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1 Introduction

Many electronic systems, including instrumentation, signal

processing systems and portable communication systems,

digitize analog signals using analog to digital converters

(ADCs). Both continuous time (CT) and discrete time (DT)

sigma delta modulator (ΣΔM) ADCs are often used for such

applications because they use relatively simple, low power,

analog circuitry and a low order quantizer in a feedback loop

to achieve high speed, high resolution and low power signal

conversion. Although CT ΣΔMs and DT ΣΔMs have many

similarities such as the ability to increase their resolution by

increasing their quantizer’s sampling rate, increasing the

number of bits in their ΣΔM’s quantizers and increasing

the orders of their loop filters, CT ΣΔMs have some

advantages which include having inherent antialiasing filter-

ing in the CT ΣΔM’s signal transfer function (STF) and

operating at higher frequencies than DT ΣΔMs because CT

ΣΔMs don’t have settling time requirements in their loop

filters [1]; however, because DT ΣΔMs are entirely

implemented using discrete time, or clocked, components

while CT ΣΔMs are implemented using both analog and

discrete components, DT ΣΔMs are simpler to analyze and

simulate than CT ΣΔMs. Stability analysis in particular is

more difficult to perform for CT ΣΔMs than it is for DT

ΣΔMs.

Because a ΣΔM’s output is typically the output of the

ΣΔM’s quantizer, ΣΔMs cannot be unstable in the bounded

input bounded output (BIBO) sense. Instead, a ΣΔM is

considered to have become unstable when the amplitude of

a ΣΔM’s input is increased over a value which causes the

ΣΔM’s output signal to quantization noise ratio (SQNR) to

decrease dramatically and the ΣΔM’s output SQNR cannot

be restored to its previous values even when the ΣΔM’s

input is decreased to its previous amplitudes. Other phenom-

enon, such as input overload, can also cause a ΣΔM’s output

SQNR to decreased dramatically when the ΣΔM’s input is

increased over a certain value; however, in these cases, the

ΣΔM’s output SQNR can be restored to its previous values

when the ΣΔM’s input is decreased to its previous

amplitudes.

In a general, a CT ΣΔM can be modeled by the canoni-

cal feedback loop shown in Fig. 1 where X(s) and Y(s) are
the Laplace transforms of the input signal and the output

signal, respectively, and F(s), G(s) and H(s) are the system

functions of the pre-filter stage, the feedforward path and

the feedback path, respectively. The quantizer block

represents a clocked quantizer, and the DAC block

represents a digital to analog converter (DAC). The quan-

tizer delay and DAC delay are often represented by a single

delay block as they are in Fig. 1, and the combination of

these two delays is often referred to as the excess loop

delay.

Fig. 2 shows a linear model of the CT ΣΔM shown in

Fig. 1 where the quantizer has been modeled by a variable

gain, K, for the ΣΔM’s STF, Y(s)/X(s), and by an additive

quantization noise, E(s) for the ΣΔM’s noise transfer

function (NTF), Y(s)/E(s). The ΣΔM’s STF can be

written as

STF sð Þ ¼ K � F sð Þ � G sð Þ
1þ K � e�sD � G sð Þ � H sð Þ � DAC sð Þ ð1Þ

and the ΣΔM’s NTF can be written as

NTF sð Þ ¼ 1

1þ e�sD � G sð Þ � H sð Þ � DAC sð Þ ð2Þ

where the exponential function, e-sD is the Laplace transform

of the excess loop delay, D. Although the DAC is not

explicitly modeled, a typical zero order hold (ZOH) DAC

would have the system function
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DAC sð Þ ¼ 1� e�sT

sT
ð3Þ

where T is the ΣΔM’s sampling period. Most other DACs

are also typically modeled using exponential functions.

Root locus methods have been successfully used to deter-

mine the stability of DT ΣΔMs; however, because the

denominator terms of both the STF and NTF contain expo-

nential functions, traditional root locus methods cannot be

used for determining the stability of CT ΣΔMs. Instead,

several other methods have been developed for predicting

the stability of CT ΣΔMs. One such method models the

nonlinear quantizer using two linear gains, one for the signal

gain and one for quantization noise gain [2]. This approach

has not received much attention because of its complexity

and because it cannot predict stability for several classes of

ΣΔMs. Other approaches predict CT ΣΔM stability by

assuming that the ΣΔM’s has a DC input and then by

performing a simple stability analysis. These methods are

effective for predicting stability for lower order ΣΔMs but

not for higher order ΣΔMs [3–9]. Another method attempts

to determine ΣΔM’s stability by using a one-norm of the

ΣΔM’s NTF to determine stability in a BIBO sense. It has

been shown that the one-norm condition is available only for

second order lowpass modulators [10]. Therefore, a mixture

of one-norm, two-norm and infinity-norm constraints have

been proposed to predict the stability of higher order

modulators [11]. Lee’s rule is another method used to deter-

mine the stability of ΣΔMs [12]. Lee’s rule states that a

ΣΔM will be stable if the gain of the ΣΔM’s NTF is less

than two for all frequencies. It has been shown that Lee’s

rule is neither a necessary nor a sufficient condition to ensure

stability in ΣΔMs [13].

In this paper, an analytical root locus method is used to

determine the stability criteria for CT ΣΔMs that include

exponential functions in their characteristic equations. This

root locus method determines the range of quantizer gains

for which a CT ΣΔM is stable. These values can then be used

to determine input signal and internal signal ranges that

prevent ΣΔM from becoming unstable. A circuit designer

can then take measures to prevent the ΣΔM from becoming

unstable. Examples of 3rd order CT ΣΔMs illustrate this

method.

2 SDM Stability Analysis using an
Analytical Root Locus Method

Root locus analysis is a method for examining how the poles

of a system change as function of a certain system parame-

ter. This method is commonly used to determine the stable

region of feedback systems as a function of open loop gain

by plotting the poles of the system’s closed loop transfer

function as a function of the system’s open loop gain. As

shown in (1), CT ΣΔMs typically have characteristic

equations of the form

1þ K � e�sD � G sð Þ � H sð Þ � DAC sð Þ ¼ 0 ð4Þ

where D is the ΣΔM’s excess loop delay and DAC(s)
contains at least one exponential function.

When D ¼ 0 and DAC(s) ¼ 1, root locus analysis of the

characteristic equation in (4) can be performed using stan-

dard graphical analysis methods [14] or using an analytical

method [15,16]. When D 6¼ 0 and DAC(s) contains at least

one exponential function, root locus analysis of the

Fig. 2 A linear model of the CT

ΣΔM

Fig. 1 The canonical form of the

feedback system
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characteristic equation in (4) can be performed using an

extended graphical analysis method [17–19] or using the

analytical method in [20]. In this paper, the analytical

method in [20] is used to determine the quantizer gains

that allow CT ΣΔM to remain stable.

To illustrate this method, the term e-sD∙G(s)∙H(s)∙DAC(s)
in (4) is written as

e�sD � G sð Þ � H sð Þ � DAC sð Þ ¼ N sð Þ
D sð Þ ð5Þ

which implies that (4) can be written as

D sð Þ þ K � N sð Þ ¼ 0 : ð6Þ

Solving (6) for K,

K ¼ �D sð Þ
N sð Þ ¼ �Re D sð Þf g þ jIm D sð Þf g

Re N sð Þf g þ jIm N sð Þf g : ð7Þ

In standard form, (7) can be written as

K ¼ �Re D sð Þf g � Re N sð Þf g � Im D sð Þf g � Im N sð Þf g
Re N sð Þf gð Þ2 þ Im N sð Þf gð Þ2

þ j
Re D sð Þf g � Im N sð Þf g � Im D sð Þf g � Re N sð Þf g

Re N sð Þf gð Þ2 þ Im N sð Þf gð Þ2

ð8Þ

Because the quantizer’s variable gain, K, is real, (8)

implies that

K ¼ �Re D sð Þf g � Re N sð Þf g � Im D sð Þf g � Im N sð Þf g
Re N sð Þf gð Þ2 þ Im N sð Þf gð Þ2 ð9Þ

and that

Re D sð Þf g � Im N sð Þf g � Im D sð Þf g � Re N sð Þf g ¼ 0 : ð10Þ

Plotting (10) in the s-plane renders the root locus of (4) for -

1 < K < 1.

3 Examples

ΣΔMs achieve high resolution by using a feedback loop to

attenuate quantization noise in the frequency band of interest

while passing the input signal to the output. Because of the

importance of attenuating the quantization noise over the

frequency band of interest, the ΣΔM’s NTF is designed

before the STF. After determining an NTF and STF, the

NTF and STF coefficients need to be implemented in a

hardware structure, such as a cascade of resonators feedback

(CRFB), cascade of resonators feedforward (CRFF), cascade

of integrator feedback (CIFB), and cascade of integrator

feedforward (CIFF) implementations. In the following

example, 3rd order Chebyshev Type 2 NTFs are

implemented using a CIFB implementation.

Fig. 3 shows the linear model of a 3rd order lowpass CT

ΣΔM using a CIFB implementation. In Fig. 3, the signals, X

(s), E(s) and Y(s), are the Laplace transforms of the input

signal, the quantization noise signal and the output signal,

respectively. The quantizer has been modeled by a variable

gain, K, an additive quantization noise, E(s), and a delay.

The DAC block represents a digital to analog converter

(DAC), and the excess loop delay is represented by the

Delay block as it is in Fig. 2. The blocks with the symbols,

a0, a1, a2, a3, b0, b1, b2, b3, c0, c1, c2 and g0 represent scalar

multiplication with gains associated by the blocks’ respec-

tive symbols.

The STF and NTF of the ΣΔM shown in Fig. 3 can be

calculated from the block diagram by calculating the states

and the output as

Q1 sð Þ ¼ b0X sð Þ � a0 �M sð Þ � Y sð Þf g1
s

ð11Þ

Q2 sð Þ ¼ b1X sð Þ � a1 �M sð Þ � Y sð Þ þ c0Q1 sð Þ þ g0Q3 sð Þf g1
s

ð12Þ

Q3 sð Þ ¼ b2X sð Þ � a2 �M sð Þ � Y sð Þ þ c1Q2 sð Þf g1
s

ð13Þ

Fig. 3 3rd order low pass CT ΣΔ block diagram
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Ψ sð Þ ¼ b3X sð Þ � a3 �M sð Þ � Y sð Þ þ c2Q3 sð Þ ð14Þ

Y sð Þ ¼ K � Ψ sð Þ þ E sð Þ ð15Þ

where M(s)¼DAC(s)∙e-sD. Substituting (11) into (12), (12)

into (13), (13) into (1414) and (14) into (15), the STF and

the NTF can be written as

STF sð Þ ¼
K� b3s

3þb2c2s
2þ b1c1c2�g0b3c1ð Þsþb0c0c1c2f g

s s2�g0c1ð Þ

1 þ K�M sð Þ� a3s
3þa2c2s

2þ a1c1c2�g0a3c1ð Þsþa0c0c1c2f g
s s2�g0c1ð Þ

ð16Þ

and

NTF sð Þ ¼ 1

1 þ M sð Þ� a3s
3þa2c2s

2þ a1c1c2�g0a3c1ð Þsþa0c0c1c2f g
s s2�g0c1ð Þ

:

ð17Þ

Comparing (1) with (16) and (2) with (17), it can be seen that

F sð Þ ¼ b3s
3 þ b2c2sþ b1c1c2 � g0b3c1ð Þsþ b0c0c1c2

ð18Þ

G sð Þ ¼ 1

s s2 � g0c1ð Þ ð19Þ

H sð Þ ¼ a3s
3 þ a2c2s

2 þ a1c1c2 � g0a3c1ð Þs
þ a0c0c1c2 : ð20Þ

Assuming that the DAC is implemented using a ZOH, DAC

(s) can be written as shown in (3). The gains, a0, a1, a2, a3,

b0, b1, b2, b3, c0, c1, c2 and g0 can be determined by equating

the STF coefficients in (16) and the NTF coefficients in (17)

with the desired STF and NTF coefficients, respectively. For

example, if the NTF is a high pass Chebyshev Type 2 filter

and the STF has a lowpass characteristic, then the rational

function describing the Chebyshev Type 2 filter is set equal

to the rational NTF in (17) and the rational function describ-

ing the lowpass STF is set equal to the rational STF in (16).

Using (5), (19), (20) and (3), N(s) and D(s) can be deter-

mined to be

N sð Þ ¼ a3s
3 þ a2c2s

2 þ a1c1c2 � g0a3c1ð Þsþ a0c0c1c2
� �
� 1� e�sT
� � � e�sD

ð21Þ

and

D sð Þ ¼ s2 � g0c1
� � � s2 � T : ð22Þ

Substituting σ + jω for s where σ ¼ Re{s} and ω ¼ Im{s},

Re D sð Þf g ¼ T � σ σ3 þ aσ� 3σω2
� �� T

� ω �ω3 þ aωþ 3σ2ω
� � ð23Þ

Im D sð Þf g ¼ T � ω σ3 þ aσ� 3σω2
� �þ T

� σ �ω3 þ aωþ 3σ2ω
� � ð24Þ

Re N sð Þf g ¼ bσ2 � bω2 þ cσþ dð Þ
e�Dσ cos Dωð Þ � e� TþDð Þσ cos T þ Dð Þωð Þ� �

� 2bσωþ cωð Þ �e�Dσ sin Dωð Þ þ e� TþDð Þσ sin T þ Dð Þωð Þ� �
ð25Þ

and

Im N sð Þf g ¼ bσ2 � bω2 þ cσþ dð Þ
�e�Dσ sin Dωð Þ þ e� TþDð Þσ sin T þ Dð Þωð Þ� �

þ 2bσωþ cωð Þ e�Dσ cos Dωð Þ � e� TþDð Þσ cos T þ Dð Þωð Þ� �
:

ð26Þ

Substituting (23), (24), (25) and (26) into (10), the root locus

of the 3rd order CT ΣΔM shown in Fig. 3 can be plotted

for -1 < K < 1.

Fig. 4 (a), (b) and (c) show the plot of (10), or the root

locus, for 3rd order CT ΣΔMs with a sampling frequency, fs
where fs¼1/T, of 1GHz and Chebyshev Type 2 NTF with

47dB, 37dB, and 30dB attenuation in the stopband for D ¼
0, D ¼ T/2, and D ¼ T, respectively. The plots in Fig. 4

include both the positive gain (K > 0) root locus and the

negative gain (K < 0) root locus. According to the plots, the

CT ΣΔMs with D ¼ 0, D ¼ T/2, and D ¼ T are stable for

0.326 < K < 3.734, 0.359 < K < 2.001, and 0.376 < K <

1.648, respectively. Although the root locus plots show that

the CT ΣΔMs with D ¼ 0, D ¼ T/2, and D ¼ T are unstable

for K> 3.734, K> 2.001, and K> 1.648, respectively, none

of the modulators show a degradation in SQNR when K

enters those ranges because when the modulator enters

unstable regions for large values of quantizer gain, K, the

feedback signal increases which reduces the quantizer gain,

K, and moves the poles back into a stable region. However,

when K < 0.326, K < 0.359, and K < 0.376 for the CT

ΣΔMs with D ¼ 0, D ¼ T/2, and D ¼ T, respectively, the

modulator shows a degradation in SQNR because when the

modulator enters those unstable regions the feedback signal

increases which further reduces the quantizer gain, K, and

consequently moves the poles further from the stable region.

Therefore, a CT ΣΔMwill remain stable if its quantizer gain,

K, remains above its minimum value, Kmin, as determined

from its CT ΣΔMs root locus plot.

Using this stability criterion, the maximum quantizer

input, ψmax, that prevents the modulator from becoming

490 K. Kang and P. Stubberud



unstable is 1/Kmin. Therefore, the CT ΣΔMs withD¼ 0,D¼
T/2, and D¼ T are unstable when ψmax> 3.07, ψmax> 2.78,

and ψmax > 2.66, respectively.

Assuming that the ΣΔM’s input, output and quantization

noise signals have means of zero, the maximum power, σ2x,
of the ΣΔM’s input signal can be calculated from

σ2y ¼ σ2x

ðfs=2
�fs=2

��STF fð Þ��2df þ σ2e
f s

ðfs=2
�fs=2

��NTF fð Þ��2df ð27Þ

where σ2e is the quantization noise power when the maxi-

mum input signal power is applied to the input and σ2y is the
output signal power which equals one. If the input signal is

sinusoidal, then σ2x ¼ xmax
2/2 where xmax is the ΣΔM’s

maximum input amplitude. Assuming a sinusoidal input,

the maximum input values are 0.432 (-7.2 dB), 0.447 (-7.0

dB), and 0.376 (-8.5 dB) for the CT ΣΔMs with D ¼ 0, D ¼
T/2, and D ¼ T, respectively.

All three CT ΣΔMs were simulated using the method

described in [21]. Fig. 5(a) shows SQNR and the mini-

mum gain, Kmin, as a function of input signal amplitude

for the ΣΔMs with D ¼ 0. As shown in the Fig. 5(a), the

ΣΔM’s SQNR increases linearly until the input signal’s

amplitude is less than -8 dB, or Kmin ¼ 0.391. As the

input signal’s amplitude is increased above -8 dB, the

ΣΔM’s SQNR no longer increases linearly. As the input

signal’s amplitude is increased above -6 dB, the ΣΔM’s

SQNR degrades dramatically and the ΣΔM’s SQNR can-

not be restored to its previous values even when the

ΣΔM’s input is decreased to its previous amplitudes.

Fig. 5 (b) and (c) show the SQNR and the minimum

gain, Kmin, as a function of input signal amplitude for

the ΣΔMs with D ¼ T/2 and D ¼ T, respectively. From
Fig. 5 (b), when the input signal’s amplitude is increased

above -7 dB, or Kmin is less than 0.359, the ΣΔM’s SQNR

begins to degrade. Similarly, the ΣΔM’s SQNR with D ¼
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Fig. 4 The root locus of 3rd order CT ΣΔMs that uses Chebyshev Type 2 NTFs and a sampling frequency of 1GHz for (a) D¼ 0 (b) D¼ T/2 (c) D
¼ T.
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T is degraded when the ΣΔM’s input is greater than -9 dB,

or Kmin is less than 0.376 as shown in Fig. 5 (c).

4 Conclusion

In this paper, an analytical root locus method was used to

determine the minimum quantizer gains that keep a CT

ΣΔM stable. It was then shown how to use the minimum

quantizer gain to determine the maximum quantizer input

amplitude and ΣΔM maximum input amplitude value that

prevent ΣΔM from becoming unstable. Using these values, a

circuit designer can then take measures to prevent the ΣΔM
from becoming unstable. Examples of 3rd order CT ΣΔM
illustrate this method.
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