
Implementation of an Efficient Library
for Asynchronous Circuit Design with Synopsys

Tri Caohuu and John Edwards

1 Introduction

As the needs of the industry demand ever more complex

integrated circuits, it becomes more difficult to supply a

single uniform clock signal to the entire device. Currently,

the transistors in a clock tree often use an amount of power

comparable to the amount used by the transistors

implementing the logic. The tree also occupies a large frac-

tion of the chip’s area. The problem of clock skew requires

elaborate and costly solutions, such as placing multiple

phase-locked loops on the same chip.

The alternative is asynchronous circuitry: digital logic

without clock signals. Instead of communicating at regular

and defined intervals, asynchronous interfaces use control

signals to indicate when they are ready to process data.

Asynchronous storage elements do not load new values

when a clock ticks. Rather, data signals are accompanied

by control signals, which notify storage elements when the

data signals are valid and should be stored.

Industry standard tools, such as those from Cadence and

Synopsys, are designed to deal with problems that arise in

synchronous workflows. Timing tools for synchronous

circuits tend to focus on solving long paths, but asynchro-

nous circuits are subject to a broader range of timing

problems. Common test methods, such as adding scanning

to the registers, do not work for asynchronous circuits, which

do not have clocked registers.

The asynchronous design methods also pose challenges

to integration. The models of delay used in asynchronous

circuits are rarely needed for circuits that are constrained

by clocks. There is a need for special primitives for

encoding data such as used in dual-rail protocols[1]

and ternary logic[2]. Integrating these unique features

with synchronous tools would be difficult. It would be

more effective to begin with asynchronous workflows

comparable to the synchronous ones.

In order to use common tools to design asynchronous

circuitry, the components used by such circuits first must

be integrated with the tools. The first step is to create a

design library containing these components.

2 Asynchronous Library

This library should contain basic asynchronous components

such as the Muller C-element, join, fork, mux and demux[1].

It can be incorporated into complex digital designs within

common EECAD software. This makes it possible to

develop a workflow for creating asynchronous circuits with

these design tools.

The main feature of the library is a Muller C-element, a

simple sequential device often used to control asynchronous

pipelines. It has two input signals and one output. When both

inputs are high, the output rises and remains high until both

inputs are low. The output falls and stays low until

both inputs rise again. The output does not change when

the inputs are different. It can be used to represent a condi-

tion that depends on two prerequisite conditions.

C-element implemented as custom cell will obviously

be more efficient than those constructed from logic gates.

The implementation chosen was the symmetric static

CMOS version, which uses 6 transistor pairs and is more

efficient [3] than other static versions.

The transistors gated by the inputs (A and B) are a pull-up

and pull-down network. The behavior of the four transistors

in a network depends on the transistor gated by the output

(C). If it is open, the network is equivalent to two transistors

in series. If it is closed, the network is equivalent to two

transistors in parallel. Depending on the value of C, the pull-

up network will be in series and the pull-down network

in parallel, or the other way around. They will behave as

either a NAND gate or a NOR gate. The final two transistors

are an inverter, changing the function to AND or OR.

T. Caohuu (*) � J. Edwards
Department of Electrical Engineering, San José

State University, San José, CA, USA

H. Selvaraj et al. (eds.), Progress in Systems Engineering: Proceedings of the Twenty-Third International
Conference on Systems Engineering, Advances in Intelligent Systems and Computing 1089,

DOI 10.1007/978-3-319-08422-0_68, # Springer International Publishing Switzerland 2015

465



This cell was created on a 45 nm process. Transistors with

a high threshold voltage were chosen, to minimize leakage

current. The widths of the pull-up PMOS transistors were set

at 480 nm, and the pull-down NMOS transistors at 240 nm.

These were determined by the constraints of the desired cell

size. After trying various sizes for the inverter transistors,

widths of 480 nm for PMOS and 355 nm for NMOS were

found to give approximately equal rise and fall times for a

variety of loads.

To minimize cell area, the transistors were ordered using

an Euler path technique [5].

The cells were converted to a netlist, which was then

characterized by running simulations to measure the cells’

electrical characteristics. Their logical and timing behaviors

can be determined by this process. The characterizer

produces three formats Verilog, VHD, and Liberty. The

Liberty format is compatible with synthesis tools, such as

Synopsys Design Compiler, and it can be used as a target

when synthesizing asynchronous designs. The Verilog and

VHDL designs also include timing information, and can be

invoked from those languages when running simulations.

This allows the accurate testing of asynchronous designs

before and after synthesis.

Fig. 1 C-element schematic

Fig. 2 Library workflow

466 T. Caohuu and J. Edwards



3 Test Designs

3.1 Asynchronous FIFO

To test the library’s performance, the C-element was used as

part of an asynchronous FIFO. This FIFO was compared

with a similar synchronous FIFO to investigate the relative

merits of synchronous and asynchronous circuits for this

application. The FIFO is practical for this kind of test,

since it is commonly used, particularly in asynchronous

circuits. One application is buffering data between different

clock domains. An asynchronous FIFO could be used within

a mostly synchronous IC.

This FIFO was based on the Muller circuit, a basic

asynchronous design pattern. This is a pipeline where prop-

agation is controlled by Muller C-elements.[1] The stages of

the pipeline are separated by clock-less latches. Between the

latches is only combinational logic. If there is no logic,

data simply propagates through, and the pipeline is a FIFO.

C-elements drive the control signals, a simple request and

acknowledge pair.

It is important that the data signals and the control signals

remain synchronized. If there are logic blocks, there must be

delays in the control signals that use the same amount of

time as the logic.[1]

The pipeline chosen in this design uses a push protocol:

the request signal indicates to the next stage that data is

available, and the acknowledge signal indicates to the

sender that the data is being read. Each of the latches

should store a data word whenever the previous latch is

sending one and the next latch has already received the one

currently stored.

In the push protocol, the request signal indicates to the

next stage that data is available. In a pull protocol, it would

indicate to the previous stage that there is room for more

data. The C-element can be used in a similar manner to

control a pull pipeline.

In the push protocol, the request signal is raised to push

data to the next stage, and the acknowledge signal is raised

once that data is stored in the next latch. In a 2-phase

protocol, the request signal falls when the next data word

is ready, and the acknowledge signal falls in response.

Since data is sent on both transitions, it must be stored on

both transitions of the C-element’s output. This is done with

a double edge-triggered flip-flop, which is built by combin-

ing positive and negative edge-triggered flip-flops and using

a multiplexer to select the proper data value. Yun, Beerel,

and Arceo point out [4] the complexity of the control

circuitry is reduced at the expense of requiring more space

for data storage.

Several delays had to be inserted in each pipeline stage

to meet timing requirements. The acknowledge signal sent to

the previous stage must be delayed until the register has

finished loading the data, because once the acknowledgment

is sent, the data signals could change, and a hold violation

would occur. Similarly, the request signal to the next stage

must be delayed until the register’s output has stabilized.

Setup violations could occur if the enable signal from the

C-element arrived too soon after a transition on the data bus.

This solution would be to place a delay block between the

C-element and the register. However, this condition was not

found to occur during simulations, because the C-element’s

internal delay was already longer than the setup time. Hence,

no delay block was needed.

In case of a pipeline, additional delay proportional to

the logic delay for each processing stage is added to the

enable signal.
Once appropriate delay blocks are chosen, the stage

modulewill adhere to the protocol, evenwhen it is incorporated

into a larger design. The asynchronous timing constraints can

be met by the library internally, without any other action

from the library user or changes to the EDA software.

The FIFO’s depth can be changed by adding or removing

stages. For this, depths from 4 to 24 were studied. They were

implemented as VHDL entities and synthesized. During

DataDataData

Data in Data out

pos. edge
8-bit FF

neg.edge
8-bit FF

enable

ReqReqReq
C C C

Ack Ack Ack

5
MUX

LatchLatchLatch

ENENEN

Fig. 3 Async FIFO and Latch Details

Implementation of an Efficient Library for Asynchronous Circuit Design with Synopsys 467



synthesis, the C-element was provided by the asynchronous

library and logic by a set of standard cells.

3.2 Synchronous FIFO

In this case study, a shift register based design was used for

the synchronous FIFO. While a memory-based design would

have much lower latency, it would differ too much from

the asynchronous design architecturally for a more meaning-

ful comparision.

Like the asynchronous design, it contained identical

stages, and data words propagated from one stage to the

next. The stages communicate with push signals, which

indicate that a stage has valid data to send, and stop signals,

which indicate that a stage is unable to receive data. As in the

asynchronous FIFO, these signals determine whether a

stage’s register stores or holds. However, these registers

are flip-flops, all driven by a single clock signal.

The synchronous FIFO’s depth can also be changed by

adding more stages. But the stop signals run the entire length

of the pipeline, making a longer path if there are more stages.

The clock frequency must be reduced to compensate.

This FIFO was also implemented in VHDL and

synthesized, using as a synthesis target the same standard

cell library used for the asynchronous FIFO.

Fig. 4 Block diagram of

synchronous FIFO

Table 1 Comparison data for depth 8

Synchronous Asynchronous

Maximum throughput 323 MHz 298 MHz

Latency 24.8 ns 12.0 ns

Area 709.0 μm2 975.2 μm2

Power (max throughput) 6.300 mW 7.471 mW

Power (200 MHz) 6.141 mW 5.907 mW

Power (100 MHz) 6.038 mW 4.305 mW

Power (40 MHz) 6.096 mW 3.406 mW

Fig. 5 Area vs. FIFO depth

468 T. Caohuu and J. Edwards



Fig. 6 Power usage vs. throughput at various FIFO depths

Fig. 7 Latency vs. FIFO depth

Implementation of an Efficient Library for Asynchronous Circuit Design with Synopsys 469



4 Result Comparison and Analysis

The FIFO designs of various depths were compared on the

criteria of minimum latency, maximum throughput, and

area. The power usage was also measured at various

throughput rates. The measurements were produced during

the synthesis step. The synthesized designs were then tested

to determine maximum performance.

The circuits’ performance was quantified by measuring

throughput and latency. Throughput was defined as the num-

ber of data blocks processed per second. Latency was

defined as the time required for one data block to pass

from one end of an empty FIFO to the other. For the asyn-

chronous design these were measured by simulations, which

used the HDL simulation version of the library.

When taking power measurements of asynchronous

designs, the throughput was controlled by setting the

switching rate on the write-side request signal. The

switching rate of the read-side acknowledge signal was the

same, because that is necessary to prevent filling and stalling

the pipeline.

The synchronous FIFO clock rates were set to the highest

values that did not cause timing violations. The throughput

was controlled by the fraction of time the push signal was

high. The latency was one clock cycle per stage.

Area varies linearly with depth for both designs. This is to

be expected, since both are repetitions of a stage. The

linearized curve for area used in the synchronous FIFO

rises with a smaller coefficient and uses less area at any

depth. This is to be expected, since the asynchronous FIFO

has more complex control circuitry. The latency is linear for

the asynchronous FIFO, but the synchronous FIFO shows a

quadratic dependency.

The asynchronous FIFO’s maximum throughput is

independent of depth. The synchronous FIFO has an inverse

relationship between depth and throughput. Note that they

are equal at a depth of 10.

The asynchronous design saves power more effectively

when utilization is less than 100 %. At a depth of 8, it

required 45 % less power when idle and 25 % less when

half idle. The asynchronous design does not show an advan-

tage in power at depths of 16 or more.

5 Conclusions

We have demonstrated that the library performs successfully

as indicated by the results obtained. We are able to invoke

the Library at the HDL level similar like the case of other

synchronous primitive.

While the chosen synchronous design does not reflect the

most effective design, the throughput of the asynchronous

is more or less constant with respect to the FIFO depth.

Moreover, at a smaller depth the asynchronous design

show clearly some power advantage. It would be worthwhile

to develop more asynchronous primitive components to

accommodate the design of asynchronous circuits of higher

level of complexity.

References

1. Sparsø, J.; Asynchronous Circuit Design: A Tutorial; Technical

University of Denmark; p.16-18, March 2006

2. Nagata, Y.; Mukaidono, M.;, "Design of an asynchronous digital

system with B-ternary logic," Multiple-Valued Logic, 1997.
Proceedings., 1997 27th International Symposium on; pp.265-271;
May 1997

Fig. 8 Throughput vs. FIFO depth

470 T. Caohuu and J. Edwards



3. Shams, M.; Ebergen, J.C.; Elmasry, M.I.;, "Modeling and comparing

CMOSimplementationsof theC-element,"VeryLargeScale Integration
(VLSI) Systems, IEEE Transactions on, vol.6, no.4; p.564; Dec. 1998

4. Yun, K., Beerel. P., Arceo, J.; “High-Performance Asynchronous

Pipeline Circuits”, ASYNC ’96: Proceedings of the 2nd International

Symposium on Advanced Research in Asynchronous Circuits and
Systems; 1996

5. Roy, K. “Optimal Gate Ordering of CMOS Logic Gates Using Euler

Path Approach: Some Insights and Explanation”, Journal of Com-
puting and Information Technology” vol. 15. No. 1 pp. 85-92, 2007

Implementation of an Efficient Library for Asynchronous Circuit Design with Synopsys 471


	Implementation of an Efficient Library for Asynchronous Circuit Design with Synopsys
	1 Introduction
	2 Asynchronous Library
	3 Test Designs
	3.1 Asynchronous FIFO
	3.2 Synchronous FIFO

	4 Result Comparison and Analysis
	5 Conclusions
	References


