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1 Introduction

Consider the design and production of an analog system

where the desired design is defined by a differential equation

which defines a desired relationship between an input signal

and an output signal. Production systems will deviate from

the desired design due to manufacturing errors in the

coefficients of the differential equations describing the pro-

duction systems. These errors contribute to the errors in the

desired system input-output relationship. In an earlier paper,

[2], the authors presented a method for combining the

measurements from many nominally equal micro-

gyroscopes using a technique based on a design technique

from electronics called dynamic element matching, see [1].

This technique essentially transforms the system output

noise caused by manufacturing errors into an additive

(almost) white noise in the system output. This ‘spreading

of the spectrum’ reduces the noise power in the pass band of

the analog system. Additional reduction in the effect of the

noise can be attained by appropriately filtering the system

output. In a more recent paper [3], this technique was

generalized by applying dynamic element matching to ana-

log systems. Since the method deals with systems rather than

elements, it was called a dynamic system matching technique

(DSMT). The DSMT proposed in that paper, generates the

system output by randomly switching between the outputs of

several, nominally identical, production systems. \A

heuristic analysis in that paper indicated that the DSMT is

effective in reducing the effects of the random coefficient

variations in a system output. In a more recent paper [4], a

simulation study of the DSMT was developed which, along

with some additional analysis, provided further validation of

the DSMT. In this paper, a detailed analysis of the noise

in the output signal of a DSMT-based system is presented.

The results of this study provide not only a validation of the

effectiveness of the DSMT, but also provide formulae which

can be used to aid in the design of a DSMT system.

2 A Dynamic System Matching Technique

Assume that a system design can be represented by a nomi-

nal differential equation

dny

dtn
þ an�1

dn�1y

dtn�1
þ � � � þ a1

dy

dt
þ a0y ¼ z ð1Þ

where the n coefficients, a0, a1, � � �, an � 1, an, are called the

nominal coefficients and the equation represents a nominal

system. Now, consider a production version of the system

which is defined by the nominal differential equation with

the same nominal coefficients except that the coefficient a0
is replaced by a perturbed coefficient, a0 + Δa0, where the

perturbation Δa0 is a random variable with the first and

second order statistics, E Δa0½ � ¼ 0 and Var Δa0½ � ¼ σ2a0 .

This system will be called a real system. The input signal

to the real system is the same as for the nominal system and

the real system output signal is perturbed from y(t) to y

(t) + Δy(t); therefore, the real system is defined by the dif-

ferential equation:

dn yþ Δyð Þ
dtn

þ an�1

dn�1 yþ Δyð Þ
dtn�1

þ � � �

þ a1
d yþ Δyð Þ

dt
þ a0 þ Δa0ð Þ yþ Δyð Þ ¼ z

P. Stubberud (*)

Department of Electrical and Computer Engineering, University

of Nevada, Las Vegas, Las Vegas, USA

e-mail: stubber@ee.unlv.edu

S. Stubberud

Oakridge Technology, Del Mar, CA, USA

e-mail: scstubberud@ieee.org

A. Stubberud

Department of Electrical Engineering and Computer Science,

University of California, Irvine, Irvine, USA

e-mail: stubberud@att.net

H. Selvaraj et al. (eds.), Progress in Systems Engineering: Proceedings of the Twenty-Third International
Conference on Systems Engineering, Advances in Intelligent Systems and Computing 1089,

DOI 10.1007/978-3-319-08422-0_69, # Springer International Publishing Switzerland 2015

473

mailto:stubber@ee.unlv.edu
mailto:scstubberud@ieee.org
mailto:stubberud@att.net


Assume that Δa0 is small enough that the second order term

Δa0Δy is negligible and can be ignored. Under this assump-

tion, the differential equation defining the random perturba-

tion Δy(t) is linear and given by:

dnΔy

dtn
þ an�1

dn�1Δy

dtn�1
þ � � � þ a1

dΔy

dt
þ a0Δy ¼ �Δa0y ð2Þ

Now consider a set of N real systems with a common input

z(t) applied to each system. The real systems will differ

from each other in that the random coefficient

perturbations will define a set of N independent identically

distributed random variables, Δai0, i ¼ 1, 2, � � �, N. The

output signals of the real systems are combined through a

switching circuit in a DSMT structure. The switching

circuit output signal at a specific time t is the output signal

y(t) of one of the N systems which has been randomly

selected by the switching circuit. The switching circuit

output continues to be the output of that system over a

fixed interval of time, T, the switching circuit period, and

then it is switched to the output of a different system which

has been randomly selected by the switching circuit. A

different system is randomly selected for each successive

switching circuit period ad infinitum. Note that if each

system were a nominal system, each of their outputs

would be equal and, assuming perfect switching, the out-

put of the switching circuit would equal the output of

the nominal system. Because the random perturbations

are independent, the noise in the sequence of switched

outputs formed by the switching circuit is an ‘almost

white’ sequence. The time correlation in the sequence is

due to the fact that the number of different random

perturbations is finite and each perturbation will, with

non-zero probability, be chosen more than once by the

switch. Apparently, the sequence tends to become ‘whiter’

as N increases.

The linear perturbation Δy(t) can be written in the form of

a convolution integral

Δy tð Þ ¼ �Δa0ð Þ
ðτ¼t

τ¼�1
h t� τð Þy τð Þdτ

where h(t) is the unit impulse response of the nominal

system defined by Equation (1). In the Fourier transform

domain, the linear random perturbation is given by ΔY(jω)
¼ (�Δa0)H * (jω)Z(jω) where ΔY(jω) is the Fourier

transform of Δy(t), Z(jω) is the Fourier transform of z(t),

and H * (jω) ¼ jH(jω)j2 where H(jω) is the Fourier trans-

form of h(t).

Note: To simplify the mathematical development in this

paper, but without diminishing the value of the results, only

one of the parameters defining the real systems will be con-

sidered to be random. For the more complex development

involving several, or all, of the parameters being random, the

same basic development can be used for each parameter and,

assuming independence of the random variations, results for

the case of all parameters being random can be generated by

combining the results for the individual parameter variations.

3 The Unfiltered Output Noise
in a DSMT System

Consider the set of independent random output perturbations

(output noise) Δy1(t), Δy2(t), � � �, ΔyN(t) generated by the set
of N random coefficient variations, Δai0, i ¼ 1, 2, � � �, N,
associated with the N real systems each of which is driven

by the same input signal z(t) and each of which is defined by

Equation (2). Now, consider a time sequence of pulses pk(t),
� 1 < k < 1 where the pulse pk(t) has width T, has unity

amplitude for kT � t < (k + 1)T, and is zero elsewhere. Let

Δyik tð Þ represent that one of the linear perturbations that is

chosen randomly by the switching circuit during the kth

switching period. The noise in the output of the switching

circuit of the DSMT can then be written as:

M tð Þ ¼
X
k

Δyik tð Þpk tð Þ

Combining the outputs of Equations (1) and (2) the pertur-

bation Δyik tð Þ can be written as

Δyik tð Þ ¼ �Δaik0
� � ðθ¼1

θ¼0

h� θð Þz t� θð Þdθ

where h� θð Þ ¼
ðτ¼θ

τ¼0

h θ � τð Þh τð Þdτ Then

N tð Þ ¼
X
k

�Δaik0
� � ðθ¼1

θ¼0

h� θð Þz t� θð Þdθpk tð Þ

¼
ðθ¼1

θ¼0

h� θð Þz t� θð Þdθ
2
4

3
5 �

X
k

�Δaik0
� �

pk tð Þ
" #

¼ N1 tð Þ � N2 tð Þ

Assuming that z(t) and Δai0, i ¼ 1, 2, � � �, N are

statistically independent, then M1(t) andM2(t) are indepen-
dent random processes. M(t) is the output noise in a

DSMT system.
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4 Power Spectral Density and Total Power
in the Output Noise

The autocorrelation function of M(t) can be written as:

RM τð Þ ¼ E M tð ÞM tþ τð Þ½ �
¼ E M1 tð ÞM1 tþ τð Þ½ � � E M2 tð ÞM2 tþ τð Þ½ �
¼ RM1

τð Þ � RM2
τð Þ

The power spectral density (PSD) of M(t) is given by:

SM ωð Þ ¼
ðτ¼1

τ¼�1
e�jωτRM1

τð ÞRM2
τð Þdτ

¼ 1

2π

ðv¼1

v¼�1
SM1

ω� vð ÞSM2
vð Þdv

where SM1
ωð Þ is the PSD of M1(t) and SM2

ωð Þ is the PSD

of M2(t). Because white noise excites all frequencies of

the system equally; in this general development, it is

assumed that z(t) is white noise with the mean and the

autocorrelation function:

E z tð Þ½ � ¼ 0 and Rz τð Þ ¼ Kzδ τð Þ

Under this assumption, the autocorrelation function ofM1(t)
is given by:

RM1
τð Þ ¼ E M1 tð ÞM1 tþ τð Þ½ � ¼ Kz

ðθ¼1

θ¼0

h� θð Þh� τ þ θð Þdθ

and the PSD of M1(t) is given by:

SM1
ωð Þ ¼ Kz H jωð Þj j4 �1 < ω < 1

Assuming that the nominal system has a low-pass frequency

response function with bandwidth ωs, it is approximated

by an idealized low-pass frequency response function H(jω)
¼ u(ω + ωs)u(ωs � ω)e� jω � 1 < ω < 1

where u(�) is a unit step function. Using this idealized

frequency response function, the PSD of M1(t) is given by:

SM1
ωð Þ ¼ Kzu ωþ ωsð Þu ωs � ωð Þ �1 < ω < 1

and the PSD of M(t) can be written:

SM ωð Þ ¼ Kz

2π

ðv¼ωþωs

v¼ω�ωs

SM2
vð Þdv �1 < ω < 1

The mean and variance of the noise componentM2(t) are:

E M2 tð Þ½ � ¼ 0, Var M2 tð Þ½ � ¼ σ2ao , �1 < t < 1

The autocorrelation function of M2(t) is developed

as follows:

RM2
t; τð Þ ¼ E M2 tð ÞM2 τð Þ½ �

For t, τ∈ kT; k þ 1ð ÞTÞ½ , M2 tð Þ ¼ M2 τð Þ ¼ �Δaik0 , and

RM2
t; τð Þ ¼ E �Δaik0

� �2h i
¼ σ2a0

For t ∈ [jT, (j + 1)T), τ ∈ [kT, (k + 1)T) and j 6¼ k, either

M2 tð Þ ¼ M2 τð Þ ¼ Δaik0 with probably 1
N or M2(t) 6¼ M2(τ)

with probability N�1
N ; therefore for j 6¼ k

RM2
t; τð Þ ¼ E M2 tð ÞM2 τð Þ j M2 tð Þ ¼ M2 τð Þ½ � � Pr M2 tð Þ ¼ M2 τð Þ½ �

þ E M2 tð ÞM2 τð Þ j M2 tð Þ 6¼ M2 τð Þ½ � � Pr M2 tð Þ 6¼ M2 τð Þ½ �

¼ σ2a0
N

þ E M2 tð ÞM2 τð Þ j M2 tð Þ 6¼ M2 τð Þ½ � � N � 1

N

If j 6¼ k and M2(t) 6¼ M2(τ), then E[M2(t)M2(τ)jM2(t) 6¼
M2(τ)] ¼ 0 and

RM2
t; τð Þ ¼ σ2a0

N

Then, for all t and τ, the autocorrelation function can be

written as

RM2
t; τð Þ ¼ N � 1

N

� �
� σ2a0 � δ k; jð Þ þ σ2a0

N

where δ(k, j) is a Kronecker delta, that is,

δ k; jð Þ ¼
1 for t, τ∈ kT; k þ 1ð ÞτÞ½

0 t∈ jT; jþ 1ð ÞTÞ½ , τ∈ kT, k þ 1ð ÞTÞ k 6¼ j½

(

The power spectral density of M2(t) is given by

SM2
ðωÞ ¼

ð1
�1

e�jωθ N � 1

N

� �
� σ2a0 � δðk, jÞdθ

þ
ð1

�1
e�jωθ σ

2
a0

N
dθ �1 < ω < 1:
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The first term in SM2
ωð Þ is given by

ð1
�1

e�jωθ N � 1

N

� �
� σ2a0 � δ k; jð Þdθ

¼ N � 1

N

� �
� σ2a0 �

ð1
�1

e�jωθδ k; jð Þdθ

The integral

ð1
�1

e�jωθδ k; jð Þdθ is integrated as follows.

ð1
�1

e�jωθδ k; jð Þdθ ¼ ffiffiffi
2

p
T

ðffiffi2p
T

2

0

e�jωθdθ þ
ð0

�
ffiffi
2

p
T

2

e�jωθdθ

2
664

3
775

� 2

ðffiffi2p
T

2

0

θe�jωθdθ �
ð0

�
ffiffi
2

p
T

2

θe�jωθdθ

2
664

3
775 ¼ T2sinc2ω

ffiffiffi
2

p
T

4

¼ 4
1

ω2
1� cos

ωTffiffiffi
2

p
0
@

1
A

2
4

3
5

where sincx ¼ sin x
x . The second term in SM2

ωð Þ is the Fourier
transform of the constant

σ2a0
N and is given byð1

�1
e�jωθ σ

2
a0

N
dθ ¼ 2π

σ2a0
N

� �
δ ωð Þ. This term indicates that the

noise componentM2(t) contains a random DC offset. Finally

then the power spectral density (PSD) of the noise compo-

nent M2(t) is given by:

SM2
ωð Þ ¼ 4

N � 1

N

� �
� σ2a0 �

1

ω2
1� cos

Tωffiffiffi
2

p
� �	 


þ 2π
σ2a0
N

 !
δ ωð Þ �1 < ω < 1

and the PSD of M(t) is given by:

SM ωð Þ ¼ Kz
2

π

0
@
1
A N � 1

N

0
@

1
Aσ2a0 �

ðv¼ωþωs

v¼ω�ωs

1

v2
1� cos

Tvffiffiffi
2

p
2
4

3
5dv

þ Kz

σ2a0
N

0
@

1
A ðv¼ωþωs

v¼ω�ωs

δ vð Þdv �1 < ω < 1

ð3Þ
Using this expression, the total power in the unfiltered

noise of a DSMT system can be determined by the following

double integral:

PM ¼
ðω¼1

ω¼�1
SM ωð Þdω ¼Kz

2

π

0
@
1
A N � 1

N

0
@

1
A�

σ2a0

ðω¼1

ω¼�1

ðv¼ωþωs

v¼ω�ωs

1

v2
1� cos

Tvffiffiffi
2

p
2
4

3
5dvdω

þ Kz

σ2a0
N

0
@

1
A ðω¼1

ω¼�1

ðv¼ωþωs

v¼ω�ωs

δ vð Þdvdω

Interchanging the order of integrations, this can be

rewritten:

PM ¼ Kz
2

π

0
@
1
A N � 1

N

0
@

1
A � σ2a0

ðv¼1

v¼�1

1

v2
1� cos

Tvffiffiffi
2

p
2
4

3
5 ðω¼vþωs

ω¼v�ωs

dω

2
4

3
5dv

þ Kz

σ2a0
N

0
@

1
A ðv¼1

v¼�1
δ vð Þ

ðω¼vþωs

ω¼v�ωs

dω

2
4

3
5dv

Carrying out the integration of the ω variable first,

results in:

PM ¼ Kz � 2ωs � 2

π

� �
N � 1

N

� �

� σ2a0
ðv¼1

v¼�1

1

v2
1� cos

Tvffiffiffi
2

p
	 


dvþ Kz � 2ωs �
σ2a0
N

 !

Because of the double pole at the origin, the integral in PM

must be evaluated using the contour integral:

∮
1

z2
1� e

i Tffiffi
2

p z

� � !
dz ¼ 0

where the contour is the infinite semicircle enclosing the upper

half of the complex plane, an analytic region. Performing

the integration generates the result:

ðω¼1

ω¼�1

1

v2
1� cos

Tvffiffiffi
2

p
0
@

1
Adv

¼ lim
R!1, ε!0

2

ðv¼R

v¼ε

1

v2
1� cos

Tvffiffiffi
2

p
0
@

1
Adv

¼ lim
ε!0

�
ðθ¼0

θ¼π

1

εeiθð Þ2 1� e

i Tffiffi
2

p εeiθ

 !0
BBB@

1
CCCAiεeiθdθ

2
6664

3
7775 ¼ Tffiffiffi

2
p π
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Finally, then the total power in the unfiltered noise of a

DSMT system is given by:

PM ¼ Kz � 2ωs �
ffiffiffi
2

p
� N � 1

N

� �
� σ2a0 � T þ Kz � 2ωs �

σ2a0
N

 !

Note that the parameters Kz,ωs, and σ2a0 are fixed by the

original system design and are not involved in the design

of the DSMT system. Note, also, that the second term in PN

represents the power in a random DC bias and is dependent

only on N.

5 Total Power in the Filtered Output Noise

Optimally, the output signal of the DSMT system is filtered

by an ideal, unity gain, low-pass filter whose pass band is

equal to the system pass band, in which case, the total power

remaining in the noise signal, after filtering, is given by:

Pf ¼
ðω¼ωs

ω¼�ωs

SN ωð Þdω ¼ Kz
2

π

� �
N � 1

N

� �

�σ2a0
ðω¼ωs

ω¼�ωs

dω

ðv¼ωþωs

v¼ω�ωs

1

v2
1� cos

Tvffiffiffi
2

p
	 


dv

þKz

σ2a0
N

 ! ðω¼ωs

ω¼�ωs

ðv¼ωþωs

v¼ω�ωs

δ vð Þdvdω

Interchanging the order of the integrations, the filtered noise

power can be written as:

Pf ¼ Kz
4

π

0
@
1
A N � 1

N

0
@

1
A � σ2a0 � �1þ cos

ffiffiffi
2

p
Tωs

� �� ��

þ ffiffiffi
2

p
Tωs

� � ðx¼ ffiffi
2

p
Tωsð Þ

x¼0

sin x

x
dx� 2

ðx¼
ffiffi
2

p
Tωs
2

� �

x¼0

sin x
sin x

x
dx

9>>=
>>;

þKz � 2ωs �
σ2a0
N

0
@

1
A

Note that the second term, the DC term, has not been

changed by the filter and is controlled by N and that the

first term is controlled by N and
ffiffiffi
2

p
Tωs ; therefore, an

obvious design methodology is to first choose N to reduce

the effect of the DC random bias and then choose
ffiffiffi
2

p
Tωs to

reduce the effect of the non-DC noise. In examining the

effect of filtering on the output noise, the DC random bias

term will be ignored. The non-DC total power terms for the

unfiltered and filtered noise powers are defined as:

P
0
M ¼ Kz � 2ωs �

ffiffiffi
2

p
� N � 1

N

� �
� σ2a0 � T

P
0
f ¼ Kz

4

π

0
@
1
A N � 1

N

0
@

1
A � σ2a0 �(

�1þ cos
ffiffiffi
2

p
Tωs

� �� �þ ffiffiffi
2

p
Tωs

� �
ðx¼ ffiffi
2

p
Tωsð Þ

x¼0

sin x

x
dx� 2

ðx¼
ffiffi
2

p
Tωs
2

� �

x¼0

sin x
sin x

x
dx

9>>=
>>;

6 A Measure of the Effectiveness
of the DSMT

A measure of the effectiveness of using a DSMT system

without filtering and with filtering is how the signal-to-noise

ratio changes when these methods are used. The total power in

the output signal y(t) of the idealized nominal system with a

white noise input is easily seen to be Py ¼ Kz � 2ωs. If a real

system is chosen at random, the total power in the noise due to

the random parameter perturbation Δa0 is easily shown to be

PΔy ¼ Kz � 2ωs � σ2a0 . The signal-to-noise ratio is given by:

Py

PΔy
¼ Kz � 2ωs

Kz � 2ωs � σ2a0
¼ 1

σ2a0

The total power in the unfiltered DSMT noise signal is:

PM ¼ Kz � 2ωs �
ffiffiffi
2

p
� N � 1

N

� �
� σ2a0 � T þ Kz � 2ωs �

σ2a0
N

 !

Apparently, the DSMT reduces the random DC bias by

a factor of N and, examining the PSD in Equation (3),

the DSMT spreads the rest of the noise over the infinite

spectrum. Comparing the total noises of a single real system

and an unfiltered DSMT system, it is seen that

PM ¼
ffiffiffi
2

p
N � 1ð ÞT þ 1

N

	 

PΔy

which implies that if T < 1ffiffi
2

p , the noise power in the unfil-

tered DSMT system will be less than the noise power in a

single real system. To examine how filtering further reduces

the output noise power, the partial noise terms P
0
M and P

0
f are

compared by examining the ratio:
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P
0
f

P
0
M

¼
�1þ cos

ffiffiffi
2

p
Tωs

� �� �þ ffiffiffi
2

p
Tωs

� � ðx¼ ffiffi
2

p
Tωsð Þ

x¼0

sin x

x
dx

ffiffiffi
2

p
Tωs

� � � π
2

�
�2

ðx¼
ffiffi
2

p
Tωsð Þ
2

x¼0

sin x sin x
x dx

ffiffiffi
2

p
Tωs

� � � π
2

As an example, let
ffiffiffi
2

p
Tωs ¼ 1

10
, then

P
0
f

P
0
N

ffi
ffiffi
2

p
T ωs

π ffi 0:0318

which represents an approximate 15 db decrease in the non-

DC component of the system noise. If the switching fre-

quency is denoted f and if the maximum frequency in the

system output signal is denoted fs, then:

f ¼ 1

T
¼ 10

ffiffiffi
2

p
ωs ¼

ffiffiffi
2

p
� 20π � f s ffi 88:876 � f s

Thus, a switching frequency of about 90 times the maximum

frequency in the output signal, reduces the power in the non-

DC component of the DSMT noise by 15 db.

7 Conclusions

In a series of earlier papers, the authors introduced the

concept of a dynamic system matching technique

(DSMT), as a generalization the dynamic element

matching technique which is used in the design of elec-

tronic systems. In those papers, heuristic analyses and a

simulation were used to argue that the DSMT can be used

to reduce the effects of noise in a system output due to

manufacturing errors. In this paper, a DSMT technique was

developed for an idealized nominal system with a white

noise input. A detailed analysis of the noise in the output of

that DSMT system was generated which allows a compari-

son of the noise powers in a non-DSMT system, an unfil-

tered DSMT system and a filtered DSMT system. In

particular, detailed analytical expressions for the power

spectral densities and the total powers of the noises in the

unfiltered and filtered outputs of a DSMT system were

developed. These results show conclusively that for the

idealized system with a white noise input, the DSMT

reduces the noise power and that filtering the DSMT output

further reduces the noise power.
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