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1 Introduction

Spacecraft and interplanetary probes, orbiting beyond the

Earth’s detectable atmosphere, experience physical pressure

caused by impinging solar radiation. Researchers have con-

sidered use of solar radiation pressure (SRP) exerted on

control surfaces mounted on satellites for the purpose of

control. Researchers have proposed a variety of control

surface configurations including trailing cone, reflector-

collector, weathervane tail, mirror arrays, solar paddles,

and solar sails for deriving solar control forces [PV1]. In

the Mariner IV mission [S1] and the OTS-2 mission of the

European Space Agency [R1] solar vanes and flaps were

employed for the control of geostationary communication

satellites.

In the past, a variety of control systems for the attitude

control of satellites using solar radiation pressure have been

developed. A time optimal control law for pitch angle con-

trol has been designed [R1]. The control of an Earth-pointing

satellite has been also considered [PV2]. Optimal control

laws for inertially-fixed attitude control have been designed

[PV3, VP]. A control law for large angle maneuver has been

proposed [Ve]. Joshi and Kumar designed attitude control

systems for satellites orbiting in elliptic orbits [JK1]. A

nonlinear feedback linearizing attitude control law has

been developed [SY2]. Authors have also considered design

of attitude control systems for satellite models in the pres-

ence of uncertainties. The variable structure control systems

[PKB1, PKB2] and adaptive sliding mode control systems

[VK1, V1] have been proposed. The solar pressure adaptive

controllers for attitude control have also been developed

[SY2, LS1, LS2, LS3]. Recently, an ℒ1 adaptive pitch

angle controller using SRP has been designed [LS3]. Also

a solar attitude controller [SL1] for a finite-time regulation

based on a higher-order sliding mode control technique, has

been developed. But for the synthesis of control law in

[SL1], measurements of the first and second derivatives of

the pitch angle are required. The adaptive laws developed in

[PKB1, PKB2, VK1, LS2] also assumed availability of the

complete state vector. Certainly, it is desirable to use fewer

sensors for measurement. As such it is of interest to develop

adaptive SRP attitude control systems for satellite models

with unmodelled dynamics which require only the pitch

angle measurement for feedback.

The contribution of this paper lies in the derivation of a

robust output feedback control system for large pitch angle

control of satellites in elliptic orbits using the SRP, despite

uncertainties. The nonaffine-in-control model of the satellite

includes unmodelled nonlinear functions, unknown inertial

and solar parameters and time-varying disturbance input.

The satellite is equipped with two rotating reflective control

surfaces (solar flaps) for the purpose of control. It is assumed

that only the pitch angle is measured for synthesis. The

control torque derived from the SRP is an implicit function

of the deflection angles of the solar flaps. A robust nonlinear

feedback linearizing control law is designed for large angle

rotational maneuvers of the satellite in the pitch plane. The

control system includes a high-gain observer to obtain

the estimates of the derivatives of the pitch angle and the

lumped unmodelled nonlinearities in pitch dynamics for

synthesis. Simulation results are presented which show that

in the closed-loop system precise pitch angle trajectory

control of the spacecraft moving in an elliptic orbit is accom-

plished, in spite of large parameter uncertainties,

unmodelled nonlinearites and external disturbance moment

in the model.
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2 Dynamics of Spacecraft

Fig. 1 shows an unsymmetrical satellite with its center of

mass S rotating in an elliptic orbit about the Earth’s centerO.

The chosen inertial (XYZ), rotating orbital ( X0Y0Z0) and

body-fixed ( XbYbZb) coordinate systems are also shown in

the figure. (The axes Z, Z0 and Zb normal to the orbital plane

are not shown in the figure.) The solar aspect angle is

denoted by ϕ, and ω and θ are the argument of perigee and

true anomaly, respectively. The pitch angle α is equal to λ
+θ, where λ is the angle between the body-fixed axis Xb and

the local vertical axis X0. The solar radiation torque is

produced by two identical, highly reflective, lightweight

control surfaces P1 and P2 mounted on the satellite. The

center of pressure of each control surface lies on the Xb

axis. The rotation angles of the two flaps measured from

the axis Xb are δ1 and δ2. Since the radiation forces on these

control surfaces are directed along the surface normals, only

the rotation of the satellite about the axis normal to the

orbital plane is produced by the solar radiation pressure.

The second-order differential equation describing the

pitch attitude of the spacecraft is described by [PV2]

Iz
d2α

dt2
¼ Mg þMs þMdðtÞ ð1Þ

where Ms is the net solar torque, Mg is the gravitational

torque, and Md(t) denotes the external time-varying distur-

bance torque. Of course, the chosen model is valid under the

assumption that the roll and yaw angles of the satellite are

controlled by means of additional solar flaps and actuators so

that its axis Zb remains normal to the orbit. The net solar

torque produced by the control surfaces is a nonlinear func-

tion of δi. It has been shown in [PV1, PV2] that it is given by

Ms ¼ C
0
sσsðϕÞ½ sin 2 ðαþ βsðϕÞ þ δ1ÞΔ1 cos δ1

� sin 2 ðαþ βsðϕÞ þ δ2ÞΔ2 cos δ2�

¼: C 0
sσsψðα, βs, δÞ

ð2Þ

whereΔi ¼ sgnð sin ðαþ βs þ δiÞÞ, i ¼ 1, 2 andδ ¼ ðδ1,δ2ÞT
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Fig. 1 Orbital and satellite

coordinate systems
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and the nonlinear function ψ is defined in equation (1).

The functions σs and βs are

σsðϕÞ ¼ 1� sin 2ϕ sin 2i; βsðϕÞ
¼ ω� tan �1ð tanϕ cos ðiÞÞ ð3Þ

The solar aspect angle varies from 0 to 2π radians in a year;

and therefore, it is a slowly varying function of θ.

The parameterC
0
s isC

0
s ¼ 2ρspAsl, where As is the surface

area of the solar flap exposed to impinging photons, p is the

nominal SRP constant, ρs is the fraction of impinging

photons specularly reflected, and l is the distance between

the center of pressure on the solar flap and the system center

of mass. The gravity gradient torqueMg acting on the space-

craft is given by

Mg ¼ � 3μ

R3ðθÞ ðIx � IyÞ sin λ cos λ ð4Þ

where Ix, Iy and Iz are the moments of inertia of the satellite

about the body-fixed axes (Xb, Yb, Zb) and R(θ) is the dis-

tance of the satellite center of mass from the Earth’s center.

For the satellite moving in an elliptic orbit, R(θ) and the

orbital angular velocity are given by [PKB2]

RðθÞ ¼ að1� e2Þ
1þ ecos θ

¼ μ1=3ð1� e2Þ
Ω2=3ð1þ ecos ðθÞÞ

dθ

dt
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μað1� e2Þp

R2

ð5Þ

where e is the eccentricity, a denotes the semi-major axis of

the orbit, and the mean orbital rate is Ω ¼ ðμ∕ a3Þ1∕ 2. Now
instead of the time t, the true anomaly θ is treated as an

independent variable. For simplicity in notation, the

derivatives of functions with respect to θ will be denoted

by overdots. Using Eqs.(1) and (5), it can be shown that the

derivative of the pitch angle with respect to θ satisfies

[PKB2, LS2]

ð1þ e cos θÞ€α ¼ �1:5K sin 2ðα� θÞ þ 2e _α sin θ
þ CsσsMsnðα, θ, βsðϕÞ, δÞ þMdnðθÞ ð6Þ

where K ¼ ðIx � IyÞI�1
z , Cs ¼ C

0
sðIzΩ2Þ�1

, and

Msn ¼ 1�e2

1þe cos θ

� �3

ψ ;

Mdn ¼ Md
ð1� e2Þ3

ð1þ e cos θÞ3IzΩ2

ð7Þ

Solving for €α, Eq. (6) gives

€ά ¼ f 0ðα, _α, θÞ þ Csvðα, θ, δÞ ð8Þ

where the nonlinear functions f0 and v are

f 0ðα, _α, θÞ ¼ ð1þ e cos θÞ�1½2e sin θ _α � 1:5K sin 2ðα� θÞ þMdn�

vðα, θ, δÞ ¼ ð1þ e cos θÞ�1σsMsn

ð9Þ
Note that the disturbance input Md is included in the

nonlinear function f0. For the design of the controller, it is

assumed that the nonlinear function f0 as well as the solar

parameter Cs are not known.

Suppose that αr is a given reference pitch angle trajectory.
The objective is to design a robust control law such that the

pitch angle α asymptotically converges to the reference

trajectory αr, despite the presence of disturbance input.

Furthermore, controller is to be synthesized using only the

pitch angle α.

3 Robust Feedback Linearizing
Control Law

In this section, a feedback linearizing control system is

designed. Because the solar torque is an implicit function

of the solar plate deflection angles, it will be convenient to

treat _δ as control input vector. Differentiating Eq. (8), it can

be shown that the third derivative of the pitch angle with

respect to θ satisfies

:::
α ¼ _f 0ðα, _α, €α, θÞ þ Cs

∂v
∂α

_α þ ∂v
∂θ

2
4

3
5þ CsBsu

¼: f aðx, θ, δÞ þ CsBsu

ð10Þ

where x ¼ ðα, _α, €αÞT , u ¼ _δ∈R2 and the input matrix is

Bs ¼ ∂v
∂δ1

,
∂v
∂δ2

� �
ð11Þ

For the derivation of the control law, it is assumed that the

function fa is represents an unstructured nonlinear function

and the solar parameter Cs is not known. We are interested

in the region Ωs of the state space in which the rank of

Bs(α, θ, δ) is 1. For the derivation of control law, the

unknown nonlinear function fa(x, θ, δ) and the unknown

parameter Cs are decomposed as

f a ¼ f∗a þ Δf a;Cs ¼ C∗
s þ ΔCs ð12Þ

Robust Output Feedback Attitude Control of Spacecraft Using Solar Radiation Pressure 11



where functions with ‘*’ are the nominal values and the

unknown parts are denoted with Δ(.) Then one can write

Eq.(10) as

d3eα
dθ3

¼ ��€α r þ f∗a þ Δf a þ ðC∗
s þ ΔCsÞBsðα, θ, δÞu ð13Þ

where _α ¼ α� αr is the tracking error. Because the vector

function Bs is known, consider a new input signal

ua ¼ Bsðx, θ, δÞu, ua∈R ð14Þ

Define a lumped nonlinear function η ∈ R as

η ¼ Δf a þ ΔCsua ð15Þ

Then one can write Eq.(13) as

d3eα
dθ3

¼ ��€α r þ f∗a þ ηþ C∗
s ua ð16Þ

In view of Eq. (16), a feedback linearizing control law is

chosen as

ua ¼ ðC∗
s Þ�1 �€αr � f∗a � η� p3

€eα � p2
_eα � p1eα � p0xs

� �
;

_α ¼ eα
ð17Þ

where pi are the feedback gains. Substituting the control

law (17) in (16) gives

ðs4 þ p3s
3 þ p2s

2 þ p1sþ p0Þeα¼: λðsÞeα ¼ 0 ð18Þ

where s denotes the Laplace variable. The feedback gains are
chosen such that the roots of λ(s) ¼ 0 are stable. For such a

choice of feedback gains, _α converges to zero. But the

control law (17) is not implementable because the nonlinear

function η and the derivatives of α are not known.

Let z1, z2, z3 and z4 be the estimates of _α, _eα , €eα and η,
respectively. Then, in view of Eq. (17), one chooses a

modified feedback linearizing control law as

ua ¼ ðC∗
s Þ�1ð �€α r � f∗a � z4 � p3z3 � p2z2 � p1z1 � p0xsÞ

ð19Þ

Using Eq. (19) for ua, now _δ ¼ u can be obtained as

u ¼ B∗T

s ðB∗
s ðB∗

s ÞTÞ�1ua ð20Þ

Note that if the estimation errors ð _α � z1Þ, ð _eα � z2Þ, ð€eα � z3Þ
and (η � z4) are zero, then the control law Eq. (19) becomes

the exact feedback linearizing control law Eq. (17).

4 Estimator Design

In this section, the design of an estimator is considered. The

structure of the estimator is based on the results of [A1, EK1,

KE]. Here the nonlinear function η is treated as a state

variable. Differentiating η gives

_η ¼ d

dθ
½Δf a þ ΔCsua�f η ð21Þ

Note that the derivative of ua can be obtained by using

Eq. (19). The nonlinear function fη is not known. For the

derivation of the estimator, consider a set of equations

d

dt

_α
_eα
€eα
η

2
664

3
775 ¼

_eα
€eα

f∗a � �€αr þ ηþ C∗
s ua

f η

2
664

3
775 ð22Þ

For obtaining estimates ðz1, z2, z3, z4Þ of ðeα, _eα , €eα , ηÞ, a
high-gain estimator is designed. The advantage of this esti-

mator is that the estimation error converges to zero in a very

short period. In view of Eq. (22), the observer is selected as

\openup 12pt

ż1 ¼ z2 þ E�1d1ðeα � z1Þ
ż2 ¼ z3 þ E�2d2ðeα � z1Þ

ż3 ¼ ��€α r þ f∗a þ C∗
s ua þ z4 þ E�3d3ðeα � z1Þ

ż4 ¼ E�4d4ðeα � z1Þ
ð23Þ

where di, (i ¼ 1, 2, 3, 4), are real numbers, and ε > 0 is a

small parameter. The parameters di are selected so that the

roots of

s4 þ d1s
3 þ d2s

2 þ d3sþ d4 ¼ 0 ð24Þ

are stable.

Define the estimation errors as e1 ¼ _α � z1, e2 ¼ __α � z2,

e3 ¼ €eα � z3 and e4 ¼ η� z4 ¼ eη. Subtracting Eq. (23) from

(22), one obtains the dynamics of the estimation error as

ė1 ¼ e2 � E�1d1e1

ė2 ¼ e3 � E�2d2e1

ė3 ¼ e4 � E�3d3e1

ė4 ¼ �E�4d4e1 þ f η

ð25Þ

Introduce a change of variables as (i ¼ 1, 2, 3, 4)

ξi ¼ eiEi�4 ð26Þ

12 L. Srinivasan et al.



Using the definition of ξi, Eq. (25) can be written as

E _ξ ¼ A0ξþ ð0,0, 0, 1ÞTEf η ð27Þ

where ξ ¼ ðξ1,ξ2,ξ3,ξ4ÞT∈R4 and the stable matrix A0 is

A0 ¼
�d1 1 0 0

�d2 0 1 0

�d3 0 0 1

�d4 0 0 0

0
BB@

1
CCA ð28Þ

Equation (27) is in a singularly perturbed form. It has been

shown in [A1,EK1,KE] that for sufficiently small ε, the error
ξi converges to zero in a short time. For convergence analysis,

one may follow the steps in the derivation of [A1, EK1]; and

therefore, it is not repeated here. As the estimation error

converges to zero, the control law Eq. (19) becomes a feed-

back linearizing control law, and in the closed-loop system

including the high-gain observer Eq. (23), the performance of

the deterministic feedback controller is recovered after a very

short transient process. It is pointed out that in contrast to

parameter adaptive systems, here the lumped unstructured

nonlinear function is adapted using the dynamic estimator.

5 Simulations results

This section presents the results of digital simulation. The

complete closed-loop system including the satellite model

Eq. (8), the control law Eq. (19) and the high-gain observer

Eq. (23) with and without external disturbance moment is

simulated for a set of values of K, Cs, eccentricity e, orbit
inclination i and solar aspect angle ϕ. The solar aspect angle
ϕ is a slowly varying function. The function ϕ given by

ϕðθÞ ¼ ϕ0 þ ð∂ϕ∕∂θÞðθ � θ0Þ

is used here for computation, where ϕ0 ¼ ϕ(θ0). The incli-

nation of the orbital plane of the geosynchronous satellite is

i ¼ 23. 5o. The semi-major axis is a ¼ 42, 241 km and Iz is
500 kg.m2. The initial conditions of the spacecraft are chosen

as θo ¼ 0, αðθoÞ ¼ 100o and _αðθoÞ ¼ 0. The initial values of

the flap deflections are δ1ðθoÞ ¼ 0o and δ2ðθoÞ ¼ 0o. The

nominal parameter Cs
∗ is set to 6.2. The nonlinear nominal

function fa
∗(x, θ, δ) is assumed to be zero for simplicity in

implementation; that is, fa(x, θ, δ) ¼ Δ fa. Apparently, such
a choice of Δ fa represents a large uncertainty in the model.

The reference pitch angle trajectory is generated by a fifth-

order reference generator given by

d4αr
dθ5

¼ �pr3
d3αr
dθ3

� pr2
d2αr
dθ2

� pr1
dαr
dθ

� pr0ðαr � α∗Þ
ð29Þ

where α∗ is the target pitch angle. The initial conditions are

αrð0Þ ¼ 100o and djαrð0Þ∕ dθj ¼ 0, j ¼ 1, 2. . . 4. The poles

of the reference generator are at -1, -1.5, -2.5, and -2. The

roots of λ(s) in Eq.(18) are set at -2.5, -3, -4, and -3.5. The

roots of Eq. (24) for the observer are -1.5, -2.5, -2, and -1;

and the ε is selected to be 0.005. These controller parameters

have been selected by observing the simulated responses.

Robust attitude control despite sinusoidal, random
and pulse disturbance input Md : K ¼ 0:5,Cs ¼ 5,

e ¼ 0:2, i ¼ 23:5o, ϕ0 ¼ 45o, α∗ ¼ 0o

Simulation is done to examine the performance of the

adaptive controller in the presence (i) sinusoidal, (ii) random

and (iii) pulse type disturbance inputs, shown in the left,

center, and right column in Fig. 2, respectively. The random

disturbance is generated by passing a white noise with unit

variance through a transfer function

FðsÞ ¼ 5� 10�10 ∕ ðsþ 5Þ. The initial value is α(0) ¼ 0o,

and it is desired to control the pitch angle to zero. Note

that the nominal values fa
∗ and Cs

∗ are zero and 6.2, respec-

tively. It is observed in Fig. 2 that the controller achieves the

regulation of the pitch angle to the target value in the pres-

ence of each disturbance input in about one orbit time. In the

steady-state, it is observed that flap deflection is a periodic

function in the presence of sinusoidal disturbance (Fig. 2,

left column). The maximum value of control surface deflec-

tion is about (23, 22) (deg). The control signal Csv is also

shown in the figure.

Extensive simulation has been performed for several

values of the solar aspect angle, the eccentricity e of the

orbit, the orbit inclination i, and the model parameters K and

Cs. These results showed that the designed control law

accomplishes robust regulation of the pitch angle trajectory,

even in the presence of disturbance input.

6 Conclusions

The design of a robust output feedback adaptive control

system for the pitch angle control of spacecraft, orbiting in

elliptic orbits, using solar radiation pressure was considered.

The parameters of the nonaffine-in-control spacecraft model

were assumed to be unknown, and external disturbance input

was assumed to be acting on the satellite. It was assumed that

only the pitch angle is measured for feedback. A robust

feedback linearizing control law was designed for the track-

ing of reference pitch angle trajectory. For the synthesis of

the control law, a high-gain estimator was designed for

the estimation of the pitch angle derivatives as well as the

lumped unmodelled nonlinear function in the pitch dynam-

ics. In the closed-loop system, the controller accomplished

precise pitch attitude control, despite uncertainties and dis-

turbance input.

Robust Output Feedback Attitude Control of Spacecraft Using Solar Radiation Pressure 13



References

1. Alvarez-Ramirez,J.: Adaptive Control of Feedback Linearizable

Systems: A Modeling Error Compensation Approach. Int. J. Robust

Nonlin. Contr. 9 (1999) 361–377

2. Esfandiari, F., Khalil, H. K.: Output Feedback Stabilization of Fully

Linearizable Systems. Int. J. Control. 56(5) (1992) 1007–1037

3. Joshi, V. K., Kumar, K.: New solar attitude control approach for

satellites in elliptic orbits. J. Guidance, Control, and Dynamics. 3(1)

(1980) 42–47

3. Khalil, H.K., Esfandiari,F.: Semiglobal Stabilization of a Class of

Nonlinear Systems Using Output Feedback. IEEE Tr. Automat.

Control. 38(9) (1993) 1412–1415

4. Lee, K.W., Singh, S.N.: Non-certainty-equivalent adaptive satellite

attitude control using solar radiation pressure. Proc. IMechE. Part

G: J. Aerospace Eng. 223 (2009) 977–988

5. Lee, K.W., Singh, S.N.: Attractive manifold-based adaptive solar

attitude control of satellites in elliptic orbits. Acta Astronautica 68

(1-2) (2011) 185–196

6. Lee, K.W., Singh, S.N.:ℒ1 adaptive attitude control of satellites in

elliptic orbits using solar radiation pressure. Proc. IMechE. Part G:

J. Aerospace Eng. 228 (2014) 611–626

7. Pande, K.C., Davies, M.S., Modi, V.J.: Time-optimal pitch control

of satellites using solar radiation pressure. J. Spacecraft and

Rockets. 11(8) (1974) 601–603

8. Patel, T.R., Kumar, K.D., Behdinan, K.: Satellite attitude control

using solar radiation pressure based on non-linear sliding mode

control. Proc. IMechE. Part G: J. Aerospace Eng. 222 (2008)

379–392

9. Patel, T.R., Kumar, K.D, Behdinan, K.: Variable structure control

for satellite attitude stabilization in elliptic orbits using solar radia-

tion pressure. Acta Astronautica. 64(2-3) (2009) 359–373

10. Pande, K.C., Venkatachalam, R.: Semipassive pitch attitude control

of satellites by solar radiation pessure. IEEE Tr. Aerosp. Electron.

Syst. 15(2) (1979) 194–198

11. Pande, K.C., Venkatachalam, R.: Solar pressure attitude stabiliza-

tion of earth-pointing spacecraft. IEEE Tr. Aerosp. Electron Syst.

17(6) (1981) 748–756

12. Pande, K.C., Venkatachalam, R.: Optimal solar pressure attitude

control of spacecraft - I: inertially-fixed attitude stabilization. Acta

Astronautica. 9(9) (1982) 533–540

13. Renner, U.: Attitude control by solar sailing-a promising experi-

ment with OTS-2. European Space Agency Journal. 3 (1979) 35–40

14. Scull, J.R.: Mariner IV revisited, or the tale of the ancient mariner.

Proc. 20th International Astronautical Federation Congress,

Argentina. (1969) 747–758

0 0.5 1 1.5 2
0

50

100

Orbits

α
 [

d
eg

]

0 0.5 1 1.5 2
−0.1

0

0.1

Orbits

α
−α

r [
d

eg
]

0 0.5 1 1.5 2
−50

0

50

Orbits

δ i [
d

eg
]

0 0.5 1 1.5 2
−2

0

2

Orbits

C
sv 

[r
ad

−1
]

0 0.5 1 1.5 2
−2

0

2
x 10

−6

Orbits

D
is

tu
rb

an
ce

 M
d

0 0.5 1 1.5 2
0

50

100

Orbits

α
 [

d
eg

]

0 0.5 1 1.5 2
−0.1

0

0.1

Orbits

α
−α

r [
d

eg
]

0 0.5 1 1.5 2
−50

0

50

Orbits

δ i [
d

eg
]

0 0.5 1 1.5 2
−2

0

2

Orbits

C sv
 [

ra
d

−1
]

0 0.5 1 1.5 2
−2

0

2
x 10

−10

Orbits

D
is

tu
rb

an
ce

 M d

0 0.5 1 1.5 2
0

50

100

Orbits

α
 [

d
eg

]

0 0.5 1 1.5 2
−0.1

0

0.1

Orbits

α
−α

r [
d

eg
]

0 0.5 1 1.5 2
−50

0

50

Orbits

δ i [
d

eg
]

0 0.5 1 1.5 2
−2

0

2

Orbits

C
sv

 [
ra

d
−1

]

0 0.5 1 1.5 2
0

1

2
x 10

−6

Orbits

D
is

tu
rb

an
ce

 M d

a b c

δ
2

δ
1

δ
1

δ
2

δ
1

δ
2

Fig. 2 Cs ¼ 5, K ¼ 0. 5, i ¼ 23. 5, e ¼ 0. 2, ϕ0 ¼ 45o, α∗ ¼ 0o; (a) response for sinusoidal disturbance, (b) random disturbance (c) pulse type
disturbance

14 L. Srinivasan et al.



15. Srinivasan, L., Lee, K.W., Singh, S.N.: Finite-time control of

satellites in elliptic orbits despite uncertainties using solar radiation

pressure. AIAA SciTech (2014)

16. Singh, S. N., Yim, W.: Feedback linearization and solar pressure

satellite attitude control. IEEE Tr. Aerosp. Electron. Syst. 32(2)

(1996) 732–741

17. Singh, S.N., Yim, W.: Nonlinear Adaptive Spacecraft attitude con-

trol using solar radiation pressure. IEEE Tr. Aerosp. Electron. Syst.

41(3) (2005) 770–779

18. Varma, S.: Control of satellites using environmental forces: aero-

dynamic drag/ solar radiation pressure. Ph. D. Thesis, Ryerson

University, Toronto, Canada (2011)

19. Venkatachalam, R.: Large angle pitch attitude maneuver of a satel-

lite using solar radiation pressure. IEEE Tr. Aerosp. Electro. Syst.

29(4) (1993) 1164–1169

20. Varma, S., Kumar, K.D.: Fault tolerant satellite attitude control

using solar radiation pressure based on nonlinear adaptive sliding

mode. Acta Astronautica. 66 (2010) 486–500

21. Venkatachalam, R., Pande, K.C.: Optimal solar pressure attitude

control of spacecraft - II:large-angle attitude maneuvers. Acta

Astronautica. 9(9) (1982) 541–545

Robust Output Feedback Attitude Control of Spacecraft Using Solar Radiation Pressure 15


	Robust Output Feedback Attitude Control of Spacecraft Using Solar Radiation Pressure
	1 Introduction
	2 Dynamics of Spacecraft
	3 Robust Feedback Linearizing Control Law
	4 Estimator Design
	5 Simulations results
	6 Conclusions
	References


