
Migration from Legacy Systems to SOA Applications:
A Survey and an Evaluation

Sukanya Suwisuthikasem and M.H. Samadzadeh

1 Introduction

As computer software grows in power, users demand ever

more powerful and reliable programs, resulting in ever

larger and seemingly more complex software systems.

Thus a major challenge in large-scale software development

is managing the complexity encountered during the con-

struction of new applications that is partly attributable to

frequent customizations due to requirement changes.

This complexity can potentially be reduced if

applications could be implemented based upon an open

standard-based interface and communication protocol.

From this, all applications can be accessed more efficiently

and easily, thus enabling businesses to leverage their

existing software systems. In addition, since business

requirements are typically subject to frequent changes, the

demand on existing systems to evolve is inevitable. Conse-

quently, there is a need to have an efficient method to

support the software evolution process. Service Oriented

Architecture (SOA), a new approach to developing software

systems, has been eventually invented to fulfill this demand.

SOA has gained significant popularity for achieving busi-

ness goals and implementing business processes in a flexible

manner. SOA is becoming a mainstream approach for soft-

ware development. Abrams and Schulte [1] indicated that

during 2007, more than 50 % of large, newly-developed

systems and business processes were designed and devel-

oped based on the Service Oriented Architecture paradigm.

Lublinsky [2] suggested there are three primary reasons that

businesses are interested in SOA. First, by adopting SOA

they can achieve better alignment between business and

Information Technology (IT). Second, SOA enables them

to construct more flexible and responsive IT infrastructure.

And last, that SOA can simplify the implementation of data

integration among a business’ applications. Based on this

argument, in order to sustain their competitiveness to be

leaders in the market, businesses need to transform their

legacy systems to SOA applications toward providing more

efficient services to their customers.

Generally, migration from legacy systems to SOA

applications is carried out manually by domain experts

with subject-matter knowledge with some training in soft-

ware development or with the assistance of software

developers [3, 4]. The problem of migrating (i.e.,

transforming/adapting/retargeting) large-scale legacy soft-

ware systems to a modern environment, to new hardware

platforms, and to new run-time support is a major issue

facing the software industry. The focus of this work was to

investigate the existing migration approaches and capture

the significant features of each approach so as to give the

guideline for businesses to choose a tailor-made migration

approach suiting them.

2 General Migration Processes

2.1 Legacy System Assessment

Sommerville [6] presented four strategic options for soft-

ware evolution as illustrated below.

As shown in Fig. 1, there are four clusters for legacy

systems as described below.

• Low Quality, Low Business Value: These systems should

be discarded since it is costly and unproductive for

businesses to keep them.

• Low Quality, High Business Value: These systems are

still productive but costly to maintain. Therefore they

should be transformed to a system with a new SOA

architectural style.

• High Quality, Low Business Value: Although they are

inexpensive to maintain, these systems should be

discarded as they are unproductive.

S. Suwisuthikasem (*) � M.H. Samadzadeh

Computer Science Department, Oklahoma State University,

Stillwater, USA

e-mail: suwisut@cs.okstate.edu

H. Selvaraj et al. (eds.), Progress in Systems Engineering: Proceedings of the Twenty-Third International
Conference on Systems Engineering, Advances in Intelligent Systems and Computing 1089,

DOI 10.1007/978-3-319-08422-0_86, # Springer International Publishing Switzerland 2015

609

mailto:suwisut@cs.okstate.edu

• High Quality, High Business Value: It is cost-effective to

maintain these systems. So these systems should be kept

without making any changes the system.

Several criteria need to be defined and quantified so as to

measure the quality of an SOA system. This can be

performed by interviewing some domain experts or using a

questionnaire. Fortunately, there are a lot of researchers

working in this area by defining a number of criteria to assess

legacy systems. Four basic attributes of a legacy system,

namely Business Value, Decomposability, Obsolescence,

and Deterioration, and guidelines to measure each attribute

were introduced by Cimitile et al. [25]. Ransom et al. [26]

presented a method to assess legacy systems namely techni-

cal, business, and organizational aspects. This method could

help businesses to assign a value to each assessment charac-

teristic and also to interpret these values. They indicated that

their method can be tailored to specific organizations.

2.2 Feasibility Analysis

Khadka et al. [12] proposed the seviciFi method using

method engineering to determine the economical and techni-

cal feasibility of the migration based on the legacy system’s

charactersitics and the requirements of the target SOA appli-

cation. Erradi et al. [13] proposed a decision framework to

help organizations to select the optimal combination of leg-

acy modernization options. Aly and Amir [14] presented a

decision making tool using decision theory and the weighted

summethodology to generate the most optimal strategy to be

used in modernizing legacy systems. They also proposed an

automated decision making process for choosing a migration

strategy using a combination of the approaches proposed in

[23] and [13]. Aversano and Tortorella [27] proposed a

strategy to help businesses define the evolution requirement

to SOA based on characteristics of their legacy systems. They

specified nine steps in software evolution: analyze the orga-

nization, reconstruct processes, identify and analyze the pro-

cesses, identify technology, formulate evolution

requirements, assess the legacy software system, define soft-

ware system evolution requirements, reengineer the pro-

cesses, and perform the system evolution. The authors

reported the first stage of testing their method with two

different systems: a bank system and a public administration

system. According to their result from the first stage, this

method is certainly applicable however it needs additional

information and it also needs to be supported by a specific

integrated and Web-based software environment.

2.3 Migration

Migration refers to any approach that can be applied to a

legacy system in its entirety in the process of transforming it

to SOA architecture. This section discussed how legacy code

components are identified, decomposed, and extracted using

several techniques. The User interfaces of legacy systems

are reengineered to be SOA-based system compatible.

Migration strategies incorporate both top-down and

bottom-up approaches and aim to produce a system with an

improved SOA-compatible design.

Aly and Amir [14] proposed a method which automati-

cally generates a modular software structure from a given

source code by using spectral clustering. First, undirected

graphs are generated based on the existing dependencies

among the components and then spectral clustering is

performed to generate the component structure of the target

system. To evaluate this method, they applied it to CoCoME,

a small and well-documented software system. They com-

pared the resulting software structure to the one created by

an expert. They reported that the result were similar. How-

ever, the component structure resulting from their approach

cannot be represented by any architectural style. In their case

study, the legacy system is a three-tier architecture but the

result is a single-layer architecture.

Chen et al. [8] and Millham [11] presented a service

oriented reengineering approach using feature analysis to

extract candidate services from legacy systems. Feature

analysis addresses the understanding of features in software

systems and defines mechanisms for carrying a feature from

the problem domain into the solution domain. In [8], the

specified feature analysis activities are: identifying system

features, constructing a feature model to organize the

defined features, and identifying their implementation in

the legacy system through feature-location techniques.

Based on a feature model, certain service identification and

packaging processes are performed that result in service

delegation.

B
us

in
es

s
V

al
ue

System Quality

2

High Business Value

Low Quality

4

High Business Value

High Quality

1

Low Business Value

Low Quality

3

Low Business Value

High Quality

Fig. 1 Legacy System Assessment (Source: Software Engineering, 9th

edition, p.253)

610 S. Suwisuthikasem and M.H. Samadzadeh

In a research conducted by Millham [11], data and control

dependencies among the component files of a legacy system

are analyzed and then clustered into groups. Cuadrado et al.

[9] described a case study of the evolution of an existing

legacy system towards a more maintainable SOA system. To

define the specific evolution plan, the architecture of the

legacy system was recovered. This approach was applied

to a medical imaging system evolving it into an SOA-based

application. Matos and Heckel [3] proposed the new meth-

odology for migration based on source code analysis for

identifying the contribution of code fragments to architec-

tural elements and a graph transformation approach for

architectural migration. Alahmari et al. [10] introduced a

framework to identify optimal services from legacy code

with the appropriate level of granularity, by focusing on

the significance of the classification of service types, to

define service properties.

Reddy et al. [15] proposed guidelines for evaluating the

suitability of existing assets by identifying the core principles

of SOA, namely cohesion, reusability, discoverability, loose

coupling, abstraction, formal contract, composability, and

statelessness. They argued that organizations can use their

guidelines to improve the quality of their migrations by

considering their defined metrics and guidelines. Stroulia

et al. [16] described the overall process for legacy system

migration to a Web-based system using the CelLEST

method. This method addresses the issue of migration based

on understanding and modeling the users’ interaction with

the legacy system’s interface. There are three main steps in

this method. The first step is to model the behavior of the old

system using a state transition diagram. The second step is to

find the users’ tasks as frequently-occurring interaction

patterns to recover the specifications of the application’s

functions. The last step is to construct the new user interface

allowing the legacy functions to be accessible over the Web.

Aversano et al. [17] presented a migration project aiming

to integrate a COBOL system into a Web-enabled system.

The legacy system was dissected into user interfaces and

server (application logic and database) components. The

user interfaces were migrated into a Web browser shell

using Microsoft Active Server Pages (ASP) and VBScript.

All server components were wrapped with dynamic load

libraries written in Microfocus Object COBOL, loaded into

Microsoft Internet Information Server, and accessed via the

ASP pages.

Werth et al. [18] introduced Business Service Manage-

ment as an interdisciplinary approach for business-driven

deployment of SOA. The main purpose of this work was to

represent a business’ characteristics and requirements

toward IT as business processes. Bhallamudi and Tilley

[19] presented the Evolution Process Framework for SOA

(a mechanism for analysis of existing SOA migration

projects) to learn about factors such as technology selection,

migration approach utilized, legacy system type, and SOA

governance that influence the success or failure of each

project.

Mohagheghi and Sæther [20] applied the model-driven

approach to construct a methodology and a tool for

transforming a legacy system into a service oriented appli-

cation. O’Brien et al. [21] used architecture reconstruction in

the process of migration. To accomplish this, dependencies

among components in the legacy system were identified.

Based on this information, an essential step in making

decisions regarding migration of legacy components to

services was devised. They also suggested that using archi-

tecture reconstruction techniques in conjunction with other

analytical methods could provide an essential set of analyti-

cal methods for decision making.

Marchetto and Ricca [22] proposed a stepwise approach

based on testing to migrate Java application into SOA-based

application. This approach, which is a hybrid top-down and

bottom-up approach, was applied to four Java applications.

Lewis et al. [5], [23] described their Service Oriented Migra-

tion and Reuse Technique (SMART), a technique helping

businesses to analyze legacy capabilities for use as services

in an SOA. Their technique considers the specific

interactions that will be required by the target SOA and

any changes that must be made to the legacy components.

They described a wide range of information about legacy

functionalities, the target SOA, and the potential services

that were aggregated to produce a service migration strategy.

2.4 Evaluation

Shim et al. [24] suggested that, in order to evaluate the

quality of an SOA application, a quality assessment model

is needed that defines the desired quality attributes and

measures them. From this, design problems can be detected

and resolved before the development of the system. The

relationship between design properties and quality

attributes is described in Table 1. Shim et al. [24] also

Table 1 Relationship between Design Properties and Quality

Attributes [24]

Effectiveness

Under

standability Feasibility Reusability

Coupling # # #
Cohesion " " "
Complexity #
Design Size #
Service

Granularity

" " " "

Parameter

Granularity

" " "

Consumability " "

Migration from Legacy Systems to SOA Applications: A Survey and an Evaluation 611

defined three metric groups that can be directly applied to

design components. The metrics in the first group, service

internal metrics, use service internal elements such as ser-

vice name, operations provided by the service, and

characteristics of the messages defined in the service. The

second group of metrics is service external metrics that use

information from services they are connected to. Metrics in

this group are used to measure the characteristics of the

consumer and producer services that are either directly

or indirectly connected to a given service. The last

group is system metrics. The metrics in this group are

used to measure the characteristics of the entire system in

general.

In Table 1, an up/down arrow means increase/decrease of

the attribute vis-à-vis an increase/decrease of the respective

property.

Table 2 Methods/Techniques Used in the Migration Process

Legacy System Assessment

Method/Technique Tools Pros. Cons.

Standard Decision Framework

[25]

– – Suitable for any kind

of legacy system

– Needs a lot of documentation

– Needs experts

– Can be affected by errors or

biases

Assessment Method [26] – – Can be tailored for any

specific kind of legacy system

– Can be iterated to reduce inaccuracy

of the assessment

– Provides practical advice and guidance

to businesses

– Not yet fully tested and evaluated

Feasibility Analysis

Method/Technique Tools Pros. Cons.

– SMART [23] – SMIG – Helps businesses to analyze and determine

if a legacy system can be exposed as services

– Needs experts

– Need lots of documentation

and user feedback

– Method

engineering [12]

– serviciFi – Helps businesses select supporting technology

based on migration feasibility

– Processes are performed

manually

– Not support for large projects

– Decision theory

– Weighted sum

methodology

– Gap analysis [14]

– Decision

Making tool

– Can be customized for specific organizations

– High degree of automation

–

– Decision framework [13] – – Helps businesses to create the most beneficial

and cost-effective migration approach meeting

a business’ requirement

– Low degree of automation

– Cannot guarantee the QoS of the

target SOA system

Migration

Method/Technique Tools Pros. Cons.

– Code Analysis

– Pattern Matching

– Graph Transformation [8]

– ATX (L-CARE) [35]

– EMF [36]

– High degree of automation – Ongoing project

– Support a specific language

– Feature Analysis

– Slicing Technique [8], [11]

– WSW [29]

– Captain Feature [33]

– FEAT[34]

– High degree of automation – Not suitable for large projects

– Supports a specific language

– Undirected Graph

– Spectral Clustering [7]

– UML model – High degree of automation

– Supports large projects

– No need for documentation

– Needs a method to identify

meaningful clusters, otherwise

the result will not be correct

– Architecture

Recovery [5], [9]

– MOOSE [37]

– Rigi [38]

– QAR [30]

– Jude[31]

– Omondo UML Studio

[32]

– Eclipse TpTP [28]

– High degree of automation – Not supporting large projects

– Specific to Java applications

– Domain Analysis

– Wrapping [11]

– UML model

– TAGDUR [39]

– CORBA/IDL parser cc

– High degree of automation – Specific type of target SOA:

Web-Based system

612 S. Suwisuthikasem and M.H. Samadzadeh

3 Existing Migration Techniques/Tools

From Section 2, we can summarize the techniques and tools

that support the migration as follows.

The information summarized and tabulated in Table 2 can

be used to choose from among the techniques and tools

available for each step of the migration process.

4 Conclusions

In this paper, several approaches for migrating legacy

systems to SOA architecture are investigated and the main

processes and tools of each approach are captured and

analyzed. The different approaches are compared and

contrasted based on their key features and their target legacy

system types. Using this comprehensive comparative analy-

sis, businesses can create tailor-made approaches that could

best fit their needs and satisfy their requirements.

References

1. Charles Abrams, Roy W. Schulte: Service Oriented Architecture

Overview and Guide to SOA Research. Gartner Research (2008)

2. Boris Lublinsky: Defining SOA as an Architectural Style,

IBM, http://www.ibm.com/developerworks/architecture/library/ar-

soastyle/

3. Carlos Matos, Reiko Heckel: Migrating Legacy Systems to Service

Oriented Architectures. In: Doctoral Symposium at the Interna-

tional Conference on Graph Transformation (ICGT 2008), Vol.

16, pp.1-15 (2008)

4. Gerardo Canfora, Anna Rita Fasolino, Gianni Frattolillo, Porfirio

Tramontana: Migrating Interactive Legacy Systems to Web

Services. In: 10th European Conference on Software Maintenance

and Reengineering, pp. 27-36. Bari, Italy (2006)

5. Grace Lewis, Edwin Morris, Dennis Smith: Analyzing the Reuse

Potential of Migrating Legacy Components to a Service Oriented

Architecture. In: 10th European Conference on Software Mainte-

nance and Reengineering, pp. 15-23. Bari, Italy (2006)

6. Ian Sommerville: Software Engineering, 9th Edition. Pearson Edu-

cation Inc., Essex, England and Addison-Wesley Publishers. Bos-

ton, MA (2011)

7. Constanze Deiters, Andreas Rausch, Mirco Schindler: Using Spec-

tral Clustering to Automate Identification and Optimization of

Component Structures. In: 2nd International Workshop on

Realizing Artificial Intelligence Synergies in Software Engineering

(RAISE), pp. 14-20. San Francisco, CA (2013)

8. Feng Chen, Shaoyun Li, Hongji Yang, Ching-Huey Wang, William

Cheng-Chung Chu: Feature Analysis for Service Oriented

Reengineering. In: 12th Asia-Pacific Software Engineering Confer-

ence: APSEC ’05, pp. 201-208. Taipei, Taiwan (2005)

9. F. Cuadrado, B. Garcia, J. C. Dueas, H. A. Parada: A Case Study on

Software Evolution Towards ServiceOrientedArchitecture. In: 22nd

Int. Conf. on Advanced Information Networking and Applications:

AINAW 2008, pp. 1399-1404. Okinawa, Japan (2008)

10. Saad Alahmari, Ed Zaluska, David De Roure: A Service Identifica-

tion Framework for Legacy System Migration into SOA. In: 7th

International Conference on Services Computing, pp. 614-617.

Miami, FL (2010)

11. Richard Millham: Migration of a Legacy Procedural System to

Service Oriented Computing Using Feature Analysis. In: Interna-

tional Conference on Complex, Intelligent, and Software Intensive

Systems (CISIS), pp. 538-543. Krakow, Poland (2010)

12. Ravi Khadka, Gijs Reijnders, Amir Saeidi, Slinger Jansen, Jurriaan

Hage: A Method Engineering based Legacy to SOA Migration

Method. In: 27th IEEE International Conference on Software

Maintenance, pp.163-172 (ICSM) (2011)

13. Abdelkarim Erradi, Sriram Anand, Naveen Kulkarni: Evaluation of

Strategies for Integrating Legacy Applications as Services in a

Service Oriented Architecture. In: IEEE Int. Conf. on Services

Computing (SCC’06), pp. 257-260. Chicago, IL (2006)

14. Sherif G. Aly, Rafik Amir: Automated Selection of Legacy Systems

SOA Modernization Strategies Using Decision Theory. Interna-

tional Journal of Software Engineering and Its Applications,

Vol. 3, No. 4, pp. 65-86 (2009)

15. Vinay Kumar Reddy, Alpana Dubey, Sala Lakshmanan, Srihari

Sukumaran, Rajendra Sisodia: Evaluating legacy assets in the con-

text of migration to SOA. In: 10th IEEE International Symposium

on High Perfor-mance Distributed Computing, pp.51–63. Springer

Science + Business Media, LLC (2008)

16. E. Stroulia, M. El-Ramly, P. G. Sorenson: From Legacy to Web

Through Interaction Modeling. In: 18th Int. Conf. on SW Mainte-

nance, pp. 320-329. Montreal, Canada (2002)

17. Lerina Aversano, Gerardo Canfora, Aniello Cimitile, Andrea De

Lucia: Migrating Legacy Systems to the Web: An Experience

Report. In: 5th European Conference on Software Maintenance

and Reengineering, pp. 148-157. Lisbon, Portugal (2001)

18. Dirk Werth, Katrina Leyking, Florian Dreifus, Jörg Ziemann,

Andreas Martin: Managing SOA Through Business Services: A

Business-Oriented Approach to Service Oriented Architectures.

In: 4th International Conference on Service-Oriented Computing:

ICSOC 2006, LNCS 4652, pp. 3-13. Chicago, IL (2007)

19. Pushparani Bhallamudi, Scott Tilley: SOA Migration Case Studies

and Lessons Learned. In: IEEE Int. Systems Conference (SysCon),

pp. 123-128. Montreal, Canada (2011)

20. Parastoo Mohagheghi, Thor Sæther: Software Engineering

Challenges for Migration to the Service Cloud Paradigm: Ongoing

Work in the REMICS Project. In: IEEE World Congress on

Services, pp. 506-514. Washington, DC (2011)

21. Liam O’Brien, Dennis Smith, Grace Lewis: Supporting Migration

to Services Using Software Architecture Reconstruction. In: 13th

IEEE International Workshop on Software Technology and Engi-

neering Practice, pp. 81-91. Budapest, Hungary (2005)

22. Alessandro Marchetto, Filippo Ricca: From objects to services:

toward a stepwise migration approach for Java applications. In:

International Journal of Software Tools Technology Transfer.

Springer-Verlag (2009)

23. Grace Lewis, Edwin Morris, Dennis Smith: The Service Oriented

Migration and Reuse Technique (SMART). In: 13th IEEE Interna-

tional Workshop on Software Technology and Engineering Prac-

tice, pp. 222-229. Budapest, Hungary (2005)

24. Bingu Shim, Siho Choue, Suntae Kim, Sooyong Park: A Design

Quality Model for SOA. In: 15th Asia-Pacific SE Conference,

pp. 304-410. Beijing, China (2008)

25. Aniello Cimitile, Anna Rita Fasolino, Filippo Lanubile: Legacy

Systems Assessment to Support Decision Making. In: IEEE Work-

shop on Empirical Studies of Software Maintenance (WESS ’97),

pp.145-150. Bari, Italy (1997)

26. Jane Ransom, Ian Sommerville, Ian Warren: A Method for

Assessing Legacy Systems for Evolution. In: 2th Euromicro

Conference on Software Maintenance and Reengineering,

pp. 128–134. Florence, Italy (1998)

Migration from Legacy Systems to SOA Applications: A Survey and an Evaluation 613

http://www.ibm.com/developerworks/architecture/library/ar-soastyle/
http://www.ibm.com/developerworks/architecture/library/ar-soastyle/

27. Lerina Aversano, Maria Tortorella: An assessment strategy for

identifying legacy system evolution requirements in eBusiness

context. Journal of Software Maintenance and Evolution: Research

and Practice, pp. 255-276. John Wiley & Sons, Ltd. (2004)

28. Eclipse TPTP (Test and Performance Tools Project), an Eclipse

top-level project, http://www.eclipse.org/tptp

29. H. Guo, C. Guo, F. Chen, H. Yang: Wrapping Client-Server Appli-

cation toWeb Services for Internet Computing. In: 6th International

Conference on Parallel and Distributed Computing, Applications

and Technologies (PDCAT’05). Dalian, China (2005)

30. Arciniegas, J.L: Contribution to Quality-driven Evolutionary Soft-

ware Development Process for Service Oriented Architecture. Ph.

D. Thesis, Polytechnic Uni of Madrid (2006)

31. Jude (Java and UML Developer Environment), a Java UML

modeling tool, http://jude.change-vision.com

32. Omondo Eclipse UML Studio, an Eclipse plug-in for UML

modeling, http://www.omondo.com

33. K. Czarnecki, U. W. Eisenecker: Generative Programming,

Addison Wesley (2000)

34. M. P. Robillard, G. C. Murphy: FEAT: A Tool for Locating,

Describing, and Analyzing Concerns in Source Code. In: 25th Int.

Conf. on SE. Oregon, Portland (2003)

35. The migration specialists, http://www.atxsoftware.com/

36. Eclipse. Eclipse Modeling Framework (EMF), http://www.eclipse.

org/emf/

37. Ducasse, S., Lanza, M., Tichelaar, S.: Moose: an Extensible

Language-Independent Environment for Reengineering Object-

Oriented Systems. In: 2nd International Symposium on

Constructing Software Engineering Tools: CoSET’00 (2000)

38. Kazman, R. O’Brien, L., Verhoef, C: Architecture Reconstruction

Guidelines, 2nd Edition, CMU/SEI-2002-TR-034 (2002)

39. Richard Millham, Jianjun Pu, Hongji Yang: TAGDUR: A Tool for

Producing UML Sequence, Deployment, and Component Diagrams

Through Reengineering of Legacy Systems. In: 8th IASTED Int.

Conf. on SE and Application: SEA (2004)

40. Chapter 5: Introduction to CORBA IDL, http://documentation.prog

ress.com/output/Iona /orbix/gen3/33/html/orbix33java_pguide/

IDL.html. IONA Technologies PLC (2000)

614 S. Suwisuthikasem and M.H. Samadzadeh

http://www.eclipse.org/tptp
http://jude.change-vision.com/
http://www.omondo.com/
http://www.atxsoftware.com/
http://www.eclipse.org/emf/
http://www.eclipse.org/emf/
http://documentation.progress.com/output/Iona
http://documentation.progress.com/output/Iona

	Migration from Legacy Systems to SOA Applications: A Survey and an Evaluation
	1 Introduction
	2 General Migration Processes
	2.1 Legacy System Assessment
	2.2 Feasibility Analysis
	2.3 Migration
	2.4 Evaluation

	3 Existing Migration Techniques/Tools
	4 Conclusions
	References

