing a geometric figure with geometric
objects and geometric relations between them, and not by placing points on
specific Cartesian coordinates. Most (if not all) DGS possess a formal language
for the specification of geometric constructions. In some systems this formal
language is explicit, in others it is hidden from the user by the graphical in-
terface. The Intergeo project designed a common format, called I2G, for this

S.M. Watt et al. (Eds.): CICM 2014, LNAI 8543, pp. 298–311, 2014.
c© Springer International Publishing Switzerland 2014

Querying Geometric Figures 299

formal language which is already accepted by some DGS [16,17]. Geometry au-
tomated theorem provers (GATP), being formal systems, need a formal language
to describe geometric conjectures. GATPs are nowadays mature tools capable of
proving hundreds of geometric conjectures [2,8]. The I2GATP formal language
is an extension of the formal language used by the DGS. The I2GATP project
goal is to define a common language, an extension of the I2G language, to the
DGS/GATP tools [12].

The design of common languages, and the emergence of Web repositories
of geometric knowledge is an attempt to make the already vast data set of
geometric knowledge widely available. The Intergeo project [9], GeoThms [7] and
TGTP [11] systems already meet some of these goals, having provided a large
data set of geometric information widely available. In these systems the question
of querying the geometric construction is not solved, that is, it is not yet possible
to query the data set for a construction similar to some other construction, or to
query for all constructions having some common geometric properties. The goal
of our research is to develop a search mechanism for geometric constructions
(done by a DGS or a GATP) using the different ways of geometric construction
descriptions.

1 What You See and How to Get It: Declarative
vs. Procedural vs. Analytic Figure Description

BC

A

D E

F

G

Fig. 1. Construction
13 of the corpus

On Fig. 1 the reader can see (a visual representation of)
the centroid theorem, a simple geometric figure taken
from the TGTP corpus [11, Fig. 13].

There are many approaches for describing this figure:

– the declarative one: “we have points A,E,B on the
same line such that AE = EB, points A,D,C on
the same line such that AD = DC, points C,F,B on
the same line such that CF = FB, and displayed are
AC,BC,AB,AF,BD,CE. The intersection of BD,
CE, AF is called G”;

– the procedural one: “draw segments AB, AC, BC,
take their midpoints E, D, F , draw AF , BD and
CE, take the intersection of BD and CE and call
it G”;

– the analytic one: “points A, B, C have coordi-
nates (35, 40), (10, 10), (40, 10); points D, E, F ,
have coordinates (37.5, 25), (22.5, 25), (25, 10); segments have coordinates
((35, 40), (40, 10)), ((35, 40), (10, 10))”, etc.

In this paper we will concentrate on the procedural and declarative descriptions
of a figure.

The declarative description is about “what the parts of the figure are and
how they relate to each other,” while the procedural description is about “how

300 Y. Haralambous and P. Quaresma

to construct the figure.” In the former we can supply arbitrary (and potentially
redundant) information about the figure; in the latter we provide only instruc-
tions that result into the given figure.

The first problem we encountered when querying figures was the fact that
a given figure can often be constructed (and hence, procedurally described) in
several ways. For example, Fig. 1 can be procedurally obtained in (at least) the
following two ways (cf. [4] for the second):

start with points A, B, C
draw midpoints of AB, AC, BC
call them D, E, F
draw the segments

start with points D, E, F
draw a line at F parallel to DE
draw a line at E parallel to DF
draw a line at D parallel to EF
call the intersections A, B and C
remove the lines
draw the segments

That is, we can start with the triangle and find the midpoints, or we can start
with the midpoints and find the triangle.

Both the DGS to be used (GeoGebra [6]) and the controlled language we
will define (§ 3) are procedural, and hence describe a figure by its construction.
As there are many constructions resulting in the same figure, we concluded
that our search system should better use a declarative approach. For this (see
also [13]), we convert procedural descriptions into declarative ones and represent
the information they contain by the use of ontological graphs. This operation is
done both for the search corpus and for the queries, so that a figure query
becomes the search of a graph pattern inside a corpus of ontological graphs.

The second problem we encountered is that procedural descriptions are some-
times lacunary, provided the correct visual result is obtained. For example, in
the procedural description of Fig. 1, as it is included in our corpus, the creator
of the figure has defined G as being the intersection of BD and CE, without
going any further. Since the goal was to obtain the correct visual representation
of the figure, it was not necessary to state that G is also the intersection of AF
and BD as well as of AF and CE. This means that, after conversion into the
declarative representation, the information provided in it will lack these facts.

Inference can fill some of the gaps and make a declarative description more
complete. For example it can detect parallelisms or orthogonality relations that
are not explicitly stated.1

The way we propose to solve this problem is by going the “other way around”:
instead of making the corpus richer, we can weaken the query. This method is
called query reduction and is useful when the query contains too much informa-
tion and cannot be found in the corpus.

The problem then is, how do we reduce the query? Indeed, when in front of
an ontological graph query where all ingredients of the query figure have become

1 In a future development we plan to use the deductive database method to find all
the fix-points for a given construction, finding in this way the missing facts [3].

Querying Geometric Figures 301

nodes, and their relations have become edges, how do we choose the most suitable
nodes or edges to remove?

It is the procedural description of the query that provides us with an answer2

to this question. From the procedural data, we build a dependency lattice of the
query figure. The lattice structure provides us with the nodes to remove, and
the order in which to remove them.

For these reasons, we have developed, and will discuss in this paper, both
procedural and declarative descriptions of geometric figures. Thanks to their
complementarity we obtain en efficient geometric figure search system.

2 Ontological Graphs

2.1 Describing a Geometric Figure by an Ontological Graph

In the following we will use an ontology specific to geometric figures on the plane.
This ontology contains concepts:

– point : a point of the plane;

– segment : a segment, defined by two points. It has an attribute “length” which
induces a relation of “ratio” among segment instances;

– line: a line, defined by two points or in some other way (for example, by a
point and a property like perpendicularity);

– conic: a conic defined in various ways, and, in particular, a circle, defined by
its center point and another point;

– angle: the angle of two segments/lines, it has an attribute value which can
have a numeric value or the modal value “straight”.

The relations between instances will be3:

– belongs to: a relation whose domains are both points (belonging to segments,
lines, circles and angles), and segments (belonging to lines);

– has ratio: can be used for lengths and angle values. It is a 3-ary reified
relation, the members of which are the nominator, denominator and ratio
value;

– is center of : connects a point with the circle of which it is the center;

– is parallel to: connects two parallel lines (using inference, we will find all
parallel lines);

– is perpendicular to: connects two perpendicular lines or segments (using in-
ference, we will find all perpendicular lines or segments, knowing that the
perpendicular of a perpendicular is a parallel);

– is radius of : connects a segment with the circle of which it is the radius.

2 Well understood, the answer is not unique since it strongly depends on the way the
figure has been constructed, which is not unique.

3 The list is not exhaustive.

302 Y. Haralambous and P. Quaresma

These concepts and relations have been inspired by the element types of DTD
GeoCons.dtd [10] (the ontology does not cover XML elements towards, translation,
rotation which are useful for drawing but do not affect the ontological graph of
the figure) and of GeoGebra XML schema ggb.xsd [6].

Every figure becomes a graph of instances of concepts and of relations. Not
only this approach is independent of the way the figure has been constructed,
but it is also independent of instance names and allows to focus on the network
of relations between the ingredients of the figure.

Our choice of concepts and relations makes some graphical constructions ob-
tainable by a single relation, for example: “AB ⊥ BC”

A

B

C

is represented by instances A,B,C (points), AB and BC (segments) and ∠ABC
(angle), and the following graph of relations:

A AB B BC C

∠ABC
value=⊥

where solid arrows denote the belongs to relation, and ⊥ is the “right angle”
value of the value attribute.

Other constructions, although trivial, are more difficult to encode. For exam-
ple: “AB is tangent at circle c at point B”

A

B

c

cannot be encoded by a single relation. We need to use the radius BO and say
that B ∈ c ∧ AB ⊥ BO

A

B

O
c

and the graph of relations will be

A AB B BO O

∠ABO
value=⊥ c

Querying Geometric Figures 303

where the dotted arrow represents the relation is center of and the dashed one,
the relation is radius of.

The ontological graph of a geometrical figure can rapidly increase in size. Its
generation is done in a two-step process:

1. every XML element of the figure description is converted into a set of con-
cepts and relations;

2. then, inference is applied to generate additional relations:
(a) we calculate the transitive closure of parallelism and orthogonality rela-

tions (a // b ∧ b // c � a // c and a ⊥ b ∧ b ⊥ c � a // c);
(b) nodes having equal lengths or equal angle values by construction4 obtain

a has ratio relation with value attribute equal to 1;
(c) if necessary, angles are instantiated for every pair of segments with a

common point.

Our corpus of 134 figures, encoded as an XML file of 3,137 elements resulted
into graphs of a total of 5,282 concept instances and 10,211 relation instances.

2.2 Example

Take Fig. 1 representing Figure 13 of the corpus (illustrating the fact that medi-
ans intersect at the barycenter of the triangle). The construction, as given in the
XML file, takes arbitrary points A,B,C, defines D (resp. E, F) as the midpoint
of AC (resp. AB, BC), and G as the intersection of BD and CE. Furthermore,
the segment AF is drawn.

The ontological graph will contain concepts for points A,B,C,D,E, F,G,
and segments AB,AC,AD,AE,AF,BC,BD,BE,BF,CD,CE,CF . The rela-
tions will all be of type belongs to, except for some 3-ary has ratio relations
representing equal lengths. In Fig. 2, unlabelled arrows denote the belongs to
relation.

2.3 Querying Ontological Graphs

To be able to search in a corpus, we convert all figures of the corpus into ontolog-
ical graphs and we store them in a graph database (we use a neo4j database [15]).
The user query is a figure drawn by using a DGS, or a query using the controlled
query language (§3). This figure or CQL statement is converted into an ontologi-
cal graph on-the-fly, and then into a Cypher query (Cypher is the query language
of the neo4j graph database system). The query is send to the database and re-
turns graph instances containing the query as sub-graph.

At this step, ranking is performed to present the results to the user in a
pertinent way. Our ranking criterion (which we will try to improve in the future)
is the ratio between number of nodes and relations of the query and the number
of nodes and relations of the matched graphs. Using this criterion we obtain first

4 We emphasize the fact that equality is explicitly given in the construction and is not
the result of measurements between objects of the figure.

304 Y. Haralambous and P. Quaresma

A AE

E

BE BAB

AD AC CE G BD BC BF

D CD

C

CF FAF

has ratio 1

has ratio 1 has ratio1

nominator denomin.

value

nominator

denomin.

value

nominator

denomin.

value

Fig. 2. The ontological graph of Fig. 1

the smallest figure possible figure containing the query subgraph. We intend
to use graphical mechanisms to highlight the matched pattern in the resulting
graphs by using, for example, a different color.

3 The Controlled Query Language

In some cases the user may not wish to use the DGS to build the query, either
because it is cumbersome to use or because it does not provide the necessary
abstractions. We propose, as an alternative to the DGS, a controlled query lan-
guage that allows the (procedural) description of a figure in a way that is simple
and close to natural language.

3.1 Description of the Controlled Query Language

Here is the grammar of the controlled query language:

S -> query

query -> sents drawvp PERIOD

query -> sents PERIOD

drawvp -> DRAW ents

sents -> sent SEMICOLON sents

sents -> sent

sent -> nps vrb pps

sent -> nps vrb

ent -> INST LABEL

ent -> LABEL

vrb -> VERB ADJE

vrb -> VERB NOUN

Querying Geometric Figures 305

vrb -> VERB

pps -> ents pents

pps -> pents

pps -> ents

pents -> pent pents

pents -> pent

pent -> PREP ents

ents -> ent AND ents

ents -> ent

nps -> ents

NOUN -> /(midpoint|foot|mediatrix|intersection|bisector)[s]?/

INST -> /(points|segments|lines|angles|circles|centers|point|

segment|line|angle|circle|center)/

VERB -> /(is|are|intersect[s]?|connect[s]?)/

ADJE -> /(perpendicular|parallel|defined|right)/

SEMICOLON -> /;/

AND -> /(,|and)/

DRAW -> /draw/

PREP -> /(at|of|by|to|on)/

PERIOD -> /\./

LABEL -> /[A-Z]([_]?[0-9]+)?(-[A-Z]([_]?[0-9]+)?)*/

and here are its rules5:

1. Every query is of the form:
[list of sentences separated by ;] draw [list of instances separated by ,].

2. An instance consists of a type and a name (or just a name, if there is no
ambiguity). It is written in the form “type [name]”.

3. A primitive instance is an instance of a point, a line or a circle.
4. The name of a primitive instance matches the regular expression

[A-Z]([_]?[0-9]+)?.
5. Names of non-primitive instances are composite: they are written by joining

names of points using the hyphen character (for example: segment A-B).
6. An instance type can be followed by more than one instance, in that case

it is written in plural form and the instances are separated by commas (for
example: points A, B, C).

7. The first part of a query defines (and draws) new instances, the second draws
already known instances.

8. The following sentences can be used6:
(a) line ? intersects line ? at point ?
(b) point ? is the midpoint of segment ?
(c) line ? is perpendicular to line ? at point ?
(d) point ? is the foot of point ? on line ?
(e) line ? is the mediatrix of segment ?

5 We will use sans serif font for illustrating the controlled language.
6 All type names are optional except for center in (h).

306 Y. Haralambous and P. Quaresma

(f) line ? is parallel to line ? at point ?
(g) line ? connects points ?, ?
(h) circle ? is defined by center ? and point ?
(i) points ?, ? are the intersections of circles ?, ?
(j) points ?, ? are the intersections of circle ? and line ?
(k) line ? is the bisector of angle ?
(l) angle ? is right

9. All sentences have plural forms where arguments are distributed at all po-
sitions and separated by commas (for example: lines L 1, L 2, L 3 connect
points A 1, B 1, A 2, B 2, A 3, B 3, which means that {Ai, Bi} ⊂ Li).

10. In all sentences except (8e), the terms segment and line are synonymous,
with the syntactic difference that segment must be followed by a composite
name (for example A-A 1), while line must be followed by a primitive name,
since “line” is a primitive instance.

11. Some variation is allowed, for example and is a synonym of the comma,
articles the in front of nouns are optional.

12. Queries end by a period ‘.’.

Here is, for example, a description of Fig. 1 in the controlled query language:

D, E, F are midpoints of A-C, A-B, B-C ; C-E intersects B-D at G ; draw
A-C, A-F, A-B, B-C, B-D, C-E.

The query language is compiled, producing a Cypher query, which is then
submitted to the graph database exactly as when using the DGS. The compiler
has been developed using the Python PLY package [1].

3.2 Future Plans for the Controlled Language

In future versions of the controlled language, we plan to introduce the possibil-
ity of extending the query ontology by introducing new concepts and/or new
relations. For example, it may be interesting to define a type square as

Points A, B, C, D form a square A-B-C-D when we draw equal segments
A-B, B-C, C-D, D-A where angles A-B-C, B-C-D, C-D-A, D-A-B are right.

This would allow queries of the form (which will draw the notorious figure of
the Pythagorean theorem)

Angle A-B-C is right ; A-C-C 1-A 2, A-A 1-B 1-B, C-B-B 2-C 2 are squares.

4 Reduced Queries

The algorithms we describe in this paper can be quite successful in finding exact
matches of queries in the corpus. But what happens when the figures in the
corpus match only partially the query?

Querying Geometric Figures 307

4.1 Ontological Graphs

For example, let us consider Fig. 2 anew. The ontological graph of the figure has
been build solely using the XML data of Figure 13 of the corpus (cf. Fig. 1).
What is not visible on Fig. 1 is the fact that G has not been defined as lying
on AF , and hence the belongs to edge between G and AF is missing in the
ontological graph.

This is also reflected in the CQL query example we gave in § 3.1, where we
request that C-E intersects B-D at G but not that A-F intersects B-D at G, probably
because this could be inferred from the previous one, if we had the external
Euclidean Geometry knowledge of the fact that the three medians of a triangle
have a common intersection.

Nevertheless, the user seeking Fig. 1 is not necessarily aware of this subtlety,
and will search for “a triangle with three medians,” which will result in an
ontological graph similar to the one of Fig. 2 but containing an additional edge
G→ AF , and this graph, of course, will not match Figure 13 of the corpus, since
it is not a sub-graph of it.

To solve this problem, as long as a query does not return any results, we retry
with reduced queries, in the sense of the same query graph with one or more
instances (or relations) removed.

But how do we decide which nodes and edges to remove from a query, and
in what order? The answer to this question is provided by dependency lattices,
described in the next section.

4.2 Dependency Lattices

Let us return to the procedural approach of describing geometric figures. How
do we describe a figure using the operations that led to its construction?

Strictly speaking, such a description would require a Berge-acyclic hyper-
graph [5, §3], where each operation would be a hyper-edge, connecting the input
(the set of known nodes) and the output (the set of new nodes), for example,
in the case of the midpoint operation on segment AC, the hyper-edge would
connect {A,C} (input) and {B} (output).

But there is a simpler way. In fact, it suffices for our needs to represent
dependencies as edges of a directed graph. For example, in the midpoint example,
B is dependent of A and C, since the latter have been used to calculate the
former:

A

B

C

m m

By adding a “global source node” (located above all source nodes) and a
“global sink node” (underneath all “final results”), this graph becomes a lattice,
the partial order of which is the dependency relation.

On Fig. 3, the user can see the dependency lattice of Fig. 1. We have used
only nodes that are used in calculations, so that, for example, segments AB, AE,
etc. do not appear in the lattice. S and T are the global source and global sink

308 Y. Haralambous and P. Quaresma

S

A C B

D E F

BDCE

G

T

AF

m
mm mm

m

s
s

s

s

ii

sm

Fig. 3. The dependency lattice of Fig. 1, as it is procedurally described in the corpus

nodes, they are connected to nodes of the lattice by dashed arrows. Full arrows
represent operations and are labelled by their initial letters (m = midpoint, s =
segment drawing, i = intersection).

4.3 Using Dependency Lattices for Reduced Queries

Let us now see how the dependency lattice would be affected if the XML de-
scription of Fig. 1 had an additional instruction, saying that G is (also) the
intersection of BD and AF . On Fig. 4 one can compare the two graphs, on the
right side one can see the one with the additional instruction.

S

A C B

D E F

BDCE

G

T

AF

m
mm mm

m

s
s

s

s

ii

sm

S

A C B

D E F

BDCE

G

T

AF

m
mm mm

m

s
s

s

s

ii

sm

i

Fig. 4. The dependency lattice of Figure 13 of the corpus (left) and the dependency
lattice of Figure 13 plus an additional instruction segment A-F intersects segment B-D
at point G (right)

Indeed, the new dependency lattice has one additional edge AF → G. On the
other hand, the edge AF → T disappears since there is a path from F to T , and
AF is not a sink anymore.

Querying Geometric Figures 309

Data: A corpus of declaratively described figures, a query
Result: One or more figures matching the query
if using controlled query language then

write the query in controlled query language;
else

draw the query in a DGS;
end
convert query into ontological graph;
apply inference to ontological graph;
convert ontological graph to Cypher;
submit to neo4j database;
if no results returned then

convert query into dependency lattice;
while no results returned do

extract node or relation from bottom of dependency lattice;
remove that node or that relation from the ontological graph;
convert ontological graph to Cypher;
submit to neo4j database;

end

end

Algorithm 1. The Query Algorithm for a Declaratively Described Corpus

As dependencies have to be respected, if we remove a node from the upper
part of the lattice, we will have to remove all descendants of it. For this reason,
the only reasonable query reduction strategy would be to remove nodes or edges
from the lower part of the lattice.

If we remove, for example, the node G (and hence the edges CE → G, AF →
G and BD → G), then we obtain a triangle with three medians but where the
barycenter has not been explicitly drawn. (Interestingly, we still obtain a figure
that is visually identical to Fig. 1.)

If we go further and remove one of the relations among CE → G, AF → G and
BD → G (for symmetry reasons it doesn’t matter which relation we remove),
then the query will succeed, while the visual representation of the figure still has
not changed.

Algorithm 1 is a synthesis of the geometric figure query algorithm we propose.

5 Evaluation

We plan to evaluate the algorithms described in this paper, in the following
ways:

Querying a sub-figure in a corpus of declaratively described figures gives a
binary result: either the figure is matching the sub-figure or it is not, so evaluation
is simply counting the number of successes.

An interesting parameter to observe is the number and nature of query re-
ductions that were necessary to obtain results, correlated with the number of
results obtained.

310 Y. Haralambous and P. Quaresma

We will proceed as follows: after visually inspecting the corpus (and hence with
no knowledge about the procedural and declarative descriptions of the figures)
we will formulate 20 queries and manually annotate the figures we expect to
find.

After using the algorithm, we will count the number of successes and study
the number of results vs. the parameters of query reduction.

6 Future Work

As future work, besides extending the controlled natural language (§ 3.2), we plan
to integrate this search mechanism in repositories such as TGTP and Intergeo,
and in learning environments like the Web Geometry Laboratory [14]. In a more
generic approach, we should use a common format and develop an application
programming interface that will allow to integrate the searching mechanism in
any geometric system in need of it.

7 Conclusion

In this paper we have presented algorithms for querying geometric figures in
either declaratively or analytically described corpora, by using either a DGS or
a dedicated controlled query language.

At the time of submission of the article, evaluation was not completed, hence
it is presented as a plan.

References

1. Beazley, D.: Python Lex-Yacc, http://www.dabeaz.com/ply/
2. Chou, S.C., Gao, X.S.: Automated reasoning in geometry. In: Handbook of Auto-
mated Reasoning, pp. 707–749. Elsevier Science Publishers (2001)

3. Chou, S.C., Gao, X.S., Zhang, J.Z.: A deductive database approach to automated
geometry theorem proving and discovering. Journal of Automated Reasoning 25,
219–246 (2000)

4. DiffeoR: Answer to “Is it possible to reconstruct a triangle from the midpoints of its
sides?” (February 20, 2014), http://math.stackexchange.com/a/683496/122762

5. Fagin, R.: Degrees of acyclicity for hypergraphs and relational database schemes.
Journal of the ACM (JACM) 30(3), 514–550 (1983)

6. Hohenwarter, M., Preiner, J.: Dynamic mathematics with GeoGebra. The Journal
of Online Mathematics and Its Applications 7, ID 1448 (2007)

7. Janičić, P., Quaresma, P.: System description: GCLCprover + GeoThms. In: Fur-
bach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 145–150.
Springer, Heidelberg (2006)

8. Jiang, J., Zhang, J.: A review and prospect of readable machine proofs for geometry
theorems. Journal of Systems Science and Complexity 25, 802–820 (2012)

9. Kortenkamp, U., Dohrmann, C., Kreis, Y., Dording, C., Libbrecht, P., Mercat,
C.: Using the Intergeo platform for teaching and research. In: Proceedings of the
9th International Conference on Technology in Mathematics Teaching, ICTMT-9
(2009)

http://www.dabeaz.com/ply/
http://math.stackexchange.com/a/683496/122762

Querying Geometric Figures 311

10. Quaresma, P., Janičić, P., Tomašević, J., Vujošević-Janičić, M., Tošić, D.: XML-
Bases Format for Descriptions of Geometric Constructions and Proofs. In: Commu-
nicating Mathematics in The Digital Era, pp. 183–197. A. K. Peters, Ltd. (2008)

11. Quaresma, P.: Thousands of Geometric Problems for Geometric Theorem Provers
(TGTP). In: Schreck, P., Narboux, J., Richter-Gebert, J. (eds.) ADG 2010. LNCS
(LNAI), vol. 6877, pp. 169–181. Springer, Heidelberg (2011)

12. Quaresma, P.: An XML-format for conjectures in geometry, Aachen. CEUR Work-
shop Proceedings, vol. 921, pp. 54–65 (2012), http://ceur-ws.org/Vol-921/

13. Quaresma, P., Haralambous, Y.: Geometry construction recognition by the use
of semantic graphs. In: RECPAD 2012: 18th Portuguese Conference on Pattern
Recognition, Coimbra, October 26, pp. 47–48 (2012)

14. Quaresma, P., Santos, V., Bouallegue, S.: The web geometry laboratory project.
In: Carette, J., Aspinall, D., Lange, C., Sojka, P., Windsteiger, W. (eds.) CICM
2013. LNCS (LNAI), vol. 7961, pp. 364–368. Springer, Heidelberg (2013)

15. Robinson, I., Webber, J., Eifrem, E.: Graph Databases. O’Reilly (2013)
16. Santiago, E., Hendriks, M., Kreis, Y., Kortenkamp, U., Marquès, D.: i2g Common

File Format Final Version. Tech. Rep. D3.10, The Intergeo Consortium (2010),
http://i2geo.net/xwiki/bin/view/I2GFormat/

17. The Intergeo Consortium: Intergeo implementation table (2012),
http://i2geo.net/xwiki/bin/view/I2GFormat/ImplementationsTable

18. Wikipedia: List of interactive geometry software (February 2014),
http://en.wikipedia.org/wiki/List_of_interactive_geometry_software

http://ceur-ws.org/Vol-921/
http://i2geo.net/xwiki/bin/view/I2GFormat/
http://i2geo.net/xwiki/bin/view/I2GFormat/ImplementationsTable
http://en.wikipedia.org/wiki/List_of_interactive_geometry_software

Flexary Operators for Formalized Mathematics

Fulya Horozal, Florian Rabe, and Michael Kohlhase

Computer Science, Jacobs University Bremen, Germany
http://kwarc.info

Abstract. We study representation formats that allow formally defin-
ing what we call flexary operators: functions that take arbitrarily many
arguments, like

∑n
k=1 ak or binders that bind arbitrarily many variables,

like ∀x1, . . . xn. F . Concretely, we define a flexary logical framework based
on LF, and use it as a meta-language to define flexary first-order logic
and flexary simple type theory. We use these to formalize several flexary
mathematical concepts including arithmetical and logical operators, ma-
trices, and polynomials.

1 Introduction and Related Work

Ellipses (. . .) such as in a1, . . . , an are commonly and indispensably used in
mathematical texts. However, representation formats for formalized mathemat-
ics typically do not provide a structural analog for ellipses. This is problematic
because many common operators are naturally defined using a primitive ellipsis
operator, and formalizations have to work around the missing language infras-
tructure. We will now lay out the problem, survey and discuss the most com-
monly used workarounds and then present a solution which introduces sequences
as a language feature at the meta-level.

1.1 Flexary Operators and Ellipses

We say that an operator is of flexible arity or flexary if it can take arbitrarily
many arguments. Common examples are set-construction {a1, . . . , an} or addition
a1 + . . .+ an. We speak of fixary operators if the number of arguments is fixed.

Ellipses. Flexary operators are closely related to the ellipsis operator For
presentation-oriented formats, ellipsis are no challenge. For example, LATEX of-
fers \ldots, and presentation MathML [ABC+03] marks up the corresponding
Unicode character as an operator via the mo element. However, the content-
oriented formats that we need for formalized mathematics have devoted much
less attention to ellipses. This is surprising considering how ubiquitous they are
in mathematical practice.

We can distinguish 4 kinds of ellipses. We speak of a sequence ellipsis if we
give a sequence of arguments to a flexary operators as in a1 + . . .+ an.

The nesting ellipsis uses a characteristic double-. . . pattern to compose a
sequence of functions as in f1(. . . fn(x) . . .). It corresponds to folding the function

S.M. Watt et al. (Eds.): CICM 2014, LNAI 8543, pp. 312–327, 2014.
c© Springer International Publishing Switzerland 2014

http://kwarc.info

Flexary Operators for Formalized Mathematics 313

f over the list of arguments. In the presence of a flexary operator for function
composition, we can recover the nesting ellipsis as a special case of the sequence
ellipsis via f1(. . . fn(x) . . .) := (f1 ◦ . . . ◦ fn)(x).

En =

⎛⎜⎝1 0 · · · 0
...

. . .
...

0 · · · 0 1

⎞⎟⎠When working with matrices, we use 2-dimensional
ellipses as in the matrix on the right. If we define vectors
using a flexary constructor (a1, . . . , an) and matrices as
vectors of vectors, we can recover the 2-dimensional el-
lipses by combining two sequence ellipses. Of course, that
would still leave the problem of presenting vectors with
ellipses.

Finally, we have the infinite ellipsis used mainly for infinite series as in a1 +
a2 +

Flexary Binders We can generalize the above concepts to binding operators. We
speak of a flexary binder if it can bind an arbitrary number of variables as in
∀x1, . . . , xn.F . Most unary binders such as quantifiers and λ are usually assumed
to be flexary in this sense.

1.2 Flexary Notations

A common approach is to use representation languages that are fixary at the
content level but flexary at the presentation level. The connection between the
two is performed by flexary notations. Typically, these use associativity con-
straints on binary infix operators.

For example, we can define flexary addition +(a1, a2, a3) as identical to
a1 + a2 + a3, which in turn is an abbreviation for (a1 + a2) + a3. Here
we use the logical property of associativity to justify a left-associative notation.

We can also use associative notations for logically non-associative operators.
For example, we can define flexary implication⇒ (a1, a2, a3) as a1 ⇒ (a2 ⇒ a3),
i.e., by using a right-associative notation for binary implication.

While there is no established terminology, we can apply similar notations
to binders. We call a flexary binder associative if Qx1.Qx2.F = Qx1, x2.F .
In that case, we can define the flexary version of the binder from the unary
version. This is very common because the important binders of universal and
existential quantifier are associative and (up to currying) so are λ, integral (e.g.∫

dx dy dz), sum (e.g.
∑

i,j∈N
), and product (e.g.

∏
n+m<k). A notable exception

is the quantifier of unique existence.
Using flexary notations has the advantage that the content level remains sim-

pler: Flexary operators are always implicitly reduced to fixary ones. This is im-
portant for language analysis and perfectly sufficient in informal mathematics.
However, in formalized mathematics, the implicit conversions must be explic-
itly implemented. Usually, this is achieved by using the notation declarations to
direct the parser and printer to convert between the seemingly-flexary human-
facing syntax and the fixary official syntax.

This is unsatisfactory for several reasons. Firstly, for logically associative op-
erators, there is no canonical choice between using a left- or a right-associative

314 F. Horozal, F. Rabe, and M. Kohlhase

notation. In a flexary content representation both (a1+a2)+a3 and a1+(a2+a3)
would normalize to the canonical +(a1, a2, a3).

Secondly, this trick only works well if the domains and codomain of the op-
erator are equal. Consider the flexary set construction operator {a1, a2, a3}. We
can only approximate it using a left-associative notation for an adjoin operator
a&b := a ∪ {b} and then write ∅&a1&a2&a3.

Thirdly, the flexary representation is often the more natural one for imple-
mentation, e.g. for the left-associative application f@t in simple type theory. In
the usual fixary type theory, the n-ary functions f(x, y) are represented in the
curried form f@x@y, which internally expands to @(@(f, x), y). Thus, the head
f of the term is not available at the root of the syntax tree and has to be looked
up by traversing the tree. In practice, this traversal is so awkward that many
implementations of type theory, e.g., Twelf [PS99], internally use a flexary ap-
plication operator after all so that f(x, y) can be represented as @(f, x, y). This
leads to the strange situation that both the user and the developer effectively
use flexary operators, and only the official language definition uses fixary ones.

Finally, this approach only works in general for the case where the num-
ber of arguments is constant: We cannot use it to represent a sequence ellipsis
like +(a1, . . . , an), where the number of arguments is a variable. For the spe-
cial case of conjunction and disjunction, notations for ellipses were realized in
Mizar [Kor12]. For example, a special binary connective &. . .& is used for the
conjunction of a sequence ellipsis, and the parser expands F (m)&. . .&F (n) into
∀i.m ≤ i ≤ n⇒ F (i).

1.3 Flexary Representation Languages

Instead of simulating flexary operators through notations, we can use a repre-
sentation language that supports flexary operators at the content level. There
are several content features that can be used.

Lists We can represent flexary operators as unary operators that take a list
as an argument. In that case, we represent a1 + a2 + a3 as +(List(a1, a2, a3)).
Actually, this tacitly assumes that we have at least a flexary list constructor.
In a pure fixary language, we would have to represent it as
+(cons(a1, cons(a2, cons(a3, nil)))), which is quite different from the informal
mathematical object.

This approach permits using variables that quantify over sequences, and –
using map and fold – it is easy to represent ellipses. This is widely used in
programming languages, where lists are an accepted foundational data type.

In mathematics however, it is artificial to use lists since any formal mathe-
matical theory for flexary operators would depend on the theory of lists, which
itself is rarely used in informal mathematics. Another drawback is that all argu-
ments must have the same domain. To permit different argument domains, we
must allow lists whose elements have different types (or use sufficiently imprecise
types).

Flexary Operators for Formalized Mathematics 315

Sequences. Sequence types use a monadic type constructor Seq : type → type like
lists and enjoy the same advantages. The difference is that sequences are always
flattened, i.e., the canonical functions Seq(Seq(A)) → SeqA and A → Seq(A)
are inclusions. For example, Seq(a, b,Seq(c, d), e, f) = Seq(a, b, c, d, e, f). This
makes sequence types closer to informal mathematics because they need less
representational artifacts. Variants of sequence types occur in some programming
languages but are rare in typed languages for formalized mathematics.

Sequences are more common in untyped languages. In the absence of a type
system and in the presence of flattening, there is no need to write f(Seq(a, b, c))
at all. Instead, we can simply write f(a, b, c) (even if one of the arguments is
another sequence).

This approach is used in Common Logic (CL [Com07]), an untyped flexary
variant of first-order logic. There, every non-logical symbol is flexary and vari-
ables may quantify over sequences. This substantially complicates the semantics
because models must interpret every function symbol as a function that takes
an arbitrary sequence of arguments; incidentally a proof theoretical semantics is
not defined in CL.

[KB04] defines a flexary first-order logic and studies its semantics. The sig-
nature defines the arity of each non-logical symbol, and the arity can either be
fixed or flexible. Similarly, variables are divided into individual and sequence
variables.

Mathematica [Wol12] also uses untyped sequences, including sequence vari-
ables. Functions are fixary, but flexary functions can be defined by matching
arguments against sequence patterns. Because Mathematica focuses on compu-
tation rather than logic, this is less problematic than for CL.

The untyped approaches to sequences usually cannot represent ellipses well
because they tend to lack higher-order functions.

Indexed types. Mixed-type lists can be represented concisely in Martin-Löf type
theory [ML74], calculus of constructions [CH88] and related languages. Example
implementations are Agda [Nor05] and Coq [Coq14]. If we write [n] for the
type containing 0, . . . , n − 1, we call objects of type T : [n] → type indexed
types. Mixed-type lists can be defined as indexed terms l : Πi : [n]. T (i). Then
flexary functions can be declared concisely as binary functions that take a natural
number n and term indexed by [n].

Ellipses can be represented very elegantly now, e.g., a1, . . . , an is simply
λi. ai. Moreover, contrary to all of the above, the length of a sequence is stat-
ically known, which permits static index-within-bounds checking when access-
ing an element of a sequence. Quantification only affects sequences of a cer-
tain length, e.g., ∀x : [n] → A.F ; to quantify over all sequences, we can use
∀n. ∀x : [n]→ A.F .

A disadvantage is the substantial commitment at the language level, which
goes far beyond simply adding sequences: The language must be able to express
the types [n] and [n] → type (e.g. via inductive constructions and a universe
hierarchy in Coq).

316 F. Horozal, F. Rabe, and M. Kohlhase

Type sequences. We introduce a novel approach: we use term sequences a1, . . . , an
that are typed component-wise by a type sequence A1, . . . , An. Importantly, type
sequences A1, . . . , An are not types themselves – they are simply sequences of
types.

Like sequences and contrary to indexed types and list types, this has the
advantage that we do not change the underlying type theory. No representational
artifacts are needed to flatten sequences or to apply a function to a sequence
of arguments. And like for indexed types, the length of a sequence is statically
known.

1.4 Flexary Meta-Languages

For content representations of flexary operators, the previous section discussed
which representational primitives to use. An orthogonal question is at which
language level they should be introduced.

Consider the first-order theory of monoids in which we want to define the
flexary version of the composition operator in the obvious way. This should also
include the power an = a ◦ . . . ◦ a for a natural number n as a special case.
We might do that by importing the theory of sequences and then using some
kind of induction. But this is awkward because the theory of monoids would
become much more complex. We might even say that it becomes polluted by the
imported operations.

We might try to move the definition to a special enriched theory, which in-
cludes both sequences and monoids. But that would contradict mathematical
practice, where the definition of the flexary composition is likely to be found in
the same paragraph where the binary one is.

Thus, we should add sequences to the logic as a fixed interpreted sort. How-
ever, now a similar argument applies: The logic is complicated. Moreover, it does
not account for the fact that we would like to use sequences in any logic. There-
fore, our goal is to add sequences at the level of the logical framework. This
corresponds most closely to informal mathematics where sequences and ellipses
are assumed to be given at the informal meta-level and not explicitly defined at
the logical or set theoretical level.

The approach of type sequences is most suitable in this respect because it
is already orthogonal to the type theoretical and logical foundations. Thus, it
can be added easily as a framework feature. Once we go down that road, it also
becomes very easy and natural to add constructors for sequence and nesting
ellipses at the framework level.

1.5 Overview

Following the above analysis, we develop a logical framework with type se-
quences. We choose the logical framework LF [HHP93] as an example logical
framework since it has been used to represent a large variety of formalisms. But
our approach can be transfered to other frameworks (e.g. Isabelle [Pau94]) as
well, because it is orthogonal to the underlying type theory.

Flexary Operators for Formalized Mathematics 317

We briefly summarize LF in Sect. 2 and then extend it to LFS (LF with
sequences) in Sect. 3. Notably, our extension is minimally invasive, keeping the
essence of the LF type theory unchanged (and reusing the existing rules). We use
LFS in Sect. 4 to define flexary versions of first-order logic and simple type theory.
In both cases, we declare flexary versions of all operators (where reasonable) and
show that LFS can formally define the flexary versions in terms of the fixary
ones. Finally, we use our two flexary logics to formalize a collection of common
mathematical examples in Sect. 5.

2 The Edinburgh Logical Framework

In this section, we briefly revisit LF [HHP93], a dependently-typed λ-calculus
that can be used well as a logical framework [Pfe01]. We give the LF grammar
in Fig. 1.

Kinds K ::= type | Πx : U.K
Type Families U, V . . . ::= a | Πx : U. V | λx : U. V | U S
Terms S, T . . . ::= x | λx : U. S | S T
Signatures Σ ::= · | Σ, x : U [= S] | Σ, a : K[= U]

Fig. 1. LF Grammar

LF expressions are grouped into kinds K, kinded type-families U : K, and
typed terms S : U . The kinds are the base kind type and the dependent function
kinds Πx : U.K. The type families are the symbols a, the dependent function
type Πx : U. V , abstractions λx : U. V , applications U S ; type families of kind
type are called types. The terms are symbols x, abstractions λx : U. S, and
applications S T . Signatures Σ consist of typed or kinded symbols x : U [= S]
or a : K[= U] with optional definiens.

As usual, we write U → E instead of Πx : U.E if x does not occur free in
E, and we omit the types of bound variables if they can be inferred. Free vari-
ables are implicitly bound on the outside of the expression (implicit arguments).
Substitution of T for x in E is written [T/x]E.

We use the signatures given in Fig. 2 as running examples throughout this
paper. The signature SFOL on the left defines the syntax and proof rules of
sorted first-order logic. The signature STT on the right defines the syntax and
β-conversion rule of simple type theory.

In order to emphasize the similarity between LF and LFS, we also give the
judgments for well-formed LF expressions in Fig. 3 and the inference rules in
Fig. 4. For brevity, we omit the equality judgement, whose rules consist of equiv-
alence, congruence, and αβη-conversion.

318 F. Horozal, F. Rabe, and M. Kohlhase

sort : type
tm : sort → type

form : type
ded : form → type

true : form
∧ : form → form → form
∀ : ΠS : sort . (tm S → form)→ form

trueI : ded true
∧I : ded F → ded G → ded F ∧G
∧El : ded F ∧G → ded F
∧Er : ded F ∧G → ded G
∀I : (Πx : tm S. ded F x)→ ded ∀F
∀E : ded ∀F → Πx : tm S. ded F x

tp : type
tm : tp → type

=⇒ : tp → tp → tp
= : tm A → tm A → type

lam : tm A → tm B → tm (A =⇒ B)
app : tm (A =⇒ B)→ tm A → tm B
beta : app (lam(λx : tm A.T))X = (T X)

Fig. 2. LF Signatures for SFOL (left) and STT (right)

Judgment Meaning

Σ � S : U S is a well-formed term of type U over Σ
Σ � U :K U is a well-formed type family of kind K over Σ
Σ � K Kind K is a well-formed kind over Σ.

Fig. 3. LF Judgments

Σ � typeKind

Σ � U : type Σ, x : U � V : type

Σ � Πx : U. V : type

Σ � U : type Σ, x : U � K Kind

Σ � Πx : U.K Kind

Σ � U : type Σ, x : U � S : V

Σ � λx : U. S :Πx : U. V

Σ � U : type Σ, x : U � V :K

Σ � λx : U. V :Πx : U.K

Σ � S :Πx : U. V Σ � T : U

Σ � S T : [T/x]V

Σ � V :Πx : U.K Σ � T : U

Σ � V T : [T/x]K

Fig. 4. LF Inference Rules

Flexary Operators for Formalized Mathematics 319

3 A Flexary Logical Framework

3.1 Natural Numbers

In this section we extend LF to form our logical framework LFS (LF with Se-
quences). LFS adds type sequences and ellipsis constructors.

nat : type
≤ : nat→ nat→ type

= : nat→ nat→ type

0 : nat
1 : nat
+ : nat→ nat→ nat

− : Πn : nat. Πm : nat.
m ≤ n→ nat

Therefore, we also need natural numbers as in-
dices to access elements of sequences and to form
ellipses. We do this by assuming that the LF sig-
nature on the right is always present. Moreover, we
assume declarations that formalize the usual com-
putation rules to normalize expressions of type nat.

Note that − is a partial subtraction operator: It
takes as a third argument a proof that n − m is
defined. We will omit that argument whenever the
needed proof is straightforward. This restriction guarantees that we work with
natural numbers but not with negative integers. We additionally assume proof
irrelevance, i.e., an axiom of type −(m,n, P) = −(m,n,Q). Moreover, we will
use the symbols ≤, =, +, and − in infix notation.

Here, for simplicity, we do not formally restrict the use of natural numbers
within LFS. However, we consider their status to be similar to that of types. In
particular, we assume that all terms of type nat refer only to the above signature
and free variables introduced in the toplevel context.

3.2 Syntax

We can now give the grammar of LFS in Fig. 5 by extending the grammar of
LF. All productions for LF are retained but generalized to sequences. All our
extensions are underlined: The singly underlined productions add sequences, the
doubly underlined ones add ellipses.

Kinds K ::= typeS | Πx : U.K

Type Seq. Families U,V ::= · | U, V | US | [U]Sx=1 | a | Πx : U. V | λx : U. V | U S

Term Sequences S, T ::= · | S, T | ST | [S]Tx=1 | ;S | x | λx : U. S | S T

Fig. 5. LFS Grammar

The term sequences S, T are formed by the empty term sequence · and
concatenation S, T . If n : nat, then Sn accesses the n-th element of a
sequence S. Type sequences are formed in the same way. We write En for the
sequence [E]nx=1 if x does not occur free in E.

If a type family sequence has a length other than 1, all its elements are types.
Consequently, the only kind sequences we need are type, . . . , type, which we
write as typeS for S : nat. We recover type as an abbreviation for type1.

320 F. Horozal, F. Rabe, and M. Kohlhase

The term sequence ellipses constructor is [S(x)]nx=1. It takes an argument
n : nat and binds the symbol x : nat in S. Its intended meaning is that it reduces
to the term sequence S(1), . . . , S(n′) whenever n reduces to a natural number
n′. We use an analogous constructor [U(x)]nx=1 for type sequence ellipses.

The constructor for nesting ellipses is more complicated. After several ex-
periments, we opted for a flexary function composition operator as a primi-
tive concept. The intended meaning of ;S is that it takes a sequence of functions
and returns their composition. Thus, ; (f1, . . . , fn) s reduces to fn (. . . (f1 s) . . .).
Notably, this is more general than a fold operator because the type of each fi
may depend on i.

|x| = |U | if x : U in Σ
|a| = |K| if a : K in Σ
|typen| = n
|Πx : E.F | = 1
|λx : E.F | = 1
|E F | = 1
| · | = 0
| E,F | = |E|+ |F |
|En| = 1
|[E]nx=1| = |n|
|;S| = 1

Fig. 6. Length of a Sequence

Finally, we have to clarify the intuitions
of the now-flexary primitives of LF. Flexary
variable bindings x : U formalize variable
sequences, i.e., binding x : (U1, . . . , Un) cor-
responds to binding x1 : U1, . . . , xn : Un.
Thus, the type sequence ellipses immediately
induces a corresponding ellipses constructor
for variable bindings. Accordingly, a flexary
application f T applies a function f to an
argument sequence T .

Much of the intuition behind our grammar
becomes clear from the function |E| for the
length of a sequence defined in Fig. 6. It
maps LFS expressions to expressions of type nat (where E and F range over any
expression allowed by the grammar). We already mention that the type system
given below will respect length, i.e., S : U : typen only if |S|, |U |, and n are
provably equal.

Functions f and applications f T always have length 1 and so have the bodies
of the binders. This forbids computations that returns sequences. This restriction
could be lifted, but we find it is more reasonable to introduce such computations
in object languages defined within LFS.

Before giving the type system, we fortify our intuitions by defining a few useful
abbreviations that we will use later on. The reversal of a sequence is defined
by:

revertE = [E|E|+1−i]
|E|
i=1.

The generalized sequence ellipses an, . . . , a1 and am, . . . , an (if m ≤ n for
natural numbers m, n) are defined by

[E(x)]x=n
1 = revert [E(x)]nx=1 [E(x)]nx=m = [E(m+ x− 1)]n−m+1

x=1

We obtain the usual fold operator in terms of flexary composition:

foldl f S a = (; [λx : A. f xSi]
n
i=1) a

Thus, foldlf S a reduces to (f . . . (f (f a S1)S2) . . . Sn) for a folding function
f : A → B → A, a start element a : A, and a sequence S : Bn. foldr is
defined analogously.

Flexary Operators for Formalized Mathematics 321

3.3 Type System

LFS uses the same judgments as LF, i.e. the ones from Fig. 3. However, we
write the typing judgment Σ � S : U (where U : type is implied in LF) as
Σ � S : U : typen to keep track of the length of S and U . This is redundant
because the length is statically known, but it makes the notations much simpler.

Most importantly, term sequences are typed by type sequences of the same
length, and type sequences are kinded by typen, where n is their length.

Σ � n : nat : type
kindSeq

Σ � type
n Kind

�Σ Sig
emptyType

Σ � · : type0
Σ � U : typem Σ � V : typen

typeSeq
Σ � U, V : typem+n

�Σ Sig
emptyTerm

Σ � · : · : type0
Σ � S : U : typem Σ � T : V : typen

termSeq
Σ � S, T : U, V : typem+n

Σ � S : U : typen Σ � x∗ : 1 ≤ x : type Σ � x∗ : x ≤ |S| : type
termIndex

Σ � Sx : Ux : type

Σ � U : typen Σ � x∗ : 1 ≤ x : type Σ � x∗ : x ≤ n : type
typeIndex

Σ � Ux : type

Σ � n : nat : type Σ, x : nat, x∗ : 1 ≤ x, x∗ : x ≤ n � S : U : type
termSeqEll

Σ � [S]nx=1 : [U]
n
x=1 : type

n

Σ � n : nat : type Σ, x : nat, x∗ : 1 ≤ x, x∗ : x ≤ n � U : type
typeSeqEll

Σ � [U]nx=1 : type
n

Σ � U : typen+1 Σ � S : [Ui → Ui+1]
n
i=1

nestEll
Σ � ;S : U1 → Un+1

Fig. 7. Inferece Rules for Sequences and Ellipses

The inference rules essentially reuse the rules of LF from Fig. 4. We only make
two minor changes to the four rules for binders. Firstly, the four occurrences of
type are replaced with typen for Σ � n : nat. This permits binders to bind

322 F. Horozal, F. Rabe, and M. Kohlhase

variables sequences x : U1, . . . , Un. The LF rules are recovered as the special
case n = 1. Secondly, we add a premise to each of the four rules that ensure that
the body of a binder always has length 1.

Then we add the rules of Fig. 7 for sequences and ellipses. kindSeq makes
typen a valid kind. The rules for the empty sequences and the concatenation
of sequences are obvious. The rules termIndex and typeIndex for taking an ele-
ment of a sequence implement the index-within-bounds check: Ei is only valid
if 1 ≤ i ≤ |E|.

The rules termSeqEll and typeSeqEll handle the sequence ellipsis. Note that
[E]nx=1 actually binds three variables in E: The index x and two assumptions x∗
and x∗ that guarantee that x is within 1 and n. These assumptions can be used
later on to discharge the proof obligations posited by the rules termIndex and
typeIndex and by the subtraction of natural numbers.

Finally, nestEll handles the nesting ellipsis ;S by checking that the function
in S are actually composable. This is easiest if we restrict attention to the com-
position of simple functions.

We only sketch the conversion rules that we add to the ones of LF. Binders
distribute over sequences:

λx : U, V.E = λx1 : U. λx2 : V. [x1, x2/x]T λx : ·. T = [·/x]T

and similarly forΠ . Sequence elements can be projected if the sequence is normal

(E1, . . . , En)x = Ex if |E1| = 1, . . . , |En| = 1

Ellipses are expanded if enough information is available:

[E]nx=1 = [1/x]E, . . . , [n/x]E if n = 1 + . . .+ 1

; · = λx. x ; (f, g) = λx. (; g) ((; f)x) ; f = f if |f | = 1

These conversions have the effect that LFS is conservative over LF in the fol-
lowing sense: If Σ � S :U : typen and all terms of type nat reduce to 1 + . . . + 1,
then n reduces to m, and S and U reduce to S1, . . . Sm and U1, . . . , Um, and
Si : U i for i = 1, . . . ,m in the LF type theory. This means that if the involved
natural number expressions normalize, then LFS-expressions reduce to sequences
of LF-expressions, and LFS-judgments reduce to sequences of LF-judgments. Un-
der this condition, the canonical LFS expressions are sequences of canonical LF
expressions. Consequently, an adequate encoding of objects as LF-expressions,
yields an adequate encoding of sequences of objects as LFS-expressions. Addi-
tionally, reducing full LFS to LF would require a formalization of sequences in
LF already, which is doable, but also very costly.

4 Flexary Logics

Now we use LFS to define the flexary analogues of two languages commonly used
for formalized mathematics.

Flexary Operators for Formalized Mathematics 323

We define flexary sorted first-order logic SFOL∗ by extending the syntax
of SFOL from Fig. 2 with flexary symbols ∧∗, ⇒∗ and ∀∗ along with their proof
rules. All are defined in terms of their fixary counterparts.

∧∗ : formn → form
= λF : formn. foldl ∧ F true

∧∗
I : ΠF : formn. [ded Fx]

n
x=1 → ded ∧∗ F

= λn. λF. λD : [ded Fx]
n
x=1.

; [λx : ded (∧∗ [Fj]
i−1
j=1). ∧I (∧∗ [Fj]

i−1
j=1) Fi xDi]

n
i=1trueI

∧∗
E : ΠF : formn. Πi : nat. Πi∗ : 1 ≤ i.Πi∗ : i ≤ n. ded ∧∗ F → ded Fi

= λF.λi. λi∗.λi∗. λD. ∧Er (∧∗ [Fk]
i−1
k=1) Fi

; [λx. ∧El (∧∗ [Fk]
n−j−1
k=1) Fn−j x]

n−i
j=1 D

abbreviation: Sb
a := [tm Sj]

b
j=a

∀∗ : ΠS : sortn. (Sn
1 → form)→ form

= λS. λF. ; [λf : Si
1 → form . λy : Si−1

1 . ∀λx : tm Si. f (y, x)]i=n
1 F

∀∗I : (Πx : Sn
1 . ded F x)→ ded ∀∗ F

= λD. ; [λd :
(
Πy : Si

1. ded ∀∗λx : Sn
i+1. D (y, x)

)
.

λy : Si−1
1 . ∀I λx : tm Si. d (y, x)

]i=n
1 D

∀∗E : ded ∀∗ F → Πx : Sn
1 . ded F x

= λD.λx. ; [λd : ded ∀∗λy : Sn
i . F ([xj]

i−1
j=1, y). ∀E d xi]

n
i=1 D

The flexary conjunction ∧∗ takes a natural number n and then a sequence of
n conjuncts. We have ∧∗F1 . . . , Fn = (. . . (true ∧ F1) . . .) ∧ Fn and ∧∗· = true.
The introduction rule uses essentially the same folding: Without implicit argu-
ments, it would simply read ∧∗

I D1 . . . , Dn = ∧I (. . . (∧I trueI D1) . . .)Dn and
∧∗
I · = trueI. However, to demonstrate that it is in fact definable, we also give

the implicit arguments in detail: They are underlined. That complicates the def-
inition because each occurrence of ∧I uses different implicit arguments, which
themselves need ellipses to write down. The elimination rule proceeds along the
same lines except that we have to take guards i∗ and i∗ to make sure the indices
Fi are within bounds.

For disjunction, we would use ∨∗ F = foldl ∨ F false accordingly. For im-
plication, which is not associative, we define ⇒∗: formn → form → form and
⇒∗ F G = foldr ⇒ F G.

The definition of flexary quantifiers is more involved. Intuitively, we want
∀∗ S F = ∀λx1 : S1. . . .∀λxn : Sn. F (x1, . . . , xn). Let [;G(i)]i=n

1 be the ellipsis in
the definiens of ∀∗. Then the type of G(i) is (Si

1 → form)→ (Si−1
1 → form), and

when constructing G(n) (. . . (G(1)F) . . .), each G(i) introduces ∀xi. Note that
all variables are called x, the names xi are introduced when LFS α-renames x
during capture-avoiding substitution.

The definitions of the proof rules are conceptually straightforward but equally
subtle. The flexary existential quantifier can be defined in the same way.

324 F. Horozal, F. Rabe, and M. Kohlhase

Next, we define flexary simple type theory STT∗ by extending the syntax
of STT from Fig. 2. We define a flexary function type constructor, flexary λ-
abstraction, and flexary application in terms of the fixary ones. We omit the
proof of the flexary β-reduction.

=⇒∗ : tpn → tp → tp
= λA : tpn. λB : tp. foldr =⇒ AB

lam∗ : ([tm Ai]
n
i=1 → tm B)→ tm (A=⇒∗B)

= λF. ; [λf : [tm Aj]
i
j=1 → tm

(
[Aj]

n
j=i+1=⇒∗B

)
.

λy : [tm Aj]
i−1
j=1. lam λx : tm Ai. f (y, x)

]i=n
1 F

app∗ : tm (A=⇒∗B)→ [tm Ai]
n
i=1 → tm B

= λF. λa. ; [λf : An
i =⇒ B. app f xi]

n
i=1 F

beta∗ : app∗ (lam∗(λx : [tm Ai]
n
i=1.T))X = (T X) = . . .

5 Flexary Mathematics

Now we use SFOL∗ and STT∗ to formalize a collection of common mathematical
examples.

Monoid Operations Like we did for conjunction, we can define the flexary version
of any associative binary operator. Consider a monoid with carrier α : type,
binary operation ◦ : α → α → α and unit element e : α. Then we define the
flexary operation ◦∗ as follows:

◦∗ : Πn : nat. αn → α = λn. λx : αn. foldl ◦ x e

This immediately yields the power operator:

power : α→ nat→ α = λx. λn. ◦∗ xn

By specializing to the monoid of endofunctions on a type, we obtain the iteration
of functions as follows:

iter : (α→ α)→ nat→ (α→ α) = λf. λn. ; fn

Multi-relations Multi-relations like a ∈ b ⊆ c are routinely used in informal
mathematics but cannot be defined as single operators within a fixary logic.
They can only be defined as notations within an implementation of the logic.
Using SFOL∗, we can define it as a flexary operator elegantly:

multirel : ΠA : sortn. (tm A)n+1 → (tm A→ tm A→ form)n → form
= λx : (tm A)n+1. λr : (tm A→ tm A→ form)n.∧∗ [ri xi xi+1]

n
i=1

For example, we can now write the above multi-relation as
multirel (a, b, c) (∈,⊆). More generally, we can define multi-relations for relations
between different types:

multirel ′ : ΠA : sortn. [tm Ai]
n+1
i=1 → [tm Ai → tm Ai+1 → form]ni=1 → form

= λA. λx. λr.∧∗ [ri xi xi+1]
n
i=1

Flexary Operators for Formalized Mathematics 325

a′ : tp
a : type = tm a′

0a : a
1a : a
+ : a→ a→ a
× : a→ a→ a

Vectors and Matrices Now we formalize vectors in STT∗.
For simplicity, we assume a fixed base type a with the
structure of a ring as given on the right

Then we axiomatize a type constructor of fixed-length
vectors as follows, where n is an implicit argument every-
where:

Vec′ : nat→ tp
Vec : nat→ type = λn. tm (Vec′ n)
vec : an → Vec n
index : Πm : nat. Πm∗ : 1 ≤ m.Πm∗ : m ≤ n.Vec n→ a
compute : Πm : nat. Πm∗ : 1 ≤ m.Πm∗ : m ≤ n.Πx : an.

index mp q (vec x) = xm

complete : Πv : Vec n. v = vec [index i i∗ i∗ v]ni=1

It may appear strange that we call vec : nat→ tp an example in simple type
theory. However, recall that nat is not a type of the logic STT∗ but a feature of
the framework. Thus, there is no substantial structural difference between our
vec and type operators like list : tp → tp. Indeed, our treatment of implicit
arguments of type nat is very similar to the treatment of free type variables in
higher-order logics.

We can now define the addition and scalar multiplication elegantly:

�+ : Vec n→ Vec n→ Vec n
= λv. λw. vec [(index i i∗ i∗ v) + (index i i∗ i∗w)]ni=1

�× : a→ Vec n→ Vec n
= λx. λv. vec [x× (index i i∗ i∗ v)]ni=1

In implementations, these definitions would resemble the ones in informal
mathematics even more: We would use appropriate notations for vec and index ,
and it is straightforward for a theorem prover to find the guard arguments of
index automatically.

More generally, we can formalize the type of vectors Vec : tp → nat→ tp over
an arbitrary base type and define matrices as vectors of vectors. Then matrix
addition and multiplication can be defined accordingly.

Polynomials Finally, we axiomatize a type of polynomials (over the same fixed
base type a : type as above) as follows:

Poly ′ : tp
Poly : type = tm Poly ′

poly : an+1 → Poly
deg : Poly → nat

coeff : Poly → nat→ a
comp deg : Πc : an+1. deg (poly c) = n
comp coeff 1 : Πc : an+1. Πm : nat.

1 ≤ m→ m ≤ n+ 1→ coeff (poly A)m = Am

comp coeff 2 : Πc : an+1. Πm : nat. n+ 2 ≤ m→ coeff (poly A)m = 0a
complete : Πp : Poly . p = poly [coeff p i]1+deg p

i=1

326 F. Horozal, F. Rabe, and M. Kohlhase

Here poly constructs a polynomial from coefficients, deg returns an upper
bound on the degree, and coeff returns a coeffiecient. comp deg , comp coeff 1,
and comp coeff 2 compute the degree and coefficients of an explicitly given poly-
nomial. And complete makes every polynomial equal to the one formed from its
coefficients.

We can now define the evaluation of a polynomial for a given x concisely:

eval : poly → a→ a = λp. λx.+∗ [(coeff p i)× (×∗ xi−1)]1+deg p
i=1

where +∗ and ×∗ are the flexary versions of + and ×, respectively.
The ring operations on polynomials can be defined accordingly.

6 Conclusion and Future Work

It is almost impossible to write about mathematical objects without using se-
quence ellipsis (. . .). This observation is independent of the language used, or
the formal system employed: if we eliminate ellipses, then expressions get more
complicated and communication can become quite awkward. This universality
strongly suggests that sequences and sequence ellipsis are a meta-level feature
of mathematical languages.

Guided by this realization, we present LFS, an extension of LF with a novel
feature of type sequences. Using the extended framework for logic development
enables us to specify flexary logics with flexary operators and calculi that deal
with them in proofs. We exemplify this ability with flexary sorted first-order logic
and flexary simple type theory. As they use LFS as their meta-language, both can
define flexary operators in terms of their fixary counterparts. A central theme
is that the type of a flexary operator depends on a natural number argument,
which instantiates the flexible arity: We call this arity polymorphism because
it is very similar to the well-known type polymorphism where the type of an
operator depends on a type argument.

Numerous examples from everyday mathematics show that the flexary lan-
guages allow more adequate formalizations of complex objects like vectors, ma-
trices, and polynomials.

In the future, we want to extend/complete MKM support for LFS. In par-
ticular, we want to i) look at additional examples, e.g. the complex matrix
representations in [SS06], ii) investigate type reconstruction of LFS and imple-
ment it based on MMT [RK13, Rab13], which will in particular infer omitted
natural number arguments, iii) extend the support for sequences and elisions
to flexiformal mathematics markup systems like LATEX and STEX, iv) integrate
native support for argument sequences into OpenMath and content MathML
completing the work started in [HKR11], and finally v) develop semantics re-
construction techniques that transform 1, 2, . . . , n into [i]ni=1 or 1, 2, 4, 8, . . . into
[2i]∞i=1.

Acknowledgements. Work on the concepts presented here has been partially
supported by the German Research Foundation (DFG) under grant KO 2428/13-
1.

Flexary Operators for Formalized Mathematics 327

References

[ABC+03] Ausbrooks, R., Buswell, S., Carlisle, D., Dalmas, S., Devitt, S., Diaz, A.,
Froumentin, M., Hunter, R., Ion, P., Kohlhase, M., Miner, R., Poppelier, N.,
Smith, B., Soiffer, N., Sutor, R., Watt, S.: Mathematical Markup Language
(MathML) Version 2.0, 2nd edn. (2003), http://www.w3.org/TR/MathML2

[CH88] Coquand, T., Huet, G.: The Calculus of Constructions. Information and
Computation 76(2/3), 95–120 (1988)

[Com07] Information technology — Common Logic (CL): a framework for a family
of logic-based languages. Technical Report 24707:2007, ISO/IEC (2007)

[Coq14] The Coq Development Team. The Coq Proof Assistant: Reference Manual.
Technical report, INRIA (2014)

[HHP93] Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. Journal
of the Association for Computing Machinery 40(1), 143–184 (1993)

[HKR11] Horozal, F., Kohlhase, M., Rabe, F.: Extending OpenMath with Sequences.
In: Asperti, A., Davenport, J., Farmer, W., Rabe, F., Urban, J. (eds.) In-
telligent Computer Mathematics, Work-in-Progress Proceedings, pp. 58–72.
University of Bologna (2011)

[KB04] Kutsia, T., Buchberger, B.: Predicate logic with sequence variables and se-
quence function symbols. In: Asperti, A., Bancerek, G., Trybulec, A. (eds.)
MKM 2004. LNCS (LNAI), vol. 3119, pp. 205–219. Springer, Heidelberg
(2004)

[Kor12] Korni�lowicz, A.: Tentative experiments with ellipsis in Mizar. In: Jeuring,
J., Campbell, J.A., Carette, J., Dos Reis, G., Sojka, P., Wenzel, M., Sorge,
V. (eds.) CICM 2012. LNCS (LNAI), vol. 7362, pp. 453–457. Springer,
Heidelberg (2012)

[ML74] Martin-Löf, P.: An Intuitionistic Theory of Types: Predicative Part. In: Pro-
ceedings of the 1973 Logic Colloquium, pp. 73–118. North-Holland (1974)

[Nor05] Norell, U.: The AgdaWiKi (2005), http://wiki.portal.chalmers.se/agda
[Pau94] Paulson, L.C.: Isabelle: A Generic Theorem Prover. LNCS, vol. 828.

Springer, Heidelberg (1994)
[Pfe01] Pfenning, F.: Logical frameworks. In: Handbook of Automated Reasoning,

pp. 1063–1147. Elsevier (2001)
[PS99] Pfenning, F., Schürmann, C.: System description: Twelf - A meta-logical

framework for deductive systems. In: Ganzinger, H. (ed.) CADE 1999.
LNCS (LNAI), vol. 1632, pp. 202–206. Springer, Heidelberg (1999)

[Rab13] Rabe, F.: The MMT API: A Generic MKM System. In: Carette, J., Aspinall,
D., Lange, C., Sojka, P., Windsteiger, W. (eds.) CICM 2013. LNCS (LNAI),
vol. 7961, pp. 339–343. Springer, Heidelberg (2013)

[RK13] Rabe, F., Kohlhase, M.: A Scalable Module System. Information and Com-
putation 230(1), 1–54 (2013)

[SS06] Sexton, A., Sorge, V.: Processing textbook-style matrices. In: Kohlhase, M.
(ed.) MKM 2005. LNCS (LNAI), vol. 3863, pp. 111–125. Springer, Heidel-
berg (2006)

[Wol12] Wolfram Research, Inc. Mathematica 9.0 (2012)

http://www.w3.org/TR/MathML2
http://wiki.portal.chalmers.se/agda

Interactive Simplifier Tracing and Debugging
in Isabelle

Lars Hupel

Technische Universität München, Germany
lars.hupel@tum.de

Abstract. The Isabelle proof assistant comes equipped with a very pow-
erful tactic for term simplification. While tremendously useful, the results
of simplifying a term do not always match the user’s expectation: some-
times, the resulting term is not in the form the user expected, or the
simplifier fails to apply a rule. We describe a new, interactive tracing
facility which offers insight into the hierarchical structure of the sim-
plification with user-defined filtering, memoization and search. The new
simplifier trace is integrated into the Isabelle/jEdit Prover IDE.

Keywords: Isabelle, simplifier, term rewriting, tracing, debugging.

1 Introduction

Isabelle is a generic proof assistant [10]. It comes with some very powerful tactics
which are able to discharge large classes of proof goals automatically. This work is
concerned with the rewriting tactic, often called the simplifier. It can be used to
rewrite subterms according to a user-definable set of equations, which generally
means simplifying a term to a normal form. These equations can have conditions
which are recursively solved by the simplifier itself. Hence, there can be quite a
huge number of steps between the original term and its normal form. Because
of that complex work in the background, it is not obvious to the user how the
input gives rise to certain terms in the output.

By default, this process is completely opaque: the only observable effect is—
given that the simplification succeeded—the (hopefully) simpler term it pro-
duced. If it failed, only an error message without any indication of the reasons is
printed, or it might not even terminate at all. Currently, there is a tracing facility
which can be enabled by the user. It collects data about the steps the simplifier
executed, and prints each of them without any high-level structure. The resulting
trace can easily contain many screenfuls of items which the user has to labori-
ously search for interesting pieces of information. This could also easily lead to
sluggish GUI behaviour in the Isabelle/jEdit Prover IDE because of the huge
amount of content which has to be rendered on the screen. There are various
techniques to alleviate that problem, notably limiting the recursion depth.

However, this does not solve the fundamental problem of showing only the in-
teresting parts of the trace to the user. This paper describes the design of a new

S.M. Watt et al. (Eds.): CICM 2014, LNAI 8543, pp. 328–343, 2014.
c© Springer International Publishing Switzerland 2014

Interactive Simplifier Tracing and Debugging in Isabelle 329

tracing and debugging mechanism which can be configured to filter trace mes-
sages and render a semantically meaningful representation of the simplification
trace (Section 2). For example, rewriting the term a < b =⇒ 0 < b =⇒ 0 <
c =⇒ 0 < (c+ c)/(b−a) already produces over 300 trace messages with the old
tracing. Navigating the linear presentation of the trace is non-trivial. The new
tracing shows a hierarchical view of the trace where the user can hide the traces
of uninteresting subexpressions. The user can simply filter the trace for vari-
ous keywords, e.g. “ac” (which usually denotes an associativity/commutativity
rule if its name contains this string). For our example expression, this uncovers
that for solving the goal—the term is rewritten to True—the simplifier used
commutativity of multiplication (it rewrote 2 · c to c · 2).

The new tracing also offers interactive features like breakpoints and stepping
into or over recursive calls (Section 3), which are well-known from debuggers for
imperative programming languages such as gdb [12]. In combination with the
filtering, this is very effective in narrowing down causes for failure.

Furthermore, this paper contributes a mechanism for incremental debugging,
i.e. upon changes in the source code the system continues execution where it left
off instead of starting from scratch again (Section 3.2), which is especially use-
ful during exploratory proof development where assumptions and rewrite rules
change frequently. Suppose that in our example, the precondition a < b were
absent. Upon stepping through the simplification, the user realizes that the pre-
condition is missing, and adds it to the goal. The simplifier runs again, but the
user does not have to step through identical subtraces again; instead, only new
parts are shown.

The tracing has been integrated into the Isabelle/jEdit Prover IDE, which is
implemented in Scala [15]. The interplay between the ML process and the JVM
process hosting the prover and the IDE, respectively, works via an underlying
protocol, of which only a reasonably high-level interface is exposed [14, §3]. The
new simplifier trace works on both sides: Trace messages are produced and pre-
processed in Isabelle/ML and formatted and renderered in Isabelle/Scala. In
order to reduce the amount of data sent between the processes, there is a multi-
staged and user-configurable message filter. The implementation also supports
parallel simplifier runs. Although the new tracing produces more metadata than
previously and incurs an overhead for the communication between the prover
and the IDE, the performance is acceptable for user interaction (Section 6).

We compare our work with existing approaches in SWI-Prolog [6,8,11], Maude
[4, 5] and other proof assistants (Section 5). Both SWI and Maude offer tracing
mechanisms that solve similar problems, e.g. conditional rules and failing rewrite
(or deduction) steps. Finally, we evaluate the performance of the system and give
prospects for further research (Section 6).

Terminology A (trace) message is a piece of structured information about the
current state of the simplifier. Messages requiring a response (possibly by the
user) are called interactive. A rewrite rule is a theorem stating an equality. If
a rewrite rule is conditional, its preconditions are (in most situations) solved
recursively by the simplifier itself.

330 L. Hupel

Fig. 1. New trace panel in Isabelle/jEdit

2 Design Principles

The fundamental idea for tracing and debugging is to instrument the simplifier
to collect data and influence the flow. The previous tracing only does the former:
at certain points in the program flow, it prints messages indicating the current
state. For example, when the simplifier is invoked, the function trace_term
is called, which takes a term and a string. The system then prints the fixed
string “Simplifier invoked...” and the term to the regular output channel, where
it appears alongside other status information, e.g. the goal state.

In the new implementation, the simplifier has been extended with the possi-
bility to install hook functions. When the simplifier is invoked, the hook function
invoke is called which takes a term. The precise formatting of the message, or
if it gets printed at all, is left as an implementation detail to the new module.
The internal details are not observable for the simplifier.

This has several advantages: First, it reduces code clutter, because trace for-
matting and output is not mixed with the program logic. The semantics of the
program flow is not lost, since it is clear that a call to the invoke hook denotes a
(possibly recursive) invocation of the simplifier. Lastly, influencing the simplifier
becomes easy. For example, the apply hook which denotes an application of a
conditional rewrite rule takes a continuation1 as an argument, which allows the
tracing to replay the program flow if necessary. This means that instead of just
observing the current state of the simplifier, the user is actually able to inter-
actively manipulate it. Because of pervasive immutability in Isabelle’s internal
data structures, the simplifier does not have to track any tracing state explicitly
for that case.

In the user interface, this is realized by presenting questions to the user at
certain points in the program flow (Fig. 1). A question contains the instantiated
rewrite rule, the redex, and matching term breakpoints (see Section 2.2). The
simplifier is blocked until the user answers the question, and upon answering,
1 Continuation passing is a progamming technique in which a function does not return

a value, but rather takes a function as argument and invokes this function with the
value it computed. In essence, a function ’a -> ’b is transformed into a function ’a
-> (’b -> unit) -> unit.

Interactive Simplifier Tracing and Debugging in Isabelle 331

Fig. 2. New trace window in Isabelle/jEdit

the program flow might deviate from the usual one, e.g. certain steps may be
skipped. At any point in time, the user can open a trace window which shows the
accumulated trace output (Fig. 2). There, the trace can be filtered and sub-parts
can be folded for easier navigation.

The new tracing facility is highly configurable and goes to great lengths to
keep the number of unwanted messages low. A related design goal is efficiency,
so that the user does not experience long delays. Together, configurability and
efficiency should guarantee that the user interface stays responsive.

2.1 Hooks and Message Types

On a high level, these are the types of trace messages the system can send:

invoke tells the tracing system that the main entry point of the simplifier has
been called. This happens on initial invocation of the tactic and on recursive
calls when the conditions of rewrite rules are being solved.

apply guards the application of a (potentially conditional) rewrite rule by the
simplifier. It is invoked before the rule is applied. It depends on the user
input how the simplification proceeds after that. (interactive)

hint indicates whether a rewrite step failed or succeeded. If it failed, the user
is given a chance to inspect the failure, and can decide if the failing step
should be tried again (with different settings). (possibly interactive)

ignore marks a specific part of the trace as obsolete. This message is produced
when the user wants to retry a failing step. It is generated by the tracing
system and thus cannot be sent explicitly by the simplifier.

log emits a log message (with arbitrary content) which will not be further in-
terpreted by the system.

Messages may have children. For example, apply messages are naturally as-
sociated with the invoke message emitted in the simplifier invocation. Hence,

332 L. Hupel

each message carries a pointer to the parent message. The IDE is in turn able
to reconstruct the hierarchical structure prior to presenting the full trace output
to the user.

Recall the example from the introduction. When the user calls the simplifier,
an invoke message is issued for the whole term. During simplification, the sub-
term 0 < c · 2/(b− a) arises. To simplify it, a rewrite rule with the precondition
0 < x is used, where x gets instantiated with b−a. Here, the system first issues a
apply message with the name of that rule and its instantiation, and afterwards
invoke with the term 0 < b−a. This can be solved by the simplifier (after some
more rule applications), which yields a hint(success) message, indicating that
the original subterm was rewritten to 0 · (b− a) < c · 2. The trace window then
groups these messages and presents them in one subtree.

2.2 Settings

It is important to determine which questions are relevant. Showing a question
for each step is not feasible, because it might take thousands of steps until a term
is rewritten into normal form. Hence, by default, the system shows no questions
at all. The user is able to specify that behaviour via multiple configuration axes:
Most importantly, verbosity modes (which can be changed during a simplification
run) and breakpoints.

Modes The three regular modes of operation are:

disabled do not produce any trace messages at all
normal produce messages, but display them only if their contents are triggering

a breakpoint
full produce messages and display all of them

Each of these cases can be combined with a flag which denotes whether the
output should just be logged, or presented as a question to the users. The user
can only interactively influence the simplification process in the latter case.

In most cases, it is reasonable to avoid the full mode: even for seemingly
small terms, the potential amount of applied rewrite rules can get quite high.
While the system has no problem producing and transmitting these messages,
displaying them takes a while.

Breakpoints The user can specify the set of interesting rewrite steps by defining
breakpoints. If a step triggers such a breakpoint, the simplifier is intercepted
and the system displays a question.

In debuggers for imperative languages, the concept of breakpoints is well-
known. Usually, breakpoints are set to lines in the source code, and when the
sequential execution of the program hits a marked line, the execution is halted.
Furthermore, many debuggers support conditional breakpoints, where users can
specify a condition, and the breakpoint only triggers if that condition is met.

Here, the implementation obviously has to differ from traditional debuggers,
because it does not follow a strict sequential execution model. The principle is

Interactive Simplifier Tracing and Debugging in Isabelle 333

easy, though: each rewrite step in the simplifier consists of a term (the redex) and
a theorem (the rewrite rule). Breakpoints can be set for either of them. Term
breakpoints usually contain patterns and can refer to locally fixed variables.
For example, the breakpoint _ > 0 matches when the term y + z > 0 is to be
rewritten, where y and z can be any fixed or free variables. A theorem breakpoint
is triggered when the corresponding rewrite rule is used.

Users can declare breakpoints with the usual Isabelle attribute mechanism,
i.e. by adding the string declare theorem_name[break_thm] into the theory
sources before the point where the simplifier is invoked (and similarly for term
breakpoints). For example, the panel in Fig. 1 shows a step which matches
a breakpoint declared with break_term "?y < b - ?x" (where ? indicates a
pattern variable).

3 User Interaction

User interaction is fundamental to the new tracing. The system might present
the user some questions about the current progress which it deems to be rele-
vant. The user can then decide how to progress. In this section, the handling of
interactive messages is described.

3.1 Interactive Messages

As seen earlier, there are two types of interactive messages which allow the user
to influence the outcome of the simplifier: apply before a simplification step is
attempted, and hint for when a simplification step failed.

Message apply When a step is attempted, the message contains the instantiated
rewrite rule, the redex, and a number of different possible replies. The user can
choose to continue the computation, which instructs the simplifier to apply the
specified rule (which requires solving the rule’s preconditions first) and thus does
not influence the result of the simplifier. The other option is to skip the current
step, even if it would have succeeded.

As a result, the outcome of a simplification run is potentially different from
when tracing would be disabled. Hence, skipping should be used sparingly: the
most common use case would be to find overlapping rewrite rules, i.e. multiple
rules which match on the same term.

Message hint(failed) Often, the user wants feedback immediately when the
simplification failed. Prior to this work, in case of failure the simplifier just does
not produce any result, or produces an unwanted result.

On the other hand, with this message type, the new tracing provides insight
into the simplification process: It indicates that the simplifier tried to solve the
preconditions of a rewrite rule, but failed. There are a number of different reasons
for that, including that the preconditions do not hold or that a wrong theorem
has been produced in the recursive call, which would indicate a programming

334 L. Hupel

error in the tactic. Regardless of the reason, it is possible to redo a failed step if
(and only if) the original step triggered a user interaction previously.

Consider an example: The term f t1 is to be rewritten. The rewrite rule
P1 x =⇒ f x ≡ g x is applicable and gets instantiated to P1 t1 =⇒ f t1 ≡ g t1.
Assume that there is a breakpoint on that particular rule, hence the user is
presented a question whether the rule should be applied. The user chooses to
continue, and the simplifier recursively tries to solve the precondition P1 t1. Now
assume that this entails application of another conditional rule which does not
trigger a breakpoint (hence no question), but this step fails. In turn, the rewriting
of f t1 fails. The system now displays the “step failed” message to the user for
the outermost failing step. No messages are displayed for the inner failing steps
which caused the outermost one to fail. This is by design for two reasons:

– Often, the simplifier has to try multiple rules to prove a precondition. This is
the case when there are multiple, overlapping rules for a predicate. Were the
panel to notify the user for each of those steps, this would quickly become
very confusing because of a flood of unrelated, and in the end, unimportant
failures.

– If the innermost failure is several layers of recursions away from the origi-
nal, interesting step, it becomes difficult for the user to establish a causal
relationship between the previously answered apply and the subsequent
hint(failed) message.

Should the user choose to redo the computation, the simplifier state will be
rolled back to before the last question. In the above example, the system would
ask for the application of the rewrite rule P1 t1 =⇒ f t1 ≡ g t1 again. Of course,
answering that question the same way a second time would not change anything.
But it is possible to change the settings and obtain more detailed information.
This requires the simplifier to run anew, which is a consequence of the message
filtering (see Section 4).

3.2 Memoization

Suppose the user invoked the simplifier with a set of rewrite rules and realizes
during a simplification run that a rule is missing. The user then adds the rule
to the simplifier and expects not to be asked the same questions they already
answered again. This is similar to debugging an imperative program: While
stepping through the execution, an error is found and the source code is changed
accordingly. After restarting the process, the user reasonably expects to continue
at the same point (or a bit earlier) where the debugging session has been exited
previously.2 This is not always possible, but as long as editing the source code
2 In fact, the Java debugger of the NetBeans IDE offers a similar feature. Code changes

while debugging can be applied to the running program, which requires reloading
the affected classes in the JVM instance. This completely avoids the problem of
reconstructing the original state after restarting the process, because the process is
not even being terminated.

Interactive Simplifier Tracing and Debugging in Isabelle 335

preserves certain invariants (e.g. the arrangement of global variables), resuming
at the old execution point is safe.

However, this contradicts the stateless nature of Isabelle’s document model:
any changes in the proof text causes the system to discard and reinitialize all
active command states.

In the new tracing, a memoization system helps in mitigating that issue by
trying to reconstruct the original tracing state. Each time the user answers an
apply question, that answer is recorded in a (global) storage. When the same
question appears again later, be it in the same simplification run or in another
one, it is automatically answered identically. All of this happens in the JVM
process to avoid cluttering the tracing logic with mutable state.

Redoing a simplification step creates an interesting feature overlap with mem-
oization. Since fundamentally, redoing a step makes the system display the orig-
inal question again, a naively implemented cache would auto-answer that ques-
tion. As a consequence, the (unchanged) computation would fail again, which
would obviously diminish the utility of this question type. Hence, care has been
taken in the implementation to partially clear the cache.

Recall that every time a user chooses to redo a failed computation, the system
generates an ignore message. The memoization mechanism in the IDE picks up
the parent of such a message from its store, and deletes its answers and the
answers of its children from the memory. The user is also able to clear (or even
disable) the memory completely in case that behaviour is unwanted.

Note that despite what the name “memory” might suggest, no fuzzy matching
of any sort is done. At the moment, questions are compared using simple textual
identity of their contents. If the text of a message is slightly different, it will
not be considered (this includes renaming of free variables). This is essentially a
trade-off: the notion of “fuzziness” is extremely context-dependent. For example,
for some predicates, a simple change of a constant is meaningless, whereas for
other predicates, a conditional rule depends on it. Designing a reasonable fuzzy
matcher is outside of scope here, but an interesting starting point for future work.

4 Message Filtering

Based on the settings described in the previous sections, messages get filtered.
The process for apply messages is depicted in Fig. 3 and consists of these steps:

1. Using normal verbosity, messages which have not been triggered by a break-
point are discarded right at the beginning. This happens immediately after
the simplifier creates them. Unless tracing is disabled completely, accepted
interactive messages are then transferred to the IDE, where they will be
treated as potential questions for the user.

2. If the tracing operates without user intervention (e.g. if the user explicitly
disabled it earlier), messages are merely logged and answered with a default
reply. The default reply is chosen so that it does not influence the simplifier
in any way, i.e. it proceeds as if tracing would be disabled.

336 L. Hupel

mode triggers?

accept

discard

normal

yes

full

no

disabled

inter-
active?

memo-
ized?

reply from
memory

yes yes

auto
reply?

display
question

default
reply

no

no

yes

no

Fig. 3. Message filtering for apply messages

3. Some questions are eligible for memoization. The memory is queried to check
for a match.

4. If auto reply is enabled, all remaining questions are also automatically an-
swered with a default reply. Otherwise, they are finally being displayed. This
is scoped to the current focus, i.e. only applies to the active questions of the
selected command in the proof text. A use case for this facility arises when
interactive tracing is globally enabled, but the user wants to discharge active
questions of some selected commands without having to modify the proof
text.

At a first glance, this pipeline might seem a little convoluted. However, these
steps are necessary to match the user’s expectation to only get asked if desired,
which (ideally) should happen rarely. Filtering keeps the number of unwanted
messages at a minimum.

5 Related Work

In this section, we will compare our contributions with the SWI implementation
of Prolog and the Maude rewriting language. Both systems offer tracing and
debugging facilities where the user is able to step through the computation.
The theorem provers Coq, HOL4, HOL Light and PVS have only rudimentary,
non-interactive trace facilities, which is why we omit a thorough comparison.

5.1 Debugging and Tracing in SWI-Prolog

Prolog is a logic programming language [6, 11]. A program consists of a set of
clauses, namely rules and facts. Rules are (usually) Horn clauses, with a head
and a body. Facts are merely rules with an empty body. Heads may contain

Interactive Simplifier Tracing and Debugging in Isabelle 337

child(a, b).
child(b, c).

descendant(X, X).
descendant(X, Z) :-

child(X, Y), descendant(Y, Z).

(a) Input database

[trace] ?- descendant(a, c).
Call: (6) descendant(a, c) ? creep
Call: (7) child(a, _G1949) ? creep
Exit: (7) child(a, b) ? creep
Call: (7) descendant(b, c) ? creep
Call: (8) child(b, _G1949) ? creep
Exit: (8) child(b, c) ? creep
Call: (8) descendant(c, c) ? creep
Exit: (8) descendant(c, c) ? creep
Exit: (7) descendant(b, c) ? creep
Exit: (6) descendant(a, c) ? creep

true ;
Redo: (8) descendant(c, c) ? creep
Call: (9) child(c, _G1949) ? creep
Fail: (9) child(c, _G1949) ? creep
Fail: (8) descendant(c, c) ? creep
Fail: (7) descendant(b, c) ? creep
Fail: (6) descendant(a, c) ? creep

false.

(b) Query with tracing enabled

Fig. 4. Prolog example

variables, and bodies may contain variables not occurring in the head. Variable
names must begin with an upper-case letter or an underscore, whereas atoms
must begin with a lower-case latter.

The example in Fig. 4a defines a program with two predicates, child and
descendant. A query is basically a predicate with possibly uninstantiated vari-
ables, and Prolog tries to instantiate those. In Prolog terminology, such an ex-
pression is a goal, and the interpreter attempts to prove it.

When proving a goal, Prolog tries to unify the current goal with any of the
available clause heads, and proceeds recursively with each item in the body as
new subgoals. This is similar to how the simplifier works in Isabelle: The left-
hand side of a rewrite rule is matched to the current term, and if matches, it
tries to solve the preconditions of the rule recursively.

The Prolog implementation SWI-Prolog provides a tracing facility for queries
[8, §§2.9, 4.38]. An example for the tracing output can be seen in Fig. 4b (the
term creep denotes continuing the normal process).3

Apart from continuing the process, SWI offers some additional commands.
The commands relevant for this work are:

3 A discussion of tracing in Prolog can be found in [6, §8], and further analyses in [7].
SWI uses a slightly extended variant thereof.

338 L. Hupel

abort exits the whole proof attempt
fail the current goal is explicitly marked as failure, regardless whether it could

have been proved
ignore the current goal is explicitly marked as success
retry discards the proof of a subgoal and backtracks to the original state of the

parent goal

In contrast to SWI, marking a goal as success is not supported in our work.
The simplifier—just like any other tactic—has to justify its steps against Is-
abelle’s proof kernel, which would not accept such a user-declared success. A
possible workaround would be to introduce such theorems “by cheating”, i.e.
by explicitly declaring an “oracle” which adds an axiom to the proof. It is an
interesting discussion whether or not it is sensible to grant the simplifier the
“privilege” to generate invalid theorems in tracing mode.

Finally, it is possible to declare breakpoints on predicates. SWI allows to
refine breakpoints with the specific event (referred to as port). For example, the
user can specify that they are interested only in fail messages, but not call
messages. However, as soon as such a breakpoint is set, the tracing ceases to be
interactive and switches to a log-only mode.4 In our work, the filtering concept
is more sophisticated and allows a fine-grained control over what is being asked.
In SWI, it is not possible to set a breakpoint on terms.

In summary, SWI’s features are quite similar to what we have implemented,
but differ in a few conceptual points. First and foremost, the “execution” model
of Prolog and Isabelle theories differ significantly. Evaluation of Prolog queries
happens sequentially, and any changes in the underlying source code must be
explicitly reloaded. That also means that running queries need to be aborted.
On the other hand, using Isabelle/jEdit, changes in a theory get reloaded im-
mediately and affects pending computations directly. We can conclude that a
memoization mechanism as implemented in our work is not necessary in Prolog.

5.2 Debugging and Tracing in Maude

Maude is a logic language based on term rewriting [4, 5]. A program consists
of data type declarations and equations. Then, the user can issue a reduce
command, which successively applies rewrite rules to an input term. A short
example modelling natural numbers can be seen in Fig. 5a.

This snippet declares a data type for natural numbers, along with its two
constructors zero and s. Additionally, it defines an addition function, a predicate
to check whether a number is non-zero and two equalities for that predicate. We
have left out the equations for addition because they are not needed for the
example.

Similar to Isabelle’s simplifier, rewrite rules can be conditional. In the trace,
it becomes obvious that those are handled exactly like in Isabelle. A potentially
4 Switching to log-only mode is possible in our work, too. When in non-interactive

mode, trace is only produced for steps matching breakpoints, but no questions are
presented to the user.

Interactive Simplifier Tracing and Debugging in Isabelle 339

fmod SIMPLE-NAT is
sort Nat .
op zero : -> Nat .
op s_ : Nat -> Nat .
op _+_ : Nat Nat -> Nat .
op nonzero_ : Nat -> Bool .

vars N M : Nat .
ceq nonzero (N + M) = true

if nonzero N /\ nonzero M .
eq nonzero (s N) = true .

endfm

(a) A simple program

Maude> reduce nonzero (s zero + s s zero) .
*********** trial #1
ceq nonzero (N + M) = true

if nonzero N = true /\ nonzero M = true .
N --> s zero
M --> s s zero
*********** solving condition fragment
nonzero N = true
*********** equation
eq nonzero s N = true .
N --> zero
nonzero s zero
--->
true
(...)
*********** success #1
*********** equation
(...)
nonzero (s zero + s s zero)
--->
true

(b) Reducing a term with trace enabled

Fig. 5. Maude example (based on [4, §2.2])

applicable rule gets instantiated with the concrete term, and the preconditions
are solved recursively.

The Maude tracing is purely sequential and offers little to no insight into
the hierarchical structure when conditional rules are involved. The trace can be
tuned in various ways [4, §§14.1, 18.6]: for example, Maude allows filtering for
named rules and operations (albeit only the outermost operation in the redex
is considered). There is also a wealth of settings which control verbosity of the
trace, e.g. whether solving preconditions or the definition of rules should be
included in the trace.

Apart from controlling the textual output, it is also possible to enable output
colouring, similarly to the highlighting in Isabelle. The major difference here
is that Maude distinguishes between constructor and nonconstructor symbols,
whereas such a distinction is not made in Isabelle. An indicator for problems in
the set of rewrite rules of a Maude program is when a term does not get fully
rewritten, which is defined as nonconstructor symbols still occur after reducing
[4, §14.1.2]. Hence, colouring symbols differently greatly improves debugging
experience in Maude, because it also gives hints into when exactly a problem
has been introduced.

In addition to tracing, there is also a debugging facility. It can be configured
with breakpoints in the same way as the tracing. When a breakpoint is hit, the
user can resume or abort the whole computation, but also (on request) observe
the stack of recursive invocations. The latter also includes a textual explanation,
e.g. that the current term is being rewritten to solve a precondition.

340 L. Hupel

Table 1. Execution times to simplify 10x · 10y (in seconds, without rendering)

x y disabled old tracing normal full

10 10 0.02 0.56 0.39 0.92

20 10 0.04 1.61 1.21 2.98

20 20 0.08 3.15 2.44 6.00

A distinguishing feature of the debugger is that it allows to execute a new
reduce command when a debugging session is active. This allows the user to
quickly check related terms and hence better understand an issue with the orig-
inal term.

Maude has been an active target for research for refining the trace even fur-
ther, providing insights into when and how a particular term emerged during
reducing (e.g. Alpuente et.al. [1]). Term provenance could certainly be an inter-
esting extension for our work on the simplifier trace, but would require signifi-
cantly more instrumentation of the simplifier.

6 Evaluation and Future Work

In this section, we will briefly discuss the performance of the new tracing and
the practical usability. Furthermore, possibilities for future work are explored.

6.1 Performance

Logging the simplification process obviously incurs a measurable overhead. For
example, consider the expression scheme 10x · 10y (which will be evaluated to
a literal number by the simplifier given concrete values of x and y). The test
machine is an Intel Core i7-3540M with a peak frequency of about 3.7GHz, and
8GiB of memory. Execution times have been collected using the Timing panel
in Isabelle/jEdit without having the IDE render the trace data. The results can
be seen in Table 1.

As can be seen in the table, the simplifier itself is pretty fast, but enabling the
trace slows down the process significantly. Note that for measuring in normal
mode, no breakpoints have been set, hence these numbers show just the overhead
of the tracing: In every single rewrite step, the tracing hooks have to be called
and various lookups are performed. The most interesting comparison is between
the old tracing and full mode, where the ratio is roughly 1 : 2. This can be
explained by the fact that the full mode collects more information and processes
it more thoroughly than the old tracing.

The slowest component overall is the GUI though (times not shown in the
table), which requires about 5 s to display the full trace for x = y = 10. The
old tracing needs just 1 s. The difference here can again be explained by the
amount of information processed; in particular, the old tracing does not have to
reconstruct the hierarchical structure of the trace messages. For x = 20, y = 10,

Interactive Simplifier Tracing and Debugging in Isabelle 341

the GUI already needs 37 s to render the full trace, resulting in roughly 200 000
lines. However—once rendered—scrolling, collapsing and expanding nodes is in-
stantaneous. Hence, it is generally advisable to enable the simplifier trace only
if necessary when dealing with huge traces. For smaller traces which are in the
order of hundreds of messages, e.g. the example from the introduction, all GUI
actions are instantaneous.

6.2 Future Work

There are multiple dimensions in which this work can be extended in the future.
Integration into the Isabelle system would benefit by adapting more tactics

to use the new tracing mechanisms, since many of them can be modelled in a
hierarchical manner, and more message types could be introduced. For example,
the simplifier supports custom simplification procedures (“ML functions that
prove rewrite rules on demand”, [16, §9.3.5]). In the new tracing, invocations
of those “simprocs” are ignored. A future extension could be to provide hook
functions to those simprocs. Besides rewriting, proof reconstruction tactics [3]
fit naturally into the recursive model; for example the metis resolution prover
to replay proofs from external ATPs (automated theorem provers).

The user experience could be improved by asking even less questions (intro-
duce fuzzy matching in the memoization) or providing more information per
question (e.g. the whole term context of the redex). Interesting context data in-
cludes for example term provenance, i.e. tracking how a particular subterm in the
result emerged during the rewriting process. Also, there still some oddities aris-
ing from the asynchronous document model which leads to undesired delays in
the user interface under certain circumstances. Resolving this would most likely
require nontrivial changes in the message passing mechanisms in Isabelle/Scala.

Furthermore, the current implementation would hang indefinitely if the sim-
plifier fails to terminate. The old tracing in recent versions of Isabelle pauses
the simplification process after a certain number of messages have been emitted
and waits for user confirmation to continue. (Previously, the IDE could easily be
rendered unresponsive when the memory pressure became too high.) In the new
tracing, this problem occurs less often, because—if running in normal mode—
most messages are discarded, so users will most likely see no messages. This is
not a big problem, since non-termination may happen in other commands in
Isabelle as well, and the user can transparently cancel such invocations just by
deleting the corresponding text in the theory source. To allow for better debug-
ging, we could additionally perform some basic termination checks, along with
a new message type informing the user of the problem.

Support for other Isabelle IDEs is currently not supported. IDEs based on the
document model (e.g. Isabelle/Eclipse5) would require reimplementing the pure
GUI parts of the tracing. As for Proof General [2], all Scala parts of this work
would need to be completely reimplemented, possibly in a different programming
language.
5 Developed by Andrius Velykis, http://andrius.velykis.lt/research/

http://andrius.velykis.lt/research/

342 L. Hupel

6.3 Case Study: A Parallelized Simplifier

As indicated earlier, because of the loose coupling between simplifier and tracing,
a parallelized simplifier can easily be supported. Since Isabelle’s simplifier is
quite complex, we implemented an extremely stripped-down but parallel version
in order to test this capability. The “proof of concept” simplifier is not nearly
as powerful as the “real” one—given that it consists only of roughly 100 lines of
code—but it splits off some of the work into parallel tasks: Preconditions of a
conditinal rewrite rule are resolved simultaneously, and if multiple rewrite rules
are applicable, they are tried in parallel.

The implementation overhead of parallelization is low, because Isabelle/ML
offers library support for both concurrent and parallel programming. The pri-
mary abstraction are future values [9, 13]: the type constructor ’a future de-
notes a value of type ’a becoming available at a later time. Parallelizing existing
purely (i.e. not side-effecting) functional code is simple, because it only requires
to wrap subexpressions into the fork constructor of futures, which automati-
cally evaluates them on a pool of worker threads. There are combinators for
combining parallel computations and to wait on the completion of the result.

A little bit more intervention is required when parallelizing side-effecting code.
However, since the Isabelle document model is asynchronous by its nature, it al-
ready offers message-oriented ways for communication between the prover and
the IDE process. Consequently, the system already deals with common concur-
rency issues; in this case the only remaining task was to ensure that no deadlocks
occur.

For the simple examples we tried, a parallelized simplifier did not yield a sig-
nificant speed-up compared to the sequential simplifier. However, the key insight
lies in the user interaction. When multiple preconditions are solved simultane-
ously, the user might see more than one active question at the same time which
could potentially be confusing. Furthermore, race conditions could lead to non-
deterministic traces, a problem well-known when debugging parallel imperative
programs. Hence, the question of a reasonable user interface for parallel simpli-
fication remains open.

7 Conclusion

We presented a generic tracing facility for Isabelle tactics which replaces the
old simplifier trace. That new facility is interactive, highly configurable, and
intuitive to operate. The performance and implementation impact on the rest
of the system turned out to be rather small. Nonetheless, it became possible to
provide more insights for the user into the simplification process.

The design goal that the amount of interaction with the user should be kept
low has been achieved. Various sophisticated filtering and memoization tech-
niques help maintaining a good trade-off between flexibility and opacity of the
system.

The new tracing mechanism is available in the main Isabelle development
repository since early February 2014.

Interactive Simplifier Tracing and Debugging in Isabelle 343

Acknowledgements. I thank Tobias Nipkow and Lars Noschinski for encour-
aging me to implement a new simplifier trace. I am grateful to Makarius Wenzel
who commented multiple times on various stages of the code and patiently an-
swered my questions about internals of the Isabelle system. Dmitriy Traytel and
Cornelius Diekmann commented on early drafts of this paper.

References

1. Alpuente, M., Ballis, D., Frechina, F., Sapiña, J.: Slicing-Based Trace Analysis of
Rewriting Logic Specifications with iJulienne. In: Felleisen, M., Gardner, P. (eds.)
ESOP 2013. LNCS, vol. 7792, pp. 121–124. Springer, Heidelberg (2013)

2. Aspinall, D.: Proof General: A generic tool for proof development. In: Graf, S. (ed.)
TACAS 2000. LNCS, vol. 1785, pp. 38–43. Springer, Heidelberg (2000)

3. Blanchette, J.C., Bulwahn, L., Nipkow, T.: Automatic Proof and Disproof in Is-
abelle/HOL. In: Tinelli, C., Sofronie-Stokkermans, V. (eds.) FroCoS 2011. LNCS
(LNAI), vol. 6989, pp. 12–27. Springer, Heidelberg (2011)

4. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott,
C.: Maude manual (version 2.6)

5. Clavel, M., Eker, S., Lincoln, P., Meseguer, J.: Principles of Maude. In: Meseguer,
J. (ed.) Electronic Notes in Theoretical Computer Science, vol. 4. Elsevier Science
Publishers (1996)

6. Clocksin, W.F., Mellish, C.S.: Programming in Prolog: Using the ISO standard.
Springer (2003)

7. Ducassé, M., Noyé, J.: Logic programming environments: Dynamic program anal-
ysis and debugging. The Journal of Logic Programming 19-20(suppl. 1), 351–384
(1994)

8. Fruehwirth, T., Wielemaker, J., De Koninck, L.: SWI Prolog Reference Manual
6.2.2. Books on Demand (2012)

9. Matthews, D.C., Wenzel, M.: Efficient parallel programming in Poly/ML and Is-
abelle/ML. In: Proceedings of the 5th ACM SIGPLAN Workshop on Declarative
Aspects of Multicore Programming, pp. 53–62. ACM (2010)

10. Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL. LNCS, vol. 2283. Springer,
Heidelberg (2002)

11. Sterling, L., Shapiro, E.Y.: The Art of Prolog: Advanced Programming Techniques.
MIT Press, Cambridge (1994)

12. The GNU Project: GDB: The GNU Project Debugger,
https://www.gnu.org/software/gdb/

13. Wenzel, M.: Parallel proof checking in Isabelle/Isar. In: Proceedings of the ACM
SIGSAM 2009 International Workshop on Programming Languages for Mechanized
Mathematics Systems, pp. 13–29. ACM (2009)

14. Wenzel, M.: Asynchronous proof processing with Isabelle/Scala and Isabelle/jEdit.
Electronic Notes in Theoretical Computer Science 285, 101–114 (2012)

15. Wenzel, M.: Isabelle/jEdit – A Prover IDE within the PIDE framework. In: Jeuring,
J., Campbell, J.A., Carette, J., Dos Reis, G., Sojka, P., Wenzel, M., Sorge, V. (eds.)
CICM 2012. LNCS (LNAI), vol. 7362, pp. 468–471. Springer, Heidelberg (2012)

16. Wenzel, M.: The Isabelle/Isar Reference Manual (2013)

https://www.gnu.org/software/gdb/

Towards an Interaction-based Integration

of MKM Services into End-User Applications

Constantin Jucovschi

Jacobs University Bremen

Abstract. The Semantic Alliance (SAlly) Framework, first presented
at MKM 2012, allows integration of Mathematical Knowledge Manage-
ment services into typical applications and end-user workflows. From
an architecture allowing invasion of spreadsheet programs, it grew into
a middle-ware connecting spreadsheet, CAD, text and image process-
ing environments with MKM services. The architecture presented in the
original paper proved to be quite resilient as it is still used today with
only minor changes.
This paper explores extensibility challenges we have encountered in

the process of developing new services and maintaining the plugins invad-
ing end-user applications. After an analysis of the underlying problems,
I present an augmented version of the SAlly architecture that addresses
these issues and opens new opportunities for document type agnostic
MKM services.

1 Introduction

A major part of digital mathematical content today is created in Computer-
Aided Design (CAD) systems, spreadsheet documents, wiki pages, slide pre-
sentations, program source code. Taking advantage of Mathematical Knowledge
Management (MKM) representations and services, to better manage mathemati-
cal content in these documents, is still a complex and time consuming task, often,
because there is no adequate tool support. Imagine a complex CAD model com-
posed of hundreds of components. Readers of the CAD model would benefit a
lot if functional information (e.g. specifying role) could be attached to compo-
nents so that: i) semantic services generate descriptive information about the
role of the object in the model; ii) safety requirements matching that role could
be fetched from a ”safety-requirements.tex” document etc. Adding functional
information (e.g. encoded as a URI to an ontology concept) to CAD compo-
nents can be achieved in most systems by adding a custom property to the
CAD component. The services generating descriptive information and fetching
safety requirements could be implemented as web services which, given the con-
cept URI, would fetch required information. In this scenario, the engineer would
rightfully consider that the MKM services are not adequately supported because
he has to manually get the functional information associated to an object, change
application context to a web browser and supply the functional information into
the MKM service. The feeling of tool support inadequacy, is not caused by the

S.M. Watt et al. (Eds.): CICM 2014, LNAI 8543, pp. 344–356, 2014.
c© Springer International Publishing Switzerland 2014

Towards an Interaction-Based Integration of MKM Services 345

MKM services themselves, but rather by the steps (workflow) that the engineer
had to perform in order to be able to consume the MKM services. I call this
workflow User-Service Interaction (USI).

The importance of developing adequate tool support, especially for authoring,
is a reoccurring topic at MKM [KK04] and also in the wider semantic technology
community [SL04; Joo11; SS10]. The arguments come from different directions.
[SS10] argues that some tasks, required for semantic content creation, can be per-
formed only by humans; making development of computer support for tasks that
allow semi-automation ever more important. [SL04; Joo11] base their intuitions
on the experiences and lessons learned from deploying semantic technologies in
real-world scenarios. They stress the importance of “user-friendly modeling tools
and procedures”[Joo11] and share lessons learned such as “KM systems should
not be introduced as explicit stand-alone applications that user intentionally must
interact with in addition to their other job responsibilities”[SL04]. [KK04] uses
Prisoner’s dilemma to explain why the long-term benefits of having semantic con-
tent fail at motivating semantic content creation. Further on, authors suggest
that, improving authoring support and letting content authors reap the results
of semantic content creation early on, would increase motivation for semantic
content creation.

The Semantic Alliance (SAlly) Framework [Dav+12], set the goal of support-
ing the process of building adequate tool support for Mathematical Knowledge
Management services by integrating them into typical applications and end-user
workflows. The framework allowed MKM services to be simultaneously inte-
grated in several end-user applications that share the same media-type (e.g.
spreadsheet documents). In this way, once an MKM service was integrated,
through the SAlly Framework, with Microsoft Excel, it would work ”out of the
box” in Open/Libre Office Calc. Later work, added support for CAD [Koh+13],
text and image [Bre+14] editors as well as allowed creation of cross-application
MKM services, e.g. allowing seeing costs of a CAD component in the pric-
ing spreadsheet document, leading to the Multi-Application Semantic Alliance
Framework (MA-SAlly) [Koh+13].

This paper explores extensibility challenges we have encountered in the pro-
cess of integrating new MKM services into end-user applications. These chal-
lenges, described in section 3, did not depend so much on the MKM service
functionality, but rather, on the type of User-Service Interaction it required.
Section 4, describes how USI requirements can be decomposed into modular in-
terfaces, that are easier to standardize but also extend. Afterwards, I present an
augmented version of the Semantic Alliance Architecture that incorporates the
USI modular interfaces and thus solve the extensibility problem motivating this
research. The paper ends with implementation results and a conclusion.

2 Integration Analysis of the Semantic Alliance
Framework

In this section, I want to analyze the integration strategies used in the SAlly
framework [Dav+12] to integrate MKM services into end-user applications. I

346 C. Jucovschi

will shortly introduce each identified strategy and assess its impact by using the
following cost model:

n ≥ 2 applications must be integrated with m ≥ 2 MKM services. There
is a cost function C that computes the cost of implementing any part of
the integration such that the cost of implementing any part is equal to
the sum of the costs implementing its subparts.

The properties of the cost function C clearly oversimplify the software develop-
ment process. Yet, the extent to which these properties are used in this paper
should not significantly change the validity of the computations. Also, the goal
of integrating n applications with m services might seem unrealistic. Indeed,
there are MKM services for which integration into certain applications makes
little or no sense at all. On the other hand, from the experience gained with
the MA-SAlly framework, MKM services such as definition lookup and semantic
navigation were integrated in all invaded applications.

Fig. 1. a) the Model-View-Adapter pattern
b) direct integration of a MKM service into
an application. M, M’ are the models, V,
V’ are the views and A, A’ are the adapter
of the application and MKM service re-
spectively. S is an optional semantic (web-)
service.

Figure 1a, shows the Model-
View-Adapter (MVA) architectural
pattern that, along with Model-View-
Controller (MVC), are widely used in
the development of applications with
heavy user interaction. The MVA pat-
tern structures application compo-
nents into three categories: model,
adapter and view. The components
in the view category are responsible
for the visual interface; components
in the model category are responsi-
ble for application logic and compo-
nents in the adapter category, medi-
ate the interaction between view and
model components. The MVA archi-
tectural pattern is also suitable for
representing the architecture of MKM
services where the model implements
the MKM representation, service logic
or just sends requests to an external MKM service. The view of an MKM service
implements any custom dialogs, toolbars and service configuration pages. The
MKM service adapter wires everything together.

MKM services that are directly integrated into an application, i.e. imple-
mented as a plugin for that application and share the same memory space,
enjoy several practical benefits. Namely, they can directly access all relevant
resources the host application can provide. Figure 1b, shows typical resource
access patterns among end-user application components (M, A, V) and MKM
service components (M’, A’, V’). The MKM service adapter (A’), often influ-
ences how application events are handled, how application view and model get
updated (hence the edges 1, 2 and 3). The MKM model (box M’) may both

Towards an Interaction-Based Integration of MKM Services 347

listen to changes and modify application model M (edge 4). When MKM ser-
vices are directly integrated into an application, implementing edges 1, 2, 3 and
4 is equivalent to a performing simple API calls and hence very straightforward.
A disadvantage is that directly integrating m such services into n applications
will result in a huge cost∑

a∈App

∑
s∈Serv

C(M ′s
a) + C(A′s

a) + C(V ′s
a) (1)

where M ′s
a , A′s

a and V ′s
a are the model, adapter and view that needs to be

implemented to integrate MKM service s into an application a.
A natural way of reducing the cost in equation 1, is to refactor MKM ser-

vice models and adapters into standalone web services (Figure 2a). The MKM
adapter and model (A′, M ′) are no longer part of the application but still need
to communicate with it. This is achieved through an end-user application plugin
A′′, that allows A′ and M ′ to access the same resources as before, i.e., edges
1, 2, 3 and 4, in Figure 1b by communicating through a network channel COM.
Additionally, A′′ also needs to allow A′ to communicate with V ′ (edge 5 in Figure
2a). The cost of this integration strategy is:∑

a∈App

∑
s∈Serv

C(A′′s
a) + C(V ′s

a) +
∑

s∈Serv

C(A′s
∗) + C(M ′s

∗) (2)

where A′s∗ and M ′s∗ are the adapter and model of MKM service s implemented as
a standalone service; A′′s

a is the application plugin allowing standalone service s
to communicate with application a. At this point, A′s

∗ and M ′s
∗ can be running

on a different server, can be implemented in any language and optionally even
be part of the service S from Figure 1b. On the other hand, implementation
costs of the application plugin A′′s

a can become very high as they depend on the
complexity of access patterns between MKM service and application resources
(i.e. edges 1, 2, 3, 4 and 5).

To further reduce costs, SAlly refactors V ′ into the same standalone service as
M ′ and A′ (Figure 2b). Generally, this may be achieved in two ways: i) using the
graphical toolkit of the language in which V ′ is implemented — this requires V ′

to run on the same computer as the end-user application. ii) using an external
interaction interpreter (e.g. web browser) running on the same computer as the
end-user application. The SAlly architecture uses the second approach where
a general purpose screen manager, called Theo (Figure 4), runs on the same
computer as the application. The cost is further reduced to∑

a∈App

∑
s∈Serv

C(A′′s
a) +

∑
s∈Serv

C(A′s
∗) + C(M ′s

∗) + C(V ′s
∗) (3)

Further optimizations come from standardizing and reusing plugins A′′s
a for

multiple services. The SAlly architecture choses to standardize A′′s
a by applica-

tion type (e.g. spreadsheet documents). Namely, for application type T and a
set of services S(T) for that application type, one could define an API A(T)
that can serve all services in S(T) i.e.

348 C. Jucovschi

Fig. 2. a) refactoring MKM service model and adapter into a Web-Service b) refactor-
ing MKM service view into the Web-Service

Fig. 3. Architecture of the Semantic Alliance Framework from an integration perspec-
tive

∀a ∈ App(T).∀s ∈ S(T).A′′s
a ⊂ A(T) (4)

Hence, the cost equation can be updated to

∑
T∈AppType

⎛⎝ ∑
a∈App(T)

C(Aa(T)) +
∑

s∈S(T)

C(A′s
∗) + C(M ′s

∗) + C(V ′s
∗)

⎞⎠ (5)

where Aa(T) is the implementation of API A(T) in application a and corre-
sponds to the application dependent invaders called Alexes in [Dav+12] (Figure
4).

Considering that the SAlly Framework, was specifically designed for integrat-
ing semantic services into applications, most MKM service models M ′s∗ require
persistent storage for semantic information in the document. For example, most
MKM services for spreadsheet documents, require functionality allowing semantic
information to be attached to sheets and cell ranges. Instead of letting each MKM

Towards an Interaction-Based Integration of MKM Services 349

servicemodel implement its ownpersistence strategy, anAbstractDocumentModel
ADM(T) (application-type dependent), was introduced (Figure 3), that served as
a common semantic layer that allMKMservices could reuse. Similarly, anAbstract
Document Adapter (ADA) was implemented to ease communication and coordi-
nate how multiple MKM services process events. The ADM , ADA, A′s

∗ ,M
′s
∗ , V ′s

∗
components in Figure 3 are part of the box “Sally” in Figure 4.

Fig. 4. SAlly Architecture from [Dav+12]

3 Problem Description

The first problem of the SAlly architecture comes from equation 4, namely, A(T)
is defined as an API that can serve all services S(T). Defining an A(T) for a
finite set S(T) is not very hard but generally, S(T) is infinite. In practice, one
defines an A(T) to support currently available MKM services. However, when a
new MKM service needs to be integrated, which requires support to e.g. create
a new sheet and the current A(spreadsheet) does not support this operation,
S cannot be implemented unless A(spreadsheet) is extended. Considering that
multiple applications implement API A(T) (through plugin Aa(T)), constantly
changing A(T) becomes a bottleneck and a source of errors. Conversely, if an
application can only support 95% of A(T), it cannot be (safely) integrated even
with services that do not need the rest 5% of the A(T).

Defining the abstract document model ADM(T) for an application type,
shares similar issues as defining A(T). This became very apparent when we tried
to define an abstract document model for CAD systems [Koh+13]. Most CAD
systems share the concept of an assembly which defines the position in space of
CAD parts or nested CAD assemblies. At the assembly level, one could define
an ADM(T) capturing various relationships among assembly components that
could be applied to most CAD systems. The interesting geometrical properties,
however, are only represented in the CAD parts, which, may vastly differ even
within the same CAD system (especially if CAD parts are imported from other
systems). Defining an ADM(T) capturing parts data is so time-consuming that
it is not worth the integration benefits it brings.

350 C. Jucovschi

Defining an application type dependent A(T) and ADM(T) makes a lot of
sense when the invaded applications are similar in most respects as LibreOffice
Calc and Microsoft Excel (used in the original SAlly paper) are. But the list of
such examples is not very long. Most applications are, to some extent, unique
but still share a great deal of concepts with other applications.

4 Method

This paper aims at reducing the dependency of integration strategies on the
application type. Equation 3 (in section 2) is the last integration strategy in the
SAlly architecture that does not depend on the notion of application-type. At
that point, the biggest cost factor is contributed by∑

a∈App

∑
s∈Serv

C(A′′s
a) (6)

where A′′s
a is a plugin in application a that allows MKM service s to e.g. insert

new data into the active document, highlight some part of the document or get
notified when another object is selected and so on. A′′s

a is the critical component
that enables User-Service Interaction between MKM service s and application
a. An important aspect is that, while A′′s

a enables service s to interact with
application a, it does not implement the interaction itself. The implementation
of the User-Service Interaction is part of the MKM service.

One of the main purposes of MKM User-Service Interactions is to support the
process of aligning document content with concepts in some ontology. Typical
tasks include: annotating content, making relationships explicit, validating con-
tent and managing changes. The features and the types of interactions offered by
USIs strongly depend on the semantic format/ontology and often dependent only
slightly on the format of the document that is semantically annotated. Consider
a high-level description of the OMDoc document ontology:

An OMDoc document organizes content into theories that relate to each
other either by import or view relations. Theories may contain sym-
bols that are transported from one theory to another using the relations
among theories.

This description clearly specifies requirements regarding the types of annotations
(theories and symbols) and relationships among them (theories contain symbols
and relate to other theories) that OMDoc authoring services need to support.
The requirements on the host document format are rather implicit: relations need
to be persistent and react in sensible ways to document changes. Furthermore,
validation services that make sure that imports are valid, that there are no cyclic
dependencies, that all symbols are defined — require only information regarding
OMDoc relations are hence completely independent of host document format.

From the experience gained through the Semantic Alliance Framework, I com-
piled a list of common and application-type independent functionality that A′′s

a

typically need to implement. Namely:

Towards an Interaction-Based Integration of MKM Services 351

content selection — is by far the most common functionality USIs require. It
allows the user to point MKM services to document objects, and reversely,
MKM services to point the user to document objects. It is heavily used for
enriching and modifying semantic content.

semantic storage — stores and retrieves semantic information associated to
document objects. One can differentiate between document and object level
semantic information.

context menus — provide a natural way of accessing object specific interac-
tions.

application focus — used in the multi-application context and allows chang-
ing focus to a certain application. It is often used in combination with content
selection.

content marking — used to visually mark (e.g. highlight) document content
in a non-persistent way. Very useful for projecting multiple types of semantic
content to document objects as well as selecting/deselecting multiple objects
without the danger of clicking the wrong button and loosing the whole se-
lection.

The intuition behind this paper, is that major parts of the User-Service Interac-
tions that MKM services require, can be implemented on top of document-type
independent interactions such as the ones above. So an annotation service for
OMDoc format could be defined as follows: when the user requests the context
menu for some selected object X, and there is no semantic annotation about X
in the semantic storage, add the menu item “Annotate as OMDoc module” to
the context menu, and so on. Depending on document type, selected object X
can be a text fragment, a cell range, a CAD assembly. In the same time, MKM
services might require very specific, application dependent information which
also need to be supported e.g. position of geometrical assemblies.

The problem of reducing the cost in equation 6, is essentially a problem of
defining reusable interfaces in a distributed setting. Any interface X , that can be
reused by k ≥ 2 MKM services, reduces the cost in equation 6 by n (k − 1)C(X)
i.e. each application must implement X once to then reuse it for k services.
One can iterate this process and define set of reusable, modular interfacesM =
{M1,M2, ...} such that

A′′s
a = M s1

a ◦M s2
a ◦ . . . ◦M sk

a , (7)

i.e. one can represent A′′s
a as composition of several implementations of modular

interfaces (M s1 , . . .M sk ∈M) for application a. Substituting this representation
in equation 6 and removing duplicate module implementations for the same
application, results in ∑

a∈App

∑
m∈M(S)

C(Mm
a) (8)

where M(S) is the set of all modules in M that are required to modularize all
A′′s

a in s ∈ Serv.
The total cost in equation 8, depends on the ability of representing the

functionality, a MKM User-Service Interaction requires, in a reusable modular

352 C. Jucovschi

manner. SettingM = {A′′s|s ∈ Serv}, i.e. no reuse possible, makes cost in equa-
tion 8 equal to the one in equation 6.

5 Augmented Semantic Alliance Architecture

The Augmented Semantic Alliance Architecture assumes, that a set
M = {M1,M2, ...} of reusable modular interfaces are defined and publicly avail-
able to the MKM community. It also assumes that the User-Service Interaction
of any MKM service s, can be achieved by combining some set of modular inter-
faces that I define as M(s) ⊆ M. If for some service s this is not possible, the
set M is extended with the necessary functionality.

Each application a, can implement a subset of the modular interfaces denoted
with M(a) ⊆ M. A MKM service s can be integrated into application a if
M(s) ⊆ M(a) i.e. application a implements all modules required by MKM
service s. To allow the possibility of having the equivalent of Abstract Document
Models from the SAlly architecture, modular interfaces may depend on other
modular interfaces (typical restrictions on circular dependencies apply).

Fig. 5. Integration of three MKM services with three applications using the Augmented
Semantic Alliance Architecture

Figure 5, showsanexamplehowthree applications (App1,App2,App3) canbe in-
tegratedwith three services (MKM1,MKM2,MKM3).ApplicationsApp1,App2,
App3 implement modular interfaces {M1,M2,M3}, {M1,M3} and {M2,M3} re-
spectively. Service MKM1, requires abstract document model ADM1 which, in
turn, requires module M1 henceM(MKM1) = {M1}. This means that one can
integrate serviceMKM1 intoApp1 andApp2. Similarly,M(MKM2) = {M1,M3}
and so can be integrated only in App1 andM(MKM3) = {M2} and can be inte-
grated into App1 and App3.

Towards an Interaction-Based Integration of MKM Services 353

From this example, one can see that the reuse strategy the Augmented Seman-
tic Alliance Framework has, is more flexible than the one presented in [Dav+12].
Namely, App1, App2 and App3 clearly share common concepts, but assigning
them an application type that guides reuse strategy, reduces reuse opportuni-
ties. Also, the augmented Sally architecture solves the extensibility problems
described in section 3 as reuse is no longer associated with application type.
Additionally, the augmented architecture also allows abstract document mod-
els to be implemented in the end-user applications themselves, if that makes
integration easier.

6 Implementation

To test the interaction based method of integrating MKM services into appli-
cations, I chose three simple MKM services that cover four, out of five types
of application independent interactions presented in section 4. Namely: con-
tent selection, semantic storage, context menu and application focus. These ser-
vices were integrated into five applications that are part of the LibreOffice suite:
Writer (rich text processor), Calc (spreadsheet application), Impress (slide pre-
sentations), Draw (graphic documents) and Base (database manager). In this
section, I want to shortly introduce the MKM services that I integrated into the
LibreOffice suite. These services are quite different and yet have almost identical
User-Service Interaction requirements. The section will end in a discussion about
the effort it took to perform this integration.

The Concept Linker service, allows linking document contents to ontology
concepts stored in the MathHub.info[Ian+] portal. The service adds a new ”Link
to concept” item in the context menu of the application, if currently selected ob-
ject(s) can store semantic information. After clicking on the ”Link to concept”
context item, a window is generated by the Theo screen manager (for more in-
formation see [Dav+12]) where one can choose the concept to which selected
objects should be linked to. Figure 6 depicts the concept linker service in a Li-
breOffice Writer document. One can see that text fragments, formulas, drawings
(segment BE) and text boxes can be linked to ontology concepts. Also, one can
see the Theo window allowing the user to link text box “O” to a concept from
the MathHub.info portal.

Definition lookup service retrieves the definition of the ontology concept
associated to the currently selected object. The service adds a new ”Get defini-
tion” item in the context menu of the application, if currently selected object
has a concept linked to it. The definition associated to the concept is displayed
in a window generated by the Theo screen manager.

Semantic Navigation presents the user with a graphical representation of
ontology relations associated to the concept selected in the document. Just like
the concept linker and definition lookup services, it adds a context menu item
“Semantic navigation” which triggers creation of a new window presenting the
ontology relations (Figure 7). Additionally, if the user right-clicks on a node of a
related concept e.g. vertice, and there is an object V in the document linked to

MathHub.info
MathHub.info

354 C. Jucovschi

Fig. 6. Mash-up of several screenshots demonstrating the types of LibreOffice Writer
objects that can be connected to ontology concepts by the Concept Linker

Fig. 7. Mash-up of several screenshots demonstrating Semantic Navigation service

the concept of vertice, the user is given the possibility to change the document
focus to object V.

The following table summarizes the types of objects that can be annotated
and support definition lookup and semantic navigation services.

Towards an Interaction-Based Integration of MKM Services 355

Application Types of document object
All applications images, math formulas, text boxes and shapes

Writer text fragments
Calc cell ranges, charts

Impress slides, text fragments
Draw text fragments
Base tables, forms, queries and reports

Even though the document models of the applications in the LibreOffice suite
are very different, the LibreOffice API provides several document type inde-
pendent mechanisms to access/modify document’s content and meta-data. The
implementation of the content selection, context menu, semantic storage and
application focus interactions required by the three MKM services, were imple-
mented using the document model independent API provided by LibreOffice.
This meant that only one LibreOffice plugin had to be implemented which re-
quired a similar amount of effort as creating one Alex invader in the SAlly
architecture (≈ 1 week). Integrating the same services into the SAlly architec-
ture from [Dav+12], would have required a 5 weeks investment into the Alex
(invader) plugins.

7 Conclusion

This paper tackles the problem of MKM services lacking adequate tool sup-
port when integrated into end-user applications. The Semantic Alliance frame-
work [Dav+12], developed for reducing MKM service integration costs without
sacrificing usability, was successfully used for integrating MKM services into
spreadsheet[Dav+12], CAD[Koh+13], text and image [Bre+14] processing soft-
ware. In the process of developing these integrations, several extensibility prob-
lems of the framework became very apparent and yet could not be predicted
from the original architecture presented in [Dav+12].

First contribution of this paper is the in-depth integration analysis that helped
identifying the reasons for the extensibility challenges in the SAlly framework. In
particular, this analysis captures and categorizes the hidden costs associated with
decoupling a MKM service into a standalone entity (cost of implementing A′′s

a in
section 2). While the integration analysis is strictly used for the SAlly framework,
it can be reused for other integration efforts in MKM such as integration of
theorem provers into authoring solutions.

The second and main contribution of this paper is the Augmented Semantic
Alliance architecture that solves the extensibility problems presented in section
3 and enables more flexible reuse strategies. First experiments with the new
architecture show that end-user applications, sometimes provide major reuse
opportunities and that the new architecture can take full advantage of them.

356 C. Jucovschi

References

[Bre+14] Breitsprecher, T., et al.: Semantic support for engineering design process.
In: DESIGN 2014 (to appear, 2014)

[Dav+12] David, C., Jucovschi, C., Kohlhase, A., Kohlhase, M.: Semantic Alliance:
A Framework for Semantic Allies. In: Jeuring, J., Campbell, J.A., Carette,
J., Dos Reis, G., Sojka, P., Wenzel, M., Sorge, V. (eds.) CICM 2012. LNCS
(LNAI), vol. 7362, pp. 49–64. Springer, Heidelberg (2012)

[Ian+] Iancu, M., Jucovschi, C., Kohlhase, M., Wiesing, T.: System Description:
MathHub.info. In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Ur-
ban, J. (eds.) CICM 2014. LNCS (LNAI), vol. 8543, pp. 436–439. Springer,
Heidelberg (2014),
http://kwarc.info/kohlhase/submit/cicm14-mathhub.pdf

[Joo11] Joo, J.: Adoption of Semantic Web from the perspective of technology in-
novation: A grounded theory approach. International Journal of Human-
Computer Studies 69(3), 139–154 (2011)

[KK04] Kohlhase, A., Kohlhase, M.: CPoint: Dissolving the Author’s Dilemma. In:
Asperti, A., Bancerek, G., Trybulec, A. (eds.) MKM 2004. LNCS, vol. 3119,
pp. 175–189. Springer, Heidelberg (2004),
http://dx.doi.org/10.1007/978-3-540-27818-4_13

[Koh+13] Kohlhase, A., Kohlhase, M., Jucovschi, C., Toader, A.: Full Semantic Trans-
parency: Overcoming Boundaries of Applications. In: Kotzé, P., Mars-
den, G., Lindgaard, G., Wesson, J., Winckler, M. (eds.) INTERACT
2013, Part III. LNCS, vol. 8119, pp. 406–423. Springer, Heidelberg (2013),
http://kwarc.info/kohlhase/papers/Interact2013_FST.pdf

[SL04] Stenmark, D., Lindgren, R.: Integrating knowledge management systems
with everyday work: Design principles leveraging user practice. In: Pro-
ceedings of the 37th Annual Hawaii International Conference on System
Sciences, 9 p. IEEE (2004)

[SS10] Siorpaes, K., Simperl, E.: Human intelligence in the process of semantic
content creation. World Wide Web 13(1-2), 33–59 (2010)

http://kwarc.info/kohlhase/submit/cicm14-mathhub.pdf
http://dx.doi.org/10.1007/978-3-540-27818-4_13
http://kwarc.info/kohlhase/papers/Interact2013_FST.pdf

Towards Knowledge Management for HOL Light

Cezary Kaliszyk1 and Florian Rabe2

1 University of Innsbruck, Austria
2 Jacobs University, Bremen, Germany

Abstract. The libraries of deduction systems are growing constantly, so
much that knowledge management concerns are becoming increasingly
urgent to address. However, due to time constraints and legacy design
choices, there is barely any deduction system that can keep up with
the MKM state of the art. HOL Light in particular was designed as a
lightweight deduction system that systematically relegates most MKM
aspects to external solutions — not even the list of theorems is stored
by the HOL Light kernel.

We make the first and hardest step towards knowledge management
for HOL Light: We provide a representation of the HOL Light library in a
standard MKM format that preserves the logical semantics and notations
but is independent of the system itself. This provides an interface layer at
which independent MKM applications can be developed. Moreover, we
develop two such applications as examples. We employ the MMT system
and its interactive web browser to view and navigate the library. And we
use the MathWebSearch system to obtain a search engine for it.

1 Introduction and Related Work

Deduction systems such as type checkers, proof assistants, or theorem provers
have initially focused on soundness and efficiency. Consequently, many follow
the LCF approach which amounts to a kernel that implements the logic, a the-
orem prover that produces input for the kernel, and a read-eval-print loop for
user interaction. But over time formalization projects like [Hal05,GAA+13] have
reached larger scales that call for more sophisticated knowledge management
(KM) support.

However, it has proved non-trivial to retrofit KM support to an existing
system. Moreover, even where it is possible, developers’ resources are usually
stretched already by improving and maintaining the kernel, the proof assistant,
and performing actual formalizations. Therefore, a long-standing goal of MKM
has been to provide generic KM support for deduction systems in a parametric
way. This can create a valuable separation of concerns between deduction and
KM systems.

We follow up on this by combining one of each: the HOL Light [Har96] proof
assistant and the Mmt KM system [Rab13].

HOL Light implements the HOL logic [Pit93], which is a variant of Church’s
simple type theory extended by shallow polymorphism. Polymorphism is achieved

S.M. Watt et al. (Eds.): CICM 2014, LNAI 8543, pp. 357–372, 2014.
c© Springer International Publishing Switzerland 2014

358 C. Kaliszyk and F. Rabe

by adding arbitrary type operators (to allow the construction of compound
types), and (implicitly universally quantified) type variables. HOL Light’s im-
plementation follows the LCF tradition: the kernel defines a private ML type for
each of the HOL constructs. This means that the only way a user can construct
HOL objects is with the help of exported kernel functions, which only allow
the building of valid types, correctly-typed terms and provable theorems. The
proofs of the theorems are ephemeral : they are only known at theorem construc-
tion time. To this end, the HOL Light kernel maintains lists (ML references)
of defined types, constants and axioms.

HOL Light does not use its own syntax for the structure of proofs and
libraries, instead inheriting that of OCaml (only changing OCaml’s capital-
ization with the help of a camlp5 module). The only parser that HOL Light
defines is for the object level (inner syntax). The only library management fea-
ture is a special function used to obtain the list of all theorems from the OCaml
toplevel [HZ], which is also used to offer an internal search mechanism based on
term matching. This means that the HOL Light library is hard to browse and
search, especially for inexperienced users.

On the other hand, this lightness makes it relatively easy to export the basic
structures manipulated internally by HOL Light [Wie09], which can be com-
bined with library information gathered by patching its internal functions and
processing developments multiple times [KK13].

Mmt [RK13] is a generic type theory and knowledge management system.
It combines the general syntax of OpenMath [BCC+04] and OMDoc [Koh06]
with the formal semantics of logical frameworks like LF [HHP93] and Isabelle
[Pau94]. The Mmt system [Rab13] implements both logical algorithms such as
module system and type reconstruction as well as KM support such as IDE and
change management.

Mmt systematically avoids commitment to specific type systems or logics and
focuses on using open interfaces and extensible algorithms. Thus, Mmt-based
implementations are maximally reusable, and Mmt is a prime candidate for
providing external KM support at extremely low cost.

Following our experiences with the representation of the Mizar library in Mmt
[IKRU13], we know that the export of a library in an KM-friendly interchange
format is the biggest bottleneck: it is so much work to get a complete and hack-
free export, that in practice none exist. Therefore a lot of interesting KM research
is blocked and cannot be applied. Our export proceeds in two steps. Firstly, we
define HOL Light as a theory H of LF-theory, which in turn is implemented
within the Mmt framework. Secondly, we implement an exporter as a part of
the HOL Light system that writes the HOL Light library as a set of Mmt
theories that extend H .

Our export includes type and constant definitions, theorems, and notations.
For proofs, we use a simplified export, which stores only dependencies of a the-
orem but not the structure of the proof. This is reasonable because most of the
structure has already been eliminated at the OCaml level anyway before the
kernel is involved.

Towards Knowledge Management for HOL Light 359

The exported theories are ready-to-use for KM systems. Apart from the
fact that we skipped the proofs, they formally type-check within LF. And the
OMDoc-based concrete syntax as well as the high level API of Mmt make it
easy to access them.

We exemplify and exploit this infrastructure by obtaining two major KM
services for HOL Light. Firstly, we use a native Mmt service: an interactive
library browser based on HTML+presentation MathML. Secondly, we apply a
third-party service: the MathWebSearch [KŞ06] search engine.

Our work flow and infrastructure is not only interesting per se but also serves
as a first test case for future multi- and cross-library knowledge management
services. We discuss applying such ideas on the KM level in Section 5.

Related Work. Several previous exports of the HOL Light library have focused
on translations to other proof assistants. All such approaches use a patched
kernel, that records the applications of all kernel theorem creation steps. [OS06]
and [KW10] automatically patch the sources, replacing the applications of prove
by recording of the theorem and its name. This has been further augmented
in [KK13], which obtains the list of top-level theorems from the OCaml toplevel.
[OAA13] has additionally focused on exporting the proof structure of HOL
Light proofs (to the extent it can be recovered), by patching tactics.

These approaches are orthogonal to ours:We focus on exporting the knowledge
present in the library, keeping the proof structure transparent. In fact, this is
the reason why we do not export the low-level proof structure at all (except for
the calls to extension principles and the dependency information). We believe
that future work can combine our export with the high level but more brittle
exports à la [OAA13].

The OpenTheory project [Hur09] similarly patches the HOL Light kernel in
order to export theorems with proofs in the OpenTheory format. By manually
annotating the library files, users can group theorems into theories. This refac-
toring is crucial for reuse across systems because it permits making dependencies
between theories explicit so that they can be abstracted.

Several knowledge management tools have been developed for HOL Light.
[TKUG13a] export a HOL Light development into the Agora Wiki system.
It heuristically HTMLizes/Wikifies the OCaml sources with anchors and refer-
ences. The focus of the work is to present the informal Flyspeck text alongside
with the formalization. Deconstructing compound tactics can be performed with
the help of Tactician [AA12], and viewing recorded intermediate steps can be
done with Proviola [TGMW10]. Online editing of HOL Light proof scripts
has been added [TKUG13b]. While the browsing capability is similar to the
one presented here, Agora does not look into the inner syntax of HOL Light
and displays almost unmodified original OCaml files (only folding of proofs is
added). The heuristic HTMLization is able to pick up a number of HOL con-
stants, but even some of the basic ones, like conjunction, are not linked to their
definitions.

None of the above systems focus on connecting proof assistants to arbitrary
MKM systems. Moreover, none of them used a logical framework to formally

360 C. Kaliszyk and F. Rabe

define and thus document the HOL Light logic, instead focusing on an import
that would match it with the intended target system.

2 Exporting the HOL Light Library

2.1 Defining the HOL Light Logic

Mmt itself does not force the choice of a particular logical framework: Individual
frameworks are defined as Mmt plugins that provide the typing rules. We define
the logic of HOL Light declaratively in the logical framework LF. LF is a
dependently-typed λ-calculus, and we will use the notations [x:A]t : {x:A}B
for λx : A.t : Πx : A.B.

By using a logical framework, we can formalize and reason about the relation
between different logics. This is a crucial step towards obtaining verified logic
translations like in [NSM01], where the method of translation guarantees the
correctness of the translated theorems. It also lets us reuse generic algorithms
that depend on awareness of the logical primitives of HOL Light. These include
parsing, which we will use for search queries, and type inference, which we use
as an interactive feature in the browser.

HOL Light prides itself in a very small and simple to understand kernel,
and its embedding in LF documents this nicely. Our definition is conceptually
straightforward is mainly notable for systematically following HOL Light down
to the choice of identifier names.

The three basic OCaml datatypes to represent types, terms and theorems
correspond to three LF types. The OCaml type holtype becomes an LF type,
and LF variables of this type naturally represent HOL type variables. Initially
two primitive type constructors are present – bool and fun:

holtype : type

bool : holtype

fun : holtype → holtype → holtype "1 ⇒ 2"

Here, we also use Mmt to define appropriate notations for all operators, e.g., 1
⇒ 2 introduces the usual infix notation.

Next the type of HOL terms of a given type together with application and
abstraction operators (denoted ’ and λ respectively) are introduced. LF variables
of the term type represent bound variables, or implicitly universally quantified
free variables. The only primitive constant of HOL Light (equality) is also
specified here:

term : holtype → type

Abs : {A,B} (term A → term B) → term (A ⇒ B) "λ 3"

Comb : {A,B} term (A ⇒ B) → term A → term B "3 ’ 4"

equal : {A} term A ⇒ (A ⇒ bool) "2 = 3"

Note that the Mmt notation language does not distinguish between LF and
HOL arguments. For example, in the notation for application, 3 and 4 refer to

Towards Knowledge Management for HOL Light 361

the two HOL arguments; the two LF arguments A and B in positions 1 and 2 are
defined to be implicit by not mentioning them. This is a novel feature that we
get back to in Sect. 3.1.

The shallow polymorphism of HOL Light corresponds exactly to the LF
function space, which we can see in the declaration of equality: It takes one LF
argument A for the HOL type and two HOL arguments of type A.

HOL Light theorems are sequents F1, . . . , Fn � F using a type variable
context a1, . . . , an. In LF, we use the judgments-as-types principle and represent
the assumptions as an LF context. The above sequent corresponds to the type
{a1, . . . , an} � F1 → . . .→� Fn →� F , and the valid proofs are exactly the terms
of that type. The complete set of theorem construction rules is represented as:

thm : term bool → type "� 1"

REFL : {A,X:term A} � X = X

TRANS : {A,X,Y,Z:term A} � X = Y → � Y = Z → � X = Z

MP : p,q � p = q → � p → � q

BETA : {A,B,F:term A → term B,X:term A} � (λ F)’X = (F X)

MK_COMB : {A,B, F,G:term A⇒B, X,Y:term A}
� F = G → � X = Y → � F’X = G’Y

ABS : {A,B, S,T:term A → term B}
({x: term A} � (S x) = (T x)) → � λ S = λ T

DEDUCT_ANTISYM_RULE : {p,q} (� p → � q) → (� q → � p) → � p = q

The above seven rules are the only ones needed for HOL Light theorem con-
struction steps. The three remaining ones (INST TYPE, INST and ASSUME) are
naturally represented by the contexts and substitutions of LF.

In [HKR12], we introduced the Mmt feature of extension declarations. More-
over, in [HRK14], we introduced LFS, a variant of LF with arity polymorphism.
If we apply extension declarations to LFS, we can also formalize the two exten-
sion principles of HOL Light– definitions and type definitions:

extension definition =

[n: nat] [A: holtypen → holtype] [a: {T: holtypen} term (A T)]

c : {T} term (A T)

DEF : {T} � (c T) = (a T)

extension new_basic_type_definition =

[n:nat] [A: holtypen → holtype]

[P: {T: holtypen} term (A T) ⇒ bool]

[w: {T: holtypen} term (A T)]

[nonempty: {T: holtypen} � (P T) ’ (w T)]

B : holtypen → holtype

abs : {T} term (B T) ⇒ (A T)

rep : {T} term (A T) ⇒ (B T)

rep_abs : {T} {b: term (B T)} � (rep T) ’ ((abs T) ’ b) = b

abs_rep : {T} {a: term (A T)} �
(P T) ’ a = ((abs T) ’ ((rep T) ’ a) = a)

362 C. Kaliszyk and F. Rabe

Here nat is the type of natural numbers. Arity polymorphism means that
declarations may take a nat argument and use it to form different types. In our
case, we use holtypen to represent (essentially) n-tuples of holtype.

The extension keyword introduces declarations of named extension prin-
ciples. Such a declaration λ-binds some arguments and then returns a list of
declarations. The returned list is displayed using indentation.

The extension principle named definition takes an n-ary type construc-
tor A and a polymorphic term a of that type. It returns a new constant c

with an axiom DEF that makes c equal to a. The extension principle named
new_basic_type_definition takes an n-ary type constructor A and a polymor-
phic unary predicate P on it. It returns a new n-ary type constructor B that is
axiomatized to be isomorphic to the subtype of A defined by P. It also takes a
polymorphic term w and a proof nonempty that w witnesses the non-emptiness
of the new type.

2.2 Exporting the HOL Light Library

In order to export the HOL Light library to Mmt we need the information
about the defined types, constants, theorems, and notations. The defined types
and constants are stored by the kernel and the complete list can be accessed in
any HOL Light state together with the arity of types and the most general
types of constants. The only mechanism for obtaining the defined theorems in
HOL Light is the update database mechanism [HZ]. It accesses the internal
OCaml data structures to extract name-value pairs for all defined values of the
type thm in an arbitrary OCaml state.

Typically in order to export a library the above functionalities are invoked
once [KK13], at the end of a development giving a complete list of values to
export. A second processing of the developments is necessary to additionally
discover the order in which the theorems are defined with the help of dependen-
cies. This has been described in detail in [KU14] together with the splitting of
theorems that are large conjunctions into separate named conjuncts.

Here we additionally preserve the separation of concepts into files. This means
that we need to patch the HOL Light theory loader to store a stack of names of
loaded files and call the database functions at each file entry and exit. With this
additional information, the second processing of the development can recover
the division of concepts between files and properly order the types, constants
and theorems in the files creating an ordered export list.

For each HOL Light file in the export list, we produce an OMDoc [Koh06]
file containing a single theory. This theory declares one constant for each
exported theorem and several for each application of an extension principle. For
every defined n-ary type constructor, an LF-constant of type holtype → . . .→
holtype→ holtype is produced. For eachHOL Light constant of type A, an LF
constant of type term A is produced. Similarly for each theorem asserting F (this
includes axioms and the axioms generated by definitions and type definitions),
a constant of type thm F is exported. In case of polymorphism, all free type
variables a are universally quantified using {a:holtype}.

Towards Knowledge Management for HOL Light 363

<constant name="PRE"><type>

<om:OMOBJ xmlns:om="http://www.openmath.org/OpenMath"><om:OMA>

<om:OMS module="LF" name="apply"></om:OMS>

<om:OMS module="Kernel" name="term"></om:OMS>

<om:OMA>

<om:OMS module="LF" name="apply"></om:OMS>

<om:OMS module="Kernel" name="fun"></om:OMS>

<om:OMS module="nums" name="num"></om:OMS>

<om:OMS module="nums" name="num"></om:OMS>

</om:OMA>

</om:OMA></om:OMOBJ>

</type></constant>

Fig. 1. OMDoc encoding of the HOL Light predecessor constant PRE

The writing of the particular types and terms is a straightforward transfor-
mation of the type and term structure of HOL into its corresponding Mmt/LF
tree, and we show only one example. Fig. 1 shows the export of the application
of the definition extension principle to define the constant PRE.

For the defined types and constants, for which HOL Light provides nota-
tions, we additionally include the information about the fixity, precedence, and
delimiter symbol. For the constants, which the HOL Light parser and printer
treat in a special way (like If and UNIV), mixfix notations are exported. Details
are described in Section 3.1.

Proofs in our encoding of theHOL Light logic areMmt definitions. However,
we do not export the complete proof object and use the definition to store
only dependency information. Then the definition is the application of a special
constant (corresponding to an informal “by” operator) to all the theorems it
depends on. This allows for mapping the HOL Light dependencies to Mmt
dependencies directly.

The results of some extension principles are not registered at the toplevel.
Many definitions are internally introduced using the Hilbert operator ε in the
definiens. Only the derived definitions — without ε — are registered at the
toplevel. Complete dependency information is available for all theorems except
for such derived definitions.

The complete OMDoc created for the core library of HOL Light repository
version 182 consists of 22 files with the total of 2801 Mmt constants. The con-
stants correspond to 254 applications of extension principles and 2514 toplevel
conjuncts. 95 notations are exported. The OMDoc encoding takes 75.2MB. On
an IntelM 2.66 GHz CPU, it takes 6 minutes to prepare the export lists (this is
mostly computation of dependencies) and 17 seconds to export the library. The
exported library is hosted at http://gl.mathhub.info/HOLLight/basic as a
part of the Open Archive of Formalizations.

http://gl.mathhub.info/HOLLight/basic

364 C. Kaliszyk and F. Rabe

3 A Library Browser for HOL Light

3.1 Notations

HOL Light has no formal notation language that users could use to declare
notations for new functions and type operators. But it does maintain three tables
(for infix, unary prefix, and binding operators) that parser and printer use to
convert between external and internal syntax. Our export represents these in
terms of Mmt’s general notation language. Moreover, HOL Light uses ad hoc
notations for a few library symbols, most of which we can also map to Mmt
notation declarations.

Below we describe a few improvements we have made to Mmt in order to
better mimic and improve the notations of the HOL Light library.

Nested Higher-Order Abstract Syntax. A major drawback of using a logical
framework is the associated encoding overhead due to the higher-order abstract
syntax (HOAS). This overhead does not necessarily cause performance issues,
but it is much more work for theory and implementation, which is why current
exports usually do not use it. This is particularly apparent when representing
languages based on simple type theory like HOL Light, which already use
HOAS themselves.

For example, the export of the universal quantifier yields the following LF
declaration:

! : {A} term ((A ⇒ bool) ⇒ bool)

Thus, we export the formula !x.(p x) as ! Abs [x:term A] Comb p x, i.e., with
two nested levels of binding (the LF-λ [] and the HOL-λ Abs), two nested levels
of application (the LF-application whitespace and the HOL-application Comb),
and two nested levels of type attributions (the LF-type attribution : and the
HOL-type attribution term). Moreover, Abs and Comb take two LF-arguments
for the involved HOL types, which we have not even shown here.

We now capture the complete absence of HOAS in human-facing syntax by
ignoring HOAS in the Mmt notation language. For example, we export the
notation of forall as ! V2 . 3 where V2 represents the second argument (a
bound variable), and 3 the third argument (the scope of the binding). (The
unmentioned first argument is the type and remains implicit.) The fact that !

is a unary function for LF and a (different) unary function for HOL Light is
ignored and relegated to the type system.

We have added a generic component to Mmt that uses these no-HOAS no-
tations and systematically converts expressions between the three nesting levels
of no, single, and double HOAS.

Unicode Notations. HOL Light notations use keyboard-friendly multi-character
delimiters such as /\ and ==> instead of ∧ and =⇒. We export all notations
using the corresponding Unicode character, which is far superior for browsing.

Towards Knowledge Management for HOL Light 365

However, to retain the ability to parseHOL Light expressions with the Mmt
parser, we have added an optional lexing rule in Mmt that converts multi- into
single-character delimiters.

2-Dimensional Notations It is desirable to use MathML’s 2-dimensional display
(e.g., subscripts and fractions) for browsing. Therefore, we have extended Mmt
with a feature that permits declaring an optional second notation for every
constant. If present, it is used for presentation only.

These notations amount to a text syntax for a small subset of MathML.
Specifically, they are of the form

N ::= (arg | var | delim | implarg)∗ | N ◦N | (N) ◦ ::= | | ˆ | ˆˆ | /

1-dimensional notations N consist of a sequence of argument positions (e.g., 3
above), var iable positions (e.g, V2 above), and delimiters (e.g., ! and . above).
2-dimensional notations may now additionally use subscript , superscript ,̂
underscript and overscript ˆˆ as well as fraction /.

Moreover, we use implarg to explicitly position implicit arguments, which
can be switched on or off interactively in the browser. For example, for the
same-cardinality operator = c that relates two sets of type A ⇒ bool, we use
the notation 2 = c ˆ I1 3, which results in the display s =A

c t (with A being
initially hidden).

Where possible, Mmt constructs 2-dimensional notations automatically (e.g.,
HOL Light’s division a/b is rendered as a fraction). But in most cases, they
have to be added manually because they are not a part of HOL Light. Our
export provides nine such 2-dimentional notations for division, power (including
powersets) and cardinality compararison operations. An example rendering is
shown in Fig. 2.

Fig. 2. Rendering Using 2-Dimensional Notations

3.2 Interactive HTML

Mmt can produce static HTML pages, as well as serve these interactively. Fig. 3
shows an overview of the appearance of the HOL Light library in the interactive
web browser. A navigation bar on the left shows the files, and the main area
shows the rendering of the respective declarations.

All formulas are presented by converting double-HOAS content MathML into
no-HOAS presentation MathML using Mmt’s notation-based presentation en-
gine. mrow elements are used to mark up the content structure and JavaScript

366 C. Kaliszyk and F. Rabe

Fig. 3. The HOL Light Theory Browser

to ensure that only full subterms can be selected. Every presentation element
carries special attributes that identify which subterm it presents. This can be
seen as a form of parallel markup between the presentation in the client and the
content on the server.

For example, Fig. 4 uses this to infer the type of a subterm. Here, the parallel
markup identifies the selected subterm in the double-HOAS representation so
that the generic type inference of Mmt can be used. After type inference, the
result is rendered as no-HOAS presentation again.

Fig. 4. Type Inference

Fig. 5 shows an example of the generic Mmt parser in action. The exported
notations are used to mimic HOL Light’s concrete input syntax and the result
is rendered as presentation MathML. This is a very useful feature to integrate
into a theory browser because it permits writing example expressions to better
understand the browsed theory.

We also added a dependency-based navigation interface that is very convenient
when working with a large library. Incoming dependencies (which theorems were
used) are already explicit in our export and are shown as the definition of a

Towards Knowledge Management for HOL Light 367

Fig. 5. Parser

theorem. Outgoing dependencies (where is this theorem used) are computed
by Mmt and added explicitly into the HTML. Both carry cross-references for
navigation. This can be seen in Fig. 6.

Fig. 6. Outgoing and Incoming Dependencies

4 Searching the HOL Light Library

Mmt already includes a build tool for easily exporting content in different for-
mats. The latter include building a term index that can be read by the Math-
WebSearch system [KŞ06], which then constructs a substitution tree index of all
terms in the library.

We have already used this for Mizar in [IKRU13], and we have now substan-
tially expanded Mmt with the ability to also query MathWebSearch. This is
harder than it sounds because it requires constructing queries by parsing user
input and infer all implicit arguments (or replace them with additional query
variables). We have also added a corresponding frontend to the library browser.

Our new Mmt search interface also allows queries based on other aspects than
substitution, in particular we can use regular expression queries on identifiers.
This is a seemingly minor feature that goes a long way in large libraries where
users typically develop sophisticated naming schemes for theorems. For example
the Coq-developments in [GAA+13] append letters to theorem names as a kind
of tagging mechanism.

Fig. 7 shows an example query. We search for expressions x MOD p = y MOD

p for arbitrary x,y,p, and we filter the results to be from a theory whose name
contains arith.

It is straightforward to add other search criteria, such as filtering to theorems
whose proof uses a certain theorem, or only returning results that match on
toplevel.

368 C. Kaliszyk and F. Rabe

Fig. 7. Search

5 Conclusion and Future Work

We have demonstrated that generic MKM services – in our case: browsing and
search – can be utilized for libraries of proof assistants. However, this is contin-
gent upon a good export of the library, which requires a substantial investment.

Each export requires two parts: A modification of the proof assistant that
enables exporting the high-level structure needed by the MKM services; and a
representation of the logic and library in an Mmt-like interchange language. Our
work constitutes the second step and was enabled by previous work providing
the first step. Even though HOL Light is one the simplest proof assistants in
this respect, the latter goes all the way back to [OS06] and has only become
available recently.

Therefore, we believe a major value of our work is in describing the data flow
and the architecture necessary to connect deduction and knowledge management
systems, and to kick off future work that applies the same approach to other
systems.

An Open Archive of Formalizations. In a collaboration with Michael Kohlhase,
the second author has initiated a project of collecting the libraries of proof
assistants usingMmt as the common representation language. After representing
Mizar [IKRU13], the present work is the second library present in the OAF. We
will continue this effort and develop it into a central hub for publishing and
sharing libraries.

MathWiki. This serves as a next step towards a universal mathematical li-
brary that integrates the libraries of various proof assistants with each other
and with the semi-formal proofs done by mathematicians initiated in [CK07].

Towards Knowledge Management for HOL Light 369

The idea of wiki-style editing provided both for formal and informal text al-
lows to identify overlaps and transport ideas. It can also be extended with
human-annotated or machine-generated correspondences between concepts in
formal libraries [GK14] in order to navigate across libraries. Semantic anno-
tations, both human- and machine-generated, enhance the search capabilities,
which can be further strengthened by learning-assisted automated reasoning
techniques [KU14].

Library Refactoring. The axiomatic method encapsulates definitions and theo-
rems in the smallest theory in which they make sense. This abstraction from
the prerequisites has the advantage that results can be moved easily between
theories and logics, thus maximizing reuse. This is a cornerstone of the math-
ematical method, and it has motivated formalized mathematics early on. For
example, it is at the center of IMPS [FGT93] and motivated Reynolds’ seminal
work [Rey83].

Yet, HOL Light and most other systems with large libraries use the defi-
nitional method that conservatively extends a single theory. We expect a rising
interest in refactoring libraries according to the axiomatic method. For HOL
Light, we already see the beginnings in the systematic manual refactoring of
the OpenTheory project [Hur09], which can inspire and evaluate future auto-
mated refactoring methods.

As a first step for example, we can introduce a new theory for every type
definition and turn all theorems derived from the extension principle into axioms.
Currently this is tricky for HOL Light though because we can only tell if a
theorem depends on some extension principle but not on which one. A clustering
analysis of all theorems can provide further pointers to automated refactoring.
Similarity analysis across libraries may also prove helpful to spot overlap, which
is typically worthy of being refactored into a separate theory.

More generally, future work will develop logic-independent refactoring tools
that can be applied generically to large definitional libraries. Exports like ours
that represent libraries in universal formats while preserving the structure and
semantics are the crucial prerequisite to apply such refactoring tools.

Library Integration The definitional method is also the reason why the inte-
gration of libraries across logics has so far been extremely difficult. Moving a
definition d from one library to another is not desirable if (as is typical) the
target library already uses a different definition d′ for the same concept c. In
those cases, we can abstract from the definitions and translate between libraries
via partial theory morphisms.

Here the partiality of a morphism stems from dropping d, which permits
translating c to its counterpart. This requires a dependency analysis because
dropping d invalidates all results that depended on d. These must be dropped
as well or reestablished in the target system.

Theoretically, this integration approach has been suggested in [RKS11]. In-
dependently, its feasibility has been demonstrated in [KK13], which amounts to

370 C. Kaliszyk and F. Rabe

giving ad hoc partial morphisms that translate the HOL Light library into the
Isabelle/HOL library.

Future work can systematically write and verify these morphisms in Mmt.
This will yield verified integration functions even without reproving the trans-
lated theorems in the target system.

Acknowledgments. This work has been partially supported by the Austrian
Science Fund (FWF): P26201.

References

AA12. Adams, M., Aspinall, D.: Recording and refactoring HOL Light tactic
proofs. In: Proceedings of the IJCAR Workshop on Automated Theory
Exploration (2012), http://homepages.inf.ed.ac.uk/smaill/atxwing/
atx2012 submission 9.pdf

BCC+04. Buswell, S., Caprotti, O., Carlisle, D., Dewar, M., Gaetano, M., Kohlhase,
M.: The Open Math Standard, Version 2.0. Technical report, The Open
Math Society (2004), http://www.openmath.org/standard/om20

CK07. Corbineau, P., Kaliszyk, C.: Cooperative repositories for formal proofs.
In: Kauers, M., Kerber, M., Miner, R., Windsteiger, W. (eds.)
MKM/Calculemus 2007. LNCS (LNAI), vol. 4573, pp. 221–234. Springer,
Heidelberg (2007)

FGT93. Farmer, W., Guttman, J., Thayer, F.: IMPS: An Interactive Mathematical
Proof System. Journal of Automated Reasoning 11(2), 213–248 (1993)

GAA+13. Gonthier, G., et al.: A Machine-Checked Proof of the Odd Order Theorem.
In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS,
vol. 7998, pp. 163–179. Springer, Heidelberg (2013)

GK14. Gauthier, T., Kaliszyk, C.: Matching concepts across HOL libraries. In:
Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.)
CICM 2014. LNCS, vol. 8543, pp. 270–284. Springer, Heidelberg (2014)

Hal05. Hales, T.: Introduction to the Flyspeck Project. In: Coquand, T.,
Lombardi, H., Roy, M. (eds.) Mathematics, Algorithms, Proofs. Inter-
nationales Begegnungs- und Forschungszentrum für Informatik (IBFI),
Schloss Dagstuhl, Germany (2005)

Har96. Harrison, J.: HOL Light: A Tutorial Introduction. In: Srivas, M., Camilleri,
A. (eds.) FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidel-
berg (1996)

HHP93. Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. Jour-
nal of the Association for Computing Machinery 40(1), 143–184 (1993)

HKR12. Horozal, F., Kohlhase, M., Rabe, F.: Extending MKM Formats at the
Statement Level. In: Jeuring, J., Campbell, J.A., Carette, J., Dos Reis,
G., Sojka, P., Wenzel, M., Sorge, V. (eds.) CICM 2012. LNCS (LNAI),
vol. 7362, pp. 65–80. Springer, Heidelberg (2012)

HRK14. Horozal, F., Rabe, F., Kohlhase, M.: Flexary Operators for Formalized
Mathematics. In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P.,
Urban, J. (eds.) CICM 2014. LNCS, vol. 8543, pp. 315–330. Springer, Hei-
delberg (2014)

http://homepages.inf.ed.ac.uk/smaill/atxwing/atx2012_submission_9.pdf
http://homepages.inf.ed.ac.uk/smaill/atxwing/atx2012_submission_9.pdf
http://www.openmath.org/standard/om20

Towards Knowledge Management for HOL Light 371

Hur09. Hurd, J.: OpenTheory: Package Management for Higher Order Logic The-
ories. In: Reis, G.D., Théry, L. (eds.) Programming Languages for Mecha-
nized Mathematics Systems, pp. 31–37. ACM (2009)

HZ. Harrison, J., Zumkeller, R.: update database module. Part of the HOL
Light distribution

IKRU13. Iancu, M., Kohlhase, M., Rabe, F., Urban, J.: The Mizar Mathematical
Library in OMDoc: Translation and Applications. Journal of Automated
Reasoning 50(2), 191–202 (2013)

KK13. Kaliszyk, C., Krauss, A.: Scalable LCF-style proof translation. In: Blazy,
S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998,
pp. 51–66. Springer, Heidelberg (2013)

Koh06. Kohlhase, M.: OMDoc – An Open Markup Format for Mathematical Doc-
uments [version 1.2]. LNCS (LNAI), vol. 4180. Springer, Heidelberg (2006)

KŞ06. Kohlhase, M., Sucan, I.: A Search Engine for Mathematical Formulae. In:
Calmet, J., Ida, T., Wang, D. (eds.) AISC 2006. LNCS (LNAI), vol. 4120,
pp. 241–253. Springer, Heidelberg (2006)

KU14. Kaliszyk, C., Urban, J.: Learning-assisted automated reason-
ing with Flyspeck. Journal of Automated Reasoning (2014),
http://dx.doi.org/10.1007/s10817-014-9303-3

KW10. Keller, C., Werner, B.: Importing HOL Light into Coq. In: Kaufmann, M.,
Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 307–322. Springer,
Heidelberg (2010)

NSM01. Naumov, P., Stehr, M.-O., Meseguer, J.: The HOL/NuPRL proof trans-
lator - A practical approach to formal interoperability. In: Boulton,
R.J., Jackson, P.B. (eds.) TPHOLs 2001. LNCS, vol. 2152, pp. 329–345.
Springer, Heidelberg (2001)

OAA13. Obua, S., Adams, M., Aspinall, D.: Capturing hiproofs in HOL light. In:
Carette, J., Aspinall, D., Lange, C., Sojka, P., Windsteiger, W. (eds.)
CICM 2013. LNCS (LNAI), vol. 7961, pp. 184–199. Springer, Heidelberg
(2013)

OS06. Obua, S., Skalberg, S.: Importing HOL into Isabelle/HOL. In: Furbach,
U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 298–302.
Springer, Heidelberg (2006)

Pau94. Paulson, L.C.: Isabelle: A Generic Theorem Prover. LNCS, vol. 828.
Springer, Heidelberg (1994)

Pit93. Pitts, A.: The HOL logic. In: Gordon, M.J.C., Melham, T.F. (eds.) Intro-
duction to HOL: A Theorem Proving Environment for Higher Order Logic.
Cambridge University Press (1993)

Rab13. Rabe, F.: The MMT API: A Generic MKM System. In: Carette, J., As-
pinall, D., Lange, C., Sojka, P., Windsteiger, W. (eds.) CICM 2013. LNCS
(LNAI), vol. 7961, pp. 339–343. Springer, Heidelberg (2013)

Rey83. Reynolds, J.: Types, Abstraction, and Parametric Polymorphism. In: In-
formation Processing, pp. 513–523. North-Holland, Amsterdam (1983)

RK13. Rabe, F., Kohlhase, M.: A Scalable Module System. Information and Com-
putation 230(1), 1–54 (2013)

RKS11. Rabe, F., Kohlhase, M., Sacerdoti Coen, C.: A Foundational View on In-
tegration Problems. In: Davenport, J.H., Farmer, W.M., Urban, J., Rabe,
F. (eds.) Calculemus/MKM 2011. LNCS (LNAI), vol. 6824, pp. 107–122.
Springer, Heidelberg (2011)

http://dx.doi.org/10.1007/s10817-014-9303-3

372 C. Kaliszyk and F. Rabe

TGMW10. Tankink, C., Geuvers, H., McKinna, J., Wiedijk, F.: Proviola: A tool for
proof re-animation. In: Autexier, S., Calmet, J., Delahaye, D., Ion, P.D.F.,
Rideau, L., Rioboo, R., Sexton, A.P. (eds.) AISC/Calculemus/MKM 2010.
LNCS (LNAI), vol. 6167, pp. 440–454. Springer, Heidelberg (2010)

TKUG13a. Tankink, C., Kaliszyk, C., Urban, J., Geuvers, H.: Communicating formal
proofs: The case of Flyspeck. In: Blazy, S., Paulin-Mohring, C., Pichardie,
D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 451–456. Springer, Heidelberg
(2013)

TKUG13b. Tankink, C., Kaliszyk, C., Urban, J., Geuvers, H.: Formal mathematics
on display: A wiki for Flyspeck. In: Carette, J., Aspinall, D., Lange, C.,
Sojka, P., Windsteiger, W. (eds.) CICM 2013. LNCS (LNAI), vol. 7961,
pp. 152–167. Springer, Heidelberg (2013)

Wie09. Wiedijk, F.: Stateless HOL. In: Hirschowitz, T. (ed.) TYPES. EPTCS,
vol. 53, pp. 47–61 (2009)

Automated Improving of Proof Legibility

in the Mizar System�

Karol P ↪ak

Institute of Computer Science,
University of Bialystok, Poland

pakkarol@uwb.edu.pl

Abstract. Both easily readable and obscure proof scripts can be found
in the bodies of formalisations around formal proof checking environ-
ments such as Mizar. The communities that use this system try to en-
courage writing legible texts by making available various solutions, e.g.,
by introduction of phrases and constructs that make formal deductions
look closer to the informal ones. Still, many authors do not want to invest
additional efforts in enhancing readability of their scripts and assume this
can be handled automatically for them. Therefore, it is desirable to cre-
ate a tool that can automatically improve legibility of proofs. It turns out
that this goal is non-trivial since improving features of text that enhance
legibility is in general NP-complete.
The successful application of SMT technology to solving computa-

tionally difficult problems suggests that available SMT solvers can give
progress in legibility enhancement. In this paper we present the first ex-
perimental results obtained with automated legibility improving tools for
the Mizar system that use Z3 solver in the backend.

Keywords: Operations on languages, Legibility of proofs, Proof assis-
tants, SMT solvers.

1 Introduction

1.1 Motivations

Analysing examples of declarative natural deduction proof scripts, especially long
and complicated ones, it can be observed that the proofs are often formulated in
a chaotic way. During the analysis of formalised proofs, we can obviously find that
some authors of proof scripts spend a lot of time on their readability, but there
are other ones who tend to create deductions that are correct for computers,
neglecting the legibility of their proof scripts. They believe that no one, with
the exception of a proof checker, will want to analyse them. The experience of
big proof development efforts [8] shows that adapting or modifying the existing
proofs is unavoidable and requires reading of proof scripts [10]. Additionally, any

� The paper has been financed by the resources of the Polish National Science Center
granted by decision n◦DEC-2012/07/N/ST6/02147.

S.M. Watt et al. (Eds.): CICM 2014, LNAI 8543, pp. 373–387, 2014.
c© Springer International Publishing Switzerland 2014

374 K. P ↪ak

attempt to analyse the details of the proof scripts created in this way, according
to the opinion of some proof writers, is extremely difficult or even impossible.

The problem of formal deductions illegibility, which at first sight does not seem
to be difficult, led to the abandonment or collapse of many formalisation projects
such as these carried by Bourbaki or Whitehead and Russell [28]. The formalisa-
tion has become feasible only after the availability of computers [29] increased,
but even now it is still quite difficult. Therefore, it comes as no surprise that
communities around formal proof checking environments such as Mizar [18] and
Isabelle/Isar [27] attempt to resolve this problem and often implement various
solutions aimed at raising the legibility of proof scripts. Adaptation of informal
mathematical language constructs to formal ones is the most natural direction
for research. Many of these implemented solutions [14,26] are also known from
the programming language editor frameworks, where they proven their useful-
ness (B. A. Myers shows that syntax highlighting or hint system in programming
languages can save up to 35% of time spent for search in the code that is sup-
posed to be modified [13]). These efforts are also focused on the visualisation of
proof scripts in the linked HTML form [25].

1.2 Proposed Approach

In this paper we focus on another, still underdeveloped approach that concen-
trates on modification of order between independent steps written in a proof
script. Based on a result of a long experience with the Mizar system and de-
velopment of Mizar Mathematical Library (MML) [19], an analysis of different
opinions shared by users of MML as well as models of human cognitive percep-
tion of read material, we can conclude that there is a close relationship between
the reasoning legibility and grouping of steps into linear, directly connected
fragments. Naturally, legibility has different meanings for different people, but
in general the results obtained in this research complies with the expectations.
This research precisely demonstrates how important for human being “local de-
ductions” are in the analysing process of mathematical proofs.

This can be summarised with the Behaghel’s First Law that elements that
belong close together intellectually should be placed close together [1]. This law
is also recognised in modern scientific literature concerning human perception
[15]. Note that every information used in justification of a step had to be derived
before in the proof, but often we can manipulate the location of these premises
in deduction. With Behaghel’s law in mind, we assume that a step where at
least part of required information is available in close neighborhood of the step
is more intelligible than a step in which all used information is far away in the
proof scripts. Obviously, close neighborhood can be defined in different ways,
therefore we parametrise this notion with a fixed number n that counts the
number of preceding steps that are considered to be our close neighborhood.

An important case emerges for n = 1. In this case the general method of
referencing by means of labels can be replaced in the Mizar system by the then

construction. Additionally, in case where every reference to a step can be replaced
by the then construction, the label attached to this step in unnecessary and can

Automated Improving of Proof Legibility in the Mizar System 375

be removed from proof scripts. In consequence, the number of labels in the proof
script can be brought smaller. Note that the human short-term memory is the
capacity for holding a small amount of information in mind in an active state, and
its capacity is 7 ± 2 elements [3,17]. However, this capacity is prone to training
[5], and in the case of research on Mizar it has been shown that it is in the range
5-10 [16]. Therefore, it comes as no surprise that we want to choose an ordering
of steps that maximises the number of references in close neighbourhoods of
reference targets, where we understand by a close neighbourhood proof steps
that are supposed to be directly available from within the short-term memory.

In this paper we present the first experimental results obtained with auto-
mated legibility improving tools for Mizar that aim at realisation of the above-
described legibility criteria. Since improving legibility in most cases in NP-hard
[22], we also present the results obtained with the application of a SMT-solver Z3
[4]. The impact of these criteria and the other ones has been already recognised
by the scientific community of people who write proof scripts in Mizar [20,21]
and in other systems [2,12,24].

In Section 2 we introduce the notion of an abstract model of proofs and
its linearisation. In Section 3 we discuss selected methods to improve legibility
and we show the complexity of two so far open cases, transforming to them
known NP-complete problems. In Section 4 we discuss translations of legibility
problems to the Z3-solver and application of its responses to proof scripts. Then
in Section 5 we report the statistical results obtained for the MML database.
Finally, Section 6 concludes the paper and discusses the future work.

2 Graph Representation of Proofs

Mizar [19] is a mathematical language and a proof checker for the language that
are based on natural deduction created by S. Jakowski and F. B. Fitch [6,11].
In this paper, we do not concentrate on a full explanation of Mizar. We will just
focus on a few easy-to-observe Mizar proof structure features presented in an
example (Fig. 1), where the statement a square matrix is invertible if and only
if it has non-zero determinant is proved. This example is contained in an article
by P ↪ak and Trybulec [23].

Note that symbols 0K, 1K represent the additive identity element and the
multiplicative identity element of a field K, respectively. Additionally, the Mizar
system uses only ASCII characters, therefore operations such as −1, ·, (·)T are
represented in Mizar as ", *, @ respectively, the labels MATRIX 6, MATRIX 7,
MATRIX11 are identifiers of Mizar articles. An abstract model of the proof scripts
(see Fig. 2) was considered in detail in [20], but for our purposes we detail only
a sketch of its construction, focusing mainly on one-level deductions that ignore
nested lemmas. Generally we call a DAG P = 〈V,O ∪M〉 abstract proof graph if
O,M are disjoint families of arcs, called ordered arcs andmeta-edges respectively,
and O contains a distinguished set of arcs R(P) ⊆ O, the elements of which
are called references. The vertices of P represent reasoning steps, ordered arcs
represent all kinds of additional constraints that force one step to precede another

376 K. P ↪ak

�� ������� Th34�
��� n 	� Nat
 M 	� Matrix �� n
K �� n >= 1 ����

M �� invertible ��� Det M �� 0K
�����

�� ��� n 	� Nat
 M 	� Matrix �� n
K ���� ����

A1� n >= 1�
�� ���� M �� invertible ������� Det M �� 0K

�����

�� ������ M �� invertible�
�� ���� ������� Minv 	� Matrix �� n
K ���� ����

A2� M is_reverse_of Minv 	� MATRIX_6��� 3�
�� A3� M · Minv � 1��K
n� 	� A2
MATRIX_6��� 2�
�� Det 1	�K
n� � 1K 	� A1
MATRIX_7�16�

� ���� Det M · Det Minv � 1K 	� A1
A3
MATRIX11�62�
�� ���� ���� Det M �� 0K�

���

��� ������

A4� Det M �� 0K�
��� ����

A5� M · � �Det M�−1 · �Matrix_of_Cofactor M�T � � 1��K
n� 	� Th30�
��� �Det M�−1 · �Matrix_of_Cofactor M�T · M � 1��K
n� 	� A4
Th33�
��� ���� M is_reverse_of �Det �)−1 · �Matrix_of_Cofactor M�

	� A5
MATRIX_6��� 2�
��� ���� ���� ������ 	� MATRIX_6��� 3�

���

Fig. 1. The example of proof script written in the Mizar style

one, and meta-edges represent dependence between a step that as a justification
contains nested reasoning and each step of this reasoning. In Fig. 2 arrows �
represent meta-edges. Elements of R(P) ⊆ O correspond to solid arrows and
represent the information flow between a step (the head of the arc, e.g., the
vertex 8) that use in the justification premises formulated in a previously justified
step (the tail of the arc, e.g., vertices 2, 6, 7). Other ordered arcs correspond to
dashed arrows and represent, e.g., the dependence between a step that introduces
a variable into the reasoning and a step that uses this variable in an expression
(e.g., the arc 〈5, 6〉 that corresponds to the use of the variable Minv). Ordered
arcs represent also the order of special kind reasoning steps in the Jaśkowski-style
natural-deduction proofs (for more detail see [9]) such as steps that introduce
quantifier or implication; or indicate a conclusion (e.g., arcs 〈2, 3〉, 〈4, 9〉). Clearly,
every abstract proof graph does not contain labeled vertices and multiple arcs.
Labels and multiple arcs visible in Fig. 2 have been used here only to aid the
reader and simplify their identification.

It is easily seen that digraph 〈V,M〉 is a forest, i.e., a disjointed union of
trees, in which every connected maximal tree is an arborescence (i.e., a rooted
tree where all arcs are directed from leaves to the root). Additionally, using the
notion of meta-edges we can define formal equivalent of one-level deductions.

Definition 1. Let P = 〈V,O ∪M〉 be an abstract proof graph and D be a sub-
graph of P induced by a set of vertices. We call D one-level deduction, if D is
induced by the set of all roots in the forest 〈V,M〉 or it is induced by N−

〈V,M〉(v)
for some vertex v ∈ V .

Naturally, one-level deductions do not have meta-edge. Consequently, focusing
only on such deductions results in a simplified model of proof graphs. Negative

Automated Improving of Proof Legibility in the Mizar System 377

1

11

2 3 10 13 14

12

7

4 5 8 9

6

Fig. 2. The abstract proof graph illustrating the structure of reasoning presented in
Fig. 1

consequence of this simplification is that hidden dependencies between steps
in one-level deductions may occur. Therefore, we have to carefully add such
dependencies to these digraphs. These dependencies was considered in detail in
[22]. Here we remind only that hidden dependency occur between vertices v, u if

(i) there exists a common one-level deduction that contains v and u,
(ii) the step that corresponds to u is justified by a nesting lemma,
(iii) a step s of this nesting lemma uses in the expression a variable that is intro-

duced in a step v or the justification of s refers to the statement formulated
in v, where v corresponds to v.

Additionally in the case, where the justification of s refers to the statement
formulated in v we call 〈u, v〉 extended reference.

Let D = 〈VD, OD〉 be a one-level deduction of P . To simplify we assume that
the set of ordered arcs of D contains also every hidden dependency between
vertices of VD, and R(D) contains only original references of P that connect
vertices of VD. The set of reference and extended reference arcs of G is denoted
by R(D).

To study the general case, without the Mizar context, we assume only relation
between distinguished sets of arcs in D that R(D) ⊆ R(D) ⊆ OD. Therefore, in
the following considerations as a one-level deduction we take a DAG D = 〈V ,A〉,
with two distinguished sets A1 ⊆ A2 ⊆ A that correspond to R(D) and R(D),
respectively. For simplicity, we assume also that A1-references can be replaced
in the Mizar system by the then construction.

We identify here a modification of independent steps order to improve proof
legibility with a modification of a topological sorting of D. By topological sorting,
called also linearisation, we mean a one-to-one function σ : V → {1, 2, . . . |V|}
such that σ(u) < σ(v) for each arc 〈u, v〉 ∈ A. We denote by TS (D) the set
of all topological sortings. Let us consider σ ∈ TS (D). We call a vertex v of
V a thenA1(σ)–step if v corresponds to a vertex that is linked by A1 to the

378 K. P ↪ak

directly preceding step in the linearisation σ (e.g., steps 5, 8, 9 in Fig. 1) or
more precisely:

v ∈ thenA1(σ)⇐⇒ σ(v) �= 1 ∧ 〈σ−1(σ(v)−1), v〉 ∈ A1. (1)

We call a directed path p = 〈p0, p1, . . . pn〉 of D a σA1–linear reasoning if pk
is a thenA1(σ)–step (i.e., σ(pk) = 1 + σ(pk−1) and 〈pk−1, pk〉 ∈ A1) for each
k = 1, 2, . . . , n (p0 does not have to be a thenA1(σ)–step). A σA1–linear reason-
ing P is maximal if it is not a subsequence of any other σA1–linear reasoning.
In our considerations we also use a function that maps vertices of consecutive
maximal σA1–linear reasoning in linearisation σ to consecutive natural numbers.
Let Then : TS (D)× 2A×V → {1, 2, . . . , |V|} be given by the following recursive
definition:

ThenA1
σ (v) =

⎧⎨
⎩

1 if σ(v) = 1,

ThenA1
σ (σ−1(σ(v)−1)) if v ∈ thenA1(σ),

ThenA1
σ (σ−1(σ(v)−1)) + 1 if v �∈ thenA1(σ),

(2)

for an arbitrary v ∈ V , A1 ⊆ A, and σ ∈ TS (D).
Now we define a formal equivalent of a label in proof graph formalism. We will

say that a vertex v of V has to have a label or is a labeled vertex in linearisation
σ if v is the tail of at most one A2 \ A1-arc (e.g., steps 2 in Fig. 1) or is the tail
of at most one A1-arc that corresponds to a link which does not connect two
steps located directly one after the other in the linearisation σ (e.g., step 6 in
Fig. 1). We write labA1,A2(σ) for the set of all labeled vertices given by

v ∈ lab
A1,A2(σ)⇐⇒ ∃

u∈V
(〈v, u〉 ∈ A2 \ A1 ∨ (〈v, u〉 ∈ A1 ∧ σ(v) + 1 �= σ(u))

)
(3)

where v ∈ V . We define also a function Lab : TS (D) × 2A × 2A × V →
{1, 2, . . . , |V|} that associates the number of all labeled vertices u such that
σ(u) < σ(v), with every vertex v ∈ V , defined as:

LabA1,A2
σ (v) =

⎧⎨
⎩

0 if σ(v) = 1,
LabA1,A2

σ (σ−1(σ(v)−1)) if σ(v) �= 1 ∧ v �∈ labA1,A2(σ),
LabA1,A2

σ (σ−1(σ(v)−1)) + 1 if σ(v) �= 1 ∧ v ∈ labA1,A2(σ).
(4)

At last we define a metric dσ : V × V !→ N for a linearisation σ, which is called
σ–distance and is determined by dσ(v, u) = |σ(v)−σ(u)| for each v, u ∈ V .

3 Methods of Improving Legibility

According to the approach presented in Section 1.2 we can formally define criteria
of reasoning linearisation that quantify the legibility of obtained proof scripts.
Since steps that refer to the preceding reasoning statements are perceived as
more intelligible, we expect that the set thenA1(σ) has the largest cardinality
for the selected linearisation σ (1st MIL). Obviously, the length of σ–linear
reasoning is also important for proof readers, therefore the average length of σ–
linear reasoning should also have the maximal value. Note that optimisation of
this determinant is realised by 1st MIL defined below, since such average length

is equal to |VG|
|VG|−|thenA1 (σ)| .

Automated Improving of Proof Legibility in the Mizar System 379

The 1st Method of Improving Legibility (1st MIL):

Instance: A DAG D = 〈V,A〉, a subset A1 of A, a positive integer K ≤ |V|.
Question: Does there exist a topological sorting σ of D for which |thenA1(σ)| ≥ K?

In addition we consider a parameterised version of the above-mentioned prob-
lem, since a close neighborhood of a step in proof scripts can be extended from
the directly preceding step to last n preceding steps.

The 1st Method of Improving Legibility for n (1st MILn):
Instance: A DAG D = 〈V,A〉, a subset A2 of A, a positive integer K ≤ |A2|.
Question: Does there exist a topological sorting σ of D for which

then
A2
≤n(σ) := {〈v, u〉 ∈ A2 : dσ(v, u) ≤ n}

has size at most K?

It is also desirable that fragments of reasoning that are maximal σ–linear
subsequences should be pieces of reasoning with dense information flow.

Therefore, this flow has to be maximal in legible proof scripts or equivalently,
the information flow between maximal σ–linear reasonings has to be minimal.
This can be formulated as follows:

The 2st Method of Improving Legibility (2st MIL):
Instance: A DAG D = 〈V,A〉, subsets A1⊆A2⊆A, a positive integer K ≤ |A2|.
Question: Does there exist a topological sorting σ of D for which

{〈v, u〉 ∈ A2 : Then
A1
σ (v) �= ThenA1

σ (u)}

has size at most K?

In a similar way we obtain that the number of labeled vertices in the se-
lected linearisation σ should be the smallest (3rd MIL), the same as sum of all
σ–distances between vertices linked by A2-arcs (4

th MIL).

The 3rd Method of Improving Legibility (3nd MIL):

Instance: A DAG D = 〈V,A〉, subsets A1⊆A2⊆A, a positive integer K ≤ |V |.
Question: Does there exist a topological sorting σ of D for which |labA1,A2(σ)| ≤ K?

The 4th Method of Improving Legibility (4th MIL):

Instance: A DAG D = 〈V,A〉, a subset A2 of A, a positive integer K ≤
(|V|+1

3

)
.

Question: Does there exist a topological sorting σ of D for which

∑
〈u,v〉∈A2

dσ(v, u) ≤ K?

Referring to the short-term memory limitation of humans we formulated the
last method that maximises the number of more intelligible references. We rely
here on the assumption that a reference to a labeled vertex is more intelligible,
if the number of statements that correspond to labeled vertices between linked
by this reference vertices can be remembered by a reader.

380 K. P ↪ak

The 5th Method of Improving Legibility for n (5th MILn):
Instance: A DAG D = 〈V,A〉, subsets A1⊆A2⊆A, a positive integer K ≤ |A2|.
Question: Does there exist a topological sorting σ of D for which

RA1,A2(σ) := {〈v, u〉 ∈ A2 : Lab
A1,A2
σ (u)− LabA1,A2

σ (v) ≤ n}

has size at last K?

It is easy to see that the 4th MIL is NP-complete, since it generalises a known
NP-complete problem Directed Optimal Linear Arrangement (see GT43 in [7]
for A2 = A). NP-completeness has been shown also for problems 1st, 2nd MIL,
even for restricted instances A1 = A2 = A [22]. Additionally, for every instance
of these problems in this case, there exists a Mizar proof script that contains a
one-level deduction whose structure is that instance [22]. Therefore, realisation
of 1st, 2nd, and 4th methods for one-level deductions potentially occurring in
MML is NP-hard. In consequence, realisations of such methods for abstract
proof graphs are also NP-hard, as one-level deductions are its substructures.

The problem 3rd MIL is also NP-complete in the general case, but for in-
stances limited to ones that can actually occur in MML it is solvable in poly-
nomial time [22]. Consequently, it is possible to effectively minimise the number
of labels in Mizar proof scripts. These limits are a consequence of an additional
syntax restriction of Mizar to use the then construct.

We show in Theorems 1, 2 below that problems 1st MILn and 5th MILn are
also NP-complete. However, we do not focus on details of these proofs and we
present only sketches.

Theorem 1. The 1st MIL problem is reducible to the 1st MILn problem for each
natural number n.

Proof. It is easily seen that the 1st MIL and the 1st MIL1 are equivalent, if we
take A1 = A2. Therefore, we can clearly assume that n > 1. Let D = 〈V ,A〉,
A1 ⊆ A, K ≤ |V| be an instance I of the 1st MIL. We can clearly construct
in logspace a digraph D′ = 〈V ∪ V ′,A ∪ A′〉, a subset A′

2 = A1 ∪ A′, and
K ′ = K + (n−1) · |V| as follows:

V ′ := {vi : v ∈ V ∧ 1 ≤ i < n}, A′ := {〈vi, v〉 : v ∈ V ∧ 1 ≤ i < n} (5)

and consider it to be an instance I ′ of the 1st MILn. Let us take σ ∈ TS (D)
that is a solution of the 1st MIL problem for I and define a topological sorting
σ′ ∈ TS (D′) as σ′(v) := n · σ(v), σ′(vi) := i + (n−1) · σ(v) for each v ∈ V
and 1 ≤ i < n. Obviously, A′ ⊆ then

A′
2

≤n(σ
′) since a segment that contains

all vertices of the form vi for i = 1, 2, . . . , n − 1 directly precedes v for each
v ∈ V . Additionally, dσ(v, u) = 1 if and only if dσ′(v, u) = n, hence finally

|thenA
′
2

≤n(σ
′)| ≤ K ′ and σ′ is a solution of I ′.

Now let σ′ ∈ TS (D′) be a solution of the 1st MILn problem for I ′. Note that
the maximal value of σ′(V ′) is obtained for a vertex of V . Denote it is as v. Let i
be the index for which σ′(vi) has the smallest value among each i = 1, 2, . . . , n−1.

Automated Improving of Proof Legibility in the Mizar System 381

We show that we can move all vertices of V ′
v := V ′ \ {v, v1, v2, . . . , vn−1} that

are located between vk and v, before vk in σ′ for each k = 1, 2, . . . , n− 1 so that

the arrangement between vertices of V ′
v is preserved and the size of then

A′
2

≤n(σ
′
1) is

not reduced, where σ′
1 is the new linearisation obtained in this way. Note that to

compare size of then
A′

2

≤n(σ
′) and then

A′
2

≤n(σ
′
1) we can clearly compare only A′

2-arcs
in-going to v included therein, which can be at most n in both sets. Suppose,

contrary to our claim, that then
A′

2

≤n(σ
′) has more such arcs. But then

A′
2

≤n(σ
′
1)

contains 〈vj , v〉 for each j = 1, 2, . . . , n− 1, hence then
A′

2

≤n(σ
′) contains exactly n

such arcs.
Thus, then

A′
2

≤n(σ
′) contains the arcs 〈u, v〉 that have to be A′

2-arcs, where u
is the last vertex of V before v in σ. But then dσ′

1
(u, v) = n and in consequence

〈u, v〉 ∈ then
A′

2

≤n(σ
′
1). This contradicts our assumption that then

A′
2

≤n(σ
′) has more

arcs in-going to v than then
A′

2

≤n(σ
′
1).

In a similar way, we can arrange vertices before the second, the third, the
fourth, . . . , |V|-th up to the last vertex of V in σ′

1, σ
′
2, . . . , σ

′
|V|−1, creating a se-

quence σ′
2, σ

′
3, . . . , σ

′
|V|, respectively. Additionally, a topological sort σ|V| ∈ TS (D)

that preserves the order of vertices of V in σ′
|V| is a solution of I, since

K′ ≤ then
A′

2
≤n(σ

′) ≤ then
A′

2
≤n(σ

′
|V|) = then

A1(σ|V|) + (n−1) · |V|, (6)

and the proof is completed.

Theorem 2. The 1st MILn problem is reducible to the 5th MILn problem.

Proof. Let D = 〈V ,A〉, A2 ⊆ A, K ≤ |A2| be an instance I of the 1st MIL. Let
D′ = 〈V ∪ V ′,A ∪A′ ∪ A′′〉, A′

1 = ∅, A′
2 = A2 ∪ A′, K ′ = K defined as follows:

V ′ := {v1, v2, . . . , vn+1}, A′ := {〈u, vn+1〉 : u ∈ V},
A′′ := {〈u, v1〉 : u ∈ V} ∪ {〈vi, vi+1〉 : 1 ≤ i ≤ n}, (7)

be an instance I ′ of the 5th MILn. Let us consider σ ∈ TS (D′). Note that
A′∩RA′

1,A′
2(σ) = ∅. Indeed, for everyA′-arcs 〈u, vn+1〉 we have dσ(u, vn+1) > n,

since σ(u) < σ(v1) < σ(v2) < . . . < σ(vn+1). The main task ofA′–arcs is labeling
every vertex of V . Consequently, we obtain that Lab

A′
1,A′

2
σ (w1)−Lab

A′
1,A′

2
σ (w2) =

σ(w1) − σ(w2) for each w1, w2 ∈ V . Note also that every vertex of V ′ has to be
located after all vertices of V in σ and in unique order (σ(vi) = |V|+i for each

i = 1, 2, . . . , n+1). Hence RA′
1,A′

2(σ) = then
A′

2

≤n(σ) = thenA2

≤n(σ|V), where σ|V
is a topological sorting of D obtained by restricting σ to V . Now the proof is
immediate.

4 Automated Improving of Legibility as Support for
Mizar Proof Authors

When we restrict our focus to methods based on a modification of the order of
independent steps, the presented techniques agree in most cases with the needs of

382 K. P ↪ak

Mizar users. However, it is controversial what the particular hierarchy of criteria
should be applied, i.e., which criteria should be considered to be more important.
Additionally, it can be observed in proof scripts of MML that application of a
method to improve legibility can degrade the parameter optimised by another
method. Therefore, we created a flexible application which can be used even by
users with conflicting hierarchies of criteria for legibility. To use this application
on a proof script, author needs simply to indicate a one-level deduction by typing
a pragma ::$IL 〈strategy〉 {〈method〉}∗ at the beginning of this deduction (e.g.,
directly after proof, see Fig. 2) and run it, where:

〈strategy〉 : := Z3 : 〈time〉 | BF : 〈number〉 | auto : 〈number〉 : 〈time〉 ,
〈method〉 : := 〈criterion〉 : 〈condition〉 [: 〈parameter〉] ,

〈criterion〉 : := Then | Flow | Lab | SumRef | LabRef ,
〈condition〉 : := = | < | 〈number〉,
〈parameter〉 : := 〈number〉 .

This application tries to find in three stages a more legible linearisation of
a deduction decorated with this pragma. First, we create an abstract proof
graph of this deduction. In the second stage, depending on the specified strat-
egy, we describe the proof graph and the selected methods as a list of asser-
tions and we check satisfiability by the Z3 solver for a given number of seconds
(Z3 : 〈time〉); use a brute-force attack with the limited number of checked lin-
earisations (BF : 〈number〉); or check the number of linearisations and depend-
ing on the result we select the first (for greater than the limit) or the second
(otherwise) strategy (auto : 〈number〉 : 〈time〉). In the third stage, we adapt the
obtained solution to the considered proof script, if we get a more legible lin-
earisation. Criteria correspond to the 1st MILn, 2

nd, 3rd, 4th MILs, 5th MILn

problems respectively. Moreover, Then criterion with parameter 0 corresponds
to the 1st MIL problem. The condition field set to < instructs the tool to search
for a linearisation in which the optimised parameter given as the 〈criterion〉 tag
is improved when compared with the initial situation. The condition field set to
= instructs the tool not to make the parameter worse. Finally, condition field set
to 〈number〉 defines the degree of the criterion in selected hierarchy.

The choice of the brute-force method is a consequence of the fact that 96,2% of
one-level deductions in MML have at most one million possible linearisations that
can be checked in this way “effectively”. A vast majority of such deductions is
located on deeply nested levels of proofs. Note that the other 3,8% of deductions
cannot be omitted in the process of improving legibility, since this small group
in MML is mainly located on shallow levels of proofs theorems (46% of this
group is located on the first level, 25% on the second one, 14% on the third
one). Additionally, when we try to analyse the main idea of reasoning we often
concentrate the focus more on the first few levels than deeper ones (the deepest
level of MML, 21, is used in the Mizar article JGRAPH 6).

Our translation of proof graph structure D = 〈V ,A〉, A1 ⊆ A2 ⊆ A for an
optimisation method strongly depends on the method. Generally, we define the
search linearisation as follows:

Automated Improving of Proof Legibility in the Mizar System 383

1: (declare-const n Int) (assert (=n “|V|”))
2: (declare-fun S (Int) Int) (declare-fun Sinv (Int) Int)

3: (assert (forall ((x Int))

(=> (and (<= 1x) (<= xn)) (and (<= 1 (Sx)) (<= (Sx)n)))))
4: (assert (forall ((x Int) (y Int))

(!(=> (and(and (<= 1x) (<= x n)) (= (Sx)(Sy))) (=xy))
:pattern ((Sx) (Sy)))))

5: (assert (forall ((x Int))

(!(=> (and (<= 1 x)(<= xn)) (= x (Sinv (Sx)))):pattern ((Sx)))))

where Sinv corresponds to S−1 and is introduced only for selected MILs prob-
lems. We also assert (<(S “x”) (S “y”)) where 〈x, y〉 ∈ A and every path of D
directed form x to y has length at most 1.

The choice of the interpretation of MIL problems in Z3 assertions, generally
requires to carry out initial research on the impact of the translation choice on the
time of solution search. We often obtain significant reduction of the searching
time when we replace an assertion with a quantifier (e.g., ∀1≤x≤n ϕ(x)) by a
list of assertions that represent individual cases (e.g., ϕ(1), ϕ(2), . . . , ϕ(n)). As
an illustration, let us consider the 1st interpretation of the 1st MIL defined as
follows:

1: (declare-fun T (Int) Bool)

2: (assert (= (T (Sinv 1)) false))

3: (assert (forall ((x Int))(= (T (Sinv x))

(ite (and(and (< 1x)(<= xn))(= (select A1(Sinv (- x 1))(Sinv x)) true))
true false))))

4: (declare-fun SumT (Int) Int)

5: (assert (= (SumT 0) 0))

6: (assert (forall ((x Int))(= (SumT x)(ite(and(and(< 0x)(<=x n))(= (T x) true))
(+ 1 (SumT (-x 1)))(SumT (-x 1))))))

where A1 is the incidence matrix of the family of A1-arcs ((declare-constA1
(Array Int Int Bool))). An analysis of 285 one-level deductions contained in the
proof script of [23] (e.g., Fig. 1) shows that we can speed up the search process
(see Fig. 3) on average 37 times if we replace the assertion in the 6th row by a
sequence of assentations like:

(assert (= (SumT “i+1”)
(ite(= (T (Sinv “i+1”))true) (+ 1 (SumT “i”)) (SumT “i”))))

for i = 1, 2, . . . ,n (the 2nd interpretation). Note that we replace a quantifier in
this assertion by a list of individual cases and we count the number of “true”
values of T in the order determined by S−1. This result can be improved further
on average 2.57 times, if we remove an intermediate function T, using a sequence
of assentations like:

(assert (= (SumT “i+1”)
(ite (= (select A1 (Sinv “i”)(Sinv “i+1”))true)(+ 1 (SumT “i”))(SumT “i”))))

(the 3rd interpretation). Note that the number of unresolved cases that remain
unresolved after 10 minutes was reduced from 31 to 10 and 7 respectively. Ad-
ditionally, the average time to solve newly resolved cases were 38.2 and 16.9
seconds respectively.

384 K. P ↪ak

Similar speed up in searches was obtained with removal of quantifiers from
interpretations of the other methods. It comes as no surprise since functions
defined in one interpretation are used in other ones. Note that the function
SumT is used indirectly in the interpretation of the 2nd MIL problem, since
there exists a relationship between the values of SumT and a relation determined
by belonging of two vertices to the same maximal linear reasoning.

100 101 102 103 104 105 106
100

101

102

103

Number of Linearisations

S
p
e
e
d
u
p
o
f
S
e
a
rc
h
P
ro

c
e
ss

100 101 102 103 104 105 106

100

101

Number of Linearisations

S
p
e
e
d
u
p
o
f
S
e
a
rc
h
P
ro

c
e
ss

Fig. 3. The proportion between times of linearisation search with Z3 strategy
realised through 1st and 3rd interpretation (on the left side) and through 2nd and
3rd interpretation (on the right side) on one-level deductions in proof scripts of [23]

As an illustration, let us consider one-level deductions contained in the ab-
stract proof graph presented in Fig. 2, induced by vertices 2, 3, 10–14 and 4–9
respectively. Note that the largest number of then-steps is equal to 3 in both
deductions and this this value is obtained in the proof script presented in Fig. 1.
However, the Z3 solver verify the possibility of increasing the number of then-
steps in the 1st interpretation of the 1st MIL for 6.10 and 0.43 seconds, in the
2nd interpretation for 0.08 and 0.06 seconds, and in the 3rd interpretation for
0.02 and 0.01 seconds respectively.

5 Statistical Results

The effectiveness of Z3 and BF strategies was studies on the MML database
version 5.22.1191 including 208590 one-level deductions. We present here only
statistical results that were obtained for two most popular criteria that corre-
spond to the 1st and the 4th MIL problem. The results for other criteria have
proved to be similar to those selected ones. This resemblance is mainly due to
similar problem translation to Z3 solver. Running the optimisation program on
the whole MML base with pragmas:

(1) ::$IL Z3:600 Then:<:0 , (2) ::$IL Z3:600 SumRef:< ,
(3) ::$IL BF:1000000 Then:<:0 , (4) ::$IL BF:1000000 SumRef:< ,

Automated Improving of Proof Legibility in the Mizar System 385

1-
6
7-
12
13
-1
8
19
-2
4
25
-3
0
31
-3
6
37
-4
2
43
-4
8
49
-5
4
55
-6
0

61
-3
00

0

50

100

Length of Deductions

P
er
ce
n
t
o
f
F
a
st
er

O
b
ta
in
ed
S
o
lu
ti
o
n
s Z3

BF

Fig. 4. The percent of one-level deductions, where the search time with Z3:600 and
BF:10000000 strategies is compared depending on the deduction length, for criterion
SumRef:<. Naturally, we limited results to cases, in which at least one strategy solved
the problem.

1-
6
7-
12
13
-1
8
19
-2
4
25
-3
0
31
-3
6
37
-4
2
43
-4
8
49
-5
4
55
-6
0

61
-3
00

0

50

100

Length of Deductions

P
er
ce
n
t
o
f
F
a
st
er

O
b
ta
in
ed
S
o
lu
ti
o
n
s Z3

BF

Fig. 5. The percent of one-level deductions, where the search time with Z3:600 and
BF:10000000 strategies is compared depending on the deduction length, for criterion
Then:<:0. Clearly, we limited results to cases, in which at least one strategy solved
the problem.

takes 62.5h, 16.4h, 2.4h, and 16 min respectively, on a platform with 16 Intel
Xeon E5520 Processors and 24 GB of RAM. Using both strategies only 1.92%,
0.03% of problems were left unsolved, for Then and SumRef criterion respec-
tively. Clearly, BF strategy turns out to be significantly better than Z3, but this
holds only whole MML base is taken as the subject of the test case. When we
take into consideration only deductions that possess at least ten million possible
linearisations, the effectiveness in both cases becomes comparable. Additionally,
the effectiveness of the strategy Z3 is more highlighted when we analyse it in
terms of the deductions length (see Fig. 4, 5). As we expected, application of
SMT technology to long deductions, where the computationally hardest part
of legibility improvement is concentrated, was fully justified. Additionally, this
situation is evident even for deductions that have at least 25 steps.

386 K. P ↪ak

6 Conclusions

In this paper we describe a next stage in the research on methods that improve
proof legibility based on the modifying the order of independent deduction steps.
The Mizar users need a “push-button” tool that automatically facilitates local-
isation of premises in deduction and highlights local subdeductions. However,
creating such a tool is a non-trivial task, since the realisation of these expecta-
tions leads to NP-hard optimisation.

We presented initial results obtained with such a tool that uses the Z3 solver.
This research showed that such tools can improve the legibility of deductions,
even in the case they are long. Definitely, our result suggests the need of further
work on the choice of interpretation of MIL problems in Z3 to speed up the
search process

Note that we encounter computationally difficult problems, similarly as for
MIL, when we try to improve the legibility of proof scripts based, e.g. on auto-
mated look-up of passages from long reasoning and extracting them as a lemma.
Therefore, by successful application of the SMT-solver Z3 to solving MIL prob-
lems we we expect similar results to other methods of legibility enhancement.

References

1. Behaghel, O.: Beziehungen zwischen Umfang und Reihenfolge von Satzgliedern.
Indogermanische Forschungen 25, 110–142 (1909)

2. Blanchette, J.C.: Redirecting Proofs by Contradiction. In: Third International
Workshop on Proof Exchange for Theorem Proving, PxTP 2013. EPiC Series,
vol. 14, pp. 11–26. EasyChair (2013)

3. Cowan, N.: The magical number 4 in short-term memory: A reconsideration of
mental storage capacity. Behavioral and Brain Sciences 24(1), 87–114 (2001)

4. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

5. Ericsson, K.A.: Analysis of memory performance in terms of memory skill. Ad-
vances in the psychology of human intelligence, vol. 4. Lawrence Erlbaum Asso-
ciates Inc., Hillsdale (1988)

6. Fitch, F.B.: Symbolic Logic: an Introduction. The Ronald Press Co. (1952)
7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the The-
ory of NP-Completeness. A Series of Books in the Mathematical Science. W. H.
Freeman and Company, New York (1979)

8. Gonthier, G.: Formal Proof—The Four-Color Theorem. Notices of the AMS 55(11),
1382–1393 (2008)

9. Grabowski, A., Korni�lowicz, A., Naumowicz, A.: Mizar in a Nutshell. Journal of
Formalized Reasoning 3(2), 153–245 (2010)

10. Grabowski, A., Schwarzweller, C.: Improving Representation of Knowledge within
the Mizar Library. Studies in Logic, Grammar and Rhetoric 18(31), 35–50 (2009)

11. Jaśkowski, S.: On the Rules of Supposition in Formal Logic. Studia Logica (1934),
Warszawa Reprinted in Polish Logic, McCall, S., ed. Clarendon Press, Oxford
(1967)

Automated Improving of Proof Legibility in the Mizar System 387

12. Kaliszyk, C., Urban, J.: PRocH: Proof Reconstruction for HOL Light. In: Bonacina,
M.P. (ed.) CADE-24. LNCS (LNAI), vol. 7898, pp. 267–274. Springer, Heidelberg
(2013)

13. Ko, A.J., Myers, B.A., Coblenz, M.J., Aung, H.H.: An Exploratory Study of How
Developers Seek, Relate, and Collect Relevant Information during Software Main-
tenance Tasks. IEEE Transactions on Software Engineering 32(12), 971–988 (2006)

14. Korni�lowicz, A.: Tentative Experiments with Ellipsis in Mizar. In: Jeuring, J.,
Campbell, J.A., Carette, J., Dos Reis, G., Sojka, P., Wenzel, M., Sorge, V. (eds.)
CICM 2012. LNCS (LNAI), vol. 7362, pp. 453–457. Springer, Heidelberg (2012)

15. Levy, R.: Expectation-based syntactic comprehension. Cognition 106, 1126–1177
(2008)

16. Matuszewski, R.: On Automatic Translation of Texts from Mizar-QC language into
English. Studies in Logic, Grammar and Rhetoric 4 (1984)

17. Miller, G.A.: The Magical Number Seven, Plus or Minus Two: Some Limits on Our
Capacity for Processing Information. Psychological Review 63, 81–97 (1956)

18. Naumowicz, A., Korni�lowicz, A.: A Brief Overview of Mizar. In: Berghofer, S.,
Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp.
67–72. Springer, Heidelberg (2009)

19. Naumowicz, A., Korni�lowicz, A.: A Brief Overview of Mizar. In: Berghofer, S.,
Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp.
67–72. Springer, Heidelberg (2009)

20. P ↪ak, K.: The Algorithms for Improving and Reorganizing Natural Deduction
Proofs. Studies in Logic, Grammar and Rhetoric 22(35), 95–112 (2010)

21. P ↪ak, K.: Methods of Lemma Extraction in Natural Deduction Proofs. Journal of
Automated Reasoning 50(2), 217–228 (2013)

22. P ↪ak, K.: The Algorithms for Improving Legibility of Natural Deduction Proofs.
PhD thesis, University of Warsaw (2013)

23. P ↪ak, K., Trybulec, A.: Laplace Expansion. Formalized Mathematics 15(3), 143–150
(2008)

24. Smolka, S.J., Blanchette, J.C.: Robust, Semi-Intelligible Isabelle Proofs from ATP
Proofs. In: Third International Workshop on Proof Exchange for Theorem Proving,
PxTP 2013. EPiC Series, vol. 14, pp. 117–132. EasyChair (2013)

25. Urban, J.: XML-izing Mizar: Making Semantic Processing and Presentation of
MML Easy. In: Kohlhase, M. (ed.) MKM 2005. LNCS (LNAI), vol. 3863, pp. 346–
360. Springer, Heidelberg (2006)

26. Urban, J.: MizarMode - An Integrated Proof Assistance Tool for the Mizar Way
of Formalizing Mathematics. Journal of Applied Logic 4(4), 414–427 (2006)

27. Wenzel, M.: The Isabelle/Isar Reference Manual. University of Cambridge (2011)
28. Whitehead, A.N., Russell, B.: Principia Mathematica to *56. Cambridge Mathe-

matical Library. Cambridge University Press (1910)
29. Zammit, V.: On the Readability of Machine Checkable Formal Proofs. PhD thesis,

The University of Kent at Canterbury (March 1999)

A Vernacular for Coherent Logic�

Sana Stojanović1, Julien Narboux2, Marc Bezem3, and Predrag Janičić1

1 Faculty of Mathematics, University of Belgrade, Serbia
2 ICube, UMR 7357 CNRS, University of Strasbourg, France

3 Institute for Informatics, University of Bergen, Norway
sana@matf.bg.ac.rs, narboux@unistra.fr,

marc.bezem@ii.uib.no, janicic@matf.bg.ac.rs

Abstract. We propose a simple, yet expressive proof representation
from which proofs for different proof assistants can easily be generated.
The representation uses only a few inference rules and is based on a frag-
ment of first-order logic called coherent logic. Coherent logic has been
recognized by a number of researchers as a suitable logic for many ev-
eryday mathematical developments. The proposed proof representation
is accompanied by a corresponding XML format and by a suite of XSL
transformations for generating formal proofs for Isabelle/Isar and Coq,
as well as proofs expressed in a natural language form (formatted in
LATEX or in HTML). Also, our automated theorem prover for coherent
logic exports proofs in the proposed XML format. All tools are publicly
available, along with a set of sample theorems.

1 Introduction

Mathematics can be done on two different levels. One level is rather informal,
based on informal explanations, intuition, diagrams, etc., and typical for ev-
eryday mathematical practice. Another level is formal mathematics with proofs
rigorously constructed by rules of inference from axioms. A large portion of
mathematical logic and interactive theorem proving is aimed at linking these
two levels. However, there is still a big gap: mathematicians still don’t feel
comfortable doing mathematics formally and proof assistants still don’t pro-
vide enough support for dealing with large mathematical theories, automating
technical problems, translating from one formalism to another, etc. We consider
the following issue: there are several very mature and popular interactive theo-
rem provers (including Isabelle, Coq, Mizar, HOL-light, see [29] for an overview),
but they still cannot easily share the same mathematical knowledge. This is a
significant problem, because there are increasing efforts in building repositories
of formalized mathematics, but — still developed within specific proof assis-
tants. Building a mechanism for translation between different proof assistants

� The first, second and the fourth author were partly supported by the Serbian-French
Technology Co-Operation grant EGIDE/”Pavle Savić” 680-00-132/2012-09/12. The
first and the fourth author are partly supported by the grant ON174021 of the
Ministry of Science of Serbia.

S.M. Watt et al. (Eds.): CICM 2014, LNAI 8543, pp. 388–403, 2014.
c© Springer International Publishing Switzerland 2014

A Vernacular for Coherent Logic 389

is non-trivial because of many deep specifics of each proof assistant (there are
some recent promissing approaches for this task [13]). Instead of developing a
translation mechanism, we propose a proof representation and a corresponding
XML-based format. The proposed proof representation is light-weight and it does
not aim at covering full power of everyday mathematical proofs or full power
of first order logic. Still, it can cover a significant portion of many interesting
mathematical theories. The underlying logic of our representation is coherent
logic, a fragment of first-order logic. Proofs in this format can be generated in
an easy way by dedicated, coherent logic provers, but in principle, also by stan-
dard theorem provers. The proofs can be translated to a range of proof assistant
formats, enabling sharing the same developments.

We call our proof representation “coherent logic vernacular”. Vernacular is
the everyday, ordinary language (in contrast to the official, literary language) of
the people of some country or region. A similar term, mathematical vernacular
was used in 1980’s by de Bruijn within his formalism proposed for trying to
put a substantial part of the mathematical vernacular into the formal system
[10]. Several authors later modified or extended de Bruijn’s framework. Wiedijk
follows de Bruijn’s motivation [28], but he also notices:

It turns out that in a significant number of systems (‘proof assistants’)
one encounters languages that look almost the same. Apparently there is
a canonical style of presenting mathematics that people discover indepen-
dently: something like a natural mathematical vernacular. Because this
language apparently is something that people arrive at independently, we
might call it the mathematical vernacular.

We find that this language is actually closely related to a proof language of
coherent logic, which is a basis of our proof representation presented in this
paper.

Our proof representation is developed also with readable proofs in mind. Read-
able proofs (e.g., textbook-like proofs), are very important in mathematical prac-
tice. For mathematicians, the main goal is often, not only a trusted, but also a
clear and intuitive proof. We believe that coherent logic is very well suited for
automated theorem proving with a simple production of readable proofs.

2 Background

In this section, we give a brief overview of interactive theorem proving and proof
assistants, of coherent logic, which is the logical basis for our proof representa-
tion, and of XML, which is the technical basis for our proof format.

2.1 Interactive Theorem Proving

Interactive theorem proving systems (or proof assistants) support the construc-
tion of formal proofs by a human, and verify each proof step with respect to the
given underlying logic. The proofs can be written either in a declarative or in a

390 S. Stojanović et al.

procedural proof style. In the procedural proof style, the proof is described by a
sequence of commands which modify the incomplete proof tree. In the declara-
tive proof style the formal document includes the intermediate statements. Both
styles are avaible in HOL-Light, Isabelle [27] and Coq proof assistants whereas
only the declarative style is available in Mizar, see [30] for a recent discussion.
The procedural proof style is more popular in the Coq community.

Formal proofs are typically much longer than “traditional proofs”.1 Progress
in the field can be measured by proof scripts becoming shorter and yet con-
tain enough information for the system to construct and verify the full (formal)
proof. “Traditional proofs” can often hardly be called proofs, because of the
many missing parts, informal arguments, etc. Using interactive theorem proving
uncovered many flaws in many published mathematical proofs (including some
seminal ones), published in books and journals.

2.2 Coherent Logic

Coherent logic (CL) was initially defined by Skolem and in recent years it gained
new attention [3,11,4]. It consists of formulae of the following form:

A1(x) ∧ . . . ∧ An(x)⇒ ∃y(B1(x,y) ∨ . . . ∨ Bm(x,y)) (1)

which are implicitly universally quantified, and where 0 ≤ n, 0 ≤ m, x denotes
a sequence of variables x1, x2, . . . , xk (0 ≤ k), Ai (for 1 ≤ i ≤ n) denotes an
atomic formula (involving zero or more of the variables from x), y denotes a
sequence of variables y1, y2, . . . , yl (0 ≤ l), and Bj (for 1 ≤ j ≤ m) denotes a
conjunction of atomic formulae (involving zero or more of the variables from x
and y). For simplicity, we assume that there are no function symbols with arity
greater than zero (so, we only consider symbols of constants as ground terms).

The definition of CL does not involve negation. For a single atom A, ¬A can
be represented in the form A ⇒ ⊥, where ⊥ stands for the empty disjunction,
but more general negation must be expressed carefully in coherent logic. In order
to reason with negation in general, new predicate symbols are used to abbreviate
subformulas. Furthermore, for every predicate symbolR (that appears in negated
form), a new symbolR is introduced that stands for ¬R, and the following axioms
are postulated (cf. [19]): ∀x(R(x) ∧R(x)⇒ ⊥), ∀x(R(x) ∨R(x)).

CL allows existential quantifications of the conclusion of a formula, so CL
can be considered to be an extension of resolution logic. In contrast to the
resolution-based proving, the conjecture being proved is kept unchanged and
directly proved (refutation, Skolemization and transformation to clausal form
are not used). Hence, proofs in CL are natural and intuitive and reasoning is

1 The ratio between the length of formal proof script and the length of the informal
proof is often called the de Bruijn factor [2]. It varies for different parts of math-
ematics and for different systems, and is currently often around 4. The de Bruijn
factor can be below 1 if a lot of automation can be used. It can also be well over 10
when the informal proof is rather sketchy.

A Vernacular for Coherent Logic 391

constructive. Readable proofs (in the style of forward reasoning and a variant of
natural deduction) can easily be obtained [3].

A number of theories and theorems can be formulated directly and simply in
CL. In CL, constructive provability is the same as classical provability. It can be
proved that any first-order formula can be translated into a set of CL formulas
(in a different signature) preserving satisfiability [19] (however, this translation
does not always preserve constructive provability).

Coherent logic is semi-decidable and there are several implemented semi-
decision procedures for it [3]. ArgoCLP [24] is a generic theorem prover for
coherent logic, based on a simple proof procedure with forward chaining and
with iterative deepening. ArgoCLP can read problems given in TPTP form2

[25] and can export proofs in the XML format that we describe in this paper.
These proofs are then translated into target languages, for instance, the Isar
language or natural language thanks to appropriate XSLT style-sheets.

2.3 XML

Extensible Markup Language (XML)3 is a simple, flexible text format, inspired by
SGML (ISO 8879), for data structuring using tags and for interchanging informa-
tion between different computing systems. XML is primarily a “metalanguage”—
a language for describing other customized markup languages. So, it is not a fixed
format like the markup language HTML—in XML the tags indicate the seman-
tic structure of the document, rather than only its layout. XML is a project
of the World Wide Web Consortium (W3C) and is a public format. Almost all
browsers that are currently in use support XML natively.

There are several schema languages for formaly specifying the structure and
content of XML documents of one class. Some of the main schema languages
are DTD (Data Type Definition), XML Schema, Relax, etc. [17]. Specifications
in the form of schema languages enable automatic verification (“validation”) of
whether a specific document meets the given syntactical restrictions.

Extensible style-sheet language transformation (XSLT)4 is a document pro-
cessing language that is used to transform the input XML documents to output
files. An XSLT style-sheet declares a set of rules (templates) for an XSLT pro-
cessor to use when interpreting the contents of an input XML document. These
rules tell to the xslt processor how that data should be presented: as an XML
document, as an html document, as plain text, or in some other form.

3 Proof Representation

The proposed proof representation is very usable and expressive, yet very simple.
It uses only a few inference rules, a variant of the rules given in [4]. Given a
set of coherent axioms AX and a coherent conjecture A1(x) ∧ . . . ∧ An(x) ⇒
2 http://www.cs.miami.edu/~tptp/
3 http://www.w3.org/XML/
4 http://www.w3.org/Style/XSL/

http://www.cs.miami.edu/~tptp/
http://www.w3.org/XML/
http://www.w3.org/Style/XSL/

392 S. Stojanović et al.

∃y(B1(x,y)∨ . . .∨ Bm(x,y)), the goal is to prove, using the rules given below,
the following (where a denote a vector of new symbols of constants):

AX,A1(a) ∧ . . . ∧ An(a) � ∃y(B1(a,y) ∨ . . . ∨ Bm(a,y))

The rules are applied in a forward manner, so they can be read from bottom to
top. In the rules below we assume:

– ax ∈ AX is a formula of the form (1) (page 390);
– a, b, c denote vectors of constants (possibly of length zero);
– in the rule mp, b are fresh constants;
– x and y denote vectors of variables (possibly of length zero);
– Ai(x) (Bi(x,y)) have no free variables other than from x (and y);
– Ai(a) are ground atomic formulae;
– Bi(a, b) and Bi(c) are ground conjunctions of atomic formulae;
– Φ denotes the list of conjuncts in Φ.

Γ, ax,A1(a) ∧ . . . ∧ An(a), B1(a, b) ∨ . . . ∨Bm(a, b) � P

Γ, ax,A1(a) ∧ . . . ∧ An(a) � P
mp (modus ponens)

Γ,B1(c) � P . . . Γ,Bn(c) � P

Γ,B1(c) ∨ . . . ∨Bn(c) � P
cs (case split)

Γ,Bi(a, b) � ∃y(B1(a,y) ∨ . . . ∨ Bm(a,y))
as (assumption)

Γ,⊥ � P
efq (ex falso quodlibet)

None of these rules change the goal P , which helps generating readable proofs as
the goal can be kept implicit. Note that the rule mp actually combines universal
instantiation, conjunction introduction, modus ponens, and elimination of (zero
or more) existential quantifiers. This seems a reasonable granularity for an infer-
ence step, albeit probably the maximum for keeping proofs readable. Compared
to [20] which defines the notion of obvious inference rule by putting constraints
on an automated prover, our position is: the obvious inferences are the ones de-
fined by the inference rules above. Compared to the rules given in [4], we choose
to separate the case split rule (disjunction elimination) and the ex falso quodlibet
rule from the single combined rule in [4], in order to improve readability. Case
distinction (split) is an important way of structuring proofs that deserves to be
made explicit. Also, ex falso quodlibet could be seen as a case split with zero
cases, but this would be less readable.

Any coherent logic proof can be represented in the following simple way (mp
is used zero or more time, cs involves at least two other proof objects):

proof ::= mp∗ (cs(proof ≥2) | as | efq)

A Vernacular for Coherent Logic 393

4 XML Suite for CL Vernacular

The proof representation described in Section 3 is used as a basis for our XML-
based proof format. It is developed as an interchange format for automated and
interactive theorem provers. Proofs (for Coq and Isabelle/Isar) that are produced
from our XML documents are fairly readable. The XML documents themselves
can be read by a human, but much better alternative is using translation to hu-
man readable proofs in natural language (formatted in LATEX, for instance). The
proof representation is described by a DTD Vernacular.dtd. As an illustration,
we show some fragments:

...

<!--******** Theory **************-->

<!ELEMENT theory (theory_name, signature, axiom*) >

<!ELEMENT theory_name (#PCDATA)>

<!ELEMENT signature (type*, relation_symbol*, constant*) >

<!ELEMENT relation_symbol (type*)>

<!ATTLIST relation_symbol name CDATA #REQUIRED>

<!ELEMENT type (#PCDATA)>

<!ELEMENT axiom (cl_formula)>

<!ATTLIST axiom name CDATA #REQUIRED>

...

The above fragment describes the notion of theory. (Definitions, formalized as
pairs of coherent formulae, are used as axioms.) A file describing a theory could
be shared among several files with theorems and proofs.

...

<!--******** Theorem **************-->

<!ELEMENT theorem (theorem_name, cl_formula, proof+)>

<!ELEMENT theorem_name (#PCDATA)>

<!ELEMENT conjecture (name, cl_formula)>

<!--******** Proof **************-->

<!ELEMENT proof (proof_step*, proof_closing, proof_name?)>

<!ELEMENT proof_name EMPTY>

<!ATTLIST proof_name name CDATA #REQUIRED>

<!--******** Proof steps **************-->

<!ELEMENT proof_step (indentation,modus_ponens)>

<!ELEMENT proof_closing (indentation, (case_split|efq|from),

(goal_reached_contradiction|goal_reached_thesis))>

...

The above fragment describes the notion of a theorem and a proof. As said
in Section 3, a proof consists of a sequence of applications of the rule modus
ponens and closes with one of the remaining proof rules (case split , as , or efq).
Within the last three, there is the additional information on whether the proof
closes by ⊥ (by detecting a contradiction) or by detecting one of the disjuncts

394 S. Stojanović et al.

from the goal. This information is generated by the prover and can be used for
better readability of the proof but also for some potential proof transformations.
Within each proof step there is also the information on indentation. This infor-
mation, useful for better layout, tells the level of subproofs and as such can be,
in principle, computed from the XML representation. Still, for convenience and
simplicity of the XSLT style-sheets, it is stored within the XML representation.

We implemented XSL transformations from XML format to Isabelle/Isar
(VernacularISAR.xls), Coq (VernacularCoqTactics.xls), and to a natural
language (English) in LATEX form and in HTML form (VernacularTex.xls and
VernacularHTML.xls).

The translation from XML to the Isar language is straightforward and each
of our proof steps is trivially translated into Isar constructs.5 Naturally, we use
native negation of Isar (and Coq) instead of defined negation in coherent logic.

The translation to Coq has been written in the same spirit as the Isar output
despite the fact proofs using tactics are more popular in Coq than declarative
proofs. We refer to the assumptions by their statement instead of their name (for
example: by cases on (A = B \/ A <> B)). Moreover, when we can, we avoid
to refer to the assumptions at all. We did not use the declarative proof mode
of Coq because of efficiency issues. We use our own tactics to implement the
inference rules of CL to improve readability. Internally, we use an Ltac tactic
to get the name of an assumption. The forward reasoning proof steps consist
of applications of the assert tactic of Coq. Equality is translated into Leibniz
equality.

The translation to LATEX and HTML includes an additional XSLT style-sheet
that optionally defines specific layout for specific relation symbols (so, for in-
stance, (A,B) ∼= (C,D) can be the layout for cong(A,B,C,D)).

The developed XSLT style-sheets are rather simple and short — each is only
around 500 lines long. This shows that transformations for other target languages
(other theorem provers, like Mizar and HOL light, LATEX with other natural
languages, MathML, OMDoc or TPTP) can easily be constructed, thus enabling
wide access to a single source of mathematical contents.

Our automated theorem prover for coherent logic ArgoCLP exports proofs in
the form of the XML files that conforms to this DTD. ArgoCLP reads an input
theory and the conjecture given in the TPTP form (assuming the coherent form
of all formulae and that there are no function symbols or arity greater than 0).
ArgoCLP has built-in support for equality (during the search process, it uses
an efficient union-find structure) and the use of equality axioms is implicit in
generated proofs. The generated XML documents are simple and consist of three
parts: frontpage (providing, for instance, the author of the theorem, the prover
used for generating the proof, the date), theory (providing the signature and
the axioms) and, organized in chapters, a list of conjectures or theorems with
their proofs. This way, some contents (frontpage and theory) can be shared
by a number of XML documents. On the other hand, this also enables simple

5 The system Isabelle has available a proof method coherent based on a internal
theorem prover for coherent logic. Our Isar proofs do not use this proof method.

A Vernacular for Coherent Logic 395

construction of bigger collections of theorems. The following is one example of
an XML document generated by ArgoCLP:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE main SYSTEM "Vernacular.dtd">

<?xml-stylesheet href="VernacularISAR.xsl" type="text/xsl"?>

<main>

<xi:include href="frontpage.xml" parse="xml"

xmlns:xi="http://www.w3.org/2003/XInclude"/>

<xi:include href="theory_thm_4_19.xml" parse="xml"

xmlns:xi="http://www.w3.org/2003/XInclude"/>

<chapter name="th_4_19">

<xi:include href="proof_thm_4_19.xml" parse="xml"

xmlns:xi="http://www.w3.org/2003/XInclude"/>

</chapter>

</main>

Automated theorem provers

ArgoCLP

XML DTD

Interactive theorem provers

Isar Coq ... LATEX HTML

Fig. 1. Architecture of the presented framework

The overall architecture of the framework is shown in Figure 1.6

5 Examples

Our XML suite for coherent logic vernacular is used for a number of proofs
generated by our prover ArgoCLP. In this section we discuss proofs of theo-
rems from the book Metamathematische Methoden in der Geometrie, by Wol-
fram Schwabhäuser, Wanda Szmielew, and Alfred Tarski [21], one of the twenty-
century mathematical classics. The theory is described in terms of first-order
logic, it uses only one sort of primitive objects — points, has only two primitive

6 The whole of our XML suite, along with a collection of theorems is available online
from http://argo.matf.bg.ac.rs/downloads/software/clvernacular.zip.

http://argo.matf.bg.ac.rs/downloads/software/clvernacular.zip

396 S. Stojanović et al.

predicates (cong or arity 4 and bet of arity 3, intuitively for congruence and
betweenness) and only eleven axioms. The majority of theorems from this book
are in coherent logic or can be trivially transformed to belong to coherent logic.
After needed transformations, the number of theorems in our development (238)
is somewhat larger than in the book [23].

Here we list a proof of one theorem (4.19) from Tarski’s book. The theo-
rem was proved by ArgoCLP (using the list of relevant axioms and theorems
produced by a resolution theorem prover), the proof was exported in the XML
format, and then transformed to a proof in natural language by appropriate XSL
transformation ((A,B) ∼= (C,D) is an infix notation for cong(A,B,C,D) and it
denotes that the pairs of points (A,B) and (C,D) are congruent, bet(A,B,C)
denotes that the point B is between the points A and C, col(A,B,C) denotes
that the points A, B and C are collinear).

Theorem 1 (th 4 19). Assuming that bet(A,B,C) and AB ∼= AD and CB ∼=
CD it holds that B = D.

Proof:

1. It holds that bet(B,A,A) (using th 3 1).

2. From the fact(s) bet(A,B,C) it holds that col(C,A,B) (using ax 4 10 3).

3. From the fact(s) AB ∼= AD it holds that AD ∼= AB (using th 2 2).

4. It holds that A = B or A �= B.

5. Assume that: A = B.

6. From the fact(s) AD ∼= AB and A = B it holds that AD ∼= AA.

7. From the fact(s) AD ∼= AA it holds that A = D (using ax 3).

8. From the fact(s) A = B and A = D it holds that B = D.

9. The conclusion follows from the fact(s) B = D.

10. Assume that: A �= B.

11. It holds that A = C or A �= C.

12. Assume that: A = C.

13. From the fact(s) bet(A,B,C) and A = C it holds that bet(A,B,A).

14. From the fact(s) bet(A,B,A) and bet(B,A,A) it holds that A = B (using
th 3 4).

15. From the fact(s) A �= B and A = B we get contradiction.

16. Assume that: A �= C.

17. From the fact(s) A �= C it holds that C �= A.

18. From the fact(s) C �= A and col(C,A,B) and CB ∼= CD and AB ∼= AD it
holds that B = D (using th 4 18).

19. The conclusion follows from the fact(s) B = D.

20. The conclusion follows in all cases.

21. The conclusion follows in all cases.

QED

A Vernacular for Coherent Logic 397

Below is the same proof in Isabelle/Isar form:

lemma th_4_19 : assumes "bet A B C" and "cong A B A D" and
"cong C B C D" shows "(B = D)"

proof -

have "bet B A A" by (rule th_3_1)

from ‘bet A B C‘ have "col C A B" by (rule ax_4_10_3)

from ‘cong A B A D‘ have "cong A D A B" by (rule th_2_2)

have "A = B ∨ A ~= B" by (subst disj_commute, rule excluded_middle)

show ?thesis

proof(cases "A = B")

case True

from ‘cong A D A B‘ and ‘A = B‘ have "cong A D A A" by simp

from ‘cong A D A A‘ have "A = D" by (rule ax_3)

from ‘A = B‘ and ‘A = D‘ have "B = D" by simp

from ‘B = D‘ show ?thesis by assumption

next
case False

have "A = C ∨ A ~= C" by (subst disj_commute, rule

excluded_middle)

show ?thesis

proof(cases "A = C")

case True

from ‘bet A B C‘ and ‘A = C‘ have "bet A B A" by simp

from ‘bet A B A‘ and ‘bet B A A‘ have "A = B" by (rule

th_3_4)

from ‘A ~= B‘ and ‘A = B‘ have "False" by (rule notE)

from this show ?thesis by (rule FalseE)

next
case False

from ‘A ~= C‘ have "C ~= A" by (rule not_sym)

from ‘C ~= A‘ and ‘col C A B‘ and ‘cong C B C D‘ and
‘cong A B A D‘ have "B = D" by (rule th_4_18)

from ‘B = D‘ show ?thesis by assumption

qed
qed

qed
end

398 S. Stojanović et al.

Below is the same proof in Coq form:

Theorem th 4 19 : ∀ (A:point) (B :point) (C :point) (D :point), (bet A B C
∧ cong A B A D ∧ cong C B C D) → B = D.
Proof.
intros.
assert (bet B A A) by applying (th 3 1 B A) .
assert (col C A B) by applying (ax 4 10 3 A B C) .
assert (cong A D A B) by applying (th 2 2 A B A D) .
assert (A = B ∨ A �= B) by applying (ax g1 A B) .
by cases on (A = B ∨ A �= B).
- {
assert (cong A D A A) by (substitution).
assert (A = D) by applying (ax 3 A D A) .
assert (B = D) by (substitution).
conclude.
}

- {
assert (A = C ∨ A �= C) by applying (ax g1 A C) .
by cases on (A = C ∨ A �= C).
- {
assert (bet A B A) by (substitution).
assert (A = B) by applying (th 3 4 A B A) .
assert (False) by (substitution).
contradict.
}

- {
assert (C �= A) by (substitution).
assert (B = D) by applying (th 4 18 C A B D) .
conclude.
}

}
Qed.

From the set of individual theorems (238), the prover ArgoCLP completely
automatically proved 85 (36%) of these theorems and generated proofs in the
XML format. We created a single XML document that contains all proved the-
orems and other theorems tagged as conjectures. The whole document matches
the original book by Schwabhäuser, Szmielew, and Tarski and can be explored
in the LATEX (or PDF) form, HTML or as Isabelle or Coq development.7

7 Translating the XML document with 85 proofs by to Isabelle, Coq, HTML, LATEX
(and then to PDF) takes altogether around 20s on a PC with AMD Opteron 6168.
The resulting Isabelle document is verified in 30s, and the Coq document in 6s.

A Vernacular for Coherent Logic 399

6 Related Work

In [28], Wiedijk proposes a mathematical vernacular that is in a sense the com-
mon denominator of the proof languages of Hyperproof, Mizar and Isabelle/Isar.
We agree with his conclusion in the last sentence of the quotation in the in-
troduction, but we think that the three proof languages were not discovered
independently. Natural deduction has been introduced by the Polish logicians
�Lukasiewicz and Jaśkowski in the late 1920’s, in reaction on the formalisms of
Frege, Russell and Hilbert. The term natural deduction seems to have been used
first by Gentzen, in German:

Ich wollte zunächst einmal einen Formalismus aufstellen, der dem wirk-
lichen Schließen möglichst nahe kommt. So ergab sich ein “Kalkül des
natürlichen Schließens”. (First of all I wanted to set up a formalism
that comes as close as possible to actual reasoning. Thus arose a “calcu-
lus of natural deduction”.)—Gentzen, Untersuchungen über das logische
Schließen (Mathematische Zeitschrift 39, pp.176–210, 1935)

The qualifier natural was of course particularly well-chosen to express that the
earlier formalisms were unnatural! As this was indeed the case, natural deduction
quickly became the predominant logical system, helped by the seminal work by
Gentzen on cut-elimination. (Ironically, this technical work in proof theory is best
carried out with proofs represented in sequent calculus, using natural deduction
on the meta-level.)

It should thus not come as a surprise that the vernacular we propose also
is based on natural deduction. One difference with Wiedijk’s vernacular is that
ours is based on coherent logic instead of full first-order logic. This choice is mo-
tivated in Section 2.2 (easier semi-decision procedure and more readable proofs).
Another difference is that Wiedijk allows proofs to be incomplete, whereas we
stress complete proof objects. This difference is strongly related to the fact that
Wiedijk’s vernacular is in the first place an input formalism for proof construc-
tion, whereas our vernacular is an output formalism for proof presentation and
export of proofs to different proof assistants. As far as we know, the mathematical
vernacular proposed byWiedijk’s has not been implemented on its own, although
Hyperproof, Mizar and Isabelle/Isar are developed using the same ideas.

A number of authors independently point to this or similar fragments of first-
order logic as suitable for expressing significant portions of standard mathematics
(or specifically geometry), for instance, Avigad et.al. [1] and Givant and Tarski
et.al. [26,21] in the context of a new axiomatic foundations of geometry. A re-
cent paper by Ganesalingam and Gowers [12] is also related to our work. Their
goal is comparable to ours: full automation combined with human-style output.
They propose inference rules which are very similar to our coherent logic based
proof system. For example, their rule splitDisjunctiveHypothesis corresponds to
the rule case split , deleteDoneDisjunct corresponds to as , removeTarget corre-
sponds to as (with length of y greater than 0), forwardsReasoning corresponds
to the rule mp. Yet, some rules they proposed are not part of our set of rules.
The logic they use is full first-order, with a plan to include second-order features

400 S. Stojanović et al.

(this would also be perfectly possible for coherent logic, which is the first-order
fragment of geometric logic, which is in turn a fragment of higher-order logic,
see [8]). Upon closer inspection, the paper by Ganesalingam and Gowers seems
to stay within the coherent fragment, and proofs by contraposition and contra-
diction are delegated to future work. We find some support for our approach in
the observation by Ganesalingam and Gowers that it will be hard to avoid that
such reasoning patterns are applied in “inappropriate contexts”. On the other
hand, the primary domain of application of their approach is metric space theory
so far, with the ambition to attack problems in other domains as well. It would
be very interesting to test the two approaches on the same problem sets. One
difference is that [12] insists on proofs being faithful to the thought processes,
whereas we would be happy if the prover finds a short and elegant proof even
after a not-so-elegant proof search. Another difference is that we are interested
in portability of proofs to other systems. To our knowledge, the prover described
in [12] is not publicly available.

Compared to OMDoc [16], our proof format is much more specific (as we
specify the inference rules we use) and has less features. It can be seen as a
specific set of methods elements of the derive element of OMDoc.

An alternative to using coherent logic provers would be using one of the
more powerful automated theorem provers and exploiting existing and ongoing
work on proof reconstruction and refactoring (see, for example, [22,5,14]). This is
certainly a viable option. However, reconstructing a proof from the log of a highly
optimized prover is difficult. One problematic step is deskolemization, that is,
proof reconstruction from a proof of the skolemized version of the problem. (The
most efficient provers are based on resolution logic, and clausification including
skolemizing is the first step in the solution procedure.) What can be said about
this approach in its current stage is that more theorems can be proved, but their
proofs can still be prohibitively complicated (or use additional axioms). It has
been, however, proved beneficial to use powerful automated theorem provers as
preprocessors, to provide hints for ArgoCLP.

The literature contains many results about exchanging proofs between proof
assistant using deep or shallow embeddings [18,15]. Boessplug, Cerbonneaux and
Hermant propose to use the λΠ-calculus as a universal proof language which can
express proof without losing their computational properties [9]. To our knowl-
edge, these works do not focus on the readability of proofs.

7 Conclusions and Further Work

Over the last years a lot of effort has been invested in combining the power
of automated and interactive theorem proving: interactive theorem provers are
now equipped with trusted support for SAT solving, SMT solving, resolution
method, etc [7,6]. These combinations open new frontiers for applications of
theorem proving in software and hardware verification, but also in formalization
of mathematics and for helping mathematicians in everyday practice. Export-
ing proofs in formats such as the presented one opens new possibilities for ex-
porting readable mathematical knowledge from automated theorem provers to

A Vernacular for Coherent Logic 401

interactive theorem provers. In the presented approach, the task of generating
object-level proofs for proof assistants or proofs expressed in natural language is
removed from theorem provers (where it would be hard-coded) and, thanks to
the interchange XML format, delegated to simple XSLT style-sheets, which are
very flexible and additional XSLT style-sheets (for additional target formats)
can be developed without changing the prover. Also, different automated theo-
rem provers can benefit from this suite, as they don’t have to deal with specifics
of proof assistants.

The presented proof representation is not intended to serve as “the mathemat-
ical vernacular”. However, it can cover a significant portion of many interesting
mathematical theories while it is very simple.

Often, communication between an interactive theorem prover and an external
automated theorem prover is supported by a verified, trusted interface which
enables direct calling to the prover. On the other hand, our work yields a common
format which can be generated by different automated theorem provers and from
which proofs for different interactive theorem provers can be generated. The
advantage of our approach relies on the fact that the proof which is exported is
not just a certificate, it is meant to be human readable.

The current version of the presented XML suite does not support function
symbols of arity greated than 0. For the future work, we are planning to add
that support to the proof format and to our ArgoCLP prover.

In the current version, for simplicity, the generated Isar and Coq proofs use
tactics stronger than necessary. We will try to completely move to basic proofs
steps while keeping simplicity of proofs. Beside planning to further improve exist-
ing XSLT style-sheets, we are also planning to implement support for additional
target languages such as OMDoc.

Acknowledgements. We are grateful to Filip Marić for his feedback and ad-
vices on earlier phases of this work.

References

1. Avigad, J., Dean, E., Mumma, J.: A Formal System for Euclid’s Elements. The
Review of Symbolic Logic (2009)

2. Barendregt, H., Wiedijk, F.: The Challenge of Computer Mathematics. Philosoph-
ical Transactions of the Royal Society 363(1835), 2351–2375 (2005)

3. Bezem, M., Coquand, T.: Automating Coherent Logic. In: Sutcliffe, G., Voronkov,
A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 246–260. Springer, Heidelberg
(2005)

4. Bezem, M., Hendriks, D.: On the Mechanization of the Proof of Hessenberg’s The-
orem in Coherent Logic. Journal of Automated Reasoning 40(1) (2008)

5. Blanchette, J.C.: Redirecting Proofs by Contradiction. In: Blanchette, J.C., Urban,
J. (eds.) Third International Workshop on Proof Exchange for Theorem Proving,
PxTP 2013, Lake Placid, NY, USA, June 9-10. EPiC Series, vol. 14, pp. 11–26.
EasyChair (2013)

402 S. Stojanović et al.

6. Blanchette, J.C., Böhme, S., Paulson, L.C.: Extending Sledgehammer with SMT
Solvers. Journal of Automated Reasoning 51(1), 109–128 (2013)

7. Blanchette, J.C., Bulwahn, L., Nipkow, T.: Automatic Proof and Disproof in Is-
abelle/HOL. In: Tinelli, C., Sofronie-Stokkermans, V. (eds.) FroCoS 2011. LNCS
(LNAI), vol. 6989, pp. 12–27. Springer, Heidelberg (2011)

8. Blass, A.: Topoi and Computation. Bulletin of the EATCS 36, 57–65 (1998)
9. Boespflug, M., Carbonneaux, Q., Hermant, O.: The λΠ-calculus Modulo as a Uni-
versal Proof Language. In: Second Workshop on Proof Exchange for Theorem Prov-
ing (PxTP). CEUR Workshop Proceedings, vol. 878, pp. 28–43. CEUR-WS.org
(2012)

10. de Bruijn, N.G.: The Mathematical Vernacular, a Language for Mathematics with
Typed Sets. In: Dybjer, et al. (eds.) Proceedings of the Workshop on Programming
Languages (1987)

11. Fisher, J., Bezem, M.: Skolem Machines and Geometric Logic. In: Jones, C.B.,
Liu, Z., Woodcock, J. (eds.) ICTAC 2007. LNCS, vol. 4711, pp. 201–215. Springer,
Heidelberg (2007)

12. Ganesalingam, M., Gowers, W.T.: A fully automatic problem solver with human-
style output. CoRR, abs/1309.4501 (2013)

13. Kaliszyk, C., Krauss, A.: Scalable LCF-Style Proof Translation. In: Blazy, S.,
Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 51–66.
Springer, Heidelberg (2013)

14. Kaliszyk, C., Urban, J.: PRocH: Proof Reconstruction for HOL Light. In: Bonacina,
M.P. (ed.) CADE-24. LNCS (LNAI), vol. 7898, pp. 267–274. Springer, Heidelberg
(2013)

15. Keller, C., Werner, B.: Importing HOL Light into Coq. In: Kaufmann, M., Paulson,
L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 307–322. Springer, Heidelberg (2010)

16. Kohlhase, M.: An OMDoc primer. In: Kohlhase, M. (ed.) OMDoc – An Open
Markup Format for Mathematical Documents [version 1.2]. LNCS (LNAI),
vol. 4180, pp. 33–34. Springer, Heidelberg (2006)

17. Lee, D., Chu, W.W.: Comparative analysis of six xml schema languages. SIGMOD
Record 29(3), 76–87 (2000)

18. Obua, S., Skalberg, S.: Importing HOL into Isabelle/HOL. In: Furbach, U.,
Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 298–302. Springer,
Heidelberg (2006)

19. Polonsky, A.: Proofs, Types and Lambda Calculus. PhD thesis, University of
Bergen (2011)

20. Rudnicki, P.: Obvious inferences. Journal of Automated Reasoning 3(4), 383–393
(1987)

21. Schwabhäuser, W., Szmielew, W., Tarski, A.: Metamathematische Methoden in
der Geometrie. Springer, Berlin (1983)

22. Smolka, S.J., Blanchette, J.C.: Robust, Semi-Intelligible Isabelle Proofs from ATP
Proofs. In: Blanchette, J.C., Urban, J. (eds.) Third International Workshop on
Proof Exchange for Theorem Proving, PxTP 2013. EPiC Series, vol. 14, pp. 117–
132. EasyChair (2013)

23. Stojanović, S., Narboux, J., Janičić, P.: Synergy Between Interactive and Auto-
mated Theorem Proving in Formalization of Mathematical Knowledge: A Case
Study of Tarski’s Geometry (submitted for publication, 2014)

24. Stojanović, S., Pavlović, V., Janičić, P.: A Coherent Logic Based Geometry The-
orem Prover Capable of Producing Formal and Readable Proofs. In: Schreck, P.,
Narboux, J., Richter-Gebert, J. (eds.) ADG 2010. LNCS (LNAI), vol. 6877, pp.
201–220. Springer, Heidelberg (2011)

A Vernacular for Coherent Logic 403

25. Sutcliffe, G.: The TPTP Problem Library and Associated Infrastructure: The FOF
and CNF Parts, v3.5.0. Journal of Automated Reasoning 43(4), 337–362 (2009)

26. Tarski, A., Givant, S.: Tarski’s system of geometry. The Bulletin of Symbolic
Logic 5(2) (June 1999)

27. Wenzel, M.: Isar - A Generic Interpretative Approach to Readable Formal Proof
Documents. In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Théry, L. (eds.)
TPHOLs 1999. LNCS, vol. 1690, pp. 167–183. Springer, Heidelberg (1999)

28. Wiedijk, F.: Mathematical Vernacular. Unpublished note (2000),
http://www.cs.ru.nl/~freek/notes/mv.pdf

29. Wiedijk, F. (ed.): The Seventeen Provers of the World. LNCS (LNAI), vol. 3600.
Springer, Heidelberg (2006)

30. Wiedijk, F.: A Synthesis of the Procedural and Declarative Styles of Interactive
Theorem Proving. Logical Methods in Computer Science 8(1) (2012)

http://www.cs.ru.nl/~freek/notes/mv.pdf

An Approach to Math-Similarity Search

Qun Zhang and Abdou Youssef

Department of Computer Science
The George Washington University
Washington DC, 20052, USA

Abstract. The unique structural syntax and the variety of semantic
equivalences of mathematic expressions make it a challenge for a keyword-
based text search engine to effectively meet the users’ search needs. Many
existing math search solutions focus on exact search where the notational
matching determines the relevance rank, while the structural similarity
and mathematical semantics are often missed out or not addressed ad-
equately. One important research question is how to effectively and ef-
ficiently find math expressions that are similar to a user’s query, and
how to do relevance ranking of hits by similarity. This paper focuses
on (1) conceptualizing similarity between mathematical expressions, (2)
defining metrics to measure math similarity, (3) utilizing those metrics
for math similarity search, and (4) evaluating performance to validate
advantage of the proposed math similarity search. Our results show that
the performance of math-similarity search is superior to that of keyword-
based math search.

Keywords: math search, similarity search, similarity metric, similarity
ranking, Strict Content MathML.

1 Introduction

More and more math knowledge has become available on the Web, and search
is a gate to such vast treasure of digital mathematics content [11]. Even though
Information Retrieval technology has reached maturity, math retrieval is still in
its nascent stages, and many challenges remain. Those challenges are due in part
to the significant difference of math knowledge from other textual documents.
A math expression is often written in a symbolic language with several lev-
els of abstraction, and often contains rich structural information. Additionally,
notational ambiguities, and syntactical and semantic equivalences, make math
knowledge harder to search. Furthermore, similarity search in math needs to
capture not only the taxonomically similar operation or function names but also
the hierarchically similar structures (we will use the term “function” to encom-
pass both “function” and “operator”). For example, x2 + y2 + z2 is expected
by the user to match a2 + b2 + c2 due to the structural similarity of the two
expressions. The great inference on the structural aspect and semantic aspects
of math expressions calls for a search engine that is capable of detecting and
measuring similarity between mathematical constructs.

S.M. Watt et al. (Eds.): CICM 2014, LNAI 8543, pp. 404–418, 2014.
c© Springer International Publishing Switzerland 2014

An Approach to Math-Similarity Search 405

Most “first-generation” math search systems are full text-search-based math
search systems that treat math objects as linear strings. However, this approach
often misses out the structural information of the math expressions, and makes
it nearly impossible to find a semantically similar math expression. On the other
hand, there are XML-based math search solutions that identify the common
sub-paths between the query expression and the candidate expressions. How-
ever, XML-based search methods often limit search to exact matches without
systematically measuring the structural similarity or the semantic similarity be-
tween the query expression and the candidate expression. Similarity search en-
ables users to find additional knowledge, discover latent relationships to different
fields, and compensate for false recognition [13].

In this paper, we will lay out certain fundamental facts about math-similarity
search to find, for a given user query math expression, the math expressions that
are structurally and semantically similar to the query. The specific goals of this
paper are:

1. Conceptualize math similarity in a way that makes it possible to measure
and utilize similarity in math search;

2. Develop and study math similarity metrics to measure the similarity between
two math expressions;

3. Develop algorithms for computing math-similarity metrics;

4. Leverage the NIST Digital Library of Mathematical Functions [1] to build
“ground truth” of math queries and corresponding matching expressions
with human experts’ knowledge input;

5. Implement a ranking comparison metric to benchmark the results of a math
search against the “ground truth”.

The rest of the paper starts with a brief summary of the related work in Section
2. It then elaborates our research work in Section 3, and draws conclusions in
Section 4.

2 Background

Existing math search engines can be categorized as text-based and structure-
based. Text-based math search engines extend full-text search to achieve math
awareness by transforming math expressions into either equivalent linear text
tokens or expanded bags of text tokens. Miller, Youssef, et al. [6], [14], [15] de-
veloped the first generation of an equation-based math search system as part of
the DLMF project at NIST. They developed an innovative TexSN (i.e. Textu-
alization, Serialization/Scoping, and Normalization) process to convert math to
text, and built a math search engine on top of existing text search technology.
However the conversion process loses considerable structural, and captures lit-
tle semantics. Additionally, its relevance ranking leaves room for improvement.
Because it is one of the few deployed math search engines that are available for
us, we leverage it for performance evaluation.

406 Q. Zhang and A. Youssef

Some other text-based math search engines include Mathdex [7], EgoMath [8],
and MIaS [11], ActiveMath [5]. They all took advantage of the mature and opti-
mized text search engines that are already available. But like the DLMF they are
forced to transform math expressions into the form that the text search engine
can effectively process, leading to the destruction of much of the native struc-
tures of the expressions, and thus preventing truly structural or similarity search
from taking place. Structure-based math search systems, on the other hand, use
a radically different approach based on emerging XML-based technologies and
markup languages. Those math search systems analyze the structure inherent in
the content representations, and statistically identify the math expressions that
have the most common sub-structures with the query expressions.

Kohlhase et al. [4] implemented MathWebSearch which leverages the se-
mantic information that resides in the structured math equation written in
MathML or OpenMath. With the adoption of the unique substitution tree in-
dexing technique, it provides the full support of alpha-equivalence matching and
sub-equation matching. However, MathWebSearch does not provide relevance
ranking or similarity search.

Other structure-based math search engines include DFS & BFS Index of
MathML DOM [2], Waterloo Math Retrieval System [3]. They often leverage
the metadata to extract semantic annotations. But most of them either sim-
ply rank the candidate hits by basic statistical methods such as count of the
occurrences of the matching sub-structures, or not pay enough attention to the
matching function to calculate the similarity score between the math expressions
[13].

The paramount challenge of math search is to identify relevant results by find-
ing expressions that are similar to a query expression while allowing for difference
in variable names, order, and structure. However, the lack of a definition for sim-
ilarity between math expressions, and the inadequacy of exact-match searching,
makes the problem of math search even harder [3]. To the best of our knowl-
edge, there are very few efforts in math similarity search for MathML encoded
expressions; Yokoi and Aizawa [13]’s work is by far the only significant one. They
introduced a similarity measure that is based on the “Subpath Set” of Content
MathML syntactic trees. A “Subpath Set” is defined as “the paths from the root
to the leaves and all the sub-paths of those paths”. Trees whose “Subpath Sets”
overlap with each other are considered to be similar. The significance of their
approach is that, rather than the notational similarity of tokens that the con-
ventional math search engines evaluate, they focused on the structural similarity
of MathML expressions, which we do as well. But they miss the semantic aspect
in the similarity measure. Due to the numerous variations of Content MathML
expressions to express one math expression, without sufficient normalization it is
hard for the search engine to find semantically equivalent expressions which only
differ syntactically from the query expression. Additionally, little performance
evaluation was done in the aspect of ranking.

In the latestW3C release ofMathML,MathML 3, a subset of ContentMathML
is defined: Strict Content MathML. This uses a minimal, but sufficient, set of

An Approach to Math-Similarity Search 407

elements to represent the meaning of a mathematical expression in a uniform and
unambiguous structure [12].

Strict Content MathML requires only 10 XML Elements to be understood by
MathML 3 processors, namely: m:apply, m:bind, m:bvar, m:csymbol, m:ci, m:cn,
m:cs, m:share, m:semantics, m:cerror, and m:cbytes. This provides a great
economy for implementation. On the other hand, MathML 3 assigns seman-
tics to content markup by defining a mapping from arbitrary Content MathML
to Strict Content MathML, and W3C even laid out a nine-step algorithm [12]
to transform an arbitrary Content MathML expression into a Strict Content
MathML counterpart. We limit our work to math expressions that can be en-
coded with Strict Content MathML. Given all these special characteristics of
Strict Content MathML, it is chosen for the MathML search implementation in
our research.

3 Our Approach to Math-Similarity Search

To the best of our knowledge, there is no solution available to address the
similarity measurement of the Strict Content MathML expressions. This mo-
tivated us to start the research effort by addressing similarity and taking the
structure-based approach to implementing semantics-sensitive math-aware sim-
ilarity search with native math language MathML as query input.

3.1 Research Problem

Our research problem is defined as follows: Given a math expression that is en-
coded in Strict Content MathML, identify a list of structurally and semantically
similar math expressions from a library of Strict Content MathML encoded math
expressions, and sort the list by similarity according to some similarity measure.
Specifically, the tasks of our research include: identify conceptual factors to math
similarity, deduce math similarity metric, implement the math similarity metric,
evaluate and refine the math similarity metric.

3.2 Math Similarity Factors

Influenced by the Multidimensional Relevance Metric proposed by [15], we came
up with the vector model based multidimensional similarity metric which takes
all the factors into consideration during similarity measurement. The following
five factors are identified and evaluated:

1. Taxonomic Distance of Functions Taxonomy defines the hierarchical
groups, i.e. taxa, to be referenced for grouping individual items. Taxonomic
Distance is a measure of taxonomic similarity between two mathematical
terms. In a taxonomy, it is intuitive to assign more similarity to two terms
belonging to the same category than to terms belonging to different cate-
gories. In our search, terms that belong to the same Content Dictionary (CD)

408 Q. Zhang and A. Youssef

are attributed a higher similarity value than terms that belong to different
CDs.

For future consideration, even within the same Content Dictionary, some
finer-granularity hierarchy could be superimposed to further differentiate
the functions for the more precise similarity measurement.

2. Data Type Hierarchical Level The node of a MathML expression is of a
data type, such as a constant number, a variable, a function (e.g. multipli-
cation, log, etc.), or a function of function (e.g. integral, diff, etc.). Different
data types contribute different levels of significance to the math expression.
To illustrate, here is an example, Query Q: a+ 2, one of the expression E1:
a+3, and another expression E2: loga 2. Expression E1 “matches” Q at the
function level, while E2 “matches” Q at the variable and constant level. In-
tuitively, similarity at the function level is more important than at variable
or constant level. Thus E1 is more similar to Q than E2 is. By reference to
the Common LISP types design, we organize these different data types into
a partially ordered hierarchy of types defined by the subset relationship [10].
That is, variables and constants are at the lowest level, function is at the
higher level, and function of function is at the highest level. The premise is
that the higher the data type is in the hierarchy, the higher the significance
of that element is to the whole expression. Note that there are more data
type levels in data type which can be considered in future work, but in this
work we limit ourselves to two levels: function level, and argument level.

3. Match-Depth Naturally each MathML expression is expressed in an XML
tree structure. The nodes at the higher level of the MathML expression tree
decide how the expression starts, and largely determine the nature of the
whole expression. Further down the tree, the nodes depict the characteris-
tics of the expression in more detail and more locality. We claim that the
similarity at the higher level matters more than at the lower level. In other
words, the more deeply nested the query is in an expression, the less similar-
ity there is between the query and that expression. An example is given in
Fig. 1. Tree-wise, Q “matches” E1 at a higher level in the tree than it does

Fig. 1. Illustration of Math Similarity Factor: Depth

An Approach to Math-Similarity Search 409

to E2, and Q “matches” E2 at a higher level in the tree than it does to E3.
Intuitively, E1 is more similar to Q than E2 is, and E2 is more similar to Q
than E3 is. This illustrates that high-level matches correspond to stronger
similarity than lower-level matches.

To incorporate the match-depth element into our similarity metrics, we
propose to represent match-depth as a similarity-decaying multiplicative fac-
tor. It is a decaying factor because the bigger the depth, the smaller the
multiplicative factor should be in order to cause the similarity to be smaller.
One can utilize different models for this decay factor, such as exponential
decay, linear decay, quadratic decay, or constant decay. The different models
produce different degrees of penalty for depth difference. As for which model
to choose for math similarity search, it depends on the type of application
of the math search. For those knowledge discovery oriented math search ap-
plications, the structural similarity of math expressions is more important,
thus the exponential decay model can be a good choice.

4. Query Coverage In actual use, how much of the query expression Q is
“covered” in the returned expression E is very important. The following
example gives an intuitive illustration: There is a query Q: (x + y)2, an ex-
pression E1: (x + y)2 + (x − y)2, and another expression E2: x + y. Q is
intuitively more similar to E1 than to E2. Generally, the higher the query
coverage is, the higher the significance is.

5. Formula vs. Expression If an expression has at the root level a relational
operator (e.g., =,≥), it is treated as a “formula”; otherwise, a “non-formula”.
Typically in math content, formulas are more significant and more informa-
tive than non-formula expressions, and therefore more weight should be given
to the former than to the latter.
Note that, strictly speaking, this is not really a similarity factor, instead it is
a relevance ranking factor. But it is incorporated into our similarity measure,
because our similarity measure is our relevance ranking formula.

This concludes all the factors that are considered for similarity measure. Next
a similarity metric is defined to take those five factors into account for math
similarity measure.

3.3 Math Similarity Metric

We take parse trees as the primary model representing math expressions, and
focus especially on Strict Content MathML parse trees. The notion of similarity
between two math expressions will be defined in terms of their corresponding
parse trees T1 and T2, and the similarity measure between them, denoted sim(T1,
T2), will be defined and computed recursively based on the height of the Strict
Content MathML parse tree as explained next.

1. For two trees T1 and T2 of same height 0 In this case, both trees T1

and T2 are singleton leaves, the similarity sim(T1, T2) is defined as:

410 Q. Zhang and A. Youssef

(a) If T1 and T2 are constants
i. sim(T1, T2) = 1, if T1 = T2.
ii. sim(T1, T2) = δ, if T1 �= T2, where 0 ≤ δ < 1.

δ is one of the parameters that are optimized experimentally.
(b) If T1 and T2 are variables

i. sim(T1, T2) = 1, if T1 = T2.
ii. sim(T1, T2) = ε, if T1 �= T2, where 0 ≤ ε ≤ 1.

Because the choice of symbol used for a variable name is immaterial
in most cases, ε is simply set to 1 as the initial value in our imple-
mentation prior to the optimization process. Our research focuses
on the context-free evaluation; otherwise, similarity of two variables
can depend on not only value, but location and role, which can be
an interesting topic for future work.

(c) If T1 and T2 are functions, the taxonomic distance is leveraged to measure
the similarity between the two functions.
i. sim(T1, T2) = 1, if T1 and T2 are the same function.
ii. sim(T1, T2) = μ, if T1 and T2 are are functions of same category in

the taxonomy, where 0 < μ < 1. μ is one of the parameters that are
optimized experimentally.

iii. sim(T1, T2) = 0, if T1 and T2 are functions that belong to different
categories in the taxonomy.

(d) If T1 and T2 belong to different data types
i. sim(T1, T2) = θ, if one tree is a constant and the other is a variable,

where 0 ≤ θ < 1.
ii. sim(T1, T2) = 0, if one tree is a function and the other is a constant

or variable.

2. For two trees T1 and T2 of same height h ≥ 1 In this case, the trees T1

and T2 are composed of function apply operator @ as root, a left-most child
node representing function, followed by a list of argument nodes which are
sub-trees, as illustrated in Fig. 2. Naturally the similarity between T1 and
T2 is affected by the similarity between the two function node f1 and f2, and
by the similarity between the two lists of argument nodes. p is the number
of argument nodes in T1, while q is the number of argument nodes in T2. We
treat T1 as the query expression, T2 as an expression in the database. Be-
cause functions are more important than arguments, the similarity between
T1 and T2 is defined as a weighted sum:

Fig. 2. Illustration of two trees T1 and T2 of same height h ≥ 1

An Approach to Math-Similarity Search 411

sim(T1, T2) = α· sim(f1, f2) + β· sim({SubT11, SubT12, . . . , SubT1p},
{SubT21, SubT22, . . . , SubT2q}),
where α and β are weighting factors that capture the significance of the
similarity contribution from each child node of the tree. Weighting factor
α = ω

p+ω , and β = 1
p+ω , where ω is boost value for the leftmost child being a

function data type as opposed to argument. We take ω > 1. Using p instead
of q takes the query coverage factor into account.

The similarity between the two lists of argument nodes,
sim({SubT11, SubT12, . . . , SubT1p}, {SubT21, SubT22, . . . , SubT2q}),
is a compound value,
0 ≤ sim({SubT11, SubT12, . . . , SubT1p}, {SubT21, SubT22, . . . , SubT2q}) ≤ p.
The measure of the similarity between the two lists of argument nodes de-
pends on the commutative nature of the functions.
(a) If f1 and f2 are non-commutative functions, the order of the arguments

is observed. The similarity between the two lists is the sum of the similar-
ities between the corresponding available pairs of argument nodes with
one from each tree:
sim({SubT11, SubT12, . . . , SubT1p}, {SubT21, SubT22, . . . , SubT2q}) =∑min(p,q)

i=1 sim(SubT1i, SubT2i)
(b) If f1 and f2 are commutative functions, an argument node in T1 can be

paired with any argument node in T2. To find the best pairing between
the 2 lists of argument nodes, the permutations of the argument nodes
are taken into consideration, which can be very costly to compute. In this
research, we apply the Greedy Approximation algorithm as described in
Fig. 3 to find a solution that is close to the optimum similarity value.

Fig. 3. Greedy Algorithm to find Similarity of Two Trees with Commutative Functions

412 Q. Zhang and A. Youssef

In this case, the similarity between the two lists of arguments is de-
fined as:
sim({SubT11, SubT12, . . . , SubT1p}, {SubT21, SubT22, . . . , SubT2q})
= max

{
(
∑p

i=1(sim(SubT1i, SubT2t(q,p,i))))
}
, where t(q, p, i) is the i-th

element of a p-permutation of q.

≈
∑min(p,q)

i=1 max (
{
sim(SubT1i, SubT2ϕ(i))

}
, by applying greedy ap-

proximation, ϕ(i) = 1, 2, . . . , q and ϕ(i) /∈ {ϕ(1), ϕ(2), . . . , ϕ(i− 1)}.
It is noted that other approximation algorithms can be used to replace
the proposed Greedy algorithm for more optimum approximation and/or
less computational complexity. This is not to be addressed in this re-
search, but deferred for future research.

(c) If f1 is commutative function, and f2 is non-commutative function, or
vice versa, we argue that this case should be the same as the above case
with both f1 and f2 are commutative functions. Because for example,
if we have query tree Q : 5 − 2, expression E1 : 5 + 2, and expression
E2 : 2 + 5, then we should have sim (Q,E1) = sim (Q,E2) which we
will not have if we do not “permute” the sub-trees of the tree with
commutative function. Thus, in this case, the similarity between the two
lists of arguments is defined the same as the case with both functions
being commutative. The example in Fig.4 is given for illustration.

Fig. 4. T1 with commutative function, and T2 with non-commutative function

3. For two trees T1 and T2 of different heights If one of the two trees, say
T1, is of height(T1) = h, and the other tree T2 is of height(T2) ≥ h+1, then
the match between T1 and T2 can be at the highest level of T2, or nested in
the T2, and the best match of these two possibilities is taken. In other words,
to measure the similarity between T1 and T2, not only the similarity between
T1 and T2 at their root level is evaluated, but also the similarity between
entire tree T1 and each single sub-tree of T2, that is sim(T1, SubT2j), in this

An Approach to Math-Similarity Search 413

case because the match is nested, the match-Depth Penalty is applied. Then
we choose whichever the larger value as the final similarity measure. Thus,
in this case, the similarity between the two trees T1 and T2 is defined as
shown in Fig 5.

Fig. 5. Similarity Metric for two trees T1 and T2 of different heights

We recursively keep comparing the first tree T1 with the sub-trees of the
second tree T2 , till the two trees under evaluation are of the same height,
in which case the similarity metric is already defined.

3.4 Performance Evaluation

To our best knowledge, there is no standard benchmark Strict Content MathML
encoded documents set together with a set of standard sample queries that
can be used to evaluate MathML search engine’s performance. This makes it a
challenge to quantitatively compare the performance of versions math similarity
metrics as well as various math search engines.

1. Evaluation Methodology As the DLMF math digital library and search
engine are among the few available and easily accessible, this research lever-
ages the DLMF as the source for mathematical expressions repository, and
we compare our similarity search approach to the DLMF search system. To
our knowledge there is no Strict Content MathML encoding of the DLMF;
therefore, a significant subset of the DLMF is hand-crafted into Strict Con-
tent MathML encoding in this research. The methodology of how we build
the dataset and evaluate the performance of the proposed similarity metrics
is depicted below.

On the one hand, the queries with varying degrees of mathematical com-
plexity and length were selected. Table 1 lists the test queries that we used.
For each query in the test set, we identify the expected relevant expressions
from DLMF source repository, and further rank them manually by a group
of human experts, which are then named as “ground truth”. On the other
hand, each query expression is compared with the expressions in the DLMF

414 Q. Zhang and A. Youssef

Table 1. The Test Queries

An Approach to Math-Similarity Search 415

repository, and a similarity value is computed with the proposed similar-
ity metric. Afterwards, this list of expressions is ordered by the similarity
measurement.

Up to this point, for any given query, there are three hit lists: one from
“ground truth”, one from DLMF site returned by DLMF search, and another
ranked by the proposed similarity metric. In order to quantitatively evaluate
the performance, this research proposes to compare the three lists of results
to figure out the correlation between the proposed Math-Similarity Search
(MSS) result list and the “ground truth” list, and the correlation between
the DLMF search result list and the “ground truth” list. Our comparison is
done with respect to recall and relevance ranking.

To evaluate the quality of the relevance ranking, the two classical rank cor-
relation coefficient metrics, namely, Kendall’s tau (τ) and Spearman’s rho (ρ)
are used. In statistics, τ is used to measure the extent of agreement between
two lists of measurements, while ρ is the standard correlation coefficient of
statistical dependence between two variables. In general, the magnitude of
τ is less than the value of ρ. τ focuses more on the relative order of the
hits (which came before which), whereas ρ focuses more on absolute order
(where each hit ranked). Both metrics are implemented in this research to
complement each other in the ranking comparison.

Fig. 6. τ Correlation Analysis of MSS Results vs. DLMF Results over 40 Queries

2. Performance Evaluation Results The performance evaluation of the pro-
posed search shows that both the recall and the ranking based on our pro-
posed similarity metric align better with the “ground truth” than that of
DLMF search. Figure 6 and Fig. 7 indicate that the search results of most
of the 40 queries in our evaluation that are returned by the proposed MSS

416 Q. Zhang and A. Youssef

search have better correlation to “ground truth” than those of DLMF, with
respect to τ metric and ρ metric. That validates the advantage of the pro-
posed MSS over the DLMF search with respect to relevance ranking.

Fig. 7. ρ Correlation Analysis of MSS Results vs. DLMF Results over 40 Queries

Fig. 8. Recall of MSS Top 20 Results vs. DLMF’s Top 20 Results over 40 Queries

Figure 8 and Fig. 9 indicate that with respect to the recall of the top
20 results, the MSS does not differ significantly from the DLMF search.
However, with respect to the recall of the top 10 results, the MSS search
shows better performance than the DLMF search does.

An Approach to Math-Similarity Search 417

Fig. 9. Recall of MSS Top 10 Results vs. DLMF’s Top 10 Results over 40 Queries

4 Conclusions and Future Work

In order to effectively and efficiently find math expressions that are similar to a
user’s query, this paper conceptualizes math similarity between mathematical ex-
pressions with more weight to structural similarity and mathematical semantics
than the mere notational matching that many existing math search solutions fo-
cus on. Further, this paper proposes a semantic-sensitive math-similarity metric
to measure the math similarity. With the availability of Strict Content MathML
which represents math in disambiguated uniform structure, an algorithm is de-
veloped to compute the math similarity between any two Strict Content MathML
encoded math expressions. Additionally, a “ground truth” of math queries and
corresponding matching expressions is constructed by leveraging DLMF, and is
used as a benchmark for performance evaluation. Comparing with the existing
non-similarity based math search techniques, primarily the DLMF math search,
the proposed math-similarity search does show the performance advantage with
respect to both recall and relevance ranking.

However, many parameters of the proposed similarity metric are yet to be
optimized, including taxonomic distance values (e.g. μ, θ) between functions,
function nodes type booster value ω, depth penalty decay model and its param-
eters, query coverage factor, etc. We plan to address them in the near future.
Other future directions include: (1) Address normalization in the context of
Strict Content MathML. (2) Cover in the similarity search the remaining el-
ements of Strict Content MathML that are not covered in this research, such
as “m:bind” and “m:share”. (3) Leverage the sample queries and benchmark
dataset that are to be produced from the NTCIR-11 [9] ongoing math task, for
more thorough and more objective performance evaluation.

418 Q. Zhang and A. Youssef

References

1. The Digital Library of Mathematical Functions (DLMF), the National Institute of
Standards and Technology (NIST), http://dlmf.nist.gov/

2. Hashimoto, H., Hijikata, Y., Nishida, S.: Incorporating Breadth First Search for
Indexing MathML Objects. In: IEEE International Conference on Systems, Man
and Cybernetics, SMC 2008 (2008)

3. Kamali, S., Tompa, F.: A New Mathematics Retrieval System. In: Proceedings of
the 19th ACM International Conference on Information and Knowledge Manage-
ment, CIKM 2010. ACM, New York (2010)

4. Kohlhase, M., Sucan, I.: A Search Engine for Mathematical Formulae. In: Calmet,
J., Ida, T., Wang, D. (eds.) AISC 2006. LNCS (LNAI), vol. 4120, pp. 241–253.
Springer, Heidelberg (2006)

5. Libbrecht, P., Melis, E.: Methods to Access and Retrieve Mathematical Content
in ActiveMath. In: Iglesias, A., Takayama, N. (eds.) ICMS 2006. LNCS (LNAI),
vol. 4151, pp. 331–342. Springer, Heidelberg (2006)

6. Miller, B., Youssef, A.: Technical Aspects of the Digital Library of Mathemati-
cal Functions. Annals of Mathematics and Artificial Intelligence 38(1-3), 121–136
(2003)

7. Miner, R., Munavalli, R.: An Approach to Mathematical Search Through Query
Formulation and Data Normalization. In: Kauers, M., Kerber, M., Miner, R., Wind-
steiger, W. (eds.) MKM/Calculemus 2007. LNCS (LNAI), vol. 4573, pp. 342–355.
Springer, Heidelberg (2007)

8. Miutka, J., Galambo, L.: Mathematical Extension of Full Text Search Engine In-
dexer. In: Proceedings of Information and Communication Technologies: From
Theory to Applications, ICTTA 2008, IEEE Catalog number CFP08577, Syria,
pp. 207–208 (2008)

9. The 11th National Institute of Informatics Testbeds and Community for Informa-
tion access Research Workshop (2013-2014), http://ntcir-math.nii.ac.jp/

10. Reddy, A.: Features of Common Lisp (2008),
http://random-state.net/features-of-common-lisp.html

11. Sojika, P., Lǐska, M.: The Art of Mathematics Retrieval. In: Proceedings of the
ACM Conference on Document Engineering, DocEng 2011, Mountain View, CA,
pp. 57–60 (2011)

12. Mathematical Markup Language (MathML) Version 3.0 (3rd edn.), World Wide
Web Consortium, http://www.w3.org/TR/MathML3/

13. Yokoi, K., Aizawa, A.: An Approach to Similarity Search for Mathematical Ex-
pressions using MathML. In: Towards a Digital Mathematics Library, Grand Bend,
Ontanrio, Canada, pp. 27–35. Masaryk University Press, Brno (2009)

14. Youssef, A.: Information Search and Retrieval of Mathematical Contents: Issues
and Methods. In: The ISCA 14th Int’l Conf. on Intelligent and Adaptive Systems
and Software Engineering (IASSE 2005), Toronto, Canada, July 20-22 (2005)

15. Youssef, A.S.: Methods of Relevance Ranking and Hit-content Generation in
Math Search. In: Kauers, M., Kerber, M., Miner, R., Windsteiger, W. (eds.)
MKM/Calculemus 2007. LNCS (LNAI), vol. 4573, pp. 393–406. Springer, Hei-
delberg (2007)

http://dlmf.nist.gov/
http://ntcir-math.nii.ac.jp/
http://random-state.net/features-of-common-lisp.html
http://www.w3.org/TR/MathML3/

Digital Repository of Mathematical Formulae�

Howard S. Cohl1, Marjorie A. McClain1, Bonita V. Saunders1,
Moritz Schubotz2, and Janelle C. Williams3

1 Applied and Computational Mathematics Division, National Institute
of Standards and Technology (NIST), Gaithersburg, Maryland, USA

{howard.cohl,marjorie.mcclain,bonita.saunders}@nist.gov
2 Database Systems and Information Management Group,

Technische Universität, Berlin, Germany
schubotz@tu-berlin.de

3 Department of Mathematics and Computer Science, Virginia State University,
Petersburg, Virginia, USA

janelle.williams35@gmail.com

Abstract. The purpose of the NIST Digital Repository of Mathemati-
cal Formulae (DRMF) is to create a digital compendium of mathematical
formulae for orthogonal polynomials and special functions (OPSF) and
of associated mathematical data. The DRMF addresses needs of working
mathematicians, physicists and engineers: providing a platform for publi-
cation and interaction with OPSF formulae on the web. Using MediaWiki
extensions and other existing technology (such as software and macro col-
lections developed for the NIST Digital Library of Mathematical Func-
tions), the DRMF acts as an interactive web domain for OPSF formulae.
Whereas Wikipedia and other web authoring tools manifest notions or
descriptions as first class objects, the DRMF does that with mathemat-
ical formulae. See http://gw32.iu.xsede.org/index.php/Main_Page .

1 Introduction

Compendia of mathematical formulae have a long and rich history. Many scien-
tists have developed such repositories as books and these have been extremely
useful to scientists, mathematicians and engineers over the last several centuries
(see [2, 3, 5, 6, 9, 13, 15] for instance). While there may be some overlap of for-
mulae in different compendia, one often needs to be familiar with many different
compendia to find a specific desired formula. Online compendia of mathemati-
cal formulae exist, such as the NIST Digital Library of Mathematical Functions
(DLMF), subsets of Wikipedia, and the Wolfram Functions Site. We hope to
take advantage of the best aspects of these online efforts while also incorpo-
rating powerful new features that a community-arm of scientists should find
beneficial. Our strategy is to start with validated and trustworthy special func-
tion data from the NIST DLMF, while adding Web 2.0 capabilities which will

� Official contribution of the National Institute of Standards and Technology; not
subject to copyright in the United States.

S.M. Watt et al. (Eds.): CICM 2014, LNAI 8543, pp. 419–422, 2014.
c© Springer International Publishing Switzerland 2014

http://gw32.iu.xsede.org/index.php/Main_Page
http://dlmf.nist.gov
http://en.wikipedia.org
http://functions.wolfram.com

420 H.S. Cohl et al.

encourage community members to discuss mathematical data associated with
formulae. These discussions will include internally hyperlinked proofs as well as
mathematical connections between formulae in the repository.

The online repository will be designed for a mathematically literate audience
and should (1) facilitate interaction among a community of mathematicians and
scientists interested in formulae data related to orthogonal polynomials and spe-
cial functions (OPSF); (2) be expandable, allowing the input of new formulae;
(3) be accessible as a standalone resource; (4) have a user friendly, consistent,
and hyperlinkable viewpoint and authoring perspective; and (5) contain easily
searchable mathematics and take advantage of modern MathML tools for easy to
read, scalably rendered mathematics. It is the desire of our group to build a tool
that brings the above features together in a public website for mathematicians,
scientists and engineers. We refer to this web tool as the Digital Repository of
Mathematical Formulae (DRMF).

Our project was motivated by the goal of creating an interac-
tive online compendium of mathematical formulae. This need was
addressed in SIAM Activity Group OPSF-Net discussions, such as
Dmitry Karp (OPSF-Net 18.4, Topic #5). In that OPSF-Net edition, there
were two related posts (OPSF-Net 18.4, Topics #6,#7) with a follow-up post in
OPSF-Net 18.6, Topic #3.

2 Implementation

In our project, we have taken advantage of the free and open source MediaWiki
wiki software as well as tools developed within the DLMF project [14], such
as LATEXML and the DLMF LATEX macros. DLMF macros (and extensions as
necessary) tie specific character sequences to unique mathematical objects such
as special functions, orthogonal polynomials, or to other mathematical sym-
bols associated with these. The DLMF macros are hence used to define OPSF
within DRMF and through LATEXML, their corresponding rendered mathemati-
cal symbols. Furthermore, the use of DLMF macros as linked to their definitions
within the DLMF, allows for easy access to precise OPSF definitions for the
symbols used within the LATEX source for OPSF formulae. The committed use
of DLMF macros guarantees a mathematical and structural consistency through-
out the DRMF. As a web tool, the DRMF provides (1) formula interactivity,
(2) formula home pages, (3) centralized bibliography, and (4) mathematical
search. The DRMF shares the core DLMF component, LATEXML, which (through
the MediaWiki Math extension) processes Wikitext math markup written in
LATEX to produce XML and HTML. For formula interactivity and menus linked
to formulae, we have utilized the JOBAD interactivity framework and are inves-
tigating the use of MathJax [4]. We have also incorporated the MediaWiki: Math
and MathSearch [16] extensions. Within the DRMF, we will develop technol-
ogy for users to interact with formulae using a clipboard, which allows for
easy copy/paste of formula source representations (to include LATEXwith DLMF
macros; presentation or content MathML; as well as input formats for computer
algebra systems such as Mathematica, Maple, and Sage).

http://drmf.mathweb.org
https://www.siam.org
http://math.nist.gov/~DLozier/OPSFnet/OPSF-Net_18.4.pdf
http://math.nist.gov/~DLozier/OPSFnet/OPSF-Net_18.4.pdf
http://math.nist.gov/~DLozier/OPSFnet/OPSF-Net_18.6.pdf
http://www.mediawiki.org
http://dlmf.nist.gov
http://dlmf.nist.gov/LaTeXML
https://github.com/KWARC/jobad
http://www.mediawiki.org/wiki/Extension:Math
http://www.wolfram.com/mathematica/
http://www.maplesoft.com
http://www.sagemath.org

Digital Repository of Mathematical Formulae 421

The DRMF treats formulae as first class objects, describing them in formula
home pages that currently contain: (1) a rendered description of the formula itself
(required); (2) bibliographic citation (required); (3) open section for proofs (re-
quired); (4) list of symbols used and links to their definitions corresponding to the
DLMF macros (required); (5) open section for notes relevant to the formula (e.g.,
formula name, if the formula is a generalization or specialization of some other for-
mula, growth or decay conditions, links to errata pages, etc.); (6) open section for
external links; (7) substitutions with definitions required to understand the for-
mula; and (8) constraints the formulamust obey. For each formula home page there
is a corresponding talk page, and we are incorporating a strategy for handling the
insertion of formula errata. A major resource in our ability to implement effec-
tive and precise OPSF search will be the use of the DLMF macros in building the
LATEX source for OPSF formulae and related mathematical data.

Next, we present an overview of the seed resources, which we plan to incorpo-
rate within DRMF. We have been given permission and are seeding the DRMF
withdata from theNISTDLMF [14].Wehave also been givenpermission to and are
seedingLATEX formulae data from [11] (KLS).Wewill also incorporateTomKoorn-
winder’s companion of recent arXiv published additions to KLS [12]. We have also
been given permission to incorporate seed formula data from [5, 6] (BMP). Ef-
forts to upload BMP data, as well as any book data without existing LATEX source,
will prove extremely difficult, since this effort will rely on the use of mathemati-
cal optical character recognition (OCR) software such as InftyReader to produce
LATEX source for these formulae.MathematicalOCR is still in its nascence and this
effort is currently under consideration for feasibility of use. We are in communi-
cation with other authors and publishers to gain access and permission for other
proven sources of mathematical OPSF formulae such as [1, 7, 9, 10] and we are are
excited about the prospect of seeding proof data by Victor Moll and collaborators
(see for instance [8]).ForLATEXsourcewhereDLMFmacros arenotpresent (suchas
KLS), we are developing tools which automate DLMF macro replacements. Seed-
ing and generating symbol lists are accomplished by converting LATEX source into
Wikitext, in an automated fashion. We use Pywikibot to automate the uploading
of Wikitext pages to our demo site.

Acknowledgements. 1 We are deeply indebted to Deyan Ginev for sharing
with us his expansive vision and especially for his support in the development of
our proof of concept. Without his guidance and coding, our present demonstra-
tion would not be possible. We would also like to thank Bruce Miller at NIST
for his invaluable contributions regarding LATEXML. We would also like to ex-
press our deep gratitude to the KWARC group at Jacobs University, Bremen,

1 The mention of specific products, trademarks, or brand names is for purposes of iden-
tification only. Such mention is not to be interpreted in any way as an endorsement
or certification of such products or brands by the National Institute of Standards
and Technology, nor does it imply that the products so identified are necessarily
the best available for the purpose. All trademarks mentioned herein belong to their
respective owners.

http://www.inftyreader.org

422 H.S. Cohl et al.

Germany, and especially to its group leader, Michael Kohlhase, for his advice
and for access to his group’s mathweb server for our initial DRMF development.
We would also like to thank Dan Lozier, Tom Koornwinder, Dmitry Karp, Dan
Zwillinger, Victor Moll, and Hans Volkmer for offering their advice and for valu-
able discussions.

References

[1] Andrews, G.E., Askey, R., Roy, R.: Special Functions. Encyclopedia of Mathemat-
ics and its Applications, vol. 71. Cambridge University Press, Cambridge (1999)

[2] Brychkov, Y.A.: Handbook of Special Functions: Derivatives, Integrals, Series and
Other Formulas. Chapman & Hall/CRC Press, Boca Raton (2008)

[3] Byrd, P.F., Friedman, M.D.: Handbook of Elliptic Integrals for Engineers and
Physicists. Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstel-
lungen mit Besonderer Berücksichtigung der Anwendungsgebiete, Bd LXVII.
Springer, Berlin (1954)

[4] Cervone, D.: Mathjax: A Platform for Mathematics on the Web. Notices of the
American Mathematical Society 59(2), 312–316 (2012)

[5] Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental
Functions, vols. 1-3 (1981)

[6] Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Tables of Integral
Transforms, vols. 1-2 (1954)

[7] Gasper, G., Rahman, M.: Basic Hypergeometric Series, 2nd edn. Encyclopedia
of Mathematics and its Applications, vol. 96. Cambridge University Press, Cam-
bridge (2004), With a foreword by Richard Askey

[8] Glasser, L., Kohl, K.T., Koutschan, C., Moll, V.H., Straub, A.: The integrals in
Gradshteyn and Ryzhik. Part 22: Bessel-K functions. Scientia. Series A. Mathe-
matical Sciences. New Series 22, 129–151 (2012)

[9] Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 7th edn.
Elsevier/Academic Press, Amsterdam (2007)

[10] Ismail, M.E.H.: Classical and Quantum Orthogonal Polynomials in one Variable.
Encyclopedia of Mathematics and its Applications, vol. 98. Cambridge Univer-
sity Press, Cambridge (2005), With two chapters by Walter Van Assche, With a
foreword by Richard A. Askey

[11] Koekoek, R., Lesky, P.A., Swarttouw, R.F.: Hypergeometric Orthogonal Poly-
nomials and their q-analogues. Springer Monographs in Mathematics. Springer,
Berlin (2010), With a foreword by Tom H. Koornwinder

[12] Koornwinder, T.H.: Additions to the formula lists in “Hypergeometric orthog-
onal polynomials and their q-analogues”, by Koekoek, Lesky and Swarttouw.
arXiv:1401.0815 (2014)

[13] Magnus, W., Oberhettinger, F., Soni, R.P.: Formulas and Theorems for the Spe-
cial Functions of Mathematical Physics, 3rd enlarged edn. Die Grundlehren der
mathematischen Wissenschaften, Band 52. Springer-Verlag New York, Inc., New
York (1966)

[14] Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST Handbook
of Mathematical Functions. Cambridge University Press, Cambridge (2010), Com-
panion to http://dlmf.nist.gov

[15] Prudnikov, A.P., Brychkov, Y.A., Marichev, O.I.: Integrals and Series, vols. 1-5.
Gordon & Breach Science Publishers, New York (1986)

[16] Schubotz, M.: Making Math Searchable in Wikipedia. In: Conferences on Intelli-
gent Computer Mathematics, abs/1304.5475 (2013)

http://dlmf.nist.gov

NNexus Reloaded

Deyan Ginev1 and Joseph Corneli2

1 Computer Science, Jacobs University Bremen, Germany
2 Knowledge Media Institute, The Open University, UK

Abstract. Interlinking knowledge is one of the cornerstones of online
collaboration. While wiki systems typically rely on links supplied by
authors, in the early 2000s the mathematics encyclopedia at Planet-
Math.org introduced a feature that provides automatic linking for pre-
viously defined concepts. The NNexus software suite was developed to
support the necessary subtasks of concept indexing, concept discovery
and link-annotation. In this paper, we describe our recent reimplemen-
tation and revisioning of the NNexus system.

1 NNexus 1.0 – Introduction

PlanetMath.org is a mathematics digital library, built “the commons-based peer
production way” [Kro03]. Like Wikipedia, which launched the same year, Planet-
Math has been created by volunteer contributors from around the world. How-
ever, unlike Wikipedia, PlanetMath focuses solely on mathematics. Since its
launch, it has used custom software both to support the display of mathemati-
cal expressions, and to facilitate the integration of new user-contributed content.
One of the features designed to assist in content integration was an autolinking
service. This service allowed authors to write without concerning themselves
with wiki-style links to technical concepts that had already been added to the
corpus. Instead, these links would be added automatically – and links would
be recalculated and adjusted automatically as the encyclopedia grew, using a
sophisticated caching and expiry system. The system provided an example of
named entity recognition [NS07], where the entities to identify in submitted text
are article titles, the names of terms defined in the articles, and any known syn-
onyms. The process of adding links to named entities in text has come to be
known as “wikification” [Rat+11].

In 2006, NNexus 1.0 began the process of decoupling autolinking from Plan-
etMath, and provided integration with other corpora (Wikipedia, Mathworld)
on a demonstration basis [GKX06], an effort that has matured with the current
release.

2 NNexus 2.0 – Reload, Refresh, Refactor

The primary goal of our rebuild was to decouple fully from the old Noosphere
system on PlanetMath.org. A strong contributing motivation was that Noo-
sphere was in the process of being deprecated on PlanetMath and replaced by

S.M. Watt et al. (Eds.): CICM 2014, LNAI 8543, pp. 423–426, 2014.
c© Springer International Publishing Switzerland 2014

424 D. Ginev and J. Corneli

the new Planetary system [CD12]. The new NNexus works with Planetary, but
also functions in a stand-alone fashion, and is published as a software library on
the Comprehensive Perl Archive Network (CPAN)1. It has been refactored to
operate either as a web service2, or programmatically via an API. NNexus ac-
cepts arbitrary HTML input and performs concept discovery against its concept
index, followed by a serialization of the mined data, either as stand-off metadata
or by in-place embedding.

Concept indexing is performed by NNexus’ built-in web crawler. It is based
on a plugin architecture. Every indexed web resource requires its own indexer
class, which contains the custom rules for detecting the concept definitions in the
page. For example, PlanetMath’s key terms are found in RDFa metadata that
has been deposited in the encyclopedia pages, whereas the Digital Library of
Mathematical Functions lists its defined concepts in its index as bold-anchored
elements.

The current NNexus release ships with a database that integrates the con-
cepts from seven web resources for mathematical concepts. These include the
three best-known web resources for mathematics – Wolfram’s MathWorld; Plan-
etMath.org; and Wikipedia – as well as Springer’s Encyclopedia of Mathematics;
the Digital Library of Mathematical Functions (DLMF); the nLab (which focuses
on category theory); and the recently created MathHub.info.

At the time of writing, the NNexus index contains just under 50,000 unique
concepts in its index. With the introduction of client-side tools for embedding
NNexus [Gin13], we can also report successful auto-linking in third-party plat-
forms such as arXiv.org and Zentralblatt MATH.

3 Concept Discovery

The NNexus implementations to date have only scratched the surface of the
knowledge discovery problem. NNexus performs longest-token matching, aided
by classic preprocessing techniques (stopword lists, morphological normalization)
to discover all possible concept candidates. Concepts are considered discovered
if there is an exact match between the linguistically normalized input document
and the identically normalized concept index. When a concept A is a substring
of a concept B, since they both match at the same starting point of the in-
put, preference is given to the longer string B. To demonstrate, take A to be
“fundamental groupoid” and B to be “fundamental groupoid functor”.

This simplistic approach leads to false positive hits, for instance, in words that
have multiple part-of-speech uses or words that have both technical and everyday
meanings. Accordingly, each of the following examples becomes a candidate for
linking, even though the words in the right-hand column are not being used in
a technical sense.
1 Run cpan NNexus to install the software locally.
2 A demonstration instance is available at http://nnexus.mathweb.org.

Sending an HTML snippet as the body of a POST request will return the link-
annotated snippet back, embedded in a thin JSON wrapper.

http://nnexus.mathweb.org

NNexus Reloaded 425

“Let G be a group” “group the numbers in rows”
“chain in a graph” “chain made of steel”
“permanent of a matrix” “using a permanent marker”

This particular phenomenon is less observable as the length of the concept grows,
both because longer words are less frequently overloaded and because multi-word
concepts rarely have non-technical meanings. Inversely, the problem is particu-
larly challenging in concepts with short single-word names.

Another challenge is disambiguating between overloaded concept names, used
differently in different scientific areas. To address that, NNexus does not im-
mediately return all of the named entities it discovers. Instead, it first uses a
clustering algorithm, based on a distance metric between the classes of the MSC
[Ame09] categorization scheme, which determines a kernel of closely related con-
cepts. We have observed our distance metric is effective in separating concepts
from typically disjoint subfields of science, but less successful in making fine-
grained distinctions in subfields that tend to have a lot of mutual connections.
For example, “entanglement” is a concept both in quantum mechanics and graph
theory. NNexus is able to tell which meaning is intended by contextually clus-
tering with the rest of the discovered concepts. However, generic concepts such
as “equivalence” tend to be redefined in closely related subfields, and NNexus
cannot tell these apart.

In addition to these technical limitations, NNexus is limited by the quality of
the metadata provided by its indexed sources. For example, as pointed out by one
of the reviewers of this paper, PlanetMath currently has no article on “classical
logic”, and links to this term are currently being directed to PlanetMath’s article
on quantum logic. This looked like a rather strange error until we realized that
the quantum logic article includes a definition of the term “classical logic”, in
contravention of the “one main concept per article” norm.

4 NNexus 3.0 Revolution – An Outlook

Auto-linking continues to be a useful tool around PlanetMath. For instance,
Planetary added support for contributing problems and problem sets, and tech-
nical terms in problems are linked to definitions drawn from the encyclopedia.
We plan to add a PlanetMath feature where, given a contributed piece of text,
a small “course packet” of preliminaries would be built on the fly, created out of
auto-linked encyclopedia articles. Thanks to the metadata in the links provided
by NNexus, we will be able to consider both “incoming” and “outgoing” links –
this means we can discover applications of a concept as well as simpler concepts.

Some other efforts that we plan to explore include autolinking in math blogs,
such as the blogs indexed on http://mathblogging.org/. NNexus could build
a “term cloud” of technical terms from across the math blogosphere, providing
a useful access method that parallels the familiar tag cloud.

The main challenge ahead is to solve the problem of reliable concept discovery.
The immediate goal is to achieve reliable disambiguation of overloaded concept

http://mathblogging.org/

426 D. Ginev and J. Corneli

words (such as “set” or “group”), possibly by employing the help of a part-of-
speech tagger. A complementary idea is to improve precision by augmenting
longest-token matching with weights derived by statistical term-likelihood anal-
ysis. As statistical term-likelihood methods do not depend on an a priori fixed
lexicon, they could also be used to detect concepts that are not yet included
in the index. That would allow us to enable another desirable feature – the
automatic creation of dangling links (similar to Wikipedia’s “red links”).

Deeper scrutiny of mathematical formulas and terms will allow us to link
occurrences of math constants in MathML, both globally, for symbols like the
reduced Planck constant �, and locally, following the annotation of the corre-
sponding natural language term, such as “Assume a cyclic group Zmn . . . ”.

References

[Ame09] American Mathematical Society. Mathematics Subject Classification MSC
2010 (2009), http://www.ams.org/mathscinet/msc/

[CD12] Corneli, J., Dumitru, M.A.: PlanetMath/Planetary. In: Davenport, J., et al.
(eds.) Joint Proceedings of the 24th OpenMath Workshop, the 7th Work-
shop on Mathematical User Interfaces (MathUI), and the Work in Progress
Section of the Conference on Intelligent Computer Mathematics, Bremen,
Germany, July 9-13. CEUR Workshop Proceedings, vol. 921, pp. 66–72.
Aachen (2012), http://ceur-ws.org/Vol-921/wip-02.pdf

[Gin13] Ginev, D.: NNexus Glasses: a drop-in showcase for wikification. In:
Lange, C., et al. (eds.) Joint Proceedings of the MathUI, Open-
Math, PLMMS and ThEdu Workshops and Work in Progress at
the Conference on Intelligent Computer Mathematics 2013, Bath, UK,
July 8-12. CEUR Workshop Proceedings, vol. 1010. Aachen (2013),
http://ceur-ws.org/Vol-1010/paper-13.pdf

[GKX06] Gardner, J., Krowne, A., Xiong, L.: NNexus: Towards an automatic linker
for a massively-distributed collaborative corpus. In: International Confer-
ence on Collaborative Computing: Networking, Applications and Workshar-
ing, CollaborateCom 2006, pp. 1–3. IEEE (2006) ISBN: 1424404290

[Kro03] Krowne, A.: Building a digital library the commons-based peer production
way. D-Lib Magazine 9(10) (2003)

[NS07] Nadeau, D., Sekine, S.: A survey of named entity recognition and classifi-
cation. Lingvisticae Investigationes 30(1), 3–26 (2007)

[Rat+11] Ratinov, L., et al.: Local and Global Algorithms for Disambiguation to
Wikipedia. In: The 49th Annual Meeting of the Association for Com-
putational Linguistics: Human Language Technologies, ACL 2011 (2011),
http://cogcomp.cs.illinois.edu/papers/RRDA11.pdf

http://www.ams.org/mathscinet/msc/
http://ceur-ws.org/Vol-921/wip-02.pdf
http://ceur-ws.org/Vol-1010/paper-13.pdf
http://cogcomp.cs.illinois.edu/papers/RRDA11.pdf

E-books and Graphics with LATExml�

Deyan Ginev1, Bruce R. Miller2, and Silviu Oprea3

1 Computer Science, Jacobs University Bremen, Germany
2 National Institute of Standards and Technology, Gaithersburg, MD, USA

3 Department of Computer Science, University of Oxford, Oxford, UK

Abstract. Markedby thehighlights of native generation of epubE-books
and TikZ support for creating svg images, we present an annual report
of LATExml development in 2013. LATExml provides a reimplementation of
the TEX parser, geared towards preservingmacro semantics; it supports an
array of output formats, notably html5, epub, xhtml and its own LATEX-
near xml. Other highlights include enhancing performance when used in-
side high-throughput build-systems, via incorporating a native zip archive
workflow, as well as a simplified installation procedure that now allows
to deploy LaTeXML as a cloud service. To this end, we also introduce an
official plugin-based scheme for publishing new features that go beyond
the core scope of LaTeXML, such as web services or unconventional post-
processors. The software suite has now migrated to GitHub and we wel-
come forks and patches from the wider FLOSS community.

1 Introduction

Another busy year of LATExml
1 development has gone by; while we’ve not

completely accomplished all the tasks we’d hoped for (c.f. [1]), we’ve finished
others including some we hadn’t originally planned. While it was originally de-
veloped for NIST’s Digital Library of Mathematical Functions2, where it contin-
ues to serve, we continue to find additional applications. One, carried out this
year, was the natural extension of the system to generate epub documents; the
first converter, to our knowledge, natively generating epub from TEX. Including
MathML, along with Daisy3 support of audio rendering of math, epub is a ma-
jor step forward for accessibility. Two planned milestones were also completed,
namely: supporting the TikZ, a large, elaborate graphics package in which one
draws complex diagrams, plots and other 2D and 3D graphics using TEXmarkup;
as well as completing a community-facing project reorganization. Together, these
features are hoped to extend the reach of MKM technologies.

Before we delve into details, a little background about LATExml may be in
order. Two main approaches are currently used to generate html from TEX. The
first, exemplified by tex4ht, uses the actual TEX engine to process the source

� The rights of this work are transferred to the extent transferable according to title
17 U.S.C. 105.

1 See http://dlmf.nist.gov/LaTeXML/
2 See http://dlmf.nist.gov
3 See http://www.daisy.org/

S.M. Watt et al. (Eds.): CICM 2014, LNAI 8543, pp. 427–430, 2014.
c© Springer International Publishing Switzerland 2014

http://dlmf.nist.gov/LaTeXML/
http://dlmf.nist.gov
http://www.daisy.org/

428 D. Ginev, B.R. Miller, and S. Oprea

while redefining certain commands to drop \special data into the normal dvi
output. An alternative dvips then deciphers that augmented dvi to infer and
construct the appropriate html. In the second approach, used by LATExml, the
program emulates TEX for the most part but interprets some macros specially,
producing xml directly.

The first approach has the advantage of (usually) allowing the processing of ar-
bitrary TEX and LATEX packages, although the resulting htmlmay not reflect the
intended structure nor semantics. The challenges are in the TEX programming
necessary to insert the \specials, generating valid, indeed even well-formed,
html, and in recovering sufficient semantic structure from the dvi.

The second approach gives more direct control of the generated output. It is
easier to extend to new xml structures, and being fundamentally xml aware, it
produces valid xml. LATExml uses an intermediate xml format preserving the se-
mantic structure. A feature of LATExml ‘bindings’ (LATExml’s re-implementation
of LATEX packages) is control sequences defined to be “Constructors”, directly
constructing the xml representation of their content. The challenge lies in em-
ulating TEX sufficiently well to process complex packages, or alternatively, to
develop LATExml-specific bindings for them.

In either approach, LATEX packages that define macros with semantic intent
must be dealt with individually or else the semantics will be lost.

2 Reorganization

We have reorganized both our code development and our code base. In the first
sense, we have moved our repository to GitHub4 where you can more conve-
niently browse our code, or obtain the latest version. We have also ported our
Trac tickets to GitHub’s Issues, preserving all bug and feature requests.

Along with the move to GitHub came opportunities to share code and devel-
opment calling for clearer coding standards. We committed to code quality and
formatting by adopting perltidy and perlcritic policies, which were adapted
to the polyglot of TEX, Perl, xml, xslt, automatically enforced by git.

In the second sense, we have reorganized the code itself to more clearly sep-
arate the modules related to the separate phases of processing. At the same
time, we enable “conversion as an API”, offering a connection and code sharing
between those phases when more complex processing is called for, such as car-
rying a single TEX source file through the full processing to html, or even epub
(see §3). In particular, it provides better support for daemonized processing,
foundational to batch conversions and web service deployments.

This reorganization positions us to develop a plugin architecture allowing
modular extensions covering both new LATEX styles and bindings, but also en-
hanced postprocessing for more sophisticated applications such as sTEX. We have
already refactored three flavors of LATExml web servers, an alternative grammar
for math parsing, as well as an extension for converting TEX formulas into queries
for the MathWebSearch search engine, all hosted on GitHub as separate reposi-
tories. The true power of the new contribution model is revealed when combined

4 See https://github.com/brucemiller/LaTeXML

https://github.com/brucemiller/LaTeXML

E-books and Graphics with LATExml 429

with Perl’s CPAN distribution and dependency management system, which will
allow for single command installation of any LaTeXML-based project and its
full dependency tree.

3 E-books

The newest version of epub, version 3, is primarily a packaging of html pages
representing chapters or sections into a structured zip archive. The big step for-
ward for the scientific community is that it now calls for the use of MathML to
represent mathematics. Since LATExml is already generating html, with embed-
ded MathML, and allows that output to be split into multiple pages as specified
by the user, it seemed an obvious and natural extension to generate epub doc-
uments. Moreover, the web-service spin-off projects had already called for and
drafted the compression of the resulting directory of generated content into a zip
archive. Thus, with appropriate rearrangement of the pieces, and the addition
of a Manifest of the correct structure, we have all the basic components needed
to generate epub documents. We have generated a number of epub documents
and successfully validated them against the official idpf validator5.

We subsequently considered to also add support for Amazon’s proprietary
mobi E-book format. However, at the time of writing the mobi ecosystem is
transitioning to the new Amazon Kindle Format 8 (AKF8), which aims to more
fully align with epub 3.0. Finally, the lack of an open ecosystem around the
format prevented us from repeating the quick and painless design process for
the epub output, so we did not venture further.

4 Graphics

Given the challenges of developing LATExml bindings for complex LATEX pack-
ages, we were skeptical when Michael Kohlhase initially posed the challenge:
Was LATExml’s engine good enough to implement the TikZ package and gener-
ate svg? The package is so large and complex, not to mention its development
so fast-moving, that creating LATExml-specific bindings for all its many com-
mands is impractical. However, TikZ is designed to pass all processed graphics
through a relatively small driver layer, and in fact already has a tex4ht driver
for producing svg! Providing we can faithfully emulate all the TEX processing
that leads to that driver layer, we may have a chance; presumably any semantics
implied by TikZ markup isn’t so critical, but the expected svg obviously is.

The main tasks, then, were to implement LATExml bindings for just that
driver, covering universal graphics primitives such as points, lines and angles;
then improve LATExml’s engine to cope with the sophisticated TEX macro usage
in the higher layers of pgf and TikZ.

Ultimately, we succeeded beyond our expectations. Although the results are
not perfect, LATExml now successfully processes 3/4 of the first page6 of TikZ

5 See http://validator.idpf.org/
6 See http://www.texample.net/tikz/examples/all/

http://validator.idpf.org/
http://www.texample.net/tikz/examples/all/

430 D. Ginev, B.R. Miller, and S. Oprea

examples on the TEXample.net website, generating valid html5, with text and
MathML combined. In contrast, tex4ht succeeds on slightly more than half
the examples, often producing invalid markup, and doesn’t support MathML
embedded in the svg. It must be admitted, however, that LATExml is very slow at
processing TikZ markup! Converting the ‘signpost’ example from TEXample.net
required almost 2 minutes, whereas tex4ht needed only 2 seconds (albeit with
incomplete math). pdflatex converts it to pdf in less than half a second.

In the process, we have further improved the fidelity of the TEX emulation,
introduced a (currently very rudimentary) mechanism for estimating the size
of displayed objects and exercised the integration of both MathML and svg
into html. Additionally, LATExml now has its own TEX profiler, which offers
binding developers per-macro feedback on exclusive runtimes, helping to identify
core conversion bottlenecks. These improvements are beneficial even outside the
graphics milestone and contribute to an overall better LATExml ecosystem.

Areas needing further work are TikZ’ matrix structure which currently clashes
with LATExml’s handling of alignments; inaccuracies of LATExml’s sizing of ob-
jects; and, of course, examples involving other exotic packages not yet known to
LATExml. We plan to test against the entire suite of examples at TEXample.net
to discover other weaknesses and further improve the module.

Beyond TikZ, we are hoping to leverage this experience and apply it to sup-
porting the xy package, another popular and powerful system. It seems to have
a less well-defined driver layer and we are in the early stages of discovering the
smallest set of macros that could serve that function. Nevertheless, we have had
some preliminary, proof-of-concept, success. We already have minimal support
for the pstricks package, but with its Postscript oriented design, it is more time
consuming to develop further bindings.

5 Outlook

The initial success with TikZ processing is quite gratifying, but it needs refine-
ment, and we look forward to testing on a larger scale. We also intend to extend
our reach to the xy packages. Other E-book formats such as AKF8 should be
possible with specializations of manifest generation and other fine tuning. Sur-
prisingly, generating Word and OpenOffice formats shares many features with
E-books; of course finding the documentation and writing the xslt transforma-
tions from LATExml’s native xml to Word’s will be challenging.

Our move to GitHub, the code reorganization and the plugin contribution
model should make it easier for users to use and adapt the system, as well as to
contribute back patches and improvements that will help our development.

Reference

1. Ginev, D., Miller, B.R.: LATEXml 2012 - A year of LATEXml. In: Carette, J., As-
pinall, D., Lange, C., Sojka, P., Windsteiger, W. (eds.) CICM 2013. LNCS (LNAI),
vol. 7961, pp. 335–338. Springer, Heidelberg (2013)

System Description: MathHub.info

Mihnea Iancu, Constantin Jucovschi, Michael Kohlhase, and Tom Wiesing

Computer Science, Jacobs University Bremen, Germany
http://kwarc.info

Abstract. We present theMathHub.info system, a development environ-
ment for active mathematical documents and an archive for flexiformal
mathematics. It offers a rich interface for reading, writing, and inter-
acting with mathematical documents and knowledge. The core of the
MathHub.info system is an archive for flexiformal mathematical docu-
ments and libraries in the OMDoc/MMT format. Content can be au-
thored or archived in the source format of the respective system, is
versioned in GIT repositories, and transformed into OMDoc/MMT for
machine-support and further into HTML5 for reading and interaction.

1 Introduction

As the field of Mathematical Knowledge Management (MKM) and Digital Math-
ematical Libraries (DML) mature, we need to shift attention from experimenting
with semantic services on small and practice data sets to supporting manage-
ment of large corpora of mathematical knowledge and documents. In the past,
MKM and DML have latched onto existing corpora/libraries ranging from digi-
tized mathematical articles (e.g. EuDML [EUD]) over semi-structured represen-
tations generated from LATEX sources [Sta+10] to fully formal theorem prover
libraries, e.g. the Mizar Mathematical Library [MizLib]. But so far management
support for and semantic services deployed on such libraries have been essen-
tially insular, existing cross-library methods remain experiments, and have not
been implemented into usable systems.

This insularity also applies to the work in the KWARC group. For instance, we
have i) designed a cross-library representation language: OMDoc (Open
Mathematical Documents), [Koh06], ii) developed a meta-logical framework
MMT (A Module System for Mathematical Theories) [RK13; Cod+11]) that al-
lows to represent the logical languages underlying the theorem prover libraries,
and relate them to each other by logic morphisms, iii) built libraries of formal-
ized mathematics in OMDoc/MMT either by manually creating content (e.g.
LATIN [Cod+11]) or by implementing transformations from existing theorem
prover libraries (e.g. Mizar Mathematical Library [Ian+13]), and iv) have used
OMDoc as the basis for active mathematical documents in the Planetary sys-
tem [Koh12]. But we have not integrated all of these or made them available to
mathematicians in one comprehensive environment.

To change this situation – and to provide a realistic base for our own cross-
library research and development efforts – we have started work to realize a uni-
versal archiving solution for formal and informal mathematical corpora/libraries.

S.M. Watt et al. (Eds.): CICM 2014, LNAI 8543, pp. 431–434, 2014.
c© Springer International Publishing Switzerland 2014

http://kwarc.info

432 M. Iancu et al.

We present the MathHub.info system and its design goals in this paper. Math-
Hub.infomust satisfy two conflicting goals: On the one hand, it must be so generic
that it is open to all logics and implementations; on the other hand, it must be
aware of the semantics of the formalized content so that it can offer meaning-
ful services. These services must be independent of both the formal system and
the implementation used to produce the library and offer a uniform high-level
interface for both users and machines to access the combined library.

We claim that MathHub.info will resolve two major bottlenecks in the current
state of the art. It will provide a permanent archiving solution that not all
systems and user communities can afford to maintain separately. And it will
establish a standardized and open library format that serves as a catalyst for
comparison and thus evolution of systems.

Concretely, we see three ways the formal methods and mathematical knowl-
edge management communities can benefit from MathHub.info: i) users can view
formerly disparate developments in a common, neutral framework and compare
them, ii) system developers can import libraries from other logical systems to
extend the reach of formalizations and avoid duplicate development iii) the ex-
istence of a library management system (and importable content) can lower the
entry hurdle for developing new logic-based systems. In the next section we
present the current system architecture and realization, and Section 3 concludes
the paper.

2 System Architecture and Realization

MathHub.info is realized as an instance of the Planetary System [Koh12], which
we have substantially extended in the course of the work reported here.

The system architecture has three main components: i) a versioned data store
holding the source documents ii) a semantic service provider that imports the
source documents and provides services for them iii) and a frontend that makes
the sources and the semantic services available to users. Specifically, we use the
GitLab repository manager [GL] as the data store, the MMT API as the semantic
service provider and Drupal as the frontend.

Figure 1 shows the detailed architecture.

Browser Drupal

MMT

GitLab

library

convert to
OMDoc/MMT

load
read

interact

REST

JOBAD

present

edit

local

editimport

Fig. 1. The MathHub.info Architecture

System Description: MathHub.info 433

In this setup, Drupal serves as a container management system1 that supplies
uniform theming, user management, discussion forums, etc. GitLab on the other
hand, provides versioned storage of the content documents, and organizes them
into repositories owned by users and groups. The advantage of this setup is that
we can combine two methods for accessing the contents of MathHub.info: i) an
online, web-based editing/interaction workflow for the casual user, in the spirit
of the Planetary system and ii) (new) an offline editing/authoring workflow
based on a GIT working copy. The latter is important for power authors and for
bulk editing jobs. A user can fork or pull the relevant repositories from GitLab,
edit them and submit them back to MathHub either via a pull request to the
repository masters or a direct commit/push. As the content is usually highly
networked and distributed across multiple GIT repositories, we have developed
a command line tool lmh (local MathHub) that manages working copies across
repository borders.

In the web-based system, semantic services (notation-based, presentation, def-
inition lookup, relational navigation, dependency management, etc.) are pro-
vided by MMT and are made available to the user, primarily by dedicated
JOBAD [GLR09] modules. Note that even though the active document func-
tionalities and semantic editing support in MathHub.info are based on OM-
Doc/MMT representation of the content, the authors interact with the content
in the source format. Both of these representations are versioned in GitLab and
are converted into OMDoc/MMT by custom transformers. lmh also supports
running these transformers locally and previewing HTML5 renderings of the
generated OMDoc/MMT.

In order to to deal with flexiformal mathematical content in OMDoc, we have
also extended the MMT API, which was previously restricted to fully formal
content. In the extended MMT API, each MMT service works whenever it is
theoretically applicable (e.g. type checking when there exists type information,
change management when there is dependency information, etc.).

3 Conclusion

MathHub.info is deployed at http://mathhub.info and has reached a state,
where it can be used for initial experiments and resources, but has not been
scaled much beyond 10 000 documents and a couple of dozens or users and repos-
itories yet.

Specifically, we are currently hosting a test set of formal and informal mathe-
matical content to develop and evaluate system functionality; concretely: i) the
SMGloM termbase with ca. 1500 small STEX files containing definitions of mathe-
matical terminology and notation definitions. ii) ca. 6500 files with STEX-encoded
teaching materials (slides, course notes, problems, and solutions) in Computer
Science, iii) the LATIN logic atlas with ca. 1000 meta-theories and logic mor-
phisms, iv) the Mizar Mathematical Library of ca. 1000 articles with ca. 50.000

1 Drupal and similar systems self-describe as content management systems, but they
actually only manage the documents without changing their internal structure.

http://mathhub.info

434 M. Iancu et al.

theorems, definitions, and proofs, and v) a part of the HOL Light Library with
22 theories and over 2800 declarations. Already now, it is unique in its class in
that it gives a unified interface to multiple theorem prover libraries together with
linguistic and educational resources. Now that the ground work has been laid,
we anticipate the rapid integration of new semantic services, editing support and
new content.

Acknowledgements. This work has been partially funded by DFG under
Grant KO 2428/13-1. The authors acknowledge that the MathHub system builds
on a long series of experiments in system integration in the KWARC group and
that the design and implementation would not have been possible without sub-
stantial discussions in the group.

References

[Cod+11] Codescu, M., Horozal, F., Kohlhase, M., Mossakowski, T., Rabe, F.: Project
Abstract: Logic Atlas and Integrator (LATIN). In: Davenport, J.H., Farmer,
W.M., Urban, J., Rabe, F. (eds.) Calculemus/MKM 2011. LNCS (LNAI),
vol. 6824, pp. 289–291. Springer, Heidelberg (2011)

[EUD] EuDML – The European Digital Mathematics Library, http://eudml.eu
(visited on August 02, 2011)

[GL] GitLab, http://gitlab.org (visited on February 24, 2014)
[GLR09] Giceva, J., Lange, C., Rabe, F.: Integrating Web Services into Active Mathe-

matical Documents. In: Carette, J., Dixon, L., Coen, C.S., Watt, S.M. (eds.)
Calculemus/MKM 2009. LNCS (LNAI), vol. 5625, pp. 279–293. Springer,
Heidelberg (2009)

[Ian+13] Iancu, M., et al.: The Mizar Mathematical Library in OMDoc: Translation
and Applications. Journal of Automated Reasoning 50(2), 191–202 (2013),
doi:10.1007/s10817-012-9271-4

[Koh06] Kohlhase, M.: OMDoc – An Open Markup Format for Mathematical Doc-
uments [version 1.2]. LNCS (LNAI), vol. 4180. Springer, Heidelberg (2006)

[Koh12] Kohlhase, M.: The Planetary Project: Towards eMath3.0. In: Jeuring, J.,
Campbell, J.A., Carette, J., Dos Reis, G., Sojka, P., Wenzel, M., Sorge,
V. (eds.) CICM 2012. LNCS (LNAI), vol. 7362, pp. 448–452. Springer,
Heidelberg (2012), arXiv:1206.5048[cs.DL]

[MizLib] Mizar Mathematical Library, http://www.mizar.org/library (visited on
September 27, 2012)

[RK13] Rabe, F., Kohlhase, M.: A Scalable Module System. Information & Com-
putation (230), 1–54 (2013)

[Sta+10] Stamerjohanns, H., et al.: Transforming large collections of scientific pub-
lications to XML. Mathematics in Computer Science 3(3), 299–307 (2010),
Autexier, S., Sojka, P., Suzuki, M. (eds.)

http://eudml.eu
http://gitlab.org
10.1007/s10817-012-9271-4
1206.5048 [cs.DL]
http://www.mizar.org/library

Developing Corpus-Based Translation Methods
between Informal and Formal Mathematics:

Project Description

Cezary Kaliszyk1, Josef Urban2,�, Jiří Vyskočil3,��, and Herman Geuvers2

1 University of Innsbruck, Austria
2 Radboud University Nijmegen, The Netherlands

3 Czech Technical University, Czech Republic

Abstract. The goal of this project1 is to (i) accumulate annotated infor-
mal/formal mathematical corpora suitable for training semi-automated
translation between informal and formal mathematics by statistical
machine-translation methods, (ii) to develop such methods oriented at
the formalization task, and in particular (iii) to combine such methods
with learning-assisted automated reasoning that will serve as a strong
semantic component. We describe these ideas, the initial set of corpora,
and some initial experiments done over them.

1 Introduction and Motivation Ideas

Formal mathematics and automated reasoning are in some sense at the top of the
complexity ladder of today’s precise (“neat”)AI corpora and techniques. Many of
us believe that practically all mathematical theorems can be precisely formulated
and that their proofs can be written and verified formally, and that this carries
over to a lot of the knowledge accumulated by other exact sciences. Given this
unmatched expressivity and coverage, automated reasoning over formal mathe-
matics then amounts (or aspires) to being the generic problem-solving technique
for arbitrary problems that are expressed in a sufficiently “neat” (formal) lan-
guage and non-contradictory setting.

The last ten years have brought significant progress in formalization of math-
ematics and in automated reasoning methods for such formalized corpora. Some
graduate textbooks have been formalized, and we have produced general reason-
ing methods that can often automatically find previous relevant knowledge and
prove many smaller steps and lemmas in such textbooks without the necessity
to manually provide any further hints or guidance.

However, even routine formalization is today still quite laborious, and the
uptake of formalization among mathematicians (and other scientists) is very
limited. There is a lot of cognitive processing involved in formalization that is
uncommon to majority of today’s mathematicians: formalization is a nontrivial
� Funded by NWO grant Knowledge-based Automated Reasoning.

�� Supported by the Grant Agency of Czech Republic Project GACR P103/12/1994.
1 http://mws.cs.ru.nl/~mptp/inf2formal

S.M. Watt et al. (Eds.): CICM 2014, LNAI 8543, pp. 435–439, 2014.
c© Springer International Publishing Switzerland 2014

http://mws.cs.ru.nl/~mptp/inf2formal

436 C. Kaliszyk et al.

skill to learn, and it takes time. As a result, more than 100 years after Turing’s
birth, most of mathematical (and scientific) knowledge is still largely inaccessible
to deep semantic computer processing.

We believe that this state of affairs can be today helped by automatically
learning how to formalize (“semanticize”) informal texts, based on the knowledge
available in existing large formal corpora.There are several reasons for this belief:

1. Statistical machine learning (data-driven algorithm design) has been respon-
sible for a number of recent AI breakthroughs, such as web search, query
answering (IBM Watson), machine translation (Google Translate), image
recognition, autonomous car driving, etc. As soon as there are enough data
to learn from, data-driven algorithms can automatically learn complicated
sets of rules that would be often hard to program and maintain manually.

2. With the recent progress of formalization, reasonably large corpora are emerg-
ing that can be (perhaps after additional annotation) used for experiments
with machine learning of formalization. The growth of such corpora is only
a matter of time, and automated formalization might gradually “bootstrap”
this process, making it faster and faster.

3. Statistical machine learning methods have already turned out to be very
useful in deductive AI domains such as automated reasoning in large theories
(ARLT), thus disproving conjectures that its inherent undecidability makes
mathematics into a special field where data-driven techniques cannot apply.

4. Analogously, strong semantic ARLT methods are likely to be useful in the
formalization field also for complementing the statistical methods that learn
formalization. This could lead to hybrid understanding/thinking AI methods
that self-improve on large annotated corpora by cycling between (i) statis-
tical prediction of the text disambiguation based on learning from existing
annotations and knowledge, and (ii) improving such knowledge by confirming
or rejecting the predictions by the semantic ARLT methods.

The last point (4) is quite unique to the domain of (informal/formal) mathe-
matics, and a good independent reason to start with this AI research. There
is hardly any other domain where natural language processing (NLP) could be
related to such a firm and expressive semantics as mathematics has, which is
additionally to a reasonable degree already checkable with existing ITP and
ARLT systems. It is not unimaginable that if we gradually manage to learn how
mathematicians (ab)use the normal imprecise vocabulary to convey ideas in the
semantically well-grounded mathematical world, such semantic grounding of the
natural mathematical language (or at least its underlying mechanisms) will then
be also helpful for better semantic treatment of arbitrary natural language texts.

2 Approach

The project is in the phase of preparing and analysing suitable corpora, extract-
ing interesting datasets from them on which learning methods can be tried, col-
lecting basic statistics about the corpora. and testing initial learning approaches
on them. Initially we consider the following corpora:

Developing Corpus-Based Translation Methods 437

1. The various HOL Light developments: in particular Flyspeck and Multi-
variate, for which we have a strong ARLT online service available [2], and which
is also in the case of Flyspeck and Multivariate aligned (by Hales) with the in-
formal Flyspeck book. This is the main corpus we have so far worked on. We
have already written programs that collect the links between the informal and
formal Flyspeck parts (theorems and definitions), and used such annotations for
example for the joint informal/formal HTML presentation of Flyspeck [5]. Cur-
rently there are about 250-400 theorems mapped (using the guid tag defined by
Hales), however we still need to improve our searching mechanism to find all the
mapped informal/formal pairs in various parts of the library. In addition to the
aligned theorems, Hales has also aligned over 200 concepts, which can be used
as the ground level (dictionary) for the statistical translation algorithms. It is
likely that further annotation of the texts will be useful, possibly also with some
refactoring of the informal and formal parts so that they better correspond to
each other. Most of the extraction/alignment chain is now automated so we can
update our data after such transformations of the source texts. We export the
aligned theorems in several formats: parsed LATEXvia LATEXML (using libxml for
querying), the original HOL text, bracketed HOL text suitable for parsing into
external tools, internal (parsed and type-annotated) representation of the HOL
theorems in a Lisp-like notation and in a XML notation, and also representation
of each theorem in the (Prolog-parsable) THF TPTP format, containing type
declarations of all constants recursively used by the theorems.

2. The Mizar/MML library: and in particular its mapping to the book Com-
pendium of Continuous Lattices [1] (CCL) and a smaller mapping to Engelking’s
General Topology provided by Bancerek.2 This is a potential large source of infor-
mal/formal pairs, however the MML has been developing quickly, and updating
the mapping might be necessary to align the books with the current MML for
which we have a strong online ARLT service [6,3]. We have also obtained the
corresponding LATEX sources of the CCL book from Cambridge University Press,
however we have not yet clarified the possible publication of the data extracted.

3. The ProofWiki and PlanetMath informal corpora: We have the XML
and LATEX dumps of these wikis and have used them for initial experiments with
disambiguation of informal texts in the student project Mathifier,3 motivated
by the NLP work on Wikipedia disambiguation [4]. One relatively surprising
preliminary result of this project is quite good performance (75%) of the naive
disambiguation algorithm using just the most frequent mathematical meaning
without any additional context information. Another initial exploration was done
on ProofWiki, whose relatively strict proof style is quite close to the Jaskowski-
style natural deduction used in Mizar. We have measured this by mapping all
math expressions and references in the ProofWiki sentences to just one generic
expression/reference, and counted the frequency of various proof sentences. The

2 http://fm.uwb.edu.pl/mmlquery/fillin.php?filledfilename=t.mqt&argument=
number+1

3 http://mws.cs.ru.nl/~urban/Mathifier/

http://fm.uwb.edu.pl/mmlquery/fillin.php?filledfilename=t.mqt&argument=number+1
http://fm.uwb.edu.pl/mmlquery/fillin.php?filledfilename=t.mqt&argument=number+1
http://mws.cs.ru.nl/~urban/Mathifier/

438 C. Kaliszyk et al.

results4 again show great homogeneity of the corpus, where most of the proof
discourse can be superficially mapped to Mizar natural deduction quite econom-
ically. Apart from defining and experimenting with such proof-level translation
patterns, the main work on these corpora will be their mapping (possibly au-
tomated by using frequency analysis) to the Mizar and HOL Light corpora, in
particular general topology that is developed a lot in ProofWiki and MML.

2.1 Methods, Tools and Planned Experiments

There is a lot of relevant NLP research in (i) machine translation (algorithms
that directly translate between two languages) (ii) word-sense disambiguation
(algorithms that determine the exact meaning of (sets of) words in sentences),
and (iii) part-of-speech tagging and phrasal and dependency parsing . The most
successful statistical methods (e.g., n-gram-based) require much larger corpora
of aligned data than we currently have, however some smarter algorithms such
as chart-parsing (the CYK) algorithm with probabilistic grammars (PCFGs)
should be usable already on the current scale of our data, perhaps complemented
by leaner memory-based approaches such as k-nearest neighbor in the MBT
toolkit.5 Currently, we have started experimenting with the Stanford parser,6
the Moses toolkit,7 and our own Prolog/Perl implementation of the (lexicalized)
CYK algorithm on a subset of 500 formal (bracketed) Flyspeck expressions about
trigonometric functions. Such initial experiments concern relaxing of the precise
disambiguated formal texts by adding more ambiguity. For example whenever a
casting functor (such as Cx or &) has to be used in the formal text, we can remove
it, and measure the success of the probabilistic parsing getting the right formal
meaning. Once such experiments produce good results, the next step in this
direction is learning the alignment of the informal/formal text/trees using for
example the tree-based learning in the Moses toolkit. The work with established
tools such as the Stanford parser and Moses will likely be complemented by
our custom implementations that take advantage of the domain knowledge. For
example we can add immediate pruning of potential parse trees in the CYK
algorithm (or any chart parser) by using the HOL Light (Hindley-Milner) type
system or the Mizar (soft, dependent) type system at each step of the algorithm.

References

1. Bancerek, G., Rudnicki, P.: A Compendium of Continuous Lattices in MIZAR. J.
Autom. Reasoning 29(3-4), 189–224 (2002)

2. Kaliszyk, C., Urban, J.: HOL(y)Hammer: Online ATP service for HOL Light. CoRR,
abs/1309.4962 (2013), Accepted in Mathematics in Computer Science

3. Kaliszyk, C., Urban, J.: MizAR 40 for Mizar 40. CoRR, abs/1310.2805 (2013)

4 http://mizar.cs.ualberta.ca/~mptp/fpk1/opaqcounts1.txt
5 http://ilk.uvt.nl/mbt/
6 http://nlp.stanford.edu/software/lex-parser.shtml
7 http://www.statmt.org/moses/

http://mizar.cs.ualberta.ca/~mptp/fpk1/opaqcounts1.txt
http://ilk.uvt.nl/mbt/
http://nlp.stanford.edu/software/lex-parser.shtml
http://www.statmt.org/moses/

Developing Corpus-Based Translation Methods 439

4. Ratinov, L., Roth, D., Downey, D., Anderson, M.: Local and global algorithms for
disambiguation to Wikipedia. In: ACL (2011)

5. Tankink, C., Kaliszyk, C., Urban, J., Geuvers, H.: Formal mathematics on display:
A wiki for Flyspeck. In: Carette, J., Aspinall, D., Lange, C., Sojka, P., Windsteiger,
W. (eds.) CICM 2013. LNCS (LNAI), vol. 7961, pp. 152–167. Springer, Heidelberg
(2013)

6. Urban, J., Rudnicki, P., Sutcliffe, G.: ATP and presentation service for Mizar for-
malizations. J. Autom. Reasoning 50, 229–241 (2013)

System Description: A Semantics-Aware

LATEX-to-Office Converter

Lukas Kohlhase and Michael Kohlhase

Mathematics/Computer Science
Jacobs University Bremen

Abstract. We present a LATEX-to-Office conversion plugin for LATEXML
that can bridge the divide between publication practices in the theoreti-
cal disciplines (LATEX) and the applied ones (predominantly Office). The
advantage of this plugin over other converters is that LATEXML conserves
enough of the document- and formula structure, that the transformed
structures can be edited and processed further.

1 Problem and State of the Art

Technical documents from the STEM fields (Science, Technology, Engineering,
and Mathematics) augment the text with structured objects – images, mathe-
matical/chemical formulae, diagrams, and tables – that carry essential parts of
the information. There are two camps with different techniques for authoring
documents. The more theoretical disciplines (Mathematics, Physics, and Com-
puter Science) prefer LATEX, while the more applied ones (e.g. Life Sciences,
Chemistry, Engineering) use Office Suites almost exclusively. Transforming be-
tween these two document formatting approaches is non-trivial: The TEX/LATEX
paradigm relies on in-document macros to “program” documents, empower-
ing authors to automate document aspects and leading to community-supplied
domain-specific extensions via LATEX packages. Office suites rely on document
styles that adapt visual parameters of the underlying document markup either
document-wide or for individual elements.

This incompatibility of document preparation approaches causes friction in
cross-paradigm collaboration as each camp deems their approach vastly superior
and the other’s insufferable. In this paper, we will discuss the transformation
from TEX/LATEX to Office documents. The converse direction would also be
useful, but uses different methods.

copy from PDF paste (libreoffice)

hμϕ
(f) +

∫
X

ϕdμϕ = sup
M(f,X)

{hμ(f) +

∫
X

ϕdμ},

Fig. 1. Copy & Paste into Word Processors

There are several methods to transform papers from LATEX to an Office word
processor. The first method is to just generate a PDF file and then open this file

S.M. Watt et al. (Eds.): CICM 2014, LNAI 8543, pp. 440–443, 2014.
c© Springer International Publishing Switzerland 2014

System Description: A Semantics-Aware LATEX-to-Office Converter 441

in Word/LibreOffice or copy/paste a fragment. This achieves the goal of looking
like the desired PDF document, just in Office. There are two problems with this
route: i) mathematical formulae are not preserved (see Figure 1) ii) even if the
result looks OK the results have lost their links (e.g. for citations/references or
label/ref), or become difficult to edit, because they do not conform to the styling
system of the word processor. The fundamental problem is that this process
converts only the appearance of the document and loses all meaning that was
encoded in the markup macros that were expanded during PDF generation. This
is especially blatant when looking at the math in a document, which is either
treated as text or images and cannot be edited/processed further. The same
holds true for references, they are essentially treated as parts of text with a linked
number in front of them, complicating adding new references substantially.

The other way of transforming LATEX to Word, by transforming the LATEX
source file directly, avoids these problems. latex2rtf [L2R] is a widely used
system that uses a custom parser to convert a non-trivial fragment of LATEX to
the RTF format understood by most office systems. The system works well, but
coverage is limited by the LATEX parser and the aging RTF format. TeX4ht [T4H],
which uses the TEX parser itself and seeds the output with custom directives
that are parsed to create HTML has a post-processor that generates ODF. Its
coverage of LATEX is unlimited, but the intermediate format HTML somewhat
limits the range of document fragments that can be generated.

Here we present a similar approach, only that we extend the backend of the
LATEXML system [LTX] to generate WML – the file format of MS Word – and
ODT – that of Libre- and OpenOffice. Like latex2rtf, the LATEXML system di-
rectly parses LATEX source files. The main difference to TeX4ht is that LATEXML
generates an XML representation that is structurally near to the LATEX sources
and thus preserves the author-supplied semantics for further processing. Cover-
age for TEX primitives is complete, semantics-preserving LATEXML bindings are
available for most commonly used LATEX packages.

2 The Office Formats

WML and ODT follow the same architectural paradigm: they are both zip-
packaged directories of XML files that contain document content, metadata,
and styling. We will use WML in our presentation here and point out differences
in ODT as we go along.

The main content of a WML document – text, document structure, placement
of images, tables etc. – is represented by special content markup elements in an
XML file document.xml. All elements contain styling information, usually by ref-
erencing a style element in the file style.xml, which can be modified by adding
local settings in children of the properties child. The other important kind of
file are the .rels files, which are again XML. These files contain relationship

elements, which detail the relations between elements in document.xml and ex-
ternal resources (e.g. for hyperlinks) or resources in the WML package (e.g. the
image data files). The WML package additionally contains miscellaneous XML

442 L. Kohlhase and M. Kohlhase

files; e.g. settings.xml, which is used to make the state of the word processor
applications persistent and fonttable.xml, which contains extra information
about fonts.

<omml:oMath>
<r><t>1.5</t></r>
<sSup>
<e><r><t>10</t></r></e>
^{<r><t>7</t></r>}

</sSup>
1.5\times 10ˆ{7}

</omml:oMath>

Of special interest is the representation of
mathematical formulae. WML uses a propri-
etary XML format for presentation markup
together with a variant of TEX markup that
is used for user input. The expression of the
left is the –slightly abridged – representation
of 1.5 × 107. The ODT format treats formulae as external objects; every single
one has a subdirectory in the package which contains a presentation MathML
file (for external communication), a user input file in the venerable StarOffice
format, and an image of the formula (for display in the word processor).

3 Transformation

paper.tex group.bib

paper.tex.xml

group.tex.xmlLATEXML

document.xml relations.xml

styles.xml

XSLT XSLT

paper.docx

zip

post

Fig. 2. The Transformation Process

To create the WML/ODT files we first
transform the .tex file to an interme-
diate XML-based LTXML format using
LATEXML. Then we use an XSLT stylesheet
to generate document.xml. For LTXML
elements that do not have a direct coun-
terpart in WML we adapt existing WML
elements. For instance, a LATEX quote en-
vironment is represented by a WML p

(“paragraph”) element with a special style
“quote” we added to styles.xml. This al-
lows the user to later semantically work
with the document, e.g. by changing all
quotes to red. For WML formulae, we use
a stylesheet supplied by Microsoft to trans-
form the MathML generated by LATEXML
to the WML math format, for ODT formulae we make use of MathML and im-
age generation in LATEXML. The file document.xml.rels is generated by XSLT
from .tex.xml and is placed into the directory structure the by the LATEXML
post-processor together with other supporting files such as images and some
static files that are independent of the input document. The main file of interest
here is styles.xml, which contains the style information of the document. This
had to be adapted manually recreate the visual appearance of the PDF files
generated by LATEX. Finally the LATEXML post-processor zips documents into
the final WML/ODT file.

The user does not see all these transformation, generation, and packaging
steps: given a LATEX paper, all she has to do is type

latexmlc paper.tex --destination=paper.docx

System Description: A Semantics-Aware LATEX-to-Office Converter 443

A transformation to ODT can be specified by choosing the destination
paper.odt.

4 Conclusion

Fig. 3. Converted Formula in MSWord

We have presented a LATEXML plugin that
transforms LATEX papers into Office docu-
ments in a one-line system call. The result
of converting the formula from Figure 1 to
MS Word is on the right. With the recent web front-end of LATEXML, it will be
simple to extend this to a web service. The LATEXML Word Processing plu-
gin is public domain and is available from GitHub at [L2O]. The conversion
makes crucial use of the fact that LATEXML preserves more of the document and
formula semantics than other systems that process LATEX documents, this en-
sures that the core process in the transformation – the translation of LATEXML
XML to Office XML (WML or ODF) has enough information to generate the
respective target document structures. The biggest limitations of the current
transformation are that i) we cannot currently generate the text-based input
format (StarMath or the WML TEX variant) and ii) citations and references are
only partially converted into the “semantic” formats. This makes it difficult to
edit formulae/references in the respective word processors after transformation.
For ODF formulae, we want to make use of the TeXMaths plugin for Libreoffice,
which uses LATEX instead of StarMath for user input of formulae – but hides it
in the comment area of the images which makes handling more difficult.

In the future we want to develop an “office package” for LATEXand a cor-
responding LATEXML binding, which allows the direct markup of higher-level
structures – e.g. document metadata in LATEX documents, so that it can be
transferred to the office documents. Similarly, we want to extend the transfor-
mation to carry over even more semantics from the STEX format into semantically
extended office formats like CPoint or CWord; this would finally give us a way to
cleanly interface the currently LATEX-based document methods in the KWARC
group to applied STEM disciplines.

References

[L2O] GitHub repository, https://github.com/KWARC/LaTeXML-Plugin-Doc
[L2R] LATEX to RTF converter, http://sourceforge.net/projects/latex2rtf/

(visited on August 01, 2010)
[LTX] Miller, B.: LaTeXML: A LATEX to XML Converter, http://dlmf.nist.

gov/LaTeXML/ (visited on December 03, 2013)
[T4H] TeX4ht: LaTeX and TeX for Hypertext,

http://www.tug.org/applications/tex4ht/mn.html (visited on August 01,
2010)

https://github.com/KWARC/LaTeXML-Plugin-Doc
http://sourceforge.net/projects/latex2rtf/
http://dlmf.nist.gov/LaTeXML/
http://dlmf.nist.gov/LaTeXML/
http://www.tug.org/applications/tex4ht/mn.html

Math Indexer and Searcher Web Interface
Towards Fulfillment of Mathematicians’ Information Needs

Martin Lı́ška, Petr Sojka, and Michal Růžička

Masaryk University, Faculty of Informatics, Botanická 68a, Brno, Czech Republic
{martin.liski,mruzicka}@mail.muni.cz, sojka@fi.muni.cz

https://mir.fi.muni.cz/

Abstract. We are designing and developing a web user interface for digital math-
ematics libraries called WebMIaS. It allows queries to be expressed by mathe-
maticians through a faceted search interface. Users can combine standard textual
autocompleted keywords with keywords in the form of mathematical formulae
in LATEX or MathML formats. Formulae are shown rendered by the web browser
on-the-fly for users’ feedback. We describe WebMIaS design principles and our
experiences deploying in the European Digital Mathematics Library (EuDML).
We further describe the issues addressed by formulae canonicalization and by
extending the MIaS indexing engine with Content MathML support.

Keywords: search interface, math-aware search, digital mathematical library,
formulae canonicalization, WebMIaS, MIaS, EuDML, MathML.

1 The Need for a Math-Aware Search Interface

Scalable search facilities now have the status of killer application on the web and are in
high demand among the users of digital mathematics libraries (DML). There are some
papers in DMLs which contain more formulae than words. With this in mind, we are
designing and implementing the math-aware search engine, Math Indexer and Search
(MIaS) [8] supporting a presentation form of mathematics, since the vast majority of
scholarly literature in math has only been available in optically recognized presentation
formats.

MIaS has been developed primarily for use in EuDML [1]. Since there is no estab-
lished math-aware user interface, we were faced with the task of designing and imple-
menting one. To gain acceptance across the wider community of potential DML users,
the main design goal was ease of use. Having the entry barrier as low as possible is
important for attracting new users.

The only available formulae search which does not have format of sources of docu-
ments under control was LaTeXsearch.com interface by Springer. It allows only one
LATEX formula as a query. As the same formula can be written in many ways in TEX,
string hashing is used to match the query with formulae in documents written in LATEX.
While most mathematicians are used to writing a query in LATEX, there are problems
with this approach as formulae similarity cannot be defined as a metric on LATEX for-
mulae strings. Other qualities of formulae, such as their structure should be taken into

S.M. Watt et al. (Eds.): CICM 2014, LNAI 8543, pp. 444–448, 2014.
c© Springer International Publishing Switzerland 2014

https://mir.fi.muni.cz/
http://www.latexsearch.com/

Math Indexer and Searcher Web Interface 445

account, as well as textual phrases denoting the content sought. Furthermore, allowing
users to type longer LATEX formulae with immediate visual feedback simplifies the use.

For EuDML, we have added on-the-fly rendering of math, as autodetected in LATEX
andMathML formats.We have added facets for searching in different document fields [6].
Most importantly, we have had the privilege of mining EuDML search logs for user
search scenarios which has shown how users have striven to find the information they
require. For example, an interesting observation was that Content MathML has started
to appear in the math search box. New LATEXML converter [4] allows the development
of new corpora of math texts with math representation in both Presentation and Content
MathML, an example of which is the database available for NTCIR-10 Math Task [5]
(100,000 arXiv documents). The most challenging problems have included the normal-
ization ofmath notations coming fromdifferent sources, typically a typed or copy-pasted
query, and heterogeneous document formats. Development of a robust math canonical-
izer emerged as a must for the success of the new math search paradigm to be supported
by the DML search user interface.

2 User Interface for Math Information Retrieval

Users are accustomed to forming search strategies with minimal effort using words as
queries for documents represented as bags of words. For EuDML we have designed an
advanced search form http://eudml.org/search

to allow faceted searches with one facet designed for inputting math formulae. On
http://mir.fi.muni.cz/webmias

we maintain a link to the latest version of the development version of WebMIaS to dis-
cuss possible DML users’ search migration paths and strategies, and to get feedback
from the user community. The WebMIaS search interface in Figure 1 observes several
design principles and qualities:

formulae in TEX. Mathematicians know and use compact LATEX math notation. Auto-
detection ofMathML is also in place. To convert LATEX queries intoMIaS-supported
MathML, we switched the converter from Tralics to LATEXML, which is able to
convert the user input into mixed Presentation-Content MathML.

on-the-fly formulae rendering. Formulae rendering allows quick feedback when writ-
ing the query—users know what they want when they see it. Robust live render-
ing of copy-pasted MathML is provided means of MathJax. Users are also warned
when writing an invalid TEX query.

pop-up help. Pop-up windows inform users about the interface.
domain-specific auto-completion. Frequent collocations and terms from the DML do-

main are suggested for text queries.
facets. Adding facets allows natural filtering (by language, author,. . .) of search results

to achieve high precision.
snippets with query coloring. Snippets are shown in hit lists. Matched words and for-

mulae are colored in the snippets for a quicker first look evaluation of the results.
scoring and debugging. Scoring of computed relevance to a query is shown for every

hit. In the development interface, one can deduce document score computation.

http://dlmf.nist.gov/LaTeXML/
http://eudml.org/search
http://mir.fi.muni.cz/webmias

446 M. Lı́ška, P. Sojka, and M. Růžička

Fig. 1.WebMIaS user interface

Mining the EuDML and WebMIaS query search logs reveals quite different, often
contradictory user demands. While some users prefer exact searches of visually remem-
bered formulae, others demand semantic specification of terms representing them. For
example, we got a request to constrain a search to E = mc2, where m represents mass.
The first request could be fulfilled by an exact Presentation MathML retrieval. However,
the latter needed semantic tagging which is usually absent in full-text XMLs and may
only be approximated by indexing disambiguated Content MathML.

For testing the search behaviour we indexed 100,000math papers from the NTCIR-10
Math task [7]. To formulate queries containing math, it emerged that new strategies will
have to be developed. It can be expected that it will take some time before math search
users learn them. To find the balance between word and math search and between exact,
proximity and subtree search, several MIaS indexing parameters have to be set. These
parameters differ from collection to collection. Currently set parameters are being eval-
uated for the current collection.

As MathML created by different content generators such as InftyReader, Tralics, or
LATEXML differ significantly. To prevent the rapid growth of the math index containing
mathematical formulae [8], their canonical representationswith the same meaning need
to be chosen and indexed. As the results produced by available normalization tools for
MathML were not reliable enough, we concluded that it was necessary to develop our
own normalization tool that would become part of both indexing and searching in the
(Web)MIaS system [2].

http://www.w3.org/TR/MathML/chapter3.html
http://www.w3.org/TR/MathML/chapter4.html
http://www.inftyproject.org/
http://www-sop.inria.fr/marelle/tralics/
http://latexml.mathweb.org/

Math Indexer and Searcher Web Interface 447

To help us to see the changes made by the normalization tool we are generating
HTML reports of its inputs and results. Samples of these reports are available for a
DML-CZ paper. The LATEX source code of the paper was transformed to XHTML+
MathML by several tools. Examples of normalized MathML can be seen for Tralics
and LATEXML1.

When querying using math formulae [3] one has to decide on the formulae similarity
metrics to allow not only exact formulae matches. Subformulae, formulae expressed in
different notation or even similar formulae with different variables need to be consid-
ered as hits with lower scores. These metrics are used for weighting similar formulae
in documents in the same way that term frequency is used for weighting standard word
hits.

The link to theWebMIaS interface provided above also shows our development tools
that allow us to debug MIaS indexing and querying. With the verbose output enabled,
the computation process of document scores can be inspected to see how words and
(sub)formulae affect the ranking. The option to take only Presentation MathML, only
Content MathML or both into account is also available. Even though Content MathML
may give better, semantically related results most of the time, there are cases where
visual fidelity is sought and Presentation MathML is preferred.

In addition to the web user interface, it is also possible to use WebMIaS remotely via
web services: its general usage is described in the OpenSearch standard. Details of API
and WebMIaS OpenSearch description document can be found on the WebMIaS home
page above. The web services are particularly useful for remote automated searching,
as for example, for the purposes of system evaluation or for a programmable search.

3 Conclusions and Future Work

We have described theWebMIaSmath-aware user interface designed to allow searching
DMLs with keyword and formulae faceted searching. It has been applied in the EuDML
project to the users’ satisfaction. Further deployment of the WebMIaS user interface is
in preparation for further DMLs as DML-CZ or arXiv.

Acknowledgements. This work has been financed in part by the EU through its Com-
petitiveness and Innovation Programme (Information and Communication Technolo-
gies Policy Support Programme, “Open access to scientific information”, Grant Agree-
ment No. 250503).

References

1. Borbinha, J., Bouche, T., Nowiński, A., Sojka, P.: Project euDML – A first year demonstration.
In: Davenport, J.H., Farmer, W.M., Urban, J., Rabe, F. (eds.) Calculemus/MKM 2011. LNCS
(LNAI), vol. 6824, pp. 281–284. Springer, Heidelberg (2011)

1 https://mir.fi.muni.cz/mathml-normalization/samples/

http://dml.cz/handle/10338.dmlcz/107908
http://www.opensearch.org
https://mir.fi.muni.cz/mathml-normalization/samples/

448 M. Lı́ška, P. Sojka, and M. Růžička

2. Formánek, D., Lı́ška, M., Růžička, M., Sojka, P.: Normalization of digital mathematics library
content. In: Davenport, J., et al. (eds.) 24th OpenMath Workshop, 7th MathUI Workshop, and
Intelligent Computer Mathematics Work in Progress, Aachen. CEUR Workshop Proceedings,
vol. 921, pp. 91–103 (2012), http://ceur-ws.org/Vol-921/wip-05.pdf

3. Kamali, S.: Querying Large Collections of Semistructured Data. Ph.D. thesis (advisor: Frank
Tompa), University of Waterloo (2013)

4. LaTeXML Project, A.: LaTeX to XML Converter (2014), http://dlmf.nist.gov/
LaTeXML/

5. Lı́ška, M., Sojka, P., Růžička, M.: Similarity Search for Mathematics: Masaryk University
team at the NTCIR-10 Math Task. In: Kando, N., et al. (eds.) NTCIR-10 online Proceedings
(2013), http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings10/pdf/
NTCIR/MATH/06-NTCIR10-MATH-LiskaM.pdf

6. Lı́ška, M., Sojka, P., Růžička, M.: Mravec, P.: Web Interface and Collection for Mathematical
Retrieval. In: Sojka, P., Bouche, T. (eds.) Proceedings of DML 2011, Masaryk University,
Bertinoro, Italy, pp. 77–84 (2011), http://hdl.handle.net/10338.dmlcz/702604

7. NTCIR Project: NTCIR Pilot Task: Math Task (2012), http://ntcir-math.nii.ac.jp/
8. Sojka, P., Lı́ška, M.: The Art of Mathematics Retrieval. In: Proc. of the ACM Conference on

Document Engineering, DocEng 2011, pp. 57–60. ACM, Mountain View (September 2011),
http://doi.acm.org/10.1145/2034691.2034703

http://ceur-ws.org/Vol-921/wip-05.pdf
http://dlmf.nist.gov/LaTeXML/
http://dlmf.nist.gov/LaTeXML/
http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings10/pdf/NTCIR/MATH/06-NTCIR10-MATH-LiskaM.pdf
http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings10/pdf/NTCIR/MATH/06-NTCIR10-MATH-LiskaM.pdf
http://hdl.handle.net/10338.dmlcz/702604
http://ntcir-math.nii.ac.jp/
http://doi.acm.org/10.1145/2034691.2034703

SAT-Enhanced Mizar Proof Checking

Adam Naumowicz

University of Bia�lystok, Institute of Informatics,
Sosnowa 64, 15-887 Bia�lystok, Poland

adamn@mizar.org

http://alioth.uwb.edu.pl/~adamn

Abstract. In this paper we present an experimental extension of the
Mizar system employing an external SAT solver to strengthen the notion
of obviousness of the Mizar proof checker. The presented extension is
based on a version of MiniSAT, called Logic2CNF. The SAT-enhanced
Mizar checker is programmed to automatically spawn a new Logc2CNF
process whenever it needs to justify any goal that involves equalities
based on Boolean operations.

Keywords: Mizar, SAT, Boolean operations.

1 Introduction

Mizar [4,14] is a proof checker accompanied by a large library of formal proofs
based on set theory [16]. Although its user input language is being developed
to resemble standard mathematics as much as possible, the amount of details
a user must currently provide to make the system check the text’s full logical
correctness is still too big. The strength of the proof checking system is the
most important factor responsible for maintaining the de Bruijn factor on a low
level [10]. Therefore all sorts of automations that strengthen the checker and
at the same time make the formalized proofs more compact are most welcome
by the Mizar users’ community. Numerous new techniques are being currently
developed to make the Mizar checker stronger (cf. [3,8,9]). There is also active
research on combining Mizar with external automated theorem provers [7, 17].
Still, the most widely-used and simplest method is based on Mizar “require-
ments” [11,12], which provide a way to implement specific procedures that make
the checker handle certain simple mathematical objects, frequently used in typ-
ical Mizar texts. This includes special treatment of Boolean operations on sets,
complex arithmetic and the like. Since the Mizar library is built on top of set
theory axioms, the usage of various set-based constructs is ubiquitous in the li-
brary. Apart from “articles” devoted to sets per se, there are many more abstract
ones that heavily use sets for constructing some models or examples (e.g. in ge-
ometry, lattice theory or graph theory). Therefore the automation of processing
sets is beneficial for most of the current library (enabling to reduce its size)
but most importantly for future developments. Hard-coding specific checking of
Boolean operations, known as “requirements BOOLE”, was implemented quite

S.M. Watt et al. (Eds.): CICM 2014, LNAI 8543, pp. 449–452, 2014.
c© Springer International Publishing Switzerland 2014

http://alioth.uwb.edu.pl/~adamn

450 A. Naumowicz

early in the history of Mizar development and it remained partial and not very
efficient [13]. In this paper we present the extension which exploits the natural
correspondence between propositional formulae and Boolean operations on sets
in order to eliminate the need of referencing definitions of these operations and
all sorts of lemmas based on them in Mizar proofs.

2 The Underlying SAT System

Various optimization differences between numerous SAT tools available today
are quite irrelevant for solving the simple task mentioned above, so any of the
popular SAT solvers should suit our purposes equaly well. Therefore, the basic
criteria for choosing the underlying system for implementing this extension are
ease of use and a simple interface. One of the most natural candidates was the
MiniSAT1 system developed by Niklas Eén and Niklas Sörensson, which is a
minimalistic SAT solver that supports a standard DIMACS input notation. The
system is successfully used in a number of other projects, because it is relatively
easy to modify, well-documented, highly efficient and designed for integration as
a backend to other tools. It is also released under an open source license which
allows it to be coupled with Mizar without any legal issues [1].

For ease of implementing the interface needed to interact with the Mizar
proof checker in a way very similar to the interface previously implemented for
Gröbner bases computation [12], we decided to use a MiniSAT variant devel-
oped by Edd Barrett, called Logic2CNF2. Logic2CNF uses a small input lan-
guage for logic input from file/stdin. It then converts it to CNF, solves it using
built-in MiniSAT and reports the results as assignments of input literal names.
Logic2CNF is written in portable C/C++ and it supports Linux, OpenBSD,
Solaris, and OSX. We also succeeded in compiling a Windows version using the
Cygwin environment to support all main platforms for which Mizar is pre-
compiled, so there is no obstacle with the extension should it become part of
the standard Mizar distribution and be used to perform revision of the Mizar
library using the standard methodology developed by the Mizar Library Com-
mittee [5, 6].

The simple interface we implemented uses the Logic2CNF input language
to construct a formula in which each propositional variable represents equality
classes made up of all available terms. If a term represents a Boolean opera-
tion, the input stream is appended by a corresponding logical formula (e.g. set
intersection yields a conjunction in the input and so on). Then, every instance
of a negated equality in a given inference (Mizar’s checker is a disprover, so
this means testing if some two sets are equal) is checked whether it logically
entails the conjunction of all previously stored formulae. This is naturally ob-
tained by negating the entailment and computing its satisfiability with a call to

1 MiniSAT is available for download at http://minisat.se/.
2 Logic2CNF is available for download at
http://projects.cs.kent.ac.uk/projects/logic2cnf/trac/wiki/WikiStart.

http://minisat.se/
http://projects.cs.kent.ac.uk/projects/logic2cnf/trac/wiki/WikiStart

SAT-Enhanced Mizar 451

Logic2CNF. From the user’s point of view, the proposed extension works auto-
matically and there’s no need to directly call the external tool. The Mizar verifier
(as well as other Mizar tools that use its checker) just spawns a new Logc2CNF
process whenever it is needed to justify any goal that involves Boolean opera-
tions.

Using the standard Mizar tools such as relprem (for eliminating unnecessary
references) and trivdemo (reducing simple proofs to straightforward justifica-
tions), checklab (detecting unused labels) and inacc (removing unused text
fragments), the encyclopedic article XBOOLE 1 containing many facts on Boolean
operations of sets can be significantly reduced. In particular, 32 out of 117 theo-
rems become obvious for the checker3 and simply by removing the unnecessary
proofs the article’s size can be reduced by 35%. As for the whole library, relprem
reported in total over 1600 unnecessary references in 22% of all the library arti-
cles.

As mentioned in Section 1, Logic2CNF is primarily developed for Unix-like
platforms. The compilation for Linux or BSD-based systems is fairly straight-
forward, one can also find some pre-compiled versions for selected platforms on
the developers’ web-site.

The prototype of the extended Mizar system equipped with the interface
to Logic2CNF and pre-compiled for main supported software platforms can be
downloaded from the author’s web-site: http://mizar.uwb.edu.pl/~softadm/
boolesat.

Please note that all the Mizar verification tools assume that the executable
named logic2cnf (or logic2cnf.exe for Windows) is available in the search
PATH. Otherwise, an error will occur. For the Windows platform, users can also
find there the necessary libraries of the Cygwin environment.

3 Conclusion and Future Plans

The demonstrated application of a SAT solver proved quite useful in strength-
ening the Mizar checker’s processing of Boolean operations on sets. However,
the extension briefly described here can be further developed, e.g. to also enable
automation in processing of inclusions and equalities by means of solving the
corresponding implications and equivalences. As demonstrated by the integra-
tion of SAT and SMT solvers in the context of other proof assistants such as e.g.
Coq [2], Isabelle or HOL [18], there is a big potential in integrating solvers not
only for strengthening the checker, but also on other levels of proof checking.
This can include the reimplementation of the Prechecker module responsible
for calculating propositional relations between atomic formulae used in inference
steps. In the context of the huge Mizar library, another possible direction is to
apply SAT-based techniques in the process of refactoring the library for better
legibility and organization (cf. [15]).

3 The article contains also theorems which are not completely related to Boolean
operations, and therefore they are not obvious even for the SAT-enhanced checker.

http://mizar.uwb.edu.pl/~{}softadm/boolesat
http://mizar.uwb.edu.pl/~{}softadm/boolesat

452 A. Naumowicz

References

1. Alama, J., Kohlhase, M., Mamane, L., Naumowicz, A., Rudnicki, P., Urban, J.:
Licensing the Mizar Mathematical Library. In: Davenport, J.H., Farmer, W.M.,
Urban, J., Rabe, F. (eds.) MKM 2011 and Calculemus 2011. LNCS, vol. 6824, pp.
149–163. Springer, Heidelberg (2011)

2. Armand, M., Faure, G., Grégoire, B., Keller, C., Théry, L., Werner, B.: A modular
integration of SAT/SMT solvers to Coq through proof witnesses. In: Jouannaud,
J.-P., Shao, Z. (eds.) CPP 2011. LNCS, vol. 7086, pp. 135–150. Springer, Heidelberg
(2011)

3. Caminati, M.B., Rosolini, G.: Custom automations in Mizar. Journal of Automated
Reasoning 50(2), 147–160 (2013)

4. Grabowski, A., Korni�lowicz, A., Naumowicz, A.: Mizar in a nutshell. Journal of
Formalized Reasoning 3(2), 153–245 (2010)

5. Grabowski, A., Schwarzweller, C.: Revisions as an essential tool to maintain mathe-
matical repositories. In: Kauers, M., Kerber, M., Miner, R., Windsteiger, W. (eds.)
MKM/CALCULEMUS 2007. LNCS (LNAI), vol. 4573, pp. 235–249. Springer, Hei-
delberg (2007)

6. Grabowski, A., Schwarzweller, C.: Towards automatically categorizing mathemat-
ical knowledge. In: Proceedings of Federated Conference on Computer Science and
Information Systems – FedCSIS 2012, Wroclaw, Poland, September 9–12, pp. 63–68
(2012)

7. Kaliszyk, C., Urban, J.: Mizar 40 for Mizar 40. CoRR, abs/1310.2805 (2013)
8. Korni�lowicz, A.: Tentative experiments with ellipsis in Mizar. In: Jeuring, J.,
Campbell, J.A., Carette, J., Dos Reis, G., Sojka, P., Wenzel, M., Sorge, V. (eds.)
CICM 2012. LNCS (LNAI), vol. 7362, pp. 453–457. Springer, Heidelberg (2012)

9. Korni�lowicz, A.: On rewriting rules in Mizar. Journal of Automated Reason-
ing 50(2), 203–210 (2013)

10. Naumowicz, A.: An example of formalizing recent mathematical results in Mizar.
Journal of Applied Logic 4(4), 396–413 (2006)

11. Naumowicz, A.: Evaluating prospective built-in elements of computer algebra in
Mizar. Studies in Logic, Grammar and Rhetoric 10(23), 191–200 (2007)

12. Naumowicz, A.: Interfacing external CA systems for Gröbner bases computation
in Mizar proof checking. International Journal of Computer Mathematics 87(1),
1–11 (2010)

13. Naumowicz, A., Byliński, C.: Improving Mizar texts with properties and require-
ments. In: Asperti, A., Bancerek, G., Trybulec, A. (eds.) MKM 2004. LNCS,
vol. 3119, pp. 290–301. Springer, Heidelberg (2004)

14. Naumowicz, A., Korni�lowicz, A.: A brief overview of Mizar. In: Berghofer, S.,
Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp.
67–72. Springer, Heidelberg (2009)

15. Pa̧k, K.: Methods of lemma extraction in natural deduction proofs. Journal of
Automated Reasoning 50(2), 217–228 (2013)

16. Trybulec, A., Korni�lowicz, A., Naumowicz, A., Kuperberg, K.: Formal mathematics
for mathematicians. Journal of Automated Reasoning 50(2), 119–121 (2013)

17. Urban, J., Rudnicki, P., Sutcliffe, G.: ATP and presentation service for Mizar
formalizations. J. Autom. Reasoning 50(2), 229–241 (2013)

18. Weber, T.: Integrating a SAT solver with an LCF-style theorem prover. In: Pro-
ceedings of the Third International Workshop on Pragmatical Aspects of Decision
Procedures in Automated Reasoning, PDPAR (2005)

A Framework for Formal Reasoning

about Geometrical Optics

Umair Siddique and Sofiène Tahar

Department of Electrical and Computer Engineering,
Concordia University, Montreal, Quebec, Canada

{muh sidd,tahar}@ece.concordia.ca
http://hvg.ece.concordia.ca/projects/optics/

Abstract. Recently, optics technology has emerged as a promising solu-
tion by resolving critical bottlenecks in conventional electronic systems.
Its application domain spans over diverse fields ranging from laser surg-
eries to space telescopes. In this paper, we describe an ongoing project
which aims at building a theorem proving based framework for the for-
mal reasoning about geometrical optics, an essential theory required in
the design and analysis of optical systems. Mainly, we present the mo-
tivation of our work, a road-map to achieve our goals, current status of
the project and future milestones.

1 Motivation and Background

Generally, optical systems are composed of different components (e.g., mirrors
and lenses) which process light to achieve desired functionalities such as light
amplification, ultrashort pulse generation and astronomical imaging. In order to
model and analyze the behavior of such systems, light can be characterized at
three levels of abstraction, i.e., ray, electromagnetic and quantum [4]. Geomet-
rical optics (also known as ray optics) describes light as a collection of straight
lines which linearly propagates through optical systems. On the other hand,
electromagnetic and quantum optics characterize light as a coupled vector field
and a stream of photons, respectively. The analysis of engineering optical sys-
tems (e.g., refractometry of cancer cells and optical networks) using geometrical
optics is an integral part of their design life-cycle. Traditional optical system
analysis techniques like paper-and-pencil based proofs and numerical algorithms
have some known limitations of human-error proneness and incompleteness, re-
spectively, which impeded their usage in the designing of critical optical systems
which may result in the loss of human lives (e.g., laser surgeries) or heavy fi-
nancial loss (e.g., Hubble Telescope failure [1]). We therefore propose theorem
proving based formal methods for the accurate and scalable analysis of optical
systems.

In this paper, we present details of an ongoing project1 to develop a for-
mal reasoning support for the analysis of geometrical optics. We use the HOL

1 http://hvg.ece.concordia.ca/projects/optics/rayoptics.htm

S.M. Watt et al. (Eds.): CICM 2014, LNAI 8543, pp. 453–456, 2014.
c© Springer International Publishing Switzerland 2014

http://hvg.ece.concordia.ca/projects/optics/
http://hvg.ece.concordia.ca/projects/optics/rayoptics.htm

454 U. Siddique and S. Tahar

Light theorem prover to formalize the underlying theories of geometrical optics.
The main reasons of our choice are the existence of rich multivariate analysis
libraries as well as the active projects like Flyspeck [3]. This project is part of
larger program on the formal analysis of different forms of optics (i.e., ray, wave,
electromagnetic and quantum) [2].

2 Formal Analysis Framework

The proposed framework, given in Figure 1, outlines the main idea to formally
model and prove that the optical systems model satisfies the system specifica-
tion. The whole framework can be decomposed into four major parts which are

System
Structure

Stability Analysis

Ray Model System
Description

System
Specification

Gaussian Beams

Complex-ABCD
Law

Beam Analysis Mode Analysis

Matrix Model

System Properties
Physics of Rays

System Model

Theorem
Prover

Input from User

Dependency of HOL
Theories

Communication with
Theorem Prover

Component

Library

Verified
System

Complex Matrices, Eigen values, Eigenvectors

Fig. 1. Formal Analysis Framework

depicted by different shapes and colors as shown in Figure 1. First, the formal-
ization of some complex linear algebra concepts such as complex matrices and
eigenvalues; Second, the formalization of optical system structure; Third, mod-
eling of rays and Gaussian beams and last, the formalization of the properties
of optical systems such as stability, mode and output beam analysis. The two
inputs to the framework are the description of the optical system and specifica-
tion, i.e., the spatial organization of various components and their parameters
(e.g., radius of curvature of mirrors and distance between the components etc.).
The first step in conducting formal analysis is to construct a formal model of
the given system in higher-order logic. In order to facilitate this step, we re-
quire a formalization of optical system structures which consist of definitions of
optical interfaces (e.g., plane or spherical) and optical components (e.g., lenses
and mirrors). The second step is to formalize the physical concepts of ray and

A Framework for Formal Reasoning about Geometrical Optics 455

Gaussian beams. Building on these fundamentals, the next step is to derive the
matrix model of the optical system which is basically a multiplication of the
matrix models of individual optical components. This step also includes the for-
malization of the complex ABCD-Law of geometrical optics which describes the
input-output relation of the given ray and Gaussian beams parameters.

Furthermore, in order to facilitate the modeling of system properties and
reasoning about their satisfaction in the given system model, we provide their
formal definitions and most frequently used theorems. These properties are sta-
bility which ensures the confinement of rays within the system, beam analysis
which provides the basis to derive the suitable parameters of Gaussian beams
for a given system structure and mode analysis which is necessary to evaluate
the field distributions inside the optical system. Finally, we develop a library of
frequently used optical components such as thin lenses, thick lenses and mirrors.
Such a library greatly facilitates the formalization of new optical systems which
are composed of these components as shown in Figure 1. The output of the
proposed framework is the formal proof that certifies that the system implemen-
tation meets its specification. The verified systems will then also be available in
the library for future use either independently or as part of a larger optical sys-
tem. In practice, optical components are two dimensional and it is compulsory

Composed System

Two-Dimensional
(2-D)

Rotated System
2-D

imen ed Sy

Optical System Structure

Core Formalization Current Progress

Gaussian Beams

Future Work Developed

One-Dimensional
(1-D)

Fig. 2. Formalization Flow of Optical Systems Structure

to consider the rotational effects of individual components. Another important
aspect is to consider the fact that optical systems are composed of small subsys-
tems which are configured in a particular way to achieve desired functionalities.
In our framework, we consider all of the above mentioned requirements in a
systematic way as shown in Figure 2.

3 Current Status and Future Milestones

So far, we have developed a core formalization of geometrical optics [7] as shown
in Figure 2. We aslo developed a library of frequently used optical components

456 U. Siddique and S. Tahar

(such as thin lens, thick lens and dielectric plate) [7] and the formalization of
optical resonators [6,7]. We showed the effectiveness of developed theories by
the formal analysis of practical optical resonators like Fabry Pérot resonator
with fiber-rod lens and Z-shaped resonators [6,7]. Moreover, we developed a
generalized procedure for the formal stability analysis of optical resonators usable
by physicists and optical engineers (details can be found in [5]). Recently, we
have formalized two-dimensional and composed optical systems along with the
formalization of Gaussian beams.

Finally, we outline the major tasks to achieve the remaining milestones until
the end of this research project. According to our assessment, it would require
additional 1.5 years (total project duration of 3.5 years) by an expert user of
HOL Light with a sufficient background of geometrical optics. This time-line
includes the extensions and revisions of existing formalization along with the
dissemination of developed results. Following is the list of main tasks:

– Formalization of eigenray stability for periodic optical systems [8].
– Formalization of Gaussian beams in 2-D as shown in Figure 2.
– Formalization of misaligned optical systems.
– Extension of Gaussian beam formalization to handle laser mode-locking.

4 Conclusion

The main contribution of this project is a comprehensive framework of formal
definitions and theorems ranging from one-dimensional ray optics to the rotated
two-dimensional optical systems. Moreover, it can be considered as a one step
towards an ultimate goal of applying formalized reasoning in new domains such
as biology, physics and mechanical engineering.

References

1. The Hubble Space Telescope Optical System Failure Report. Technical report,
NASA (1990)

2. Afshar, S.K., Siddique, U., Mahmoud, M.Y., Aravantinos, V., Seddiki, O., Hasan, O.,
Tahar, S.: Formal Analysis of Optical Systems. Mathematics in Computer Science
8(1) (2014), http://arxiv.org/abs/1403.3039

3. Hales, T.C.: Introduction to the Flyspeck Project. In: Mathematics, Algorithms,
Proofs. Dagstuhl Seminar Proceedings, vol. 05021 (2005)

4. Saleh, B.E.A., Teich, M.C.: Fundamentals of Photonics (2007)
5. Siddique, U., Aravantinos, V., Tahar, S.: A New Approach for the Verification of
Optical Systems. In: Optical System Alignment, Tolerancing, and Verification VII.
SPIE, vol. 8844, pp. 88440G-1–88440G-14 (2013)

6. Siddique, U., Aravantinos, V., Tahar, S.: Formal Stability Analysis of Optical Res-
onators. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp.
368–382. Springer, Heidelberg (2013)

7. Siddique, U., Aravantinos, V., Tahar, S.: On the Formal Analysis of Geometrical
Optics in HOL. In: Ida, T., Fleuriot, J. (eds.) ADG 2012. LNCS, vol. 7993, pp.
161–180. Springer, Heidelberg (2013)

8. Siegman, A.E.: Lasers, 1st edn. University Science Books (1986)

http://arxiv.org/abs/1403.3039

Erratum to: Towards the Formal Reliability
Analysis of Oil and Gas Pipelines

Waqar Ahmad1, Osman Hasan1, Sofiène Tahar2,
and Mohammad Salah Hamdi3

1 School of Electrical Engineering and Computer Science (SEECS),
National University of Sciences and Technology (NUST), Islamabad, Pakistan

{12phdwahmad,osman.hasan}@seecs.nust.edu.pk
2 Electrical and Computer Engineering Department, Concordia University,

Montreal, Canada
tahar@ece.concordia.ca

3 Information Systems Department, Ahmed Bin Mohammed Military College,
Doha, Qatar

mshamdi@abmmc.edu.qa

Erratum to:
Chapter “Towards the Formal Reliability Analysis of Oil
and Gas Pipelines” in: S.M. Watt et al. (Eds.):
Intelligent Computer Mathematics, LNAI,
DOI: 10.1007/978-3-319-08434-3_4

The original version of this chapter contained an error. The name of the author
Waqar Ahmad was spelled incorrectly as Waqar Ahmed in the original publication.
The original chapter was corrected.

The updated original online version for this chapter can be found at
DOI: 10.1007/978-3-319-08434-3_4

© Springer International Publishing Switzerland 2017
S.M. Watt et al. (Eds.): CICM 2014, LNAI 8543, p. E1, 2016.
DOI: 10.1007/978-3-319-08434-3_39

http://dx.doi.org/10.1007/978-3-319-08434-3_4
http://dx.doi.org/10.1007/978-3-319-08434-3_4

Author Index

Afshar, Sanaz Khan 123
Ahmad, Waqar 30
Aizawa, Akiko 200
Aravantinos, Vincent 123

Bezem, Marc 388
Bradford, Russell 45
Bridge, James 92

Caminati, Marco B. 236
Carette, Jacques 252
Carvalho e Silva, Jaime 1
Cerna, David 61
Chen, Changbo 45
Claessen, Koen 108
Cohl, Howard S. 419
Corneli, Joseph 423

Davenport, James H. 45, 92

England, Matthew 45, 92

Farmer, William M. 252
Fish, Andrew 76

Gauthier, Thibault 267
Geuvers, Herman 435
Ginev, Deyan 423, 427
Gransden, Thomas 282

Hamdi, Mohammad Salah 30
Haralambous, Yannis 298
Hasan, Osman 30, 123
Horozal, Fulya 312
Huang, Zongyan 92
Hupel, Lars 328

Iancu, Mihnea 431

Janičić, Predrag 388
Johansson, Moa 108
Jucovschi, Constantin 344, 431

Kaliszyk, Cezary 267, 357, 435
Kerber, Manfred 236

Klein, Martin 12
Kohlhase, Andrea 153
Kohlhase, Lukas 440
Kohlhase, Michael 169, 252, 312, 431,
440

Kristianto, Giovanni Yoko 200

Lange, Christoph 236
Lisitsa, Alexei 76
Ĺı̌ska, Martin 444

McClain, Marjorie A. 419
Miller, Bruce R. 427
Moore, Ross 184
Moreno Maza, Marc 45

Narboux, Julien 388
Naumowicz, Adam 449
Nghiem, Minh-Quoc 200

Oprea, Silviu 427

P ↪ak, Karol 373
Paulson, Lawrence C. 92

Quaresma, Pedro 298

Rabe, Florian 312, 357
Raman, Rajeev 282
Rosén, Dan 108
Rowat, Colin 236
Růžička, Michal 444

Saunders, Bonita V. 419
Schindler, Sigram 138
Schöneberg, Ulf 213
Schubotz, Moritz 224, 419
Shankar, Harihar 12
Siddique, Umair 453
Smallbone, Nicholas 108
Sojka, Petr 444
Sperber, Wolfram 213
Stojanović, Sana 388

Tahar, Sofiène 30, 123, 453
Topić, Goran 200

Urban, Josef 435

458 Author Index

Van de Sompel, Herbert 12
Vyskočil, Jǐŕı 435

Walkinshaw, Neil 282
Wegner, Bernd 138
Weisstein, Eric 26
Wicke, Gabriel 224

Wiesing, Tom 431
Williams, Janelle C. 419
Wilson, David 45, 92

Youssef, Abdou 404

Zhang, Qun 404

	Preface
	Organization
	Links between Homotopy Theory and TypeTheory
	References

	Teaching Tiles (Azulejos que Ensinam)
	Table of Contents
	Invited Talks
	What International Studies Sayabout the Importance and Limitationsof Using Computers to Teach Mathematicsin Secondary Schools
	1 Introduction
	2 International Studies
	2.1 Digital Reading
	2.2 Computer-Based Assessment of Mathematics
	2.3 Improvements in Performance

	3 ICMI Studies
	4 First Conclusion
	5 A Difficult Task
	References

	Towards Robust Hyperlinks for Web-BasedScholarly Communication
	1 Introduction: The Brittleness of Web-Based Scholarly Communication
	2 Hiberlink: Investigating Reference Rot
	2.1 Hiberlink Research Track
	2.2 Hiberlink Solutions Track

	3 The Missing Link Proposal
	3.1 Motivation
	3.2 Citing Web Resources
	3.3 Reference Rot and Temporal Context
	3.4 The Case for Structured Temporal Context on Links
	3.5 Structured Expression of Temporal Context on Links
	3.6 Applications

	4 Conclusion
	References

	Computable Data, Mathematics, and DigitalLibraries in Mathematica and Wolfram|Alpha
	1 Introduction
	2 Computable Data in Wolfram|Alpha
	3 Computable Data in Mathematica
	4 Prototype Semantic Digital Math Library: The eCF Project
	5 Future Work

	Calculemus
	Towards the Formal Reliability Analysisof Oil and Gas Pipelines
	1 Introduction
	2 Preliminaries
	2.1 Theorem Proving
	2.2 HOL Theorem Prover
	2.3 Probability Theory and Random Variables in HOL

	3 Reliability
	4 Formalization of Series Reliability Block Diagram
	5 Reliability Analysis of a Pipeline System
	6 Conclusions
	References

	Problem Formulation for Truth-Table Invariant Cylindrical Algebraic Decompositionby Incremental Triangular Decomposition
	1 Introduction
	1.1 Background on CAD
	1.2 TTICAD by Regular Chains

	2 Constraint Ordering
	2.1 Illustrative Example
	2.2 Developing a Heuristic for Equational Constraint Ordering
	2.3 Developing a Heuristic for Formulae Ordering

	3 Evaluating the Heuristics
	3.1 Experiments and Data
	3.2 Interpreting the Results

	4 Other Issues of Problem Formulation
	4.1 Equational Constraint Designation
	4.2 Composing Sub-formulae

	5 Final Thoughts
	References

	A Tableaux-Based Decision Procedurefor Multi-parameter Propositional Schemata
	1 Introduction
	2 Background
	2.1 Propositional Schemata
	2.2 Basics of STAB and the ST Procedure

	3 Linked Schemata
	3.1 Construction

	4 Pure Overlap Schemata
	4.1 Construction

	5 A Decision Procedure for POS
	6 Conclusion and Future Work
	References

	Detecting Unknots via Equational Reasoning,I: Exploration
	1 Introduction
	2 Involutory Quandles and Unknot Detection
	2.1 Overview of the Approach
	2.2 Unknot Detection by Equational Reasoning

	3 Experiments: Detecting Unknots
	4 Experiments: Detecting Non-trivial Knots
	5 Countermodels and Knot Invariants
	5.1 Discussion: Countermodels and Small Quandles

	6 Equational Reasoning and Untangling Unknots
	7 Conclusion
	References
	Appendix

	Applying Machine Learning to the Problemof Choosing a Heuristic to Select the Variable Ordering for Cylindrical Algebraic Decomposition
	1 Introduction
	1.1 Quantifier Elimination and CAD
	1.2 Machine Learning

	2 Methodology
	2.1 CAD Implementation and Heuristics
	2.2 Problem Data
	2.3 Evaluating the Heuristics
	2.4 Problem Features
	2.5 Parameter Optimization

	3 Results
	4 Possibilities for Extending the Experiment
	5 Conclusions
	References

	Hipster: Integrating Theory Explorationin a Proof Assistant
	1 Introduction
	2 Background
	2.1 HipSpec
	2.2 Code Generation in Isabelle

	3 Hipster: Implementation and Use
	3.1 Exploring a Theory of Binary Trees
	3.2 Proving Correctness of a Small Compiler

	4 Dealing with Partial Functions
	5 Related Work
	6 Further Work
	7 Summary
	References

	Formalization of Complex Vectorsin Higher-Order Logic
	1 Introduction
	2 Complex Vectors vs. Bivectors
	3 Complex Vector Algebra
	4 Application: Monochromatic Light Waves
	5 Conclusion
	References

	A Mathematical Structure for Modeling Inventions
	1 Introduction
	2 Concepts and Mathematical Structure
	3 Construing an Invention‘s Mathematical Structure
	4 The Usefulness of This Mathematical Structure
	References

	Digital Mathematics Library
	Search Interfaces for Mathematicians
	1 Introduction
	2 The Study
	2.1 The RGI Elements
	2.2 The RGI Set-Up
	2.3 The RGI Data

	3 Findings
	4 Understanding the Mathematical Perspective on mSIs: an Example
	5 Conclusion
	References

	A Data Model and Encoding for a Semantic,Multilingual Terminology of Mathematics
	1 Introduction
	2 A Data Model for SMGloM
	2.1 Components of Terminology in Mathematics
	2.2 Symbols and their Definitions
	2.3 Glossary Modules
	2.4 Symbols and Multilinguality
	2.5 Notations
	2.6 Verbalizations

	3 Implementing the Data Model in OMDoc/MMT
	3.1 Glossary Components as OMDoc/MMT Theories
	3.2 Multilingual Theory Morphisms
	3.3 Notations and Verbalizations
	3.4 Synsets: Direct Synonymy
	3.5 Direct Terminological Relations
	3.6 Induced Terminological Relations

	4 Conclusion
	References

	PDF/A-3u as an Archival Formatfor Accessible Mathematics
	1 Introduction
	2 Overview of the PDF File Format
	2.1 Tagging within PDF Documents

	3 ‘Associated Files’, Carrying LATEX and MathML Views of Mathematical Content
	3.1 Embedded Files Associated with Structure
	3.2 Embedded Files Associated with Content

	4 Access-Tags: Attaching LATEX Source to ‘Fake’ Spaces
	References

	Which One Is Better: Presentation-Basedor Content-Based Math Search?
	1 Introduction
	2 Mathematical Search System
	2.1 Presentation-Based Systems
	2.2 Content-Based Systems

	3 Methods
	3.1 Data Collection
	3.2 Semantic Enrichment of Mathematical Expressions
	3.3 Indexing
	3.4 Searching

	4 Experimental Results
	4.1 Evaluation Setup
	4.2 Evaluation Methodology
	4.3 Experimental Results

	5 Conclusion
	References

	POS Tagging and Its Applications for Mathematics
	1 Methods and Tools
	1.1 Part of Speech Tagging and Noun Phrases
	1.2 Noun Phrase and Key Phrase Extraction
	1.3 Classification with NPs
	1.4 The Big Picture

	2 Reviewing Services in Mathematics
	3 Key Phrase Extraction in zbMATH
	3.1 Problems
	3.2 Processing of NPs
	3.3 Results
	3.4 Further Remarks

	4 Classification in zbMATH
	4.1 Quality
	4.2 Results
	4.3 Remarks

	5 Conclusion and Next Steps
	References

	Mathoid: Robust, Scalable, Fast and AccessibleMath Rendering for Wikipedia
	1 Introduction: Browsers Are Becoming Smarter
	2 Bringing MathML to Wikipedia
	3 Making Math Accessible to MathML Disabled Browsers
	4 A Global Distributed Service for Math Rendering
	5 Performance Analysis
	6 Conclusion, Outlook and Future Work
	References

	Mathematical Knowledge Management
	Set Theory or Higher Order Logic to RepresentAuction Concepts in Isabelle?
	1 Introduction
	2 Set-Theoretical Definition of Functions in Isabelle/HOL
	2.1 Two Basic Operators on Relations: ‘outside’ and Pasting
	2.2 Specializing Relations to Functions: Right-Uniqueness andEvaluation
	2.3 Application to Auctions

	3 Quotients between Relations
	4 Injective Functions and Partitions
	5 Application of Quotients to Auctions
	6 Discussion and Related Work
	7 Conclusions
	References

	Realms: A Structure for Consolidating Knowledge about Mathematical Theories
	1 Introduction
	2 The Setting: Theory Graphs
	3 Motivation: Developers, Students, and Practitioners
	4 Realms
	5 Examples
	5.1 Groups
	5.2 Natural Number Arithmetic
	5.3 Real Numbers
	5.4 Monads
	5.5 Modal Logic S4
	5.6 Models of Computation

	6 The Realm Idea
	7 Representing and Growing Realms in a UDLM
	7.1 Supporting the Life Cycle of Realms
	7.2 Modular Realms
	7.3 Interface Matters

	8 Conclusion
	References

	Matching Concepts across HOL Libraries
	1 Introduction
	2 The Theorem and Constant Data
	3 Patterns and Classification
	4 Matching Concepts across Libraries
	4.1 Similarity Score
	4.2 Iterative Approach

	5 Experiments
	5.1 Single Library Results
	5.2 Cross-Library Results

	6 Conclusion
	References

	Mining State-Based Models from Proof Corpora
	1 Introduction
	2 Background and Related Work
	2.1 Interactive Theorem Provers
	2.2 Motivating Scenario
	2.3 State Machine Inference

	3 Inferring EFSMs from Proof Corpora
	3.1 Turning Existing Proofs into Proof Traces
	3.2 Inferring the Model

	4 Using EFSMs in Interactive Theorem Proving
	4.1 Assessing the Accuracy of Inferred EFSMs
	4.2 Case Studies
	4.3 Threats to Validity
	4.4 Improvements and Future Work

	5 Conclusion
	References

	Querying Geometric FiguresUsing a Controlled Language, OntologicalGraphs and Dependency Lattices
	1 What You See and How to Get It: Declarative vs. Procedural vs. Analytic Figure Description
	2 Ontological Graphs
	2.1 Describing a Geometric Figure by an Ontological Graph
	2.2 Example
	2.3 Querying Ontological Graphs

	3 The Controlled Query Language
	3.1 Description of the Controlled Query Language
	3.2 Future Plans for the Controlled Language

	4 Reduced Queries
	4.1 Ontological Graphs
	4.2 Dependency Lattices
	4.3 Using Dependency Lattices for Reduced Queries

	5 Evaluation
	6 Future Work
	7 Conclusion
	References

	Flexary Operators for Formalized Mathematics
	1 Introduction and Related Work
	1.1 Flexary Operators and Ellipses
	1.2 Flexary Notations
	1.3 Flexary Representation Languages
	1.4 Flexary Meta-Languages
	1.5 Overview

	2 The Edinburgh Logical Framework
	3 A Flexary Logical Framework
	3.1 Natural Numbers
	3.2 Syntax
	3.3 Type System

	4 Flexary Logics
	5 Flexary Mathematics
	6 Conclusion and Future Work
	References

	Interactive Simplifier Tracing and Debuggingin Isabelle
	1 Introduction
	2 Design Principles
	2.1 Hooks and Message Types
	2.2 Settings

	3 User Interaction
	3.1 Interactive Messages
	3.2 Memoization

	4 Message Filtering
	5 Related Work
	5.1 Debugging and Tracing in SWI-Prolog
	5.2 Debugging and Tracing in Maude

	6 Evaluation and Future Work
	6.1 Performance
	6.2 Future Work
	6.3 Case Study: A Parallelized Simplifier

	7 Conclusion
	References

	Towards an Interaction-based Integrationof MKM Services into End-User Applications
	1 Introduction
	2 Integration Analysis of the Semantic Alliance Framework
	3 Problem Description
	4 Method
	5 Augmented Semantic Alliance Architecture
	6 Implementation
	7 Conclusion
	References

	Towards Knowledge Management for HOL Light
	1 Introduction and Related Work
	2 Exporting the HOL Light Library
	2.1 Defining the HOL Light Logic
	2.2 Exporting the HOL Light Library

	3 A Library Browser for HOL Light
	3.1 Notations
	3.2 Interactive HTML

	4 Searching the HOL Light Library
	5 Conclusion and Future Work
	References

	Automated Improving of Proof Legibilityin the Mizar System
	1 Introduction
	1.1 Motivations
	1.2 Proposed Approach

	2 Graph Representation of Proofs
	3 Methods of Improving Legibility
	4 Automated Improving of Legibility as Support for Mizar Proof Authors
	5 Statistical Results
	6 Conclusions
	References

	A Vernacular for Coherent Logic
	1 Introduction
	2 Background
	2.1 Interactive Theorem Proving
	2.2 Coherent Logic
	2.3 XML

	3 Proof Representation
	4 XML Suite for CL Vernacular
	5 Examples
	6 Related Work
	7 Conclusions and Further Work
	References

	An Approach to Math-Similarity Search
	1 Introduction
	2 Background
	3 Our Approach to Math-Similarity Search
	3.1 Research Problem
	3.2 Math Similarity Factors
	3.3 Math Similarity Metric
	3.4 Performance Evaluation

	4 Conclusions and Future Work
	References

	Systems and Projects
	Digital Repository of Mathematical Formulae
	1 Introduction
	2 Implementation
	References

	NNexus Reloaded
	1 NNexus 1.0 – Introduction
	2 NNexus 2.0 – Reload, Refresh, Refactor
	3 Concept Discovery
	4 NNexus 3.0 Revolution – An Outlook
	References

	E-books and Graphics with LATExml
	1 Introduction
	2 Reorganization
	3 E-books
	4 Graphics
	5 Outlook
	Reference

	System Description: MathHub.info
	1 Introduction
	2 System Architecture and Realization
	3 Conclusion
	References

	Developing Corpus-Based Translation Methods between Informal and Formal Mathematics:Project Description
	1 Introduction and Motivation Ideas
	2 Approach
	2.1 Methods, Tools and Planned Experiments

	References

	System Description: A Semantics-AwareLATEX-to-Office Converter
	1 Problem and State of the Art
	2 The Office Formats
	3 Transformation
	4 Conclusion
	References

	Math Indexer and Searcher Web Interface
	1 The Need for a Math-Aware Search Interface
	2 User Interface for Math Information Retrieval
	3 Conclusions and Future Work
	References

	SAT-Enhanced Mizar Proof Checking
	1 Introduction
	2 The Underlying SAT System
	3 Conclusion and Future Plans
	References

	A Framework for Formal Reasoningabout Geometrical Optics
	1 Motivation and Background
	2 Formal Analysis Framework
	3 Current Status and Future Milestones
	4 Conclusion
	References

	Erratum to: Towards the Formal Reliability Analysis of Oil and Gas Pipelines
	Author Index

