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1 Introduction, the State Feedback (SF)

It is a well known methodology to use the state variable

representations (SVR) of linear time invariant (LTI) single
input - single output (SISO) systems [1]. The SVR proved to

be excellent tool to implement both LQR (Linear system -

Quadratic criterion - Regulator) control and pole placement

design. The practical applicability required to introduce the

observers, which make this methodology widely applied

even for large scale and higher dimension plants [3].

Thousands of theoretical considerations mostly concentrate

on the irregularities and special structures in the SVR

appearing and much less publications deal with the model

error properties of these systems.

It is possible to find a proper new way to discuss and

investigate the the special properties and limitations of the

classical state-feedback (SF), state-feedback/observer (SFO)

topologies if someone replaces the SVR by their transfer

function representations (TFR) [2].
Consider a SISO continuous time (t) LTI dynamic plant

described by the SVR

P ¼ B

A
ð1Þ

Here P is the TFR of the open-loop system with the

numerator and denominator polynomials

BðsÞ ¼ sn þ b1s
n�1 þ � � � þ bn�1sþ bn ð2Þ

AðsÞ ¼ sn þ a1s
n�1 þ � � � þ an�1sþ an ð3Þ

If we want to express the operation of the SF by

equivalent scheme using TFR forms, Fig. 1 can be used,

where the feedback regulator Rf ¼ Kkis obtained from the

basic equation (complementary sensitivity function, CSF) of
the closed-loop

TryðsÞ ¼ kr BðsÞ
RðsÞ ¼ kr BðsÞ

AðsÞ þ KðsÞ ¼
kr P

1þ Kk P
ð4Þ

where kr is obtained by requiring that the static gain of Try
should be equal to one. The calibrating factor kr is necessary
because the closed-loop using SF is not an integrating one.

Equation (4) clearly shows, that the open-loop zeros remain

unchanged and the closed-loop poles will be the required

ones. The solution formally makes the characteristic poly-

nomial of the closed-loop equal to the desired polynomial

("placed poles")

RðsÞ ¼ sn þ r1s
n�1 þ � � � þ rn�1sþ rn ð5Þ

Here it is obtained that

Rf ¼ KkðsÞ ¼ KðsÞ
BðsÞ ¼

RðsÞ � AðsÞ
BðsÞ ð6Þ

which corresponds to the state feedback vector in the classi-

cal SVR.

2 Observer-Based State-Feedback
with Equivalent TFR Forms

The practical applicability of the SF theory was introduced

by the development of the observers capable to calculate

the unmeasured state variables. The most general

SF/Observer (SFO) topology discussed above can also

be given using equivalent TFR forms of SF and is shown

in Fig. 2.
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The usual classical design goal for the observer is to

determine the observer feedback so that its feedback

closed-loop system has the characteristic polynomial

QðsÞ ¼ sn þ q1s
n�1 þ � � � þ qn�1sþ qn ð7Þ

The TFR Kl(s) ¼ L(s)/B(s) in Fig. 2 corresponds to the

observer feedback vector in the classical SVR.
The pole-placement design goals for the SF and observer

dynamics require

kðsÞ ¼ RðsÞ � AðsÞ and LðsÞ ¼ QðsÞ � AðsÞ ð8Þ

After some long, but straightforward block manipulations

the equivalent SFO scheme can be transformed into another

unity feedback closed-loop form given in Fig. 3.

It is interesting to observe that the transfer function of the

closed-loop in Fig. 3 has a very special structure

P2KkKl

1þ P Kk þ Klð Þ þ P2KkKl

¼ PKk

1þ PKk

PKl

1þ PKl
¼ K

R

L

Q

ð9Þ

It is formally two simpler closed-loops cascaded, which

dynamically completely corresponds to the characteristic

equation: R(s) ¼ 0 and Q(s) ¼ 0. The overall transfer func-

tion of the SFO system is

TryðsÞ ¼ kr
1þ PKl

PKkKl

PKk

1þ PKk

PKl

1þ PKl
¼ krP

1þ PKk
¼ krB

R

ð10Þ

3 Model Error Properties

The above widely applied methodology has a common

problem, that in all regulator and observer equations the

true process P is used instead of the estimated model bP of

the process. The equivalent TFR form of the SF using the

model of the process is shown in Fig. 4.

The parallel scheme in Fig. 4 is used to compute the

model error. Using (4) the bTry model-based version of Try is

bTry ¼ kr P

1þ Kk
bP ¼ krB

R

bA
A
¼ Try

bA
A
bA ð11Þ

and its relative uncertainty

ℓT ¼
bTry � TrybTry

¼
bA � A

A
¼ ℓA ð12Þ

which shows that ℓT ¼ 0 for ℓA ¼ 0. Introducing the addi-

tive Δ ¼ P� bP and relative plant model error

ℓ ¼ Δ
bP ¼ P� bP

bP ð13Þ

u yr +

–

R(s) A(s)

B(s)

B(s)

A(s)
kr

Rf

P

Fig. 1 Equivalent schemes of SF using TFR forms
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Fig. 2 Equivalent topology of the general basic SFO scheme using

TFR forms
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Fig. 3 Reduced equivalent

topology of the general basic SFO
scheme
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the modeling error εk in Fig. 4 can be expressed as

εk ¼ krbB
B

ℓ r ¼ Try

bB
B

ℓ r ¼ bP ℓ u ð14Þ

The SFO scheme is widely applied in the practice with

model-based SVR, so it is interesting how the model-based

scheme in Fig. 5 influences the original modeling error εk.
After some long but straightforward computations

εl ¼
bP

1þ Kl
bP ℓ u ¼

bB
Q
ℓ u ¼ 1

1þ Kl
bP εk ð15Þ

is obtained. Equation (15) clearly shows the influence of

the SFO scheme, because it decreases the modeling error

εk by (1þ Kl
bP). Selecting fast observer poles, one can reach

quite small "virtual" modeling error εl in the major fre-

quency domains of the tracking task.

Besides the radical model error attenuating behavior

of the model-based SFO scheme, unfortunately it has a

very important drawback, the nice cascade (9) structure

changes to

bP2KkKl 1þ ℓ
� �

1þ bP Kk þ Klð Þ þ bP2KkKl 1þ ℓ
� �

�����
ℓ!0

¼ PKk

1þ PKk

PKl

1þ PKl
¼ K

R

L

Q

ð16Þ

which form is not factorable except for the exact model

matching case, when ℓ ! 0. On the basis of Fig. 5 and

(16) it is easy to see that the poles of the observer feedback

loop remain unchanged using the placement design equation

forms model-based SFO (8), thus the only solution is to use

the available model of the process, in this case bA, i.e.,
KðsÞ ¼ RðsÞ � bAðsÞ and LðsÞ ¼ QðsÞ � bAðsÞ ð17Þ

for the pole placing equations.

Because this design ensures the required poles only for

small ℓ (see (16)), a serious robust stability investigation is

required first. Next it is important to investigate where the

actual pole is located for non zero ℓ, so how big the perfor-

mance loss is coming from the model based SFR. These

steps are usually neglected in most of the published papers,

books and applications.

4 Introducing the Observer Based
YOULA-Regulator

For open-loop stable processes the all realizable stabilizing

(ARS) model based regulator bC is the YOULA-parametrized one:

bC bP� �
¼ Q

1� QbP
����bP!P

¼ Q

1� QP
¼ CðPÞ ð18Þ

where the "parameter" Q ranges over all proper (Q(ω ¼ 1)

is finite), stable transfer functions [5], [6], see Fig. 6a.

It is important to know that the Y-parametrized closed-

loop with the ARS regulator is equivalent to the well-known

form of the so-called Internal Model Control (IMC) princi-

ple [6] based structure shown in Fig. 6b.

Q is anyway the transfer function from r to u and the CSF

of the whole closed-loop for bP ¼ P, when ℓ ! 0

bTry ¼
bCP

1þ bCP ¼ QP
1þ ℓ

1þ 1� QPð Þℓ

����
ℓ!0

¼ QP ¼ Try

ð19Þ

is linear (and hence convex) in Q.

u yr  + 

 - 

ˆ x 

ˆ R f

 + 

-

P

K̂k

kr

k
P̂

Fig. 4 The model based SF scheme and error
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 + 

Fig. 5 Model based SFO scheme with TFR forms
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It is interesting to compute the relative error ℓT of bTry

ℓT ¼ Try � bTrybTry

¼ TrybTry

� 1 ¼ Q P� bP� �
¼ QP

ℓ
1þ ℓ

¼ Try
ℓ

1þ ℓ
ð20Þ

The equivalent IMC structure performs the feedback from

the model error εQ. Similarly to the SFO scheme it is possi-

ble to construct an internal closed-loop, which virtually

reduces the model error to

εl ¼ 1

1þ bKl
bP y� bPu� �

¼ 1

1þ bKl
bP εQ ¼ 1

1þ bLl

εQ

¼ bH εQ ; bLl ¼ bKl
bP ð21Þ

and performs the feedback from εl (see Fig. 7), where bLl is

the internal loop transfer function. In this case the resulting

closed-loop will change to the scheme shown in Fig. 8.

This means that the introduction of the observer feedback

changes the YOULA-parametrized regulator to

bC 0 bP 0
� �

¼ Q

1� QbP∕ 1þ bKl
bP� � ¼

Q 1þ bKl
bP� �

1þ bKl
bP � QbP ð22Þ

The form of bC 0
shows that the regulator virtually controls

a fictitious plant bP 0
which is also demonstrated in Fig. 8. Here

the fictitious plant is

bP 0 ¼
bP

1þ bKl
bP ¼

bP
1þ bLl

ð23Þ

The closed-loop transfer function is now

bT 0
ry ¼

bC 0
P

1þ bC 0
P
¼

QP 1þ bKl
bP� �

1þ bKl
bP � QbP þ QP

¼ QP
1

1þ QP 1

1þbKl
bP ℓ

1þℓ

������
ℓ!0

¼ QP ¼ Try ð24Þ

u y
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Ĉ

Q
1 Q P̂
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b

Fig. 6 The equivalent IMC structure of an ARS regulator
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Fig. 7 The observer-based IMC structure
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Fig. 8 Equivalent closed-loop for the observer-based IMC structure
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The relative error ℓ
0
T of bT 0

ry becomes

ℓ
0

T ¼ Try � bT 0
rybT 0

ry

¼ TrybT 0
ry

� 1 ¼ QP
ℓ

1þ ℓ
1

1þ bKl
bP� � ¼ ℓT

1

1þ bLl

ð25Þ

which is smaller than ℓT. The reduction is by

bH ¼ 1∕ 1þ bLl

� �
.

5 An Observer Based PID-Regulator

The ideal form of a YOULA-regulator based on reference

model design [4], [5] is

Cid ¼ ðRnP
�1Þ

1� ðRnP
�1ÞP ¼ Q

1� QP
¼ Rn

1� Rn
P�1 ð26Þ

when the inverse of the process is realizable and stable. Here

the operation of Rn can be considered a reference model

(desired system dynamics). It is generally required that the

reference model has to be strictly proper with unit static

gain, i.e., Rn(ω ¼ 0) ¼ 1.

For a simple, but robust PID regulator design method

assume that the process can be well approximated by its

two major time constants, i.e.,

P ffi A

A2

where A2 ¼ ð1þ sT1Þð1þ sT2Þ ð27Þ

According to (26) the ideal YOULA-regulator is

Cid ¼ RnP
�1

1� Rn
¼ Rn 1þ sT1ð Þ 1þ sT2ð Þ

A 1� Rnð Þ ; T1 > T2 ð28Þ

Let the reference model Rn be of first order

Rn ¼ 1

1þ sTn

which means that the first term of the regulator is an integrator

Rn

1� Rn
¼ 1∕ 1þ sTnð Þ

1� 1∕ 1þ sTnð Þ ¼
1

1þ sTn � 1
¼ 1

sTn
ð29Þ

whose integrating time is equal to the time constant of the

reference model. Thus the resulting regulator corresponds to

the design principle, i.e., it is an ideal PID regulator

CPID ¼ APID
1þ sTIð Þ 1þ sTDð Þ

sTI
¼ APID

1þ sT1ð Þ 1þ sT2ð Þ
sT1

ð30Þ

with

APID ¼ T1∕ATn ; TI ¼ T1 ; TD ¼ T2 ð32Þ

The YOULA-parameter Q in the ideal regulator is

Q ¼ RnP
�1 ¼ 1

A

1þ sT1ð Þ 1þ sT2ð Þ
1þ sTn

ð33Þ

It is not necessary, but desirable to ensure the

realizability, i.e., to use

Q ¼ RnP
�1 ¼ 1

A

1þ sT1ð Þ 1þ sT2ð Þ
1þ sTnð Þ 1þ sTð Þ ð34Þ

where T can be considered the time constant of the derivative

action (0.1 TD � T � 0.5 TD). The regulator bC 0
and the feed-

back term bHmust be always realizable. In the practice the PID

regulator and the YOULA-parameter is always model-based, so

bCPID
bP� �

¼ bAPID

1þ sbT1

� �
1þ sbT2

� �
sbT1

; bAPID ¼
bT1bA Tn

ð35Þ

bQ ¼ Rn
bP�1 ¼ 1

bA
1þ sbT1

� �
1þ sbT2

� �
1þ sTn

ð36Þ

The sheme of the observer based PID regulator is shown

in Fig. 9, where a simple PI regulator

bKl ¼ Al
1þ sTl

sTl
ð37Þ

is applied in the observer-loop. Here Tl must be in the range

of T, i.e., considerably smaller than T1 and T2.

Note that the frequency characteristic of bH cannot be

easily designed to reach a proper error suppression. For

example, it is almost impossible to design a good realizable

high cut filter in this architecture. The high frequency

domain is always more interesting to speed up a control

loop, so the target of the future research is how to select bKl

for the desired shape of bH .

6 Simulation Examples

The simulation experiments were performed in using the

observer based PID scheme shown in Fig. 9.

Example 1. The process parameters are: T1 ¼ 20, T2 ¼ 10

and A ¼ 1. The model parameters are: bT1 ¼ 25, bT2 ¼ 12
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and bA ¼ 1:2. The purpose of the regulation is to speed

up the basic step response by 4, i.e., Tn ¼ 5 is selected in

the first order Rn. In the observer loop a simple

proportional regulator bKl ¼ 0:01 is applied. The ideal

form of Q (33) was used. Figure 10 shows some step

responses in the operation of the observer based PID

regulator.

It is easy to see that the bT 0
ry very well approximates Rn in

the high frequencies (for small time values) in spite of the

very bad model bP.

Example 2. The process parameters and the selected first

order Rn are the same as in the previous example. The model

parameters are: bT1 ¼ 30, bT2 ¼ 20 and bA ¼ 0:5. In the

observer loop a PI regulator (37) is applied with

Al ¼ 0.001 and Tl ¼ 2. The ideal form of Q (33) was used.

Figure 11 shows some step responses in the operation of the

observer based PID regulator.

It is easy to see that the bT 0
ry well approximates Rn in the

high frequencies (for small time values) in spite of the very

bad model.

r  + 

 + 
 + 

 - 
 + 

 - 

u y

ŷ

l

Al
1+ sTl
sTl

P

P̂

K̂l

1+ sT̂1( ) 1+ sT̂2( )
Â 1+ sTn( ) 1+ sT( )

A
1+ sT1( ) 1+ sT2( )

Â
1+ sT̂1( ) 1+ sT̂2( )

Q̂

Fig. 9 An observer based PID
regulator
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Fig. 10 Step responses using

the observer based PID regulator
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7 Conclusions

The TFR of the classical methods are introduced to get a

simple and useful tool to analyze and explain further

behaviors, which are difficult to obtain using SVR. Using

TFR it was shown, if the SVR used in the SFO scheme is

model-based then the original (without observer) model

error decreases by the sensitivity function of the observer

feedback loop. This model error reducing capability gives

the theoretical background of the success of practical model-

based SFO applications.

Finally the SFOmethod was applied for the classical IMC
structure, opening a new class of methods for open-loop

stable processes. This new method combines the classical

YOULA-parametrization based regulators with the SFO

scheme. Using this new approach an observer based PID

regulator was also introduced. This regulator works well

even in case of large model errors as some simulations

showed.
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