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1 Introduction

Network utility maximization (NUM) problem is stated as a

problem of maximizing concave objective function over a

set of linear constraints [9]. The objective function

aggregates the “utility” of a collection of flows, which is a

nondecreasing function of the amount of flow transmitted

between a source and sink nodes. Flows share common links

along their paths, and total flow allocation in each link is

limited by a fixed capacity.

The formulation of NUM problem is as follows. Let F be

the set of flows (or commodities), j F j ¼ m. For each flow

k 2 F let xk � 0 represent the transmission rate assigned to

it. The network consists of L links, each of capacity cl > 0.

Each flow passes through a subset of links, which is

expressed by a binary m � L matrix A ¼ [Akl], defined as:

akl ¼ 1 iff. kth flow passes through lth link. For each flow we

have utility function uk : ℝ ! ℝ, which assigns utility (pay-

off) to rate xk of a flow. The goal is to maximize the sum of

all utilities:

max
x

f
X
i2F

uiðxiÞ : Ax � c, x � 0g: ð1Þ

An instance of NUM consists of a set of flows F, set of
functions ui for each i 2 F, matrix A and vector c.

While NUM problem, formulated in this way, can be

used to model performance of transmission control

mechanisms in computer networks, there are also several

related issues that can be captured within this framework.

In this paper we focus on the network design problem from

the perspective of utility maximization. The basic model

(1) assumes fixed flow assignment, expressed in terms of

matrix A. This is reasonable, since in typical IP networks

routing problem is separated from transmission rate control

problem. One may ask however, whether it is possible to

solve these problems jointly (in an efficient way)? Matrix

A can be seen as a result of transformation of input set

consisting of source-destination pairs into a flow-to-link

assignment. We consider the problem of selecting a matrix

that represents such paths for each flow, that the

corresponding NUM problem has the greatest optimal solu-

tion over all possible sets of paths.

1.1 Problem formulation

We state a mixed-integer programming formulation of the

considered problem as follows. Consider a complete graph

G on n vertices, V ¼ {1, . . ., n}, with capacity function

c :V�V!ℝþ [ f0g. Let I ¼ fðs1, t1Þ, ðs2, t2Þ, . . . , ðsm, tmÞg
be a subset of V � V. Given is a set of functions uk : ℝ ! ℝ,

k 2 F ¼ {1, . . ., m}.

Let xk � 0 be a real variable denoting the rate of kth flow,
let yijk be binary variable, assuming the value 1 if and only if

kth flow uses edge (i, j) on its path from source sk to destina-

tion tk, and value 0 otherwise. We wish to maximize the

following objective function:

Uðx, yÞ ¼
X
k2F

ukðxkÞ ð2Þ

subject to constraints:

8k2F 8i2V
Xn
j¼1

yijk �
Xn
j¼1

yjik ¼
1, if i ¼ sk,

�1, if i ¼ tk,

0, otherwise,

8><
>: ð3Þ

8ði, jÞ2V�V

X
k2F

xkyijk � cði, jÞ, ð4Þ

8k2F xk � 0: ð5Þ
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8i, j,k2V�V�F yijk2f0, 1g, ð6Þ

We call this problem Utility-Maximizing Network

Design problem (UMND). The problem can be seen as

maximizing over all routing matrices A in (1), constrained

to represent m simple paths between given set of source-

destination node pairs I, in addition to selecting the best

transmission rates x. The underlying connection structure

can be, in general, an arbitrary graph, since capacity function

c may assign values of zero to some edges.

2 Related works

Problems of maximizing the aggregate utility of flows in

network are called network utility maximization (NUM)

problems [2], [3], [6], [9]. NUM is related to the well-

known maximum multicommodity flow problems [10]. In

the latter we are given a set of k source-destination pairs

(each representing a single commodity) with a demand Dk,

and the goal is to find flow assignment function for each pair,

such that link capacities are not exceeded and the flow

conservation law is preserved on each node, and the com-

mon fraction of all routed commodity demands is

maximized. In NUM demands are not fixed, but expressed

using utility functions.

Combinatorial problems in which we are concerned with

selecting subgraphs from a family of graphs are usually

called network design problems. One commonly encoun-

tered problem in this area is called buy-at-bulk network

design [1]. In this problem we are given a set of source-

destination pairs in an undirected graph with given edge

lengths, and we need to connect these pairs of nodes by

purchasing the capacity c of any edge at some cost f(c) per
unit of length. The goal is to purchase sufficient amount of

capacity for each edge so that it is possible to route total

demand di between ith source-destination pair, while

minimizing the cost paid. This problem is similar to

UMND in the aspect that the cost is usually modeled using

concave function f for purchasing capacity, which reflects

the fact that increasing allocated resource for larger values

yields reduction in cost.

In [7] a network design problem is formulated in which

we look for set of shortest paths between all vertex pairs with

total weights no greater than given threshold. It is

established that such problem is NP-complete. In [12] a

similar problem of joint routing and rate control to the one

considered in this paper was formulated, and for general

utility functions it was shown to be NP-complete. Here we

consider only the class of iso-elastic utility functions, and

show NP-completeness for such restricted class of problems.

Moreover, we indicate that for such class of utility functions

the randomized rounding [4], [11], technique may lead to a

constant-factor approximation algorithm.

3 Main Results

It is easy to see that for an optimal solution we should assign

to each flow the widest simple path between source and

destination (this is such a path on which the minimal capac-

ity of edges is maximized, and there are no repeated nodes).

In case m ¼ 1 this is easy to find just by computing maxi-

mum spanning tree in given graph, and restricting it to the

path between s1 and t1. However, for m > 1 the paths

resulting in highest bandwidth (and highest utility) for dif-

ferent flows may not be disjoint, which would violate capac-

ity constraints.

For general utility functions ui the problem appears to be

difficult to solve. However, in practical applications, such as

in computer networking, we are usually interested in utility

functions which allow for fair allocations [8]. Henceforth,

we restrict the choice of utility function to the family of iso-

elastic functions:

uiðxiÞ ¼ wi
1

1� γ
x1�γ
i γ > 0, γ 6¼ 1,

wilogxi γ ¼ 1,

8<
: ð7Þ

where γ 2 (0, 1] is a parameter. Such form of utility has the

property that each flow i 2 F receives a share of capacity

proportional to its weight wi. If a link of capacity c is the

bottleneck link for a collection of flows F, then maximal

value of ∑i 2 Fui(xi) for any i 2 F is:

x∗i ¼ c
w
1=γ
iX

k2F
w
1=γ
k

:

If in addition to the network size n, also the number of

flows m is given as a part of the input, then the utility-

maximizing network design problem is very likely to be

intractable.

Theorem 1. Problem UMND is NP-complete.

Proof. We reduce the BIN-PACKING problem [5] to

UMND with iso-elastic utility functions with parameter

γ ¼ 1. In the decision version of BIN-PACKING problem

we are given a set of items U ¼ { a1, a2, . . ., am}, each with

integer size w(ak) ¼ wk > 0, and two integers B, K > 0,

and we ask whether it is possible to pack all the items into

K bins of size B each.

Given an instance of BIN-PACKING, we construct an

instance of UMND as follows. Each ai 2 U corresponds to
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one source node si. LetC ¼Pm
i¼1

wi. There is a central layer of

K edges of capacity B, such that each of m source nodes is

connected with each of these K edges via an edge of capacity

wi, (thus there are K outgoing edges from each source node

si). Each of K edges from the central layer is connected to a

single edge of capacity C. The other endpoint of this edge is
the terminal node for all m flows. This is illustrated in

Figure 1.

Each route from a source node to the terminal node must

pass through exactly one of K edges of capacity B in the

central layer and through the single terminal edge of capac-

ity C. If the latter edge were a bottleneck, its capacity must

have been completely filled, and since the utility functions

are iso-elastic, each flow would be assigned a fraction wi of

its capacity. Consequently, the optimal solution of UMND

problem would have the value:

v∗ ¼
Xm
i¼1

wilogwi

We claim that such flow assignment is achieved if and

only if the given instance of BIN-PACKING problem has a

solution. To see this, suppose that all items U can be packed

into K bins of size B. Then each flow of rate xi ¼ wi would

pass through one of the central layer edges, and then through

the terminal edge of capacity C, contributing to filling it

completely. On the other hand, if not all items from U fit

into K bins, the only way to route all flows through central

layer would be to reduce the rate of at least one flow below

the corresponding value wi. But that would result in a solu-

tion of UMND strictly less than v∗.
Consequently, UMND is NP-hard. Moreover, its decision

version obviously belongs to NP, since given a

routing matrix and transmission rates, we can easily verify

feasibility and evaluate the value of objective function in

polynomial time, using formulation (2)–(6). Then it remains

to compare the value of objective with a given threshold

value. □

3.1 Linear-factor approximation algorithm

Consequently, we are interested in designing polynomial

time approximation algorithms for UMND. Perhaps one of

the simplest heuristics is based on finding the widest path for

each flow separately, followed by squeezing the flows appro-

priately in order to fit into all links whose capacities were

violated. This is summarized as Algorithm 1. As shown in

Theorem 2 such algorithm never returns a solution that is

less than a factor Oð1mÞ of optimal value.

Theorem 2. Algorithm 1 is Oð1mÞ-approximate for UMND.

Proof. Let (xi
∗)i 2 F be rates in optimal solution of UMND,

and let OPT be the value of optimal solution. Let (xi)i 2 F be

rates in a solution produced by Algorithm 1, and let υ be the
value of this solution. Let Pj denote the path computed by

Algorithm 1 for realizing flow j (i.e., set of edges that make

up this path).

For each flow i 2 F in solution given by Algorithm 1, let

e(i) denote the bottleneck edge of i. Observe, that if e(i) is a

bottleneck edge for some flow i in the solution produced by

Algorithm 1, it must be that xi
∗ � c(e(i)), as the Algorithm 1

in its first phase finds the widest edge for flow i, uncon-

strained by the presence of other flows, so no higher alloca-

tion for i can be in optimal solution. But since e(i) is a

bottleneck edge, some subset of flows contribute to filling

its capacity:
P

j:eðiÞ2Pj

xj ¼ cðeðiÞÞ (this sum always includes

flow i). In the special case this summay include all flows, if e

(i) happens to be the bottleneck for all flows. Thus we have:X
j2F

xj �
X

j:eðiÞ2Pj

xj ¼ cðeðiÞÞ � x∗i ,

which, after summing over all i 2 F, gives:X
i2F

X
j2F

xj ¼ m
X
j2F

xj �
X
i2F

x∗i : ð8Þ

Let M ¼ max(i, j) 2 V �V c(i, j). Since each uj(xj) for xj
2 [0, M], can never assume value greater than wj

1
1�γM

1�γ ,

we can write: X
j2F

ujðxjÞ � α
X
j2F

xj,

where α ¼ min
i2F

fwi
1

1�γM
�γg, and, consequently from (8):

~υ ¼
X
j2F

ujðxjÞ � α

m

X
j2F

x∗j :

s1

s2

s3

s4

B

B

B

C t

Fig. 1. Example network resulting from reducing instance of BIN-

PACKING for m ¼ 4 items and K ¼ 3 bins of size B.
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Since for all j 2 F, αx∗j þ α � ujðx∗j Þ, we obtain:

~υ � α

m

X
j2F

ujðx∗j Þ � α ¼ α
1

m
OPT � α ¼ Oð1

m
ÞOPT: □

To see that the bound of 1m is strict, consider the network of

m parallel links, of which the first one has capacity C, and the
remaining m � 1 of them have capacities C �ε each, for

some small ε > 0 (see Figure 2). There are m identically

weighted flows originating from common node s and

terminating at common node t (other edges have sufficiently

high capacities to never be bottlenecks). Algorithm 1 would

assign all flows to the first link, as it greedily looks for the

widest paths for each of them separately. The value of

solution would be
P
i2F

uiðC=mÞ ¼ mγ�1
P
i2F

uiðCÞ. Optimal

solution would consist of each flow assigned to a separate

link, thus giving solution ∑i 2 F ui(C) �ε0, where ε0 > 0 can

be arbitrarily small.

3.2 Constant-factor randomized
approximation algorithm

It is possible to obtain a better algorithm by allowing random-

ization. The idea is to use the the mixed-integer program

capturing UMND problem, and to relax integrality

constraints. This allows to obtain an upper bound on the

optimal solution in polynomial time, by solving the relaxa-

tion. Although we allow only for a single path for each flow,

after the relaxation, the fractional solution might split a flow

among several paths. However, such solution can be treated as

a probability distribution on paths for a given flow. Subse-

quently, we can apply randomized rounding of such solution.

Since constraints (4) are nonlinear, we first need to refor-

mulate it to an equivalent linear program. Let us introduce

variables z ¼ [zijk], and substitute (4) by the following set of
constraints, to make sure that zijk ¼ xryijk:

8i, j,k2V�V�F zijk � Cyijk, ð9Þ

8i, j,k2V�V�F zijk � xk, ð10Þ

8i, j,k2V�V�F zijk � xk � Cð1� yijkÞ, ð11Þ

8i, j,k2V�V�F zijk � 0: ð12Þ

Here C ¼ maxi, j c(i, j). A path chosen for a flow is

represented by a set of selected edges, that is a set of indices

of variables, such that ysku1 ¼ yu1u2 ¼ . . . ¼ yuqtk ¼ 1.

Observe, that constraints (3) guarantee that for each flow

k there would be exactly one path selected.

Algorithm 1

s t

C

C − ε

C − ε

C − ε

Fig. 2. Example network illustrating the worst case instance for Algo-

rithm 1.
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By relaxing constraints (6) to yijk � 0 we obtain a linear

program. Let ð~x k,~y ijkÞ, for i, j, k 2 V � V � F, denote an

optimal fractional solution. Due to the constraint (3), for

each flow k the sum of values of edge selection decision

variables ~y ijk must be equal to 1. Since ~y ijk may now assume

fractional values in the range [0, 1] that sum up to 1, we may

use these values as a probability distribution of selecting a

path among a subset of paths between sk and tk, that frac-
tional solution would contain.

However, there is a concern that with nonzero probability

the rounded solution may be infeasible, due to the violation

of constraint (4). To overcome this, we may shrink the

values of rates obtained from solving linear relaxation by

multiplying them by a common factor. This would allow us

to bound the probability of constraint violation. This idea

leads to the Algorithm 2.

Proposition 1. For any γ 6¼ 1, Algorithm 2 returns a feasi-

ble solution for UMND with nonzero probability. Such a

solution is no worse than eγ�1 times the optimal solution.

Proof. The Algorithm 2 selects for each flow a path from the

source sk to destination tk, by randomly forking on each

edge, with probability given by fractional solution ~y uvk.

For each flow k, a particular vertex v is added to the currently

constructed path with conditional probability:

Pr½edgeðu, vÞ is selectedjcurrent path include vertex u�,

computed in step 5. In order to show that a solution

constructed this way can be feasible, we calculate the proba-

bility of violating constraint (4).

Let Yk
ði, jÞ2f0,~x kg be a random variable with

Pr½Yk
ði, jÞ ¼ ~x k� ¼ ~y ijk. Consider a random variable

Y ¼ P
k2F

Yk
ði, jÞ. Its expected value is clearly

μ ¼ P
k2F

~x k~y ijk � cij. We apply Chernoff bound to (4) includ-

ing rounded solution yijk 2 { 0, 1}. For any (i, j) 2 V � V

and any δ > 0 it holds that:

Pr½
X
k2F

~x kyijk � ð1þ δÞcij� ¼ Pr½
X
k2F

xkyijk � cij�

� eδ

ð1þ δÞð1þδÞ

 !cij

,

where xr ¼ 1
1þδ~x k is rate allocated by Algorithm 2.

Let us denote C ¼ min(i, j) 2 V �V cij. Then:

Pr½
X
k2F

xkyijk � cij� < eδ

ð1þ δÞð1þδÞ

 !C

¼ η: ð13Þ

The rounded solution generated by Algorithm 2 is feasible if

all constraints in set (4) are satisfied. From (13), any con-

straint concerning edge (i, j) is satisfied with probability at

Algorithm 2
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least (1 � η). Since there can be up to n2 constraints, the

probability that all of them are satisfied simultaneously

cannot be less than ε ¼ ð1� ηÞn2 . We show that ε > 0. By

taking logarithm of (13) we obtain:

log
eδ

ð1þ δÞð1þδÞ ¼ log η1=C,

and for δ � e � 1:

log η1=C ¼ δ� ð1þ δÞlogð1þ δÞ � logð1þ δÞðδ� 1� δÞ

¼ log
1

1þ δ
:

Thus fixing δ ¼ e � 1 (see step 9 of Algorithm 2) we get

log η1=C ¼ log 1
e, and consequently ε � ð1� e�CÞn2 , which is

greater than zero.

Finally, we evaluate the objective function, given

solution (xk)k 2 F returned by Algorithm 2, and under the

assumption that uk are of the form (7). SinceP
k2F

ukð~x kÞ �
P
k2F

ukðx∗k Þ ¼ OPT, we have:

X
k2F

ukðxkÞ ¼
X
k2F

ukð1
e
~x kÞ ¼ eγ�1

X
k2F

ukð~x kÞ � eγ�1OPT:□

Table 1 contains results of computational experiments for

several randomly generated input data sets, comparing per-

formance of two presented approximation algorithms:

values of solutions and corresponding running times (in

secs.). Last two columns contain value of optimal solution

(OPT) and running time of branch and cut algorithm from

CPLEX solver; n is the number of nodes, d is the number of

edges, and m is the number of flows.

4 Conclusions

The utility-maximizing network design problem with iso-

elastic utility functions has been shown to be NP-complete.

Approximate solutions can be obtained in polynomial time

deterministically, but presented study suggests that random-

ization may yield better results. As Algorithm 2 may fail to

give a feasible solution, further investigations are needed to

determine the required number of runs.
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