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1 Introduction

Designing a Rapid Transit Network (RTN) or even

extending one that is already functioning, is a vital subject

due to the fact that they reduce traffic congestion, travel time

and pollution. Usually a RTN is in operation with other

transportation systems such as private transportation (car)

and this makes that the design must take into account this

factor. Another factor that needs to be considered is the

capability of the newly designed system to keep operating

under more or less suitable conditions under a set of predict-

able disruptions.

In Bruno G. et al. [1], a RTN design model is presented

where the user cost is minimized and the coverage of the

demand by public network is made as large as possible.

Marı́n in [8], studies the inclusion of a limited number of

lines. Also, Laporte G. et al in [6] build robust networks that

provide several routes to passengers, so in case of failure part

of the demand can be rerouted. Connections between two-

stage stochastic programming network design and recovery-

robustness in railway networks planning models have been

studied by Cicerone et al. in [4] and by Cacchiani et al. in [2].
Also, in [3] Cadarso and Marı́n develop a two-stage stochas-

tic programming model for rapid transit network design in

which disruptions probabilities are assumed known a priori,

illustrating some of its recoverable robustness properties.

This paper presents a conceptual scheme that permits to

incorporate a probability model for the disruptions of a RTN.

It is assumed that disruptions arise when transportation units

present some failure during operation leaving a link blocked.

Other sources of disruption with their associated scenarios

could be added, but this is not done for ease of exposition.

As a consequence of this, the disruption probabilities will

depend on the level of traffic on the network links. The

probabilities of failure follow the following hypothesis: a)

disruptions are due to a single event and scenarios with

several simultaneous disruptions are discarded a priori as

they are assumed to have a much lower probability, b) a

preselected set of scenarios is considered, c) the number of

failures that a train unit may experience along a large num-

ber of services distributes accordingly to a geometrical law

and the individual probability of failure of a service is

constant along the planning horizon and depends only on

the train unit characteristics (e.g., quality of material and

maintenance). The resulting model has a bilevel structure

and it is solved by a specific heuristic method.

2 Structure and elements
of the design model

In this RTN design model it is assumed that the location of

potential stations is known. There already exists a current

mode of transportation (for example, private cars or an

alternative public transportation is already operating in the

area) competing with the new RTN to be constructed. The

aim of the model is to design a network, i.e. to decide at

which nodes to locate the stations and how to connect them

covering as many trips by the new network as possible.

– A potential network N,Að Þ is considered from which the

optimum rapid transit network is selected. The node set is

composed by centroids Ncð Þ and stations at RTN Nrð Þ, the
node set is thenN ¼ Nc [ Nr. Links will be denoted either

by a single subscript (e.g., a) or by a double subscript

(i.e., (i, j)) when considered convenient. Because both

riding directions are always considered, the set of poten-

tial links is so that i, jð Þ∈A , j, ið Þ∈A: E (i) and (i) are
the set outgoing and incoming nodes to node i

respectively.
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– Each feasible link (i, j) has a generalized travel cost

which may depend on the scenario of disruption. This is

further discussed in section 4.

– For simplicity, in this model it will be assumed that the

planners have selected a priori a set of candidate bL lines,

being bL a large number. Lines will be considered an

ordered chain of n links a1, a2, :::, anf g all of them

appearing only once in the sequence. Lines with circula-

tion in both directions will be treated as two separate lines

a1, a2, :::, anf g, an, an�1, :::, a1f g. To take into account the
recovery of the disruptions that may arise in a link a∈ℓ,

for each line a∈bℓ, an additional set of lines must be

considered that will operate only in the scenarios of

disruption. These lines will be referred to as the recovery

lines, whereas lines in bL will be referred to as the primary

lines or also as the candidate lines. Thus, if

ℓ ¼ a1, a2, a3f g, for a disruption in link a1, the recovery

line must be a2, a3f g. For a disruption in link a2, the

recovery lines that must be considered are {a1} and

{a3} and finally, for a disruption in link a2, the recovery
line that must be considered is {a1,a2}. The set of all

recovery lines will be denoted by bL 0
and the set of

recovery lines for line ℓ∈bL will be denoted by bL 0
ℓð Þ.

The number of recovery lines in bL0 ℓð Þ for a line ℓ∈bL isbL 0 ðℓÞ
��� ��� ¼ 2ð ℓj j � 1Þ, where ℓj j is the number of segments

in line ℓ. If L ¼ bL [ bL 0
, the total number of lines is then

Lj j � bL��� ���þ 2
P
ℓ∈bL ð ℓj j � 1Þ, from which only ν will be

finally included in the solution ( ν � bL��� ��� ). Further

definitions are:

– bLðaÞ � bL is the subset of candidate or primary lines

containing segment a∈A.

– bL 0 ðaÞ is the subset of recovery lines associated to the set of
primary lines containing link a.

– The model considers a set of scenarios associated to

regular conditions of operation of the transport system

(i.e., morning peak period, afternoon, night, holidays,. . .).

Each of these scenarios is assumed to extend during a

given time period of length Hr (i.e., 3 hours for morning

peak periods). This set of scenarios will be denoted by S0
and for any r∈S0, there will be associated a weight or

probability qr > 0 associated to its relevance, so thatP
r∈S0

qr ¼ 1. A typical way of evaluating the weights

qr is accordingly to their associated total demands, i.e.:

qr ¼ gr=bG, where gr ¼
P

w∈Wg
r
w and bG ¼ P

r∈S0
gr.

For any scenario r∈S0 a set of possible disruption

scenarios D(r) will be considered with probabilities

ps > 0, s∈DðrÞ, so that pr þ
P

s∈S rð Þps ¼ 1. These

disruption scenarios will be associated each with a

breakdown of a service at a link. The set of that links

for a regular scenario r∈S0 will be denoted by bAðrÞ. For
each a∈bA ðrÞ, sðaÞ will denote the associated disruption

scenario and for each scenario s∈DðrÞ, r∈S0, aðsÞ will
denote the disrupted link. Finally, by S it will be denoted

the set of all possible scenarios, i.e., S ¼ S0[r∈S0DðrÞ.
– Users may choose between two transportation modes: a

private mode (typically car) or the public transportation

mode comprising a set of lines, some of them already in

operation and some others that will be the outcome of this

design model. The model’s demand will take into account

differences between scenarios r∈S0. The total demand

(private + public transport) for scenario r∈S0 is given by
the trip matrixGr ¼ ðgrwÞ, where grw is the total number of

trips from origin o(W) to destination d(W). For a particu-

lar scenario s∈S, the trip travel time for o-d pair W
through the private transportation network is given by

the matrix Us
c ¼ ðuw, sc Þ and the trip travel time for using

public transportation is given by the matrix Λs ¼ ðλw, sÞ.
The model assumes a modal choice for each o-d pair

given by a logit model, i.e., the proportion of trips ξsw
using the private transportation mode is given by:

ξsw ¼ exp �βwc � ηuw, sc

� �
exp �βwc � ηuw, sc

� �þ exp �βwPT � ηλw, s
� � ð1Þ

where βwPT is proportional to the price of fares for public

transport in the planning period, βwc is proportional to the

parking cost plus the cost of gasoline for the trip from o(W)

to d(W) and η is proportional to the user’s value of time.

– Let cx and cψ denote the link vector costs and the node

vector of location costs respectively.

The design model has two stages or levels: a) in the

first "planning" stage, the decision variables x,y are cho-

sen, i.e., the topology of the network is set and b) in a

second stage, at a given scenario, the passenger flows

make use of the network designed in the first stage, taking

into account the scenario characteristics.

2.1 Variables and constraints in the 1st stage

A link-line incidence matrix ðδa, ℓÞ will be assumed known

with elements δa, ℓ ¼ 1 if candidate line ℓ contains link a and
0 otherwise. Let hℓ, ℓ∈L be a binary variable indicating

whether candidate line ℓ is chosen or not. Let also χa be a

binary variable so that ¼ 1 if arc a is located and ¼ 0,

otherwise. The following constraints force that linkamust be

built if some line ℓ using it is chosen:

Mχa �
X
ℓ∈bL δa, ℓhℓ, a∈A ð2Þ
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The binary variables xla state whether link a is required

because line l is included in the solution or not. These

variables are related to the variables hl through the following

constraints:

hℓ � xℓa, a∈ℓ, ℓ∈bL ð3Þ
A limitation on the number of lines can be imposed byP
l∈L hl � v. Let now ψ i be a binary variable so that ¼ 1 if

station i is located and ¼ 0, otherwise. Then, variables X and

ψ are linked by:

χa � ψ i, 8i∈N,8a ¼ i, jð Þ∈A

χa � ψ j, 8j∈N,8a ¼ i, jð Þ∈A
ð4Þ

2.2 Variables and constraints of the 2nd stage

– vw, sa , is the passenger flow on link a∈A for origin destina-

tion pair w under scenario s∈S. By vw, s ¼ ð:::, vw, sa , :::; a

∈AÞ it will be denoted an arc flow vector per o-d pair

w and scenario s∈S.
– vw, sa , is the flow for o-d pair w using private transport in

scenario s. By vw, sc ¼ ð:::, vw, sc , :::;w∈WÞ it will be

denoted the flow vector of passengers using private trans-

portation in scenario s∈S.

The balance constraints for flows at a given scenario

s will be:

X
j∈EðiÞ

vw,sij �
X
k∈IðiÞ

vw,ski ¼
vw,sPT if i¼ pðwÞ
�vw,sPT if i¼ qðwÞ, i∈N,w∈W,s∈S
0 otherwise

8<:
ð5Þ

where vw,sPT � 0 are the flows using public transport mode at

o-d pair w∈W, that must verify:

vw,sc þ vw,sPT ¼ gsw,w∈W,s∈S ð6Þ
Also, link flows vw,sa for scenario s will be subject to the

location-allocation constraints, which in fact are equivalent

to suppress the links for which the decision variables Xa

annul:

vw,sa �Mχa, a∈A, s∈S, w∈W ð7Þ

2.3 The conceptual model for modal split

Formulations in this subsection do not include links a for

which decision variables Xa ¼ 0. Also flow variables are

assumed for a generic scenario s∈S and this superscript will

be omitted.

Borrowing ideas from combined modal split-assignment

models in transportation planning (see, for instance [5]) the

following convex problem

Minv,vc,vPT
X
w∈W

dTvw þ vwc logvwc � 1� βwc � ηuwc
� �þ�

þvwPT logvwPT � 1� βwPT
� ��

s:t: : v, vc, vPT � 0 and verif y constraints ð5Þ, ð6ÞX
w∈W

vwa � mP

X
ℓ∈bL zℓ, rxℓa, a∈A

ð8Þ

provides solutions verifying the modal split accordingly to

(1). A linearization of this model is used by López in [7] in

order to reformulate it as a mixed linear integer problem.

Capacity constraints arise because the capacity of the public

transport lines operating on the network links as a function

of the number of services zl of the lines. Variables X are

considered implicitly and because of that, the solution set of

previous problem (8) will be denoted by Vs,∗ðzs,XÞ, when

specified for a specific scenario s∈S.

Next section describes a simplified model which provides

the required number of services on the lines to attend the

passenger’s demand, accordingly to the scenarios that are

considered.

3 Service setting for normal
operational conditions and recovery
of disruptions

A model that states the number of services that must operate

on each link is required for both non-disrupted scenarios

r∈So and scenarios corresponding to a disruption s∈S∖So.
Let vr the passenger vector flow on each of the network links

for a non-disrupted scenario r∈So. Let vr be the vector

of total link flows which can be expressed as

vra ¼
P
w∈W

vw, ra a∈A. Let γl the individual cost of a service

on line l∈L and let Cl be the time required to perform a

complete service on l by a transport unit. A total of nv
transport units are assumed to operate on the network.

Also, assume that the maximum number of services on link

a for scenario r∈So is Ẑ r
a. Then, the following simple

covering model will be used to determine the number of

services for each line:
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Γr
0 vr , xð Þ ¼ Minz

X
ℓ∈bL γℓzℓ, r

Ẑ r
a �

X
ℓ∈bL zℓ, rxℓa �

1

mP
vra, a∈A, r∈S0X

ℓ∈bL Cℓzℓ, r � nvHr,

Z 3 zℓ, r � 0

ð9Þ

The solution set of previous problem (9) will be denoted

by Z∗
r ðvr, xÞ, r∈So. If Zr,∗ is the vector of the optimal

number of services for the lines in the regular scenario r

given by the previous problem (9), then the total number of

services θra on link a will be given by:

θraðvrÞ¼Δ
X
ℓ∈bL zℓ, r,∗xℓa, a∈A, r∈S0 ð10Þ

For a disruption on link a∈bA, those lines ℓ∈bL containing

that link, i.e., ℓ 3 a, can be put partially in operation as a

recovery strategy using their disruption lines bL 0
ℓð Þ and in this

case the model will evaluate a new set of services for all

the lines in the system. Then, for a scenario s∈S∖S0
corresponding to a disruption in link a, the set of lines that

can potentially be operating is ~L ðaÞ ¼ bL 0 ðaÞ[ ðbL∖bLðaÞÞ.
The following problem establishes the services, zls, that

must be assigned for the lines operating in the scenario s∈
D rð Þ for a disruption of the regular scenario r:

r∈S0,s∈D rð Þ :

Γr
sðvs,xÞ¼Minz

X
ℓ∈bLðaðsÞÞ γ

ℓzℓ,s

s:t: : Ẑ s
b �

X
ℓ∈bL∖bLðaðsÞÞ x

ℓ
bz

ℓ,sþ
X

bℓ∈bLðaðsÞÞ
X

ℓ∈bL 0ðbℓÞ x
bℓ
bz

ℓ,s � 1

mP
vsb,b∈A,

X
ℓ∈bLðaðsÞÞ C

ℓzℓ,s � nvHr,

Z 3 zℓ,s � 0, ℓ∈bLðaðsÞÞ
ð11Þ

where mp is the maximum number of passengers that a unit

may allocate. The solution set of previous problem (11) will

be denoted by Z∗
s ðvs,xÞ,s∈DðrÞ.

4 A model for probabilities of disruption

The probability ps of each scenario is considered dependent

on the use that is made on the designed network. By means

of a failure model it will be possible to find an expression for

the probability that a link presents a disruption during the

operational horizon of the transit network. It will be assumed

that the probability of failure of a service is mainly deter-

mined by the type of units operating in the service and the

characteristics of the link. Let T be the set of type units

operating on the network. Let πa, τ be the joint individual

probability that a service carried out by a unit of type τ∈T
presents a disruption on link a∈A. By examining annual

disruption reports from transit operators, the fraction of

disrupted services with a disruption time of 20 minutes or

more over the total number of services on a line is between

1:5 � 10�4 to 5:0 � 10�4, i.e. 1 disruption each 2000 or 6600

services. Assume that by analyzing statistically the previous

mentioned annual disruption reports the probabilities πa, τ
have been determined. Let now θa, τ be the total number of

services of type τ on link a during the operational horizon

used for our planning model (for instance, peak morning

period). Let T að Þ be the set of unit types that operate on

link a∈A. Let also ~θ a, τ be the total number of services with a

relevant disruption out of the θa, τ and ~θ a

P
τ∈TðaÞ

~θ a, τ the

aggregated number of disrupted services on link a. It is

assumed that ~θ a, τ follows a binomial distribution with

probability πa, τ, i.e.: ~θ a, τ � Bino θa, τ, πa, τð Þ. Thus, the prob-
ability bPa that link a∈A has at least one disrupted service

from any unit type τ∈T að Þ, as a function of the number of

services θa, τ of type τ operating on that link is:

bPa¼Δ Pð~θ a � 1Þ ¼ 1� ∏
τ∈TðaÞ

Pð~θ a, τ ¼ 0Þ ¼

¼ 1� ∏
τ∈TðaÞ

ð1� πa, τÞθa, τ

¼ 1� expð�
X

τ∈TðaÞ
αa, τθa, τÞ ð12Þ

where αa, τ ¼ �log 1� πa, τð Þ. For small probabilities πa, τ,
then αa, τ 	 πa, τ. Also, the probability of having no

disruption on link a of any of the type units τ∈T að Þ isbQa¼Δ 1� bPa.

Because the probability of more than one link with

disruptions simultaneoulsy is small, the disruptions that

will be considered are failures of a single link a within the

set of links bA considered candidates for a disruption. Let a( s)
denote the link associated with scenario s∈D rð Þ, r∈S0. For

ease of notation let bAa ¼ bA∖ af g. The probability of each

scenario s corresponding to a disruption in link a(s) will be

evaluated now by a given function Fr : ℜjbAj ! ℜjDðrÞjþ1 of

the number of services θra, a∈bA on the links candidates for

a disruption. If there is a single type of units operating in

the network then, the function Fr �ð Þ for the probabilities prs
and pr0 that will be adopted is:
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r∈S0:

prs ¼Δ Fr
sðθÞ ¼

expðαaðsÞθraðsÞÞ � 1

1þP
b∈bAðexpðαbθrbÞ � 1Þ, s∈DðrÞ

ð13Þ

pr0 ¼Δ Fr
0ðθÞ ¼ ð1þ

X
b∈bA ðexpðαbθ

r
bÞ � 1ÞÞ�1 ð14Þ

In case that probabilities πa, τ are very small, then

probabilities prr of no disruption are much higher than the

probabilities prs associated with the disruption on a link.

5 A stochastic 2-stage model
and a heuristic solution

Conceptually, the model could be formulated as the follow-

ing bilevel programming problem:

Min y,χ,h
Ψ,v,z

cTx χþ cTψΨþ
X
r∈S0

yr0Γ
r
0ðvr,xÞþ

X
s∈DðrÞ

yrsΓ
r
sðvs,xÞ

8<:
9=;þ

þϑ
X
r∈S0

yr0
X
w∈W

dr Tvw,rþuw,rc vw,rc

� �þ"

þ
X

s∈DðrÞ
yrs
X
w∈W

ds Tvw,sþuw,sc vw,sc

� �35
s:t: : constraints ð2Þ,ð3Þ,ð4Þ,ð7Þ

yr0 ¼ qrF
r
0ð. . . ,θraðvrÞ, . . . ;a∈bAÞ, r∈S0

yrs ¼ qrF
r
sð. . . ,θraðvrÞ, . . . ;a∈bAÞ, s∈DðrÞ

where θraðvrÞ is def ined in ð10Þ

resulting f rom lower level problemð9Þ and ð11Þ

Also, f rom ð9Þ and ð11Þ :

zr∈Z∗
r ðvr,xÞ, vr∈Vr,∗ðzr,χÞ, r∈S0

zs∈Z∗
r ðvs,xÞ, vs∈Vs,∗ðzs,χÞ, s∈DðrÞ

ð15Þ

In order to solve heuristically the previous problem

(15) the following mixed linear integer programming prob-

lem (16) needs to be considered. In this problem it is

assumed that probabilities yrs,y
r
0 are fixed and also that the

total amount of transport trips vw,sPT in public transport are

known.

Min χ,h
Ψ ,v,z

cTx χþ cTψΨþ
X
r∈S0

yr0
X
ℓ∈bL γℓzℓ,rþ

24
þ

X
s∈D rð Þ

yrs
X

ℓ∈bLðaðsÞÞ γ
ℓzℓ,s

375þ
þϑ

X
r∈S0

yr0
X
w∈W

dr Tvw,r
� �þ"

þ
X

s∈DðrÞ
yrs
X
w∈W

ds Tvw,s
� � 35

s:t: : constraints ð2Þ,ð3Þ,ð4Þ,ð5Þ,ð7Þ

þ constraints in problems ð9Þ and ð11Þ

ð16Þ

The previous model (15) will be solved using the follow-

ing heuristic algorithm:

Algorithm

0. Calculate initial vector of probabilities yð0; set Λð�1 ¼ 0;

k ¼ 0; take initial 0 < v
w, s, 0ð
PT < gw,w∈W, s∈S.

1. For the probability vector yðk and the number of trips for

public transport v
w, ðk
PT solve problem (16). Let χðka ,ψ

ðk
i , x

ℓ,k
a

the design decision variables. Also let Λðk ¼ cTx χ
ðk þ cTψ

Ψ ðk the building costs.

2. If Λðk � Λðk�1
�� �� � εΛðk�1 & jj yðk � yðk�1 jj� ε

0
& j vw, s, kð

PT

�v
w, s, k�1ð
PT j� ε

0 0
v
w, s, k�1ð
PT ,8w ∈ w then STOP.

3. With the solutions vw, s, ðk and zℓ, ðk, ℓ∈L of previous

problem (16), evaluate the mean travel times for public

transport for scenario s∈S, as λw, s, ðkPT ¼ dTvw, s, ðk
� �

=v
w, s, ðk
PT

and use logit formula (1) to evaluate a new modal split:bvðw, sÞc and bvðw, sÞPT ¼ gsw � bvðw, sÞc ,w∈W, s∈S.

4. Taking into account the number of services

θraðvrÞ ¼
P
l∈bL z

l, ðkÞ
xla, a∈A, r∈S0, reevaluate the failure

probabilities bpr, ðkÞ0 ¼ Fr
0ðθraðvr, ðkÞÞÞ, s∈S and compute a

probability vector byðkÞ.
5. Perform an MSA step (using, for instance,

αðk ¼ 1= k þ 1ð Þ ). Then, increase the iteration counter

k ¼ k þ 1.

y kþ1ð ¼ y kð þ α kð ðby kð � y kð Þ

v
w, s, kþ1ð
PT ¼ v

w, s, kð
PT þ α kð ðbvw, s, kð

PT � v
w, s, kð
PT Þ, w∈W, s∈S

ð17Þ
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6 Computational tests

The computational proofs have been carried out on the

network reported in [3] and in [8] with 9 nodes, 15 edges

and 72 origin-destination pairs. The network parameters

(construction costs for nodes and links, i.e. ci and ca,
respectively), the o-d demand matrix and the o-d costs for

the alternative mode of transportation, (uwc ), have also been

taken from that references. In all computational tests a

maximum of j L j¼ 5 lines has been allowed in the solution

from a pool of 46 candidate lines for operation in a single

undisrupted scenario S0 ¼ {0} for which there are 15 dis-

ruption scenarios (one for each link in the network; jD(0)¼
15) The recovery of the affected lines is carried out

using 230 recovery lines. Table 1 shows in column #it the
number of iterations necessary to converge and column jprj
displays the error yk � yðk�1Þ in the last iteration. By means

of the tests it is possible to analyze the influence of the

service probability failure π in the reliability of the designed

RTN. For higher values of π the algorithm oscillates, con-

verging very slowly. The more reliable the system is the

smaller the total costs, being these represented in the objfun
column. Also, the probability p0 of no disruption increases as

π is smaller and the attractiveness of the public transporta-

tion system increases as the system becomes more reliable.

This is illustrated in columns PTt and Ct, (total time in

public and private transport, respectively) showing that the

total time spent by all public transport users increases

whereas the expected time spent in the competing mode

decreases.

If the probability of failure is high (i.e., π ¼ 0.01), then,

the scenario with no disruptions has smaller probability

than other scenarios corresponding to disruptions. If the

probability π is below a given threshold, the no disruption

scenario becomes the most likely situation. In our test

example this seems to happen for π 	 5 � 10�4. The tests

also show that in this case, the topology of the designed

network does not change, i.e. it is as if the failure scenarios

would not need to be taken into account in the design of the

transportation system. This is achieved when π ¼ 5 � 10�6,

where disruption scenarios have almost no relevance in

the model.

7 Conclusions

A two-stage stochastic model has been developed for the

design of rapid transit systems taking into account the rate of

failures of the transportation units. Also taken into account

in the design is the number of the services during a disrup-

tion, assuming that the affected lines can operate at both

sides of the link out of service. The probabilities assigned to

the disruption scenarios are consistent with a probability

distribution model that arises as a consequence of failures

in the transportation unit services. By means of the tests it is

possible to analyze the influence of the service probability

failure π in the reliability of the designed RTN and deter-

mine its admissible levels for which the disruptions are at an

acceptable level. A heuristic solution method is examined

for small to medium networks demonstrating the computa-

tional viability of the approach.
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