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1 Introduction

There are two basic approaches to find the structure of a

combinatorial circuit for a given behavior. These are either

covering methods or decomposition methods. One of the

decomposition methods is the bi-decomposition. The basic

idea of the bi-decomposition is that the given function is

built by an AND-gate, an OR-gate, or by an XOR-gate of

two inputs. If one of these gates splits the given function into

two simpler functions, a complete circuit structure must be

found after a certain number of decomposition steps.

However, two complicate functions, which control the

inputs of one of these gates, can be merged by the gate into

a simpler output function. In this case, the decomposition

does find a circuit structure with a finite number of gates.

The bi-decomposition [1, 3] ensures the simplification in

each decomposition step because it restricts to subfunctions

of the decomposition which depend on less variables than

the given function. The known bi-decomposition approach

even detects existing subfunctions which depend on the

smallest number of variables. Of course, such very simple

subfunctions should be utilized in a decomposition, because

they reduce the number of required decomposition gates and

contribute to short path lengths.

There are Boolean functions for which no strong bi-

decomposition exists. In such a case, a weak bi-

decomposition finds one simpler subfunction and extends

the other subfunctions to a lattice of functions. A complete

circuit structure can be synthesized for each Boolean func-

tion only using the AND-, the OR-, and the XOR-bi-decom-

position, and additionally the weak AND-, and the weak OR-

bi-decomposition.

The drawback of this approach is that weak bi-

decompositions are needed to reach the completeness and

each bi-decomposition step adds one gate to the path of the

decomposed function. An interesting question is whether the

weak bi-decomposition can be substituted by a bi-

decomposition into simpler subfunctions which depend on

the same number of variables as the given function to

decompose. This paper combines the knowledge of two

other approaches to answer this question.

One of these approaches is generalization of lattices of

Boolean functions. The independence of a function from a

single variable can be detected by a simple derivative of the

Boolean Differential Calculus [4]. The 22
n�1

functions of Bn

which are independent of a single variable xi belong to the

well-known lattice. In [5, 7] the existence of more general

lattices are introduced in which a vectorial derivative over-

take the role of the simple derivative. Functions of such

lattices depend on all variables but are simpler than other

functions of Bn. It is possible to utilize these new found

lattices for the bi-decomposition?

Another source to find simpler functions utilizes the

Specialized Normal Form (SNF) [6]. The SNF is a unique

ESOP representation of a Boolean function and the number

of cubes in the SNF indicates the complexity of the function

[8]. It arises the question about the relation of these two

approaches and the possibilities to utilize such information

for the bi-decomposition. The latest results of the research in

this field are summarized in this paper.

To make the paper self-contained, Section 2 gives the

needed definitions of derivatives, Section 3 introduces the

basic principle of the SNF, and Section 4 very briefly

explains the bi-decomposition approach. The results of the

main analysis are explored in Section 5. This analysis studies

the relations between the complexity provided by the

SNF and dependencies of all functions of B4 regarding all

directions of change. An example in Section 6 demonstrates

achievable benefits of the suggested extended approach of

the bi-decomposition before Section 7 concludes the paper.
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2 Simple and Vectorial Derivative

The simple derivative of a Boolean function f(x) with regard
to the variable xi describes for which patterns of the

remaining variables the change of the xi-value causes the

change of the function value.

Definition 1. Let f(x) ¼ f(x1, . . ., xi, . . ., xn) be a Boolean

function of n variables, then

∂f ðxÞ
∂xi

¼ f ðx1, . . . , xi, . . . , xnÞ � f ðx1, . . . , xi, . . . , xnÞ ð1Þ

is the (simple) derivative of the Boolean function f(x) with

regard to the variable xi.

The simple derivative
∂f ðxÞ
∂xi

is again a Boolean function. If

∂f ðxÞ
∂xi

¼ 0 ð2Þ

then the function f(x) is independent of the variable xi. From
Definition (1) follows the welcome property that the result

function of the simple derivative
∂f ðxÞ
∂xi

does not depend on the

variable xi anymore.

∂
∂xi

∂f ðxÞ
∂xi

� �
¼ 0 ð3Þ

holds for all Boolean functions f(x) of Bn.

The vectorial derivative of function f(x) has a similar

meaning like the simple derivative. The difference is that

in the case of the vectorial derivative several variables

change their values at the same point in time.

Definition 2. Let x0 ¼ (x1, x2, . . . , xk), x1 ¼ ðxkþ1, xkþ2, ::

:, xnÞ be two disjoint sets of Boolean variables, and f ðx0, x1Þ
¼ f ðx1, x2, :::, xnÞ ¼ f ðxÞ a Boolean function of n variables,

then

∂f ðx0, x1Þ
∂x0

¼ f ðx0, x1Þ � f ðx0, x1Þ ð4Þ

is the vectorial derivative of the Boolean function f(x0, x1)
with regard to the variables of x0.

The vectorial derivative
∂f ðx0, x1Þ

∂x0
is also a Boolean func-

tion, but differently to the simple derivative, a vectorial

derivative depends in general on all variables (x0, x1) like
the given function f(x0, x1). However, a vectorial derivative

is also simpler than the given function, because:

∂
∂x0

∂f ðx0, x1Þ
∂x0

� �
¼ 0 ð5Þ

holds for all Boolean functions f(x0, x1).

3 Specialized Normal Form - SNF

The Specialized Normal Form was found in a research for

minimal Exclusive-OR Sum Of Products (ESOPs) in [6].

The number of cubes in the SFN allows us to distinguish

several complexity classes of functions in Bn. Further

subclasses were detected in [8] using the Hamming distance

δ between the cubes of an SNF.

The SNF utilizes the following algebraic property of the

exclusive-or operation (�) and the Boolean variable x:

x ¼ x � 1 ð6Þ

x ¼ 1� x ð7Þ

1 ¼ x� x: ð8Þ

These three formulas show that each element of the set

x, x, 1f g has isomorphic properties. For each variable in the

support of the Boolean function f, exactly one left-hand side

element of (6), (7), or (8) is included in each cube of an ESOP

of f. An application of these formulas from the left to the right

doubles the number of cubes and is called expansion. The

reverse application of these formulas from the right to the left

halves the number of cubes and is called compaction.

The procedure to construct the SNF utilizes one more

property the Boolean function f, a cube C, and the

exclusive-or operation:

f ¼ f � 0 ð9Þ

0 ¼ C� C ð10Þ

f ¼ f � C� C: ð11Þ

From these formulas follows that two identical cubes can be

added to or removed from any ESOP without changing the

represented function. The SNF can be defined using two

simple algorithms based on the properties mentioned above.

The expand() function in line 3 of Algorithm 1

expands the cube Cj with regard to the variable Vi into the

cubes Cn1 and Cn2 based on the fitting formula (6), . . ., (8).

Algorithm 1 realizes this expansion for all variables of all

cubes of a given ESOP. Assuming n variables in the given

ESOP, this Algorithm distributes the information about each

given cube to 2n cubes, similar to the creation of a hologram
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of an object. Algorithm 2 removes all pairs of cubes using

the formulas (9), (10), and (11) so that a unique ESOP of the

Boolean function f remains.

Using Algorithms Exp(f) and R(f) it is possible to create a
special ESOP having a number of remarkable properties

which are specified and proven in [6].

Definition 3 (SNF(f)). Take any ESOP of a Boolean func-

tion f. The ESOP resulting from

SNFðf Þ ¼ RðExpðf ÞÞ ð12Þ

is called the Specialized Normal Form (SNF) of the Boolean

function.

4 Bi-Decomposition

A bi-decomposition (see left part of Figure 1) decomposes a

function f(xa, xb, xc) into two subfunctions g(xa, xc) and h

(xb, xc). Both subfunctions are simpler than the given func-

tion f(xa, xb, xc) due to the missing variables xb in the

subfunction g(xa, xc) and the missing variables xa in the

subfunction h(xb, xc).
There are three types of by bi-decompositions shown in

the left part of Figure 1. It is a property of the function f

(xa, xb, xc) whether a bi-decomposition exists with regard to

one of the decomposition-gates. An empty set of variables

xcf g and the split of the set of all variables xf g into the

subsets xaf g and xbf g of the same size contributes best to the

synthesis of a circuit by bi-decomposition. However, only

few functions have this welcome property.

A necessary condition of the bi-decomposition [4] is that

both the set of variables xaf g and the set of variables xbf g
contains at least one variable. In the limit case of single

variables in the sets xaf g and xbf g, we can assume xi ¼ xa
and xj ¼ xb; nevertheless both subfunctions of the bi-

decomposition are simpler than the given function f(xi, xj,

xc) because:

∂gðxi, xcÞ
∂xj

¼ 0 and
∂hðxj, xcÞ

∂xi
¼ 0: ð13Þ

Unfortunately, there are functions for which no bi-

decomposition exists. Le [2] additionally suggested for

such cases the weak bi-decomposition. The function to

decompose must hold a certain condition [4] for the weak

AND-bi-decomposition (Figure 1 (d)) and the weak OR-bi-

decomposition (Figure 1 (e)). Only the subfunction h(xc) is

simpler due to the missing variables xa. The function g
(xa, xc) of a weak bi-decomposition depends on the same

Algorithm 2 R(f)

Algorithm 1 Exp(f)
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variables as the given function f(xa, xc), however, this func-
tion can be chosen from a larger lattice of functions.

A weak XOR-bi-decomposition can be realized for each

pair of functions f(xa, xc), h(xc). However, the subfunction g

(xa, xc) can be more complicated than the given function f

(xa, xc). For that reason the weak XOR-bi-decomposition is

excluded from the synthesis approach by bi-decomposition.

The recursive application of one of the three types of the

bi-decomposition together with the weak OR-bi-decomposi-

tion and weak AND-bi-decomposition enables a complete

multilevel design of each function. This completeness

follows from Theorem 1 found by Le [2].

Theorem 1. If the function f( xa, xc) is neither weakly OR-

bi-decomposable nor weakly AND-bi-decomposable with
regard to a single variable xi ¼ xa, then the function f(xi,

xb) is disjointly XOR-bi-decomposable with regard to the

single variable xi and the set of variables xbf g ¼ xcf g.
The proof of Theorem 1 is also given in [4].

5 Experimental Results

The key of the bi-decomposition is that each created

subfunction is either independent of at least one variable xi,
which can be checked by (2); or the created subfunction

belongs to a larger lattice than the given function f(x).

After several extensions, such a lattice contains a function

f(x) that also holds (2). The larger the number of variables

from which all functions of the lattice are independent the

simpler circuits can be synthesized by bi-decomposition.

In [7, 5] was shown, that

1. there are lattices of Boolean functions which do not

depend on a certain number of variables;

2. the constant value 0 of the simple derivative (1) of such a

function with regard to a respective variable indicates this

property;

3. the constant value 0 of a vectorial derivative (1) also

indicates a simpler function;

4. there are 2n � 1 directions of change in Bn;

5. the number of independent directions of change for

lattices in Bn is restricted to n.

From these findings arises the question whether vectorial

derivatives can be utilized to find simpler subfunctions of a

bi-decomposition. An alternative measure of the complexity

of a Boolean function f(x) is the number of cubes in the SNF

(f(x)) [6, 8]. An experiment allows us to evaluate these

properties form a more general point of view.

For that reason we calculated for all 65,536 Boolean

functions f(x) of B4 the number of cubes in the SNF(f(x))

and all simple and vectorial derivatives. Table 5 summarizes

these experimental results as follows:

– column 1 contains the numbers of functions of one com-

plexity class of the SNF;

– column 2 lists the numbers of cubes of the SNF class as

measure of the complexity;

xa

xc

xb

g(xa,xc)

h(xb,xc)
f

xa

xc

g(xa,xc)

h(xc)
f

xa

xc

xb

g(xa,xc)

h(xb,xc)
f

xa

xc

g(xa,xc)

h(xc)
f

xa

xc

xb

g(xa,xc)

h(xb,xc)
f

a

b

c

d

e

Fig. 1 Circuit structures of bi-decompositions: (a) AND-bi-decomposition; (b) OR-bi-decomposition; (c) XOR-bi-decomposition; (d) weak

AND-bi-decomposition; (e) weak OR-bi-decomposition
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– column 3 enumerates the numbers of simple derivatives

which are equal to 0 for the evaluated functions (number

of independent variables);

– inB4 there are six vectorial derivatives with regard to two

variables; column 4 specifies how many of these vectorial

derivatives are equal to 0;

– in B4 there are four vectorial derivatives with regard to

three variables; column 5 specifies how many of these

vectorial derivatives are equal to 0;

– in B4 there is one vectorial derivative with regard to all

four variables; a value 1 in column 6 specifies that this

vectorial derivative is equal to 0;

– the most right column 7 gives the numbers of functions

with the properties introduced above.

As could be expected, functions ofB4 which do not depend

on all four variables have small values of SNFðf ðxÞÞj j. Column

3 of Table 5 shows the number of variables the evaluated

functions do not depend on. The complete evaluation of all

Boolean functions ofB4 reveals that there are simple functions

which depend on all four variables, but are independent of the

common change of more than one variable; e.g., 48 functions

with SNFðf ðxÞÞj j ¼ 24 and one vectorial derivative with

regard to two variables which is equal to 0, 32 functions with

SNFðf ðxÞÞj j ¼ 28 and one vectorial derivative with regard to

three variables which is equal to 0, 8 functions with

SNFðf ðxÞÞj j ¼ 30 and one vectorial derivative with regard to

all four variables which is equal to 0, and many more.

An interesting result is that there are also simple

functions, which depend on all variables, and which also

depend on all other directions of change. An example is the

function f(x) ¼ x1 x2 x3 x4 with SNFðf ðxÞÞj j ¼ 16 for which

neither any simple derivative nor any vectorial derivative is

equal to 0.

Table 1 Evaluation of all functions of B4 regarding the SNF and

vectorial derivatives

number of functions with ∂f
∂x ¼ 0 and

functions

cubes in

the SNF xj j ¼ 1 xj j ¼ 2 xj j ¼ 3 xj j ¼ 4 number

1 0 4 6 4 1 1

81 16 0 0 0 0 16

16 1 0 0 0 32

16 2 1 0 0 24

16 3 3 1 0 8

16 4 6 4 1 1

324 24 0 0 0 0 96

24 1 0 0 0 96

24 0 1 0 0 48

24 1 1 1 0 48

24 2 1 0 0 24

24 2 2 2 1 12

1,296 28 0 0 0 0 832

28 1 0 0 0 416

28 0 0 1 0 32

28 1 0 1 1 16

648 30 0 0 0 0 640

30 0 0 0 1 8

648 32 0 0 0 0 320

32 1 0 0 0 160

32 0 1 0 0 96

32 1 1 1 0 48

32 0 3 0 0 16

32 1 3 3 0 8

3,888 34 0 0 0 0 3,888

6,732 36 0 0 0 0 6,064

36 1 0 0 0 32

36 0 1 0 0 480

36 0 0 1 0 128

36 1 0 1 1 16

36 0 2 0 1 12

7,776 38 0 0 0 0 7,776

9,234 40 0 0 0 0 8,704

40 0 1 0 0 240

40 0 0 1 0 192

40 0 0 0 1 56

40 0 1 2 0 24

40 0 3 0 0 16

40 0 6 0 1 2

14,472 42 0 0 0 0 14,416

42 0 0 0 1 56

12,636 44 0 0 0 0 12,144

44 0 0 1 0 288

44 0 1 0 0 192

44 0 2 0 1 12

(continued)

Table 1 (continued)

number of functions with ∂f
∂x ¼ 0 and

functions

cubes in

the SNF xj j ¼ 1 xj j ¼ 2 xj j ¼ 3 xj j ¼ 4 number

5,184 46 0 0 0 0 5,136

1,944 48 0 0 0 0 1,776

48 0 0 1 0 96

48 0 1 0 0 48

48 0 1 2 0 24

648 50 0 0 0 0 640

24 54 0 0 0 0 16

54 0 0 0 1 8
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6 Example of a Bi-Decomposition
Controlled by SNFðf Þj j

A simple example shows the advantage of the bi-

decomposition controlled by SNFðf Þj j. The function (14) is

a symmetric function. It is known that there is no classical

bi-decomposition for this function.

f ¼ x1 x2 x3 x4∨x1 x2 x3 x4∨x1 x2 x3 x4∨x1 x2 x3 x4

ð14Þ

The classical bi-decomposition approach requires two

weak AND-bi-decompositions (realized by the AND-gates

g6 and g7 of Figure 2) before an XOR-bi-decomposition

(realized by the XOR-gate g5 of Figure 2) can be applied.

Due to the weak AND-bi-decompositions there is no bal-

anced path length. The shortest path contain only two gates

(g4 and g7) and the longest path contains even four gates (g1,

g5, g6, and g7). It should be mentioned that SNFðf Þj j ¼ 40

and the first weak AND-bi-decomposition increases the

complexity: SNFðg6Þj j ¼ 44, but utilizes the independence:
∂g6ðxÞ

∂ðx3, x4Þ¼0
.

The new bi-decomposition controlled by SNFðf Þj j
decomposes the same function f(x) (14) with SNFðf Þj j ¼
40 into two subfunctions g5 and g6 (see Figure 3). Each of

these two subfunctions depends on all four variables. Hence,

the condition of the classical bi-decomposition is not

achieved. However, these two subfunctions are simpler

measured by the number of cubes in the SNF:

SNFðg5Þj j ¼ SNFðg6Þj j ¼ 24 ð15Þ

and one vectorial derivative of theses functions with regard

to two variables is equal to 0. The number of gates remains 7,

but the benefit of the circuit structure of Figure 3 is that all

paths contain the same number of only two gates. Hence, the

proof of concept of the bi-decomposition controlled by

SNFðf Þj j is achieved.

7 Conclusions

The experimental results in Table 5 confirm that not only

zero-functions of simple derivatives but also zero-functions

of vectorial derivatives indicate simple functions. The num-

ber of cubes in the SNF is an additional indicator for a more

Fig. 2 Circuit structure of the

function (14) designed by bi-

decomposition controlled by the

independence of variables.

Fig. 3 Circuit structure of

the function (14) designed

by bi-decomposition controlled

by SNFðf Þj j.
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general bi-decomposition approach. The comparison of the

circuit structures of the same function (14) using the classi-

cal bi-decomposition in Figure 2 and the new extended bi-

decomposition in Figure 3 confirm that the proof of concept

of the bi-decomposition controlled by SNFðf Þj j is achieved.
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