
Annalisa Appice · Michelangelo Ceci
Corrado Loglisci · Giuseppe Manco
Elio Masciari · Zbigniew W. Ras (Eds.)

 123

LN
AI

 8
39

9

Second International Workshop, NFMCP 2013
Held in Conjunction with ECML-PKDD 2013
Prague, Czech Republic, September 27, 2013
Revised Selected Papers

New Frontiers
in Mining
Complex Patterns

Lecture Notes in Artificial Intelligence 8399

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

For further volumes:
http://www.springer.com/series/1244

http://www.springer.com/series/1244

Annalisa Appice • Michelangelo Ceci
Corrado Loglisci • Giuseppe Manco
Elio Masciari • Zbigniew W. Ras (Eds.)

New Frontiers
in Mining
Complex Patterns

Second International Workshop, NFMCP 2013
Held in Conjunction with ECML-PKDD 2013
Prague, Czech Republic, September 27, 2013
Revised Selected Papers

123

Editors
Annalisa Appice
Michelangelo Ceci
Corrado Loglisci
Department of Computer Science
Università degli Studi di Bari Aldo Moro
Bari
Italy

Giuseppe Manco
Elio Masciari
ICAR
CNR
Rende
Italy

Zbigniew W. Ras
Department of Computer Science
University of North Carolina
Charlotte, NC
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
ISBN 978-3-319-08406-0 ISBN 978-3-319-08407-7 (eBook)
DOI 10.1007/978-3-319-08407-7
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014942657

� Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

New Frontiers in Mining Complex Patterns (NFMCP 2013)

Modern automatic systems are able to collect huge volumes of data, often with a
complex structure (e.g. multi-table data, XML data, web data, time series and
sequences, graphs and trees). This fact poses new challenges for current information
systems with respect to storing, managing, and mining these sets of complex data. The
Second International Workshop on New Frontiers in Mining Complex Patterns
(NFMCP 2013) was held in Prague in conjunction with the European Conference on
Machine Learning and Principles and Practice of Knowledge Discovery in Databases
(ECML-PKDD 2013) on September 27, 2013. It was aimed to bring together
researchers and practitioners of data mining who are interested in the advances and
latest developments in the area of extracting patterns from complex data sources like
blogs, event or log data, medical data, spatio-temporal data, social networks, mobility
data, sensor data and streams, and so on.

This book features a collection of revised and significantly extended versions of
papers accepted for presentation at the workshop. These papers went through a rig-
orous review process to ensure their high quality and to have them comply with
Springer-Verlag publication standards. The individual contributions of this book
illustrate advanced data mining techniques which preserve the informative richness of
complex data and allow efficient and effective identification of complex information
units present in such data.

The book is composed of four parts and a total of sixteen chapters.
Part I gives a view of Data Streams and Time Series Analysis by illustrating

some complex situations involving temporal and spatio-temporal data. It consists of
five chapters. Chapter 1 describes data driven parameter estimation measures for
mining flock patterns with a validation procedure to measure the quality of these
extracted patterns. Chapter 2 presents a simple yet effective and parameter-free feature
construction process for time series classification. Chapter 3 proposes a learning
algorithm, combining conditional log-likelihood with Bayesian parameter estimation,
designed for analyzing multivariate streaming data. Chapter 4 investigates the prob-
lem of mining frequent trajectories by resorting to frequent sequential pattern mining.
Chapter 5 details a process mining approach that uses predictive clustering to equip an
execution scenario with a prediction model.

Part II analyses issues posed by Classification, Clustering, and Pattern Discov-
ery in presence of complex data. It consists of six chapters. Chapter 6 describes a
novel methodology that combines principal component analysis and support vector
machines in order to detect emotions from speech signals. Chapter 7 illustrates a
sequential pattern mining algorithm that allows us to discover lengthy noise-tolerant
sequential patterns over item-indexable databases. Chapter 8 studies the problem of
efficiently mining frequent partite episodes that satisfy partwise constraints from an

input event sequence. Chapter 9 proposes an estimation algorithm for the copula of a
continuous multivariate distribution. Chapter 10 focuses on extending the ReliefF
algorithm for regression, in order to address the task of hierarchical multi-label
classification (HMC). Chapter 11 addresses the task of learning both global and local
models for predicting structured outputs.

Part III presents technologies and applications where complex patterns are dis-
covered from Graphs, Networks, and Relational Data. It contains three chapters.
Chapter 12 describes a generative model for random graphs with discrete labels and
weighted edges. Chapter 13 proposes a pre-processing strategy to simplify Semantic
Similarity Networks based on a hybrid global-local thresholding approach based on
spectral graph theory. Chapter 14 investigates the translation of the complex data
represented by natural language text to complex (relational) patterns that represent the
writing style of an author.

Finally, Part IV gives a general overview of Machine Learning and Music data.
It contains two chapters. Chapter 15 explores a set of personalized emotion classifiers
that are learned using feature data extracted from audio and tagged with a set of
emotions by volunteers. Chapter 16 addresses the problem of using random forests, in
order to identify multiple musical instruments in polyphonic recordings of classical
music.

We would like to thank all the authors who submitted papers for publication in this
book and all the workshop participants and speakers. We are also grateful to the
members of the Program Committee and external referees for their excellent work in
reviewing submitted and revised contributions with expertise and patience. We would
like to thank João Gama for his invited talk on ‘‘Evolving Data, Evolving Models’’.
Special thanks is due to both the ECML PKDD workshop chairs and to the members
of ECML PKDD organizers who made the event possible. We would like to
acknowledge the support of the European Commission through the project MAES-
TRA - Learning from Massive, Incompletely annotated, and Structured Data (Grant
number ICT-2013-612944). Last but not the least, we thank Alfred Hofmann of
Springer for his continuous support.

January 2014 Annalisa Appice
Michelangelo Ceci

Corrado Loglisci
Giuseppe Manco

Elio Masciari
Zbigniew W. Ras

VI Preface

Organization

Program Chairs

Annalisa Appice University of Bari, Italy
Michelangelo Ceci University of Bari, Italy
Corrado Loglisci University of Bari, Italy
Giuseppe Manco ICAR-CNR, Italy
Elio Masciari ICAR-CNR, Italy
Zbigniew W. Ras University of North Carolina at Charlotte, USA

& Warsaw University of Technology, Poland

Program Committee

Nicola Barbieri Yahoo Research, Spain
Petr Berka University of Economics Prague, Czech Republic
Sašo Džeroski Jozef Stefan Institute, Slovenia
Floriana Esposito University of Bari, Italy
Dimitrios Gunopulos University of Athens, Greece
Mohand-Saïd Hacid University Claude Bernard Lyon 1, France
Dino Ienco IRSTEA Montpellier, UMR TETIS, France
Kristian Kersting Fraunhofer IAIS, Germany
Arno Knobbe University of Leiden, The Netherlands
Stan Matwin University of Ottawa, Canada
Dino Pedreschi University of Pisa, Italy
Jean-Marc Petit INSA-Lyon, LIRIS, France
Fabrizio Riguzzi University of Ferrara, Italy
Henryk Rybiński Warsaw University of Technology, Poland
Eirini Spyropoulou University of Bristol, UK
Jerzy Stefanowski Poznan University of Technology, Poland
Maguelonne Teisseire IRSTEA Montpellier, UMR TETIS, France
Herna Viktor University of Ottawa, Canada
Alicja Wieczorkowska Polish-Japanese Institute of IT, Poland
Wlodek Zadrozny IBM Watson Research Center, USA
Djamel Zighed Université Lumière Lyon 2, France

Additional Reviewers

Gianni Costa
Stefano Ferilli
Massimo Guarascio
Ayman Hajja

Hai Phan Nhat
Matteo Riondato
Riccardo Ortale

Evolving Data, Evolving Models
(Invited Talk)

João Gama

LIAAD-INESC TEC and Faculty of Economics, University of Porto, Porto, Portugal

Abstract. In recent years we witnessed an impressive advance in the social networks Field,
which became a ‘‘hot’’ topic and a focus of considerable attention. The development of methods
that focus on the analysis and understanding of the evolution of data are gaining momentum.
The need for describing and understanding the behavior of a given phenomenon over time led to
the emergence of new frameworks and methods focused in temporal evolution of data and
models. In this talk we discuss the research opportunities opened in analysing evolving data and
present examples from mining the evolution of clusters and communities in social networks.

Contents

Data Streams and Time Series Analysis

Parameter Estimation and Pattern Validation in Flock Mining 3
Rebecca Ong, Mirco Nanni, Chiara Renso, Monica Wachowicz,
and Dino Pedreschi

Feature Extraction over Multiple Representations for Time Series
Classification . 18

Dominique Gay, Romain Guigourès, Marc Boullé, and Fabrice Clérot

A Classification Based Scoring Function for Continuous Time Bayesian
Network Classifiers . 35

Daniele Codecasa and Fabio Stella

Trajectory Data Pattern Mining . 51
Elio Masciari, Gao Shi, and Carlo Zaniolo

Process Mining to Forecast the Future of Running Cases. 67
Sonja Pravilovic, Annalisa Appice, and Donato Malerba

Classification, Clustering and Pattern Discovery

A Hybrid Distance-Based Method and Support Vector Machines
for Emotional Speech Detection . 85

Vladimer Kobayashi

Methods for the Efficient Discovery of Large Item-Indexable
Sequential Patterns . 100

Rui Henriques, Cláudia Antunes, and Sara C. Madeira

Mining Frequent Partite Episodes with Partwise Constraints 117
Takashi Katoh, Shin-ichiro Tago, Tatsuya Asai, Hiroaki Morikawa,
Junichi Shigezumi, and Hiroya Inakoshi

Structure Determination and Estimation of Hierarchical Archimedean Copulas
Based on Kendall Correlation Matrix . 132

Jan Górecki and Martin Holeňa

ReliefF for Hierarchical Multi-label Classification 148
Ivica Slavkov, Jana Karcheska, Dragi Kocev, Slobodan Kalajdziski,
and Sašo Džeroski

http://dx.doi.org/10.1007/978-3-319-08407-7_1
http://dx.doi.org/10.1007/978-3-319-08407-7_2
http://dx.doi.org/10.1007/978-3-319-08407-7_2
http://dx.doi.org/10.1007/978-3-319-08407-7_3
http://dx.doi.org/10.1007/978-3-319-08407-7_3
http://dx.doi.org/10.1007/978-3-319-08407-7_4
http://dx.doi.org/10.1007/978-3-319-08407-7_5
http://dx.doi.org/10.1007/978-3-319-08407-7_6
http://dx.doi.org/10.1007/978-3-319-08407-7_6
http://dx.doi.org/10.1007/978-3-319-08407-7_7
http://dx.doi.org/10.1007/978-3-319-08407-7_7
http://dx.doi.org/10.1007/978-3-319-08407-7_8
http://dx.doi.org/10.1007/978-3-319-08407-7_9
http://dx.doi.org/10.1007/978-3-319-08407-7_9
http://dx.doi.org/10.1007/978-3-319-08407-7_10

The Use of the Label Hierarchy in Hierarchical Multi-label Classification
Improves Performance. 162

Jurica Levatić, Dragi Kocev, and Sašo Džeroski

Graphs, Networks and Relational Data

AGWAN: A Generative Model for Labelled, Weighted Graphs. 181
Michael Davis, Weiru Liu, Paul Miller, Ruth F. Hunter, and Frank Kee

Thresholding of Semantic Similarity Networks Using a Spectral
Graph-Based Technique. 201

Pietro Hiram Guzzi, Pierangelo Veltri, and Mario Cannataro

A Relational Unsupervised Approach to Author Identification 214
Fabio Leuzzi, Stefano Ferilli, and Fulvio Rotella

Machine Learning and Music Data

From Personalized to Hierarchically Structured Classifiers for Retrieving
Music by Mood . 231

Amanda Cohen Mostafavi, Zbigniew W. Raś, and Alicja A. Wieczorkowska

Mining Audio Data for Multiple Instrument Recognition in Classical Music 246
El_zbieta Kubera and Alicja A. Wieczorkowska

Author Index . 261

XII Contents

http://dx.doi.org/10.1007/978-3-319-08407-7_11
http://dx.doi.org/10.1007/978-3-319-08407-7_11
http://dx.doi.org/10.1007/978-3-319-08407-7_12
http://dx.doi.org/10.1007/978-3-319-08407-7_12
http://dx.doi.org/10.1007/978-3-319-08407-7_13
http://dx.doi.org/10.1007/978-3-319-08407-7_13
http://dx.doi.org/10.1007/978-3-319-08407-7_14
http://dx.doi.org/10.1007/978-3-319-08407-7_15
http://dx.doi.org/10.1007/978-3-319-08407-7_15
http://dx.doi.org/10.1007/978-3-319-08407-7_16

Data Streams
and Time Series Analysis

Parameter Estimation and Pattern Validation
in Flock Mining

Rebecca Ong1, Mirco Nanni1, Chiara Renso1(B), Monica Wachowicz3,
and Dino Pedreschi2

1 KDDLab, ISTI-CNR, Pisa, Italy
chiara.renso@isti.chr.it

2 KDDLab, University of Pisa, Pisa, Italy
3 University of New Brunswick, Fredericton, Canada

Abstract. Due to the diffusion of location-aware devices and location-
based services, it is now possible to analyse the digital trajectories of
human mobility through the use of mining algorithms. However, in most
cases, these algorithms come with little support for the analyst to actu-
ally use them in real world applications. In particular, means for under-
standing how to choose the proper parameters are missing. This work
improves the state-of-the-art of mobility data analysis by providing an
experimental study on the use of data-driven parameter estimation mea-
sures for mining flock patterns along with a validation procedure to mea-
sure the quality of these extracted patterns. Experiments were conducted
on two real world datasets, one dealing with pedestrian movements in a
recreational park and the other with car movements in a coastal area.
The study has shown promising results for estimating suitable values for
parameters for flock patterns as well as defining meaningful quantitative
measures for assessing the quality of extracted flock patterns. It has also
provided a sound basis to envisage a formal framework for parameter
evaluation and pattern validation in the near future, since the advent of
more complex pattern algorithms will require the use of a larger number
of parameters.

1 Introduction

The increasing availability of data pertaining to the movements of people and
vehicles, such as GPS trajectories and mobile phone call records, has fostered
in recent years a large body of research on the analysis and mining of these
data, to the purpose of discovering the patterns and models of human mobility.
Examples along this line include [3,4], which highlight the broad diversity of
mobility patterns. A few authors concentrated on the problem of characterising
and detecting flocks, i.e., patterns describing a set of objects that stay closely
together during an interval of time, either moving together along the same route
(a moving flock), or staying together in a specific location (a stationary flock)
[5,8,10].

A. Appice et al. (Eds.): NFMCP 2013, LNAI 8399, pp. 3–17, 2014.
DOI: 10.1007/978-3-319-08407-7 1, c© Springer International Publishing Switzerland 2014

4 R. Ong et al.

In this paper, we follow the definition where a flock is a group of at least
k objects that, observed during a time interval ΔT with a sampling rate R,
remain spatially close to each other within a distance ρ. While this definition and
other variations in literature are useful for detecting flocks, it is apparent that
setting such parameters (k, ρ,ΔT,R) makes it complex for an analyst to use flock
mining in different contexts. These parameters clearly depend on the data under
analysis, and may vary greatly in different settings. We observed remarkable
differences in datasets pertaining to pedestrian and car movements, which are the
two trajectory datasets used in this paper. Such differences can be expected as
well when observing other types of moving objects, e.g., bird trajectories. Despite
this complexity, no prior work addressed the problem of parameter setting, which
is a barrier especially for mobility experts who would like to use flock mining as a
black box. To this aim, we address the parameter estimation problem of finding
appropriate values for the parameters using a systematic data-driven method,
based on the trajectory dataset that is being analysed. This paper provides an
empirical evaluation of the effects of parameters in two different moving objects
datasets. This is an initial step towards delineating a data-driven parameter
estimation method for flock mining.

The structure of this paper is as follows: Sect. 2 presents some related
approaches in the literature. Section 3 describes the experiments performed on
two datasets in order to study the effect of the different parameters. Section 4
proposes and tests several measures for validating the set of flocks found by the
flock extraction algorithm. Finally, Sect. 5 sums up the conclusions derived from
the study.

2 Related Works

Although the problem of finding realistic parameter values in data mining is well
recognized in literature, very few papers have addressed this problem. Paper [2]
is a well known work that proposes a solution for parameter estimation, and
has inspired our approach. In this work, the authors propose a heuristic tech-
nique for determining the parameter values of the density-based clustering algo-
rithm DBSCAN: Eps (radius) and MinCard (minimum cardinality of clusters).
A function called k-distance is defined to compute the distance between each
object and its k-th nearest neighbor. These values are then plotted with objects
ordered in descending order, in the so-called sorted k-distance plot. This plot is
then used to find an estimation of the Eps parameter, basically corresponding to
the point where a sudden increase in the k-distance occurs. The objects plotted
to the left of the threshold will be considered as noise while other objects will
be assigned to some cluster.

Another work on parameter estimation related to flocks is found in [7] where
the authors propose a set of algorithms for detecting convoys in trajectory
datasets. They proposed a guideline for determining the parameters δ and λ
of the Douglas-Peucker (DP) trajectory simplification algorithm. The DP algo-
rithm uses δ as a tolerance value for constraining the spatial distance between

Parameter Estimation and Pattern Validation in Flock Mining 5

the original and the simplified points. The algorithm uses another additional
parameter λ, which refers to the length of the time partitions. The determina-
tion of a good value for δ has the goal of finding a trade-off value giving a good
simplification of original trajectories while maintaining a tight enough distance.
For finding a good value for δ authors propose to run the DP algorithm with δ
set to 0. They consider the actual tolerance values at each simplification step and
find the values with the largest difference with their neighbour before averaging
them to obtain the final parameter value. Meanwhile, a good λ is computed by
taking the average probability of each object having an intermediate simplified
point that is not found in other trajectories. However, the parameter estima-
tion techniques were applied to the preprocessing step of the convoy algorithm
rather than applying it directly to the parameters related to the flock or convoy
definition.

3 Flock Algorithm and Parameter Estimation

Our study for parameter estimation has been designed with reference to the flock
algorithm introduced in [10]. The algorithm finds moving flocks, each of which is
a group of objects consisting of at least min points members that are spatially
close together while moving over a minimum time duration min time slices.
The algorithm requires four user-defined parameters: synchronisation rate(R)
- refers to the rate, specified in seconds, at which observation points (e.g., GPS
recordings) are sampled for each moving object; min time slices(ΔT) - is the
minimum number of consecutive times slices for which the objects remain spa-
tially close; min points(κ) - is the minimum number of objects in a moving flock;
radius(ρ) - defines the spatial closeness of a group of moving objects at a specific
time instance.

We start with a description of the datasets used for our empirical evaluations
and an overview of some flock quality measures, since these are necessary to
understand the impact of the parameters on the results. These are followed by
a discussion of the effect of each parameter, before closing with an approach on
finding a suitable radius value.

3.1 Context Awareness and Flock Cohesion Distance

We performed the study on two datasets that have two entirely different settings
of two different types of moving objects. The first dataset, called DNP, contains
370 trajectories, one for each visitor and consisting of a total of 141,826 sample
points. These were recorded using GPS devices given to the visitors of a natural
park at the parking lots where they have started their visits. Due to the sparsity
of this dataset, we have combined the data in different days into one day. The
second dataset, called OctoPisa, contains the trajectories of ≈40,000 cars for a
total of ≈1,500,000 travels covering a temporal span of 5 weeks in a coastal area
of Tuscany around the city of Pisa. From this large dataset, we concentrated on
a subset of trajectories occurring on June, 29, 2010 in order to be able to perform

6 R. Ong et al.

a more detailed study on a specific time period. This is one of the days with the
highest number of moving cars. It contains 28,032 trajectories (corresponding to
557,201 observed GPS points) of 10,566 vehicles.

The initial set of parameter values that we used for the DNP dataset is as
follows: R = 5min., ΔT = 3, κ = 3, and ρ = 150m. Meanwhile, the initial
set used for the OctoPisa dataset is as follows: R = 1min., ΔT = 3, κ = 3,
and ρ = 150m. For both datasets, we maximized R to a value that does not
cause large distortion (from the domain expert’s perspective) among the input
trajectories. We selected a value of 3 for both ΔT and κ since using 2 is too
small while 4 is quite large for finding a good number of flocks. Then, using
the values for R, ΔT , κ, and the type of entity (i.e., pedestrian and car) in
consideration, we derived a feasible and logical value for ρ. In observing the
effects of the individual parameters, we only modify the value of the parameter
in consideration and retain the initial values for the rest.

A first step in parameter estimation is to understand how the parameters
influence the results obtained by the flock extraction algorithm. In doing so, it is
important to have an objective measure of this influence in order to understand
whether decreasing or increasing the parameter values improves or worsens the
quality of discovered flocks.

In our study, we used three measures, which are extensions of measures used
for cluster evaluation. These measures include cohesion, separation and silhou-
ette coefficient.

Flock cohesion distance is a measure of spatial closeness among members
of a discovered flock. It can be computed using Eq. 1, which evaluates a specific
flock Fi by computing the distance between each flock member mj with the base
mi(b) (the central object of the flock, as returned by the extraction algorithm
[10]). |Fi| is the number of Fi’s members.

flock coh(Fi) =

∑
mj∈Fi

mj ∞=mi(b)

proxintra(mj ,mi(b))

|Fi| − 1
(1)

The proxintra between a flock member mj and the flock base mi(b) can be
computed by averaging the Euclidean distance among (x, y) points that were
sampled simultaneously as described in Eq. 2. T refers to the flocking duration
and it consists of a set of sampled time instances. xt

j and yt
j refer to the x, y

components of member j at time instance t. xt
i(b) and yt

i(b) are the x and y
components of flock i’s base.

proxintra(mj ,mi(b)) =

∑
t∈T euclDist((xt

j , y
t
j), (x

t
i(b), y

t
i(b)))

|T | (2)

The overall flock cohesion distance of a set F of flocks can be computed by
averaging the flock cohesion distance scores for each flock in F , as shown in
Eq. 3. Naturally, a flock with a low cohesion distance score is considered as a
high quality flock.

overall f lock cohesion distance(F) =

∑
Fi∈F flock coh(Fi)

|F | (3)

Parameter Estimation and Pattern Validation in Flock Mining 7

Complementary, flock separation is a measure of spatial or spatio-temporal
detachment of a flock from the rest and it can be computed using Eq. 4.

flock sep(Fi) =
∑

Fj∈F
i∞=j

proxinter(mb(i),mb(j)) (4)

While proxintra measures the distance among members of a flock, proxinter

measures the distance among different flocks. The distance between a pair of
flocks is computed by computing the distance between their respective bases.
both spatial and temporal dimensions (proxinter(XY T)) and one that considers
only the spatial similarity, i.e. the route followed (proxinter(routeSim)). Choosing
between these two depends on the similarity level that the user is interested in.

proxinter(XY T) computes the spatial distance among the portion of the base
trajectories that overlap in time as was done for proxintra. The remaining por-
tion that does not overlap incurs a penalty pnlty, which is the maximum pos-
sible distance obtained from the overlapping portion plus an arbitrary value. In
the case that the bases being compared are disjoint, a maximum penalty score
is incurred. More specifically, Eq. 5 describes how proxinter(XY T) is computed.
nonOverlapLTI refers to the number of un-matched time instances in the longer
trajectory, euclDistOvlp is the sum of Euclidean distances among pairs of points
(from each base) that overlap in time, and maxTD refers to the length of the
longer base trajectory in terms of the number of time instances.

proxinter(XY T) =
pnlty ∗ (nonOverLTI) + euclDistOvlp

maxTD ∗ (|Fi| − 1)
(5)

For proxinter(routeSim), we adapted an existing algorithm for computing the
route similarity distance. The algorithm ignores the temporal component of the
bases and computes the distance in terms of the spatial components by compar-
ing the shape of the trajectories.

As with the overall flock cohesion of an obtained flock result, the overall flock
separation can be computed by averaging individual flock separation scores.

Finally, the flock silhouette coefficient is a combination of the previously
discussed measures as shown in Eq. 6. Note that computed scores can range from
-1 (large intraflock distances and small interflock distances) to 1 (small intraflock
distances and large interflock distances).

flock Sil(Fi) =
flock sep(Fi) − flock coh(Fi)

max{flock sep(Fi), f lock coh(Fi)} (6)

As with overall flock cohesion and separation, the overall silhouette coefficient
of a flock result can be computed by the averaging silhouette score of each flock.

3.2 Observing the Effect of Varying the Parameters

This part discusses the observations derived from investigating the effect of differ-
ent parameter values on the obtained flock results for the DNP and the OctoPisa

8 R. Ong et al.

datasets. The following subsections provides a discussion of the individual effect
of each parameter.

Effect of synchronisation rate (R). Out of the 4 parameters of the algo-
rithm, the synchronisation rate can affect the quality of the input dataset. More
specifically, a very large value of R can distort the input trajectories whereas a
very small value requires a longer processing time.

We have observed how dataset cohesion changes for different values of R.
Dataset cohesion describes how each individual trajectory is cohesive with respect
to the rest of trajectories in the dataset. To compute this value, we applied the
flock separation measure and treated each trajectory as a base trajectory.

Experiments demonstrate that the synchronisation step can indeed modify
the input and its cohesiveness but at the same time, the variation is small in the
two datasets for smaller values of R. Using XYT cohesion, the largest difference
between the smallest cohesion score compared to the other scores obtained using
larger R is 371.67 m when R = 11min. in the DNP dataset. Meanwhile, the
largest difference is 1987.77 m using route similarity cohesion when R = 15min.
in the DNP dataset. For the Octopisa dataset, the largest difference is 480.28 m
and 10789.69 m using XYT and route similarity cohesion, respectively. The route
similarity cohesion score varied more compared to the XYT cohesion score. This
plot thus suggests the use of smaller values of R.

We now present the effect of the synchronisation rate on the discovered
flocks themselves. Figure 1 illustrates how different values of R can affect the flock
results by observing the change in the number of moving flocks discovered, the
overall flock cohesion, the overall flock separation (based on the spatio-temporal
coordinates XYT and route similarity), and the overall silhouette coefficient
(XYT and route similarity based).

In general, fewer flocks are found as R increases. Furthermore, the overall
flock cohesion varies slightly for different R values, while the overall flock sep-
aration tend to decrease with increasing R values. In the case of R = 8min. in
Octopisa and R = 13min. in DNP, the discovered flocks becomes 0 and hence,
the cohesion and separation scores are no longer applicable. Considering the
plots for the XYT and route similarity separation scores, it is advisable to set
R to a value less than 6min. in DNP and a value less than 4min. in Octopisa
due to the sudden drop in the separation scores. A sudden drop occurs when no

Fig. 1. Effect of the synchronisation rate parameter for the two datasets.

Parameter Estimation and Pattern Validation in Flock Mining 9

flock or only a single flock is discovered, or when the distance among the discov-
ered flocks is small. Very large XYT separation scores indicates that the flocks
are temporally disjoint. On the other hand, very large route similarity scores
indicates that different flocks are following different routes. Finally, the silhou-
ette coefficients summarize the effect of R on both the cohesion and separation
scores. The silhouette coefficients are generally close to 1 (i.e., ideal case), except
for cases wherein the silhouette coefficient is 0. These cases refer to instances
wherein only a single flock or no flock was found, making the silhouette coefficient
inapplicable.

Effect of the min time slices (ΔT) Parameter. min time slices and sync−
hronisation rate are parameters that are both related to time. Since the plots
and observations for these parameters are generally similar, we no longer present
the plots for min time slices.

As observed with synchronisation rate, an increasing value of ΔT results
in fewer number of discovered moving flocks, and, generally, lowering the XYT
and route similarity separation scores. The XYT- and route similarity-based
silhouette coefficients are either close to 1 when more than a single flock is
found, or 0, otherwise. Based on the experiments, a value of 2 or 3 time slices
is ideal for the DNP dataset since there is a large drop in the XYT separation
score when ΔT = 4. Same is true for the OctoPisa dataset.

Effect of the min points (κ) Parameter. min points refers to the minimum
objects that should consist a flock. Our experiments show that its selection is
not critical, and it is also relatively easy to choose based on the objectives of the
analysis: it is a tradeoff between having more flocks with fewer members (low
threshold value), or having few flocks with more members.

Effect of the radius (ε) Parameter. Lastly, we have also observed the effect of
the radius parameter, which defines the spatial closeness among flock members.
As observed in Fig. 2, the number of flocks generally increases as ρ
increases. Meanwhile, the flock cohesion degrades (i.e., intra-distance increases)
as ρ increases. The XYT flock separation score tends to improve as ρ increases
when excluding the cases wherein the discovered flocks do not overlap in time
(i.e., maximum XYT separation score is obtained) or no flocks were found. Mean-
while, the route similarity separation score generally improves as larger values
of ρ are used. As with previously observed parameters, the silhouette coefficients
for varying ρ remains close to 1.

The effect of radius as compared with the effect of the other parameters is
as follows:

1. Out of all the scores used in assessing the effects of the parameters, the
number of moving flocks has been the most sensitive. Generally, its value is
directly proportional to the value of ρ while it is inversely proportional to
the other parameters. It is also worth noting that a higher number of moving
flocks does not necessarily mean that the obtained flock results are better.

2. Compared to other flock validity measures, we consider flock cohesion as
most important since it is in harmony with and explicit in the definition of a

10 R. Ong et al.

flock (i.e., a flock consists of members that are spatially close together over
a specific time duration). While the flock cohesion score linearly increases
(i.e., flock cohesion degrades) as the ρ increases, the cohesion score did not
change as much with respect to changing values of the other parameters.
Thus, we can conclude that the radius has a larger impact on the obtained
flock results compared to the other parameters. Excluding the cases wherein
no flocks are discovered (i.e., the flock separation score is irrelevant) and the
cases wherein there is no overlap in time among the discovered flocks (i.e., the
XYT separation score is set to the maximum), higher ρ generally improves
the separation scores whereas higher values for the other parameters generally
degrades the separation scores.

3. As a final point, the silhouette coefficient scores obtained by varying different
parameters for both datasets were consistently close to 1, except for cases
where less than 2 flocks were found.

Based on these experiments, we conclude that (1) The selection of minimum
number of points is relatively straightforward; (2) the most crucial parameter is
the radius, since it exhibited a larger effect on the flock cohesion score compared
to the other parameters; lastly, (3) while radius is the most crucial parameter,
it is still important to choose good values for the other parameters since they
still affect the quality of the discovered flocks.

3.3 Finding a Suitable radius Value

The results show that radius is a crucial parameter of the flock algorithm and a
method for finding a good value for it can provide great support for mobility data
analysts. In this section we propose the following technique, which is an extension
of the technique introduced for the Eps parameter of DBSCAN. Since DBSCAN
deals with single n-dimensional data points while the flock algorithm deals with
3D data points (spatial component plus time) that are connected through object
IDs, adjustments to their technique are necessary to accommodate the points
linked by the same object IDs. The general idea of the extended technique is to
compute the k-th distance among objects that co-occur in the same time instant
where k is min points − 1 and k-th distance refers to the distance of a point
from its k-th nearest neighbour. Once the k-th distances have been computed for

Fig. 2. Effect of the radius parameter on flock quality measures in the two datasets.

Parameter Estimation and Pattern Validation in Flock Mining 11

Fig. 3. Plot for k-th nearest neighbours for selected k’s in the DNP (left) and the
OctoPisa (right) datasets.

each point, they are sorted in non-ascending order and plotted as a line graph.
The portion in which there is a sudden decrease in the k-th distance suggests
an upper bound for the radius parameter of the algorithm. Figure 3 reports the
plots obtained over the DNP (left) and the OctoPisa (right) datasets.

Using the left part of Fig. 3 for the DNP dataset, a suggested radius value
should be below the 500 m–2000 m range for flocks with at least 3 members
(i.e., k = 2). The obtained plot for the OctoPisa dataset is shown on the right
part of Fig. 3. It suggests 3000 m–4000 m as an upper bound for the radius.
This is reasonable since the OctoPisa dataset covers a wider spatial area (about
4600Km2 vs about 48Km2 of DNP).

It is also worth noting that the plots suggest different radius values for
varying k’s and yet, the division between the objects that would be included in
some flock and those that are considered as noise is almost the same. Combining
the suggested upper bound with contextual knowledge and the observation on
the effect of radius, we recommend that a good range of values for radius is
between 80 m to 300 m for DNP and between 50 m to 300 m for OctoPisa. Table 1
summarizes the main recommendations for a good range of parameter values for
the two datasets.

4 Flock Pattern Validation

To assess the effectiveness of the algorithm and of the flocking results, validation
must be performed. This provides users with confidence in using the algorithm
and trusting its results. Furthermore, it also guides them on whether the obtained
results using specific parameter values are accurate enough. In the case that the
results are not accurate, the user may modify the initial parameter settings
accordingly in order to obtain better results.

Flock validation is a challenging problem since the optimal flocking results are
usually unknown, except for a few rare cases. The aim is to compute the goodness
of a flocking algorithm and its flocking results in terms of a quantitative measure
despite of not having a standard algorithm and/or result to compare it with.

12 R. Ong et al.

Table 1. A table summarizing the main suggestions for flock parameters

Parameter OctoPisa DNP Remarks
name

κ 2–3 2–3 Prefer higher values but should consider
number of discovered flocks, cohesion and
separation scores

ΔT 3–4 2–3 Prefer higher values but consider number of
discovered flocks, cohesion and
separation scores

R <4 min.;
best:
1–2

<6 min.;
best:
1 & 4

Based on XYT separation score

δ 50 m to
300 m

80 m to
300 m

the DBSCAN-based plot (gives the optimal
result in terms of cluster assignment) and
the plots on moving flocks, cohesion and
separation scores

The next paragraphs provide more details about unsupervised and supervised
measures.

The proposed approaches fall under two main categories, namely, super-
vised and unsupervised validation. Supervised approaches require validation of
the flocking results with respect to some “ground truth” while unsupervised
approaches assess the validity of the flocking results based on their intrinsic
properties.

4.1 Supervised Validation

As mentioned previously, the optimal flocking result that can be obtained from
a specific dataset is usually unknown. However, we can evaluate the quality of
the results by comparing them with known flocks from controlled experiments or
synthetic or semi-synthetic datasets, if they are available. That is, supervised val-
idation could be performed by comparing the obtained flocking results with the
expected flocking results. The flock similarity measure described in Subsect. 3.2
can be used to assess the similarity between these results.

In the next paragraphs, we provide a discussion of visual inspection of tra-
jectories in discovered flocks, and use of controlled experiments for the purpose
of flock validation.
Visual Inspection of Trajectories in Discovered Flocks Since flocking is often
associated with an image of birds or other types of entities that remain close
together over a specific time duration, the most natural way of checking for the
occurrence of flocks is through the sense of sight. Hence, the trajectories of flock
members over the duration of flocking can be plotted using existing visualization
tools [1,9]. Figure 4 gives two plots, the left plot being a flock example while the
other is not. The left plot illustrates how the entities moved closely together over

Parameter Estimation and Pattern Validation in Flock Mining 13

Fig. 4. The left plot is a flock example while the right plot is a non-example.

the flocking duration. On the contrary, the non-example shows that the entities
were moving in different directions.

Since this technique involves inspection of plots by a knowledgeable observer,
it is advisable to apply this technique for a sampled set of flocks when there is
a large set of discovered flocks.

Use of Controlled Experiments Datasets In this part, we discuss the supervised
validation of the flock algorithm using a dataset that describes the movement of
a small group of pedestrians in the DNP park. The pedestrian movement in this
dataset is controlled in the sense that the pedestrians were given instructions on
how they should move. For this reason, we refer to this as the controlled DNP
dataset. There were 6 teams of pedestrians who participated in the controlled
experiment. Each team was given a GPS device for tracking their movement
and a set of instructions on how they should move within a small portion of the
park. At certain times, some teams were moving with two other teams while at
other times, some teams were moving alone. We have formulated the instruction
such that flocking will occur exactly twice. More specifically, Table 2 provides a
description of the actual details of flocking based on the images taken by the
participants and an animation of the flocks.

In order to validate the flocking algorithm, we run it on this dataset and the
following parameters were used: R = 1min., ΔT = 3, κ = 3, and ρ = 100m.
Table 2 also provides a comparison of the actual and obtained results. Since the
number of expected and discovered flocks are small, it is easy to verify that the
obtained results are consistent with the expected results. There are only some
minor differences in the flocking times. We have also computed the similarity

Table 2. Actual and discovered flocking times on day December 12, and flock members
in the controlled DNP dataset.

Flock ID Start time End time Flock members

Actual flocks in the controlled dataset
0 13:41 2010 13:46 2010 6; 22; 32
1 14:02 2010 14:09 2010 13; 25; 27
Discovered flocks
0 13:41 2010 13:48 2010 6; 22; 32
1 14:02 2010 14:10 2010 13; 25; 27

14 R. Ong et al.

score using the flock similarity score described earlier and a high score of 0.95
was obtained.

4.2 Unsupervised Validation

An alternative way to validate the algorithm when ground truth results are not
available is to perform an unsupervised validation. We use the random model
validation, which is based on the null hypothesis principle [6], for concluding
that the obtained flocks are inherent in the dataset and not by random chance.
The main idea behind this validation technique is to initially assume that the
extracted flocks are obtained by chance. In order to disprove this hypothesis,
different versions of the original dataset are generated through some random
simulation technique. Afterwards, the flock discovery algorithm is executed hav-
ing each random version as input. The results obtained from applying the algo-
rithm to the original dataset and to the random versions are then compared.
Obtaining different flock results from different input datasets demonstrates that
the algorithm produces results that are not obtained by mere chance but are
based on the nature and the characteristics of the input dataset.

We have also introduced two random simulation techniques, which are radius-
based distortion of spatial coordinates and simulation through Markov-chain
random models.

Radius-Based Distortion of Spatial Coordinates. It is known that the
collected observation points contain inaccuracies due to the limitation of cur-
rent location technologies. Considering this uncertainty, we propose a generation
technique that modifies the x-, and y-values in the dataset by using a radius dis-
tortion threshold as a measure of uncertainty. The research assumption here is
that a larger threshold would produce a dataset that is very different from the
original while a smaller threshold would produce a dataset that is comparable
to the original.

Six random versions of the DNP dataset were generated by replacing (x, y)
pairs in the original dataset with a new value bounded by the user-specified
radius distortion threshold. Table 3 presents an extract of the discovered flocks
from each of the simulated datasets using varying radius distortion values. The
flock algorithm was run on all datasets, including the original and random ver-
sions, with the same parameters: R = 5min., ΔT = 3, κ = 3, and ρ = 150m.

Likewise, we have performed the simulation procedures on the Octopisa
dataset. Table 4 provides a summary of the discovered flocks from each simu-
lated dataset. The flock algorithm was executed on all datasets with the same
parameters: R = 1min., ΔT = 3, κ = 3, and ρ = 150m.

The result of this investigation shows that different flocks are obtained when
the dataset is simulated by a large enough radius distortion, such as 100 m in the
DNP dataset. Therefore, the obtained flocks depend on the dataset and are not
discovered by chance. Moreover, as the radius threshold of the simulation algo-
rithm is decreased, the extracted flocks become more similar to those found in

Parameter Estimation and Pattern Validation in Flock Mining 15

Table 3. Flock results for different random versions of the DNP. As expected, we
can notice a high similarity when the radius distortion is small. The similarity score
increases by almost 50 %–60 % when the radius distortion is increased by 50 m.

Similarity score Start time End time Flock members

Original 1 12:15 12:30 15; 96; 288
12:45 13:00 139; 140; 141
12:50 13:00 129; 139;140

Version 1 (100 m) 0 12:05 12:20 85; 125;147;
12:05 12:15 23; 85; 125

Version 2 (50 m) 0.63 12:15 12:25 15; 96; 288
12:45 12:55 139; 140; 141
12:35 12:50 217; 223; 264

Version 4 (30 m) 0.67 12:15 12:30 15; 96; 288
12:45 13:00 139; 140; 141

Version 6 (10 m) 0.98 12:15 12:30 15; 96; 288
12:45 12:55 139; 140; 141
12:50 13:00 129; 139; 140

Table 4. Flock results for different random versions of OctoPisa obtained selecting one
hour (12 to 13). As expected, the values reflect a behavior similar to the DNP dataset.

Similarity score Start time End time Flock members

Original 1 12:41 12:43 1; 2; 3
12:26 12:29 4; 5; 6
12:30 12:32 4; 5; 6
12:51 12:55 7; 8; 9

Version 1 (100 m) 0.24 12:45 12:47 10; 11; 12
12:27 12:29 4;5; 6
12:11 12:19 13; 14; 15
12:16 12:24 16; 17; 18

Version 2 (50 m) 0.25 12:41 12:43 1; 2; 3
Version 4 (30 m) 0.25 12:41 12:43 1; 2; 3
Version 6 (10 m) 0.75 12:41 12:43 1; 2; 3

12:26 12:29 4; 5; 6
12:30 12:32 4; 5; 6

the original dataset. This demonstrates the robustness of the flocking algorithm
to uncertainties in the observation points of the input dataset.

Simulation Through Markov-chain Random Models. Another technique
for generating a distorted version of the synchronised input dataset is to build
a Markov chain based on the dataset distribution. This model assumes that
only the current state affects the next state while past states and future states
are irrelevant. The initial step involves building the model by computing the
probabilities of transitions between the cells, which is a region of x-,y- coordinate
values.

16 R. Ong et al.

The initial step involves building the model by computing the probabilities of
transitions between the x-,y- coordinate values. A transition exists from (xi, yi)
to (xi+1, yi+1) if they belong to the same moving entity, and time instance i + 1
immediately follows time instance i. Since there are a large number of varying x-
and y-values in the datasets, the x- and y-values are grouped into grids. Then,
the probabilities of transitions between these grids is computed. Analogous to
an existing transition between a pair of x- and y-values, a transition exists from
gridi to gridi+1 if there exists a transition from (xi, yi) to (xi+1, yi+1) such that
(xi, yi) belongs to gridi and (xi+1, yi+1) belongs to gridi+1 and time instance
i + 1 immediately follows time instance i.

This simulation technique modifies the x and y values based on the described
Markov chain while retaining the original entity ID and the original time values
found in the synchronized dataset. The (x, y)-pair for the first time instance
of an entity is a random value biased towards the most probable initial (x, y)-
pairs found in the dataset. The succeeding (x, y)-pairs are determined based on
the immediately preceding (x, y)-pair and the Markov chain. Once this grid is
determined, the next (x, y)-pair can be computed as a random value limited by
the bounds of this grid. In the case that there is no next probable grid, a new
trajectory is started by randomly picking a most probable initial (x, y)-pair and
continuing in a manner as described before.

We have generated random versions of the DNP and the OctoPisa dataset by
building a Markov chain based on their underlying data distribution of spatial
points. In running the flock discovery algorithm, κ and ΔT were both set to 3 in
both datasets. Meanwhile, the ρ parameter was set to 150 m for both datasets.
Lastly, R was set to 300 s for DNP and 60 s for OctoPisa.

The simulation algorithm was ran several times for each dataset. In the case
of DNP, there were 4 generated datasets that yielded some flocks. There was 1
flock obtained from 3 of the generated datasets, and there were 6 flocks extracted
from the other generated dataset. Recall that 11 flocks were found in the original
dataset. Aside from varying in the number of flocks discovered, the members and
durations of the flocks themselves were also very different.

Ten simulated versions were generated for the Octopisa dataset. However,
none of the generated datasets contain moving flock patterns. This means that
there is no specific grid movement that has a high probability in the Markov
chain and it was difficult to create arbitrary flocks in the generated datasets. In
other words, the sequence of movement for each car is likely to vary compared
to those of other cars.

5 Conclusions and Future Work

This paper provides an empirical evaluation of the effects of flock parameters in
two diverse moving objects datasets, one for pedestrians and another for vehicles.
Validation techniques for flock patterns were also proposed in this work. The aim
is to delineate a data-driven parameter estimation method for flock mining.

Future work includes experiments over a wider set of trajectory datasets,
for instance to consider animal movements or vessels, to further validate our

Parameter Estimation and Pattern Validation in Flock Mining 17

results and to propose a formal framework for general flock mining parame-
ters evaluation. Human intervention in the current approach can be minimised
by automating the estimation techniques for synchronisation rate and radius
while allowing the analyst to adjust min points and min time slices. Further
study on recursively combining parameter estimation and pattern validation
techniques is an interesting research direction for finding optimal parameter val-
ues.

References

1. Andrienko, G., Andrienko, N., Wrobel, S.: Visual analytics tools for analysis of
movement data. SIGKDD Explor. Newsl. 9(2), 38–46 (2007)

2. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for discov-
ering clusters in large spatial databases with noise. In: KDD, pp. 226–231 (1996)

3. Giannotti, F., Pedreschi, D. (eds.): Mobility, Data Mining and Privacy - Geographic
Knowledge Discovery. Springer, New York (2008)

4. Gonzlez, M.C., Hidalgo, C.A., Barabsi, A.-L.: Understanding individual human
mobility patterns. Nature 453, 779–782 (2008)

5. Gudmundsson, J., van Kreveld, M.J.: Computing longest duration flocks in trajec-
tory data. In: GIS (2006)

6. Hand, D.J., Smyth, P., Mannila, H.: Principles of Data Mining. MIT Press, Cam-
bridge (2001)

7. Jeung, H., Yiu, M.L., Zhou, X., Jensen, C.S., Shen, H.T.: Discovery of convoys
in trajectory databases. In: Proceedings of the VLDB Endow, pp. 1:1068–1:1080
(2008)

8. Laube, P., Imfeld, S., Weibel, R.: Discovering relative motion patterns in groups
of moving point objects. Int. J. Geogr. Inf. Sci. 19(6), 639–668 (2005)

9. Trasarti, R., Rinzivillo, S., Pinelli, F., Nanni, M., Monreale, A., Renso, C.,
Pedreschi, D., Giannotti, F.: Exploring real mobility data with M-Atlas. In:
Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010, Part
III. LNCS, vol. 6323, pp. 624–627. Springer, Heidelberg (2010)

10. Wachowicz, M., Ong, R., Renso, Ch., Nanni, M.: Finding moving flock patterns
among pedestrians through collective coherence. Int. J. Geogr. Inf. Sci. 25(11),
1849–1864 (2011)

Feature Extraction over Multiple
Representations for Time Series Classification

Dominique Gay(B), Romain Guigourès, Marc Boullé(B), and Fabrice Clérot

Orange Labs, 2, Avenue Pierre Marzin, 22307 Lannion Cedex, France
{dominique.gay,Romain.Guigoures,marc.boulle,Fabrice.Clerot}@orange.com

Abstract. We suggest a simple yet effective and parameter-free fea-
ture construction process for time series classification. Our process is
decomposed in three steps: (i) we transform original data into several
simple representations; (ii) on each representation, we apply a coclus-
tering method; (iii) we use coclustering results to build new features
for time series. It results in a new transactional (i.e. object-attribute
oriented) data set, made of time series identifiers described by features
related to the various generated representations. We show that a Selec-
tive Naive Bayes classifier on this new data set is highly competitive
when compared with state-of-the-art times series classification methods
while highlighting interpretable and class relevant patterns.

1 Introduction

Time series classification (TSC) has been intensively studied in the past years.
The goal is to predict the class of an object (a time series or a curve) τi =
≈(t1, x1), (t2, x2), . . . , (tmi

, xmi
)∗ (where xk, (k = 1..mi) is the value of the series

at time tk), given a set of labeled training time series. TSC problems differ from
traditional classification problems since there is a time dependence between the
variables; in other terms, the order of the variables is crucial in learning an
accurate predictive model. The increasing interest in TSC is certainly due to
the wide variety of applications: from e.g., medical diagnosis (like classifica-
tion of patient electrocardiograms) to the maintenance of industrial machinery.
Other domains, where data might be time series, are also concerned: finance,
meteorology, signal processing, computer network traffic, . . . The diversity of
applications has given rise to numerous approaches (see Sect. 2 for detailed
related work). However, most efforts of the community have been devoted to the
following three-step learning process: (i) choosing a new data representation,
(ii) choosing a similarity measure (or a distance) to compare two time series
and (iii) using the Nearest Neighbor (NN) algorithm as classifier on the chosen
representation, using the chosen measure. Ding et al. [10] offer a survey of the
various data representations and distances found in the literature and an exten-
sive experimental study using the NN classifier. They conclude that NN classi-
fier coupled with Euclidean distance (ED) or Dynamic Time Warping (DTW)
show the highest predictive performance for TSC problems using the original

A. Appice et al. (Eds.): NFMCP 2013, LNAI 8399, pp. 18–34, 2014.
DOI: 10.1007/978-3-319-08407-7 2, c© Springer International Publishing Switzerland 2014

Feature Extraction over Multiple Representations for Time Series 19

time domain. Recently, Bagnall et al. [1] experimentally show that the perfor-
mance of classifiers significantly increases when changing data representation
(compared with original temporal domain); thus, for a given classifier, there is a
high variance of performance depending on the data transformation at use. To
alleviate this problem, an ensemble method tsc-ensemble [1] based on three
data representations (plus the original data) and NN algorithm is suggested.
The experimental results demonstrate the importance of representations in TSC
problems and show that a simple ensemble method based on several data rep-
resentations provides highly competitive predictive performance. However, with
the good performance of NN-based approaches also come the drawbacks of lazy
learners: i.e., there is no proper training phase, therefore the training set has to
be entirely stored and all the computation time is postponed until deployment
phase; these weaknesses do not meet the requirements of deployment in resource-
limited and/or real-time applications. Another weakness of the NN approaches
is the lack of interpretability; indeed NN only indicates the nearest series w.r.t.
the used similarity measure.

The method we suggest takes the pros and leaves the cons of the methods
listed above: we come back to the eager1 paradigm, benefit from the combina-
tion of multiple representations, build and select valuable features from multi-
ple representations. More precisely, in this paper, we suggest a parameter-free
process for constructing valuable features over multiple representations for TSC
problems. Our contribution is thus essentially methodological. The next section
discuss further related work to give a wider view of existing solutions for TSC
problems. Section 3 motivates and describes the three steps of our unsupervised
process: (i) transformation of original data into several new data representa-
tions; (ii) coclustering on various data representations; (iii) the exploitation of
coclustering results for the construction of new features for the data. The out-
put of the process is then a traditional data set (i.e. labeled objects described by
attributes) ready for supervised feature selection and classification. We report
the experimental validation of our approach in Sect. 4 before concluding.

2 Related Work

In TSC problems, dtw-nn is recognized by the community as a hard-to-beat
baseline and it is confirmed by our experiments (see Sect. 4). However, there exist
alternative approaches: besides the numerous similarity measures coupled with
Nearest Neighbor algorithm [10], very recent novel metric has been proposed
[25] as well as fusion of distance measures [7] and NN ensembles over multiple
representations [1]. Concerning the intra-class variance, to deal with the lack of
objects that cover sub-class pattern, Grabocka et al. [13] suggest to create virtual
transformed objects for the training set; it results in a significant improvement
of SVM predictive performance.
1 In contrast to lazy learning, eager learning has an explicit training phase and gen-

erally deploys faster.

20 D. Gay et al.

For the sake of interpretability, an extension of decision tree has been pro-
posed recently [15]. On the other hand, feature-based approaches have also been
intensively studied. Feature-based approaches for TSC aim at extracting class-
relevant characteristics of series so that a conventional classifier can used. A wide
variety of features has been studied: e.g., global, trends [16], symbolic, intervals,
distance-based [9], features coming from spectral transforms [20,32] or a combi-
nation of several types of features [11].

Shapelet-based approaches [12,30], a subtopic of feature-based approaches,
have drawn much attention in recent years. Shapelets are time series subse-
quences that are representative of a class. First approaches have embedded
extracted shapelets in a decision tree [12,30,31], others in a simple rule-based
classifier [29], while very recently, Lines et al. [19] have designed a shapelet-based
transform.

Our approach generates similarity-based features and histogram features over
multiple representations (see next section); the former allows us to reach predic-
tive performance comparable to the best similarity-based NN classifiers, with the
latter we gain some insight in the data. The closest works are from the inspiring
works of Bagnall et al. [1] who establish competitive predictive performance by
combining multiple representations in an ensemble classifier.

3 Feature Construction Process

Notations. In TSC problems, we define a time serie as a pair (τi, yi) where τi

is a set of ordered observations τi = ≈(t1, x1), (t2, x2), . . . , (tmi
, xmi

)∗ of length
mi and yi a class value. A time series data set is defined as a set of pairs
D = {(τ1, y1), . . . , (τn, yn)}, where each time series may have a different number
of observations (i.e. with different length). Notice that the time series of a data
set may also have different values for tk, (k = 1..mi). The goal is to learn a
classifier from D to predict the class of new incoming time series τn+1, τn+2, . . .
To achieve this goal, we suggest the feature construction process summarized as
follows:

1. We transform original data into multiple data representations.
2. We process a coclustering technique on each representation.
3. We build a set of features from each coclustering result and obtain a new

data set gathering the various sets of features.

The new data set is thus object-attribute oriented and ready for supervised
classification phase. Since our main contribution is methodological, we will take
some time to motivate each step of the process, and when necessary, to make
the paper self-contained, we will recall the main principles of the tools used in
each step.

3.1 Transformations and Representations

Numerous data transformation methods for time series has been suggested in
the literature: e.g., polynomial, symbolic, spectral or wavelet transformations,

Feature Extraction over Multiple Representations for Time Series 21

(see [10,18] for well-structured surveys on experienced data representations). The
underlying idea of using data transformation is that transformed data might con-
tain class-characteristic pattern that are easily detectable (i.e. patterns unreach-
able in the original time domain). The following example illustrates and confirms
the relevance of using representations, and highlights simple interpretable fea-
tures that might arise from data representations.

Motivating example. Graphs from Fig. 1 confirm the relevance of changing
data representation: indeed, from original data (a) it is challenging to separate
the two classes (blue/red). It has been shown [1] that the accuracy of NN-based
classifiers on the original data is about 60 %. On the other hand a simple trans-
formation, like double derivate (b) facilitate class discrimination. For example,
after computing the double derivate transformation, we see that curves with
some values above 6 (or below −6) are red whereas curves with most of its
values between −6 and 6 are blue. On this data example, a simple transforma-
tion and two interpretable features are enough to characterize the two classes of
curves.
To illustrate and instantiate our process, we use the original representation and
we pick six representations among the numerous ones existing in the literature.

Derivatives: DV et DDV. We use derivatives and double derivatives of orig-
inal time series (computed between time t et t − 1). These transformations
allow us to represent the local evolution (i.e., increasing/decreasing, accelera-
tion/deceleration) of the series.

Cumulative integrals: IV et IIV. We also use simple and double cumulative
integrals of the series, computed using the trapeze method. These transforma-
tions allow us to represent the global (cumulated) evolution of the series.

)b()a(

Fig. 1. ARSim 2-class data: original data versus double derivate transformation (Color
figure online).

22 D. Gay et al.

Power Spectrum: PS. A time series can be decomposed in a linear com-
bination of sines and cosines with various amplitudes and frequencies. This
decomposition is known as the Fourier transform. And, the Power Spectrum
is PS(τi) = ≈(f1, a1), . . . , (fmi

, ami
)∗, where fk represent the frequency domain

and ak the power of the signal (i.e. the sum of the Fourier coefficients squared).
This transformation is commonly used in signal processing and plunges the orig-
inal series into the frequency domain.

Auto-correlation function: ACF. The transformation by auto-correlation
(ACF) is: τiρ = ≈(t1, ρ1), . . . (tmi

, ρmi
)∗ where

ρk =

∑j=mi−k
j=1 (xj − x̄) · (xj+k − x̄)

m · s2

and where x̄ and s2 are the mean and variance of the original series. ACF
transformation describes the correlation between values of the signal at different
times and thus allow us to represent auto-correlation structures like repeating
patterns in the time series.

We do not pretend that the chosen representations are suitable for all TSC
problems; there are many other transformation techniques in the literature.
Depending on the application, the domain expert remains the best to select
potentially suitable representations for the problem at hand. Let us just recall
that the time complexity for computing the chosen representations is at most
sub-quadratic w.r.t. the number of points.

Thus, for a given time series data set Dorig, we build six new data repre-
sentations: DDV , DDDV , DIV , DIIV , DPS and DACF depending on the trans-
formation used. In the following, for the sake of generality, an object from one
of these representations will be called “curve” instead of time series since DPS

does not use the time domain.

3.2 Coclustering

In classification problems (also in TSC), there might exist intra-class variance,
i.e. the variations between objects of the same class might be numerous and of
various aspects. Using clustering as a pre-processing step to supervised classifi-
cation is not new and is a solution to deal with intra-class variance. The idea is
to pre-process the data set by grouping together similar objects and to highlight
local patterns that might be class-discriminant: e.g., Vilalta et al. [26] suggest a
pre-processing step by supervised (per-class) clustering using Expectation Maxi-
mization to enhance the predictive performance of Naive Bayes classifier. In order
to be able to derive interesting features, we will use an unsupervised coclustering
technique as described in the following.

A curve can be seen as a set of points (X,Y), described by their abscissa and
ordinate values. A set of curves is then also a set of points (Cid,X, Y) where
Cid is the curve identifier. This tridimensional representation (one categorical
variable and two numerical variables) of a curve data set is needed to apply

Feature Extraction over Multiple Representations for Time Series 23

coclustering methods. Indeed, the goal is to partition the categorical variable
and to discretize the numerical variables in order to obtain clusters of curves
and intervals for X and Y . The result is a tridimensional grid whose cells are
defined by a group of curves, an interval for X and an interval for Y .
For that purpose, we use the coclustering method khc [6] (Khiops Coclustering).
Originally designed for clustering functional data [23], it is also suitable for the
particular case of curve data as defined above and it is directly applicable for our
pre-processing step. khc method is based on a piecewise constant non-parametric
density estimation and instantiates the generic modl approach [4] (Minimum
Optimized Description Length) – which is similar to a Bayesian Maximum A
Posteriori (MAP) approach. The optimal model M , i.e. the optimal grid, is
obtained by optimization of a Bayesian criterion, called cost. The cost criterion
bets on a trade-off between the accuracy and the robustness of the model and is
defined as follows:

cost(M) = − log(p(M | D)
︸ ︷︷ ︸
posterior

) = − log(p(M)
︸ ︷︷ ︸
prior

× p(D | M)
︸ ︷︷ ︸
likelihood

)

Using a hierarchical prior (on the parameters of a data grid model) that is
uniform at each stage of the hierarchy, we obtain an analytic expression for the
cost criterion:

cost(M) = log n + 2 log N + log B(n, kC) (1)

+ log
(

N + k − 1
k − 1

)

+
kC∑

iC=1

log
(

NiC + niC − 1
niC − 1

)

(2)

+ log N ! −
kC∑

iC=1

kX∑

jX=1

kY∑

jY =1

log NiCjXjY ! (3)

+
kC∑

iC=1

log NiC ! −
n∑

i=1

log Ni! +
kX∑

jX=1

log NjX ! +
kY∑

jY =1

log NjY ! (4)

where n is the number of curves, N the number of points, kC (resp. kX , kY) is
the number of clusters of curves (resp. the number of intervals for X and Y),
k the number of cells of the data grid, niC the number of curves in cluster iC ,
Ni the number of points for curve i and NiC (resp. NjX , NjY , NiCjXjY) is the
cumulated number of points for curves of cluster iC (resp. for interval jX of X,
interval jY of Y , for cell (iC , jX , jY) of the data grid. Notice that B(n, kC) is the
number of divisions of n elements into k subsets. The two first lines stand for the
prior and the two last lines relates to the likelihood of the model. Intuitively, low
cost means high probability (p(M | D)) that the model M arises from the data
D. From an information theory point of view, according to [24], the negative

24 D. Gay et al.

logarithms of probabilities may be interpreted as code length. Thus, the cost
criterion may also be interpreted as the code length of the grid model plus the
code length of data D given the model M , according to the Minimum Description
Length principle (mdl [14]). Here, low cost means high compression of the data
using the model M .

The cost criterion is optimized using a greedy bottom-up strategy, (i) start-
ing with the finest grained model, (ii) considering all merges between adjacent
clusters or intervals, for the curve and dimension variables, and (iii) performs
the best merge if the criterion decreases after the merge. The process loops until
no further merge improves the criterion. The obtained grid constitutes a non-
parametric estimator of the joint density of the curves and the dimensions of
points.

khc is parameter-free, robust (avoids over-fitting), handles large curve data
sets with several millions of data points and its time complexity is Θ(N

√
N log N)

(sub-quadratic) where N is the number of data points: thus, khc meets our prob-
lem needs (for full details, see [6]).

An example of visualization of coclustering results. The Fig. 2 shows an
example of visualization of two clusters of curves of the optimal grid obtained
on ARSim data set (in DDV representation). Figure (a) (resp. (b)) shows a
cluster whose curves are essentially from class c1 (blue in Fig. 1 of the motivation
example), (resp. c2, red in the same example). The optimal grid obtained with
khc is made up of 43 clusters of curves, 13 intervals for X and 12 intervals
for Y (i.e. DDV values). The joint density estimation (i.e. the optimal grid)
is much finer than needed by the classification problem. Indeed, the ARSim

)b()a(

Fig. 2. Representation of the frequency of the cells for two clusters of curves obtained
with khc on ARSim data set (in DDV representation, DDV on y-axis and time on
x-axis): (a) a cluster whose curves are mostly of class c1; (b) a cluster whose curves
are mostly of class c2. For a given cell, stronger color indicates high point frequency.

Feature Extraction over Multiple Representations for Time Series 25

data set is a 2-class classification problem and we found 43 groups of curves.
This finer granularity gives us the potential for finer class characterization if the
data representation is relevant for the task.

3.3 Feature Construction

Feature construction for TSC problems [21] aims at capturing class-relevant
properties for describing time series. The generated features goes from simple
ones like minimum, maximum, mean, standard deviation of time series to more
complex ones like e.g., coefficients of spectral decompositions [20,32] or local pat-
tern extracted from temporal abstractions of the series [2]. The main advantage
of feature-based approaches is the final transactional (or vector) representation of
the data which is suitable for conventional classifiers like Naive Bayes or decision
trees. In our process, we generate features from coclustering results as follows.

For each coclustering result obtained with khc on a data representation
(Dorig, DDV , DDDV , DIV , DIIV , DPS , DACF), we create a set of new features:
Forig, FDV , FDDV , FIV , FIIV , FPS , FACF . The new features are the descriptive
attributes of the new data set whose objects are curves.

Let Drep be one of the seven representations described above. Let Mrep =
KHC(Drep) be the tridimensional optimal grid obtained by coclustering with
khc on Drep. We denote kC the number of clusters of Mrep and kY the number
of intervals of Mrep for dimension Y . We then create similarity-based features
and histogram features.

Similarity-Based Features
Considering the good performance of (dis)similarity-based approaches (e.g., ed-
nn and dtw-nn), we define a dissimilarity index based on the cost criterion.

Definition 1 (Dissimilarity index). The dissimilarity between a curve τi and
a cluster cj of the optimal grid Mrep is defined as:

d(τi, cj) = cost(Mrep|τi∈cj) − cost(Mrep)

i.e., the difference of cost between the optimal model Mrep and the model
Mrep|τi∈cj (the optimal grid in which we add the curve τi to the cluster of
curves cj).

Intuitively, d measures the perturbation brought by the integration of a curve
into a cluster of curves of the optimal grid (i.e. according to the cost criterion
used for grid optimization). In terms of code length, if a curve τi is similar to the
curves of cluster cj , the total code length of the data is not much different from
the total code length of the data plus τi. Thus, small values of d(τi, cj) indicate
that τi is similar to the curves of cj whereas high values of d (d(τi, cj) ∀ 0)
mean that τi does not look like the curves of cj .
According to the dissimilarity index d, we generate the following features:

26 D. Gay et al.

– kC numerical features (one for each cluster cj of curves of Mrep). The value for
a curve τi is the difference d(τi, cj). Thus, for a given curve τi, these features
tell how τi is similar to the clusters of curves of the optimal grid (according
to d).

– One categorical feature indicating the index j of the cluster of curves that is
the closest to a curve τi according to the dissimilarity d defined above (i.e.,
arg minj d(τi, cj)).

Histogram Features
Taking up the idea of interpretable features (see motivating example and Fig. 1),
we also generate the following features:

– kY numerical features (one for each interval iY of Y from Mrep) whose value
for a curve τi is the number of points of τi in interval iY .

These histogram features quantify the presence of a curve in intervals of Y
obtained in the coclustering step.
For a given curve τi, we now have the following informations provided by the
new features (for each representation): (i) the dissimilarity values between τi and
all the clusters of curves, (ii) the index of the closest cluster of curves and (iii)
the number of points of τi in each interval of Y .

3.4 Supervised Classification Algorithm

We saw that our feature construction process may generate hundreds of new
features for each representation. The whole set of features Ftot for our new data
set may contain thousands of attributes. Therefore, the classifier at the end of
our process has to be capable of handling a large number of attributes but also
selecting the relevant attributes for the classification task. At this stage, we
could use conventional classifiers like decision trees or SVM. However, we choose
the Selective Naive Bayes classifier (snb) that is parameter-free, performs effi-
cient feature selection and outperforms classical Naive Bayes [5]. Notice that snb
exploits pre-processing techniques that discretize numerical variables, group val-
ues of categorical variables, weight and select features w.r.t. class-relevance by
using robust conditional density estimators and following the modl approach
(see [3,4]). Thus, the generated features benefit from these pre-processing tech-
niques and preserve a potential of interpretability; we lead specific experiments
in the next section to support this claim. Moreover, snb is parameter-free, so is
the whole feature construction process. Its time complexity is Θ(KM log(KM)),
where M is the number of objects and K the number of features.

4 Experimental Validation

The implementation of the classification process is based on existing tools (khc
for coclustering and snb for supervised classification2). Connections between the
2 khc and snb are both available at http://www.khiops.com.

http://www.khiops.com

Feature Extraction over Multiple Representations for Time Series 27

tools are scripted using MATLAB. The whole process is named modl-tsc. The
experiments are led to discuss the following questions:

Q1 Is modl-tsc comparable with competitive contenders of the state-of-the-art
in terms of accuracy?

Q2 modl-tsc employs and combines several representations. Are they all use-
ful? Do they all bring the same impact?

Q3 What kind of data insight do we gain using the coclustering-based features?

4.1 Protocol

We experiment our process on 51 time series data sets: 42 data sets are from
ucr [17] and 9 new data sets introduced in [1]. A brief description of the data
is given in Table 1. The benchmark data sets offer a wide variety in terms of
application domains, number of series, length of series and number of class values.
We lead experiments in a predefined train-test setting for each data set (see
[17]). We compare the predictive performance of our process, called modl-tsc,
with a baseline, two of the most effective alternative approaches and a recently
introduced interpretable classifier:

– ed-nn: the Nearest Neighbor classifier using the Euclidean distance. This
approach is considered as a baseline.

– dtw-nn: the Nearest Neighbor classifier using the elastic distance Dynamic
Time Warping, considered as hard to beat in the literature (see [28])

– tsc-ensemble [1] exploits multiple representations via an ensemble method
and the NN algorithm. Its performance is comparable to dtw-nn

– fast-shapelets [22] mines shapelets (i.e., class relevant time series subse-
quences) that might be embedded in e.g., a decision tree

4.2 Results

For fair comparisons, we have rerun the experiments using implementations of
ed-nn, dtw-nn, fast-shapelets and tsc-ensemble provided by E. Keogh,
A. Bagnall and their teams. Performance results in terms of accuracy are reported
in Table 1. The best result for each data set is written in bold. The last column
indicates how many features per representation modl-tsc has generated.

Comparisons with state-of-the-art. Firstly, global results (mean accuracy,
number of wins and mean rank) show that modl-tsc is very competitive com-
pared to state-of-the-art methods. Proceeding the Friedman test [8] (at signif-
icance level α = 0.05) and the Nemenyi post-hoc test lead us to the critical
difference diagram in Fig. 3. Two groups of approaches emerge and we observe
that modl-tsc, tsc-ens and dtw-nn perform significantly better than ed-
nn and fast-shapelets; and there is no significant difference of performance

28 D. Gay et al.

Fig. 3. Representation of difference of performance by critical difference diagram
between modl-tsc, ed-nn, dtw-nn, tsc-ens and fast-shapelets.

inside each group. We also run Wilcoxon’s sign rank test for pairwise comparisons
(also with α = 0.05) which confirms this result. This global view of performance
results confirms that modl-tsc is very competitive compared to two of the most
effective contenders of the state-of-the-art and performs better than the baseline
ed-nn and the very recent fast-shapelets approach.

Secondly, we observe the remarkable performance of modl-tsc on ARSim,
ElectricDevices, FordA and OSULeaf data. On these data, we outperform dtw-
nn and tsc-ensemble: the difference of test accuracy is at least 10. Here, the
added-value of the data representations (i.e., the new features) is at work. tsc-
ensemble (exploiting only three representations) and dtw-nn (working in time
domain) obtain only poor accuracy results. Conversely the performance of modl-
tsc is very low on Coffee, DiatomSizeReduction, ECGFiveDays and OliveOil
data. The difference of test accuracy (about 10 compared with dtw-nn and
tsc-ensemble) is now to our disadvantage. We think that this poor perfor-
mance might due to one reason: the training set size of these data sets is very
small (less than 30 of curves) and it could be insufficient for either learning rele-
vant coclusters or learning a predictive model without over-fitting. Indeed, e.g.,
for OliveOil data, there are only 30 training curves, no cluster of curves is found
by khc whatever the representation and most generated features from intervals
of the Y -axis are considered irrelevant by the pre-processing step of snb classifier.

Added-value of the representations. In Table 1, we also report accuracy
results of single-modl-tsc using only one representation. We observe that
using a single representation provide poor average accuracy results. Almost
always, modl-tsc using several representations outperforms single-modl-tsc
on Forig (resp. FDV , FDDV , FIV , FIIV , FPS , FACF). In some cases (e.g., Italy-
PowerDemand, MALLAT or MedicalImages), the good performance of modl-
tsc can be attributed to the combination of several representations. Indeed, the
gap of test accuracy between any single-modl-tsc and modl-tsc is about
10; thus the combination of features coming from different views of the data
improves accuracy results. In other cases (e.g., ARSim or wafer), the good per-
formance seems to be due to only one (or at most two) representation while the
other representations are ignored. As an example, for ARSim data, the DDV
representation is the most relevant. khc obtains 43 clusters of curves and 12
intervals for YDDV . Most of the clusters are almost pure (only one class of curves
per cluster). Moreover, as we saw in Fig. 2(a) and (b), the number of points in

Feature Extraction over Multiple Representations for Time Series 29

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

Ti
m

e
(s

)

KHC ALL

Theoric complexity

1.E+00

1.E+01

1.E+02

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

#Points

Fig. 4. Cumulative running time results for khc on the seven studied representations
and comparison with the announced theoretical complexity.

intervals generated by khc above 4.16 and below −4.25 are class-discriminant
since curves of class 1 almost never have points in these regions.

These experiments recall the very importance of representations in TSC prob-
lems and particularly in our feature construction process. Even the simple repre-
sentations we chose to illustrate our process show good predictive performance.
Depending on the application, we may still hope some improvement in perfor-
mance if we could rely on expert domain knowledge to select relevant represen-
tations to use in our generic process.

4.3 Running Time Results

Among the three steps of our process, the coclustering step is the most demand-
ing in terms of computational time. Moreover, for the largest data sets of our
benchmark, other steps (building representations and features and learning the
snb classifier) are negligible compared with the coclustering step. For a better
understanding of how much time khc costs, we report in Fig. 4 the cumulative
running time of khc on the seven representations for each data set w.r.t. the
number of points N in the training data set. We also draw the theoretical com-
plexity announced for khc in previous section: αN

√
N log N , where α = 3.10−5.

We observe that for the most difficult data sets (ARSim, FordA and FordB, from
1 million to 1.8 million data points), khc runs during one day for each repre-
sentation to reach the optimal grid.

4.4 Interpretation: An Example

If we consider the cumulative integral (IV) representation of TwoPatterns data,
the optimal grid obtained by khc is made of 224 clusters of curves, 11 intervals
for X and 9 intervals for YIV . According to the modl pre-processing techniques,
among all the attributes generated from all representations, the two most rele-
vant attributes are from the IV representation:

30 D. Gay et al.

Fig. 5. Histogram representation of class repartition for discretization of variable v1
and value grouping of variable v2.

1. v1, the number of points in interval IYIV
=] − ∞;−3.9082]

2. v2, the index of the closest cluster

In the supervised learning step, the discretization for v1 and the value group-
ing for v2 provide the following contingency tables represented as histograms (see
Fig. 5(a) and (b)): We observe (Fig. 5(a)) that the number of points p of a curve
in interval IYIV

(i.e. the number of points with value less than −3.9082) is class
relevant. Indeed, in the learning phase, curves such that p ≤ 7 are of class c1;
when p > 29 (about 23 % of the points of the curve), curves are mostly of class
c4 and when 7 < p ≤ 12 they are mostly of class c3. This type of feature is
similar to the ones in the motivating example and Fig. 1: for a given represen-
tation, some regions of y-axis (delimited by intervals) will be class-discriminant
and the number of points of an incoming curve in this interval will also be
class-discriminant.

In Fig. 5(b), we firstly see that, for variable v2 (“index of the closest cluster”),
modl pre-processing by supervised value grouping provide 4 groups: G1, (resp.
G2, G3 et G4) made of 56, (resp. 53, 53 et 62) indexes of clusters that are mostly
of class c4 (resp. c3, c2, c1). The attribute v2 is then class-relevant. Indeed, for
example, if j is the index of cluster, that is the closest to a curve τi, and belongs to
G2 (i.e. j ∈ G2), then τi is considered very similar to curves of class c3. Moreover,
the variable “index of the closest cluster” is an indicator of the relevance of the
representation in our process for the current TSC problem. In this example,
attribute v2 alone, is enough to characterize 95 % of the data, therefore, IV data
representation is very relevant for characterizing the classes of TwoPatterns data.
Conversely, for the original representation (DV), the optimal grid obtained with
khc is made of 255 clusters of curves but modl pre-processing indicates that the
variable “index of the closest cluster” is not relevant to characterize the classes
of TwoPatterns; as a consequence, single-modl-tsc on Forig shows bad test
accuracy results.

Feature Extraction over Multiple Representations for Time Series 31

T
a
b
le

1
.

D
es

cr
ip

ti
o
n

a
n
d

ch
a
ra

ct
er

is
ti

cs
o
f

ti
m

e
se

ri
es

b
en

ch
m

a
rk

d
a
ta

se
ts

.
C

o
m

p
a
ri

so
n
s

o
f

a
cc

u
ra

cy
re

su
lt

s
fo

r
m
o
d
l
-t
sc

,
fa

st
-

sh
a
p
e
l
e
t
s,

d
t
w
-n
n
,
e
d
-n
n
,
a
n
d
t
sc

-e
n
se

m
b
l
e
.
A

cc
u
ra

cy
re

su
lt

s
fo

r
si
n
g
l
e
-m

o
d
l
-t
sc

u
si

n
g

ea
ch

si
n
g
le

re
p
re

se
n
ta

ti
o
n

a
n
d

n
u
m

b
er

o
f

fe
a
tu

re
s

g
en

er
a
te

d
p
er

re
p
re

se
n
ta

ti
o
n

(l
a
st

co
lu

m
n
).

D
a
ta

#
T
ra

in
#

T
e
st

L
e
n
g
th

#
C
la

ss
e
s

fa
st

sh
a
p
e
l
e
t
s

d
t
w
-n
n

e
d
-n
n

t
sc

-e
n
s

m
o
d
l
-t
sc

F
o
r
i
g

F
D

V
F
D

D
V

F
I
V

F
I
I
V

F
P

S
F
A

C
F

#
fe

a
tu

re
s

5
0
w
o
rd

s
4
5
0

4
5
5

2
7
0

5
0

4
4
.2

9
6
9
.0

1
6
3
.0

8
6
3
.9

6
6
8
.5

7
6
0
.2

2
5
9
.7

8
5
9
.1

2
4
7
.0

3
3
4
.5

1
2
8
.3

5
5
1
.6

5
6
4
5
/
2
3
/
5
6
/
6
4
6
/
2
9
3
/
3
0
/
8
3
0

A
d
ia

c
3
9
0

3
9
1

1
7
6

3
7

4
8
.5

9
5
9
.6

5
5
1
.1

0
6
2
.1

5
6
4
.1

9
4
9
.1

0
4
8
.3

4
3
4
.5

3
1
9
.9

5
1
7
.9

0
3
4
.2

7
0
2
.0

5
2
7
/
3
0
/
2
9
/
3
2
/
3
4
/
3
1
/
6
3

A
R
S
im

2
0
0
0

2
0
0
0

5
0
0

2
9
1
.4

0
6
0
.3

6
6
1
.1

3
6
7
.8

5
9
9
.9

5
6
1
.0

5
9
3
.2

0
9
9
.9

5
5
0
.0

0
5
0
.0

0
9
8
.5

5
5
4
.9

0
2
5
/
1
4
/
8
/
2
9
/
3
4
/
1
8
/
2
5

B
e
e
f

3
0

3
0

4
7
0

5
5
5
.3

3
5
0
.0

0
5
3
.3

3
6
0
.0

0
5
3
.3

3
4
6
.6

7
3
0
.0

0
2
0
.0

0
3
6
.6

7
3
3
.3

3
4
0
.0

0
5
0
.0

0
1
5
/
3
/
3
/
1
8
/
2
2
/
7
/
1
5

C
B
F

3
0

9
0
0

1
2
8

3
9
4
.7

1
9
9
.6

7
8
5
.2

2
8
2
.4

4
9
6
.5

6
9
8
.0

0
3
3
.1

1
3
3
.1

1
6
6
.5

6
7
8
.4

4
3
3
.1

1
5
3
.1

1
2
2
/
2
4
/
2
2
/
3
8
/
5
2
/
2
0
/
2
8

C
h
lo

ri
n
e
C
o
n
c
e
n
tr

a
ti
o
n

4
6
7

3
8
4
0

1
6
6

3
5
8
.3

1
6
4
.8

4
6
5
.0

0
6
7
.7

6
5
8
.1

5
5
6
.5

6
5
7
.7

9
5
7
.1

1
5
3
.2

6
5
3
.2

6
5
5
.0

0
5
3
.2

6
5
6
/
7
2
/
1
0
4
/
6
6
/
8
2
/
3
3
/
6
4

C
in

C
E
C
G

to
rs

o
4
0

1
3
8
0

1
6
3
9

4
8
2
.6

4
6
5
.0

7
8
9
.7

1
9
4
.5

7
8
7
.6

1
4
8
.0

4
7
8
.9

1
7
1
.5

9
2
9
.8

6
3
3
.3

3
6
7
.2

5
4
3
.4

8
1
5
/
1
1
/
1
3
/
2
1
/
2
2
/
1
5
/
2
2

C
o
ff
e
e

2
8

2
8

2
8
6

2
9
3
.2

1
8
2
.1

4
7
5
.0

0
8
2
.1

4
6
4
.2

9
5
3
.5

7
5
3
.5

7
5
3
.5

7
5
3
.5

7
6
4
.2

9
5
3
.5

7
5
3
.5

7
1
1
3
/
7
4
/
8
1
/
1
0
2
/
7
6
/
2
5
/
8
5

C
ri
ck

e
t

X
3
9
0

3
9
0

3
0
0

1
2

4
7
.3

2
7
7
.6

9
5
7
.4

4
6
0
.2

6
6
4
.6

2
4
9
.2

3
3
6
.4

1
3
4
.1

0
3
3
.3

3
2
7
.6

9
3
7
.1

8
3
4
.8

7
1
1
3
/
3
7
/
2
7
/
1
1
2
/
8
7
/
2
8
/
8
1

C
ri
ck

e
t

Y
3
9
0

3
9
0

3
0
0

1
2

4
9
.5

2
7
9
.2

3
6
4
.3

6
6
5
.9

0
7
4
.8

7
6
3
.3

3
2
0
.2

6
2
9
.7

4
4
4
.1

0
3
5
.1

3
3
1
.5

4
3
9
.2

3
1
0
5
/
2
6
/
2
5
/
1
1
3
/
8
0
/
2
6
/
7
2

C
ri
ck

e
t

Z
3
9
0

3
9
0

3
0
0

1
2

4
5
.2

7
7
9
.2

3
6
2
.0

5
6
2
.5

6
6
5
.6

4
5
6
.6

7
2
5
.1

3
3
1
.0

3
3
1
.5

4
3
0
.2

6
4
1
.5

4
3
3
.0

8
1
2
/
1
5
/
2
0
/
1
5
/
1
9
/
2
5
/
1
9

D
ia

to
m

S
iz

e
R
e
d
u
c
ti
o
n

1
6

3
0
6

3
4
5

4
8
8
.3

0
9
6
.7

3
9
3
.4

6
9
4
.4

4
8
0
.3

9
3
0
.0

7
5
9
.1

5
7
6
.1

4
7
6
.8

0
7
1
.2

4
7
0
.5

9
3
0
.0

7
1
7
/
1
4
/
1
4
/
2
1
/
2
8
/
1
5
/
2
2

E
a
rt

h
q
u
a
k
e
s

3
2
2

1
3
9

5
1
2

2
7
3
.3

8
7
0
.5

0
6
9
.7

8
7
3
.3

8
7
1
.9

4
7
1
.9

4
7
4
.8

2
7
4
.8

2
7
4
.8

2
7
4
.8

2
7
4
.8

2
7
4
.8

2
1
6
/
9
/
7
/
2
3
/
2
3
/
1
4
/
1
6

E
C
G

2
0
0

1
0
0

1
0
0

9
6

2
7
7
.3

0
7
7
.0

0
8
8
.0

0
8
9
.0

0
7
9
.0

0
7
9
.0

0
8
0
.0

0
7
5
.0

0
6
9
.0

0
6
6
.0

0
7
3
.0

0
7
3
.0

0
5
4
4
/
4
3
/
5
0
/
1
9
5
/
1
5
1
/
6
/
2
7

E
C
G

F
iv

e
D

a
y
s

2
3

8
6
1

1
3
6

2
9
9
.5

9
7
6
.7

7
7
9
.6

7
9
8
.7

2
6
4
.4

6
6
2
.7

2
4
9
.7

1
4
9
.7

1
6
3
.7

6
5
3
.8

9
4
9
.7

1
7
3
.6

4
1
2
4
/
6
1
/
8
0
/
1
6
3
/
1
0
9
/
1
2
6
/
1
3
7

E
le

c
tr

ic
D

e
v
ic

e
s

8
9
5
3

7
7
4
5

9
6

7
4
8
.6

8
6
7
.0

2
5
4
.4

1
6
2
.2

1
7
3
.9

2
6
6
.0

6
6
4
.6

2
6
5
.7

7
6
0
.3

9
5
3
.7

8
5
7
.9

0
5
9
.6

1
3
3
/
2
9
/
2
1
/
4
2
/
6
5
/
2
4
/
2
4

F
a
c
e
A
ll

5
6
0

1
6
9
0

1
3
1

1
4

5
8
.9

3
8
0
.7

7
7
1
.3

6
7
1
.6

0
7
0
.4

7
6
3
.6

1
5
8
.5

8
3
5
.8

6
4
5
.7

4
2
5
.5

0
3
1
.7

8
5
2
.7

8
1
6
/
1
2
/
2
9
/
2
2
/
3
4
/
1
1
/
1
8

F
a
c
e
F
o
u
r

2
4

8
8

3
5
0

4
9
1
.0

2
8
2
.9

5
7
8
.4

1
8
6
.3

6
8
9
.7

7
9
0
.9

1
1
5
.9

1
3
7
.5

0
3
8
.6

4
1
5
.9

1
3
4
.0

9
7
2
.7

3
2
1
/
1
7
/
1
8
/
2
8
/
4
6
/
2
1
/
2
1

F
a
c
e
sU

C
R

2
0
0

2
0
5
0

1
3
1

1
4

6
7
.1

7
9
0
.4

9
7
6
.9

3
8
3
.7

1
7
4
.8

8
6
6
.6

3
4
8
.5

4
3
5
.0

2
4
2
.4

4
3
3
.6

6
3
4
.2

4
4
8
.6

3
2
5
/
3
6
/
2
6
/
3
1
/
4
4
/
4
8
/
4
7

F
is
h

1
7
5

1
7
5

4
6
3

7
8
0
.2

8
8
3
.4

3
7
8
.2

9
7
9
.4

3
7
7
.1

4
7
0
.2

9
6
8
.5

7
6
5
.1

4
4
2
.2

9
2
7
.4

3
3
5
.4

3
1
2
.5

7
1
8
5
/
8
7
/
4
9
/
2
3
3
/
2
5
9
/
1
5
6
/
7
8

F
o
rd

A
3
5
7
1

1
3
2
0

5
0
0

2
8
4
.7

7
7
2
.4

2
6
8
.6

4
8
4
.8

5
9
8
.6

4
8
0
.2

3
9
0
.6

8
9
5
.3

8
7
3
.2

6
6
2
.5

0
7
7
.7

3
8
3
.7

9
1
1
1
/
6
7
/
6
4
/
2
3
6
/
2
7
4
/
1
4
7
/
7
0

F
o
rd

B
3
6
0
1

8
1
0

5
0
0

2
7
2
.5

9
6
5
.9

3
5
9
.6

3
7
3
.4

6
6
7
.2

8
6
2
.8

4
6
4
.3

2
6
6
.0

5
5
9
.3

8
5
4
.3

2
6
2
.7

2
6
3
.8

3
2
9
/
1
5
/
1
3
/
2
0
/
2
5
/
2
3
/
2
0

G
u
n
P
o
in

t
5
0

1
5
0

1
5
0

2
9
3
.9

3
9
0
.6

7
9
1
.3

3
9
4
.6

7
9
8
.0

0
8
4
.0

0
9
4
.0

0
8
5
.3

3
7
7
.3

3
7
1
.3

3
7
9
.3

3
8
8
.6

7
7
6
/
3
6
5
/
3
0
8
/
9
4
/
1
1
8
/
1
2
6
/
8
3

H
a
n
d
O

u
tl
in

e
s

1
0
0
0

3
0
0

2
7
0
9

2
8
7
.3

3
8
8
.1

4
8
6
.2

5
8
7
.5

7
8
7
.3

0
8
5
.9

5
6
9
.7

3
6
6
.2

2
7
5
.6

8
7
6
.4

9
6
8
.9

2
7
8
.3

8
5
7
/
3
0
/
3
7
/
4
9
/
6
2
/
6
2
/
5
0

H
a
p
ti
c
s

1
5
5

3
0
8

1
0
9
2

5
3
8
.4

4
3
7
.6

6
3
7
.0

1
4
0
.2

6
4
2
.8

6
4
1
.5

6
4
1
.5

6
3
1
.8

2
3
2
.4

7
3
7
.0

1
3
5
.3

9
3
7
.0

1
1
1
9
/
2
4
/
2
7
/
1
0
1
/
9
4
/
4
5
/
9
9

In
li
n
e
S
k
a
te

1
0
0

5
5
0

1
8
8
2

7
2
5
.9

1
3
8
.3

6
3
4
.1

8
3
1
.8

2
3
4
.5

5
2
4
.9

1
2
9
.6

4
2
8
.9

1
2
3
.4

5
2
2
.9

1
3
2
.1

8
2
2
.7

3
1
2
/
7
/
8
/
1
3
/
1
4
/
7
/
1
3

It
a
ly

P
o
w
e
rD

e
m

a
n
d

6
7

1
0
2
9

2
4

2
9
0
.5

1
9
5
.0

4
9
5
.5

3
9
4
.9

5
8
1
.0

5
6
8
.8

0
4
9
.8

5
4
9
.8

5
7
0
.2

6
7
2
.8

9
4
9
.8

5
7
0
.7

5
7
4
/
2
1
/
2
0
/
4
9
/
4
5
/
2
4
/
5
1

L
ig

h
tn

in
g
2

6
0

6
1

6
3
7

2
7
0
.4

9
8
6
.8

9
7
5
.4

1
7
7
.0

5
7
3
.7

7
6
5
.5

7
6
8
.8

5
6
5
.5

7
6
5
.5

7
6
3
.9

3
6
7
.2

1
6
2
.3

0
5
6
/
2
1
/
2
1
/
3
8
/
3
6
/
2
2
/
3
9

L
ig

h
tn

in
g
7

7
0

7
3

3
1
9

7
5
9
.7

3
7
2
.6

0
5
7
.5

3
6
9
.8

6
7
3
.9

7
6
8
.4

9
5
3
.4

2
5
0
.6

8
6
7
.1

2
5
2
.0

5
4
5
.2

1
5
3
.4

2
2
2
/
2
4
/
2
3
/
3
3
/
4
4
/
2
9
/
2
7

M
A
L
L
A
T

5
5

2
3
4
5

1
0
2
4

8
9
6
.7

2
9
3
.3

9
9
1
.4

3
8
6
.3

5
9
2
.9

2
8
1
.0

2
6
8
.9

6
1
2
.3

2
7
6
.4

2
6
5
.2

0
6
8
.5

7
8
1
.9

6
4
7
/
2
9
/
2
9
/
3
6
/
3
8
/
4
2
/
4
1

M
e
d
ic

a
lI
m

a
g
e
s

3
8
1

7
6
0

9
9

1
0

5
6
.7

0
7
3
.6

8
6
8
.4

2
7
0
.0

0
6
7
.2

4
5
1
.3

2
5
3
.1

6
5
1
.5

8
5
3
.1

6
5
7
.6

3
5
4
.3

4
5
3
.1

6
2
0
/
1
4
/
6
/
1
6
/
1
8
/
1
5
/
1
2

M
o
te

S
tr

a
in

2
0

1
2
5
2

8
4

2
7
8
.2

8
8
3
.4

7
8
7
.8

6
8
6
.3

4
9
0
.8

9
7
3
.8

0
9
2
.0

1
5
3
.9

1
7
6
.2

0
6
8
.6

9
5
3
.9

1
7
4
.3

6
6
4
/
4
0
/
3
4
/
1
0
1
/
1
4
7
/
8
3
/
7
9

N
IF

E
C
G

T
h
o
ra

x
1

1
8
0
0

1
9
6
5

7
5
0

4
2

7
5
.4

3
7
9
.0

3
8
2
.9

0
8
0
.6

1
8
7
.5

8
7
5
.7

8
6
4
.5

8
4
1
.0

2
5
6
.6

9
4
1
.5

3
6
1
.3

2
7
0
.0

3
7
0
/
4
2
/
3
9
/
1
0
2
/
1
4
2
/
8
8
/
8
1

N
IF

E
C
G

T
h
o
ra

x
2

1
8
0
0

1
9
6
5

7
5
0

4
2

7
8
.9

4
8
6
.4

6
8
7
.9

9
8
7
.9

9
8
9
.7

2
7
9
.8

0
7
7
.2

0
5
2
.7

7
6
5
.6

5
4
8
.0

9
6
8
.0

4
7
8
.3

7
1
0
4
/
1
0
7
/
3
0
/
1
0
5
/
1
0
2
/
3
1
/
6
4

O
li
v
e
O

il
3
0

3
0

5
7
0

4
7
8
.6

7
8
6
.6

7
8
6
.6

7
8
0
.0

0
4
0
.0

0
4
0
.0

0
4
0
.0

0
4
0
.0

0
4
0
.0

0
4
0
.0

0
4
0
.0

0
4
0
.0

0
4
5
/
2
9
/
1
6
/
4
0
/
5
6
/
2
6
/
4
6

O
S
U
L
e
a
f

2
0
0

2
4
2

4
2
7

6
6
4
.0

9
5
9
.0

9
5
1
.6

5
5
7
.8

5
7
4
.3

8
4
9
.5

9
6
0
.3

3
7
2
.7

3
3
8
.4

3
3
5
.1

2
4
2
.9

8
4
8
.3

5
1
8
/
5
9
/
6
2
/
1
2
/
1
7
/
7
/
1
1

S
o
n
y
R
o
b
o
tS

u
rf
a
c
e

2
0

6
0
1

7
0

2
6
8
.5

5
7
2
.5

5
6
9
.5

5
7
4
.2

1
6
8
.0

5
6
0
.4

0
7
2
.2

1
8
1
.5

3
5
5
.0

7
5
3
.2

4
4
2
.9

3
4
2
.9

3
1
4
0
/
7
6
/
8
2
/
1
1
/
1
8
/
1
1
/
1
1

S
o
n
y
R
o
b
o
tS

u
rf
a
c
e
2

2
7

9
5
3

6
5

2
7
8
.5

2
8
3
.1

1
8
5
.9

4
8
6
.1

5
8
7
.5

1
5
3
.8

3
7
6
.5

0
7
3
.6

6
7
4
.6

1
7
3
.1

4
8
6
.2

5
6
1
.7

0
1
4
8
/
5
1
5
/
8
3
9
/
1
0
3
/
1
2
2
/
1
4
2
/
7
9

S
ta

rL
ig

h
tC

u
rv

e
s

1
0
0
0

8
2
3
6

1
0
2
4

3
9
3
.6

8
9
0
.6

6
8
4
.8

8
9
3
.9

9
9
5
.8

4
9
5
.3

5
9
5
.6

5
9
3
.3

7
8
9
.7

8
8
7
.2

1
7
8
.9

1
8
7
.3

5
2
6
/
2
9
/
3
2
/
3
3
/
4
6
/
1
9
/
3
0

S
w
e
d
is
h
L
e
a
f

5
0
0

6
2
5

1
2
8

1
5

7
3
.0

7
7
9
.2

0
7
8
.8

8
8
4
.8

0
9
0
.5

6
8
0
.6

4
7
9
.5

2
6
9
.1

2
5
6
.6

4
3
8
.0

8
5
7
.4

4
7
6
.1

6
2
4
/
1
3
7
/
2
7
/
2
2
/
3
6
/
2
7
/
2
4

S
y
m

b
o
ls

2
5

9
9
5

3
9
8

6
9
3
.2

4
9
4
.9

7
8
9
.9

5
9
2
.4

6
8
6
.8

3
8
6
.6

3
7
5
.0

8
6
4
.6

2
7
7
.3

9
7
0
.3

5
5
6
.0

8
8
4
.7

2
1
9
/
1
4
/
1
4
/
2
5
/
3
6
/
1
3
/
2
2

S
y
n
th

e
ti
c
C
o
n
tr

o
l

3
0
0

3
0
0

6
0

6
9
1
.9

0
9
9
.3

3
8
8
.0

0
9
1
.3

3
9
7
.6

7
9
2
.6

7
5
4
.0

0
3
9
.0

0
9
0
.0

0
8
6
.3

3
4
9
.6

7
6
4
.0

0
3
2
/
1
3
/
5
/
3
5
/
3
9
/
2
2
/
3
5

T
ra

c
e

1
0
0

1
0
0

2
7
5

4
9
9
.8

0
1
0
0
.0

0
7
6
.0

0
8
1
.0

0
1
0
0
.0

0
9
8
.0

0
9
1
.0

0
1
9
.0

0
8
9
.0

0
6
3
.0

0
8
5
.0

0
7
2
.0

0
1
2
/
1
0
/
1
3
5
/
1
4
/
1
8
/
1
3
/
1
4

T
w
o
L
e
a
d
E
C
G

2
3

1
1
3
9

8
2

2
9
0
.9

7
9
0
.4

3
7
4
.7

1
8
9
.0

3
8
4
.8

1
7
4
.3

6
6
4
.3

5
8
4
.8

1
6
3
.4

8
6
2
.7

7
4
9
.9

6
7
5
.2

4
7
6
5
/
4
2
/
4
0
/
2
3
4
/
1
5
6
/
1
7
/
3
8

T
w
o
P
a
tt

e
rn

s
1
0
0
0

4
0
0
0

1
2
8

4
8
8
.6

5
1
0
0
.0

0
9
0
.6

8
9
0
.1

0
9
8
.8

3
2
5
.7

0
5
3
.7

0
2
5
.8

8
9
8
.3

3
8
3
.9

8
3
0
.9

5
5
1
.6

5
1
3
6
/
9
8
/
6
4
/
9
0
/
6
4
/
4
8
/
9
1

u
W

a
v
e
G

e
st

u
re

L
ib

ra
ry

X
8
9
6

3
5
8
2

3
1
5

8
7
0
.6

8
7
2
.7

5
7
3
.9

3
7
4
.6

5
8
0
.8

5
7
3
.0

6
5
5
.8

3
4
6
.3

4
6
7
.5

9
6
0
.2

5
3
5
.6

8
5
1
.7

3
3
1
2
/
6
8
6
/
4
7
/
1
5
5
/
1
2
2
/
7
2
/
8
1

u
W

a
v
e
G

e
st

u
re

L
ib

ra
ry

Y
8
9
6

3
5
8
2

3
1
5

8
6
0
.8

3
6
3
.4

0
6
6
.1

6
6
7
.1

7
6
9
.9

6
6
4
.1

0
4
5
.3

7
4
6
.0

1
6
0
.6

6
5
3
.4

3
3
4
.7

9
4
2
.2

4
2
7
6
/
5
4
2
/
5
3
/
1
2
6
/
1
0
2
/
6
6
/
7
4

u
W

a
v
e
G

e
st

u
re

L
ib

ra
ry

Z
8
9
6

3
5
8
2

3
1
5

8
6
3
.5

6
6
5
.8

3
6
4
.9

6
6
6
.3

6
7
4
.0

6
6
7
.5

9
5
9
.3

2
5
2
.4

0
6
3
.1

2
5
3
.8

8
3
6
.2

4
5
2
.0

1
2
9
8
/
2
5
1
/
5
4
/
1
3
7
/
1
1
4
/
7
4
/
8
7

w
a
fe

r
1
0
0
0

6
1
7
4

1
5
2

2
9
9
.6

4
9
7
.9

9
9
9
.5

5
9
9
.7

2
1
0
0
.0

0
9
7
.8

4
1
0
0
.0

0
1
0
0
.0

0
9
7
.3

1
9
6
.2

4
9
6
.7

1
9
7
.9

2
1
4
9
/
1
8
3
/
1
7
8
/
5
2
/
7
4
/
2
3
/
4
7

W
o
rd

sS
y
n
o
n
y
m

s
2
6
7

6
3
8

2
7
0

2
5

4
0
.6

1
6
4
.8

9
6
1
.7

6
6
2
.5

4
6
1
.4

4
5
0
.9

4
5
3
.7

6
4
9
.3

7
3
9
.9

7
3
0
.7

2
2
5
.3

9
3
9
.8

1
1
9
4
/
1
7
9
/
7
7
/
1
1
8
/
8
9
/
5
5
/
1
2
9

y
o
g
a

3
0
0

3
0
0
0

4
2
6

2
7
3
.0

7
8
3
.6

3
8
3
.0

3
8
3
.6

7
7
3
.3

3
6
6
.4

0
7
0
.3

7
7
2
.0

0
6
8
.2

7
6
5
.0

3
6
1
.3

3
6
1
.0

0
5
0
/
5
4
/
5
4
/
7
2
/
8
4
/
3
8
/
4
1

M
e
a
n

A
c
c

7
3
.2

3
7
8
.0

6
7
3
.8

9
7
7
.4

5
7
7
.4

4
6
5
.9

8
6
1
.2

0
5
5
.3

0
5
9
.2

6
5
3
.4

8
5
3
.2

7
5
7
.5

4
#

w
in

s
5

1
8

2
8

1
9

m
o
d
l
-t
sc

w
in

s
v
s.

3
5

2
5

3
4

2
9

-
4
9

4
7

4
9

5
0

5
0

5
0

4
9

A
v
e
ra

g
e

ra
n
k

3
.6

6
6
7

2
.6

0
7
8

3
.5

7
8
4

2
.5

2
9
4

2
.6

1
7
6

32 D. Gay et al.

5 Conclusion and Perspectives

We have suggested modl-tsc, a simple yet effective and generic feature con-
struction process for time series classification problems (TSC). Our process is
parameter-free, easy to use and the generated features offer a high potential of
interpretation. The three main steps of the process are: (i) transforming data
for generating multiple data representations; (ii) coclustering on each represen-
tation; (iii) constructing new features from coclustering results. The new data
set is made of objects (time series identifiers) and descriptive attributes from
the various representations. To predict the class of new incoming time series,
we use the Selective Naive Bayes classifier (snb). The time complexity of our
process is sub-quadratic, thus time-efficient. Experimental results show that the
performance of modl-tsc is highly competitive and comparable with two of
the most accurate approaches of the state-of-the-art (namely, dtw-nn and tsc-
ens). In addition, modl-tsc embraces the eager paradigm and unlike the lazy
approaches (ed-nn, dtw-nn and tsc-ens), our approach has a proper learn-
ing phase and can deploy fast enough for real-world applications. Moreover, a
qualitative study has shown that the generated features give some insight in the
data representations: we are able to qualify the adequacy of a representation for
solving the TSC problem at hand and to identify class-discriminating regions of
values from data representations embedded in our process.

The results of this work are promising and also confirm the importance of
representations in TSC problems. Indeed, depending on the application domain,
a particular transformation will facilitate the discovery of class relevant patterns.
Moreover, the combination of multiple representations with modl-tsc leads
to highly competitive predictive performance. We have used only a few simple
representations in the time, frequency and correlation domains to demonstrate
that our feature construction approach is well-founded. The literature offers
plenty of relevant data representations (see [27] for a wide view). Notice also
that designing new representations is still a hot topic (see e.g., [19]). It gives a
large potential of improvement for modl-tsc on data sets and applications where
we are less performant than dtw-nn and tsc-ensemble since our methodology
allows us to use a large spectrum of representations.

Acknowledgments. We wish to thank Anthony Bagnall and his team from University
of East-Anglia for providing tsc-ensemble prototype, Eamonn Keogh and his team
from University of California Riverside for providing prototypes of dtw-nn and fast-
shapelets.

References

1. Bagnall, A., Davis, L.M., Hills, J., Lines, J.: Transformation based ensembles for
time series classification. In: SDM’12, pp. 307–318 (2012)

2. Batal, I., Sacchi, L., Bellazzi, R., Hauskrecht, M.: Multivariate time series classifi-
cation with temporal abstractions. In: FLAIRS’09 (2009)

Feature Extraction over Multiple Representations for Time Series 33

3. Boullé, M.: A bayes optimal approach for partitioning the values of categorical
attributes. J. Mach. Learn. Res. 6, 1431–1452 (2005)

4. Boullé, M.: MODL: a bayes optimal discretization method for continuous
attributes. Mach. Learn. 65(1), 131–165 (2006)

5. Boullé, M.: Compression-based averaging of selective naive Bayes classifiers. J.
Mach. Learn. Res. 8, 1659–1685 (2007)

6. Boullé, M.: Functional data clustering via piecewise constant nonparametric den-
sity estimation. Pattern Recogn. 45(12), 4389–4401 (2012)

7. Buza, K.A.: Fusion methods for time-series classification. Ph.D. thesis, University
of Hildesheim (2011)

8. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach.
Learn. Res. 7, 1–30 (2006)

9. Rodŕıguez, J.J., Alonso, C.J., Boström, H.: Learning first order logic time series
classifiers: rules and boosting. In: Zighed, D.A., Komorowski, J., Żytkow, J.M.
(eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 299–308. Springer, Heidelberg
(2000)

10. Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., Keogh, E.J.: Querying and
mining of time series data: experimental comparison of representations and dis-
tance measures. PVLDB 1(2), 1542–1552 (2008)

11. Eruhimov, V., Martyanov, V., Tuv, E.: Constructing high dimensional feature
space for time series classification. In: Kok, J.N., Koronacki, J., Lopez de Mantaras,
R., Matwin, S., Mladenič, D., Skowron, A. (eds.) PKDD 2007. LNCS (LNAI), vol.
4702, pp. 414–421. Springer, Heidelberg (2007)

12. Geurts, P.: Pattern extraction for time series classification. In: Siebes, A., De Raedt,
L. (eds.) PKDD 2001. LNCS (LNAI), vol. 2168, p. 115. Springer, Heidelberg (2001)

13. Grabocka, J., Nanopoulos, A., Schmidt-Thieme, L.: Invariant time-series classifi-
cation. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML PKDD 2012, Part
II. LNCS, vol. 7524, pp. 725–740. Springer, Heidelberg (2012)

14. Grünwald, P.: The Minimum Description Length Principle. MIT Press, Cambridge
(2007)

15. Hidasi, B., Gáspár-Papanek, C.: ShiftTree: an interpretable model-based app-
roach for time series classification. In: Gunopulos, D., Hofmann, T., Malerba, D.,
Vazirgiannis, M. (eds.) ECML PKDD 2011, Part II. LNCS, vol. 6912, pp. 48–64.
Springer, Heidelberg (2011)

16. Kadous, M.W., Sammut, C.: Classification of multivariate time series and struc-
tured data using constructive induction. Mach. Learn. 58(2–3), 179–216 (2005)

17. Keogh, E., Zhu, Q., Hu, B., Hao. Y., Xi, X., Wei, L., Ratanamahatana, C.A.:
The UCR time series classification/clustering page (2011). http://www.cs.ucr.edu/
∼eamonn/time series data/

18. Liao, T.W.: Clustering of time series data - a survey. Pattern Recogn. 38(11),
1857–1874 (2005)

19. Lines, J., Davis, L.M., Hills, J., Bagnall, A.: A shapelet transform for time series
classification. In: KDD’12, pp. 289–297 (2012)

20. Mörchen, F.: Time series feature extraction for data mining using DWT and DFT.
Technical report, Philipps Univeristy Marburg (2003)

21. Nanopoulos, A., Alcock, R., Manolopoulos, Y.: Feature-based classification of time-
series data. In: Mastorakis, N., Nikolopoulos, S.D. (eds.) Information Processing
and Technology, pp. 49–61. Nova Science (2001)

22. Rakthanmanon, T., Keogh, E.: Fast shapelets: a scalable algorithm for discovering
time series shapelets. In: SIAM DM’13 (2013)

http://www.cs.ucr.edu/~eamonn/time_series_data/
http://www.cs.ucr.edu/~eamonn/time_series_data/

34 D. Gay et al.

23. Ramsay, J., Silverman, B.: Functional Data Analysis. Springer, New York (2005)
24. Shannon, C.E.: A mathematical theory of communication. Bell System Technical

Journal (1948)
25. Stefan, A., Athitsos, V., Das, G.: The move-split-merge metric for time series.

Trans. Knowl. Data Eng. 25, 1425–1438 (2013)
26. Vilalta, R., Rish, I.: A decomposition of classes via clustering to explain and

improve naive bayes. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H.
(eds.) ECML 2003. LNCS (LNAI), vol. 2837, pp. 444–455. Springer, Heidelberg
(2003)

27. Wang, X., Mueen, A., Ding, H., Trajcevski, G., Scheuermann, P., Keogh, E.: Exper-
imental comparison of representation methods and distance measures for time
series data. Data Min. Knowl. Disc. 26(2), 275–309 (2013)

28. Xi, X., Keogh, E.J., Shelton, C.R., Wei, L., Ratanamahatana, C.A.: Fast time series
classification using numerosity reduction. In: ICML’06, pp. 1033–1040 (2006)

29. Xing, Z., Pei, J., Yu, P.S., Wang, K.: Extracting interpretable features for early
classification on time series. In: SDM’11, pp. 247–258 (2011)

30. Yamada, Y., Suzuki, E., Yokoi, H., Takabayashi, K.: Decision-tree induction from
time-series data based on a standard-example split test. In: ICML’03, pp. 840–847
(2003)

31. Ye, L., Keogh, E.J.: Time series shapelets: a novel technique that allows accurate,
interpretable and fast classification. Data Min. Knowl. Disc. 22(1–2), 149–182
(2011)

32. Zhang, H., Ho, T.-B., Lin, M.-S.: A non-parametric wavelet feature extractor for
time series classification. In: Dai, H., Srikant, R., Zhang, Ch. (eds.) PAKDD 2004.
LNCS (LNAI), vol. 3056, pp. 595–603. Springer, Heidelberg (2004)

A Classification Based Scoring Function for
Continuous Time Bayesian Network Classifiers

Daniele Codecasa and Fabio Stella(B)

DISCo, Università degli Studi di Milano-Bicocca,
Viale Sarca 336, 20126 Milano, Italy
{codecasa,stella}@disco.unimib.it

Abstract. Continuous time Bayesian network classifiers are designed
for analyzing multivariate streaming data when time duration of events
matters. New continuous time Bayesian network classifiers are intro-
duced while their conditional log-likelihood scoring function is developed.
A learning algorithm, combining conditional log-likelihood with Bayesian
parameter estimation is developed. Classification accuracies achieved on
synthetic data by continuous time and dynamic Bayesian network clas-
sifiers are compared. Results show that conditional log-likelihood scor-
ing combined with Bayesian parameter estimation outperforms marginal
log-likelihood scoring in terms of classification accuracy. Continuous time
Bayesian network classifiers are applied to post-stroke rehabilitation.

Keywords: Continuous time Bayesian networks · Multivariate stream-
ing data · Conditional log-likelihood · Structural learning

1 Introduction

Streaming data are relevant to finance for high frequency trading [5], computer
science for system error logs, web search query logs, network intrusion detection,
social networks [24] and temporal semantic [16], and engineering for image, audio
and video processing [30]. They are also important for analyzing GPS data, as
shown in [14] and [4] where buses and animals paths are analyzed. Streaming
data are becoming increasingly important in medicine for patient monitoring and
continuous time diagnosis [10] including the study of firing patterns of neurons
[28]. Finally, they are becoming relevant in biology where time course data [1]
allow the reconstruction of gene regulatory networks, to model the evolution of
infections, and to learn and analyze metabolic networks [29].

Dynamic Bayesian networks (DBNs) [6] and hidden Markov models (HMMs)
[20] offer a natural way to represent and analyze streaming data. However, DBNs
are concerned with discrete time and thus suffer from several limitations, due to
the fact that it is not clear how timestamps should be discretized. In the case
where a too slow sampling rate is used, the data will be poorly represented;
while a too fast sampling rate rapidly makes learning and inference prohibitive.

A. Appice et al. (Eds.): NFMCP 2013, LNAI 8399, pp. 35–50, 2014.
DOI: 10.1007/978-3-319-08407-7 3, c© Springer International Publishing Switzerland 2014

36 D. Codecasa and F. Stella

Furthermore, it has been pointed out [12] that when allowing long term depen-
dencies it is required to condition on multiple steps into the past; thus, choosing
a too fast sampling rate will increase the number of such steps that need to be
conditioned on.

Continuous time Bayesian networks (CTBNs) [17], continuous time noisy-or
(CT-NOR) [23], Poisson cascades [24] and Poisson networks [21] together with
the piecewise-constant conditional intensity model (PCIM) [12] are interesting
models to represent and analyze continuous time processes. CT-NOR and Pois-
son cascades are devoted to model event streams while they require the modeler
to specify a parametric form for temporal dependencies. This aspect significantly
impacts performance and the problem of model selection in CT-NOR and Pois-
son cascades has not been addressed yet. This limitation is overcome by PCIMs
which perform structure learning to model how events in the past affect future
events of interest. CTBNs are continuous time homogeneous Markov models
which allow to represent joint trajectories of discrete finite variables.

In this paper we consider the problem of temporal classification, where data
stream measurements are available over a period of time in history, while the
class is expected to occur in the future. This kind of problem can be addressed
by discrete and continuous time models. Discrete time models include dynamic
latent classification models [31], a specialization of the latent classification model
(LCM) [13], and DBNs [6]. Continuous time models, as continuous time Bayesian
network classifiers (CTBNCs) [25], have overcome the problem of timestamps
discretization. The main contributions of the paper are:

– definition of new classifiers from the class of CTBNCs,
– development of the conditional log-likelihood scoring function for CTBNCs,
– performance comparison of CTBNCs learned with the conditional log-

likelihood score to CTBNCs learned with marginal log-likelihood score and to
DBN classifiers.

The paper is organized as follows; Sect. 2 is devoted to notations and def-
initions. New classifiers are introduced and analyzed in Sect. 3. Section 4 con-
cerns numerical experiments where synthetic data sets generated from models
of increasing complexity are used. In this section a real data set on post-stroke
rehabilitation is analyzed. Conclusions are proposed in Sect. 5.

2 Continuous Time Classification

2.1 Continuous Time Bayesian Networks

Dynamic Bayesian networks (DBNs) model dynamic systems without represent-
ing time explicitly. They discretize time to represent a dynamic system through
several time slices. In [18] the authors pointed out that “since DBNs slice time
into fixed increments, one must always propagate the joint distribution over
the variables at the same rate”. Therefore, if the system consists of processes
which evolve at different time granularities and/or the obtained observations

A Classification Based Scoring Function for CTBNCs 37

are irregularly spaced in time, the inference process may become computation-
ally intractable.

Continuous time Bayesian networks (CTBNs) have overcome the limitations
of DBNs by explicitly representing temporal dynamics, which allows us to recover
the probability distribution over time when specific events occur. A continuous
time Bayesian network (CTBN) is a probabilistic graphical model whose nodes
are associated with random variables and whose state evolves continuously over
time.

Definition 1. (Continuous time Bayesian network (CTBN)) [18]. Let X be a
set of random variables X1,X2, ...,XN . Each Xn has a finite domain of val-
ues V al(Xn) = {x1, x2, ..., xI}. A continuous time Bayesian network ℵ over X
consists of two components: the first is an initial distribution P 0

X, specified as
a Bayesian network B over X. The second is a continuous transition model,
specified as:

– a directed (possibly cyclic) graph G whose nodes are X1,X2, ...,XN ; Pa(Xn)
denotes the parents of Xn in G.

– a conditional intensity matrix, QPa(Xn)
Xn

, for each variable Xn ∈ X.

Given the random variable Xn, the conditional intensity matrix (CIM) QPa(Xn)
Xn

consists of a set of intensity matrices, one intensity matrix

Qpa(Xn)
Xn

=

⎡

⎢
⎢
⎢
⎣

−q
pa(Xn)
x1 q

pa(Xn)
x1x2 . q

pa(Xn)
x1xI

q
pa(Xn)
x2x1 −q

pa(Xn)
x2 . q

pa(Xn)
x2xI

. . . .

q
pa(Xn)
xIx1 q

pa(Xn)
xIx2 . −q

pa(Xn)
xI

⎤

⎥
⎥
⎥
⎦

,

for each instantiation pa(Xn) of the parents Pa(Xn) of node Xn, where q
pa(Xn)
xi =

∑

xj ∈=xi

q
pa(Xn)
xixj is the rate of leaving state xi for a specific instantiation pa(Xn)

of Pa(Xn), while q
pa(Xn)
xixj is the rate of arriving to state xj from state xi for

a specific instantiation pa(Xn) of Pa(Xn). Matrix Qpa(Xn)
Xn

can equivalently be

summarized by using two types of parameters, q
pa(Xn)
xi which is associated with

each state xi of the variable Xn when its parents are set to pa(Xn), and θ
pa(Xn)
xixj =

qpa(Xn)
xixj

q
pa(Xn)
xi

which represents the probability of transitioning from state xi to state

xj , when it is known that the transition occurs at a given instant in time.

Example 1. Figure 1 shows a part of the drug network introduced in [18]. It
contains a cycle, indicating that whether a person is hungry (H) depends on
how full his/her stomach (S) is, which depends on whether or not he/she is
eating (E), which in turn depends on whether he/she is hungry.

Assume that E and H are binary variables with states no and yes while the
variable S can be in one of the following states; full, average or empty. Then,
the variable E is fully specified by the [2×2] CIM matrices Qn

E , and Qy
E , the

38 D. Codecasa and F. Stella

Eating
(E)

Hungry
(H)

Full
stomach

(S)

Qy
S =

⎡
⎣

−qyf qyf,a qyf,e
qya,f −qya qya,e
qye,f qye,a −qye

⎤
⎦

=

⎡
⎣−0.03 0.02 0.01

5.99 −6.00 0.01
1.00 5.00 −6.00

⎤
⎦ (1)

Qy
S =

⎡
⎣ qyf 0 0

0 qya 0
0 0 qye

⎤
⎦

⎛
⎝

⎡
⎣

0 θy
f,a θy

f,e

θy
a,f 0 θy

a,e

θy
e,f θy

e,a 0

⎤
⎦ − I

⎞
⎠

=

⎡
⎣ 0.03 0 0

0 6.00 0
0 0 6.00

⎤
⎦

⎛
⎝

⎡
⎣ 0 0.02

0.03
0.01
0.03

5.99
6.00

0 0.01
6.00

1.00
6.00

5.00
6.00

0

⎤
⎦ − I

⎞
⎠ (2)

Fig. 1. A part of the drug network and the two equivalent parametric representations
of Qy

S where I is the identity matrix.

variable S is fully specified by the [3×3] CIM matrices Qn
S and Qy

S , while the
variable H is fully specified by the [2×2] CIM matrices Qf

H , Qa
H and, Qe

H .
If the hours are the units of time, then a person who has an empty stomach

(S=empty) and is eating (E=yes) is expected to stop having an empty stomach
in 10min (1.006.00 h). The stomach will then transition from state empty (S=empty)
to state average (S=average) with probability 5.00

6.00 and to state full (S=full)
with probability 1.00

6.00 . Equation 1 is a compact representation of the CIM while
Eq. 2 is useful because it explicitly represents the transition probability value
from state x to state x∞, i.e. θ

pa(X)
xx∗ .

CTBNs allow two types of evidence, namely point evidence and continu-
ous evidence, while HMMs and DBNs allow only point evidence. Continuous
evidence is the knowledge of the states of a set of variables X throughout an
entire half-closed interval of time [t1, t2): Z[t1,t2) = z[t1,t2), where Z[t1,t2) =
(X [t1,t2)

1 ,X
[t1,t2)
2 , ...,X

[t1,t2)
k) while z[t1,t2) = (x[t1,t2)

1 , x
[t1,t2)
2 , ..., x

[t1,t2)
k).

Inference in CTBNs can be performed by exact and approximate algorithms.
Full amalgamation [18] allows exact inference by generating an exponentially-
large matrix representing the transition model over the entire state space. Exact
inference in CTBNs is known to be intractable, and thus different approximate
algorithms have been proposed. In [17] the authors introduced the Expectation
Propagation algorithm (EP), while in [22] an optimized variant of EP is pre-
sented. Alternatives are offered by sampling based inference algorithms, such as
importance sampling algorithm [8] and Gibbs sampling algorithm [7].

Given the data set D, parameter learning is based on marginal log-likelihood
estimation. It takes into account the imaginary counts of the hyperparameters
(i.e. α

pa(X)
x , α

pa(X)
xx∗ and, τ

pa(X)
x):

qpa(X)
x =

α
pa(X)
x + M [x | pa(X)]

τ
pa(X)
x + T [x | pa(X)]

;θpa(X)
xx∗ =

α
pa(X)
xx∗ + M [x, x∞ | pa(X)]

α
pa(X)
x + M [x | pa(X)]

(3)

A Classification Based Scoring Function for CTBNCs 39

where M [x, x∞ | pa(X)], M [x | pa(X)] and T [x | pa(X)] are the sufficient sta-
tistics. M [x, x∞ | pa(X)] is the count of transitions from state x to state x∞ for
node X when the state of its parents Pa(X) is set to pa(X). M [x | pa(X)] =∑

x∗ ∈=x M [x, x∞ | pa(X)] is the count of transitions leaving state x of node X
when the state of its parents Pa(X) is set to pa(X). Finally, T [x | pa(X)] rep-
resents the time spent in state x by the variable X when the state of its parents
Pa(X) is set to pa(X).

Learning the structure of a CTBN from a given data set D has been addressed
as an optimization problem over possible CTBN structures [19]. It consists of
finding the structure G which maximizes the following Bayesian score:

score (G : D) = ln P (D|G) + lnP (G). (4)

However, the search space of this optimization problem is significantly simpler
than that of BNs or DBNs. Indeed, it is known that learning the optimal struc-
ture of a BN is NP-hard, while the same does not hold true in the context of
CTBNs where all edges are across time and thus represent the effect of the cur-
rent value of one variable on the next value of the other variables. Therefore,
no acyclicity constraints arise, and it is possible to optimize the parent set for
each variable of the CTBN independently. This allow a polynomial structural
learning algorithm with respect to the number of variables and the dimension of
the dataset, once fixed the maximum number of parents.

2.2 Continuous Time Bayesian Network Classifiers

Continuous time Bayesian network classifiers (CTBNCs) [25] are a specialization
of CTBNs. They allow polynomial time classification of a static class, while for
CTBNs general inference is intractable [18]. Classifiers from this class explicitly
represent the evolution in continuous time of the set of random variables Xn,
n = 1, 2, ..., N which are assumed to depend on the static class node Y .

Definition 2. (Continuous time Bayesian network classifier (CTBNC))1. A
continuous time Bayesian network classifier is a pair C = {ℵ, P (Y)} where ℵ
is a CTBN model with attribute nodes X1,X2, ...,XN , Y is the class node with
marginal probability P (Y) on states V al(Y) = {y1, y2, ..., yK}, G is the graph of
the CTBNC, such that the following conditions hold:

– Pa(Y) = ∅, the class variable Y is associated with a root node;
– Y is fully specified by P (Y) and does not depend on time.

Given a data set D with no missing data, a CTBNC is learned by maximizing
the score (4) subjected to the constraints listed in Definition 2. However, exact
learning requires to set in advance the maximum number of parents k for the
1 This definition differs from the one proposed in [25]. In fact, this definition does not

require the CTBNC graph to be connected. Therefore, it allows structural learning
algorithms to naturally perform feature selection.

40 D. Codecasa and F. Stella

nodes X1,X2, ...,XN [17] and thus in the case where k is not small a considerable
computational effort is required to find the graph structure G∗ which maximizes
the score (4). In such a case we resort to hill-climbing or to the continuous time
naive Bayes (CTNB).

Definition 3. (Continuous time naive Bayes (CTNB)) [25]. A continuous time
naive Bayes classifier is a continuous time Bayesian network classifier C =
{ℵ, P (Y)} such that Pa(Xn) = {Y }, n = 1, 2, ..., N .

Example 2. Figure 2a depicts the structure of a CTBNC to diagnose eating dis-
orders from the eating process (Fig. 1). An example of the eating process is shown
in Fig. 2b.

According to [25] a CTBNC C = {ℵ, P (Y)} classifies a stream of continuous
time evidence z = (x1, x2, ..., xN) for the attributes Z = (X1,X2, ...,XN) over
J contiguous time intervals, i.e. a stream of continuous time evidence Z[t1,t2) =
z[t1,t2), Z[t2,t3) = z[t2,t3), . . . , Z[tJ−1,tJ) = z[tJ−1,tJ), by selecting the value y∗

for the class Y which maximizes the posterior probability P (Y |z[t1,t2), z[t2,t3), ...,
z[tJ−1,tJ)), which is proportional to

P (Y)
J∏

j=1

q
pa(Xmj

)

xj
mj

xj+1
mj

N∏

n=1

exp
⎜
−q

pa(Xn)

xj
n

δj

)
, (5)

where:

– δj = tj−tj−1 is the length of the jth time interval of the stream z[t1,t2), z[t2,t3),
..., z[tJ−1,tJ) of continuous time evidence;

– q
pa(Xn)

xj
n

is the parameter associated with state xj
n, in which the variable Xn

was during the jth time interval, given the state of its parents pa(Xn) during
the jth time intervals;

– q
pa(Xm)

xj
mxj+1

m
is the parameter associated with the transition from state xj

m, in

which the variable Xm was during the jth time interval, to state xj+1
m , in

which the variable Xm will be during the (j + 1)th time interval, given the
state of its parents pa(Xm) during the jth and the (j + 1)th time intervals.

The learning algorithm for the CTNB model, based on marginal log-likelihood
maximization, and the inference algorithm for CTBNCs are described in [25].

3 Max-k Classifiers

3.1 Definitions

Structural learning for CTBNs is polynomial with respect to the number of vari-
ables and the size of the data set, once fixed the maximum number of parents
(i.e. k). Nevertheless, increasing k rapidly brings to considerable computational
efforts, while it implies more data is necessary to learn the node’s parameter val-
ues conditioned on possible parents’ instantiations. To overcome these limitations
we propose the following instances from the class of CTBNCs: the Max-k Aug-
mented CTNB (Max-k ACTNB) and the Max-k CTBNC (Max-k CTBNC) [3].

A Classification Based Scoring Function for CTBNCs 41

⎧⎨
⎩ {anorexia, bulimia, no disorder}Disorder

(D)

{yes, no}︸ ︷︷ ︸

Eating
(E)

{yes, no}︸ ︷︷ ︸

Hungry
(H)

︷ ︸︸ ︷
{full, average, empty}

Full
stomach

(S)

(a)

(b)

D = no disorder

t

E

n

y

t

S

e

a

f

t

H

n

y

Fig. 2. CTBNC to diagnose eating disorders (a) observing the eating process (b).

Definition 4. (Max-k Continuous Time Bayesian Network Classifier). A max-
k continuous time Bayesian network classifier is a couple M = {C, k}, where C
is a continuous time Bayesian network classifier C = {ℵ, P (Y)} such that the
number of parents |Pa(Xn)| for each attribute node Xn is bounded by a positive
integer k. Formally, the following condition holds; |Pa(Xn)| ≤ k, n = 1, 2, ..., N ,
k > 0.

Definition 5. (Max-k Augmented Continuous Time Naive Bayes). A max-k
augmented continuous time naive Bayes classifier is a max-k continuous time
Bayesian network classifier such that the class node Y belongs to the parents
set of each attribute node Xn, n = 1, 2, ..., N . Formally, the following condition
holds; Y ∈ Pa(Xn), n = 1, 2, ..., N .

ACTNB constrains the class variable Y to be a parent of each node Xn,
n = 1, 2, ..., N . In this way it tries to compensate for relevant dependencies
between nodes which could be excluded to satisfy the constraint on the maximum
number of parents k.

3.2 Learning

Learning a CTBNC from data consists of learning a CTBN where a specific node,
i.e. the class node Y , does not depend on time. In such a case, the learning algo-
rithm runs, for each attribute node Xn, n = 1, 2, ..., N , a local search procedure
to find its optimal set of parents, i.e. the set of parents which maximizes a given
score function. Furthermore, for each attribute node Xn, n = 1, 2, ..., N , no more
than k parents are selected. The structural learning algorithm proposed in [19]

42 D. Codecasa and F. Stella

uses the Bayesian score function (4) based on the marginal log-likelihood. This
algorithm can be easily adapted to learn a CTBNC by introducing the constraint
that the class node Y must not depend on time.

3.3 Log-likelihood and Conditional Log-likelihood

Scores based on log-likelihood are not the only scoring functions which can be
used to learn the structure of a CTBN classifier. Following what is presented
and discussed in [9], the log-likelihood function:

LL(M | D) =
|D|∑

i=1

log Pℵ(yi | x1
i , ...,x

Ji
i) + log Pℵ(x1

i , ...,x
Ji
i) (6)

consists of two components; log Pℵ(yi | x1
i , ...,x

Ji
i), which measures the classifi-

cation capability of the model, and log Pℵ(x1
i , ...,x

Ji
i), which models the depen-

dencies between the nodes.
In [9] the authors remarked that in the case where the number of the attribute

nodes Xn, n = 1, 2, ..., N is large, the contribution, to the log-likelihood function
(6), of log Pℵ(x1

i , ...,x
Ji
i) overwhelms the contribution of log Pℵ(yi | x1

i , ...,x
Ji
i).

However, the contribution of log Pℵ(x1
i , ...,x

Ji
i) is not directly related to the

classification accuracy achieved by the classifier. Therefore, to improve the clas-
sification performance, in [9] it has been suggested to use the conditional log-
likelihood as scoring function. In such a case the maximization of the conditional
log-likelihood results in maximizing the classification performance of the model
without paying specific attention to the discovery of the existing dependencies
between the attribute nodes Xn, n = 1, 2, ..., N .

In the case where continuous time Bayesian network classifiers are considered,
the conditional log-likelihood can be written as follows:

CLL(M | D) =
|D|∑

i=1

log Pℵ(yi | x1
i , ...,x

Ji
i) (7)

=
|D|∑

i=1

log

⎟
Pℵ(x1

i , ...,x
Ji
i | yi)Pℵ(yi)

Pℵ(x1
i , ...,x

Ji
i)

)

=
|D|∑

i=1

log (Pℵ(yi)) +
|D|∑

i=1

log
⎜
Pℵ(x1

i , ...,x
Ji
i | yi)

)
−

−
|D|∑

i=1

log

⎛

⎝
∑

y∗
Pℵ(y∞)Pℵ(x1

i , ...,x
Ji
i | y∞)

⎞

⎠ .

Conditional log-likelihood scoring consists of three terms: class probability
term (8), posterior probability term (9), and denominator term (10).

A Classification Based Scoring Function for CTBNCs 43

The class probability term is estimated from the learning data set D as follows:

|D|∑

i=1

log (Pℵ(yi)) =
∑

y

M [y] log(θy) (8)

where θy represents the parameter associated with the probability of class y.
From (5) it is possible to write the following:

Pℵ(x1, ...,xJ | y) =
J∏

j=1

q
pa(Xmj

)

xj
mj

xj+1
mj

N∏

n=1

exp
⎜
−q

pa(Xn)

xj
n

δj

)

=
J∏

j=1

q
pa(Xmj

)

xj
mj

θ
pa(Xmj

)

xj
mj

xj+1
mj

N∏

n=1

exp
⎜
−q

pa(Xn)

xj
n

δj

)

Therefore, the posterior probability term can be estimated as follows:

∑|D|
i=1 log

⎜
Pℵ(x1

i , ...,x
Ji
i | yi)

)
=

N∑

n=1

∑

xn,pa(Xn)

M [xn | pa(Xn)] log
⎜
qpa(Xn)
xn

)

− qpa(Xn)
xn

T [xn | pa(Xn)] +
∑

x∗
n ∈=xn

M [xnx∞
n | pa(Xn)] log(θpa(Xn)

xnx∗
n

). (9)

The denominator term, because of the sum, cannot be decomposed further.
The sufficient statistics allow us to write the following:

∑|D|
i=1 log

⎛

⎝
∑

y∗
Pℵ(y∞)Pℵ(x1

i , ...,x
Ji
i | y∞)

⎞

⎠ =

= log

⎛

⎝
∑

y∗
θy∗

N∏

n=1

∏

xn,pa∗(Xn)

(qpa
∗(Xn)

xn
)M [xn|pa∗(Xn)]

exp(−qpa
∗(Xn)

xn
T [xn | pa∞(Xn)])

∏

x∗
n ∈=xn

(θpa
∗(Xn)

xnx∗
n

)M [xnx
∗
n|pa∗(Xn)]

⎞

⎠ (10)

where pa(Xn) = {πn ∪ y}, pa∞(Xn) = {πn ∪ y∞}, while πn is the instantiation of
the non-class parents of the attribute node Xn.

The use of the conditional log-likelihood scoring function to learn continu-
ous time Bayesian network classifiers is analyzed. Unfortunately, no closed form
solution exists to compute the optimal value of the model’s parameters, i.e. those
parameters values which maximize the conditional log-likelihood (7). Therefore,
the approach introduced and discussed in [11] is followed. The scoring function
is computed by using the conditional log-likelihood, while parameter values are
obtained by using the Bayesian approach as described in [19].

44 D. Codecasa and F. Stella

4 Numerical Experiments

Considering the Bayesian score (4), the prior distribution of the structure (i.e.
ln P (G)) becomes less relevant with the increase of the data set dimension. In
the case where the data set dimension tends to infinity, the Bayesian score is
equivalent to the marginal log-likelihood (MLL) score (i.e. MLLscore(G : D) =
ln P (D|G)). For a fair comparison of the classification performance achieved when
using the conditional log-likelihood (CLL) score (7), which does not use a graphs
structure penalization term, the MLL score is used instead of the Bayesian score.

The performance of CTBNCs, namely CTNB, k = 2 ACTNB, k = 2 CTBNC,
k = 3 CTBNC, and k = 4 CTBNC, is compared to that of DBNs by exploiting
synthetic data sets. Classifiers are associated with a suffix related to the scor-
ing function which has been used for learning. Suffix MLL is associated with
marginal log-likelihood scoring while suffix CLL is associated with conditional
log-likelihood scoring. DBNs are implemented by using the MATLAB Bayesian
Nets toolbox [15]. Because of the computational effort to deal with DBNs, it was
necessary to force a sampling ratio to discretize the trajectories that generates
no more then 50 time slices per trajectory. In the same way the generated data
sets were too big to allow the structural learning of DBNs. For this reason two
naive Bayes models are used for comparison: the first one allows intra-slice naive
Bayes relationships, while the second allows extra-slice relationships.

Numerical experiments for performance estimation and comparison of clas-
sifiers are implemented with 10-fold cross validation.

Numerical experiments on CTBNCs have been performed using the CTB-
NCToolkit [2], an open source Java toolkit developed by the authors to address
and solve the problem of continuous time multivariate trajectory classification.

4.1 Synthetic Data Sets

Accuracy, learning and inference time of different CTBNCs are compared on
synthetic data sets generated by sampling from models of increasing complexity.
Data sets consist of 1, 000 trajectories with average length ranging from 300
(CTNBs) to 1,400 (k = 4 CTBNCs). Analyzed model structures are CTNB,
k = 2 ACTNB, k = 2 CTBNC, k = 3 CTBNC, and k = 4 CTBNC (Fig. 3).
For each structure, different assignments of parameter values (q parameters) are
sampled in a given interval. Each pair, (structure, parameter assignments), is
used to generate a learning data set.

Performance is analysed on full data sets (100 %) and reduced data sets, i.e.
when the number and the length of trajectories are reduced to: 80 %, 60 %, 40 %,
and 20 %. Accuracy values on full data sets (100 % data sets) are summarized
in Table 1, while Fig. 4 depicts how accuracy behaves when reduced data sets
(80 %, 60 %, 40 %, 20 %) are used for learning.

DBNs are outperformed by all continuous time models, while the CLL scoring
seems to perform better, or at least to be not inferior, than the MLL scoring (see
Fig. 4(a)). Figure 4(b) shows that CLL scoring outperforms the MLL scoring on
the reduced data sets.

A Classification Based Scoring Function for CTBNCs 45

4/10

2 2 2 2 2 3 3 3 3 3 3 4 4 4 4

(a)

4/10

2

2

2

2

2 3 3 3 3 3

3

4

4

4

4

(b)

4

2

2

2

2

2

3

3 3 3 3

3

4

4

4

4

(c)

4

2

2

2

2

2

3

3

3

3

3

3

4

4

4

4

(d)

4

2

2

2

2

2

3

3

3

3

3

3

4

4

4

4

(e)
4

2

2

2

2

2

3

3

3

3

3

3

4

4

4

4

(f)

4

2

2 2

2

2 3

3

3 3

3

3 4

4

4 4

(g)

4

2 2 2 2

2

333

3 3

3 4 4

44

(h)

4

2

2 2

2

23

3

33

3

3 4

4

4

4

(i)
4

2

2 2 2

2

3 3 3

3

3 3 4

4

4 4

(j)

4

2

22 2

2

3 3

3

3

3 3

4

4 44

(k) 4

2

2

2 2

2

3 3

3

3 3

3

4

4

4

4

(l)

Fig. 3. CTNB (a), max-2 ACTNB (b,c), max-2 CTBNC (d–f), max-3 CTBNC (g–i)
and, max-4 CTBNC (j–l) tested structures. Numbers associated with nodes represent
the cardinality of the corresponding variables. White nodes are associated with classes,
while the grey tonalities of the other nodes represent the width of the interval used to
sample the q parameters.

Table 1. Classifier’s average accuracy value with respect to different categories of the
data set generating model, 10-fold cross validation over 100 % data sets. Bold characters
are associated with the best model with 95 % confidence.

k = 2 k = 2 k = 2 k = 2 k = 3 k = 3 k = 4 k = 4
Test CTNBACTNBACTNBCTBNCCTBNCCTBNCCTBNCCTBNCCTBNCDBN-DBN-

(MLL) (CLL) (MLL) (CLL) (MLL) (CLL) (MLL) (CLL) NB1 NB2

CTNB 0.95 0.95 0.93 0.93 0.92 0.93 0.82 0.93 0.64 0.80 0.81
K2ACTNB 0.78 0.89 0.92 0.76 0.92 0.76 0.85 0.76 0.72 0.62 0.63
K2CTBNC 0.68 0.84 0.86 0.85 0.86 0.85 0.76 0.85 0.60 0.48 0.50
K3CTBNC 0.49 0.65 0.63 0.66 0.63 0.79 0.75 0.79 0.64 0.32 0.33
K4CTBNC 0.64 0.74 0.79 0.69 0.79 0.76 0.94 0.79 0.90 0.40 0.40

46 D. Codecasa and F. Stella

CTNB K2ACTNB K2CTBNC K3CTBNC K4CTBNC
0.2

0.4

0.6

0.8

1

dataset models

ac
cu

ra
cy

CTNB
MLL
CLL
DBN

CTNB K2ACTNB K2CTBNC K3CTBNC K4CTBNC
10

20

30

40

50

60

dataset models

%

MLL
CLL

(a) (b)

100% 80% 60% 40% 20%
0

20

40

60

80

dataset cuts

%

MLL
CLL

100% 80% 60% 40% 20%
0

20

40

60

80

100

dataset cuts

%

CTNB

(c) (d)

Fig. 4. X-axes in Figs. 4(a,b) are associated with the models used to generate the data
sets. X-axes in Figs. 4(c,d) are associated with the percentage reduction of the data sets.
Figure 4(a) shows the comparison of the best average performances between MLL, CLL,
CTBN and DBN models. Figure 4(b) and Fig. 4(c) show the percentage of tests when
the MLL (CLL) scoring is better than the CLL (MLL) scoring with 95 % confidence,
while considering all the reduced data sets. Figure 4(d) shows the percentage of tests
in which the CTNB is better or comparable to the best continuous time model.

CLL scoring strongly outperforms MLL scoring when the amount of data is
limited (see Fig. 4(c)). This is probably due to the effectiveness of CLL scoring
to discover weak dependences between variables and thus to its tendency to add
the class variable as a parent of all nodes which are useful for the classification
task. On the contrary, when the amount of data is too low, CLL scoring tends to
overfit by learning classifiers which are too complex for the available amount of
data. In these cases, MLL scoring achieves poor accuracy, while simple models
like CTNB are the best option (see Fig. 4(d)).

To make the tests feasible DBN tests are made by using a discretization rate
that reduces the number of data rows. For this reason it is impossible to exactly
compare the time performances between continuous time classifiers and DBNs.
Nevertheless, it is clear that dealing with discrete time models requires more
computational effort than working in continuous time. Learning and inference
times are summarized in Fig. 5. Numerical experiments have been performed on
Intel(R) Xeon(R) CPU X5670 2.93 GHz, 15 Gb RAM. Inference time is almost
the same for all the continuous time classifiers (Fig. 5b), while learning time
varies across classifiers because of the different values of parent bounds (Fig. 5a).
There is not a clear relation between learning time required by MLL and CLL.
Theoretically, CLL should be more expensive to compute and should require
little additional time than MLL, but probably due to the hill climbing algorithm

A Classification Based Scoring Function for CTBNCs 47

(a) (b)

Fig. 5. Average learning (a) and inference (b) time for each model; in order: CTNB,
k = 2ACTNB-MLL, k = 2ACTNB-CLL, k = 2CTBNC-MLL, k = 2CTBNC-CLL,
k = 3CTBNC-MLL, k = 3CTBNC-CLL, k = 4CTBNC-MLL, k = 4CTBNC-CLL.
X-axis is associated with the models used to generate the data sets.

and the structures induced by CLL it happens that often learning with CLL is
faster than learning with MLL. Since CTNB does not require structural learning,
but only parameter learning, it is the fastest model to learn.

4.2 Post-stroke Rehabilitation Data Set

In [27] the authors proposed a movement recognition system to face the auto-
matic post-stroke rehabilitation problem. The idea is to provide the patient with
a system capable of recognizing movements and to inform him/her about the
correctness of the rehabilitation exercise performed. The authors focused on
upper limb post-stroke rehabilitation and provided a data set of 7 rehabilitation
exercises. For each exercise 120 multivariate trajectories are recorded by using
29 sensors working with a frequency of 30 Hz [26]. Each movement is addressed
separately as a classification problem. We focused our the attention on 2, and 6
class problems where classes are associated with the same number of trajecto-
ries. The binary problem requires to identify if the movement is correct or not,
while the 6 class problem introduces different degrees of correctness and errors
of movements.

CTBNCs performances are better or comparable to Dynamic Time Warping
(DTW) performances obtained in [27]2, even after the great simplification due
to the original state space discretization. Accuracy values achieved by almost all
CLL classifiers are better than accuracy values achieved by the corresponding
MLL classifiers (Table 2). For the 6 class classification problem, in the case where
no information about variable dependency is available (i.e. the links between
the class and the other variables), CLL always outperforms MLL. Performance
achieved by CTBNCs learned with CLL are robust with respect to the choice of
the imaginary count values, while the same does not apply to MLL.
2 DTW and Open End DTW (OE-DTW) obtained 0.99 accuracy values over the 2

class data set, while DTW obtained 0.88 and OE-DTW obtained 0.87 accuracy
values over the 6 class data set [27].

48 D. Codecasa and F. Stella

Table 2. Average accuracy for the post-stroke rehabilitation data set (10 fold CV).
Bold characters indicate the best models with 95 % confidence.

k = 2 k = 2 k = 2 k = 2 k = 3 k = 3 k = 4 k = 4
classes CTNB ACTNB ACTNB CTBNC CTBNC CTBNC CTBNC CTBNC CTBNC

(MLL) (CLL) (MLL) (CLL) (MLL) (CLL) (MLL) (CLL)

2 classes 0.98 0.97 0.99 0.87 0.85 0.87 0.92 0.87 0.95
6 classes 0.91 0.91 0.89 0.81 0.88 0.81 0.88 0.81 0.88

k = 2 ACTNB, learned with CLL scoring, implements the optimal trade-
off between the continuous time models in terms of time and accuracy. Indeed,
for both 2 and 6 class classification problems, the k = 2 ACTNB model when
learned with CLL, achieves the highest accuracy value and is the fastest to learn
because of the small number of parents.

5 Conclusions

Continuous time Bayesian network classifiers are a model that can analyze multi-
variate trajectories for classification purposes of a static variable. Before the con-
tributions in this paper only the inference algorithm was introduced. In the paper
for the first time the structural learning of CTBNCs was introduced. A condi-
tional log-likelihood scoring function has been developed to learn continuous time
Bayesian network classifiers. A learning algorithm for CTBNCs is designed by
combining conditional log-likelihood scoring with Bayesian parameter learning.
New classifier models from the class of CTBNCs have been introduced.

Numerical experiments, on synthetic and real world streaming data sets,
confirm the effectiveness of the proposed approach for CTBNCs learning. In
particular, conditional log-likelihood scoring outperforms marginal log-likelihood
scoring in terms of the accuracy achieved by CTBNCs. This behaviour becomes
more and more evident as the amount of the available streaming data becomes
scarce.

Future research directions are focused on extending CTBNCs to solve clus-
tering problems and to overcome the memoryless assumption.

Acknowledgements. The authors would like to acknowledge the many helpful sug-
gestions of the anonymous reviewers, who helped to improve the paper clarity and
quality. The authors would like to thank Project Automation S.p.A. for funding the
Ph.D. programme of Daniele Codecasa.

References

1. Barber, D., Cemgil, A.: Graphical models for time-series. IEEE Signal Process.
Mag. 27(6), 18–28 (2010)

2. Codecasa, D., Stella, F.: CTBNCToolkit: continuous time Bayesian network clas-
sifier toolkit, arXiv:1404.4893v1[cs.AI] (2014)

http://arxiv.org/abs/1404.4893v1

A Classification Based Scoring Function for CTBNCs 49

3. Codecasa, D., Stella, F.: Conditional log-likelihood for continuous time Bayesian
network classifiers. In: International Workshop NFMCP held at ECML-PKDD2013
(2013)

4. Costa, G., Manco, G., Masciari, E.: Effectively grouping trajectory streams. In:
Appice, A., Ceci, M., Loglisci, C., Manco, G., Masciari, E., Ras, Z.W. (eds.)
NFMCP 2012. LNCS (LNAI), vol. 7765, pp. 94–108. Springer, Heidelberg (2013)

5. Dacorogna, M.: An introduction to high-frequency finance. AP (2001)
6. Dean, T., Kanazawa, K.: A model for reasoning about persistence and causation.

Comput. Intell. 5(2), 142–150 (1989)
7. El-Hay, T., Friedman, N., Kupferman, R.: Gibbs sampling in factorized continuous-

time markov processes. In: McAllester, D.A., Myllym, P. (eds.) Proceedings of the
24th Conference on UAI, pp. 169–178. AUAI (2008)

8. Fan, Y., Shelton, C.: Sampling for approximate inference in continuous time
bayesian networks. In: 10th International Symposium on Artificial Intelligence and
Mathematics (2008)

9. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Mach.
Learn. 29(2), 131–163 (1997)

10. Gatti, E., Luciani, D., Stella, F.: A continuous time Bayesian network model for
cardiogenic heart failure. Flex. Serv. Manuf. J. 24(4), 496–515 (2012)

11. Grossman, D., Domingos, P.: Learning bayesian network classifiers by maximizing
conditional likelihood. In: Proceedings of the 21st International Conference on
Machine Learning, pp. 361–368. ACM (2004)

12. Gunawardana, A., Meek, C., Xu, P.: A model for temporal dependencies in event
streams. In: Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira, F., Weinberger, K.
(eds.) Advances in Neural Information Processing Systems, pp. 1962–1970. Morgan
Kaufmann, Burlington (2011)

13. Langseth, H., Nielsen, T.: Latent classification models. Mach. Learn. 59(3), 237–
265 (2005)

14. Masciari, E.: Trajectory Clustering via Effective Partitioning. In: Andreasen,
T., Yager, R.R., Bulskov, H., Christiansen, H., Larsen, H.L. (eds.) FQAS 2009.
LNCS(LNAI), vol. 5822, pp. 358–370. Springer, Heidelberg (2009)

15. Murphy, K.: The bayes net toolbox for matlab. Comput. Sci. Stat. 33(2), 1024–
1034 (2001)

16. Nanni, M., Pedreschi, D.: Time-focused clustering of trajectories of moving objects.
J. Intell. Inf. Syst. 27(3), 267–289 (2006)

17. Nodelman, U., Koller, D., Shelton, C.: Expectation propagation for continuous time
bayesian networks. In: Proceedings of the 21st Conference on UAI, pp. 431–440.
Edinburgh, Scotland, UK (July 2005)

18. Nodelman, U., Shelton, C., Koller, D.: Continuous time bayesian networks. In:
Proceedings of the 18th Conference on UAI, pp. 378–387. Morgan Kaufmann (2002)

19. Nodelman, U., Shelton, C., Koller, D.: Learning continuous time bayesian networks.
In: Proceedings of the 19th Conference on UAI, pp. 451–458 (2002)

20. Rabiner, L.: A tutorial on hidden markov models and selected applications in
speech recognition. Proc. IEEE 77(2), 257–286 (1989)

21. Rajaram, S., Graepel, T., Herbrich, R.: Poisson-networks: A model for structured
point processes. In: Proceedings of the 10th International Workshop on Artificial
Intelligence and Statistics (2005)

22. Saria, S., Nodelman, U., Koller, D.: Reasoning at the right time granularity. In:
UAI, pp. 326–334 (2007)

50 D. Codecasa and F. Stella

23. Simma, A., Goldszmidt, M., MacCormick, J., Barham, P., Black, R., Isaacs, R.,
Mortier, R.: Ct-nor: Representing and reasoning about events in continuous time.
In: Proceedings of the 24th Conference on UAI, pp. 484–493. AUAI (2008)

24. Simma, A., Jordan, M.: Modeling events with cascades of poisson processes. In:
Proceedings of the 26th Conference on UAI, pp. 546–555. AUAI (2010)

25. Stella, F., Amer, Y.: Continuous time bayesian network classifiers. J. Biomed.
Inform. 45(6), 1108–1119 (2012)

26. Tormene, P., Giorgino, T.: Upper-limb rehabilitation exercises acquired through
29 elastomer strain sensors placed on fabric. release 1.0 (2008)

27. Tormene, P., Giorgino, T., Quaglini, S., Stefanelli, M.: Matching incomplete time
series with dynamic time warping: an algorithm and an application to post-stroke
rehabilitation. Artif. Intell. Med. 45(1), 11–34 (2009)

28. Truccolo, W., Eden, U., Fellows, M., Donoghue, J., Brown, E.: A point process
framework for relating neural spiking activity to spiking history, neural ensemble,
and extrinsic covariate effects. J. Neurophysiol. 93(2), 1074–1089 (2005)

29. Voit, E.: A First Course in Systems Biology. Garland Science, New York (2012)
30. Yilmaz, A., Javed, O., Shah, M.: Object tracking: a survey. ACM Comput. Surv.

38(4), 45 (2006)
31. Zhong, S., Langseth, H., Nielsen, T.: Bayesian networks for dynamic classification.

Technical report (2012)

Trajectory Data Pattern Mining

Elio Masciari1(B), Gao Shi2, and Carlo Zaniolo2

1 ICAR-CNR, Naples, Italy
masciari@icar.cnr.it,

2 UCLA, Los Angeles, USA
{shi,zaniolo}@cs.ucla.edu

Abstract. In this paper, we study the problem of mining for frequent
trajectories, which is crucial in many application scenarios, such as
vehicle traffic management, hand-off in cellular networks, supply chain
management. We approach this problem as that of mining for frequent
sequential patterns. Our approach consists of a partitioning strategy
for incoming streams of trajectories in order to reduce the trajectory
size and represent trajectories as strings. We mine frequent trajectories
using a sliding windows approach combined with a counting algorithm
that allows us to promptly update the frequency of patterns. In order
to make counting really efficient, we represent frequent trajectories by
prime numbers, whereby the Chinese reminder theorem can then be used
to expedite the computation.

1 Introduction

In this paper, we address the problem of extracting frequent patterns from tra-
jectory data streams. Due to its many applications and technical challenges, the
problem of extracting frequent patterns has received a great deal of attention
since the time it was originally introduced for transactional data [1,12] and later
adressed for dynamic datasets in [3,13,23]. For trajectory data the problem was
studied in [9,11,26]. Trajectories are data logs recording the time and the posi-
tion of moving objects (or groups of objects) that are generated by a wide variety
of applications. Examples include GPS systems [9], supply chain management
[10], vessel classification by satellite images [20]. For instance, consider mov-
ing vehicles, such as cars or trucks where personal or vehicular mobile devices
produce a digital traces that are collected via a wireless network infrastructures.
Merchants and services can benefit from the availability of information about fre-
quent routes crossed by such vehicles. Indeed, a very peculiar type of trajectory
is represented by stock market. In this case, space information can be assumed
as a linear sequence of points whose actual values has to be evaluated w.r.t. pre-
ceding points in he sequence in order to estimate future fluctuations. Such a wide
spectrum of pervasive and ubiquitous sources and uses guarantee an increasing
availability of large amounts of data on individual trajectories, that could be
mined for crucial information. Therefore, due to the large amount of trajectory
streams generated every day, there is a need for analyzing them efficiently in

A. Appice et al. (Eds.): NFMCP 2013, LNAI 8399, pp. 51–66, 2014.
DOI: 10.1007/978-3-319-08407-7 4, c© Springer International Publishing Switzerland 2014

52 E. Masciari et al.

order to extract useful information. The challenge posed by data stream systems
and data stream mining is that, in many applications, data must be processed
continuously, either because of real time requirements or simply because the
stream is too massive for a store-now & process-later approach. However, min-
ing of data streams brings many challenges not encountered in database mining,
because of the real-time response requirement and the presence of bursty arrivals
and concept shifts (i.e., changes in the statistical properties of data). In order
to cope with such challenges, the continuous stream is often divided into win-
dows, thus reducing the size of the data that need to be stored and mined. This
allows detecting concept drifts/shifts by monitoring changes between subsequent
windows. Even so, frequent pattern mining over such large windows remains a
computationally challenging problem requiring algorithms that are faster and
lighter than those used on stored data. Thus, algorithms that make multiple
scans of the data should be avoided in favor of single-scan, incremental algo-
rithms. In particular, the technique of partitioning large windows into slides
(a.k.a. panes) to support incremental computations has proved very valuable
in DSMS [24] and will be exploited in our approach. We will also make use
of the following key observation: in real world applications there is an obvious
difference between the problem of (i) finding new association rules, and (ii) ver-
ifying the continuous validity of existing rules. In order to tame the size curse of
point-based trajectory representation, we propose to partition trajectories using
a suitable regioning strategy. Indeed, since trajectory data carry information
with a detail not often necessary in many application scenarios, we can split the
search space in regions having the suitable granularity and represent them as
simple strings. The sequence of regions (strings) define the trajectory traveled
by a given object. Regioning is a common assumption in trajectory data mining
[9,20] and in our case it is even more suitable since our goal is to extract typical
routes for moving objects as needed to answer queries such as: which are the
most used routes between Los Angeles and San Diego? thus extracting a pattern
showing every point in a single route is useless.

The partitioning step allow us to represent a trajectory as string where each
substring encodes a region, thus, our proposal for incremental mining of frequent
trajectories is based on an efficient algorithm for frequent string mining. As a
matter of fact, the extracted patterns can be profitably used in systems devoted
to traffic management, human mobility analysis and so on. Although a real-
time introduction of new association rules is neither sensible nor feasible, the
on-line verification of old rules is highly desirable for two reasons. The first
is that we need to determine immediately when old rules no longer holds to
stop them from pestering users with improper recommendations. The second is
that every window can be divided in small panes on which the search for new
frequent patters execute fast. Every pattern so discovered can then be verified
quickly. Therefore, in this paper we propose a fast algorithm, called verifier
henceforth, for verifying the frequency of previously frequent trajectories over
newly arriving windows. To this end, we use sliding windows, whereby a large
window is partitioned into smaller panes [24] and a response is returned promptly

Trajectory Data Pattern Mining 53

at the end of each slide (rather than at the end of each large window). This also
leads to a more efficient computation since the frequency of the trajectories in
the whole window can be computed incrementally by counting trajectories in
the new incoming (and old expiring) panes.

Our approach in a nutshell. As trajectories flow we partition the incoming stream
in windows, each window being partitioned in slides. In order to reduce the size
of the input trajectories we pre-process each incoming trajectory in order to
obtain a smaller representation of it as a sequence of regions. We point out that
this operation is well suited in our framework since we are not interested in
point-level movements but in trajectory shapes instead. The regioning strategy
we exploit uses PCA to better identify directions along which we should perform
a more accurate partition disregarding regions not on the principal directions.
The rationale for this assumption is that we search for frequent trajectories so
it is unlikely that regions far away from principal directions will contribute to
frequent patterns (in the following we will use frequent patterns and frequent tra-
jectories as synonym). The sequence of regions so far obtained can be represented
as a string for which we can exploit a suitable version of well known frequent
string mining algorithms that works efficiently both in terms of space and time
consumption. We initially mine the first window and store the frequent trajec-
tories mined using a tree structure. As windows flow (and thus slides for each
window) we continuously update frequency of existing patterns while searching
for new ones. This step requires an efficient method for counting (a.k.a verifica-
tion). Since trajectory data are ordered we need to take into account this feature.
We implement a novel verifier that exploits prime numbers properties in order
to encode trajectories as numbers and keeping order information, this will allow
a very fast verification since searching for the presence of a trajectory will result
in simple (inexpensive) mathematical operations.

Remark. In this paper we exploit techniques that were initially introduced in
some earlier works [27–29]. We point out that in this work we improved those
approaches in order to make them suitable for sequential pattern mining. More-
over, validity of data mining approaches rely on their experimental assessment.
In this respect the experiments we performed confirmed the validity of the pro-
posed approach.

2 Related Work

Mining trajectory data is an active research area and many interesting propos-
als exist in the literature. In [32] an algorithm for sequential pattern mining is
introduced. The algorithm TrajPattern mines patterns by a process that identi-
fies the top-k most important patterns with respect to a suitable measure called
NM. The algorithm exploits a min-max property since the well known Apriori
property no longer holds for that measure. A general formal statement for the
trajectory pattern mining is provided in [9] where trajectory pattern are char-
acterized in terms of both space (introducing the concept of regions of interest)
and time (considering the duration of movements).

54 E. Masciari et al.

Trajectory mining has been deeply investigated in recent years. In [21] tra-
jectory clustering has been explored. Clustering is performed using a two-phase
algorithm that first partitions the trajectory using the MDL principle and then
clusters the trajectory segments using a line-segment clustering algorithm. In
[25] a technique for defining and maintaining micro clusters of moving objects.
In [14] a filter-refinement approach has been used for discovering convoys in tra-
jectory databases. In particular various trajectory simplification techniques are
studied along with different query processing strategies.

In [22] a partition end detect framework is presented for trajectory outlier
detection. In particular a hybrid approach distance-based and density-based is
exploited to identify anomalies.

Also, in this paper we have borrowed many techniques from traditional fre-
quent pattern mining, both for stored and streaming data. Many algorithms
have been proposed for mining of frequent itemsets [1,15,33], but due to space
limitations we will only discuss those that are most relevant to this paper.

For instance, Pei et al. [30] and Zaki et al. [33], present efficient algorithms,
Closet and Charm, respectively, to mine closed frequent itemsets; an itemset is
closed if none of its proper supersets has the same support as it has.

Han et al. [31], introduced an efficient data structure, called fp-tree, for com-
pactly storing transactions given a minimum support threshold. Then they pro-
posed an efficient algorithm (called FP-growth) for mining an fp-tree [31].

We borrow the double-conditionalization technique from Mozafari et al. [29]
which used the so-called fp-tree data structure and the original conditionalization
idea from [31]. This situation has motivated a considerable amount of research
interest in online frequent itemsets mining as well [2,4,7]. Lee et al. [18] propose
generating k-candidate sets from (k-1)-candidate sets, i.e., without verifying their
frequency. This avoids extra passes over the data and, according to the authors,
does not result in too many additional candidate sets. Chi et al. [7] propose the
Moment algorithm for maintaining closed frequent itemsets, whereas Cats Tree
[2] and CanTree [4] support the incremental mining of frequent itemsets.

There has been also a significant amount of work on counting itemsets (rather
than finding the frequent ones). Hash-based counting methods, originally pro-
posed in Park et al. [5], are in fact used by many of the above-mentioned frequent
itemsets algorithms [1,5,33], whereas Brin et al. [6], proposed a dynamic algo-
rithm, called DIC, for efficiently counting itemsets’ frequencies.

3 Trajectory Size Reduction

For transactional data a tuple is a collection of features. Instead, a trajectory
is an ordered set (i.e., a sequence) of timestamped points. We assume a stan-
dard format for input trajectories, as defined next. Let P and T denote the
set of all possible (spatial) positions and all timestamps, respectively. A tra-
jectory Tr of length n is defined as a finite sequence s1, · · · , sn, where n ≈ 1
and each si is a pair (pi, ti) where pi ∗ P , ti ∗ T and ti < ti+1. We assume
that P and T are discrete domains; however this assumption does not affect
the validity of our approach. In order to deal with these intrinsically redundant

Trajectory Data Pattern Mining 55

data, a viable approach is to partition the space into regions in order to map
the initial locations into discrete regions labeled with a timestamped symbol.
The problem of finding a suitable partitioning for both the search space and
the actual trajectory is a core problem when dealing with spatial data. Every
technique proposed so far somehow deals with regioning and several approaches
have been proposed such as partitioning of the search space in several regions
of interest (RoI) [9] and trajectory partitioning (e.g., [21]) by using polylines.
In this section, we describe the application of Principal Component Analysis
(PCA) [16] in order to obtain a better partitioning. Indeed, PCA finds pre-
ferred directions for data being analyzed. We denote as preferred directions the
(possibly imaginary) axes where the majority of the trajectories lie. Once we
detect the preferred directions we perform a partitioning of the search space
along these directions. Many tools have been implemented for computing PCA
vectors such as [16], in our framework due to the streaming nature of data we
exploited an incremental PCA (IPCA) algorithm proposed in [16]. method based
on the idea of a singular value decomposition (SVD) updating algorithm, namely
an SVD updating-based IPCA (SVDU-IPCA) algorithm. For this SVDU-IPCA
algorithm, it has been mathematically proved that the approximation error is
bounded. The latter is a relevant feature since the quality of regioning heavily
relies on the quality of IPCA results. Due to space limitations, instead of giving a
detailed description of the mathematical steps implemented in our prototype, we
will present an illustrating (real life) example, that will show the main features
of the approach.

Example 1. Consider the set of trajectories depicted in Fig. 1(a) regarding bus
movements in the Athens metropolitan area. There are several trajectories close
to the origin of the axes so it is difficult to identify the most interesting areas
for analysis.

In order to properly assign regions we need to set a suitable level of granular-
ity by defining the initial size s of each region, i.e., its diameter. We assume for the
sake of simplicity squared regions and store the center of each region. The initial
size s (i.e. the size of regions along principal directions) of each region should
be set according to the domain being analyzed. In order to keep an intuitive
semantics for regions of interest we partition the search space into square regions
along the directions set by the eigenvalues returned by IPCA. Since the region

(a) Original Data (b) Regions defined by exploiting IPCA

Fig. 1. Trajectory Pre-Elaboration steps

56 E. Masciari et al.

granularity will affect further analysis being performed the choice of region size
s is guided by DBScan an unsupervised density based clustering algorithm. The
output of the regioning step is depicted in Fig. 1(b).

Definition 1 (Dense Regions). Let T be a set of trajectories, and XI and YI

the axes defined by IPCA, C = {C1, C2, · · · , Cn} a set of regions obtained with
density based algorithm (DBScan) laying on XI and YI , the regions defined by
Ci’s boundaries are Dense.

More in detail, we denote as dense regions the one that both lay on the prin-
cipal and belongs to a dense cluster, thus the region size is the cluster diameter.

4 Frequent Trajectories Mining

The regioning schema presented in previous section allows a compact represen-
tation of trajectories by the sequences of regions crossed by each trajectory, i.e.,
as a set of strings, where each substring encodes a region. It is straightforward to
see that this representation transforms the problem of searching frequent infor-
mation in a (huge) set of multidimensional points into the problem of searching
frequent (sub)strings in a set of strings representing trajectories. We point out
that our goal is to mine frequent trajectories tackling the “where is” problem,
i.e., we are interested in movements made by objects disregarding time infor-
mation (such as velocity). Moreover, since the number of trajectories that could
be monitored in real-life scenarios is really huge we need to work on successive
portions of the incoming stream of data called windows. Let T = {T1, · · · , Tn}
be the set of regioned trajectories to be mined belonging to the current window;
T contains several trajectories where each trajectory is a sequence of regions.
Let S = {S1, · · · , Sn} denotes the set of all possible (sub)trajectories of T . The
frequency of a (sub)trajectory Si is the number of trajectories in T that contain
Si, and is denoted as Count(Si, T). The support of Si, sup(Si, T), is defined
as its frequency divided by the total number of trajectories in T . Therefore,
0 √ sup(Si, T) √ 1 for each Si. The goal of frequent trajectories mining is to
find all such Si whose support is at least some given minimum support threshold
α. The set of frequent trajectories in T is denoted as Fα(T). We consider in this
paper frequent trajectories mining over a data stream, thus T is defined as a
sliding window W over the continuous stream. Each window either contains the
same number of trajectories (count based or physical window), or contains all
trajectories arrived in the same period of time (time-based or logical window).
T moves forward by a certain amount by adding the new slide (δ+) and drop-
ping the expired one (δ−). Therefore, the successive instances of T are shown as
W1,W2, · · · . The number of trajectories that are added to (and removed from)
each window is called its slide size. In this paper, for the purpose of simplicity,
we assume that all slides have the same size, and also each window consists of
the same number of slides. Thus, n = |W |/|S| is the number of slides (a.k.a.
panes) in each window, where |W | denotes the window size and |S| denotes the
size of the slides.

Trajectory Data Pattern Mining 57

Mining Trajectories in W. As we obtain the string representation of trajec-
tories, we focus on the string mining problem. In particular, given a set of input
strings, we want to extract the (unknown) strings that obey certain frequency
constraints. The frequent string mining problem can be formalized as follows.
Given a set T of input strings and a given frequency threshold α, find the set
SF s.t. ∀s ∗ SF , count(s, T) > α.

Many proposals have been made to tackle this problem [8,17]. We exploit in
this paper the approach presented in [17]. The algorithm works by searching for
frequent strings in different databases of strings. In our paper we do not have
different databases, we have different windows instead. We first briefly recall the
basic notions needed for the algorithm. More details can be found in [8,17].

The suffix array SA of a string s is an array of integers in the range [1..n],
which describes the lexicographic order of the n suffixes of s. The suffix array
can be computed in linear time [17]. In addition to the suffix array, we define the
inverse suffix array SA−1, which is defined forall1 √ i √ n by SA−1[SA[i]] = i.
The LCP table is an array of integers which is defined relative to the suffix
array of a string s. It stores the length of the longest common prefix of two
adjacent suffixes in the lexicographically ordered list of suffixes. The LCP table
can be calculated in O(n) from the suffix array and the inverse suffix array. The
ω-interval is the longest common prefix of the suffixes of s. The algorithm is
reported in Fig. 2 and its features can be summarized as follows.

Function extractStrings arranges the input strings in the window Wi in
a string Saux consisting of the concatenation of the strings in Wi, using #
as a separation symbol and $ as termination symbol. Functions buildSuffixes
and buildPrefixes compute respectively the suffixes and prefixes of Saux and
store them using SA and LCP variables. Function computeRelevantStrings first
computes the number of times that a string s occurs in Wi and then subtracts so
called correction terms which take care of multiple occurrences within the same
string of Wi as defined in [17]. The output frequent strings are arranged in a
tree structure that will be exploited for incremental mining purposes as will be
explained in the next section.

Method: MineFrequentStrings
Input: A window slide S of the input trajectories;
Output: A set of frequent strings SF .
Vars:
A string Saux;
A suffix array SA;
A prefix array LCP .
1: Saux = extractStrings(S);
2: SA = buildSuffixes(Saux);
3: LCP = buildPrefixes(Saux);
4: SF = computeRelevantStings(W0, SA,LCP)
5: return SF ;

Fig. 2. The frequent string mining algorithm

58 E. Masciari et al.

Incremental Mining of Frequent Trajectories. As the trajectory stream
flows we need to incrementally update the frequent trajectories pattern so far
computed (that are inserted in a Trajectory Tree (TT)). Our algorithm always
maintains a union of the frequent trajectories of all slides in the current window
W in TT , which is guaranteed to be a superset of the frequent pattern over W .
Upon arrival of a new slide and expiration of an old one, we update the true
count of each pattern in TT , by considering its frequency in both the expired
slide and the new slide. To assure that TT contains all patterns that are frequent
in at least one of the slides of the current window, we must also mine the new
slide and add its frequent patterns to TT . The difficulty is that when a new
pattern is added to TT for the first time, its true frequency in the whole window
is not known, since this pattern was not frequent in the previous n−1 slides. To
address this problem, we uses an auxiliary array (aux) for each new pattern in
the new slide. The aux array stores the frequency of a pattern in each window
starting at a particular slide in the current window. The key point is that this
counting can either be done eagerly (i.e., immediately) or lazily. Under the laziest
approach, we wait until a slide expires and then compute the frequency of such
new patterns over this slide and update the aux arrays accordingly. This saves
many additional passes through the window. The pseudo code for the algorithm
is given in Fig. 3. At the end of each slide, it outputs all patterns in TT whose
frequency at that time is ≈ αṅ|̇S|. However we may miss a few patterns due to
lack of knowledge at the time of output, but we will report them as delayed when

Method: IncrementalMaintenance
Input: A trajectory stream T .
Output: A trajectory pattern tree TT .
Vars:
A window slide S of the input trajectories;
An auxiliary array aux;
A trajectory tree TT
1: For Each New Slide Snew

2: updateFrequencies(TT, S);
3: TT = MineFrequentStrings(Snew);
4: For Each trajectory t ∈ TT ∩ TT
5: annotateLast(Snew, t);
6: For Each trajectory t ∈ TT \ TT
7: update(TT, t);
8: annotateF irst(Snew, t, t.aux);
9: For Each Expiring Slide Sexp

10: For Each trajectory t ∈ TT
11: conditionalUpdateFrequencies(Sexp, t);
12: conditionalUpdate(t.aux);
13: if t has existed since arrival of S
14: delete(t.aux);
15: if t no longer frequent in any of the current slides
16: delete(t);

Fig. 3. The incremental miner algorithm

Trajectory Data Pattern Mining 59

other slides expire. The algorithm starts when the first slide has been mined and
its frequent trajectories are stored in TT .

Herein, function updateFrequencies updates the frequencies of each pattern
in TT if it is present in S. As the new frequent patterns are mined (and stored
in TT ∈), we need to annotate the current slide for each pattern as follows: if a
given pattern t already existed in TT we annotate S as the last slide in which
t is frequent, otherwise (t is a new pattern) we annotate S as the first slide in
which t is frequent and create an auxiliary array for t and start monitoring it.
When a slide expires (denote it Sexp) we need to update the frequencies and
the auxiliary arrays of patterns belonging to TT if they were present in Sexp.
Finally, we delete auxiliary array if pattern t has existed since arrival of S and
delete t, if t is no longer frequent in any of the current slides.

A very fast verifier for trajectories. In the following, we first define the verifier
notion and propose our novel verifier for trajectories data.

Definition 2. Let T be a trajectories database, P a given set of arbitrary pat-
terns, and minfreq a given minimum frequency. A function f is called a verifier
if it takes T , P and minfreq as input and for each pattern p ∗ P returns one
of the following results: (a) p’s true frequency in T if it has occurred at least
minfreq times or otherwise; (b) reports that it has occurred less than minfreq

times (frequency not required in this case).

It is important to notice the subtle difference between verification and simple
counting. In the special case of minfreq = 0 a verifier simply counts the frequency
of all p ∗ P , but in general if minfreq > 0, the verifier can skip any pattern
whose frequency will be less than minfreq. This early pruning can be done
by the Apriori property or by visiting more than |T | − minfreq trajectories.
Also, note that verification is different (and weaker) from mining. In mining
the goal is to find all those patterns whose frequency is at least minfreq, but
verification simply verifies counts for a given set of patterns, i.e., verification does
not discover additional patterns. The challenge is to find a verification algorithm,
which is faster than both mining and counting algorithms, since the algorithm
for extracting frequent trajectories will benefit from this efficiency. In our case
the verifier needs to take into account the sequential nature of trajectories so
we need to count really fast while keeping the right order for the regions being
verified. To this end we exploit an encoding scheme for regioned trajectories
based on some peculiar features of prime numbers.

5 Encoding Paths for Efficient Counting and Querying

A great problem with trajectory sequential pattern mining is to control the expo-
nential explosion of candidate trajectory paths to be modeled because keeping
information about ordering is crucial. Indeed, our regioning step heavily reduces
the dataset size that we have to deal with. Since our approach is stream oriented
we also need to be fast while counting trajectories and (sub)paths. To this end,
prime numbers exhibit really nice features that for our goal can be summarized

60 E. Masciari et al.

in the following two theorems. They have also been exploited for similar pur-
poses for RFID tag encodings [19], but in that work the authors did not provide
a solution for paths containing cycles as we do in our framework.

Theorem 1 (The Unique Factorization Theorem). Any natural number
greater than 1 is uniquely expressed by the product of prime numbers.

As an example consider the trajectory T1 = ABC crossing three regions
A,B,C. We can assign to regions A, B and C respectively the prime numbers
3,5,7 and the position of A will be the first (pos(A) = 1), the position of B will be
the second (pos(B) = 2), and the position of C will be the third (pos(C) = 3).
Thus the resulting value for T1 (in the following we refer to it as P1) is the
product of the three prime numbers, P1 = 3 ∞ 5 ∞ 7 = 105 that has the property
that does not exist the product of any other three prime numbers that gives as
results 105.

As it is easy to see this solution allows to easily manage trajectories since
containment and frequency count can be done efficiently by simple mathematical
operations. Anyway, this solution does not allow to distinguish among ABC,
ACB, BAC, BCA, CAB, CBA, since the trajectory number (i.e., the product
result) for these trajectories is always 105. To this end we can exploit another
fundamental theorem of arithmetics.

Theorem 2 (Chinese Remainder Theorem). Suppose that n1, n2, · · · , nk

are pairwise relatively prime numbers. Then, there exists W (we refer to it as
witness) between 0 and N = n1 · n2 · · · nk solving the system of simultaneous
congruences: W%n1 = a1, W%n2 = a2, . . . , W%nk = ak

1.

Then, by Theorem 2, there exists W1 between 0 and P1 = 3∞5∞7 = 105. In our
example, the witness W1 is 52 since 52%3 = 1 = pos(A) and 52%5 = 2 = pos(B)
and 52%7 = 3 = pos(C). We can compute W1 efficiently using the extended
Euclidean algorithm. From the above properties it follows that in order to fully
encode a trajectory (i.e., keeping the region sequence) it suffices to store two
numbers, its prime number product (which we refer to as its trajectory number)
and its witness. In order to assure that no problem will arise in the encoding
phase and witness computation we assume that the first prime number we choose
for encoding is greater than the trajectory size. So for example if the trajectory
length is 3 we encode it using prime numbers 5,7,11. A devil’s advocate may
argue that multiple occurrences of the same region leading to cycles violates
the injectivity of the encoding function. To this end the following example will
clarify our strategy.

Dealing with Cycles. Consider the following trajectory T2 = ABCAD, we
have a problem while encoding region A since it appears twice, in the first and
fourth position. We need to assure that the encoding value of A is such that we
can say that both pos(A) = 1 and pos(A) = 4 hold (we do not want two separate
encoding value since the region is the same and we are interested in the order
difference). Assume that A is encoded as (41)5 (i.e., 41 on base 5, we use 5 base
1 The % is the classical modulo operation that computes the remainder of the division.

Trajectory Data Pattern Mining 61

since the trajectory length is 5) this means that A occurs in positions 1 and 4.
The decimal number associated to it is A = 21, and we chose as the encoding
for A = 23 that is the first prime number greater than 21. Now we encode the
trajectory using A = 23, B = 7, C = 11, D = 13 thus obtaining P2 = 23023
and W2 = 2137 (since the remainder we need for A is 21). As it easy to see we
are still able to properly encode even trajectories containing cycles. As a final
notice we point out that the above calculation is made really fast by exploiting
a parallel algorithm for multiplication. We do not report here the pseudo code
for the encoding step explained above due to space limitations. Finally, one may
argue that the size of prime numbers could be large, however in our case it is
bounded since the number of regions is small as confirmed by several empirical
studies [14] (always less than a hundred of regions for real life applications we
investigated).

Definition 3 (Region Encoding). Given a set R = {R1, R2, · · · , Rn} of
regions, a function enc from R to P (the positive prime numbers domain) is
a region encoding function for R.

Definition 4 (Trajectory Encoding). Let Ti = R1, R2 · · · Rn be a regioned
trajectory. A trajectory encoding (E(Ti)) is a function that associates Ti with
a pair of integer numbers ≤Pi,Wi∈ where Pi =

∏
1..n enc(Ri) is the trajectory

number and Wi is the witness for Pi.

Once we encode each trajectory as a pair E(T) we can store trajectories in
a binary search tree making the search, update and verification operations quite
efficient since at each node we store the E(T) pair. It could happen that there
exists more than one trajectory encoded with the same value P but different
witnesses. In this case, we store once the P value and the list of witnesses saving
space for pointers and for the duplicate P values. Consider the following set of
trajectories along with their encoding values (we used region encoding values:
A = 5, B = 7, C = 11, D = 13, E = 15): (ABC, ≤385, 366∈), (ACB, ≤385, 101∈),
(BCDE, ≤15015, 3214∈), (DEC, ≤2145, 872∈). ABC and ACB will have the same
P value (385) but their witnesses are W1 = 366 and W2 = 101, so we are still
able to distinguish them.

6 Experimental Results

In this section we will show the experimental results for our algorithms. We used
the GPS dataset [34] (this dataset being part of GeoLifeproject). It records a
broad range of users outdoor movements, thus, the dataset allows a severe test
for our frequent sequential pattern mining. In order to compare the effectiveness
of our approach we compared it with the T-Patterns system described in [9]. In
particular since T-Patterns does not offer streaming functionalities we compare
our system using a single large window and compare the extracted patterns w.r.t.
the regioning performed. More in detail we compare our results w.r.t. the Static
and Dynamic regioning offered by T-Patterns on window sizes of 10,000, 20,000,
50,000, 100,000.

62 E. Masciari et al.

Comparison Against Static RoI. In the following, we compare our algo-
rithm against T-Patterns with static RoI by measuring the execution times, the
number of extracted regions and the number of extracted patterns for a given
support value. Table 2(a) and (b) summarize respectively the resultsobtained on
sets of 10,000 up to 100,000 trajectories extracted for the GPS dataset with 0.5 %
and 1 % as min support value. Table 2(a) shows that when the number of input
trajectories increases the execution times linearly increases and our execution
time is lower than T-Patterns. This can be easily understood since we exploit
a really fast frequent miner. A more interesting result is the one on number of
extracted regions. As explained in previous sections, we exploit PCA and we
focus on regions along principal directions, this allow us to obtain less regions.
As a consequence having a smaller number of regions allows more patterns to be
extracted as confirmed in Table 1. The intuition behind this result is that when
considering a smaller number of regions this imply a greater number of trajec-
tories crossing those regions. The above features are confirmed by the results
reported in Table 2 for 1 % minimum support value (obviously it will change the
execution times and number of patterns while the number of extracted regions is
the same as in the to previous table). Interestingly enough, the execution times
for our algorithm slightly decrease as the min support value increases and this
is due to the advantage we get from the verification strategy.

Comparison Against Dynamic RoI. In the following, we compare our algo-
rithm against T-Patterns with dynamic RoI by measuring the execution times,
the number of extracted regions and the number of extracted patterns for a given
support value. Tables below summarize respectively the results obtained on sets
of 10,000 up to 100,000 trajectories extracted for the GPS dataset with 0.5 %
and 1 % as min support value. Also for this comparison, Table 3 shows, for 0.5 %

Table 1. Performances comparison with min support value 0.5 % against static ROI

Our Algorithm T-Patterns
Times # regions # patterns Times # regions # patterns

1.412 94 62 4.175 102 54
2.115 98 71 6.778 107 61
3.876 96 77 14.206 108 67
7.221 104 82 30.004 111 73

Table 2. Performances comparison with min support value 1 % against static ROI

Our Algorithm T-Patterns
Times # regions # patterns Times # regions # patterns

1.205 94 41 4.175 102 37
2.003 98 50 6.778 107 43
3.442 96 59 14.206 108 49
6.159 104 65 30.004 111 58

Trajectory Data Pattern Mining 63

Table 3. Performances comparison with min support value 0.5 % against dynamic RoI

Our Algorithm T-Patterns
Times # regions # patterns Times # regions # patterns

1.412 94 62 4.881 106 56
2.115 98 71 7.104 111 66
3.876 96 77 15.306 112 69
7.221 104 82 302.441 115 75

Table 4. Performances comparison with min support value 1 % against dynamic RoI

Our Algorithm T-Patterns
Times # regions # patterns Times # regions # patterns

1.205 94 41 5.002 105 40
2.003 98 50 7.423 108 46
3.442 96 59 15.974 113 53
6.159 104 65 32.558 116 60

minimum support value, that when the number of input trajectories increases
the execution times linearly increases and our execution time is better than T-
Patterns. The other improvements obtained with our algorithm have the same
rationale explained above. These features are confirmed by the results reported
in Table 4 for 1 % minimum support value.

Mining Algorithm Performances. In this section we report the results we ran
to test the performances of the proposed incremental mining algorithm for large
sliding windows. At the best of our knowledge our algorithm is the first proposal
for dealing with frequent pattern mining on trajectory streams so we do not
have a “gold” standard to compare with, however the results obtained are really
satisfactory since the running times are almost insensitive to the window size.
Indeed, some of the approaches discussed in previous section pursue the same
goal such as [3,11,13,23], so we decided to compare our results with the approach
presented in [3] (referred in the following as IMFP). We recall that the algorithm
goal is maintaining frequent trajectories over large sliding windows. Indeed, the
results shown in Table 5(a) show that the delta-maintenance based approach
presented here is scalable with respect to the window size. Finally, we report
the total number of frequent pattern as windows flow (the results shown in
Table 5(b)). They are computed using a window size of 10,000 trajectories) for a
minimum support value of 0,1 %. Indeed we report the total number of patterns
that have been frequent wether they are still frequent or not, this information
is provided to take into account the concept shift for data being monitored.
The results in Table 5(b) shows that after 200 windows being monitored the
number of patterns that resulted frequent in some window is more than doubled
this means that the users habits heavily changed during the two years period.
The results reported in Table 5(a) and (b) confirm that our performances are

64 E. Masciari et al.

Table 5. Mining algorithm results

Our Times IMFP Times Windows size
773 1,154 10,000
891 1,322 25,000

1,032 1,651 50,000
1,211 1,913 100,000
1,304 2,466 500,000
2,165 2,871 1,000,000

Window # Our Patterns # IMFP Patterns
1 85 67
10 106 92
20 125 104
50 156 121
100 189 143
200 204 158

(a) (b)

better than the ones obtained by running IMFP both in terms of running times
and patterns quality expressed as number of frequent patterns found.

7 Conclusion

In this paper we tackled the problem of frequent pattern extraction from trajec-
tory data by introducing a very fast algorithm to verify the frequency of a given
set of sequential patterns. The fast verifier has been exploited in order to solve
the sequential pattern mining problem under the realistic assumption that we
are mostly interested in the new/expiring patterns. This delta-maintenance app-
roach effectively mines very large windows with slides, which was not possible
before. In summary we have proposed an approach highly efficient, flexible, and
scalable to solve the frequent pattern mining problem on data streams with very
large windows. Our work is subject to further improvements in particular we will
investigate: (1) further improvements to the regioning strategy; (2) refining the
incremental maintenance to deal with maximum tolerance for delays between
slides.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: VLDB (1994)

2. Cheung, W., Zaiane, O.R.: Incremental mining of frequent patterns without can-
didate generation or support. In: DEAS (2003)

3. Cheung, W., Zäıane, O.R.: Incremental mining of frequent patterns without can-
didate generation or support constraint. In: IDEAS, pp. 111–116 (2003)

4. Leung, C., et al.: Cantree: A tree structure for efficient incremental mining of
frequent patterns. In: ICDM (2005)

5. Park, J.S., et al.: An effective hash-based algorithm for mining association rules.
In: SIGMOD (1995)

6. Brin, S., et al.: Dynamic itemset counting and implication rules for market basket
data. In: SIGMOD (1997)

7. Chi, Y., et al.: Moment: Maintaining closed frequent itemsets over a stream sliding
window (2004)

8. Fischer, J., Heun, V., Kramer, S.: Optimal string mining under frequency con-
straints. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS
(LNAI), vol. 4213, pp. 139–150. Springer, Heidelberg (2006)

Trajectory Data Pattern Mining 65

9. Giannotti, F., Nanni, M., Pinelli, F., Pedreschi, D.: Trajectory pattern mining. In:
KDD, pp. 330–339 (2007)

10. Gonzalez, H., Han, J., Li, X., Klabjan, D.: Warehousing and analyzing massive
RFID data sets. In: ICDE, p. 83 (2006)

11. Hai, P.N., Poncelet, P., Teisseire, M.: GeT Move: an efficient and unifying
spatio-temporal pattern mining algorithm for moving objects. In: Hollmén, J.,
Klawonn, F., Tucker, A. (eds.) IDA 2012. LNCS, vol. 7619, pp. 276–288. Springer,
Heidelberg (2012)

12. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation.
In: SIGMOD (2000)

13. Hernández-León, R., Hernández-Palancar, J., Carrasco-Ochoa, J.A., Mart́ınez-
Trinidad, J.F.: A novel incremental algorithm for frequent itemsets mining in
dynamic datasets. In: Ruiz-Shulcloper, J., Kropatsch, W.G. (eds.) CIARP 2008.
LNCS, vol. 5197, pp. 145–152. Springer, Heidelberg (2008)

14. Jeung, H., Yiu, M.L., Zhou, X., Jensen, C.S., Shen, H.T.: Discovery of convoys in
trajectory databases. PVLDB 1(1), 1068–1080 (2008)

15. Jiang, N., Gruenwald, L.: Research issues in data stream association rule mining.
SIGMOD Rec. 35(1), 14–19 (2006)

16. Jolliffe, I.T.: Principal Component Analysis. Springer Series in Statistics (2002)
17. Kügel, A., Ohlebusch, E.: A space efficient solution to the frequent string mining

problem for many databases. Data Min. Knowl. Discov. 17(1), 24–38 (2008)
18. Lee, C., Lin, C., Chen, M.: Sliding window filtering: an efficient method for incre-

mental mining on a time-variant database (2005)
19. Lee, C.-H., Chung, C.-W.: Efficient storage scheme and query processing for supply

chain management using RFID. In: SIGMOD08, pp. 291–302 (2008)
20. Lee, J.-G., Han, J., Li, X., Gonzalez, H.: TraClass: trajectory classification using

hierarchical region-based and trajectory-based clustering. PVLDB 1(1), 1081–1094
(2008)

21. Lee, J.-G., Han, J., Whang, K.-Y.: Trajectory clustering: a partition-and-group
framework. In: SIGMOD07, pp. 593–604 (2007)

22. Lee, J.-G., Han, J., Li, X.: Trajectory outlier detection: A partition-and-detect
framework. In: ICDE, pp. 140–149 (2008)

23. Leung, C.K., Khan, Q.I., Li, Z., Hoque, T.: Cantree: a canonical-order tree for
incremental frequent-pattern mining. Knowl. Inf. Syst. 11(3), 287–311 (2007)

24. Li, J., Maier, D., Tufte, K., Papadimos, V., Tucker, P.A.: No pane, no gain: efficient
evaluation of sliding-window aggregates over data streams. SIGMOD Rec. 34(1),
39–44 (2005)

25. Li, Y., Han, J., Yang, J.: Clustering moving objects. In: KDD, pp. 617–622 (2004)
26. Liu, Y., Chen, L., Pei, J., Chen, Q., Zhao, Y.: Mining frequent trajectory patterns

for activity monitoring using radio frequency tag arrays. In: PerCom, pp. 37–46
(2007)

27. Masciari, E.: Trajectory clustering via effective partitioning. In: Andreasen, T.,
Yager, R.R., Bulskov, H., Christiansen, H., Larsen, H.L. (eds.) FQAS 2009. LNCS,
vol. 5822, pp. 358–370. Springer, Heidelberg (2009)

28. Masciari, E.: Warehousing and querying trajectory data streams with error esti-
mation. In: DOLAP, pp. 113–120 (2012)

29. Mozafari, B., Thakkar, H., Zaniolo, C.: Verifying and mining frequent patterns
from large windows over data streams. In: ICDE, pp. 179–188 (2008)

30. Pei, J., Han, J., Mao, R.: CLOSET: an efficient algorithm for mining frequent
closed itemsets. In: ACM SIGMOD Workshop on Research Issues in Data Mining
and Knowledge Discovery (2000)

66 E. Masciari et al.

31. Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., Hsu, M.: Prefixs-
pan: mining sequential patterns by prefix-projected growth. In: ICDE, pp. 215–224
(2001)

32. Yang, J., Hu, M.: TrajPattern: mining sequential patterns from imprecise trajecto-
ries of mobile objects. In: Ioannidis, Y., et al. (eds.) EDBT 2006. LNCS, vol. 3896,
pp. 664–681. Springer, Heidelberg (2006)

33. Zaki, M.J., Hsiao, C.: CHARM: an efficient algorithm for closed itemset mining.
In: SDM (2002)

34. Zheng, Y., Li, Q., Chen, Y., Xie, X.: Understanding mobility based on gps data.
In: UbiComp 2008, pp. 312–321 (2008)

Process Mining to Forecast the Future
of Running Cases

Sonja Pravilovic1,2, Annalisa Appice1(B), and Donato Malerba1

1 Dipartimento di Informatica, Università degli Studi di Bari Aldo Moro,
via Orabona, 4, 70126 Bari, Italy

2 Montenegro Business School, Mediterranean University,
Vaka Djurovica b.b., Podgorica, Montenegro

{sonja.pravilovic,annalisa.appice,donato.malerba}@uniba.it

Abstract. Processes are everywhere in our daily lives. More and more
information about executions of processes are recorded in event logs by
several information systems. Process mining techniques are used to ana-
lyze historic information hidden in event logs and to provide surprising
insights for managers, system developers, auditors, and end users. While
existing process mining techniques mainly analyze full process instances
(cases), this paper extends the analysis to running cases, which have not
yet completed. For running cases, process mining can be used to notify
future events. This forecasting ability can provide insights for check
conformance and support decision making. This paper details a process
mining approach, which uses predictive clustering to equip an execu-
tion scenario with a prediction model. This model accounts for recent
events of running cases to predict the characteristics of future events. Sev-
eral tests with benchmark logs investigate the viability of the proposed
approach.

1 Introduction

Contemporary systems, ranging from high-tech and medical devices to enter-
prise information systems and e-business infrastructures, record massive amounts
of events by making processes visible. Each event has a name and additional
mandatory characteristics that include the timestamp (i.e. exact date and time
of occurrence), the lifecycle transition state (i.e. whether the event refers to a
task having been started, completed) and the resource (i.e. name of the origi-
nator having triggered the event). In addition, each event may be characterized
by further optional characteristics, such as cost, location, outcome, which are
specific for the process. Process mining techniques [10] can be used to analyze
event logs, in order to extract, modify and extend process models, as well as to
check conformance with respect to defined process models.

Thus far, several process mining techniques have been used in the discovery,
conformance and enhancement of a variety of business processes [11]. They are
mainly used in an off-line fashion and rarely for operational decision support. His-
torical full cases (i.e. instances of the process which have already completed) are

A. Appice et al. (Eds.): NFMCP 2013, LNAI 8399, pp. 67–81, 2014.
DOI: 10.1007/978-3-319-08407-7 5, c© Springer International Publishing Switzerland 2014

68 S. Pravilovic et al.

analyzed, while running cases (i.e. instances of the process which have not com-
pleted yet) are rarely processed on-line. However, a new perspective has emerged
recently. van der Aalst et al. [12] demonstrate that process mining techniques
are not necessarily limited to the past, but can also be used for the present and
the future. To make this philosophy concrete, they have already presented a set
of approaches, which can be used very well for operational decision support. In
particular, they propose to mine predictive process models from historic data,
use them to estimate both the remaining processing time and the probability of
a particular outcome for running cases [13].

Embracing this philosophy, we consider another predictive task and detail
a process mining approach to predict future events of running cases. This fore-
casting service can be used to check conformance and recommend appropriate
actions. In particular, we can check whether the observed event fits the predicted
behavior. The moment the case deviates, an appropriate actor can be alerted in
real time. Similarly, we can use predictions to notify recommendations propos-
ing/describing activity elements (e.g. resource, activity name, cost), which will
comply the process model.

In this paper, we transform the task of event forecasting for running cases into
a predictive clustering task [2], where the target variables are the characteristics
of future events expected in running cases, while the predictors are characteristics
of recent events up to a certain time window. This transformation technique is
usually known as “time delay embedding” [9] and frequently used in stream
data mining, where it is also called sliding window model [5]. Historical cases,
transformed with the Sliding Window model, can be processed off-line so that a
predictive clustering tree (PCT) [2] can be mined for the predictive aim. A PCT
is a tree structured model, which generalizes decision tree by predicting many
labels of an examples at once. In this study, it allows us to reveal in advance
characteristics of future events based on characteristics of recent time-delayed
event elements. The PCT can be used to predict on-line event elements of any
new running case.

This paper is organized as follows. Related work is discussed in Sect. 2.
Section 3 introduces some notations and revises the predictive clustering tech-
nique as well as the Sliding Window model used. Section 4 describes the
event-based forecasting approach proposed. Section 5 describes the empirical
evaluation of our approach using benchmark case studies. Section 6 concludes
the paper.

2 Related Work

A great deal of work has been done in the area of process mining in the recent
years, particularly in the field of discovering process models based on observed
events. An overview of the recent work in this domain is reported in [11]. The
most part of existing approaches focus on discovering descriptive process models
based on historic information and do not support users at run-time. However,
the predictive task has recently started to receive attention in this area.

Process Mining to Forecast the Future of Running Cases 69

The topic of the time prediction is the most related to this work. To address
this topic, Dongen et al. [4] have used the non-parametric regression, in order to
predict the remaining time until the completion of a case. van der Aalst et al.
[13] have proposed to annotate a transition system with information about the
occurrence of specific event or the time until a particular event. Dumas et al. [8]
have described a lazy-learning method for calculating log-based recommenda-
tions which account for a specific optimization goal (e.g. minimizing cycle time,
or maximizing profit). These recommendations can be used to guide the user to
select the next work item.

All methods, reported above, are tested for the prediction of the completion
time. However, methods in [8,13] can be also used to make hypotheses on the
probable name of the activity of the next event(s). In the matter of this event
prediction task, Goedertier et al. [6] have proposed to learn first-order classifi-
cation rules, in order to predict whether, given the state of a process instance, a
particular state transition can occur. Buffet et al. [3] have adapted the Bayesian
analysis, in order to label the task of a running case by accounting for the trace
of events, already observed in the case. In both methods, the prediction is made
for a single characteristic, in general, the activity name.

The approach presented in this paper differs from existing approaches since
the complex nature of events is accounted for, so that a prediction can be made
for the several characteristics of the event. A learning phase is defined, so that
an interpretable predictive process model is computed off-line. The prediction is
always made on-line according to the history-dependent behavior of the running
case and the presence of a predictive model.

3 Basics

In this section, we introduce some basic concepts to address the task of event
forecasting. We describe event logs, as well as introduce the ideas behind pre-
dictive clustering and Sliding Window model.

3.1 Event Log

The basic assumption is that the log contains information about activities exe-
cuted for specific cases of a certain process type, as well as their durations.

Definition 1 (Event, Characteristic). Let E be the event domain for a
process P. An event Δ (Δ ≈ E) is characterized by a set of mandatory char-
acteristics, that is, the event corresponds to an activity, has a timestamp which
represents date and time of occurrence, is triggered by a resource, refers to a
specific lifecycle transition state which can be started or completed. Additionally,
it can be characterized by variable process-specific optional characteristics such
as cost, location, outcome and so on. Optional characteristics may also be away
in an event.

70 S. Pravilovic et al.

Table 1. A fragment of the event log repair [11]. The symbol (*) identifies the optional
characteristics which are specific for the process.

id name timestamp resource lifecycle phone defect defect number
type* type* fixed* repairs*

1 Register 1970-01-02T12:23 System complete - - - -
1 Analyze Defect 1970-01-02T12:23 Tester3 start - - - -
1 Analyze Defect 1970-01-02T12:30 Tester3 complete T2 6 - -
1 Repair (Complex) 1970-01-02T12:31 SolverC1 start - - - -
1 Repair (Complex) 1970-01-02T12:49 SolverC1 complete - - - -
1 Test Repair 1970-01-02T12:49 Tester3 start - - - -
1 Test Repair 1970-01-02T12:55 Tester3 complete - - - -
1 Inform User 1970-01-02T13:10 System complete - - - -
1 Archive Repair 1970-01-02T13:10 System complete - - true 0

2 Register 1970-01-01T11:09 System complete - - - -
2 Analyze Defect 1970-01-01T11:09 Tester2 start - - - -
2 .
. .

An event log is a set of events. Each event in the log is linked to a particular
trace and globally unique. A trace in a log represents a process instance (e.g.
a customer order or an insurance claim) also referred to as case. Time is non-
decreasing in each case in the log.

Definition 2. A case C is a finite sequence of events e ≈ E such that each event
occurs only once (i.e. for 1 ∗ i < j ∗ |C| : Δ(i) √= Δ(j)) and time is non-decreasing
(i.e. time(Δ(i)) ∗ time(Δ(j)) . A log L is a bag of cases.

A fragment of event log is reported in Table 1. A case containing nine events
is shown. Each event has the mandatory characteristics and several optional
characteristics. We note that the value may also lack in an event for an optional
characteristic.

3.2 Predictive Clustering Trees

The task of mining predictive clustering trees is now formalized. Given

– a descriptive space X ={X1,X2, . . . Xm} spanned by m independent (or pre-
dictor) variables Xj ,

– a target space Y = {Y1, Y2, . . . , Yq} spanned by q dependent (or target) vari-
ables Yj ,

– a set T of training examples, (xi,yi) with xi ≈ X and yi ≈ Y.

Find a tree structure ρ which represents:

– A set of hierarchically organized clusters on T such that for each u ≈ T , a
sequence of clusters C1, C2, . . . , Ck exist for which u ≈ Cir and the contain-
ment relation C1 ∀ C2 ∀ . . . ∀ Ck is satisfied. Clusters C1, C2, . . . , Ck are
associated to the nodes t1, t2, . . . , tk, respectively, where each ti ≈ ρ is a direct

Process Mining to Forecast the Future of Running Cases 71

child of ti−1 ≈ ρ (j = 1, . . . , k), t1 is the root of the structure ρ and tk is a
leaf of the structure.

– A predictive piecewise function f : X ∞ Y, defined according to the hierar-
chically organized clusters. In particular,

≤u ≈ X, f(u) =
∑

ti∈leaves(τ)

D(u, ti)fti(u), (1)

where D(u, ti) =
{

1 if u ≈ Ci

0 otherwise and fti(u) is a (multi-target) prediction func-

tion associated to the leaf ti. It includes a categorical value for a discrete
attribute, a numeric value for a continuous attribute.

Clusters are identified according to both the descriptive space and the target
space X×Y. This is different from what is commonly done in predictive modeling
and classical clustering, where only one of the spaces is typically considered. This
general formulation of the problem allows us to have the prediction model mining
phase which can consider multiple target variables at once. This is the case of
predicting the “several” characteristics of the next event in a case.

The construction of a PCT is not very different from the construction of
standard decision tree (see, for example, the C4.5 algorithm [7]): at each internal
node t, a test has to be selected according to a given evaluation function. The
main difference is that for a PCT, the best test is selected by maximizing the
(inter-cluster) variance reduction over the target space Y, defined as:

δY (C,P) = VarY(C) −
∑

Ci∈P

|Ci|
|C| VarY(Ci), (2)

where C is the cluster associated with t and P defines the partition {C1, C2} of
C. The partition is defined according to a Boolean test on a predictor variable of
the descriptive space X. By maximizing the variance reduction, the cluster homo-
geneity is maximized, improving at the same time the predictive performance.
VarY(C) is the variance of Y in the cluster C. It is computed as the average of
variances of target variables Yj ≈ Y, that is, VarY(C) =

∑

Yj∈Y

varYj
(C).

3.3 Sliding Window Model

A Sliding Window model is the simplest model to consider the recent data of a
running case and run queries over the data of the recent past only. Originally
defined for data stream mining, this type of window is similar to the first-in, first-
out data structure. When the event Δi is acquired and inserted in the window,
the latest event Δi−w is discarded (see Fig. 1). w is the size of the window.

Definition 3 (Sliding Window model). Let w be the window size of the
model. A Sliding Window model views a case C as a sequence of overlapping
windows of events,

C(1 ∞ w), C(2 ∞ w + 1), . . . , C(i − w + 1 ∞ i), . . . , (3)

72 S. Pravilovic et al.

Fig. 1. Sliding Window model of a running case with window size w = 4.

where C(i − w + 1 ∞ i) is the series of the w events Δi−w+1, Δi−w+2, . . ., Δi−1,
Δi of the case C with time(Δi−j−1) ∗ time(Δi−j) (for all j = 0, . . . , w − 2).

By considering the Sliding Window model, the window C(i − w + 1 ∞ i)
defines the recent history of the event Δi.

4 Framework for PCT-based Event Forecasting

We use the Sliding Window model to transform our event-based forecasting
problem into a predictive clustering problem where the target variables are the
characteristics of the next event in the case. A PCT is learned off-line from an
event log which records full cases and used on-line to predict the next event
expected in a running case (see Fig. 2).

Let L be the event log which records full cases of a process P. In the off-line
phase, L is transformed in a training set T . This transformation is performed
by using the Sliding Window model. Let w be the window size. Each training
case C ≈ L is transformed in a bag training(C, w) of training examples. This bag
collects a training example for each event Δi of C so that the training example

Fig. 2. Event forecasting framework. In the off-line phase, the Sliding Window model
is used to transform the event forecasting task in a predictive clustering task: a PCT
is learned from historical full traces of a process. In the on-line phase, the future event
of a running case is predicted from its known past.

Process Mining to Forecast the Future of Running Cases 73

xy(C(i−w +1 ∞ i)) is generated based upon the Sliding Window history of the
event. Formally,

training(C, w) = {xy(C(i − w + 1 ∞ i))|i = 1, . . . , |C|}, (4)

where |C| denotes the length of the case C, and

T =
⋃

C∈T
training(C, w). (5)

Each characteristic of an event is transformed into a variable. The target
space Y is populated with variables originated from the newest event in the
Sliding Window, while the descriptive space X is populated with variables gen-
erated from the oldest w − 1 time-delayed events in the Sliding Window. The
window size influences the size of the descriptive space X. The longer the window
history, the higher the number of the descriptive variables considered for the pre-
dictive clustering task. The timestamp is used when generating the descriptive
space only. It is transformed into the time (in seconds) gone by the beginning of
the case. When an optional characteristic lacks in the related event, the associ-
ated variable assumes the value “none” in the training example. An example of
this Sliding Window transformation of a case is reported in Example 1.

Example 1 (Sliding Window transformation). Let us consider the case 1 of the
event log reported in Table 1. The Sliding Window transformation of this case
generates nine examples, one for each event in the case. Each timestamp is
transformed into the time (in seconds) gone by the beginning of the case. By
considering w = 3, the following training examples are generated:

none, 0,none, none, none, none, none, none, none,
(1) none, 0,none, none, none, none, none, none, none,

Register, System, complete,none, none, none, none

none, 0,none, none, none, none, none, none, none,
(2) Register, 0, System, complete,none, none, none, none,

Analyze Defect, Tester3, start, none, none, none, none

Register,0,System, complete,none, none, none, none,

(3) Analyze Defect,0,Tester3,start,none, none, none, none,
Analyze Defect, Tester3, complete, T2, 6, none, none

. . .

TestRepair, 1320, Test3, complete, none, none, none, none,
(9) Inform User, 2820, System, complete, none, none, none, none,

Active Repair, System, complete, none, none, true,0

74 S. Pravilovic et al.

Fig. 3. A fragment of PCT learned from the event log repair.

In this case, the descriptive variables are generated from the characteristics of
the oldest two (w − 1) time-delayed events, while the target variables (in italics)
are generated from the characteristics of the last event of the window.

Let ρ be the PCT learned from T . It generalizes an event-based predictive
process model for the process P (see Fig. 3). In the on-line phase, this process
model can be used to predict characteristics of the next event in each new run-
ning case of P. The prediction is that produced by traversing ρ based on the
characteristics of the past w − 1 time delayed events in the case. The selected
leaf contains predictions of characteristics for next event.

5 Empirical Study

The event forecasting framework has been implemented in Java. It supports both
the off-line (Fig. 4a) and the on-line phase (Fig. 4b) described in this paper. It
processes event logs in the XES1 format [14], that is, the XML-based standard
for event logs. The predictive clustering tree learner is CLUS2 [2].

5.1 Event Log Description

We consider the event logs recorded for four different processes3 (see details in
Table 2). These logs contain the mandatory information about activity, resource,
lifecycle and time as well as process-specific optional characteristics.

(a) Off-line learning (b) On-line prediction

Fig. 4. EventPredictor: off-line (a) and on-line (b) activity.

1 http://www.xes-standard.org/
2 http://dtai.cs.kuleuven.be/clus/
3 http://www.processmining.org/event logs and models used in book

http://www.xes-standard.org/
http://dtai.cs.kuleuven.be/clus/
http://www.processmining.org/event_logs_and_models_used_in_book

Process Mining to Forecast the Future of Running Cases 75

Table 2. Event log description.

event nr. cases nr. events case nr. target
log statistics characteristics

min max avg
length length length

reviewing 100 3730 11 92 37.3 9
repair 1104 11855 4 25 10.7 7
teleclaims 3512 46138 5 18 10.7 5
lfull 1391 7539 5 17 5.4 1

The event log reviewing handles reviews for a journal. Each paper is sent to
three different reviewers. The reviewers are invited to write a report. However,
reviewers often do not respond. As a result, it is not always possible to make a
decision after a first round of reviewing. If there are not enough reports, then
additional reviewers are invited. This process is repeated until a final decision can
be made (accept or reject). The optional characteristics are Result by Reviewer
A (accept, reject), Result by Reviewer B (accept, reject), Result by Reviewer C
(accept, reject), Result by Reviewer X (accept, reject), accepts (0, 1, 2, 3, 4, 5)
and rejects (0, 1, 2, 3, 4, 5).

The event log repair is about a process to repair telephones in a company.
The process starts by registering a telephone device sent by a customer. After
registration, the telephone is sent to the Problem Detection Department where
the defect is analyzed and classified. Once the problem is identified, the telephone
is sent to the Repair Department which has two teams: one of the team fixes
simple defects and the other fixes the complex defects. Once the repair employer
finishes, the device is sent to the quality Assurance department. If the telephone
is not repaired, it is sent again to the Repair department. Otherwise the case
is archived and the telephone is sent to the customer. The company tries to fix
a defect a limited number of times. The optional characteristics are defect type
(ten categories), phone type (three categories), defect fixed (true or false) and
number of repairs (0, 1, 2, 3).

The event log teleclaim contains an event log describing the handling of claims
in an insurance company. It consists of 3512 cases (claims) and 46138 events. The
process deals with the handling of inbound phone calls, whereby different types of
insurance claims (household, car, etc.) are lodged over the phone. The process is
supported by two separate call centers operating for two different organizational
entities. Both centers are similar in terms of incoming call volume and average
total call handling time, but different in the way call center agents are deployed.
After the initial steps in the call center, the remainder of the process is handled by
the back-office of the insurance company. It is noteworthy that this log is difficult
to mine; the alpha algorithm fails to extract the right process model [11]. The
optional characteristics are outcome (B insufficient information, S insufficient
information, not liable, processed, rejected) and location (Brisbane and Sydney).

76 S. Pravilovic et al.

The event log lfull contains an event log describing the handling of the
tickets. Events concern with the following activities: register request, examine
thoroughly, examine casually, check ticket, decide, reinitiate request, pay com-
pensation, and reject request.

5.2 Goal and Experimental Set-up

The goal of this experimental study is to investigate the performance of the
PCT-based process models. The Sliding Window transformer is compared to
the Landmark one [1], that is, a different kind of stream data model. For each
event, the Landmark goes from the starting time point of the case to the present
time. Therefore, the descriptive characteristics are aggregated on the Landmark
time. For this aggregation scope, we transform each categorical characteristic
into n numeric descriptive variable (one variable for each distinct value of the
characteristic domain). Each aggregated variable measures the frequency of the
value over the Landmark. Similarly, we transform each numeric characteristic
(such as the time) into a numeric descriptive variable that sums values in the
Landmark.

The performance of a learner is evaluated in terms of several metrics, which
include predictive accuracy, model complexity, and learning time. These perfor-
mance measures are estimated by using the 10-fold cross validation of cases in
a log and by varying the window size between two and the maximum length of
a case in the log. In particular, the accuracy is measured in terms of the classi-
fication accuracy for events of the test running cases. The model complexity is
measured in terms of the number of leaves in the learned trees. The computation
time is measured in seconds by running experiments on an Intel (R) Core(TM)
i7-2670QM CPU @ 2.20 GHz server running the Windows 7 Professional.

5.3 Results and Discussion

For each event log in this study, the predictive accuracy is plotted in Fig. 5(a–d),
the model complexity is plotted in Fig. 6(a–d), while the learning time is plotted
in Fig. 7(a–d). The predictive accuracy is averaged on the target space. The Slid-
ing Window transformer is used by varying the window size w. The analysis of
the performance of the Sliding Window transformer, as well as the comparison
between the Sliding Window transformer and the Landmark transformer deserve
several considerations. First of all, results show that, in general, the predictive
accuracy, as well as the model complexity and the learning time increase when
enlarging the size w of the Sliding Window transformer. In any case, both the
predictive accuracy and the model complexity metrics reach a (near) stable pick
when this size is greater than 6. Second, although the time spent to learn a
PCT-based process model is always below 7 s for reviewing and teleclaim cases,
4 s for repair cases, and 0.6 s for lfull cases, it grows-up continuously and linearly
with the window size. To reduce the computation effort, it is appropriate to
diminish the window size as more as possible. This study indicates that accurate
predictions can be already produced by limiting the predictive analysis on the

Process Mining to Forecast the Future of Running Cases 77

(a) reviewing (b) repair

(c) teleclaims (d) lfull

Fig. 5. The predictive accuracy averaged on the target space. The dotted vertical line
indicates the accuracy when the baseline Sliding Window size w = 6 is used.

five time-delayed past events. This recommends the choice w = 6 that, in all
logs, guarantees the trade-off between the highest predictive accuracy and the
lowest learning time cost when the Sliding Window transformer is used. In addi-
tion, we can also observe that when Sliding Window transformer is used with
w = 6 the accuracy, averaged on the target space, is always high, above 90 % for
all logs. This valuable predictive ability of the proposed approach is confirmed
by analysing the accuracy metric as it is computed for each target characteristic
individually (see Tables 4–6). Finally, the comparison between transformers sup-
ports our preference towards the Sliding Window transformer, in order to deal
with temporal-defined events. In fact, the accuracy achieved with the Sliding
Window transformer with w ∈ 6 is always better than the accuracy with the
Landmark.

Detailed accuracy results with w = 6 are reported in Tables 4–6. This finer
analysis shows that our predictive model is able to predict the majority of char-
acteristics of an event with an accuracy that is greater than 92 %. Low accuracy
is observed only when predicting resource of events of repair cases. However,
a deeper analysis of this process reveals that repair resource domain includes
the values SolverC1, SolverC2, SolverC3, SolverS1, SolverS2, SolverS3, System,
Tester1, Tester2, Tester3, Tester4, Tester5, Tester6. By grouping SolverC1,
SolverC2 and SolverC3 in a SolverC category, SolverS1, SolverS2, SolverS3 in a
SolverS category, as well as Tester1, Tester2, Tester3, Tester4, Tester5, Tester6

78 S. Pravilovic et al.

(a) reviewing (b) repair

(c) teleclaim (d) lfull

Fig. 6. The complexity of the predictive model (number of rules per model). The dotted
vertical line indicates the complexity of the model when the baseline Sliding Window
size w = 6 is used.

Table 3. reviewing.xes w = 6 (Sliding Window vs Landmark): rows 1-2 collect the
accuracy metric for each target variable; row 3 collects the p-value of the pair-wise
Wilcoxon tests comparing the accuracy of both the Sliding Window transformer and
the Landmark transformer when they are used to compute the predictive process model.

resource name lifecycle ResultA ResultB ResultC ResultX accepts rejects avg

Sliding .79 .82 1.0 .99 .99 .99 .93 .96 .96 .94

Landmark .71 . 82 .99 .98 .98 .98 .92 .92 .92 .92

p-value .0019 .4922 1 .625 .625 .9219 .3223 .0019 .00339 .0039

in a Tester category, the accuracy for predicting the resource passes from to
0.66 to 0.92. This means that the learned model is able, at least, to identify
the resource category accurately although it is not very accurate when identi-
fying the individual resource within the specific resource category. In addition,
the pair-wise Wilcoxon tests, performed to compare the accuracy of both the
Sliding Window transformer and the Landmark transformer, show that Sliding
Window based PCTs are frequently statistically better than Landmark-based
PCTs (when the hypothesis of equal performance is rejected with p-value 0.05).

Process Mining to Forecast the Future of Running Cases 79

(a) reviewing (b) repair

(c) teleclaim (d) lfull

Fig. 7. Learning time (seconds). The dotted vertical line indicates the learning time
when the baseline Sliding Window size w = 6 is used

Table 4. repair.xes, w = 6 (Sliding Window vs Landmark): rows 1-2 collect the accu-
racy metric for each target variable; row 3 collects the p-value of the pair-wise Wilcoxon
tests comparing the accuracy of both the Sliding Window transformer and the Land-
mark transformed when they are used to compute the predictive process model.

resource name lifecycle defectType phoneType defectFixed nrRepairs avg

Sliding .66 .93 .99 .92 .93 .96 .97 .91
Landmark .57 .92 .98 .91 .92 .97 .98 .89
p-value .0019 .0019 .4316 .0019 .0058 .0039 .0019 .0019

Table 5. teleclaims.xes, w = 6 (Sliding Window vs Landmark): rows 1-2 collect the
accuracy metric for each target variable; row 3 collects the p-value of the pair-wise
Wilcoxon tests comparing the accuracy of both the Sliding Window transformer and
the Landmark transformed when they are used to compute the predictive process
model.

resource name lifecycle outcome location avg

Sliding .96 .90 1.0 .97 .96 .96
Landmark .60 .89 1.0 .96 .95 .95
p-value .0273 .0019 1.0 .1602 .0273 .0019

80 S. Pravilovic et al.

Table 6. lfull.xes, w = 6 (Sliding Window vs Landmark): rows 1-2 collect the accuracy
metric for each target variable; row 3 collects the p-value of the pair-wise Wilcoxon tests
comparing the accuracy of both the Sliding Window transformer and the Landmark
transformed when they are used to compute the predictive process model.

name

Sliding .81
Landmark .76
p-value .0019

6 Conclusion

In this paper, we have focused on the application of process mining to the pre-
diction of the future of a running case. Given a running case, our prediction
allows us answering questions like “what is the activity of the next event?”,
“who is the resource triggering the next event?” and so on. We have presented
a data mining framework for event-based prediction support. The framework
uses a Sliding Window-based transformation of the event forecasting task in
a predictive clustering task. A predictive process model is learned off-line and
used to predict on-line future events. Predictions can be based on a window of
time-delayed events of a running case. In the future, we would like to extend
this study by using our predictions to check conformance of running cases and
recommend appropriate actions. We also plan to extend this study by using
alternative data stream learning schema, like the relevant event selection [15] for
training, in order to be able of selecting the most relevant older data to be taken
into account when learning the forecasting model.

Acknowledgments. This work fulfills the research objectives of the PON 02 00563 34
70993 project “VINCENTE - A Virtual collective INtelligenCe ENvironment to develop
sustainable Technology Entrepreneurship ecosystems” funded by the Italian Ministry
of University and Research (MIUR). The authors wish to thank Gianluca Giorgio and
Luca Nardulli for their support in developing the framework, anonymous reviewers of
the workshop paper for their useful suggestions to improve the manuscript.

References

1. Aggarwal, C.C. (ed.): Data Streams: Models and Algorithms. Advances in Data-
base Systems, vol. 31. Springer, Heidelberg (2007)

2. Blockeel, H., De Raedt, L., Ramon, J.: Top-down induction of clustering trees. In:
ICML 1998, pp. 55–63. Morgan Kaufmann (1998)

3. Buffett, S., Geng, L.: Using classification methods to label tasks in process mining.
J. Softw. Maint. Evol. 22(67), 497–517 (2010)

4. van Dongen, B.F., Crooy, R.A., van der Aalst, W.M.P.: Cycle time prediction:
when will this case finally be finished? In: Meersman, R., Tari, Z. (eds.) OTM
2008, Part I. LNCS, vol. 5331, pp. 319–336. Springer, Heidelberg (2008)

Process Mining to Forecast the Future of Running Cases 81

5. Gaber, M.M., Zaslavsky, A., Krishnaswamy, S.: Mining data streams: a review.
ACM SIGMOD Rec. 34(2), 18–26 (2005)

6. Goedertier, S., Martens, D., Baesens, B., Haesen, R., Vanthienen, J.: Process min-
ing as first-order classification learning on logs with negative events. In: ter Hofst-
ede, A.H.M., Benatallah, B., Paik, H.-Y. (eds.) BPM Workshops 2007. LNCS, vol.
4928, pp. 42–53. Springer, Heidelberg (2008)

7. Quinlan, R.J.: C4.5: Programs for Machine Learning. Morgan Kauffmann, San
Mateo (1993)

8. Schonenberg, H., Weber, B., van Dongen, B.F., van der Aalst, W.M.P.: Support-
ing flexible processes through recommendations based on history. In: Dumas, M.,
Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 51–66. Springer,
Heidelberg (2008)

9. Takens, F.: Detecting strange attractors in turbulence. In: Rand, D., Young, L.-S.
(eds.) Dynamical Systems and Turbulence, Warwick 1980, vol. 898, pp. 366–381.
Springer, Heidelberg (1981)

10. van der Aalst, W., et al.: Process mining manifesto. In: Daniel, F., Barkaoui, K.,
Dustdar, S. (eds.) BPM Workshops 2011, Part I. LNBIP, vol. 99, pp. 169–194.
Springer, Heidelberg (2012)

11. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement
of Business Processes. Springer, Heidelberg (2011)

12. van der Aalst, W.M.P., Pesic, M., Song, M.: Beyond process mining: from the
past to present and future. In: Pernici, B. (ed.) CAiSE 2010. LNCS, vol. 6051, pp.
38–52. Springer, Heidelberg (2010)

13. van der Aalst, W.M.P., Schonenberg, M.H., Song, M.: Time prediction based on
process mining. Inf. Syst. 36(2), 450–475 (2011)

14. Verbeek, H.M.W., Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.:
XES, XESame, and ProM 6. In: Soffer, P., Proper, E. (eds.) CAiSE Forum 2010.
LNBIP, vol. 72, pp. 60–75. Springer, Heidelberg (2011)

15. Žliobaitė, I.: Combining time and space similarity for small size learning under
concept drift. In: Rauch, J., Raś, Z.W., Berka, P., Elomaa, T. (eds.) ISMIS 2009.
LNCS, vol. 5722, pp. 412–421. Springer, Heidelberg (2009)

Classification, Clustering
and Pattern Discovery

A Hybrid Distance-Based Method
and Support Vector Machines
for Emotional Speech Detection

Vladimer Kobayashi(B)

Department of Mathematics, Physics, and Computer Science,
University of the Philippines Mindanao Mintal, Davao City, Philippines

vladimer.kobayashi@upmin.edu.ph

Abstract. We describe a novel methodology that is applicable in the
detection of emotions from speech signals. The methodology is useful
if we can safely ignore sequence information since it constructs static
feature vectors to represent a sequence of values; this is the case of the
current application. In the initial feature extraction part, the speech
signals are cut into 3 speech segments according to relative time inter-
val process. The speech segments are processed and described using 988
acoustic features. Our proposed methodology consists of two steps. The
first step constructs emotion models using principal component analysis
and it computes distances of the observations to each emotion models.
The distance values from the previous step are used to train a support
vector machine classifier that can identify the affective content of a speech
signal. We note that our method is not only applicable for speech signal,
it can also be used to analyse other data of similar nature. The proposed
method is tested using four emotional databases. Results showed com-
petitive performance yielding an average accuracy of at least 80 % on
three databases for the detection of basic types of emotion.

Keywords: Emotion recognition from speech · Support vector machines ·
Speech segment-level analysis

1 Introduction

The advent of Ubiquitous Computing research has paved the way to the devel-
opment of systems that are more accustomed and able to respond in a timely
manner according to human needs and behaviour [1,2]. Computers and other
machines have been successfully integrated to every aspect of life. To be truly
practical machines must not only “think” but also “feel” since meaningful expe-
riences are communicated through changes in affective states or emotions. At
the center of all of these is the type of data that we will handle to proceed
with the computational task. In a typical scenario we deal with data types
commonly encountered in signal processing since emotions are either overtly
expressed through voice signal or covertly through other physiological signals.

A. Appice et al. (Eds.): NFMCP 2013, LNAI 8399, pp. 85–99, 2014.
DOI: 10.1007/978-3-319-08407-7 6, c© Springer International Publishing Switzerland 2014

86 V. Kobayashi

These signals can be captured through the use of sophisticated sensors. The
challenge not only lies on the collection and pre-processing part but also on the
development of methods adapted to the type of data we wish to analyse.

During the past decade we have seen the explosion of studies that try to
extract human emotions from various physiological signals. By far the most
carefully studied signal for this purpose is the speech signal [3,4]. It is commonly
accepted that it is relatively easy for humans to identify (to a certain extent)
the emotion of another person based on the voice, although, we are still on
the process to understand how we manage to do it. There are salient features in
speech signal which we implicitly distinguish and process that enable us to detect
certain types of emotions. The central idea of many researches is to automate
the process of detecting emotions which is crucial to the creation of emotion-
aware technologies and systems [4]. For this purpose researchers have been using
techniques from machine learning to construct classifier models that can achieve
this task.

In this paper, as a first step, we also deal with speech signal. We argue that
this kind of signal is the most convenient and reasonable to deal with since in real
setting it can be easily captured. Unlike other signals such as ECG and EEG,
speech signal is not particularly troublesome to collect and can be recorded
anywhere and at any time. Also, many studies were published about speech
processing thus we can try the features proposed in those studies in this work.
The true nature of a speech signal is dynamic, a sequence of values indexed
by time, however, the approach that we follow is to represent it as a single
static feature vector. This approach is influenced by the fact that the sequence
information is not essential for emotion recognition [5].

The objective of this work is the proposal of a novel approach that extracts
emotions from speech signal. Our proposed method consisted of two steps. The
first step is the creation of emotion models and the computation of deviations
or distances of the speech signal “parts” from each of the emotion models. The
first step is reminiscent of the method called Soft Modelling of Class Analogies
(SIMCA) [6] although we do not attempt to classify the speech signals in this
step. The second step is to use the distance values computed in the previous
step to construct a classifier that can detect the over-all emotional content of a
given speech signal. In contrast with other techniques, we obtained additional
knowledge such as the importance of different variables and the degree of sep-
aration of the speech signal components from each emotion category. Another
advantage of our technique is the tremendous flexibility it offers. Among other
things, the modeller has the freedom to use different sets of features in both the
first and second steps and adjust the underlying methods to make it robust to
noise.

As primary application of our proposed approach we deal with the problem
of detecting basic common types of emotion. The emotions are of interest in the
analysis of telephone conversation and diagnosis of certain medical disorders. We
tested our approach using four emotional speech databases. The results showed
the effectiveness of our approach based from the analysis on the four databases.

A Hybrid Distance-Based Method and Support Vector Machines 87

The rest of the paper is organized as follows: Sect. 2 discusses prior works
related to this study. Section 3 provides description of the four speech databases
to which we tested our approach. Section 4 discusses the pre-processing and
the extraction of speech acoustic features. Section 5 elaborates on our proposed
approach. The results of our experiments are presented in Sect. 6. Finally, we
close the paper in Sect. 7.

2 Related Studies

The work of Bi et al. (2007) [7] made use of the technique called decision tem-
plates ensemble algorithm to combine classifiers built on segment-level feature
sets. They segmented an utterance according to relative time intervals (RTI)
scheme where an utterance is cut at fixed relative positions [8]. Features were
extracted at both segment and utterance levels. They described four strategies
to train the base classifiers depending on the feature vectors (either segment or
utterance level feature vectors) used in the training and testing phase. Using the
Berlin Database of Emotional Speech (see next part for details on the speech
datasets) the best accuracy was at 80.5 % obtained by using segment level fea-
ture vectors in the training phase and the utterance level feature vectors in the
testing phase with 3-segment length. It should be noted that in their experiments
they conducted separate analyses for male and female speakers which could have
somewhat influenced the accuracy since previous studies demonstrated that cat-
egorizing speakers according to gender could improve classification performance.

Shami and Kamel (2005) [9] also used segment-based approach to the recog-
nition of emotions in speech. In their work they combined features extracted
from both segment and utterance levels. They constructed segment classifiers
based from support vector machines (SVM) and K nearest neighbors (K -NN).
The output of the classifiers were in the form of vector of posteriori class prob-
abilities which can be thought of as degrees of membership of the segments
to each emotion classes. To obtain decision in the utterance level they proposed
aggregation techniques to combine the posterior class probabilities. For a certain
utterance, the class probabilities of its segments were combined together with
the information about the utterance itself such as duration. Simple aggregation
techniques namely mean, product, and maximum were employed to combine the
posterior probabilities from segments. The method was tested using the KISMIT
speech database which contains 1002 American English utterances obtained from
3 female speakers with 5 affective communicative intents. Affective intents were
acted and strongly expressed. The accuracy was reported at 87 % using K -NN.

In a paper of Pan et al. (2012) [10], they investigated different combinations of
features in conjunction with support vector machines that could yield maximum
detection of emotion in the Berlin Database of Emotional Speech. The study
focused on only three emotions, namely, ‘happy’, ‘sad’ and ‘neutral’. The best
combination of features were mel-frequency cepstrum coefficients (MFCCs), mel-
energy spectrum dynamic coefficients (MEDCs) and energy. The performance
using three emotion classes reached as high as 95 %.

88 V. Kobayashi

3 Speech Databases

We tested our proposed approach using four emotional speech databases. They
are described next:

The Berlin Database of Emotional Speech1 [11], also known as Berlin
EmoDB, has been used in several studies thus we can make comparisons
between our results and the previous ones. The database was constructed using
10 speakers, 5 male and 5 female, who read 10 sentences in German that have
little emotional content textually but they are read in such a way to simulate
emotions. Seven discrete emotions were considered, namely, ‘anger’, ‘boredom’,
‘disgust’, ‘fear’, ‘joy’, ‘neutral’, and ‘sadness’. The sentence utterances are of vari-
able lengths ranging from 1 to 4 s. There are a total of 535 sentence utterances
that were evaluated in a perception test.

Surrey Audio-Visual Expressed Emotion (SAVEE) database2 has been
recorded as a pre-requisite for the development of an automatic emotion recog-
nition system. The database consists of recordings from 4 male actors in 7 dif-
ferent emotions, 480 British English utterances in total. The data were recorded
in a visual media lab with high quality audio-visual equipment, processed and
labeled.

The RML emotion database3 contains 720 audiovisual emotional expres-
sion samples that were collected at Ryerson Multimedia Lab. Six basic human
emotions are expressed: ‘anger’, ‘disgust’, ‘fear’, ‘happiness’, ‘sadness’, ‘surprise’.
The RML emotion database is language and culturally background independent.
The video samples were collected from eight human subjects, speaking six differ-
ent languages (English, Mandarin, Urdu, Punjabi, Persian, Italian). Each video
clip has a length of about 3–6 s with one emotion being expressed.

The eNTERFACE’05 EMOTION Database4 is an audio-visual emo-
tion database that can be used as a reference database for testing and eval-
uating video, audio or joint audio-visual emotion recognition algorithms. The
final version of the database thus contains 42 subjects, coming from 14 different
nationalities. Among the 42 subjects, a percentage of 81 % were men, while the
remaining 19 % were women. All the experiments were driven in English.

For the four databases we considered sentence utterances as our speech sig-
nals and we only dealt with the audio aspect.

4 Pre-processing and Feature Extraction

Instead of modelling directly the sequence of values and the dynamic nature of
speech signal we took a slightly different approach. We firstly cut each speech
signal into 3 segments in the manner of relative time interval (RTI) process [8]
and we represented each segment by a single static feature vector. We found
1 http://database.syntheticspeech.de/
2 http://personal.ee.surrey.ac.uk/Personal/P.Jackson/SAVEE/
3 http://www.rml.ryerson.ca/rml-emotion-database.html
4 http://www.enterface.net/enterface05/main.php?frame=emotion

http://database.syntheticspeech.de/
http://personal.ee.surrey.ac.uk/Personal/P.Jackson/SAVEE/
http://www.rml.ryerson.ca/rml-emotion-database.html
http://www.enterface.net/enterface05/main.php?frame=emotion

A Hybrid Distance-Based Method and Support Vector Machines 89

out that dividing a speech utterance into 3 segments gives the optimal compro-
mise to balance emotional content and variability. In this part, features do not
directly describe the whole speech signal but rather they describe the individual
segments, thus a speech segment becomes our unit of analysis.

4.1 Pre-processing

The speech signals were initially preprocessed by removing the silent parts at the
beginning and end of the signals. Then they were cut into 3 non-overlapping seg-
ments. Here, we did a blind segmentation approach where no prior delimitation
of word or syllable boundary has been performed. We assumed that segments
may contain emotional primitives that contribute to the over-all emotional con-
tent of a speech signal. The segmentation as well as the subsequent extraction
of features are illustrated in Fig. 1.

4.2 Speech Acoustic Features

Here the unit of analysis is not the utterances but the segment. Thus, we
extracted segment-level features. We used the baseline feature set in the openS-
MILE/openEAR software [12]. The features set is named the “emobase” set.
The features are low level descriptors (LLD) which include Intensity, Loudness,
12 MFCC, Pitch (F0), Probability of voicing, F0 envelope, 8 LSF (Line Spectral
Frequencies), and Zero-Crossing Rate. Delta regression coefficients are calcu-
lated from the mentioned LLD and functionals such as Maximum and Minimum
values and respective relative position within input, range, arithmetic mean,

Fig. 1. Segmentation and Feature Extraction Part. An utterance is segmented into
3 non-overlapping speech segments. The features are extracted from the individual
speech segments.

90 V. Kobayashi

2 linear regression coefficients and linear and quadratic error, standard devia-
tion, skewness, kurtosis, quartile 1–3, and 3 interquartile ranges are applied both
to LLD and delta coefficients. A total of 988 features were extracted. We will no
longer delve into the details of feature extraction instead we refer the reader to
the manual of the openSMILE software for a complete description of the features.
The features discussed here are used in the first step of our proposed approach.

4.3 Feature Selection

The sheer number of features necessitate the application of feature selection
techniques to retain only the approximate essential features. The presence of
irrelevant features could add unnecessary complexity to the model and may
even adversely affect its performance. For this purpose we used the random
forest algorithm to assign importance to each feature. First we run the random
forest algorithm, next we retrieved the mean decrease in node impurity for each
feature, then we ranked the features according to the values of the mean decrease
in node impurity, and finally we apply a simplified best-first search. The best-
first search that we used mimics a grid search methodology where we started
with the top fifty features until we reached the top 500 features incremented by
10 features in each step. For each set of features we trained our classifier and
measured the performance on a test set. The feature set with the lowest average
test loss through cross validation was our final set.

5 Our Proposal

Our proposal consisted of two steps. The whole process is shown in Fig. 2. The
first step involved building models for each emotion class using SIMCA. Also
included in this step is the computation of distance measures which will quantify
the deviations of the speech frames from each emotion class. The second step
involved the construction of the second set of features by computing summary
statistics of the distance values and the training of speech signal level classifier.

5.1 Preliminaries

Let us denote an emotion category (or emotion model) as Ej , for l emotions
we have j = 1, 2, . . . , l. Remember that a speech signal (mother signal) is cut
into 3 equal sized speech segments (or simply segments). We do this because in
actual conversation speech signals come in continuous form and not per utter-
ance with clear boundaries. Furthermore, this course of action saves us from the
unnecessary computational step of identifying word or syllable boundaries to
compute the features. This makes our approach more practical since the scheme
is suitable for real-time processing and adaptable to stream analysis.

Depending on the length of the speech signal the length of each of the seg-
ments may vary. We assigned emotion labels for each of the segments during
training. Here we assume that the emotion label of a segment is the same as the

A Hybrid Distance-Based Method and Support Vector Machines 91

Fig. 2. Diagrammatic presentation of our proposed approach

emotion label of the mother signal where the segment came from. We represent
a segment as sji , which can be interpreted as segment i that has emotion label
Ej . Finally each segment is described by p (=988) features. Thus for a given
segment its static single feature vector representation is sji = (sji1, s

j
i2, . . . , s

j
ip)

T .

5.2 First Step: Construction of Emotion Models

The motivation for this step is to reveal underlying structure for each emotion
category. To achieve this task we perform Principal Component Analysis (PCA)
classes on each emotion category. This way we understand better the properties
of speech frames with respect to each emotion. Also, this stage will involve a
second feature reduction part since we want to derive a condensed set of features
that are useful to describe each group.

To obtain the emotion models, we run separate PCA on each emotion class.
After we run PCA on each class Ej we will obtain matrix of scores T j and
loadings P j . Since we run separate PCA we can now summarize each emotion
class in a different subspace model (according to the PCA models). The number
of retained principal components for each class is denoted by kj ≈ p. The
relevance of the features on each model can be assessed by examining the loadings
of the features on the extracted principal components.

Once we have the emotion models, we can now compute the deviations of each
segments to the different models. Two deviations can be defined: the orthogonal
distance (OD) and the score distance (SD).

The orthogonal distance is simply the Euclidean distance of a segment to an
emotion model in the PCA subspace. To compute the orthogonal distance of

92 V. Kobayashi

any segment s, we first compute its projection s(j) on emotion model Ej . Its
projection is given by

s(j) = s̄j + P j(P j)T (s − s̄j) (1)

where s̄j is the feature vector mean (column means) of the speech frames in
group Ej . The OD to group Ej of the segment s is defined as the norm of its
deviation from its projection, specifically,

OD(j) = ∗s − s(j)∗ (2)

On the other hand, the score distance is a robust version of the Maha-
lanobis distance measured in PCA subspace. Hence, the score distance of s is
provided by:

SD(j) =
⎡

(t(j))TJ−1t(j) =

⎢
⎣
⎣
⎤

kj⎥

a=1

(t(j)a)2

λ
(j)
a

(3)

where t(j) = (P j)T (s − s̄j) = (t(j)1 , t
(j)
2 , . . . , t

(j)
kj

)T is the score of s with respect

to the Ej group, λ
(j)
a for a = 1, 2, . . . , kj stands for the largest eigenvalues in the

Ej group, and J is the diagonal matrix of the eigenvalues. The advantage of SD
over OD is that SD uses information about the eigenvalues.

In the usual case we need to decide which of the two distances is more appro-
priate for the problem, but we opted to combine the two distances by using a
parameter γ. We first standardized the distance so that neither one of them
dominates the other in terms of magnitude. To perform the standardization we
need to apply cut-off values for each of them.

The cut-off value for the score distance, denoted by cjSD, uses the chi-square
distribution since from statistics the squared score distances follow asymptot-
ically a χ2-distribution with kj degrees of freedom if the projected observa-
tions are i.i.d and normally distributed. Thus, the cut-off value is set to cjSD =⎡

χ2
kj ;0.975

.To standardize we divide the score distances by the cut-off value cjSD.
The same analysis can be done in the case of orthogonal distance. We start

with the following information: The scaled chi-squared distribution g1χ
2
g2 approx-

imates the unknown distribution of the squared orthogonal distances. From the
information, we need to estimate the parameters g1 and g2, the estimation
is accomplished by using the method of moments. Using the Wilson-Hilferty
approximation for a chi-squared distribution the cut-off value can be derived
which also implies that the orthogonal distances to the power 2

3 are approx-
imately normally distributed with mean μ = (g1g2)

1
3 (1 − 2

9g2
) and variance

σ2 = (2g
2
3
1)/(9g

1
3
2). The estimates for μ̂ and σ̂ are calculated by means of univari-

ate MCD applied to the orthogonal distances of the training samples from group
j. The cut-off value for the orthogonal distances then equals cjOD = (μ̂+σ̂z0.975)

3
2

with z0.975 = Φ−1(0.975) the 97.5 % quantile of the Gaussian distribution. The
same with the score distance, to standardize we divide the orthogonal distances
with the cut-off value cjOD.

A Hybrid Distance-Based Method and Support Vector Machines 93

Using the standardized score and orthogonal distance we can now define a
combined distance and named it scortho distance (SCD) [6] for a given s by

SCD(j) = γ

⎦
OD(j)

cjOD

)

+ (1 − γ)

⎦
SD(j)

cjSD

)

(4)

where γ √ [0, 1]. We can also consider the square-scortho distance in the following
way

SCD2(j) = γ

⎦
OD(j)

cjOD

)2

+ (1 − γ)

⎦
SD(j)

cjSD

)2

(5)

We can optimize the results by choosing appropriate values for the parameter
γ. One suggestion is to perform cross-validation by optimizing certain criterion
like test prediction accuracy.

Another advantage of building emotion models is we can identify segments
which are markedly far from any of the models. We do this by utilizing the cut-
off values of the computed distances. Segments which computed distances are
outside the cut-off values for all the models with respect to a particular distance
are termed unrepresentative segments because purportedly they do not contain
any emotion. Another possibility is they may form an unknown group and after
detection can lead to a new knowledge about the nature of the problem we are
studying. In this paper, we are not yet going to pursue the idea of identifying
unrepresentative segments.

To summarize the first step of our proposed approach, we first build emotion
models using PCA and then proceed to the computation of the SCD (or the
square SCD). At this point, each speech frame is represented by a vector con-
sisting of its distances to each emotion models. Notationally, using the square
SCD distances, given s and we wish to identify l types of emotion, we have

s = (SCD2(1),SCD2(2), . . . ,SCD2(l)) (6)

This new representation of the speech frames will be used in the second step.

5.3 Second Step: Speech Signal Level Classifier

The new representation of the segments obtained from the previous step is aggre-
gated with respect to each speech signal. Remember that we cut the speech sig-
nals into segments so that we can proceed with the initial feature extraction.
The aggregation is made possible by computing certain functionals or summary
statistics. Suppose we have a speech signal u and the speech frames cut from it
are {s1, s2, s3}. One summary statistic that we can compute is the mean. Hence,
using the mean we can represent the speech signal u as

u = (μ1, μ2, . . . , μl) (7)

where l is the number of emotion categories and

μj =
1
3

3⎥

i=1

SCD2(j)
i (8)

94 V. Kobayashi

where, SCD2(j)
i is the distance of ith segment extracted from u to emotion model

Ej . The interpretation of the components is straightforward in this case: the μj

are the mean SCD2 of the speech frames components in u to emotion model Ej .
We can also view this as the “distance” of a speech signal from each emotion
category.

Aside from the mean, we can also use additional summary statistics like the
standard deviation or the maximum and minimum values to capture additional
information. It is important to note that if we use many statistical measures we
will be increasing the size of the vector representation of the speech signals. For
instance in the case of l emotions, if we consider two summary statistics then
the number of vector components could be equal to 2l. Thus it is imperative
to choose the right summary statistics to capture the important characteristics
of the speech signals as expressed by the deviations of their member speech
segments.

Once we have represented each speech signal u as feature vector u in the
manner we described above we can now construct a speech signal matrix U
denoted by

U =

⎜
⎜
⎜

u1

u2

...
un

⎟
⎟
⎟

(9)

where n is the total number of utterances or speech signals.
With emotion labels associated to each utterance we are now ready to train

the classifier at this step. The user has the liberty to select the classification algo-
rithm to use here. For our case, we decided to employ Support Vector Machine
(SVM) technique since it has shown competitive performance in other pattern
recognition problems [13,14]. For an in-depth discussion about the principles of
SVM we refer the reader to [15].

6 Results

All throughout the experiments we made use of the segment level features in
the first step. Initially, we have a large feature set consisting of 988 features
in total. We attempted to reduce the dimension by applying a wrapper approach
to feature selection using the importance measure generated from random forest
algorithm. We used the square SCD as our distance to measure the deviation
of each segment from the emotion models. In the second step we have aggre-
gated the distances obtained from the first step by computing the arithmetic
mean, standard deviation, minimum, maximum, range, the categories where the
minimum and maximum values could be found. A total of 41 (or 36 depending
on the number of emotion classes) derived features were included in the second
stage. Thus, each speech signal is represented by a vector of 41 (or 36) elements.
Moreover, we trained SVM classifier in the second step using the ordinary dot

A Hybrid Distance-Based Method and Support Vector Machines 95

product kernel function. As a standard practice to get reliable estimate of the
performance of each classifier we use 10 times 10-fold cross validation and com-
puted the mean accuracies for each 10-fold and also we computed the macro
F-measure. The accuracy is computed by:

Accu =
of correctly classified
total# of observations

(10)

Whereas to compute the macro F-measure we needed to compute the F-measure
for each category. F-measure of class j is computed by:

Fj = 2 ∀ Recallj ∀ Precisionj

Recallj + Precisionj
(11)

recall and precision measures are calculated using the formulas:

Recallj =
tpj

tpj + fnj
(12)

and
Precisionj =

tpj
tpj + fpj

(13)

The symbols, tp, fp, and fn stand for true positive, false positive, and false
negative, respectively. Now to compute the macro F-measure for a multi-class
classification problem we take the average among all the F-measures of the all
the classes. Thus for a l-class classification problem the macro F-measure is given
by:

MacroF =

⎛j=l
j=1 Fj

l
(14)

The macro F-measure gives an indication of the global effectiveness of the
classifier on a given data.

It is important to emphasize here that we trained the models without taking
into account the gender or age or language of speakers and the results reported
are the mean accuracies and mean macro F-measures on the speech signal level.
We trained separate models for each databases. The whole process of train and
testing is depicted in Fig. 3.

From the results shown in Table 1 we find that our approach was able to
effectively identify the emotions. Particularly our approach is superior in detect-
ing emotions “Sadness”, “Anger”, and “Surprise”. This can be explained by the
fact that the three emotions have distinctive arousal and duration characteris-
tics as expressed in the speech signal. “Sadness” is a lowly active emotion and
both “Anger” and “Surprise” are highly-active ones. “Anger” and “Surprise” are
further contrasted due to the fact that “Surprise” can be detected for shorter
duration. The case of emotions “Disgust” and “Happiness” is interesting because
they have somewhat almost the same arousal as “Anger”, nevertheless the clas-
sifier has successfully distinguished it from “Anger” many times especially in the
RML and SAVEE databases. Our method was also able to distinguish speech

96 V. Kobayashi

Fig. 3. Training and testing followed in the experiments

Table 1. Average precision and recall for each emotion categories in each database
using our proposed approach.

Database Emotion Average precision Average recall

Fear 0.778 0.778
Disgust 0.571 0.500
Happiness 0.769 0.588

Berlin EmoDB Boredom 0.929 0.867
Neutral 0.833 0.833
Sadness 0.889 0.941
Anger 0.806 0.967

Fear 0.857 0.632
Disgust 0.778 0.737

RML Happiness 0.789 0.833
Sadness 0.947 0.900
Anger 0.643 0.947
Surprise 0.944 0.810

Fear 0.600 0.500
Disgust 0.657 0.767
Happiness 0.581 0.621

eNTERFACE Sadness 0.833 0.333
Anger 0.636 0.700
Surprise 0.512 0.733

Fear 1.000 0.750
Disgust 0.778 0.875
Happiness 0.857 0.750

SAVEE Neutral 1.000 0.875
Sadness 1.000 0.750
Anger 0.667 1.000
Surprise 0.778 0.875

A Hybrid Distance-Based Method and Support Vector Machines 97

Fig. 4. Precision (a) and Recall (b) graphs for 5 emotions.

Table 2. Performance of our proposed approach on the four databases assessed using
average accuracy and average macro F-measure. We also present the baseline accuracy
obtained by classifying all speech signals to the majority class.

Database Baseline accuracy Average accuracy Average macro F-measure

Berlin EmoDB 23.7 % 82.10 % 0.799
RML 16.70 % 81.00 % 0.810
eNTERFACE 16.70 % 60.90 % 0.600
SAVEE 16.70 % 83.90 % 0.841

signals that do not contain emotion (“Neutral”). A graphical presentation of the
comparison of precision and recall among 5 emotions on the four databases is
displayed in Fig. 4. We notice that although “Anger” has high recall its precision
is relatively low since most misclassification for other emotions occurred here.

We present in Table 2 the mean accuracy and mean macro F-measures
obtained by our approach. The table confirms our claim that our method is
particularly effective. Our method reached as high as at least 80 % accuracy
except for eNTERFACE database which is particularly difficult to get even an
accuracy of 60 % [16].

Aside from the good detection rates we also obtained additional knowledge
regarding the features that are useful in the discrimination of emotions. The
information is derived from the first step of our approach. We find that although
we have used an initial set of 988 features we discovered that we can construct at
most 10 (latent) features from the PCA components and still capture the over-
all variation in each emotion model. An analysis on the loadings of the original
features to the PCA components revealed that Pitch related features and MFCCs
are the most influential in the detection of emotions, the other features just
seemed to complement them. Lastly, in Table 3 we provide information regarding
the most important features to discriminate among emotion models obtained
from the Berlin EmoDB.

98 V. Kobayashi

Table 3. Summary characteristics of each emotion models for the Berlin EmoDB.

Emotion model Most important variables

Fear MFCCs, LSP
Disgust Intensity, MFCCs
Happiness Pitch, intensity, MFCCs
Angry ntensity, loudness, MFCCs
Sadness Pitch, intensity, MFCCs

7 Summary and Conclusion

The methodology we have proposed in this paper has shown competitive perfor-
mance in the detection of basic emotion types on the four databases. Although
the results from the eNTERFACE database did not fare well with the other
databases we can still put confidence on our method because it is better than
the baseline accuracy and for this database it is notoriously difficult to achieve
an accuracy of greater than 60 %. Aside from the good classification accuracies
the methods also reveal additional knowledge regarding the features useful to
extract emotions. This knowledge is desirable if we want to understand better
the type of features useful for the discrimination of emotion classes.

Our proposed approach did not only achieve maximum detection rate for
the emotion but also it provides added information toward the understanding of
the synergy among emotions within a speech signal. By doing this, we are able
to make a detailed analysis of a speech signal by examining its speech segment
components.

Another confirmation we got in this study is the usefulness of using speech
segments as unit of our analysis. The speech segments acts as atoms of emotions
from which we can identify emotional primitives that could be used to deduce
the over-all emotion of a speech signal.

In practice, our proposed approach can be implemented relatively fast. In the
first step PCA can be run rapidly and the computation of distances is speedy. In
the second step the complexity only depends on the complexity of the classifier.
Lastly, our proposed approach offer new insights to the kind of analysis that can
be done and additional tool to analyse emotional speech database.

In our future work we will investigate further the use of other features both
in the first and second steps and other classifiers in the second step. We will also
test our method on other speech databases especially on continuous ones.

References

1. Cowie, R., Douglas-Cowie, E., Tsapatsoulis, N., Votsis, G.N., Kollias, S.D., Fellenz,
W.A., Taylor, J.G.: Emotion recognition in human-computer interaction. IEEE Sig.
Process. Mag. 18, 32–80 (2001)

A Hybrid Distance-Based Method and Support Vector Machines 99

2. Vogt, T., André, E., Wagner, J.: Automatic recognition of emotions from speech: a
review of the literature and recommendations for practical realisation. In: Peter, C.,
Beale, R. (eds.) Affect and Emotion in HCI. LNCS, vol. 4868, pp. 75–91. Springer,
Heidelberg (2008)

3. El Ayadi, M.M.H., Kamel, M.S., Karray, F.: Survey on speech emotion recognition:
features, classification schemes, and databases. Pattern Recogn. 44, 572–587 (2011)

4. Koolagudi, S.G., Rao, K.S.: Emotion recognition from speech: a review. Int. J.
Speech Technol. 15, 99–117 (2012)

5. Dileep, A.D., Veena, T., Sekhar, C.C.: A review of kernel methods based approaches
to classification and clustering of sequential patterns, part i: sequences of contin-
uous feature vectors. In: Kumar, P., Krishna, P.R., Raju, S.B. (eds.) Pattern Dis-
covery Using Sequence Data Mining: Applications and Studies. IGI Global (2012)

6. Branden, K.V., Hubert, M.: Robust classification in high dimensions based on the
SIMCA method. Chemometr. Intell. Lab. Syst. 79, 10–21 (2005)

7. Bi, F., Yang, J., Yu, Y., Xu, D.: Decision templates ensemble and diversity analysis
for segment-based speech emotion recognition. In: 2007 International Conference
on Intelligent Systems and Knowledge Engineering (ISKE 2007). Advances in Intel-
ligent Systems Research (2007)

8. Schuller, B., Rigoll, G.: Timing levels in segment-based speech emotion recogni-
tion. In: Ninth International Conference on Spoken Language Processing, INTER-
SPEECH 2006 - ICSLP, Pittsburgh, PA, USA, pp. 1818–1821. ISCA (2006)

9. Shami, M.T., Kamel, M.S.: Segment-based approach to the recognition of emotions
in speech. In: Proceedings of the 2005 IEEE International Conference on Multi-
media and Expo, ICME 2005, Amsterdam, The Netherlands, pp. 366–369. IEEE
(2005)

10. Pan, Y., Shen, P., Shen, L.: Speech emotion recognition using support vector
machine. Int. J. Smart Home 6(2), 101–108 (2012)

11. Burkhardt, F., Paeschke, A., Rolfes, M., Sendlmeier, W.F., Weiss, B.: A database of
german emotional speech. In: INTERSPEECH 2005, pp. 1517–1520. ISCA (2005)

12. Eyben, F., Wöllmer, M., Schuller, B.: Opensmile - the munich versatile and fast
open-source audio feature extractor. In: Proceedings of ACM Multimedia (MM),
Florence, Italy, pp. 1459–1462. ACM (2010)

13. Osuna, E., Freund, R., Girosi, F.: Training support vector machines: an application
to face detection. In: CVPR ’97, IEEE Computer Society, pp. 130–136 (1997)

14. Joachims, T.: Text categorization with suport vector machines: learning with many
relevant features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol.
1398, pp. 137–142. Springer, Heidelberg (1998)

15. Herbrich, R.: Learning Kernel Classifiers: Theory and Algorithms. MIT Press,
Cambridge (2001)

16. Schuller, B., Zhang, Z., Weninger, F., Rigoll, G.: Using multiple databases for
training in emotion recognition: to unite or to vote? In: 12th Annual Conference
of the International Speech Communication Association, INTERSPEECH 2011,
Florence, Italy, pp. 1553–1556. ISCA (2011)

Methods for the Efficient Discovery
of Large Item-Indexable Sequential Patterns

Rui Henriques1,2(B), Cláudia Antunes2, and Sara C. Madeira1,2

1 KDBio, Inesc-ID, Instituto Superior Técnico,
Universidade de Lisboa, Lisboa, Portugal

2 Department of Computer Science and Engineering, IST,
Universidade de Lisboa, Lisboa, Portugal

{rmch,claudia.antunes,sara.madeira}@tecnico.ulisboa.pt

Abstract. An increasingly relevant set of tasks, such as the discovery of
biclusters with order-preserving properties, can be mapped as a sequen-
tial pattern mining problem on data with item-indexable properties.
An item-indexable database, typically observed in biomedical domains,
does not allow item repetitions per sequence and is commonly dense.
Although multiple methods have been proposed for the efficient dis-
covery of sequential patterns, their performance rapidly degrades over
item-indexable databases. The target tasks for these databases benefit
from lengthy patterns and tolerate local mismatches. However, existing
methods that consider noise relaxations to increase the average short
length of sequential patterns scale poorly, aggravating the yet critical
efficiency. In this work, we first propose a new sequential pattern min-
ing method, IndexSpan, which is able to mine sequential patterns over
item-indexable databases with heightened efficiency. Second, we pro-
pose a pattern-merging procedure, MergeIndexBic, to efficiently discover
lengthy noise-tolerant sequential patterns. The superior performance of
IndexSpan and MergeIndexBic against competitive alternatives is demon-
strated on both synthetic and real datasets.

1 Introduction

Sequential pattern mining (SPM) has been proposed to deal efficiently with the
discovery of frequent precedences and co-occurrences in itemset sequences. SPM
methods can be applied to solve tasks centered on extracting order-preserving
regularities, such as the discovery of flexible (bi)clusters [14]. These tasks com-
monly rely on a more restricted form of sequences, item-indexable sequences,
which do not allow item repetitions per sequence. Illustrative examples of item-
indexable databases include sequences derived from microarrays, molecular inter-
actions, consumer ratings, ordered shoppings, tasks scheduling, among many
others. However, these tasks are characterized by two major challenges. First,
their hard nature, which is related with two factors: average high number of
items per transaction and high data density. Second, order-preserving solutions
are optimally described by lengthy noise-tolerant sequential patterns [5].

A. Appice et al. (Eds.): NFMCP 2013, LNAI 8399, pp. 100–116, 2014.
DOI: 10.1007/978-3-319-08407-7 7, c© Springer International Publishing Switzerland 2014

Methods for the Efficient Discovery 101

Although existing SPM approaches can be applied over item-indexable data-
bases, they suffer from two problems. First, they show inefficiencies due to the
commonly observed density levels and high average transaction length of these
datasets, which leads to a combinatorial explosion of sequential patterns under
low support thresholds [14]. Additionally, the few dedicated methods able to
discover sequential patterns in item-indexable databases [13,14] show significant
memory overhead.

Second, the average length of sequential patterns is typically short. A com-
mon desirable property for the tasks formulated over these databases is the
discovery of sequential patterns with a medium-to-large number of items. For
instance, order-preserving patterns from ratings and biological data are only rel-
evant above a minimum number of items. Such lengthy patterns can be discov-
ered under very low support thresholds, aggravating the yet hard computational
complexity, or by assuming local noise (violation of ordering constraints for a
few transactions). However, some of existing SPM extensions to deal with noise
relaxations have been tuned for different settings [6], while others can deteriorate
the yet critical SPM efficiency [25]. Additionally, methods to discover colossal
patterns from smaller itemsets [30] have not been extended for the SPM task.

This work proposes a new method for the efficient retrieval of lengthy
order-preserving regularities based on sequential patterns discovered over item-
indexable sequences. This is performed in two steps. First, we propose a new
method, IndexSpan, that uses efficient data structures to keep track of the posi-
tion of items per sequence and relies on fast database projections based on the
relative order of items. Pruning techniques are available when the user has only
interest in sequential patterns above a minimum length. Second, we propose an
efficient method, MergeIndexBic, to guarantee the relevance of order-preserving
regularities by deriving medium-to-large sequential patterns from multiple short
sequential patterns. MergeIndexBic uses an error threshold based on the per-
centage of shared sequences and items among sets of sequential patterns. This is
accomplished by mapping this problem in one of two tasks: discovery of maximal
circuits in graphs or multi-support frequent itemset mining.

The paper is structured as follows. Section 2 introduces and motivates the
task of mining sequential patterns over item-indexable databases, and covers
existing contributions in the field. Section 3 describes the proposed solution
based on the IndexSpan and MergeIndexBic methods. Section 4 assesses the
performance of IndexSpan on both real and synthetic datasets against SPM and
dedicated algorithms. The performance of MergeIndexBic against default alter-
natives is also validated. Finally, the implications of this work are synthesized.

2 Background

Let an item be an element from an ordered set L. An itemset I is a set of non-
repeated items, I ⊆ L. A sequence s is an ordered set of itemsets. A sequence
a = a1 · · · an is a subsequence of b = b1 · · · bm(a ⊆ b), if ∃1∈i1<···<in∈m : a1 ⊆
bi1 , . . . , an ⊆ bin

. The illustrative sequence s1 = {a}, {be} = a(be) is contained
in s2 = (ad)c(bce). A sequence database is a set of sequences D = {s1, . . . , sn}.

102 R. Henriques et al.

The coverage Φs of a sequence s w.r.t. to a set of sequences D, is the set of
all sequences in D with s as subsequence: Φs = {s∞ ∈ D | s ⊆ s∞}. The support
of a sequence s in D, denoted sups, is its coverage size |Φs|. Illustrating, consider
the sequence database D = {s1 = (bc)a(abc)d, s2 = cad(acd), s3 = a(ac)c}. For
this database, we have |L| = 4, Φ{a(ac)} = {s1, s2, s3}, and sup{a(ac)} = 3.

Given a set of sequences D and some user-specified minimum support thresh-
old θ, a sequence s ∈ D is frequent when is subsequence of at least θ sequences.
The sequential pattern mining (SPM) problem consists of computing the set
of frequent sequences, {s | sups ≥ θ}.

The set of maximal frequent sequences for the illustrative sequence database,
D = {(bc)a(abc)d, cad(acd), a(ac)c}, under θ = 3 is {a(ac), cc}.

Let an item-indexable sequence be a sequence without repeated items. An
item-indexable sequence database is a set of item-indexable sequences.

Let |I| be the length of an itemset, and |s| be the length of a sequence, Σi

∣
∣si

∣
∣.

Given a set of item-indexable sequences D, a minimum support threshold θ,
and a minimum sequence length δ. The task of SPM over item-indexable
sequences, or simply item-indexable SPM, consists of computing:

{s | sups ≥ θ ∧ |s| ≥ δ}

This formalization allows the definition of new methods prone to seize the
properties of item-indexable sequences. Understandably, the resulting sequential
patterns, referred as item-indexable sequential patterns, preserve the consistency
of item ordering constraints since they do not allow for item duplicates.

2.1 Applications

From the large set of applications of item-indexable SPM1, one prominent task
is order-preserving biclustering, a form of local clustering based on frequent
ordering constraints [5,13]. Order-preserving biclustering is commonly applied
over biological domains for the analysis of gene expression data, networks and
genomic structural variations. Illustrating, finding subsets of genes respecting
orderings on the levels of expression across conditions is critical to study frequent
variations, otherwise not discovered under the original levels of expression.

To compose an item-indexable database D from a real-value or discrete
matrix, (X,Y), where X = {s1, . . . , sn} is a set of rows and Y = {y1, . . . , ym}
is a set columns, the column indexes are linearly ordered for each transaction
according to their values. Each transaction is seen as a sequence of items that
correspond to column indexes. A bicluster, (I, J), a correlated subset of rows
I ⊂ X and columns J ⊂ Y , is order-preserving if the permutation of its columns
J is strictly increasing across the I rows. A order-preserving bicluster can be
derived from a frequent sequence s by mapping (I, J) = (Φs, {si | i = 1 · · · |s|}).
Figure 1 illustrates how order-preserving biclustering can be solved using SPM.
1 Detailed description of tasks available in

http://web.ist.utl.pt/rmch/software/indexspan.

http://web.ist.utl.pt/rmch/software/indexspan.

Methods for the Efficient Discovery 103

Fig. 1. Mining order-preserving biclusters from item-indexable databases.

An increasingly important application of item-indexable SPM for recommen-
dations based on user preferences, quality assessments and questionnaires [11].
Item-indexable sequences are derived from an ordering of ratings, such as ratings
of videos, hotels, shopped items, restaurants, among other products and expe-
riences recorded in large-scale platforms (e.g. IMDb, booking.com, Amazon).
Frequent precedences and co-occurrences disclose relevant priorities for differ-
ent groups of users. Other applications include the discovery of order-preserving
regularities in scheduling, planning, shopping, and traveling behavior [9,28].

2.2 Related Work

Two major lines of research are considered. First, we review the general SPM
methods and item-indexable dedicated methods and cover their major draw-
backs. Second, we gather the potentialities and limitations of the available alter-
natives to compose lengthy (sequential) patterns.

Efficient SPM in item-indexable databases. Although general SPM meth-
ods are not optimized to deal with item-indexable specificities, they have been
the largely adopted to solve these applications [14]. Since the SPM problem
proposal [1], multiple extensions and applications have been proposed, ranging
from scalable implementations to alternative pattern representations. Current
SPM methods can be classified into three main categories: apriori-based, pattern-
growth, and early-pruning [15]. Apriori-based algorithms [22], and vertical-based
variations [27], rely on join procedures to generate candidate sequences in a
breadth-first manner using multiple database scans. To overcome the computa-
tional complexity of maintaining the support count for each sequence generated,
the use of bitmaps or direct comparison have been proposed [3,7].

Pattern growth methods [3,17,18] avoid the costs from candidate generation
by building a representation of the database and recursively traversing it to grow
the frequent sequences. PrefixSpan [17], an efficient option, recursively constructs
patterns by growing their prefix and by maintaining their corresponding postfix
subsequences into projected databases. This guarantees a narrowed search space
and avoids the generation of candidates since it only counts the frequency of
local sequences. The major cost of PrefixSpan resides on database projections.

Early-pruning methods emerged more recently in the literature [7,20,26].
They adopt a sort of position induction to prune candidate sequences very early
in the mining process and to avoid support counting as much as possible. These

104 R. Henriques et al.

algorithms usually employ a table to track the last positions of each item in the
sequence to evaluate whether the item can be appended to a given prefix.

The drawback of these SPM alternatives is that their performance does not
scale for very low support thresholds, which are often required in item-indexable
contexts to obtain medium-to-large sequential patterns. In fact, new methods
can seize the item-indexable property, that guarantees that each item appears
at most one time per item-indexable sequence, to minimize this problem.

Seizing this property, Liu and Wang [13,14] proposed an alternative SPM
method that constructs a compact tree structure, OPC-Tree, where sequences
sharing the same prefix are gathered and recorded in the same branch. The
discovery of frequent subsequences and the association of rows with frequent
subsequences are performed simultaneously. However, the memory complexity
of OPC-Tree is Θ(n × m2), where n is the number of records and m the average
number of items per transaction. Although some pruning techniques can be
applied in the OPC-Tree structure, their impact is not sufficient to turn this
approach scalable for medium-to-large databases.

Discovery of Lengthy (Sequential) Patterns. The existing attempts for the
discovery of lengthy patterns can be synthesized according to four major direc-
tions. First direction is to rely on efficient methods able to discover sequential
patterns under very low support thresholds. There are two main classes of such
methods. First class incorporates look-ahead heuristics, such as the ones used
by MaxMiner [4], to avoid the traversal of every frequent sequence [12]. Second
class generates patterns by reducing large candidates using the monotocity prop-
erty of frequency (if an itemset is frequent, then its subsets are also frequent).
Constraint programming methods can make good use of monotonic constraints
to effectively reduce the search space [19]. However, under very low support
thresholds, there are two structural problems. First, there is a high probability
of discovering precedences and co-occurrences by chance due to the small set of
supporting transactions. Second, the increase of length in the number of items
comes at the cost of an heightened decrease in the number of supporting trans-
actions. This does not support the final goal since the size of order-preserving
regularities is defined by the length of both item and transaction sets (as previ-
ously illustrated in Fig. 1). To overcome this drawback, the remaining directions
allow for noisy patterns to increase their length without a significant decrease of
support levels. These directions assume a tolerance of item mismatches observed
for small subsets of the supporting transactions.

Second direction is to extend SPM to discover sequential patterns with local
mismatches and gap-based relaxations [2,6,25,29]. However, such extensions
either: assume the presence of very long sequences for the creation of partitions,
or increase the computational complexity of the original methods, limiting even
more the discovery sequential patterns in useful time.

Third direction is to rely on approximative pattern mining under specific
principle for composing lengthy patterns [8]. In particular, colossal pattern min-
ing relies on the approximative fusion of smaller patterns [30]. However, these

Methods for the Efficient Discovery 105

principles have been synthesized in the context of frequent itemset mining and,
to our knowledge, have not yet been extended for sequential pattern mining.

Final direction is to view patterns as biclusters and rely on dedicated biclus-
tering merging strategies [21]. The need for merging biclusters is based on the
observation that when two biclusters share a significant area it is probable that
they are part of a larger coherent bicluster. The simplest criterion for merging is
to rely on the overlapping area (as a percentage of the larger bicluster). Never-
theless, the existing approaches require the computation of similarities between
all pairs of biclusters. Understandably, this solution is impracticable for solutions
characterized by a large number of biclusters (sequential patterns).

3 Solution

The proposed solution is defined by two major methods. First, IndexSpan method
for the efficient discovery of sequential patterns over dense item-indexable data-
bases. Second, MergeIndexBic method to consider relaxations that allow local
ordering violations to compose larger and noise-tolerant sequential patterns.

3.1 IndexSpan: Boosting Item-Indexable SPM

To avoid the drawbacks of existing approaches, we propose the IndexSpan
method, an extension of PrefixSpan to discover sequential patterns with height-
ened efficiency from item-indexable databases. Comparison of existing SPM algo-
rithms [15] shows key heuristics to turn the SPM efficient: mechanisms to reduce
the support counting; narrowing of the search space; optimally sized data struc-
ture representations of the sequence database; and early pruning of candidate
sequences. Seizing these properties, IndexSpan guarantees a search space as small
as possible and relies on a narrow search procedure, depth-first search.

IndexSpan extends PrefixSpan [17] in order to incorporate additional effi-
ciency gains from three principles. First, IndexSpan relies on an easily indexable
and compacted version of the original sequence database. Second, it uses faster
and memory-efficient database projections. A projected database only maintains
a list with the IDs of the active sequences. Finally, IndexSpan relies on early-
pruning techniques. IndexSpan is described in Algorithm 1.

IndexSpan considers the three following structural adaptations over the Pre-
fixSpan algorithm. First, it maintains a simple matrix in memory that maintains
the index of each item per row. This matrix is constructed at the very begin-
ning (lines 2–5) and the original database is removed. Additionally, for sparse
databases, this matrix is replaced by a vector of hash tables to optimize memory
usage. These data structures support position induction. The idea behind is sim-
ple: if an item’s last/start position precedes the current prefix/postfix position,
the item can no longer appear before/after the current prefix.

Second, a projected database can be constructed with heightened efficiency
by avoiding the need to update and maintain postfixes. A projected database
simply maintains the identifiers of the supporting sequences for a specific prefix.

106 R. Henriques et al.

To know if a sequence is still frequent when an item is added over a specific
prefix, there is only the need to compare its index against the index of the
previous item as well as their lexical order for the case where the index is the
same (i.e. the new item co-occurs with the last items of the pattern). In this way,
database projections, the most expensive step of PrefixSpan both in terms of time
and memory, are handled with heightened efficiency. The proposed projection
method is described in Algorithm 1, lines 12–19 and 28–37.

Finally, the input minimum number of items per sequential pattern, δ, can
be used to prune the search as early as possible. If the number of items of the
current prefix (|α|) plus the items of a postfix sα (computed based on the current
and last index positions) is less than δ, then the sequence identifier related with

Algorithm 1. IndexSpan
Input: sequence database D, minimum support θ, minimum sequence length δ
Output: set of sequential patterns S
Note: α is a sequence, Dα is the α-projected database

(Dα simply maintains a reference to the current sequences)

1 mainMethod() begin
2 foreach sequence s in D /*add array of item indexes per sequence*/ do
3 foreach item c do
4 s.indexes[c] ∗ position(s,c);

5 α.items ∗ φ; α.trans ∗ φ;
6 indexSpan(α,D);

7 indexSpan(α,Dα) begin
8 foreach frequent item c in Dα do
9 β.items ∗ α.items ℵ c;//co-occurrence (c is added to the last α itemset)

10 γ.items ∗ α.items · c;//α precedes c (c is inserted as a new itemset)

11 //pruning and fast gathering of sup. transactions (for efficient data projection)
12 foreach sequence s in Dα do
13 currentIndex ∗ s.indexes[c];
14 upperIndex ∗ s.indexes[αn]/*αn is the last item*/ ;
15 if leftPositions(currentIndex)≥δ-|α| /*pruning*/ then
16 if currentIndex > upperIndex then
17 γ.trans ∗ γ.trans ℵ s.ID;
18 else
19 if currentIndex=upperIndex ∧ c>αn then β.trans ∗ β.transℵs.ID;

20 if supβ(Dα) ≥ θ then
21 S ∗ S ℵ {β};
22 Dβ ∗ fastProjection(β,Dα);
23 indexSpan(β,Dβ);

24 if supγ(Dα) ≥ θ then
25 S ∗ S ℵ {γ};
26 Dγ ∗ fastProjection(γ,Dα);
27 indexSpan(γ,Dγ);

28 fastProjection(β,Dα) begin
29 foreach sequence s in Dα do
30 currentIndex ∗ s.indexes[βn];
31 upperIndex ∗ s.indexes[βn−1];
32 if leftPositions(currentIndex)≥δ-|α| /*pruning*/ then
33 if currentIndex > upperIndex then
34 Dβ ∗ Dβ ℵ s;
35 else
36 if currentIndex=upperIndex ∧ c > αn then Dβ ∗ Dβ ℵ s;

37 return Dβ ;

Methods for the Efficient Discovery 107

the sα postfix can be removed from the projected database since all the patterns
supported by s will have a number of items below the inputted threshold.

For an optimal pruning, this assessment is performed before item indexes
comparisons, which occurs in two distinct moments during the prefixSpan recur-
sion (Algorithm 1 lines 15 and 32).

The efficiency gains from fast database projections and early pruning tech-
niques, combine with the absence of memory overhead, turn IndexSpan highly
attractive in comparison with the OPC-Tree peer method.

3.2 MergeIndexBic: Composing Large Item-Indexable Patterns

In real-world contexts, an ordering permutation observed among a set items
can be violated for specific transactions due to the presence of noise. This can
either result in a sequential pattern with a reduced set of transactions or items
(if this violation turns the original sequence infrequent). In these scenarios, it is
desirable to allow some of these violations. Four directions to accomplish this goal
were covered in Sect 2.2, with two directions being limited with regards to their
outcome and the other two directions with regards to their levels of efficiency.
In this section, we propose MergeIndexBic, which makes available two efficient
methods to compose lengthy sequential patterns based on merging procedures.

Merging procedures have been applied over sets of biclusters by computing
the similarities (overlapping degree) between all pairs of biclusters. Remind that
a sequential pattern s can be viewed as a bicluster (I, J), by mapping the sup-
porting transactions Φs as the I rows and the pattern items as the J columns.
In this context, merging occurs when a set of biclusters (Ik, Jk) has an overlap-
ping area above a minimum threshold, meaning that a new bicluster (I ∞, J ∞) is
composed with I ∞ = ∪kIk and J ∞ = ∪kJk. This new bicluster can be mapped
back as a sequential pattern, for order-preserving tasks where biclustering is not
the ultimate goal. This strategy is reliable as it considers both the set of shared
items and the set of shared transactions to perform the merging step, leading
to an effective identification and allowance of local ordering violations. A global
view of this step is provided in Fig. 2, where three larger biclusters are derived
from subsets of biclusters satisfying the minimum overlapping constraint.

In this illustration, three major steps are considering: (1) mapping sequential
patterns as sets of rows and columns; (2) discovering candidates for merging;
and (3) recovering the new sequential patterns. In particular, we consider the
overlapping criteria for the discovery of merging candidates to be the shared
percentage of the larger bicluster. When multiple biclusters have overlapping
areas, two criteria can be consider: to merge all rows and columns if all pairs
of biclusters satisfy the considered overlapping criterion (relaxed setting) and to
merge all rows and columns by comparing the shared area among all with the
area of the larger bicluster (restrictive setting). We propose two procedures to
efficiently deal with the merging of biclusters, one for each setting.

108 R. Henriques et al.

Fig. 2. Composing lengthy sequential patterns from smaller patterns by merging biclus-
ters: considering the influence of both the set of items and the set of transactions.

Maximal Circuits. The first proposed procedure, MergeCycle, is the combi-
nation of a graph search method with several heuristics to guide the search
space exploration. Consider μ to be the overlapping degree between two biclus-
ters. Since the overlapping degree is typically defined as the number of shared
elements by the larger bicluster, heuristics can be defined assuming that biclus-
ter are order by size. Consider two biclusters: a larger bicluster, (I, J), and
a smaller bicluster (I ∞, J ∞). If they do not satisfy |I ∞| × |J ∞| ≤ μ |I| × |J |, we
do not need to compute their similarity, neither to compute the similarity for
smaller biclusters than (I ∞, J ∞). This is the first heuristic for pruning the search
space. Second heuristic is to further prune the space by computing similarities
along one dimension only. Pairs of biclusters not satisfying either |I ∩ I ∞| ≥ μ |I|
or |J ∩ J ∞| ≥ μ |J | can be removed without computing the similarities for the
remaining dimension. The chosen dimension is the one with average lower size
among biclusters.

After computing the pairs of biclusters satisfying the overlapping threshold, a
new procedure needs to be applied to verify the availability of larger candidates.
Illustrating, if (B1, B2), (B1, B3) and (B2, B3) are candidates for merging, then
(B1, B2, B3) is also a candidate. For this step, we map the candidate pairs of
biclusters as an unweighted undirected graph, where the nodes are the biclusters
and their links are given by the pairs. Under this formulation, the larger candi-
dates for merging are edge-disjoint cyclic subgraphs (or circuits). This procedure
is illustrated in Fig. 3, where the cycles in the graph composed of candidate pairs
are used to derive the three larger biclusters identified in Fig. 2.

Multi-support FIM. The second proposed merging procedure, MergeFIM,
maps the task of merging biclusters as an adapted frequent itemset mining
task. Let the elements of the original matrix be the available transactions,
and the biclusters be the available items. Recovering the illustrative case pre-
sented in Fig. 2, the (x2, y2) transaction would now have three items assigned,
{B1, B2, B3}. In this context, the support represents the number of shared ele-
ments for a specific set of biclusters (itemset). Understandably, for this scenario,

Methods for the Efficient Discovery 109

Fig. 3. MergeCycle: computing merging candidates from pair candidates as a search
for edge-disjoint cycles in graphs of biclusters.

we cannot rely on a general minimum support threshold, as the minimum num-
ber of shared elements to find a candidate for merging depends on the size of the
larger bicluster. For this reason, the items (biclusters) are ordered by descending
order of their size. When verifying if an itemset is frequent, instead of comparing
its support with a minimum support threshold, the support is compared with
the minimum support of the larger bicluster (μ |I|× |J |) that corresponds to the
first item (1-length prefix) of the itemset. In this way, no computational com-
plexity is added, and we guarantee that the output itemsets correspond to sets
of biclusters that are candidates for merging.

This procedure follows three major steps. The first step is to create a min-
imal itemset database. Empty transactions are removed and transactions with
one item can be pruned for further efficiency gains. Similarly to MergeCycle pro-
cedure, MergeFIM can also rely on the proposed heuristics to reduce the search
space in order to produce the pairwise similarities. In this case, transactions with
two items can be removed, and an Apriori-based method can be applied with
the already 2-length itemsets derived from valid pairs of biclusters.

The second step is to run the adapted frequent itemset mining task using
closed itemset representations. As previously described, such adaptation allows
to replace the general notion of minimum by an indexable support based on the
size of larger bicluster in the context of an itemset. Note that by using closed
representation we avoid subsets of items with the same number of transactions.
This means that the output of the mining task is precisely the set of merging
procedures that are required.

The final step is to compose the new biclusters and, optionally, to derive
the respective sequential patterns when required. This procedure is illustrated
in Fig. 4, and it follows the illustrative case introduced in Fig. 2. The efficiency
of this procedure is based on the observation that the mapped itemset databases
tend to be highly sparse.

Fig. 4. MergeFIM: computing merging candidates as a frequent itemset mining task.

110 R. Henriques et al.

4 Results and Discussion

This section evaluates the performance of IndexSpan and MergeIndexBic against
competitive alternatives on synthetic and real datasets. IndexSpan and MergeIn-
dexBic were implemented in Java (JVM version 1.6.0-24)2. We adopted PrefixS-
pan3, still considered a state-of-the-art SPM method, and the OPC-Tree method
[13] as the bases of comparison. The experiments were computed using an Intel
Core i5 2.30 GHz with 6 GB of RAM.

4.1 Synthetic Datasets

The generated experimental settings are described in Table 1. First, we created
dense datasets (each item occurs in every sequence) by generating matrices
up to 2.000 rows and 100 columns. Each sequence is derived from the order-
ing of column indexes for a specific row according to the generated values, as
illustrated in Fig. 1 from Sect. 2. Understandably, each of the resulting item-
indexable sequences contains all the items (or column indexes), which leads to
a highly dense dataset. Sequential patterns were planted in these matrices by
maintaining the order of values across a subset of columns for a subset of rows.
The number and shape of the planted sequential patterns were also varied. For
each setting we instantiated 6 matrices: 3 matrices with a background of random
values, and 3 matrices with values generated according to a Gaussian distribu-
tion. The observed results are an average across these matrices. The number of
supporting sequences and items for each sequential pattern followed a Uniform
distribution.

Table 1. Properties of the generated dataset settings.

Matrix size (κrows× κcolumns) 100 × 30 500 × 50 1000 × 75 2000 × 100

Nr. of hidden seq. patterns 5 10 20 30
Nr. rows for the hidden seq. patterns [10, 14] [12, 20] [20, 40] [40, 70]
Nr. columns for the hidden seq. patterns [5, 7] [6, 8] [7, 9] [8, 10]
Assumptions on the inputted thresholds Δ = 5 % Δ = 5 % Δ = 5 % Δ = 5 %

δ = 3 δ = 4 δ = 5 δ = 6

Figure 5 compares the performance of the alternative approaches for the gen-
erated datasets in terms of time and maximum memory usage. Both PrefixSpan
and OPC-Tree can be seen as competitive baselines to assess efficiency. Note that
we evaluate the impact of mining sequential patterns in the absence and presence
of the δ input (minimum number of items per pattern) for a fair comparison.

2 Software and datasets available in: http://web.ist.utl.pt/rmch/software/indexspan/.
3 Implementation from SPMF: http://www.philippe-fournier-viger.com/spmf/.

http://web.ist.utl.pt/rmch/software/indexspan/
http://www.philippe-fournier-viger.com/spmf/

Methods for the Efficient Discovery 111

Fig. 5. Performance of alternative SPM methods for datasets with varying properties.

Two main observations can be derived from this analysis. First, the gains
in efficiency from adopting fast database projections are significant. In partic-
ular, the adoption of fast projections for hard settings dictates the scalability
of the SPM task. Pruning methods should also be considered in the presence
of the pattern length threshold δ. Contrasting with OPC-Tree and PrefixSpan,
IndexSpan guarantees acceptable levels of efficiency for matrices up to 2000 rows
and 100 columns for a medium-to-large occupation of sequential patterns (∼3 %–
10 % of matrix total area). Second, IndexSpan performs searches with minimal
memory waste. The memory is only impacted by the lists of sequence identifiers
maintained by prefixes during the depth-first search. Memory of PrefixSpan is
slightly hampered due to the need to maintain the projected postfixes. OPC-
Tree requires the full construction of the pattern-tree before the traversal, which
turns this approach only applicable for small-to-medium databases. For an allo-
cated memory space of 2 GB, we were not able to construct OPC-Trees for input
matrices with more than 40 columns.

To further assess the performance of IndexSpan, we fixed the 1000 × 75
experimental setting and varied the level of sparsity by removing specific posi-
tions from the input matrix, while preserving the planted sequential patterns.
We randomly selected these positions to cause a heighten variance of length
among the generated sequences. The amount of removals varied between 0 and
40 %. This analysis is illustrated in Fig. 6.

Fig. 6. Performance for varying levels of sparsity (1000 × 75 dataset).

Two main observations can be retrieved. First, to guarantee an optimal mem-
ory usage, there is the need to adopt vectors of hash tables in IndexSpan. Second,
although the use of these new data structures hampers the efficiency of IndexS-
pan, the observable computational time is still significantly preferable over the
PrefixSpan alternative.

112 R. Henriques et al.

In order to assess the impact of varying the number of co-occurrences vs.
precedences, we adopted multiple discretizations for the 1000 × 75 dataset.
By decreasing the size of the discretization alphabet, we are increasing the
amount of co-occurrences and, consequently, decreasing the number of item-
sets per sequence. This analysis is illustrated in Fig. 7. When the number of
precedences per sequence is very small (<10), the efficiency tends to signifi-
cantly decrease due to the exponential increase of sequential patterns. However,
for the remaining discretizations, the efficiency does not strongly differ since the
number of frequent patterns is identical and pattern-growth methods are able
to deal with co-occurrences and precedences in similar ways (Algorithm 1 lines
20–27).

Fig. 7. Performance for varying weights of precedences vs. co-occurrences.

To evaluate the relevance of considering noise-relaxations in order to com-
pose larger sequential patterns, we selected the 1000× 75 setting and exchanged
the order of 5 % of the items. Figure 8 traces item-indexable SPM performance
for varying noise-relaxations by using MergeIndexBic with different overlapping
degrees. Performance is measured using match scores based on the Jaccard index
to assess: (1) to what the extent do the found patterns match with planted pat-
terns (correctness), and (2) how well are the planted biclusters recovered (com-
pleteness). When relaxing the overlapping criteria, match scores increase, as the
merging step allows for the recovery of order violations. However, this improve-
ment in behavior is only observable until a certain overlapping threshold. The
correct identification of this threshold can lead to significant gains (near 15 %
points for this experiment).

Fig. 8. Impacting of merging sequential patterns in noisy contexts.

Finally, in order to show why MergeIndexBic is needed for an efficient merg-
ing step, we maintained the previous experimental settings and compared the

Methods for the Efficient Discovery 113

performance of traditional combinatorial procedures (where similarities are com-
puted for all pairs of biclusters, and the composition of larger candidates is
recursively accomplished) against the proposed MergeCycle and MergeFIM pro-
cedures. MergeFIM procedure relies on the efficient Charm4 method for the
delivery of closed frequent itemsets. Figure 9 illustrates this analysis for vary-
ing overlapping degrees. Clearly, traditional procedures do not scale. MergeFIM
outperforms MergeCycle for hard scenarios where there are large candidates for
merging, a case that is commonly observed for relaxed levels of overlapping.

Fig. 9. Comparing the efficiency of MergeCycle and MergeFIM against peer
methods.

4.2 Real Datasets

To assess the performance of the proposed approaches in real datasets, we used
multiple gene expression matrices5: dlblc (180 items per instance, 660 instances),
coloncancer (62 items per instance, 2000 instances), leukemia (38 items per
instance, 7129 instances). The goal is to discover order-preserved biclusters.
For this purpose, we followed the procedure described in Fig. 1 to generate the
sequence databases using a discretization alphabet with 20 symbols. The posi-
tions corresponding to missing values were removed. Figure 10 compares the
performance of the alternative approaches for the θ = 8% and δ = 5 thresholds.
This analysis reinforces the previous observations. OPC-Tree is bounded by the
size of the database. The adoption of IndexSpan strategies to deal with item-
indexable sequences strongly impacts the SPM performance, and, consequently,
the ability to discover order-preserving biclusters in real data.

The relevance of tolerating noise to compose larger sequences is illustrated in
Fig. 11 for the leukemia dataset. Here, we computed the functional enrichment
of the genes supporting each frequent sequence, Φs, recurring to the GoToolBox
[16]. As a measure of significance, we counted the number of overrepresented
terms with Bonferroni corrected p-values below 0.01. We observe that MergeIn-
dexBic procedure increases not only the number of significant terms, but also
their relative percentage as it removes short patterns from the output.
4 Implementation from SPMF: http://www.philippe-fournier-viger.com/spmf/.
5 http://www.upo.es/eps/bigs/datasets.html

http://www.bioinf.jku.at/software/fabia/gene expression.html

http://www.philippe-fournier-viger.com/spmf/
http://www.upo.es/eps/bigs/datasets.html
http://www.bioinf.jku.at/software/fabia/gene_expression.html

114 R. Henriques et al.

Fig. 10. Performance of SPM-based order-preserving biclustering for biological data.

Fig. 11. Biological relevance of allowing noise using MergeIndexBic for leukemia data.

5 Conclusions

This work formalizes the task of performing noise-tolerant sequential pattern
mining over item-indexable databases and motivates its relevance for a critical
set of applications. The performance of existing approaches based on general
SPM methods and on dedicated algorithms, such as the OPC-Tree, is discussed.
To tackle the inefficiencies of existing solutions, we propose the IndexSpan algo-
rithm. IndexSpan relies on position induction to deliver fast and memory-free
database projections. Additionally, early-pruning techniques with impact on the
performance of IndexSpan can be adopted to guarantee that only large sequential
patterns are discovered.

Furthermore, we explore alternatives to efficiently extend IndexSpan in order
to compose large sequential patterns under parameterizable noise allowance
guarantees. MergeIndexBic is proposed to surpass the limited robustness and
efficiency of existing options. This is done by merging sequential patterns with
significant overlap on sequence items and on the supporting transactions. Prun-
ing heuristics to avoid the computation of similarities among all pair are pro-
posed. Efficient computation of candidates is achieved by mapping the merging
task as maximal cycle discovery in undirected graphs or as multi-support fre-
quent itemset mining.

Results on both synthetic and real datasets show the superior performance
and relevance of the IndexSpan and MergeIndexBic methods.

Since the proposed item-indexable SPM relies on a prefix-growth search, it
can easily accommodate principles from existing research to deliver condensed
pattern representations, such as CloSpan [24], in order to reduce the complexity
of the merging step; and to discover sequential patterns in distributed settings,
such as MapReduce [23], in order to relax the efficiency boundaries of IndexSpan.

Methods for the Efficient Discovery 115

Acknowledgments. This is an extension of previous work [10] supported by Fundação
para a Ciência e Tecnologia under the project D2PM (PTDC/EIA-EIA/110074/2009),
project Neuroclinomics (PTDC/EIA-EIA/ 111239/2009), and PhD grant SFRH/BD/
75924/2011.

References

1. Agrawal, R., Srikant, R.: Mining sequential patterns. In: ICDE. pp. 3–14. IEEE
CS, Washington (1995)

2. Antunes, C., Oliveira, A.L.: Mining patterns using relaxations of user defined con-
straints. In: Knowledge Discovery in Inductive Databases (2004)

3. Ayres, J., Flannick, J., Gehrke, J., Yiu, T.: Sequential pattern mining using a
bitmap representation. In: KDD. pp. 429–435. ACM, New York (2002)

4. Bayardo, R.J.: Efficiently mining long patterns from databases. SIGMOD Rec.
27(2), 85–93 (1998)

5. Ben-Dor, A., Chor, B., Karp, R., Yakhini, Z.: Discovering local structure in
gene expression data: the order-preserving submatrix problem. In: RECOMB. pp.
49–57. ACM, New York (2002)

6. Cheng, H., Yu, P.S., Han, J.: Approximate frequent itemset mining in the presence
of random noise. In: Maimon, O., Rokach, L. (eds.) Soft Computing for Knowledge
Discovery and Data Mining, pp. 363–389. Springer, New York (2008)

7. Chiu, D.Y., Wu, Y.H., Chen, A.L.P.: An efficient algorithm for mining frequent
sequences by a new strategy without support counting. In: ICDE. p. 375. IEEE
CS, Washington (2004)

8. Han, J., Cheng, H., Xin, D., Yan, X.: Frequent pattern mining: current status and
future directions. Data Min. Knowl. Discov. 15(1), 55–86 (2007)

9. Han, J., Yang, Q., Kim, E.: Plan mining by divide-and-conquer. In: ACM SIGMOD
IW on Research Issues in DMKD (1999)

10. Henriques, R., Madeira, S., Antunes, C.: Indexspan: efficient discovery of item-
indexable sequential patterns. In: ECML/PKDD IW on New Frontiers in Mining
Complex Patterns (2013)

11. Kumar, P., Krishna, P., Raju, S.: Pattern Discovery Using Sequence Data Mining:
Applications and Studies. IGI Global, Hershey (2011)

12. Lin, D.-I., Kedem, Z.M.: Pincer search: a new algorithm for discovering the maxi-
mum frequent set. In: Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT
1998. LNCS, vol. 1377, pp. 105–119. Springer, Heidelberg (1998)

13. Liu, J., Wang, W.: Op-cluster: clustering by tendency in high dimensional space.
In: ICDM. p. 187. IEEE CS, Washington (2003)

14. Liu, J., Yang, J., Wang, W.: Biclustering in gene expression data by tendency.
In: IEEE Computational Systems Bioinformatics Conference, pp. 182–193. IEEE
(2004)

15. Mabroukeh, N.R., Ezeife, C.I.: A taxonomy of sequential pattern mining algo-
rithms. ACM Comput. Surv. 43(1), 3:1–3:41 (2010)

16. Martin, D., Brun, C., Remy, E., Mouren, P., Thieffry, D., Jacq, B.: Gotoolbox:
functional analysis of gene datasets based on gene ontology. Genome Biol. 5(12),
101 (2004)

17. Pei, J., Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H., Chen, Q., Dayal, U.,
Hsu, M.C.: Mining sequential patterns by pattern-growth: the prefixspan approach.
IEEE Trans. Knowl. Data Eng. 16(11), 1424–1440 (2004)

116 R. Henriques et al.

18. Pei, J., Han, J., Mortazavi-Asl, B., Zhu, H.: Mining access patterns efficiently from
web logs. In: Terano, T., Liu, H., Chen, A.L.P. (eds.) PAKDD 2000. LNCS, vol.
1805, pp. 396–407. Springer, Heidelberg (2000)

19. Raedt, L.D., Guns, T., Nijssen, S.: Constraint programming for data mining and
machine learning. In: AAAI. AAAI Press (2010)

20. Salvemini, E., Fumarola, F., Malerba, D., Han, J.: FAST sequence mining based on
sparse Id-lists. In: Kryszkiewicz, M., Rybinski, H., Skowron, A., Raś, Z.W. (eds.)
ISMIS 2011. LNCS, vol. 6804, pp. 316–325. Springer, Heidelberg (2011)

21. Serin, A., Vingron, M.: Debi: discovering differentially expressed biclusters using
a frequent itemset approach. Algorithms Mol. Biol. 6, 1–12 (2011)

22. Srikant, R., Agrawal, R.: Mining sequential patterns: generalizations and perfor-
mance improvements. In: Apers, P.M.G., Bouzeghoub, M., Gardarin, G. (eds.)
EDBT 1996. LNCS, vol. 1057, pp. 3–17. Springer, Heidelberg (1996)

23. qing Wei, Y., Liu, D., shan Duan, L.: Distributed prefixspan algorithm based on
mapreduce. In: Information Technology in Medicine and Education, vol. 2, pp.
901–904 (2012)

24. Yan, X., Han, J., Afshar, R.: CloSpan: mining closed sequential patterns in large
datasets. In: SDM. pp. 166–177 (2003)

25. Yang, J., Wang, W., Yu, P.S., Han, J.: Mining long sequential patterns in a noisy
environment. In: SIGMOD. pp. 406–417. ACM, New York (2002)

26. Yang, Z., Wang, Y., Kitsuregawa, M.: LAPIN: effective sequential pattern mining
algorithms by last position induction for dense databases. In: Kotagiri, R., Radha
Krishna, P., Mohania, M., Nantajeewarawat, E. (eds.) DASFAA 2007. LNCS, vol.
4443, pp. 1020–1023. Springer, Heidelberg (2007)

27. Zaki, M.J.: Spade: an efficient algorithm for mining frequent sequences. Mach.
Learn. 42(1–2), 31–60 (2001)

28. Zheng, Y., Zhang, L., Xie, X., Ma, W.Y.: Mining interesting locations and travel
sequences from gps trajectories. In: WWW. pp. 791–800. ACM (2009)

29. Zhu, F., Yan, X., Han, J., Yu, P.S.: Mining Frequent Approximate Sequential
Patterns. Chapman & Hall, London (2009)

30. Zhu, F., Yan, X., Han, J., Yu, P., Cheng, H.: Mining colossal frequent patterns by
core pattern fusion. In: ICDE. pp. 706–715 (2007)

Mining Frequent Partite Episodes
with Partwise Constraints

Takashi Katoh(B), Shin-ichiro Tago, Tatsuya Asai, Hiroaki Morikawa,
Junichi Shigezumi, and Hiroya Inakoshi

Fujitsu Laboratories Ltd., Kawasaki 211-8588, Japan
{kato.takashi 01,s-tago,asai.tatsuya,h.morikawa,j.shigezumi,

inakoshi.hiroya}@jp.fujitsu.com

Abstract. In this paper, we study the problem of efficiently mining
frequent partite episodes that satisfy partwise constraints from an input
event sequence. Through our constraints, we can extract episodes related
to events and their precedent-subsequent relations, on which we focus,
in a short time. This improves the efficiency of data mining using trial
and error processes. A partite episode of length k is of the form P =
∈P1, . . . , Pk∩ for sets Pi (1 ≤ i ≤ k) of events. We call Pi a part of P
for every 1 ≤ i ≤ k. We introduce the partwise constraints for partite
episodes P , which consists of shape and pattern constraints. A shape
constraint specifies the size of each part of P and the length of P . A pat-
tern constraint specifies subsets of each part of P . We then present a
backtracking algorithm that finds all of the frequent partite episodes
satisfying a partwise constraint from an input event sequence. By theo-
retical analysis, we show that the algorithm runs in output polynomial
time and polynomial space for the total input size. In the experiment, we
show that our proposed algorithm is much faster than existing algorithms
for mining partite episodes on an artificial and a real-world datasets.

1 Introduction

Episode Mining. One of the most important tasks in data mining is to discover
frequent patterns from time-related data. Mannila et al. [6] introduced episode
mining to discover frequent episodes in an event sequence. An episode is formu-
lated as a labeled acyclic digraph in which labels corresponding to events and
arcs represent a temporal precedent-subsequent relation in an event sequence.

For subclasses of episodes [3,6], a number of efficient algorithms have been
developed. In a previous work [3], we introduced the class of partite episodes,
which are time-series patterns of the form ≈P1, . . . , Pk∗ for sets Pi (1 √ i √ k)
of events, which means that in an input event sequence, every event in Pi+1

follows every event in Pi for every 1 √ i < k. For the class of partite episode,
we presented an algorithm that finds all of the frequent episodes from an input
event sequence.

A partite episode is a richer representation of temporal relationship than
a subsequence, which represents just a linearly ordered relation in sequential

A. Appice et al. (Eds.): NFMCP 2013, LNAI 8399, pp. 117–131, 2014.
DOI: 10.1007/978-3-319-08407-7 8, c© Springer International Publishing Switzerland 2014

118 T. Katoh et al.

pattern mining [1,9]. In particular, the partite episode can represent the precedent-
subsequent relation between the sets of events that occur simultaneously (in any
order) in a time span.

Main Problem. In the data analysis using trial and error processes, we often
want to extract only episodes which include some events we focus on. For exam-
ple, if we get an episode that means buying a telescope before buying a PC, then
we will be interested in frequent patterns in the period between the two events.

In this paper, we introduce partwise constraints for partite episodes. A part-
wise constraint consists of a shape constraint and a pattern constraint . For a
partite episode P , a shape constraint specifies the size of each part of P and
the length of P . A pattern constraint specifies the subsets of each part of P .
Through episode mining with a shape constraint that means the length of any
extracted episode is at most three and both the size of the first and the third set
are at most one, and a pattern constraint that means the first set includes the
event buying a PC and the third set includes the event buying a telescope, we
may obtain a knowledge: some customers bought a digital camera and a photo
printer after buying a telescope before buying a PC.

We can select the episodes satisfying these constraints in post-processing
steps after or during non-constraint episode mining. This approach, however,
requires a very long execution time since mining algorithms often outputs a
large number of frequent episodes. It is a better idea to use the constraint-
based algorithm PPS introduced by Ma et al. [5]. PPS efficiently handles a
prefix anti-monotone constraint [11], which means that if an episode satisfies the
constraint, so does every prefix of the episode. Any shape constraint is prefix
anti-monotonic, and PPS can extract partite episodes satisfying a given shape
constraint in polynomial amortized time per output.

On the other hand, pattern constraints are not always prefix anti-monotonic.
For example, a pattern constraint having buying a telescope in the first set
and buying a PC in the third set, which is described above, is not prefix anti-
monotonic one. This pattern constraint is not prefix anti-monotonic because
there is an episode whose prefix does not satisfy it; It is obvious by considering
the episode; buying a telescope before buying a camera and then buying a PC
and it’s prefix episodes.

If we allow an algorithm to add event to any part of the partite episode
instead of adding only the tail of the episode, there is a possibility to enumerate
episode satisfying any pattern constraint without generating candidate episodes.
However, the efficient computation methods of episodes and their occurrence in
that enumeration is non-trivial.

Main Results. Our goal is to present an algorithm that extracts frequent
partite episodes satisfying a partwise constraint without post-processing steps.
Then we show that our algorithm runs in O(Nsc) time per partite episode and
O(Nsm) space, where N is the total size of an input sequence, s is the number
of event types in the input sequence (alphabet size), c is a constant that depends
only on a given partwise constraint, and m is the maximum size of episodes.

Mining Frequent Partite Episodes with Partwise Constraints 119

Finally, our experimental result shows that our proposed algorithm is 230
times faster than the straightforward algorithm which consists of an algorithm
for non-constraint episodes and post-processing steps for partwise constraints.

Related Works. In addition to Ma’s research, there have been many studies
on episode mining. Méger and Rigotti [7] introduced a different type of con-
straint called gapmax that represents the maximum time gap allowed between
two events. Tatti et al. [13] and Zhou et al. [15] introduced closed episode mining .
Closed episode mining is another approach to reduce the number of outputs and
improve the mining efficiency. Closed episode mining algorithms extract only rep-
resentative patterns called closed episodes, whereas constraint-based algorithms
such as our algorithm and Méger’s algorithm extract only episodes that satisfy
some given conditions on which we focus. Seipel et al. [12] applied episode min-
ing to system event logs for network management. Since their class of episodes
was a subclass of partite episodes, their analysis would be improved by applying
the proposed algorithm in this paper.

2 Partite Episodes

In this section, we introduce partite episodes and the related notions and lemmas
necessary for a later discussion. We denote the sets of all natural numbers by N.
Then we define ∀ as the special largest number such that a < ∀ for all a ∞ N.
For a set S = {s1, . . . , sn} (n ∞ N), we denote the cardinality n of S by |S|.
For sets S and T , we denote the difference set {s ∞ S | s ≤∞ T} by S \ T . For a
sequence X = ≈x1, . . . , xn∗ (n ∞ N), we denote the length n of X by |X|, the
i-th element xi of X by X[i], and the consecutive subsequence ≈xi, . . . , xj∗ of X
by X[i, j], for every 1 √ i √ j √ n, where we define X[i, j] = ≈∗ when i > j.

2.1 Input Event Sequence

Let Δ = {1, . . . , m} (m ∈ 1) be a finite alphabet with the total order √ over
N. Each element e ∞ Δ is called an event1. An input event sequence (an input
sequence, for short) S on Δ is a finite sequence ≈S1, . . . , Sρ∗ ∞ (2τ)∈ of sets of
events of length ρ. For an input sequence S, we define the total size ||S|| of S
by

∑ρ
i=1 |Si|. Clearly, ||S|| = O(|Δ|ρ). Without loss of generality, we can assume

that every event in Δ appears at least once in S.

2.2 Partite Episodes

Mannila et al. [6] and Katoh et al. [3] formulated an episode as a partially ordered
set and a labeled acyclic digraph, respectively. In this paper, for a sub-class of
episodes called partite episodes, we define an episode as a sequence of sets of
events for simpler representations.
1 Mannila et al. [6] originally referred to each element e ∼ Σ itself as an event type

and an occurrence of e as an event . However, we simply refer to both of these as
events.

120 T. Katoh et al.

Definition 1. A partite episode P over Δ is a sequence ≈P1, . . . , Pk∗ ∞ (2τ)∈ of
sets of events (k ∈ 0), where Pi ⊆ Δ is called the i-th part for every 1 √ i √ k.
For a partite episode P = ≈P1, . . . , Pk∗, we define the total size ||P || of P by
∑k

i=1 |Pi|. We call P proper when Pi ≤= ∩ for every 1 √ i √ k.

Definition 2. Let P = ≈{a(1,1), . . . , a(1,m1)}, . . . , {a(k,1), . . . , a(k,mk)}∗ be a par-
tite episode of length k ∈ 0, and Q = ≈{b(1,1), . . . , b(1,n1)}, . . . , {b(l,1), . . . , a(l,nl)}∗
a partite episode of length l ∈ 0, where mi ∈ 0 for every 1 √ i √ k and ni ∈ 0
for every 1 √ i √ l. A partite episode P is a sub-episode of Q, denoted by P ∼ Q,
if and only if there exists some injective mapping h : A → B satisfying (i)
A =

⋃k
i=1

⋃mi

j=1{(i, j)}, B =
⋃l

i=1

⋃ni

j=1{(i, j)}, (ii) for every x ∞ A, ax = bh(x)

holds, and (iii) for every (p1, q1), (p2, q2) ∞ A, and values (p∞
1, q

∞
1) = h((p1, q1))

and (p∞
2, q

∞
2) = h((p2, q2)), if p1 < p2 holds, then p∞

1 < p∞
2 holds.

Let P = ≈P1, . . . , Pk∗ and Q = ≈Q1, . . . , Ql∗ be partite episodes of length k ∈ 0
and l ∈ 0, respectively. We denote the partite episode ≈P1, . . . , Pk, Q1, . . . , Ql∗
by P →Q, the partite episode ≈P1 ∪ Q1, . . . , Pmax(k,l) ∪ Qmax(k,l)∗ by P ◦ Q, and
the partite episode ≈P1 \Q1, . . . , Pk \Qk∗ by P \Q, where we assume that Pi = ∩
for any i > k and Qj = ∩ for any j > l. In Fig. 1, we show examples of an input
event sequence S and partite episodes P i (1 √ i √ 7).

2.3 Occurrences

Next, we introduce occurrences of episodes in an input sequence. An interval
in an input sequence S is a pair of integer (s, t) ∞ N2 satisfying s √ t. Let
P be a partite episode, and x = (s, t) be an interval in an input sequence
S = ≈S1, . . . , Sρ∗ (ρ ∈ 0). A partite episode P occurs in an interval x, if and only
if P ∼ S[s, t − 1], where we define S[i] for any index such that i < 1 and i > |S|
as S[i] = ∩.

For a partite episode P that occurs in an interval x = (s, t) in an input
sequence S, the interval x is a minimum occurrence if and only if P does not occur
in both intervals (s+1, t) and (s, t− 1). Moreover, a minimum occurrence set of
P on S is a set {(s, t) |P ∼ S[s, t − 1], P ≤∼ S[s, t − 2], P ≤∼ S[s + 1, t − 1]} ⊆ N2

of all minimum occurrences of P on S. For a minimum occurrence set X of
P , a minimum occurrence list (mo-list , for short) of P , denoted by mo(P), is
a sequence ≈(s1, t1), . . . , (sn, tn)∗ ∞ (N2)∈ of minimum occurrences such that
n = |X|, si < si+1 for every 1 √ i < n.

A window width is a fixed positive integer w ∈ 1. For an input sequence S
and any 1 − w < i < |S|, the interval (i, i + w) is a window of width w on S.
Then the frequency freqS,w(P) of a partite episode P is defined by the number of
windows (of width w on S) in which P occurs. A minimum frequency threshold
is any positive integer δ ∈ 1. An episode P is δ-frequent in S if freqS,w(P) ∈ δ.
For a minimum frequency threshold δ and a window width w, the minimum
support threshold δ́ is the relative value δ́ = δ/(|S| + w − 1). By the definition
of the frequency, we can show the next lemma.

Mining Frequent Partite Episodes with Partwise Constraints 121

Fig. 1. An input event sequence S of length 5 (left top), partite episodes P i (1 ≤ i ≤ 7)
(right), their minimum occurrence lists (left middle), and windows of width 4 on S (left
bottom). In the input sequence S, we indicate an occurrence of P 7 in the fourth window
(1, 5) in circles. See Example 1 for details.

Lemma 1. Let P and Q be partite episodes, S an input sequence, and w a
window width. If P ∼ Q holds, then freqS,w(P) ∈ freqS,w(Q) holds.

Our definition of frequency is identical to the one given by Mannila [6]. With
this definition, an occurrence of episode could be counted more than once, and
more than two occurrences could be counted only once. Lemma 1 holds even
with another definition that does not have the problems above, although we do
not explain why because of the limited space.

Example 1. In Fig. 1, we show an input sequence S = ≈{a}, {b},{a, b}, {c}, {a}∗
of length ρ = 5 over an alphabet Δ = {a, b, c} of events, partite episodes P 1 =
≈{a}∗, P 2 = ≈{b}∗, P 3 = ≈{c}∗, P 4 = P 1 ◦ P 2 = ≈{a, b}∗, P 5 = P 4 → P 1 =
≈{a, b}, {a}∗, P 6 = P 4 →P 3 = ≈{a, b}, {c}∗, and P 7 = P 5 ◦ P 6 = ≈{a, b}, {a, c}∗,
and their minimum occurrence lists mo(P 1) = ≈(1, 2), (3, 4), (5, 6)∗, mo(P 2) =
≈(2, 3), (3, 4)∗, mo(P 3) = ≈(4, 5)∗, mo(P 4) = ≈(1, 3), (3, 4)∗, mo(P 5) = ≈(1, 4),
(3, 6)∗, mo(P 6) = ≈(3, 5)∗, and mo(P 7) = ≈(1, 5), (3, 6)∗, respectively, where a =
1, b = 2, and c = 3 are events. The input sequence S has eight windows with
width 4 from (−2, 2) to (5, 9). Among these, the partite episode P 5 occurs in
(0, 4), (1, 5), (2, 6), and (3, 7). Therefore, the frequency of P 5 is 4. Furthermore,
the partite episode P 7 occurs in (1, 5), (2, 6), and (3, 7). Therefore, the frequency
of P 7 is 3. We see that P 5 ∼ P 7 and freqS,4(P 5) ∈ freqS,4(P 7).

3 Partwise Constraints

In this section, we introduce partwise constraints for partite episodes which
consist of the shape and pattern constraints . A shape constraint for a partite
episode P is a sequence C = ≈c1, . . . , ck∗ ∞ N∈ (k ∈ 0) of natural numbers. A
pattern constraint for a partite episode P is a sequence D = ≈D1, . . . , Dk∗ ∞
(2τ)∈ (k ∈ 0) of sets of events. We consider a pattern constraint as a partite
episode.

122 T. Katoh et al.

Definition 3. A partite episode P satisfies the shape constraint C if |P | √ |C|
and |P [i]| √ C[i] for every 1 √ i √ |C|. A partite episode P satisfies the pattern
constraint D if |P | ∈ |D| and P [i] ⊇ D[i] for every 1 √ i √ |D|.
By this definition, we see that a shape constraint is anti-monotone [10] and a
pattern constraint is monotone [10].

Lemma 2. Let P and Q be partite episodes such that P ∼ Q. For a shape
constraint C and a pattern constraint D, (i) if Q is satisfying C then P is so,
and (ii) if P is satisfying D then Q is so.

We denote the classes of partite episodes (over Δ) by PE . Moreover, we denote
the classes of partite episodes satisfying a pattern constraint D by PE(D).

Definition 4. Partite Episode Mining with a Partwise Constraint:
Given an input sequence S ∞ (2τ)∈, a window width w ∈ 1, a minimum fre-
quency threshold δ ∈ 1, a shape constraint C, and a pattern constraint D, the
task is to find all of the δ-frequent partite episodes satisfying C and D that
occur in S with a window width w without duplication.

Our goal is to design an algorithm for the frequent partite episode mining prob-
lem with a partwise constraint, which we will show in the next section, in the
framework of enumeration algorithms [2]. Let N be the total input size and M
the number of solutions. An enumeration algorithm A is of output-polynomial
time, if A finds all solutions in total polynomial time both in N and M . More-
over, A is of polynomial delay , if the delay , which is the maximum computation
time between two consecutive outputs, is bounded by a polynomial in N alone.

4 Algorithm

In this section, we present an output-polynomial time and a polynomial-space
algorithm PartiteCD for extracting all the frequent partite episodes satisfying
partwise constraints in an input event sequence. Throughout this section, let
S = ≈S1, . . . , Sρ∗ ∞ (2τ)∈ be an input event sequence over an alphabet Δ, w ∈ 1
a window width, and δ ∈ 1 the minimum frequency threshold. Furthermore, let
M be the number of all solutions of our algorithm, and m the maximum size
of output episode P , that is, m = ‖P‖ + |P |. Then we define the length of the
input sequence ρ = |S|, the total size of the input sequence N = ||S|| + ρ, the
total size of the constraints c = |C| + ‖D‖ + |D|, and the alphabet size s = |Δ|
for analysis of time and space complexity of our algorithm, where we assume
O(s) = O(N) and O(m) = O(N).

4.1 Family Tree

The main idea of our algorithm is to enumerate all of the frequent partite
episodes satisfying partwise constraints by searching the whole search space from
general to specific by using depth-first search. First, we define the search space.

Mining Frequent Partite Episodes with Partwise Constraints 123

For a partite episode P such that |P | ∈ 1, the tail pattern tail(P) of P is defined
by the partite episode Q such that |Q| = max{1 √ i √ |P | |P [i] ≤= ∩}, Q[i] = ∩
for every 1 √ i < |Q|, and Q[i] = {max P [i]} for i = |Q|, where max P [i] is the
maximum integer in the i-th part of P . Then, for a pattern constraint D, we
introduce the parent-child relationship between partite episodes satisfying D.

Definition 5. The partite episode ⊥ = D is the root . The parent of the partite
episode P = ≈P1, . . . , Pk∗ is defined by:

parentD(P) =
{ ≈P1, . . . , Pk−1∗, if |Pk| √ 1 and |P | > |D|,

P \ tail(P \ D), otherwise.

We define the set of all children of P by childrenD(P) = {Q | parentD(Q) = P}.
Then we define the family tree for PE(D) by a rooted digraph T (PE(D)) =
(V,E,⊥) with the root ⊥, where the root ⊥ = D, the vertex set V = PE(D),
and the edge set E = {(P,Q) |P = parentD(Q), Q ≤= D}.

Lemma 3. The family tree T (PE(D)) = (V,E,D) for PE(D) is a rooted tree
with the root D.

For any episode Q on T (PE(D)), the parent parentD(Q) is a subepisode of Q.
Therefore, we can show the next lemma by Lemma 1 and Lemma 2.

Lemma 4. Let C be a shape constraint, D a pattern constraint, and P and Q
partite episodes such that P = parentD(Q). If Q is frequent then so is P . If Q
is satisfying C then so is P .

By Lemma 2 and Lemma 3, we know that a family tree T (PE(D)) contains
only episodes satisfying a pattern constraint D. Thus, we can make a search tree
containing only episodes that are frequent and satisfy the shape and pattern
constraints by pruning episodes that do not satisfy the conditions.

Example 2. We describe the part of family trees T (PE(≈∗)) and T (PE(≈{}, {b}∗))
that forms the spanning trees for all partite episodes of PE(≈∗) and PE(≈{}, {b}∗)
on an alphabet Δ = {a, b} in Fig. 2. For a pattern constraint D1 = ≈{}, {b}∗, the
parent of P 1 = ≈{a, b}, {a, b}∗ is P 1 \ tail(P 1 \ D1) = P 1 \ tail(≈{a, b}, {a}∗) =
P 1 \ ≈{}, {a}∗ = ≈{a, b}, {b}∗ = P 2. For a pattern constraint D2 = ≈∗, the parent
of ≈{a}, {b}∗ is ≈{a}∗, because |{b}| √ 1 and |≈{a}, {b}∗| > |D2|.

Fig. 2. The parent-child relationships on an alphabet Σ = {a, b} for pattern constraints
∈∩ (dashed arrows) and ∈{}, {b}∩ (solid arrows), where a = 1 and b = 2 are events.

124 T. Katoh et al.

4.2 Pattern Expansion

Secondly, we discuss how to enumerate all children of a parent. For a pattern
constraint D, a partite episode Q, and its parent P , we define the index of the
expanded part of Q by iex (Q) = |Q| if |Q| > |P |, and iex (Q) = |tail(Q \ P)|
otherwise. Additionally, we define iex (Q) = 0 for the root Q = D.

Let h = iex (P) be the index of the expanded part of a parent episode P . We
define type-i children of P by childrenD(P, i) = {Q ∞ childrenD(P) | iex (Q) =
i, ‖Q‖ > ‖P‖} for an index i ∈ h. By Definition 5, we can make any type-i
child Q of P by adding an event a ∞ Δ \ (P [i] ∪ D[i]) at P [i]. Moreover, by
Definition 5, we see childrenD(P) = (

⋃n
i=m childrenD(P, i)) ∪ {P → ≈∩∗}, where

m = max(h, 1), and n = max(h, |D|) + 1.
Furthermore, for partite episodes P , Q, and S such that P = parentD(Q),

S = parentD(P), iex (Q) ∈ 1, and |(Q \ D)[iex (Q)]| ∈ 2, we define the uncle R
of Q by uncleD(Q) = S ◦ tail(Q \ D).

Lemma 5. For partite episodes P and Q such that Q ∞ childrenD(P, iex (P)),
there exist partite episodes R, S, and an index i > 0 such that R = uncleD(Q),
S = parentD(P) = parentD(R), P,R ∞ childrenD(S, i), and P �ī Q �ī R.

Example 3. In Fig. 2, for a pattern constraint D = ≈{}, {b}∗, an episode P 4 =
≈{a}, {b}∗ is the parent of an episode P 2 = ≈{a, b}, {b}∗. The index iex (P 2) of
the expanded part of P 2 is |tail(P2 \ P4)| = |tail(≈{b}, {}∗)| = |≈{b}∗| = 1 .
Therefore, P 2 is a type-1 child of P 4. On the other hand, P 3 is a type-2 child
of P 4 because iex (P 3) is |tail(≈{}, {b}∗)| = 2 . Since the parent of P 4 is P 6, the
uncle of P 2 is P 6 ◦ tail(P 2 \ D) = P 6 ◦ ≈{a}∗ = ≈{a}, {b}∗ = P 5.

4.3 Incremental Computation

To compute a type-i child Q of P and its mo-list incrementally from the parent
P , we make Q as follows. Let h = iex (P) be the index of the expanded part of
P ; (i) we make Q by P ◦R, and the subepisode Qsub = Q[1, i] of Q by Psub ◦Rsub

when i = h, where R = uncleD(Q), Psub = P [1, i], and Rsub = R[1, i]; (ii) we
make Q by Psub → DH → A → DT and the subepisode Qsub = Q[1, i] of Q
by Psub → DH → A when i > h, where Psub = P [1, h], DH = D[h + 1, i − 1],
A = D[i] ◦ ≈{a}∗, and DT = D[i + 1, |D|]. Since the length of mo-list I of an
episode P is less than the length |S| of the input sequence S, we can incrementally
compute the mo-list in O(‖S‖) = O(N) time [3,4,8].

In Fig. 3, we show algorithm MoListIntersection that computes the mo-
list K = mo(P ◦ Q) from the mo-lists I = mo(P) and J = mo(Q) for episodes
P and Q such that P �ī Q for any 1 √ i √ |P |, and also show algorithm
MoListJoin that computes the mo-list K = mo(P → Q) from the mo-lists
I = mo(P) and J = mo(Q) for any partite episodes P and Q. Additionally, we
can compute the frequency of P form the mo-list I = mo(P) of P on O(|I|) time
and O(1) extra space by checking mo-list I from the head I[1] to the tail I[|I|].

Mining Frequent Partite Episodes with Partwise Constraints 125

algorithm MoListJoin(I, J)
input: mo-lists I and J ;
output: mo-list I J ; {
01 if (I = Ω) return J ;
02 if (J = Ω) return I;
03 i := 1; j := 1;
04 ω := (−∞, +∞); K := ω ;
05 while (i ≤ |I| and j ≤ |J |) do
06 (sI , tI) := I[i]; (sJ , tJ) := J [j];
07 if (tI ≤ sJ) then x := (sI , tJ);
08 if (x ⊆ K[|K|]) K[|K|] := x;
09 else K := K x ;
10 i := i + 1;
11 else j := j + 1; end if
12 end while
13 if (K = ω) K := ;
14 return K;
}

algorithm MoListIntersection(I, J)
input: mo-lists I and J ;
output: mo-list I ◦ J ; {
01 if (I = Ω) return J ;
02 if (J = Ω) return I;
03 i := 1; j := 1;
04 ω := (−∞, +∞); K := ω ;
05 while (i ≤ |I| and j ≤ |J |) do
06 (sI , tI) := I[i]; (sJ , tJ) := J [j];
07 x := (min(sI , sJ), max(tI , tJ));
08 if (x ⊆ K[|K|]) K[|K|] := x;
09 else if (x K[|K|]) K := K x ;
10 if (tI ≤ tJ) i := i + 1;
11 if (tJ ≤ tI) j := j + 1;
12 end while
13 if (K = ω) K := ;
14 return K;
}

Fig. 3. Algorithms MoListJoin and MoListIntersection for computing mo-lists.

4.4 Depth-First Enumeration

In Fig. 4, we describe the algorithm PartiteCD, and its subprocedure RecCD
for extracting frequent partite episodes satisfying a partwise constraint. For a
pattern constraint D, the algorithm is a backtracking algorithm that traverses
the spanning tree T (PE(D)) based on a depth-first search starting from the root
P = D using the parent-child relationships over PE(D).

First, for an alphabet Δ, PartiteCD computes mo-lists mo(≈{a}∗) of partite
episodes of size 1 for every event a ∞ Δ. Then PartiteCD makes the root
episode P = D and calls the recursive subprocedure RecCD. Finally, for an
episode P the recursive subprocedure RecCD enumerates all frequent episodes
that are descendants of P and satisfy the shape constraint C. In RecCD, the
argument i indicates the index of the expanded part of P . RecCD incrementally
makes type-i children children(P, i) of P which are frequent and satisfying the
shape constraint C in Lines 7–11. Then it recursively calls itself in Line 12 for
the children. Finally, RecCD makes the child P ≈∗ of P in Line 15. Algorithm
PartiteCD finds all of the frequent partite episodes satisfying the partwise
constraints occurring in an input event sequence until all recursive calls are
finished.

Theorem 1. Algorithm PartiteCD runs in O(Nsc) amortized time per output
and in O(Nsm) space.

Proof. The main algorithm PartiteCD requires O(N) time at Line 1 and
O(N(‖D‖ + |D|)) time at Line 2. It also requires O(|S|) time to compute the
frequency of an episode P from the mo-list I = mo(P) of P by checking mo-list

126 T. Katoh et al.

algorithm PartiteCD(S, Σ, w, σ, C, D)
input: input sequence S ∼ (2Σ)∗, alphabet of events Σ, window width w > 0, minimum
frequency 1 ≤ σ, shape and pattern constraints C and D ,respectively;
output: frequent partite episodes satisfying the shape and pattern constraints;
01 compute the mo-list mo(a) for each event a in Σ

by scanning imput sequence S at once and store to ΣS ;
02 make the root episode P = D and compute its mo-list mo(P) from ΣS ;
03 if (P is frequent and satisfying C) RecCD(P, 1, ∅, ΣS , w, σ, C, D);

procedure RecCD(P, i, U, ΣS , w, σ, C, D)
output: all frequent partite episodes that are descendants of P ;
04 output P ;
05 while (i ≤ max(h, |D|) + 1) do // where h = iex (P).
06 V := ∅;
07 foreach (a ∼ Σ \ (P [i] ∪ D[i])) do
08 make a type-i child Q of P by adding the event a at P [i];
09 compute the mo-lists of Q and the subepisode Qsub = Q[1, i] by using U ;
10 if (Q is frequent and satisfying C) store (Q,mo(Q),mo(Qsub)) to V ;
11 end foreach
12 foreach (a child Q of P stored in V) RecCD(Q, i, V, ΣS , w, σ, C, D);
13 i := i + 1;
14 end while
15 if (P is frequent and satisfying C) RecCD(P , i, ∅, ΣS , w, σ, C, D);

Fig. 4. The main algorithm PartiteCD and a recursive subprocedure RecCD for
mining frequent partite episodes satisfying shape and pattern constraints.

I from the head I[1] to the tail I[|I|]. PartiteCD requires O(N +‖P‖) = O(N)
extra space for ΔS , P , and its mo-list. Thus, the main algorithm PartiteCD
runs in O(N(‖D‖ + |D|)) = O(Nc) time and in O(N) extra space. RecCD
requires O(N) time to incrementally make the child Q and its mo-list at Line 8–
10. Since the arguments ΔS , w, δ, C, and D are constant at each iteration of
RecCD, it runs in O(N |Δ||D|) = O(Nsc) time and in O(Ns) extra space to
store the mo-lists of the children, and outputs exactly 1 solution. Since, the
depth of recursions is at most m, and ‖D‖ + |D| √ m holds true, the statement
holds true. �

Finally, we describe the possible improvement for PartiteCD. By using the
alternating output technique [14], that is, we output episodes after Line 15 (the
end of RecCD) instead of Line 4 if and only if the depth of recursions is even,
our algorithm runs in O(Nsc) delay.

Example 4. In Fig. 5, we show an example of PartiteCD. For the input sequence
S and the alphabet of events Δ in Fig. 1, the window width w = 4, minimum
frequency δ = 1, shape constraint C = ≈+∀,+∀∗, and pattern constraint
D = ≈{b}, {b}∗, (step 0) PartiteCD computes the mo-lists of events a, b,
and c. Then, it calls RecCD for the root episode P 1 = D. (step 1) RecCD
makes the type-1 children P 2 and P 3 of P 1. Then, it computes the mo-list

Mining Frequent Partite Episodes with Partwise Constraints 127

Fig. 5. Partite episodes and related arguments generated by PartiteCD from the
input sequence S in Fig. 1. The episode P 3 in a dashed box is infrequent. See Example 4
for details.

mo(P 2) of P 2 by (mo(D[1]) ◦ mo(≈{a}∗)) →mo(D[2]), and similarly computes
the mo-lists of P 2[1, 1], P 3, and P 3[1, 1]. RecCD prunes P 3 because it is infre-
quent. Then, it recursively calls itself for the children of P 2. (step 2) RecCD
makes the type-2 children P 4 and P 5 of P 2. Then it incrementally computes
the mo-list mo(P 4) of P 4 by mo(P 2

sub) → (mo(D[2]) ◦ mo(≈{b}∗)), and simi-
larly computes mo-lists of P 4[1, 2], P 5, and P 5[1, 2]. (step 3) RecCD makes
the type-2 child P 6 of P 4. Since the uncle of P 6 is P 5, it computes the mo-
list mo(P 6) of P 6 by mo(P 4) ◦ mo(P 5) and the mo-list mo(P 6[1, 2]) of P 6[1, 2]
by mo(P 4[1, 2]) ◦ mo(P 5[1, 2]). (step 4) Similarly, RecCD makes the type-2
children P 7 and P 8 of P 1, and then (step 5) makes the type-2 child P 9 of P 7.

5 Experimental Results

In this section, we show that the algorithm described in Sect. 4 has a signifi-
cantly better performance than a straightforward algorithm which consists of an
algorithm for non-constraint episodes and post-processing steps for partwise con-
straints by experiments for both an artificial data set and a real-world data set.

5.1 Method

We implemented the following algorithms to compare their performance. Kper2
is a straightforward algorithm which consists of our previous algorithm [3] for
non-constraint episodes and post-processing steps for partwise constraints. PPS
is an algorithm which consists of Ma’s algorithm [5] handling prefix anti-
monotone constraints and post-processing steps for partwise constraints which
are not prefix anti-monotonic. PPS efficiently handles shape constraints and a
part of pattern constraints which have prefix anti-monotonic property, that is,
for a partite episode P , a pattern constraint D, and an index 1 √ i √ |P |, if

128 T. Katoh et al.

P [1, i] does not satisfy D[1, i], then PPS does not generate P . PartiteCD is
our algorithm that handles partwise constraints presented in Sect. 4.

All the experiments were run on a Xeon X5690 3.47 GHz machine with
180 GB of RAM running Linux (CentOS 6.3).

5.2 Experiments for an Artificial Data Set

Data Set. An artificial data set consisted of the randomly generated event
sequence S = ≈S1, . . . , Sρ∗ (ρ ∈ 1) over an alphabet Δ = {1, . . . , s} (s ∈ 1)
as described below. Let 1 √ i √ ρ be any index. For every event a ∞ Δ, we
add a into Si independently with a probability of p = 0.1/a. By repeating this
process for every Si, we made a skewed data set that emulates real-world data
sets having long tails such as point-of-sale data sets.

If not explicitly stated otherwise, we assume that the number of event in the
input sequence S is n = ‖S‖ = 1, 000, 000, the alphabet size is s = |Δ| = 1, 000,
the window width is w = 20, the minimum support threshold is
δ́ = 0.1%, the shape constraint C = ≈+∀, 1,+∀∗, and the pattern constraint
D = ≈{10}, ∩, {10}∗.

Experiments. Figure 6 shows the running time (left), and the amount of mem-
ory usage (right) of the algorithms Kper, PPS, and PartiteCD for the number
of events n in input data. With respect to the total running time, we see that
PartiteCD is 230 times as fast as Kper2 and 35 times as fast as PPS in
this case. This difference comes from the number of episode generated by each
algorithm before post-processing steps.

For the amount of memory usage, we see that PPS uses more memory than
both Kpar2 and PartiteCD. The reason is that PPS is based on breadth-first
search in a search space [5], whereas both Kpar2 and PartiteCD are based
on depth-first search. We also see that, both the running time and the memory
usage of these algorithms seem to be almost linear to the input size and must
therefore scale well on large datasets.

Figure 7 shows the number of outputs before the post-processing steps (left)
and the total running time (right) for pattern constraints Di (1 √ i √ 3). In

112.7 216.6 327.1

442.1 576.8
18.1 36.5 52.3

66.0 81.6
0.5 0.9

1.5 1.9 2.4
0

100
200
300
400
500
600
700

0.0 0.2 0.4 0.6 0.8 1.0ru
nn

in
g

tim
e

(s
ec

.)

of events in input data n / 106

KPER2 PPS PARTITECD

49 67

84 102 120

331 623 919

1,203 1,502
43 54

64 75 86
0

200
400
600
800

1000
1200
1400
1600

0.0 0.2 0.4 0.6 0.8 1.0m
em

or
y

us
ag

e
(M

B
)

of events in input data n / 106

KPER2 PPS PARTITECD

Fig. 6. Running time (left) and memory usage (right) for the number of events in input
data.

Mining Frequent Partite Episodes with Partwise Constraints 129

438 438 438

86

249
380

23 24 24
0

100
200
300
400
500

of

 o
ut

pu
ts

 /
10

3

pattern constraint D

KPER2 PPS PARTITECD

D1 D2 D3

575 575 575

88
278

542

31 54 107
0

100
200
300
400
500
600
700

ru
nn

in
g

tim
e

(s
ec

.)

pattern constraint D

KPER2 PPS PARTITECD

D1 D2 D3

Fig. 7. The number of outputs before post-processing steps (left) and running time
(rigth) for pattern constraints Di (1 ≤ i ≤ 3), where D1 = ∈{10}, ∅, ∅∩, D2 =
∈∅, {10}, ∅∩, and D3 = ∈∅, ∅, {10}∩.

0 0.1 0.2 0.3 0.4 0.5

of

 o
ut

pu
ts

ru
nn

in
g

tim
e

(s
ec

.)

minimum support (%)

Kper2 PPS PartiteCD
outputs

1010

108

106

104

100
1

104

1000
100

10
1

0.1

time

0 5 10 15 20 25

of

 o
ut

pu
ts

ru
nn

in
g

tim
e

(s
ec

.)

window width w

Kper2 PPS PartiteCD
outputs 1010

108

106

104

100
1

104

1000
100

10
1

0.1

time

Fig. 8. Running time and number of outputs against minimum supports (left) and
window width (right).

this experiment, we used a shape constraint C = ≈+∀,+∀,+∀∗. We see that
the number of outputs before post-processing steps of PPS is large and the
running time is long if a part {10} of the pattern constraint D appears at the
tail side of D. The reason is that since PPS reduces the number of outputs by
pruning based on prefix anti-monotonic property, PPS generates a large number
of episodes before pruning by the constraint that appears at the tail side. On
the other hand, the number of outputs of PartiteCD is almost constant for
every constraint D, because PartiteCD generates only episodes that satisfy
the given constraints.

Figure 8 shows the total running time and the number of outputs before
the post-processing steps against minimum support δ̇ (left) and window width
w (right). We see that PartiteCD outperforms other algorithms both on the
number of outputs and the running time for every parameter set.

5.3 Experiments for a Real-World Data Set

Data Set. The real-world data set was made from a Twitter data set. Our Twit-
ter data set consisted of about one percent of all tweets obtained by sampling
from a tweeter stream. For our Twitter data sets from July and August 2012,
we extracted 1, 115, 726 users whose number of tweet samples were between 15
and 25. Then, we made event sequences from the tweeted words except for the
most frequent 300 words used as stop words and their tweeted times for each
user. Then, we made input sequences for July and August by concatenating the
event sequences for every user, where the number of events n and the alphabet

130 T. Katoh et al.

Table 1. The most frequent partite episodes P i (1 ≤ i ≤ 4) such that ‖P i‖ = 3 and
their supports for real-world datasets.

Data set C D Most frequent episode (Support %)

July ∈1, 2∩ ∈{olympic}, ∅∩ P 1 = ∈{olympic}, {jordan,win}∩ (0.0000923563)
July ∈2, 1∩ ∈∅, {olympic}∩ P 2 = ∈{olympic,win}, {olympic}∩ (0.0000956826)
August ∈1, 2∩ ∈{olympic}, ∅∩ P 3 = ∈{olympic}, {medal , gold}∩ (0.0000628452)
August ∈2, 1∩ ∈∅, {olympic}∩ P 4 = ∈{ceremony , closing}, {olympic}∩ (0.0000630654)

size s of the real-world event sequence was n = 69, 345, 247 and s = 86, 243, 716
for July, and n = 70, 218, 644 and s = 87, 621, 968 for August.

Experiments. Table 1 shows the most frequent partite episodes P i (1 √ i √ 4)
such that ‖P i‖ = 3 extracted from the real-world event sequences by algorithm
PartiteCD with the window width w = 86, 400 s (24 h), and the shape and
pattern constraints C and D, where the events describe the words in tweet. For
example, episode P 1 says that both the words jordan and win were tweeted after
a word olympic was tweeted within 24 h. We can observe that the most frequent
pair of words related to the word olympic depends on the temporal relation to
the word olympic, and it also depends on the input data set.

On the experiment of Table 1, algorithm PartiteCD ran in 175.1 s and out-
put 956 episodes including P 1 under the minimum support δ́ = 0.00001%, the
shape constraint C = ≈1, 2∗, and the pattern constraint D = ≈{olympic}, ∩∗. In
this case, we could not extract episodes within 86, 400 s (24 h) without constraint
because there exists a large number (more than 8, 639, 000) of frequent episodes.

5.4 Summary of Experiments

Overall, we conclude that the partwise constraint reduces the number of outputs
and the proposed algorithm handles the constraint much more efficiently than
the straightforward algorithm using post-processing steps. In other words, by
using our algorithm with our constraint, we can extract partite episodes on
which we focused with lower frequency thresholds for larger input data in the
same running time.

6 Conclusion

This paper studied the problem of frequent partite episode mining with partwise
constraints. We presented an algorithm that finds all frequent partite episodes
satisfying a partwise constraint in an input sequence. Then, we showed that our
algorithm runs in the output polynomial time and polynomial space. We reported
the experimental results that compare the performance of our algorithm and
other straightforward algorithms. Both the theoretical and experimental results

Mining Frequent Partite Episodes with Partwise Constraints 131

showed that our algorithm efficiently extracts episodes on which we focused.
Thus, we conclude that our study improved the efficiency of data mining.

A possible future path of study will be the extension of PartiteCD for
the class of proper partite episodes to reduce redundant outputs by traversing
a search tree containing only proper partite episodes satisfying a pattern con-
straint. Our future work will also include the application of our algorithm to
other real-world data sets in addition to Twitter data.

References

1. Arimura, H., Uno, T.: A polynomial space and polynomial delay algorithm for
enumeration of maximal motifs in a sequence. In: Deng, X., Du, D.-Z. (eds.) ISAAC
2005. LNCS, vol. 3827, pp. 724–737. Springer, Heidelberg (2005)

2. Avis, D., Fukuda, K.: Reverse search for enumeration. Discrete Appl. Math. 65,
21–46 (1996)

3. Katoh, T., Arimura, H., Hirata, K.: Mining frequent k -partite episodes from event
sequences. In: Nakakoji, K., Murakami, Y., McCready, E. (eds.) JSAI-isAI 2009.
LNCS (LNAI), vol. 6284, pp. 331–344. Springer, Heidelberg (2010)

4. Katoh, T., Hirata, K.: A simple characterization on serially constructible episodes.
In: Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD 2008. LNCS
(LNAI), vol. 5012, pp. 600–607. Springer, Heidelberg (2008)

5. Ma, X., Pang, H., Tan, K.L.: Finding constrained frequent episodes using minimal
occurrences. In: ICDM, pp. 471–474 (2004)

6. Mannila, H., Toivonen, H., Verkamo, A.I.: Discovery of frequent episodes in event
sequences. Data Min. Knowl. Disc. 1(3), 259–289 (1997)

7. Méger, N., Rigotti, C.: Constraint-based mining of episode rules and optimal win-
dow sizes. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.)
PKDD 2004. LNCS (LNAI), vol. 3202, pp. 313–324. Springer, Heidelberg (2004)

8. Ohtani, H., Kida, T., Uno, T., Arimura, H.: Efficient serial episode mining with
minimal occurrences. In: ICUIMC, pp. 457–464 (2009)

9. Pei, J., Han, J., Mortazavi-Asi, B., Wang, J.: Mining sequential patterns by
pattern-growth: the PrefixSpan approach. IEEE Trans. Knowl. Data Eng. 16(11),
1–17 (2004)

10. Pei, J., Han, J.: Can we push more constraints into frequent pattern mining? In:
KDD, pp. 350–354 (2000)

11. Pei, J., Han, J., Wang, W.: Mining sequential patterns with constraints in large
databases. In: CIKM, pp. 18–25. ACM (2002)

12. Seipel, D., Neubeck, P., Köhler, S., Atzmueller, M.: Mining complex event patterns
in computer networks. In: Appice, A., Ceci, M., Loglisci, C., Manco, G., Mas-
ciari, E., Ras, Z.W. (eds.) NFMCP 2012. LNCS, vol. 7765, pp. 33–48. Springer,
Heidelberg (2013)

13. Tatti, N., Cule, B.: Mining closed strict episodes. Data Min. Knowl. Disc. 25(1),
34–66 (2012)

14. Uno, T.: Two general methods to reduce delay and change of enumeration algo-
rithms. Technical report. National Institute of Informatics (2003)

15. Zhou, W., Liu, H., Cheng, H.: Mining closed episodes from event sequences effi-
ciently. In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds.) PAKDD 2010, Part
I. LNCS, vol. 6118, pp. 310–318. Springer, Heidelberg (2010)

Structure Determination and Estimation
of Hierarchical Archimedean Copulas
Based on Kendall Correlation Matrix

Jan Górecki1(B) and Martin Holeňa2

1 Department of Informatics, SBA in Karvina,
Silesian University in Opava, Karvina, Czech Republic

gorecki@opf.slu.cz
2 Institute of Computer Science,

Academy of Sciences of the Czech Republic,
Praha, Czech Republic
martin@cs.cas.cz

Abstract. An estimation method for the copula of a continuous mul-
tivariate distribution is proposed. A popular class of copulas, namely
the class of hierarchical Archimedean copulas, is considered. The pro-
posed method is based on the close relationship of the copula structure
and the values of Kendall’s tau computed on all its bivariate margins. A
generalized measure based on Kendall’s tau adapted for purposes of the
estimation is introduced. A simple algorithm implementing the method
is provided and its effectiveness is shown in several experiments includ-
ing its comparison to other available methods. The results show that the
proposed method can be regarded as a suitable alternative to existing
methods in the terms of goodness of fit and computational efficiency.

Keywords: Copula · Hierarchical Archimedean copula · Copula esti-
mation · Structure determination · Kendall’s correlation coefficient

1 Introduction

Studying relationships among random quantities is a crucial task in the field of
knowledge discovery and data mining (KDDM). Having a dataset collected, the
relationships among the observed variables can be studied by means of an appro-
priate measure of stochastic dependence. Under assumption of the multivariate
continuous distribution of the variables, the famous Sklar’s theorem [29] can be
used to decompose the distribution in two components. While the first compo-
nent describes the distributions of the univariate margins, the second component
describes the copula of the distribution containing the whole information about
the relationship among the variables. Thus, studying dependencies among the
random variables can be restricted without any loss of generality to studying the
copula.

A. Appice et al. (Eds.): NFMCP 2013, LNAI 8399, pp. 132–147, 2014.
DOI: 10.1007/978-3-319-08407-7 9, c© Springer International Publishing Switzerland 2014

Structure Determination and Estimation of HACs 133

Despite the fact that copulas have most success in finance, they are increas-
ingly adopted also in KDDM, where they are used due to their effective mathe-
matical ability to capture even very complex dependence structures among vari-
ables. We can see applications of copulas in water-resources and hydro-climatic
analysis [4,13,14,17,19], gene analysis [18,31], cluster analysis [3,15,26] or in
evolution algorithms, particularly in the estimation of distribution algorithms
[7,30]. For an illustrative example, we refer to [13], where the task for anomaly
detection in climate that incorporates complex spatio-temporal dependencies is
solved using copulas.

Hierarchical Archimedean copulas (HACs) are a frequently used alternative
to the most popular Gaussian copulas due to their flexibility and conveniently
limited number of parameters. Despite their popularity, feasible techniques for
HAC estimation are addressed only in few papers. Most of them assume in the
estimation process a given structure of a copula, which is motivated trough appli-
cations in economy, see [27,28]. There exists only one recently published paper
[23], which addresses the estimation technique generally, i.e., the estimation also
concerns the proper structure determination of the HAC.

The mentioned paper describes a multi-stage procedure, which is used both for
the structure determination and the estimation of the parameters. The authors
devote mainly to the estimation of the parameters using the maximum-likelihood
(ML) technique and briefly mention its alternative, which uses for the parame-
ters estimation the relationship between the copula parameter and the value of
Kendall’s tau computed on a bivariate margin of the copula (shortly, θ − τ rela-
tionship). The authors present six approaches denoted as τΔτ>0, τbinary, Chen,
θbinary, θbinary aggr. and θRML to the structure determination. The first two
approaches are based on the θ−τ relationship, the third approach is based on the
Chen test statistics [2] and the last three approaches are based on the ML tech-
nique. The first five approaches lead to biased estimators, what can be seen in
the results of the attached simulation study, and the sixth (θRML) is used for re-
estimation and thus for better approximation of the parameters of the true cop-
ula. θRML shows the best goodness-of-fit (measured by Kullback-Leibler diver-
gence) of the resulting estimates. However, the best approximation of the true
parameters with θRML is possible only in the cases, when the structure is prop-
erly determined (the estimated structure equals the true structure). But, as θRML

is based on the biased θbinary aggr., which often does not return the true structure
due to the involved bias, θRML also cannot return close approximation of the true
parameters in the cases, when the structure is determined improperly. Moreover,
the number of those cases rapidly increases with the increasing data dimension,
as we show later in Sect. 4.

In our paper, we propose the construction of the estimator for HACs that
approximates the parameters of the true copula better than the previously
mentioned methods, and thus also increases the ratio of properly determined
structures. Avoiding the need of re-estimation, we also gain high computa-
tional efficiency. The included experiments on simulated data show that our
approach outperforms all the other above mentioned methods in the sense of

134 J. Górecki and M. Holeňa

goodness-of-fit, the properly determined structures ratio and also in the time
consumption, which is even slightly lower than the most efficient binary meth-
ods τbinary, θbinary.

The paper is structured as follows. The next section summarizes some nec-
essary theoretical concepts concerning Archimedean copulas (ACs) and HACs.
Section 3 presents the new approach to the HAC estimation. Section 4 describes
the experiments and their results and Sect. 5 concludes this paper.

2 Preliminaries

2.1 Copulas

Definition 1. For every d ≈ 2, a d-dimensional copula (shortly, d-copula) is
a d-variate distribution function on I

d (I is the unit interval), whose univariate
margins are uniformly distributed on I.

Copulas establish a connection between general joint distribution functions
(d.f.s) and its univariate margins (in text below we use only margin for term
univariate margin), as can be seen in the following theorem.

Theorem 1. (Sklar’s Theorem) [29] Let H be a d-variate d.f. with univariate
margins F1, ..., Fd. Let Aj denote the range of Fj, Aj := Fj(R)(j = 1, ..., d),R :=
R ∗ {−√,+√}. Then there exists a copula C such for all (x1, ..., xd) ∀ R

d
,

H(x1, ..., xd) = C(F1(x1), ..., Fd(xd)). (1)

Such a C is uniquely determined on A1 × ... × Ad and, hence, it is unique if
F1, ..., Fd are all continuous. Conversely, if F1, ..., Fd are univariate d.f.s, and if
C is any d-copula, then the function H : R

d ∞ I defined by (1) is a d-dimensional
distribution function with margins F1, ..., Fd.

Through the Sklar’s theorem, one can derive for any d-variate d.f. its copula
C using (1). In case that the margins F1, ..., Fd are all continuous, the copula
C is given by C(u1, ..., ud) = H(F−

1 (u1), ..., F−
d (ud)), where F−

i , i ∀ {1, ..., d}
denotes pseudo-inverse of Fi given by F−

i (s) = inf{t| Fi(t) ≈ s}, s ∀ I. Many
classes of copulas are derivable in this way from popular joint d.f.s, e.g., the
most popular class of Gaussian copulas is derived using H corresponding to a
d-variate Gaussian distribution. But, using this process often results in copulas
not expressible in closed form, what can bring difficulties in some applications.

2.2 Archimedean Copulas

This drawback is overcame while using (exchangeable) Archimedean copulas,
due to their different construction process. ACs are not constructed using the
Sklar’s theorem, but instead of it, one starts with a given functional form and
asks for properties needed to obtain a proper copula. As a result of such a
construction, ACs are always expressed in closed form, which is one of the main
advantages of this class of copulas [10]. To construct ACs, we need the notion of
an Archimedean generator and of complete monotonicity.

Structure Determination and Estimation of HACs 135

Definition 2. Archimedean generator (shortly, generator) is a continuous, non-
increasing function ψ : [0,√] ∞ [0, 1], which satisfies ψ(0) = 1, ψ(√) = limt∈∞
ψ(t) = 0 and is strictly decreasing on [0, inf{t : ψ(t) = 0}]. We denote the set of
all generators as Ψ .

Definition 3. A function f is called completely monotone (shortly, c.m.) on
[a, b], if (−1)kf (k)(x) ≈ 0 holds for every k ∀ N0, x ∀ (a, b). We denote the set
of all completely monotonous generators as Ψ∞.

Definition 4. Any d-copula C is called Archimedean copula (we denote it d-
AC), if it admits the form

C(u) := C(u;ψ) := ψ(ψ−1(u1) + ... + ψ−1(ud)),u ∀ I
d, (2)

where ψ ∀ Ψ and the ψ−1 : [0, 1] ∞ [0,√] is defined ψ−1(s) = inf{t : ψ(t) =
s}, s ∀ I.

For verifying whether function C given by (2) is a proper copula, we can use
the property stated in Definition 3. A condition sufficient for C to be a copula
is stated as follows.

Theorem 2. [21] If ψ ∀ Ψ is completely monotone, then the function C given
by (2) is a copula.

We can see from Definition 4 and from the properties of generators that hav-
ing a random vector U distributed according to some AC, all its k-dimensional
(k < d) marginal copulas have the same marginal distribution. It implies that
all multivariate margins of the same dimension are equal, thus, e.g., the depen-
dence among all pairs of components is identical. This symmetry of ACs is often
considered to be a rather strong restriction, especially in high dimensional appli-
cations.

Given the number of variables, to derive the explicit form of an AC to work
with, we need the explicit form of generators. The reader can find many explicit
forms of the generators in, e.g., [22]. In this paper, we use and present only the
Clayton generator, defined (1 + t)−1/θ, which corresponds to the family of the
Clayton copulas. Copulas based on this generator have been used, e.g., to study
correlated risks, because they exhibit strong left tail dependence and relatively
weak right tail dependence. The explicit parametric form of a bivariate Clayton
copula is C(u1, u2;ψ) =

(
u1

−θ + u2
−θ − 1

)− 1
θ [22].

2.3 Hierarchical Archimedean Copulas

To allow for asymmetries, one may consider the class of HACs (often also called
nested Archimedean copulas), recursively defined as follows.

Definition 5. [11] A d-dimensional copula C is called hierarchical Archimedean
copula if it is an AC with arguments possibly replaced by other hierarchical
Archimedean copulas. If C is given recursively by (2) for d = 2 and

C(u;ψ1, ..., ψd−1) = ψ1(ψ−1
1 (u1) + ψ−1

1 (C(u2, ..., ud;ψ2, ..., ψd−1))),u ∀ I
d, (3)

136 J. Górecki and M. Holeňa

for d ≈ 2, C is called fully-nested hierarchical Archimedean copula (FHAC)1

with d − 1 nesting levels. Otherwise C is called partially-nested hierarchical
Archimedean copula (PHAC)2.

Remark 1. We denote a d-dimensional HAC as d-HAC, and analogously d-FHAC
and d-PHAC.

From the definition, we can see that ACs are special cases of HACs. The
most simple proper 3-PHAC is with two nesting levels. The copula is given by

C(u;ψ1, ψ2) = C(u1, C(u2, u3;ψ2);ψ1)
= ψ1(ψ−1

1 (u1) + ψ−1
1 (ψ2(ψ−1

2 (u2) + ψ−1
2 (u3)))),u ∀ I

3. (4)

As in the case of ACs, we can ask for necessary and sufficient condition for
the function C given by (3) to be a proper copula. Partial answer to this question
in form of sufficient condition is contained in the following theorem.

Theorem 3. (McNeil (2008)) [20] If ψj ∀ Ψ∞, j ∀ {1, ..., d − 1} such that
ψ−1

k ≤ ψk+1 have completely monotone derivatives for all k ∀ {1, ..., d − 2}, then
C(u;ψ1, ..., ψd−1), u ∀ I

d, given by (3) is a copula.

McNeil’s theorem is stated only for fully-nested HACs, but it can be eas-
ily translated also for use with partially-nested HACs (for more see [20]). The
condition for (ψ−1

1 ≤ ψ2)∗ to be compete monotone is often called the nesting
condition.

A d-HAC structure, which is given by the recursive nesting in the definition,
can be expressed as a tree with k ∈ d − 1 non-leaf nodes (shortly, nodes), which
correspond to the generators ψ1, ..., ψk, and d leafs, which correspond to the
variables u1, ..., ud. If the structure corresponds to a binary tree, then k = d− 1.
In other case k < d − 1. Thus, a HAC structure is viewed as a tree in the next
text. Also, for the sake of simplicity, we assume only binary HAC structures.

Let s be the structure of a d-HAC. Each 2-AC is determined just by its
corresponding generator, and, if we identify each node in s with one generator,
we have always nodes ψ1, ..., ψd−1. For a node ψ denote as Dn(ψ) the set of all
descendant nodes of ψ, P(ψ) the parent node of ψ, Hl(ψ) the left child of ψ and
Hr(ψ) the right child of ψ.

For simplicity, a d-HAC structure s is denoted as a sequence of reordered
indices {1, ..., d} using parentheses to mark the variables with the same parent
node. For example, the structure of the copula given by (4) is denoted as (1(23)).
The inner parenthesis corresponds to the fact that for the variables u2, u3 is
P(u2) = P(u3) = ψ2. As u2, u3 are connected through their parent, we can
introduce a new variable denoted as z23, which represents the variables u2, u3

and is defined as z23 = C(u2, u3;ψ2). Then (4) turns in ψ1(ψ−1
1 (u1)+ψ−1

1 (z23)) =
C(u1, z23;ψ1), and thus the outer parenthesis in the notation of the structure
corresponds to the fact that for the variables u1, z23 is P(u1) = P(z23) = ψ1.
1 Sometimes called fully-nested Archimedean copula.
2 Sometimes called partially-nested Archimedean copula.

Structure Determination and Estimation of HACs 137

u1 u2

z12

u3 u4 u5

z45

z3(45)

z(12)(3(45))

u1 u2 u3

z23

u4 u5

z45

z(23)(45)

z1((23)(45))

Fig. 1. On the left side is depicted the 5-PHAC structure denoted as ((12)(3(45))) and
on the right side is depicted the 5-PHAC structure denoted as (1((23)(45))).

The structure of the 4-FHAC given as in Definition 5 is denoted as (1(2(34))),
for 5-FHAC, it is (1(2(3(45)))), etc. Analogously, for PHACs, ((12)(3(45))) and
(1((23)(45))) denote the structures depicted on the left and the right side in
Fig. 1.

When using HACs in applications, there exist, for example for d = 10, more
than 280 millions of possible HAC structures (including also non-binary ones)
and each 10-HAC can incorporate up to 9 parameters (using only one-parametric
generators) in generators from possibly different families. If choosing the model
that the best fit the data, this is much more complex situation relative to the
case when using ACs, which have just one structure, one parameter and one
Archimedean family.

To derive the explicit parametric form a d-HAC C, we need the explicit
parametric forms of its generators ψ1, ..., ψd−1, which involve the parameters
θ1, ..., θd−1 (θi corresponds to the generator ψi, i = 1, ..., d − 1), and its struc-
ture s. Due to this, the copula C is also denoted as C(ψ, θ; s)(u1, ..., ud) in
the rest of the text. For example, the 3-HAC that is given by (4) and assum-
ing both of its generators ψ1, ψ2 to be Clayton generators, can be denoted as
C(ψ1, ψ2, θ1, θ2; (1(23))) and its parametric form is given as

C(ψ1, ψ2, θ1, θ2; (1(23))) =
(((

u2
−θ2 + u3

−θ2 − 1
)− 1

θ2

)−θ1

+ u1
−θ1 − 1

)− 1
θ1

.

(5)

2.4 Kendall’s Tau and Its Generalization

The standard definition of Kendall’s tau for two random variables X,Y is given
as follows. Let (X1, Y1) and (X2, Y2) be independent random vectors with the
same distribution as (X,Y). Then the population version of Kendall’s tau is
defined as the probability of concordance minus the probability of discordance,
i.e.,

τ = τXY = P ((X1 − X2)(Y1 − Y2) > 0) − P ((X1 − X2)(Y1 − Y2) < 0). (6)

138 J. Górecki and M. Holeňa

As we are interested in Kendall’s tau relationship to a general bivariate copula,
we use its definition given by (as in [4])

τ(C) = 4
∫

I2
C(u1, u2)dC(u1, u2) − 1. (7)

If C is a 2-AC based on a generator ψ, and ψ depends on the parameter θ ∀ R,
then (7) states an explicit relationship between θ and τ , which can be often
expressed in a closed form. For example, if C is a Clayton copula, we get τ =
θ/(θ + 2) (the relationship between θ and τ for other generators can be found,
e.g., in [10]). The inversion of this relationship establish an estimator of the
parameter θ, which can be based on the empirical version of τ given by (as in
[4])

τn =
4

n(n − 1)

n∑

i=1,j=1

1{(ui1−uj1)(ui2−uj2)>0}, (8)

where (u•1, u•2) denotes the realizations of r.v.s (U1, U2) ∼ C.
This estimation method was introduced in [5] as a method-of-moments esti-

mator for bivariate one-parameter Archimedean copulas. The copula parameter
θ ∀ Θ ∩ R is estimated by θ̂n such that τ(θ̂n) = τn, where τ(θ) denotes Kendall’s
tau of the corresponding Archimedean family viewed as a function of the para-
meter θ ∀ Θ ∩ R, i.e., that θ̂n = τ−1(τn), assuming the inverse τ−1 of τ exists.
If the equation has no solution, this estimation method does not lead to an esti-
mator. Unless there is an explicit form for τ−1, θ̂n is computed by numerical
root finding [12].

This estimation method can also be generalized for ACs when d > 2, see [1,
12,16,28]. The generalized method is using pairwise sample version of Kendall’s
tau. If τn

ij denotes the sample version of Kendall’s tau between the i-th and j-th
data column, then θ is estimated by

θ̂n = τ−1

((
d

2

)−1 ∑

1ℵiℵjℵd

τn
ij

)

. (9)

As can be seen, the parameter is chosen such that Kendall’s tau equals the
average over all pairwise sample versions of Kendall’s tau. Properties of this
estimator are not known and also not easy to derive since the average is taken
over dependent data columns [12]. However,

(
d
2

)−1 ∑
1ℵiℵjℵd τn

ij is an unbiased
estimator of τ(θ). This is an important property and we transfer it later to
the estimator that we use for the structure determination, which we base on
appropriately selected pairwise sample versions of Kendall’s tau.

To use the generalized method mentioned in the previous paragraph with
HACs, we define a generalization of τ for m (possibly > 2) random variables
(r.v.s). For simplification denote the set of pairs of r.v.s as UIJ = {(Ui, Uj)|(i, j)∀
I × J}, where I, J ∼ {1, ..., d}, I �= ∅ �= J, (U1, ..., Ud) ∼ C, C is a d-HAC.

Structure Determination and Estimation of HACs 139

Definition 6. Let τ be the Kendall’s tau, g : [0, 1]k ∞ [0, 1], k ∀ N, be an
aggregation function (like, e.g., max, min or mean), which has the following
properties: 1) g(u, ..., u) = u for all u ∀ I and 2) g(up1 , ..., upk

) = g(u1, ..., uk) for
all u1, ..., uk ∀ I and all permutations p of {1, ..., k}. Then define an aggregated
Kendall’s tau τg as

τg(UIJ) =
{

τ(Ui, Uj) if I = {i}, J = {j}
g(τ(Ui1 , Uj1), τ(Ui1 , Uj2), ..., τ(Uil

, Ujq
)), else, (10)

where I = {i1, ..., il}, J = {j1, ..., jq} are non-empty disjoint subsets of {1, ..., d}.
As the aggregated τg depends only on the pairwise τ and the aggregation

function g, we can easily derive its empirical version τg
n just by substituting τ

in τg by its empirical version τn given by (8). Then, analogously to the case of
ACs, the parameter is estimated as θ̂n = τ−1(τg

n). But, as all bivariate margins
of a HAC are not assumed to be identical, each estimate is computed just on
some appropriately selected ones. This is later explained by Remark 2.

2.5 Okhrin’s Algorithm for the Structure Determination of HAC

We recall the algorithm presented in [24] for the structure determination of HAC,
which returns for some unknown HAC C its structure using only the known forms
of its bivariate margins. The algorithm uses the following definition.

Definition 7. Let C be a d-HAC with generators ψ1, ..., ψd−1 and (U1, ..., Ud) ∼
C. Then denote as UC(ψk), k = 1, ..., d−1, the set of indexes UC(ψk) = {i|(∃Uj)
(Ui, Uj) ∼ C(·;ψk) ◦ (Uj , Ui) ∼ C(·;ψk), 1 ∈ i < j ∈ d}, k = 1, ..., d − 1.

Proposition 1. [24] Defining UC(ui) = {i} for the leaf i, 1 ∈ i ∈ d, there is an
unique disjunctive decomposition of UC(ψk) given by

UC(ψk) = UC(Hl(ψk)) ∗ UC(Hr(ψk)). (11)

For an unknown d-HAC C, knowing all its bivariate margins, its structure can
be easily determined using Algorithm 1. We start from the sets UC(u1), ...,UC(ud)
joining them together through (11) until we reach the node ψ for which UC(ψ) =
{1, ..., d}.

We illustrate the Algorithm 1 for a 5-HAC given by C(C(u1, u2;ψ2), C(u3, C(
u4, u5;ψ4);ψ3);ψ1) = C(ψ1, ..., ψ4; ((12)(3(45))))(u1, ..., u5). The structure of
this copula is depicted on the left side in Fig. 1 and its bivariate margins are:

(U1, U2) ∼ C(·;ψ2) (U1, U3) ∼ C(·;ψ1) (U1, U4) ∼ C(·;ψ1) (U1, U5) ∼ C(·;ψ1)
(U2, U3) ∼ C(·;ψ1) (U2, U4) ∼ C(·;ψ1) (U2, U5) ∼ C(·;ψ1) (U3, U4) ∼ C(·;ψ3)
(U3, U5) ∼ C(·;ψ3) (U4, U5) ∼ C(·;ψ4)

Now assume that the structure is unknown and only the bivariate margins
are known. We see that UC(ψ1) = {1, 2, 3, 4, 5}, UC(ψ2) = {1, 2}, UC(ψ3) =
{3, 4, 5},UC (ψ4) = {4, 5}. For leafs u1, ..., u5, it is defined UC(ui) = {i},

140 J. Górecki and M. Holeňa

Algorithm 1. The HAC Structure Determination [24]
Input:
1) UC(ψ1), ..., UC(ψd−1),
2) I = {1, ..., d − 1}

while I ∈= ∩ do
1. k = argmini∈I(#UC(ψi)), if there are more minima, then choose as k one of
them arbitrarily.
2. Find the nodes ψl, ψr, for which UC(ψk) = UC(ψl) ≤ UC(ψr).
3. Hl(ψk) := ψl, Hr(ψk) := ψr.
4. Set I := I\{k}.

end while

Output:
The structure stored in Hl(ψk), Hr(ψk), k = 1, ..., d − 1

i = 1, ..., 5. In step 1., there are two minima: k = 2 and k = 4. We choose
arbitrarily k = 4. As UC(ψ4) = UC(u4) ∗ UC(u5), we set in step 3. Hl(ψ4) := u4

and Hr(ψ4) := u5. In step 4., we set I = {1, 2, 3}. In the second loop, k = 2. As
UC(ψ2) = UC(u1) ∗ UC(u2), we set in step 3. Hl(ψ2) := u1 and Hr(ψ2) := u2.
In the third loop, we have k = 3. As UC(ψ3) = UC(u3) ∗ UC(ψ4), we set in
step 3. Hl(ψ3) := u3 and Hr(ψ3) := ψ4. In the last loop, we have k = 1. As
UC(ψ1) = UC(ψ2) ∗ UC(ψ3), we set in step 3. Hl(ψ1) := ψ2 and Hr(ψ1) := ψ3.
Observing the original copula form and Fig. 1, we see that we have determined
the correct structure, which is stored in Hl(ψk),Hr(ψk), k = 1, ..., 4.

3 Our Approach

3.1 HAC Structure Determination

Recalling Theorem 3, the sufficient condition for C to be a proper copula is that
the nesting condition must hold for each generator and its parent in a HAC
structure. As this is the only known condition that assures that C is a proper
copula, we deal in our work only with the copulas that fulfill this condition. The
nesting condition results in constraints on the parameters θ1, θ2 of the involved
generators ψ1, ψ2 (see [10,11]). As θi, i = 1, 2 is closely related to τ through (7),
there is also an important relationship between the values of τ and the HAC tree
structure following from the nesting condition. This relationship is described for
the fully-nested 3-HAC given by the form (4) in Remark 2.3.2 in [10]. There, it
is shown that if the nesting condition holds for the parent-child pair (ψ1, ψ2),
then 0 ∈ τ(ψ1) ∈ τ(ψ2) (as we deal only with HACs with binary structures,
which are fully determined by its generator, we use as the domain of τ the set
Ψ instead of the usually used set of all 2-copulas). We generalize this statement,
using our notation, as follows.

Structure Determination and Estimation of HACs 141

Algorithm 2. The HAC Structure Determination Based on τ

Input:
1) I = {1, ..., d},
2) (U1, ..., Ud) ∼ C,
3) τg ... an aggregated Kendall’s tau,
4) zk = uk, UC(zk) = UC(uk) = {k}, k = 1, ..., d

The structure determination:
for k = 1, ..., d − 1 do

1. (i, j) := argmax
i∗<j∗,i∗∈I,j∗∈I

τg(UUC(zi∗)UC(zj∗))

2. UC(zd+k) := UC(zi) ≤ UC(zj)
3. I := I ≤ {d + k}\{i, j}

end for

Output:
UC(zd+k), k = 1, ..., d − 1

Proposition 2. Let C be a d-HAC with the structure t and the generators
ψ1, ..., ψd−1, where each parent-child pair satisfy the nesting condition. Then
τ(ψi) ∈ τ(ψj),where ψj ∀ Dn(ψi), holds for each ψi, i = 1, ..., d − 1.

Proof. As ψj ∀ Dn(ψi), there exists a unique sequence ψk1 , ..., ψkl
, where 1 ∈

km ∈ d − 1,m = 1, ..., l, l ∈ d − 1, ψk1 = ψi, ψkl
= ψj and ψk−1 = P(ψk) for

k = 2, ..., l. Applying the above mentioned remark for each pair (ψk−1, ψk), k =
2, ..., l, we get τ(ψk1) ∈ ... ∈ τ(ψkl

). �

Thus, having a branch from t, all its nodes are uniquely ordered according to their
value of τ assuming unequal values of τ for all parent-child pairs. This provides
an alternative algorithm for the HAC structure determination. We have to assign
the generators with the highest values of τ to the lowest levels of the branches in
the structure and ascending to higher levels we assign the generators with lower
values of τ .

Remark 2. τ(ψk) = τg(UUC(Hl(ψk))UC(Hr(ψk))) for a d-HAC C and for each k =
1, ..., d − 1. This is because the bivariate margins Cij , (i, j) ∀ UC(Hl(ψk)) ×
UC(Hr(ψk)) of C are all equal and g(u, ..., u) = u for all u ∀ I. Thus τ(ψk)
depends only on the population version of Kendall correlation matrix.

Computing τ(ψk), k = 1, ..., d−1 using Remark 2 and following Proposition 2
leads to the alternative algorithm for HAC structure determination. The algo-
rithm is summarized in Algorithm 2 and can be used for arbitrary d > 2 (see [8]
for more details including an example for d = 4). It returns the sets UC(zd+k+1)
corresponding to the sets UC(ψk), k = 1, ..., d − 1. Passing them to Algorithm 1,

142 J. Górecki and M. Holeňa

we avoid their computation from Definition 7 and we get the requested d-HAC
structure without a need of knowing the forms of the bivariate margins. Assum-
ing a family for each ψk, θ − τ relationship for the given family can be used to
obtain the parameters, i.e., θk = τ−1

θ (τ(ψk)), k = 1, ..., d − 1, where τ−1
θ denotes

the θ − τ relationship, e.g., for Clayton family τ−1
θ (τ) = 2τ/(1 − τ). Hence we

get together with the structure the whole copula.

3.2 HAC Estimation

Using τg
n instead of τg, we can easily derive the empirical version of the structure

determination process represented by Algorithms 1, 2. In this way, we base the
structure determination only on the values of the pairwise τ . This is an essential
property of our approach. Using the θ−τ relationship established through (7) for
some selected Archimedean family, whole HAC, including its structure and its
parameters, can be estimated just from Kendall correlation matrix computed for
the realizations of (U1, ..., Ud), assuming all the generators to be from a selected
Archimedean family.

The proposed empirical approach is summarized in Algorithm 3. The Kendall
correlation matrix (τn

ij) is computed for the realizations of the pairs (Ui, Uj), 1 ∈
i < j ∈ d using (8). The algorithm returns the parameters θ̂1, ..., θ̂d−1 of the
estimate Ĉ and the sets UĈ(zd+k) corresponding to the sets UĈ(ψk), k = 1, ..., d−
1. Passing the sets to Algorithm 1 we get the requested Ĉ structure.

Ifg issettobetheaveragefunction,andasτavg
n (θk) = g((τn

ĩj̃
)(̃i,j̃)≥UĈ(zi)×UĈ(zj)

),
where i, j are the indices found in step 1. of the algorithm, then τavg

n (θk) is an unbi-
ased estimator of τ(θk), and thus the structure determination is based only on unbi-
ased estimates, what is another favourable property of the proposed method.

Due to the nesting condition, the parameter θ̂k is trimmed in step 3. in order
to obtain the resulting estimate as a proper d-HAC. Note that if we allow the
generators to be from different Archimedean families, the task is much more
complex, and we do not concern it in the paper due to space limitations and
refer the reader to [9,10].

Note that the proposed algorithm is just a variation of another famous algo-
rithm, namely the algorithm for agglomerative hierarchical clustering (AHC).
Defining δij = 1 − τn

ij we establish δij to be a standardly used distance between
the random variables Ui, Uj . Setting g to be the aggregation function min,
avg or max, the algorithm results in (due to δij = 1 − τn

ij) complete-linkage,
average-linkage or single-linkage AHC, respectively. As most of statistical soft-
wares include an implementation of AHC, the implementation of the proposed
algorithm is straightforward. Moreover, adding the dendrogram obtained during
AHC makes the result even more understandable to the user.

Structure Determination and Estimation of HACs 143

Algorithm 3. The HAC Estimation
Input:

1) (τn
ij) {...Kendall correlations matrix},

2) g {...an aggregation function},
3) I = {1, ..., d},
4) zi = ui, i = 1, ..., d,
5) Archimedean family based on generator ψ and corresponding τ−1

θ

Estimation:
for k = 1, ..., d − 1 do

1. (i, j) := argmax
ĩ<j̃,̃i∈I,j̃∈I

g((τn
˜̃i˜̃j

)
(̃̃i,˜̃j)∈U

Ĉ
(z

ĩ
)×U

Ĉ
(z

j̃
)
)

2. θ̂k := τ−1
θ

(
g((τn

ĩj̃
)(̃i,j̃)∈U

Ĉ
(zi)×U

Ĉ
(zj)

)
)

3. θ̂k := min(θ̂k, θ̂i, θ̂j)
4. zd+k := C(ui, uj ; ψ)
5. UĈ(zd+k) := UĈ(zi) ≤ UĈ(zj)
6. I := I ≤ {d + k}\{i, j}

end for

Output:
θ̂k, UĈ(k), k = 1, ..., d − 1

4 Experiments

We performed a large number of different experiments on simulated data
involving different data dimensions, HAC structures, generators and parameters.
Due to space limitations we present only one experiment, where we compare the
proposed method with the other previously mentioned methods on simulated
data for d = 5, 6, 7, 9. We simulate 100 samples of size 500, i.e., 500 rows and d
columns of simulated data for each sample, according to [11] for 4 copula models
based on the Clayton generator. The first considered model is ((12) 3

4
(3(45) 4

4
) 3

4
) 2

4
.

The natural numbers in the model notation (as in [23]) are the indexes of the
copula variables, i.e., 1, ..., 5, the parentheses correspond to each UC(·) of individ-
ual copulas, i.e., UC(ψ1) = {1, 2},UC(ψ2) = {4, 5},UC(ψ3) = {3, 4, 5},UC(ψ4) =
{1, 2, 3, 4, 5}, and the subscripts are the model parameters, i.e., (θ1, θ2, θ3, θ4) =
(24 , 3

4 , 3
4 , 4

4). Note that the indexes of the 4 generators could be permuted arbitrar-
ily and the particular selection of their ordering serves just for better illustration.
The other 3 models are given with analogous notation as (1((23) 5

4
(4(56) 6

4
) 5

4
) 4

4
) 2

4
,

(1((23) 5
4
(4(5(67) 7

4
) 6

4
) 5

4
) 4

4
) 2

4
and ((1(2(34) 5

4
) 4

4
) 3

4
((56) 4

4
(7(89) 5

4
) 4

4
) 3

4
) 2

4
. The

smallest difference between the parameters is set to 1
4 . As we revealed, while we

experimented with different parameterizations, a larger difference in the parame-
ters could hide the impact of the bias of the concerned methods on the structure

144 J. Górecki and M. Holeňa

determination, and the results obtained by different methods can be similar in
some of those cases. Setting it to 1

4 fully reveals the impact of the bias and clearly
shows the difference among the methods.

The results for each model are shown in Table 1 and are separated by the
double lines. As we are interested in binary copulas, we choose for the comparison
the methods θbinary, θRML, τbinary, which return binary copula structures as
their results. The first 2 methods are based on ML estimation technique, whereas
the third method is based on the θ − τ relationship. To get the results we used
their R implementation described in [25]. Our method, implemented in Matlab,
is denoted as τavg

binary, i.e., the involved function g is selected to be the avg function
due to the previously mentioned reasons. As θRML failed in most cases for d ≈ 7,
the results for the method for those dimensions are not presented.

Firstly, we assess the ability of the methods to determine the true copula
structure correctly. This can be seen from the third and the fourth column.
The third column shows 3 the most frequent structures obtained by the method
(if the true structure was not the one of the 3 most frequent structures, then
we show the 2 most frequent structures and the true structure) with average
parameter values. The true structure is emphasized by bold text. The fourth
column shows the frequency of the structures. τavg

binary clearly dominates in all
four cases (d = 5, 6, 7, 9). The other methods show very poor ability to detect
the correct structure, especially for d ≈ 7, where, e.g., θbinary did not return the
correct structure for any among all 100 samples used.

Next, we assess the methods by means of goodness-of-fit. The results can be
seen in the fifth and the sixth column, where the statistics S(K), S(C) (described
in [6]) are computed on all bivariate margins and their maximum (the S(K), S(C)

for the worst fitted bivariate margin) is shown. τavg
binary also dominates in all four

cases. θRML shows also good results, but its time consumption for comparable
results is considerably higher. The remaining methods show poor results, what
is additionally illustrated by the discrepancy between the estimated average
parameter values shown in the third column and the true parameter values.

The next two columns show the average Frobenius norm of the difference
between the Kendall correlation matrix for the true model and the Kendall
correlation matrix for the estimated model and the average Frobenius norm
of the difference between the matrix of lower tail coefficients (cf. [22]) for the
true model and the matrix of lower tail coefficients for the estimated model (as
in [23]). The comparison results are similar to the goodness-of-fit comparison.
θRML shows slightly better results than τavg

binary and the remaining methods show
significant discrepancy between the theoretical and the empirical quantities.

The last column shows the average computing times needed for a single data
sample. τavg

binary is slightly better that the binary methods θbinary, τbinary, whereas
θRML shows significantly higher time consumption, particularly for d = 6.

Structure Determination and Estimation of HACs 145

T
a
b
le

1
.
T

h
e

re
su

lt
s
fo

r
th

e
co

p
u
la

m
o
d
el

s
fo

r
d

=
5
,6

,7
,9

.
T

h
e

co
lu

m
n
s
co

n
ta

in
m

et
h
o
d

n
a
m

es
;
th

e
3

m
o
st

fr
eq

u
en

t
es

ti
m

a
te

d
st

ru
ct

u
re

s
w

it
h

av
er

a
g
e

p
a
ra

m
et

er
va

lu
es

;
g
o
o
d
n
es

s-
o
f-
fi
t

st
a
ti

st
ic

s
S

(K
)
,S

(C
)

(d
es

cr
ib

ed
in

[6
])

;
th

e
F
ro

b
en

iu
s

n
o
rm

s
o
f

th
e

d
iff

er
en

ce
s

b
et

w
ee

n
es

ti
m

a
te

d
a
n
d

tr
u
e

K
en

d
a
ll

m
a
tr

ic
es

a
n
d

lo
w

er
ta

il
in

d
ic

es
;

th
e

es
ti

m
a
ti

o
n

ti
m

e
in

s.
T

h
e

va
lu

es
in

p
a
re

n
th

es
is

a
re

th
e

co
rr

es
p
o
n
d
in

g
st

a
n
d
a
rd

d
ev

ia
ti

o
n
s d

M
e
th

o
d

S
tr
u
c
tu

re
(s
)

%
S

(K
)

n
S

(C
)

n
A
v
g
.
e
rr
o
r
in

τ
λ
L

5
θ
b
i
n
a
r
y

(3
((
1
2
) 0

.7
7
(4

5
) 1

.0
1
) 0

.7
6
) 0

.2
4

7
9

2
.1
4
7
8
(0

.5
)

0
.7
2
0
6
(0

.3
)

0
.3
1
0
1
(0

.0
2
5
)

0
.6
3
0
6
(0

.0
4
)

0
.1
5
1
7
(0

.0
4
)

((
1
2
) 0

.6
9
(3

(4
5
) 1

.0
1
) 0

.7
2
) 0

.6
8

1
8

0
.4
8
9
7
(0

.2
1
)

0
.4
0
8
9
(0

.2
1
)

0
.1
4
2
6
(0

.0
2
4
)

0
.2
8
9
3
(0

.0
5
)

((
1
2
) 0

.6
1
(4

(3
5
) 0

.8
5
) 0

.7
1
) 0

.6
1

2
0
.5
5
4
6
(0

.2
2
)

0
.2
8
4
3
(0

.0
4
)

0
.1
2
0
8
(0

.0
2
)

0
.2
3
4
6
(0

.0
4
)

θ
R

M
L

((
1
2
) 0

.7
1
(3

(4
5
) 1

.0
0
) 0

.7
7
) 0

.5
4

5
2

0
.2
1
0
2
(0

.0
8
)

0
.2
4
2
6
(0

.1
1
)

0
.0
5
1
1
(0

.0
2
)

0
.1
0
1
6
(0

.0
5
)

0
.3
6
1
6
(0

.0
6
)

((
4
5
) 1

.0
1
(3

(1
2
) 0

.7
9
) 0

.7
2
) 0

.6
2

4
3

0
.4
9
5
9
(0

.2
8
)

0
.3
2
9
0
(0

.1
4
)

0
.1
3
3
9
(0

.0
1
8
)

0
.2
7
0
4
(0

.0
3
)

((
1
2
) 0

.8
0
(4

(3
5
) 0

.9
3
) 0

.8
1
) 0

.5
2

3
0
.3
0
9
0
(0

.1
2
)

0
.2
9
9
2
(0

.0
9
)

0
.0
9
7
3
(0

.0
2
6
)

0
.1
7
4
3
(0

.0
5
)

τ
b
i
n
a
r
y

((
1
2
) 0

.8
1
(3

(4
5
) 1

.0
4
) 0

.9
3
) 0

.8
9

4
6

1
.2
0
8
2
(0

.3
)

0
.5
3
3
3
(0

.2
2
)

0
.2
7
5
1
(0

.0
6
)

0
.5
2
3
4
(0

.1
1
)

0
.3
0
5
5
(0

.0
1
8
)

(1
(2

(3
(4

5
) 1

.0
2
) 0

.9
2
) 0

.7
8
) 0

.8
5

2
3

0
.9
9
2
8
(0

.2
9
)

0
.4
4
6
9
(0

.1
8
)

0
.2
3
3
2
(0

.0
7
)

0
.4
4
9
4
(0

.1
2
)

(2
(1

(3
(4

5
) 0

.9
9
) 0

.9
2
) 0

.7
9
) 0

.8
8

2
1

0
.9
6
5
9
(0

.2
)

0
.4
0
2
2
(0

.1
6
)

0
.2
4
4
3
(0

.0
4
)

0
.4
7
0
9
(0

.0
8
)

τ
a
v
g

b
i
n
a
r
y

((
1
2
) 0

.7
6
(3

(4
5
) 1

.0
1
) 0

.7
5
) 0

.4
9

9
2

0
.1
7
1
9
(0

.0
6
)

0
.2
3
7
2
(0

.1
)

0
.0
6
2
7
(0

.0
2
8
)

0
.1
2
0
8
(0

.0
6
)

0
.1
6
3
1
(0

.0
0
0
7
)

((
1
2
) 0

.6
8
(5

(3
4
) 0

.9
5
) 0

.8
7
) 0

.5
2

3
0
.1
8
2
6
(0

.0
5
)

0
.2
1
4
1
(0

.0
6
)

0
.0
7
7
8
(0

.0
1
6
)

0
.1
3
6
2
(0

.0
2
8
)

((
1
2
) 0

.7
4
(4

(3
5
) 0

.9
3
) 0

.8
5
) 0

.5
0

3
0
.2
1
0
6
(0

.0
5
)

0
.3
1
0
7
(0

.1
4
)

0
.0
8
2
9
(0

.0
1
1
)

0
.1
5
1
3
(0

.0
1
9
)

6
θ
b
i
n
a
r
y

(1
(4

((
2
3
) 1

.2
8
(5

6
) 1

.5
3
) 1

.2
8
) 0

.5
5
) 0

.1
8

4
9

2
.1
0
1
4
(0

.4
)

0
.8
6
6
1
(0

.3
4
)

0
.4
0
7
8
(0

.0
3
)

0
.7
3
6
7
(0

.0
5
)

0
.2
6
7
4
(0

.0
8
)

(1
((
2
3
) 1

.1
6
(4

(5
6
) 1

.5
3
) 1

.2
4
) 1

.1
5
) 0

.2
1

2
5

1
.1
0
3
9
(0

.3
)

0
.4
9
6
9
(0

.2
7
)

0
.2
5
0
7
(0

.0
4
)

0
.4
8
3
9
(0

.0
5
)

((
1
4
) 0

.5
6
((
2
3
) 1

.2
4
(5

6
) 1

.4
9
) 1

.2
4
) 0

.5
6

2
2

1
.7
6
0
6
(0

.4
)

0
.7
7
7
6
(0

.2
7
)

0
.3
1
0
1
(0

.0
1
8
)

0
.5
3
7
5
(0

.0
3
)

θ
R

M
L

(1
((
2
3
) 1

.1
9
(4

(5
6
) 1

.5
3
) 1

.2
8
) 1

.0
0
) 0

.5
0

4
8

0
.1
9
6
5
(0

.0
7
)

0
.2
9
4
5
(0

.1
2
)

0
.0
5
0
6
(0

.0
1
9
)

0
.0
8
8
4
(0

.0
4
)

3
.4
2
9
9
(2

.1
3
)

(1
((
5
6
) 1

.5
2
(4

(2
3
) 1

.2
9
) 1

.2
1
) 1

.0
8
) 0

.5
1

4
4

0
.3
1
4
9
(0

.1
3
)

0
.3
0
5
5
(0

.1
4
)

0
.1
0
2
6
(0

.0
2
)

0
.1
6
1
7
(0

.0
4
)

(1
(2

(3
(4

(5
6
) 1

.6
8
) 1

.4
0
) 1

.1
2
) 1

.0
4
) 0

.5
6

2
0
.2
0
1
6
(0

.0
8
)

0
.3
7
8
1
(0

.0
5
)

0
.1
0
0
6
(0

.0
4
)

0
.1
6
0
1
(0

.0
8
)

τ
b
i
n
a
r
y

(1
(2

(3
(4

(5
6
) 1

.5
6
) 1

.4
9
) 1

.3
9
) 1

.3
9
) 0

.7
0

4
0

0
.6
1
8
7
(0

.1
6
)

0
.4
3
7
8
(0

.1
6
)

0
.2
4
7
8
(0

.0
6
)

0
.3
9
7
0
(0

.1
)

0
.4
9
8
3
(0

.0
2
)

(1
(3

(2
(4

(5
6
) 1

.5
3
) 1

.4
8
) 1

.4
1
) 1

.4
0
) 0

.7
1

3
2

0
.6
6
5
2
(0

.1
7
)

0
.4
2
9
4
(0

.1
5
)

0
.2
5
4
1
(0

.0
5
)

0
.4
0
7
3
(0

.0
7
)

(1
((
2
3
) 1

.3
7
(4

(5
6
) 1

.5
7
) 1

.5
2
) 1

.3
6
) 0

.7
3

1
1

0
.6
4
1
1
(0

.1
3
)

0
.4
0
1
5
(0

.1
3
)

0
.2
4
7
4
(0

.0
6
)

0
.4
0
7
7
(0

.1
)

τ
a
v
g

b
i
n
a
r
y

(1
((
2
3
) 1

.2
7
(4

(5
6
) 1

.5
4
) 1

.2
5
) 1

.0
0
) 0

.5
1

8
4

0
.1
7
5
3
(0

.0
6
)

0
.2
7
4
9
(0

.1
9
)

0
.0
7
4
5
(0

.0
2
9
)

0
.1
2
6
3
(0

.0
5
)

0
.2
4
7
0
(0

.0
6
)

(1
((
2
3
) 1

.2
1
(5

(4
6
) 1

.4
9
) 1

.3
6
) 1

.0
4
) 0

.5
0

4
0
.1
5
3
5
(0

.0
5
)

0
.3
0
9
0
(0

.1
2
)

0
.1
0
1
7
(0

.0
4
)

0
.1
6
4
0
(0

.0
8
)

(1
(3

(2
(4

(5
6
) 1

.6
2
) 1

.3
8
) 1

.2
0
) 1

.0
6
) 0

.5
4

3
0
.1
6
5
7
(0

.0
1
)

0
.1
7
4
3
(0

.0
5
)

0
.1
1
7
4
(0

.0
2
9
)

0
.1
7
3
8
(0

.0
4
)

7
θ
b
i
n
a
r
y

((
1
4
) 0

.5
2
((
2
3
) 1

.2
4
(5

(6
7
) 1

.7
4
) 1

.4
1
) 1

.2
4
) 0

.5
2

4
8

2
.3
3
4
9
(0

.5
)

1
.0
9
7
8
(0

.6
)

0
.3
8
1
0
(0

.0
3
)

0
.6
6
3
7
(0

.0
6
)

0
.3
8
2
7
(0

.0
3
)

(1
(4

((
2
3
) 1

.2
5
(5

(6
7
) 1

.7
7
) 1

.4
3
) 1

.2
4
) 0

.4
8
) 0

.1
4

1
8

2
.7
0
2
3
(0

.4
)

1
.2
7
6
4
(0

.6
)

0
.5
2
3
6
(0

.0
4
)

0
.9
2
9
4
(0

.0
6
)

(1
((
4
5
) 1

.1
7
((
2
3
) 1

.3
5
(6

7
) 1

.7
7
) 1

.3
4
) 1

.1
6
) 0

.1
9

1
6

1
.3
0
5
4
(0

.4
)

0
.5
2
3
4
(0

.2
)

0
.3
3
8
8
(0

.0
3
)

0
.6
0
6
8
(0

.0
3
)

τ
b
i
n
a
r
y

(1
(2

(3
(4

(5
(6

7
) 1

.7
9
) 1

.7
3
) 1

.6
3
) 1

.4
6
) 1

.4
5
) 0

.7
0

4
5

0
.8
2
1
5
(0

.1
9
)

0
.4
7
9
7
(0

.1
7
)

0
.3
1
7
3
(0

.0
7
)

0
.4
7
7
6
(0

.1
1
)

0
.7
4
3
5
(0

.0
2
1
)

(1
(3

(2
(4

(5
(6

7
) 1

.8
1
) 1

.7
6
) 1

.6
6
) 1

.4
7
) 1

.4
6
) 0

.7
2

3
2

0
.8
4
2
0
(0

.2
)

0
.5
3
4
1
(0

.1
9
)

0
.3
3
3
3
(0

.0
7
)

0
.5
0
4
7
(0

.1
)

(1
((
2
3
) 1

.4
8
(4

(5
(6

7
) 1

.8
5
) 1

.8
5
) 1

.6
7
) 1

.4
8
) 0

.6
7

3
0
.8
6
3
3
(0

.1
)

0
.4
8
5
2
(0

.1
1
)

0
.3
3
7
3
(0

.1
4
)

0
.5
0
1
9
(0

.2
)

τ
a
v
g

b
i
n
a
r
y

(1
((
2
3
) 1

.2
7
(4

(5
(6

7
) 1

.8
0
) 1

.5
2
) 1

.2
5
) 1

.0
0
) 0

.5
0

7
7

0
.1
8
7
7
(0

.0
5
)

0
.3
0
6
5
(0

.1
5
)

0
.0
8
9
5
(0

.0
4
)

0
.1
4
7
2
(0

.0
7
)

0
.3
2
5
5
(0

.0
7
)

(1
((
2
3
) 1

.2
6
(4

(7
(5

6
) 1

.6
5
) 1

.5
5
) 1

.2
8
) 1

.0
2
) 0

.4
9

6
0
.1
8
5
4
(0

.0
5
)

0
.3
3
3
8
(0

.2
)

0
.0
9
0
2
(0

.0
1
8
)

0
.1
3
9
4
(0

.0
4
)

(1
((
2
3
) 1

.2
5
(4

(6
(5

7
) 1

.5
5
) 1

.4
2
) 1

.2
5
) 1

.0
2
) 0

.5
0

5
0
.2
0
9
4
(0

.0
8
)

0
.4
7
0
9
(0

.2
6
)

0
.0
9
5
1
(0

.0
2
7
)

0
.1
5
1
4
(0

.0
6
)

9
θ
b
i
n
a
r
y

((
1
7
) 0

.5
1
((
2
(3

4
) 1

.2
5
) 0

.9
0
((
5
6
) 1

.0
2
(8

9
) 1

.2
6
) 1

.0
2
) 0

.8
9
) 0

.5
1

5
8

1
.6
4
8
7
(0

.4
)

0
.7
4
1
0
(0

.2
6
)

0
.4
7
7
1
(0

.0
4
)

0
.9
1
4
4
(0

.0
8
)

0
.7
8
6
2
(0

.0
6
)

(1
((
2
(3

4
) 1

.2
5
) 0

.8
6
((
5
6
) 0

.9
6
(7

(8
9
) 1

.3
3
) 1

.0
1
) 0

.9
6
) 0

.8
6
) 0

.1
3

1
1

3
.5
2
6
3
(0

.6
)

0
.9
6
9
9
(0

.3
)

0
.6
3
6
4
(0

.0
3
)

1
.1
8
0
0
(0

.0
5
)

(1
((
5
6
) 0

.9
1
((
2
(3

4
) 1

.3
2
) 0

.9
6
(7

(8
9
) 1

.3
0
) 0

.9
9
) 0

.9
4
) 0

.7
2
) 0

.1
3

1
0

4
.1
8
3
9
(0

.5
)

1
.2
6
2
1
(0

.4
)

0
.6
2
9
6
(0

.0
2
4
)

1
.1
6
2
8
(0

.0
5
)

τ
b
i
n
a
r
y

((
1
(2

(3
4
) 1

.3
4
) 1

.2
2
) 1

.0
6
(6

(5
(7

(8
9
) 1

.2
8
) 1

.2
2
) 1

.0
6
) 1

.0
6
) 1

.1
1

1
5

2
.6
0
7
9
(0

.4
)

0
.9
9
8
6
(0

.2
9
)

0
.7
4
6
3
(0

.0
9
)

1
.3
3
8
1
(0

.1
3
)

1
.4
6
5
4
(0

.0
2
)

((
1
(2

(3
4
) 1

.3
1
) 1

.2
4
) 1

.1
2
(5

(6
(7

(8
9
) 1

.2
9
) 1

.2
3
) 1

.1
2
) 1

.1
1
) 1

.1
2

1
3

2
.3
9
4
8
(0

.3
)

0
.9
7
7
0
(0

.2
8
)

0
.7
6
2
0
(0

.1
1
)

1
.3
5
8
3
(0

.1
5
)

((
1
(2

(3
4
) 1

.2
1
) 1

.1
7
) 1

.0
4
((
5
6
) 1

.0
6
(7

(8
9
) 1

.1
3
) 1

.1
0
) 1

.0
0
) 1

.0
5

4
2
.3
7
8
4
(0

.2
9
)

0
.8
7
4
2
(0

.3
)

0
.6
7
5
3
(0

.1
5
)

1
.2
3
0
5
(0

.2
3
)

τ
a
v
g

b
i
n
a
r
y

((
1
(2

(3
4
) 1

.2
7
) 0

.9
9
) 0

.7
5
((
5
6
) 1

.0
0
(7

(8
9
) 1

.2
8
) 1

.0
1
) 0

.7
5
) 0

.5
0

8
1

0
.2
4
9
1
(0

.0
7
)

0
.3
3
2
8
(0

.1
2
)

0
.1
1
3
4
(0

.0
4
)

0
.2
0
9
6
(0

.0
9
)

0
.4
8
5
1
(0

.0
0
1
9
)

((
1
(3

(2
4
) 1

.1
7
) 1

.0
7
) 0

.7
2
((
5
6
) 0

.9
7
(7

(8
9
) 1

.2
7
) 0

.9
9
) 0

.7
6
) 0

.4
9

4
0
.2
2
6
4
(0

.0
6
)

0
.1
8
6
0
(0

.0
4
)

0
.1
2
6
4
(0

.0
6
)

0
.2
4
0
0
(0

.1
4
)

((
1
(2

(3
4
) 1

.4
1
) 1

.0
7
) 0

.8
4
((
5
6
) 1

.0
5
(9

(7
8
) 1

.2
6
) 1

.1
2
) 0

.8
3
) 0

.5
6

3
0
.1
9
2
1
(0

.0
3
)

0
.3
4
0
1
(0

.2
1
)

0
.1
4
4
4
(0

.0
2
2
)

0
.2
5
7
6
(0

.0
4
)

146 J. Górecki and M. Holeňa

5 Conclusion

Copulas are a feasible tool for the modeling of complex patters. A popular alter-
native to Gaussian copulas, the hierarchical Archimedean copulas, are convenient
copula models even in high dimensions due to their flexibility and rather limited
number of parameters. Despite their popularity, a general approach for their
estimation has been addressed only in one recently published paper [23], which
proposes several methods for the estimation task.

We propose an alternative approach to structure determination and estima-
tion of a hierarchical Archimedean copula, which combines the advantages and
avoids the disadvantages of the previously mentioned methods in the terms of
the correctly determined structures ratio, the goodness-of-fit of the estimates,
and computation time. This is confirmed in the experiments on simulated data
performed for different dimensions and copula models. The proposed method
should be preferred to the other mentioned methods and is particularly attrac-
tive in applications, where a good approximation and computational efficiency
are both crucial issues.

Acknowledgment. The research reported in this paper has been supported by the
Czech Science Foundation (GA ČR) grant 13-17187S.

References

1. Berg, D.: Copula goodness-of-fit testing: an overview and power comparison. Eur.
J. Finance 15(7–8), 675–701 (2009)

2. Chen, X., Fan, Y., Patton, A.J.: Simple tests for models of dependence between
multiple financial time series, with applications to us equity returns and exchange
rates. Discussion paper 483, Financial Markets Group, London School of Economics
(2004)

3. Cuvelier, E., Noirhomme-Fraitur, M.: Clayton copula and mixture decomposition.
In: Janssen, J., Lenca, P. (eds.) Applied Stochastic Models and Data Analysis,
ASMDA’05, Brest (2005)

4. Genest, C., Favre, A.: Everything you always wanted to know about copula mod-
eling but were afraid to ask. Hydrol. Eng. 12, 347–368 (2007)

5. Genest, C., Rivest, L.-P.: Statistical inference procedures for bivariate Archimedean
copulas. J. Am. Stat. Assoc. 88(423), 1034–1043 (1993)

6. Genest, C., Rémillard, B., Beaudoin, D.: Goodness-of-fit tests for copulas: a review
and a power study. Insur. Math. Econ. 44(2), 199–213 (2009)

7. González-Fernández, Y., Soto, M.: Copulaedas: an R package for estimation of
distribution algorithms based on copulas. CoRR, abs/1209.5429 (2012)

8. Górecki, J., Holeňa, M.: An alternative approach to the structure determination of
hierarchical Archimedean copulas. 31st International Conference on Mathematical
Methods in Economics 2013, pp. 201–206, Jihlava (2013)

9. Hofert, M.: Construction and sampling of nested Archimedean copulas. In:
Jaworski, P., Durante, F., Hardle, W.K., Rychlik, T. (eds.) Copula Theory and Its
Applications. Lecture Notes in Statistics, vol. 198, pp. 147–160. Springer, Berlin
(2010)

Structure Determination and Estimation of HACs 147

10. Hofert, M.: Sampling nested Archimedean copulas with applications to CDO pric-
ing. Ph.D. thesis, Ulm University (2010)

11. Hofert, M.: Efficiently sampling nested Archimedean copulas. Comput. Stat. Data
Anal. 55(1), 57–70 (2011)

12. Hofert, M., Mächler, M., McNeil, A.J.: Estimators for Archimedean copulas in high
dimensions: a comparison. arXiv preprint arXiv:1207.1708 (2012)

13. Kao, S.-C., Ganguly, A.R., Steinhaeuser, K.: Motivating complex dependence
structures in data mining: a case study with anomaly detection in climate. Inter-
national Conference on Data Mining Workshops, vol. 0, pp. 223–230 (2009)

14. Kao, S.-C., Govindaraju, R.S.: Trivariate statistical analysis of extreme rainfall
events via Plackett family of copulas. Water Resour. Res. 44, 1–19 (2008)

15. Kojadinovic, I.: Hierarchical clustering of continuous variables based on the empir-
ical copula process and permutation linkages. Comput. Stat. Data Anal. 54(1),
90–108 (2010)

16. Kojadinovic, I., Yan, J.: Modeling multivariate distributions with continuous mar-
gins using the copula R package. J. Stat. Softw. 34(9), 1–20 (2010)

17. Kuhn, G., Khan, S., Ganguly, A.R., Branstetter, M.L.: Geospatial-temporal depen-
dence among weekly precipitation extremes with applications to observations and
climate model simulations in South America. Adv. Water Resour. 30(12), 2401–
2423 (2007)

18. Lascio, F., Giannerini, S.: A copula-based algorithm for discovering patterns of
dependent observations. J. Classif. 29, 50–75 (2012)

19. Maity, R., Kumar, D.N.: Probabilistic prediction of hydroclimatic variables with
nonparametric quantification of uncertainty. J. Geophys. Res. 113, D14105 (2008)

20. McNeil, A.J.: Sampling nested Archimedean copulas. J. Stat. Comput. Simul.
78(6), 567–581 (2008)

21. McNeil, A.J., Nešlehová, J.: Multivariate Archimedean copulas, d-monotone func-
tions and l1-norm symmetric distributions. Ann. Stat. 37, 3059–3097 (2009)

22. Nelsen, R.: An Introduction to Copulas, 2nd edn. Springer, New York (2006)
23. Okhrin, O., Okhrin, Y., Schmid, W.: On the structure and estimation of hierar-

chical Archimedean copulas. J. Econom. 173(2), 189–204 (2013)
24. Okhrin, O., Okhrin, Y., Schmid, W.: Properties of hierarchical Archimedean cop-

ulas. Stat. Risk Model. 30(1), 21–54 (2013)
25. Okhrin, O., Ristig, A.: Hierarchical Archimedean copulae: the HAC package. Dis-

cussion paper 2012, 036, CRC 649, Economic Risk (2012)
26. Rey, M., Roth, V.: Copula mixture model for dependency-seeking clustering. In:

Proceedings of the 29th International Conference on Machine Learning (ICML
2012), Edinburgh, Scotland, UK (2012)

27. Savu, C., Trede, M.: Goodness-of-fit tests for parametric families of Archimedean
copulas. Quant. Finance 8(2), 109–116 (2008)

28. Savu, C., Trede, M.: Hierarchies of Archimedean copulas. Quant. Finance 10, 295–
304 (2010)

29. Sklar, A.: Fonctions de répartition a n dimensions et leurs marges. Publ. Inst. Stat.
Univ. Paris 8, 229–231 (1959)

30. Wang, L., Guo, X., Zeng, J., Hong, Y.: Copula estimation of distribution algorithms
based on exchangeable Archimedean copula. Int. J. Comput. Appl. Technol. 43,
13–20 (2012)

31. Yuan, A., Chen, G., Zhou, Z.-C., Bonney, G., Rotimi, C.: Gene copy number analy-
sis for family data using semiparametric copula model. Bioinform. Biol. Insights
2, 343–355 (2008)

http://arxiv.org/abs/1207.1708

ReliefF for Hierarchical Multi-label
Classification

Ivica Slavkov1(B), Jana Karcheska2, Dragi Kocev1, Slobodan Kalajdziski2,
and Sašo Džeroski1

1 Department of Knowledge Technologies, Jožef Stefan Institute, Ljubljana, Slovenia
{ivica.slavkov,dragi.kocev,saso}@ijs.si

2 Faculty of Computer Science and Engineering,
Ss. Cyril and Methodius University, Skopje, Macedonia

j.karcheska@gmail.com,

slobodan.kalajdziski@inki.ukim.mk

Abstract. In machine learning, the data available for analysis is becom-
ing more complex both in terms of high-dimensionality and the way it
is structured. This emphasises the need for developing machine learning
algorithms that are able to tackle both the high-dimensionality and the
complex structure of the data. Our work in this paper, focuses on extend-
ing a feature ranking algorithm that can be used as a filter method for a
specific type of structured data. More specifically, we adapt the RReliefF
algorithm for regression, for the task of hierarchical multi-label classifi-
cation (HMC). We evaluate this algorithm experimentally in a filter-like
setting by employing ensembles of predictive clustering trees for HMC
as a classifier. In the experimental evaluation, we consider datasets from
two prominent domains for HMC - functional genomics and image anno-
tation. The results show that HMC-ReliefF can identify the relevant fea-
tures present in the data and produces a ranking where they are placed
among the top ranked ones.

Keywords: Feature selection · Feature ranking · Feature relevance ·
Structured data · Hierarchical multi-label classification · Multi-label
classification · ReliefF

1 Introduction

The current trend in machine learning is that the data available for analysis is
becoming increasingly more complex. The complexity arises both from the data
being high-dimensional and from the data being more structured. On one hand,
high-dimensional data presents specific challenges for many machine learning
algorithms, especially with the stability of the produced results [11]. On the
other, mining complex data and extracting knowledge from it has been identified
as one of the most challenging problems in machine learning [6,17].

Various feature selectionmethods exist fordealingwith thehigh-dimensionality
of the data. They usually precede the induction of predictive models and can be

A. Appice et al. (Eds.): NFMCP 2013, LNAI 8399, pp. 148–161, 2014.
DOI: 10.1007/978-3-319-08407-7 10, c© Springer International Publishing Switzerland 2014

ReliefF for Hierarchical Multi-label Classification 149

classified as filter, wrapper and embedded methods [10]. Filter methods [3] are the
simplest ones and they usually involve a feature ranking algorithm that produces a
list of relevant features. Wrapper methods [15] rely on classification algorithms to
perform feature selection and are computationally expensive. Embedded methods
[10] are basically classification algorithms that have the feature selection embedded
in the model induction phase.

Learning in a supervised context, where the target is structured, has also
attracted much attention. Several algorithms that were previously employed
only for classification or regression purposes, have been extended to also work
with structured targets. These include decision trees for hierarchical targets [23],
SVMs for multi-label and hierarchical multi-label problems [9], as well as tree
ensembles that can be additionally employed for vectors of multiple targets [14].

Our work in this paper focuses on tackling the feature selection problem in
the context of structured targets. We consider this a relevant problem in machine
learning that relates to both of the previously discussed trends. So far, structured
prediction has not been extensively researched in the context of feature ranking
methods and we consider this a novel and interesting line of work to pursue.

More specifically, we focus on the ReliefF [20] algorithm for feature rank-
ing. This algorithm is an intuitive, instance based algorithm and its theoretical
properties have been extensively explored [20]. We extend ReliefF for a spe-
cific type of structured prediction problems, namely those from the Hierarchical
Multi-Label Classification (HMC) domain [21]. The target that is predicted for
these problems is defined with a hierarchy of classes and each instance in the
dataset can be labelled with more than one class at a time. By definition, when
an instance is labelled with one class it is also labelled with all of its parent
classes according to the given hierarchy.

In practice, this type of problems appear in different domains, for exam-
ple in biology for the task of gene function prediction or in image retrieval for
the task of image annotation. For the task of gene function prediction, each
gene can be annotated by multiple functions and the functions are organised
into a tree-shaped hierarchy or a directed acyclic graph such as the Gene Ontol-
ogy [2]. Thus, predicting the function of a gene from certain gene properties
would have to take into account the multi-label annotation of each gene and
also the hierarchical connections of these labels.

In the remainder of this paper, we present the details of our work organised
as follows. In Sect. 2, we define more formally the HMC setting and present
the distance measures appropriate for this setting. Next, in Sect. 3, we discuss
in depth the original RReliefF algorithm for regression and explain our HMC-
ReliefF extension of the algorithm. We present our experimental evaluation of
the proposed HMC-ReliefF algorithm in Sect. 4. Finally, in Sect. 5, we present
our conclusions and discuss directions of possible further work.

2 Hierarchical Multi-label Classification

In our work we extend the ReliefF algorithm for the task of hierarchical multi-
label classification (HMC). Hierarchical classification is a specific type of a

150 I. Slavkov et al.

classification task in which the classes are organised in a hierarchy. An example
that belongs to a given class automatically belongs to all its super-classes (this
is known as the hierarchy constraint). Furthermore, if an example can belong
simultaneously to multiple classes that can follow multiple paths from the root
class, then the task is called hierarchical multi-label classification (HMC) [21,23].

We formally define the hierarchical multi-label classification setting as
follows:

– A description space X that consists of tuples of values of primitive data types
(discrete or continuous), i.e., ∀Xi ∈ X,Xi = (xi1 , xi2 , ..., xiD), where D is the
size of the tuple (or number of descriptive variables),

– a target space S, defined with a class hierarchy (C,≤h), where C is a set of
classes and ≤h is a partial order (e.g., structured as a rooted tree) representing
the superclass relationship (∀ c1, c2 ∈ C : c1 ≤h c2 if and only if c1 is a
superclass of c2),

– a set E, where each example is a pair of a tuple and a set, from the descriptive
and target space respectively, and each set satisfies the hierarchy constraint,
i.e., E = {(Xi, Si)|Xi ∈ X,Si ⊆ C, c ∈ Si ⇒ ∀c∈ ≤h c : c∈ ∈ Si, 1 ≤ i ≤ N}
and N is the number of examples in E (N = |E|)

Two toy examples of classes organised in hierarchies can be seen in Fig. 1. The
first hierarchy in Fig. 1(a) consists of five classes {c1, c2, c3, c2.1, c2.2}, organised
in a tree-like structure. The other hierarchy in Fig. 1(c), contains six classes
(c1 − c6) and they are organised in a directed acyclic graph (DAG), where each
class can have multiple parents.

Calculating the distance between two different instances of the target space
S1 and S2, can be done in different ways. These distances include: a weighted
Euclidean distance for HMC [23], Jaccard distance (also known as Union-
intersection distance/score) [12], simGIC (Similarity for Graph Information Con-
tent) [18] and ImageCLEF (evaluation score of the ImageCLEF image annotation
task) [5]. An experimental evaluation comparing these distances in the context
of HMC [1] has shown that learning predictive models that use the different
distances, does not produce statistically significant differences in predictive per-
formance.

In our work, we chose to extend the RReliefF algorithm by using a weighted
Euclidean distance for HMC [23]. With this weighted Euclidean distance, the
hierarchical aspect is incorporated by relating the class weight with the depth
of the class within the hierarchy. Extending RReliefF with this distance is the
most straightforward choice, considering that the original algorithm uses the
Euclidean distance for calculating the distance for the target variable.

Before calculating the distance between two instances of the hierarchy, they
are first represented as a vector of binary values [23]. The vector is created
by traversing the tree or DAG that is representing the hierarchy in pre-order
and assigning a 1 or 0 sequentially in the vector for a present or absent label
respectively. For example, consider an instance of the toy class hierarchy S1,
given in boldface in Fig. 1(b). This particular instance consists of three classes,

ReliefF for Hierarchical Multi-label Classification 151

(a)

c2c1 c3

c2.1 c2.2

(b)

c2(2)c1(1) c3 (5)

c2.1 (3) c2.2 (4)

(1)(2)(3)(4)(5)

Lk =[1,1,0,1,0]

(c)

c2c1

c6

c3

ca c5

Fig. 1. Toy examples of hierarchies structured as a tree and a DAG. (a) Class label
names contain information about the position in the hierarchy, e.g., c2.1 is a subclass of
c2. (b) The set of classes S1 = {c1, c2, c2.2}, shown in bold in the hierarchy, represented
as a vector (Lk). (c) A class hierarchy structured as a DAG. The class c6 has two
parents: c1 and c4.

namely {c1, c2, c2.2} and its corresponding vector representation would be L1 =
[1, 1, 0, 1, 0].

If we additionally consider another instance S2, labelled just with class {c2},
with a vector representation L2 = [0, 1, 0, 0, 0], then the distance between S1

and S2 would be obtained by simply comparing the two binary vectors. In our
HMC-ReliefF algorithm we use a weighted Euclidean distance measure given
with the following equation:

d(L1, L2) =
√∑

i

w(ci)(L1,i − L2,i)2, (1)

The weighting function w(c) allows for the hierarchical structure of the classes
to be taken into account by making the value dependent on the depth of the
hierarchy:

w(c) = w
depth(c)
0 , 0 < w0 < 1. (2)

This scheme ensures that the differences higher in the hierarchy have larger
influence on the total distance.

For the specific case of comparing S1 and S2, the distance is calculated as
follows:

d(S1, S2) = d([1, 1, 0, 1, 0], [0, 1, 0, 0, 0]) =
√

w0 + w2
0.

where w(c1) = w0 and w(c3) = w2
0.

If the hierarchy is represented with a DAG, this scheme needs to be modified.
In this case, more than one path from the root to a given class may exist and
thus a node can have different depths. This problem is solved with the following
recursive equation:

152 I. Slavkov et al.

w(c) = w0 · avg(w(parentj(c))). (3)

By using this weighting function, the weight of the different possible parents is
averaged. This is recommended [23] as a good way to take into account multiple
inheritance which occurs in DAGs.

3 HMC-ReliefF Algorithm

Algorithms from the Relief family are instance-based methods for estimating
feature relevance. The original Relief algorithm [13] is formulated for binary
classification problems. The algorithm was extended [16] to deal with multi-
class problems and the extension was named ReliefF. Later, it was also adapted
for regression problems [19] and named RReliefF.

In general, the feature relevance value assigned by the Relief algorithm to a
feature F is an approximation of the following difference of probabilities [16]:

W [F] = P (diff. value of F |nearest inst. from diff. class)− (4)
P (diff. value of F |nearest inst. from same class)

In the case of classification, the basic intuition behind the ReliefF algorithm
is to estimate the relevance of a feature according to how well it distinguishes
between neighbouring instances. If the feature has different values for neigh-
bouring instances that are of different class (nearest miss), then it is awarded a
higher relevance values. However, if the values of the class for the neighbouring
instances are the same (nearest hit), then the relevance value is decreased.

Although the hierarchical multi-label setting is a classification one, extending
the ReliefF algorithm is not a good idea. Namely, if we simply treat two instances
annotated by different parts of the hierarchy in a simple hit/miss scenario, we
would simply translate the HMC problem to a multi-class one, therefore ignor-
ing both the hierarchical and the multi-label aspect. Having in mind that the
definition of the HMC distance in Sect. 2 is actually weighted Euclidean, it is
more suited to be included in the RReliefF algorithm, originally designed for
regression.

In a regression setting, the target space is continuous and the concept of
nearest hit/miss does not apply. Therefore, the feature relevance W [F] is refor-
mulated as the difference between the following probabilities:

W [F] = P (diff. value of F |nearest inst. with diff. prediction)− (5)
P (diff. value of F |nearest inst. with same prediction)

Additionally, if we introduce the following probabilities:

PdiffF (diff. value of F|nearest instance)

and
PdiffC(diff. prediction|nearest instance),

ReliefF for Hierarchical Multi-label Classification 153

as well as the conditional probability:

PdiffC|diffF (diff. prediction|diff. value of F and nearest instances).

Finally, by using the Bayes rule, we obtain:

W [F] =
PdiffC|diffFPdiffF

PdiffC
− (1 − PdiffC|diffF)PdiffF

1 − PdiffC
(6)

The details of the RReliefF algorithm are given in pseudocode form in
Algorithm 1. The algorithm begins by selecting a random instance (Ri) and find-
ing the k nearest instances Ij to it. From these instances, it then approximates
the relevance W [F] from Eq. 6 of each feature by calculating NdC , NdF [F] and
NdC&dF [F], described in lines 6,8 and 9 of Algorithm 1. The estimations of these
values is based on the distance calculation in the feature space, diff(F,Ri, Ij),
(lines 8 and 9) and in the target space, diff(τ(·), Ri, Ij), (lines 6 and 9).

Algorithm 1. Pseudocode for the RReliefF algorithm, taken from [20].
Input: for each training instance a vector of feature values x and predicted value τ(x)
Output: the vector W of estimations of the relevance of features
1: set all NdC ,NdF [F],NdC&dF [F],W [F] to 0
2: for i = 1 to m do
3: randomly select an instance Ri

4: select k instances Ij nearest to Ri

5: for j = 1 to m do
6: NdC = NdC + diff(τ(·), Ri, Ij) · d(i, j)
7: for F = 1 to f do
8: NdF [F] = NdF [F] + diff(F, Ri, Ij) · d(i, j)
9: NdC&dF [F] = NdC&dF [F] + diff(τ(·), Ri, Ij) · diff(F, Ri, Ij) · d(i, j)

10: end for
11: end for
12: end for
13: for F = 1 to f do
14: W [F] = NdC&dF [F]/NdC − (NdF [F] − NdC&dF [F])/(m − NdC)
15: end for

Our original purpose is to extend the RReliefF algorithm for hierarchical
multi-label classification problems. Considering that the HMC refers to the tar-
get space, we extend the RReliefF algorithm by changing the way that diff(τ(·),
Ri, Ij), from lines 6 and 9, is calculated. From Sect. 2 and Eq. 1 we obtain:

diff(τ(·), Ri, Ij) = diff(Si, Sj) =
√∑

k

w(ck)(Li,k − Lj,k)2 (7)

where Si and Sj are the target descriptions of Ri and Ij correspondingly, while
Li,k and Lj,k are their binary representations. In this way, by changing the way
the distance is calculated, the original RReliefF algorithm is extended to work
for HMC problems and we name this extension HMC-ReliefF.

154 I. Slavkov et al.

4 Experiments

Our experimental evaluation of the HMC-ReliefF is based on the intuition of
what is the expected output of a good feature ranking algorithm. Namely, a
good feature ranking algorithm would output the relevant features on top of the
ranked list of features. A bad ranking algorithm would not necessarily be the one
that gives an inverse ranking according to relevance, but the one that outputs a
random ranking. In the random ranking, the distribution of the relevant features
is expected to be uniform throughout the list.

Having this in mind, we employ a stepwise filter-like procedure [22] to evalu-
ate our HMC-ReliefF algorithm. The idea is that starting from the ranked list of
features, we construct classifiers for different numbers of top-k ranked features.
If there are relevant features on top of the feature ranking, then we can construct
a classifier that has a good predictive performance. If the ranking is random then
the number of relevant features in the top-k ranked features is expected to be
smaller.

Formally, if we have a feature ranking algorithm r that we use on a dataset
D , then the output would be a feature ranking R, namely:

r(D) → R.

The feature ranking R is defined as an ordered list of features F , more specifi-
cally:

R = (Fr1, . . . , Frj , . . . , Frk)

where:
rank(Fr1) ≤ · · · ≤ rank(Frj) ≤ · · · ≤ rank(Frk)

If we assume that we can induce and evaluate a predictive model M (Ri, Ft),
where Ri ⊆ R and Ft is a target feature, then our whole evaluation procedure
can be described as in Algorithm 2.

Algorithm 2. Stepwise evaluation of the top-k ranked features
Input: Feature Ranking, R = {Fr1, . . . , Frn}; Target Feature, Ft

Output: FFA Curve, FFA, where |FFA| = n
RS ⇐ ∅
for k = 1 to n do

RS ⇐ RS ∪ feature(R, i)
FFA[i] = qual(M (RS , Ft))

end for
return FFA

For each step k of the filtering, i.e., for each subset of top-k ranked feature
subsets, we induce a classification model and evaluate its performance. This
process of generating feature sets from the feature ranking is performed in a
forward manner, by adding more and more of the top ranked features, which we
name forward feature addition (FFA). At the end, we obtain a vector of model

ReliefF for Hierarchical Multi-label Classification 155

Table 1. Properties of the datasets with hierarchical targets; Ntr is the number of
instances in the training dataset, D/C is the number of descriptive attributes (dis-
crete/continuous), |H | is the number of classes in the hierarchy, Hd is the maximal
depth of the classes in the hierarchy, L is the average number of labels per example,
and L L is the average number of leaf labels per example. Note that the values for Hd

are not always a natural number because the hierarchy has a form of a DAG and the
maximal depth of a node is calculated as the average of the depths of its parents.

Domain Ntr |D|/|C| |H | Hd L LL

Diatoms 1098 0/200 107 2.0 1.98 0.98
ImCLEF07D 10006 0/80 46 3.0 3.0 1.0
ImCLEF07A 10006 0/80 96 3.0 3.0 1.0
SCOP-GO 9843 0/2003 572 5.5 6.26 0.95
SCOP-FUN 3097 0/2003 250 4.0 3.41 0.95
Yeast-GO 2310 5588/342 133 6.33 5.63 0.64

quality estimates that we can plot as a curve, thus obtaining a FFA curve that
we use to estimate the performance of the feature ranking algorithm. In order
to say that the FFA curve of a certain feature ranking algorithm is better than
that of a random ranking, the model quality estimates of the ranking must be
larger than those of the models from the random ranking. Visually, this would
mean that the FFA curve of the algorithm would be above the FFA curve of the
random ranking.

4.1 Experimental Setup

In the HMC-ReliefF algorithm, given in Algorithm 1, there are two basic parame-
ters that can be specified by users and which influence the relevance estimation.
These are the number of random instances m that are chosen and the number
of nearest neighbours k that are used to calculate the feature relevance values.
Therefore, in our experiments, we decided to explore a reasonable set of values
of these parameters in order to evaluate the algorithm performance.

For the number of random instances m, instead of considering an absolute
number, we consider sampling a percentage of the datasets instance space, while
for the number of nearest neighbours k we consider absolute values. More specif-
ically, we consider the following parameters:

– m = {1%, 5%, 10%, 20%, 25%}
– k = {5, 10, 25, 50}.

As a baseline for our comparisons, we use a set of 50 random rankings for each
different dataset. For each of these rankings, we perform the previously described
procedure in Sect. 4 and generate a separate FFA curve. For the random rank-
ings, we average the results of the 50 individual FFA curves, thus generating an
expected FFA curve for a given dataset.

As a predictive model which we induce and evaluate, we use random forests
of so-called predictive clustering trees for hierarchical multi-label classification

156 I. Slavkov et al.

(PCT-HMCs) [14,23]. The specific parameters that we used for the random
forests of PCTs were 100 trees and a feature subset size of 10 % of the all features
in the dataset. For estimating the PCT-HMCs performance, we use ten-fold cross
validation.

In the HMC context, there are various error measures that can be considered.
We use the area of a variant of a precision-recall curve, namely the Pooled Area
Under the Precision-Recall Curve (AU(PRC)), details discussed in [23]. For
this measure, the precision and recall are micro averaged for all classes from
the hierarchy. In the datasets domains that we consider, the positive examples
for a given class are only few as compared to the negative ones. The Precision-
Recall evaluation of these algorithms is most suitable in this context, because
we are more interested in correctly predicting the positive examples (i.e., that
an example belongs to a given class), rather than correctly predicting negative
instances.

For the experiments, we use datasets from two domains which have classes
organised in a hierarchy. We use 6 datasets from 2 domains, more specifically:
biology (Yeast-GO [4], SCOP-GO [4] and SCOP-FUN [4]) and image annota-
tion/classification (Diatoms [8], ImCLEF07D [7] and ImCLEF07A [7]). The rel-
evant properties that characterize each dataset are given in Table 1. Note that
the Yeast-GO and the SCOP-GO datasets have a hierarchy organised as a DAG,
while the remaining datasets have tree-shaped hierarchies. For more details on
the datasets, we refer the reader to the referenced literature.

4.2 Results and Discussion

In this section, we present the results from our experimental evaluation. In Fig. 2,
we give the FFA curves for the datasets from the image annotation domain, while
in Fig. 3, we present the FFA curves for datasets from the functional genomics
domain. The graphs on the left-hand side of Figs. 2 and 3 represent the FFA
curves for a fixed value of m, while the value of k is varied. Correspondingly, the
graphs on the right-hand side contain FFA curves for a fixed value of k, while
the value of m is varied. The fixed values of m and k are chosen for the best
FFA curves.

Overall, it can be observed that all of the FFA curves of the HMC-ReliefF
algorithm are most of the time above the FFA curves of the random rankings.
This means that at the top of the rankings produced by HMC-ReliefF, for dif-
ferent settings of m and k, relevant features can be found. It also means that
this is not by chance, as the AU(PRC) of the produced models is larger than
the expected value of a random ranking. However, there are differences in the
obtained curves for the different datasets, which we will discuss in detail.

We first consider the datasets from the image annotation domain, given in
Fig. 2. It can be noticed that all of the FFA curves produced by HMC-ReliefF,
are only slightly higher, i.e., are only slightly better, than the expected FFA
curves of the random rankings. Also, there is no great variability of the FFA
curves with respect to the different number of m and k. This is expected if we
take into account this specific domain and the way the features are produced.
Namely, most of the features are image descriptors, which are informative about

ReliefF for Hierarchical Multi-label Classification 157

Fig. 2. Comparison of different FFA curves obtained by varying the number of m and
k for datasets from the image annotation domain

the image and most of them are relevant. This can also be concluded if we observe
just the expected FFA curve of the random rankings.

Next, if we consider the results from the functional genomics domain in
Fig. 3, a more complex interpretation is necessary. First, the FFA curves of the

158 I. Slavkov et al.

Fig. 3. Comparison of different FFA curves obtained by varying the number of m and
k for datasets from the functional genomics domain

Yeast-GO dataset in Fig. 3a and b, show only slight improvement over the
random FFA curves at the beginning of the ranking (top 1 % of the features).
After that, seemingly irrelevant or redundant features are added, up to 75 % of
the features. After this point there is a jump in the number of relevant features

ReliefF for Hierarchical Multi-label Classification 159

that are added, as the AU(PRC) values become larger. For a fixed k in Fig. 3b,
this effect is more pronounced as the percent of sampled instances m increases.

Upon closer inspection of the produced rankings of the Yeast-GO dataset, all
of the numerical features were located among the top-ranked 1 % of the features
and the bottom 25 % of the features, while the binary features were in the remain-
ing part of the ranking. Although most of the numerical features were relevant,
the corresponding relevance values for part of them seemed to be underesti-
mated. This problem of underestimation of numerical attributes was also noted
by Robnik-Šikonja and Kononenko [20], especially in the domains with both
numeric and nominal features. To alleviate this issue, the use of a ramp function
was proposed when calculating the distance between the numerical attributes. In
our implementation a ramp function was also used, however different threshold
parameters of this function were not explored. Robnik-Šikonja and Kononenko
in [20], noted that for different domains, different thresholds might be appropri-
ate and we believe that this is the probable cause of the underestimation of the
relevance for part of the numeric features.

The FFA curves of the SCOP-FUN dataset, in Fig. 3c and d are the only
ones that show variability of the curves with respect to m and k. Unlike the
other datasets, the best FFA curves were obtained for a small number of m and
of k. This is consistent with the analysis of ReliefF in [20] where it is stated that
the values of m and k are often problem dependent and often smaller values
might be better in order to preserve “locality” of the relevance estimations.

The best results were obtained for the SCOP-GO dataset, which we present
in Fig. 3e and f. Both for a fixed m and k, the values of the FFA curves produced
by HMC-ReliefF are much higher than those of the random rankings. For a fixed
m varying the values of k does not influence the results (Fig. 3e). For a large
fixed k, there is only a difference for the FFA curve produced for m = 1% of the
instance space, which produces lower AU(PRC) values than the other values of
the parameter m.

5 Conclusions and Further Work

In this paper, we presented the HMC-ReliefF algorithm, which is an extension of
the RReliefF algorithm for the task of Hierarchical Multi-label Classification. We
believe that this is both an interesting and novel line of work, in the context of
feature ranking algorithms. To the best of our knowledge, there has not been any
work for feature ranking within the context of structured data. We specifically
focused on the ReliefF algorithm, due to its success in both classification and
regression settings. The specific type of structured problems that we considered
(HMC), was motivated by the fact that this kind of data can be found in various
domains including biology and image annotation.

We evaluated the HMC-ReliefF algorithm on datasets from different domains
and with different properties of the hierarchies. We first investigated if our algo-
rithm was able to detect relevant features in a dataset and put them on top of the
ranking. We consider this to be a minimum requirement of any feature ranking

160 I. Slavkov et al.

algorithm. Additionally, we also explored a reasonable set of parameter settings
of HMC-ReliefF, which have influence on the feature relevance estimations.

The results of our experiments showed that, for various datasets, the HMC-
ReliefF algorithm performed well, as evaluated by a stepwise filter like approach
of constructing FFA curves. This performance was compared to an expected FFA
curve, obtained from a set of random rankings. The exploration of the various
parameters of HMC-ReliefF showed the following. For the image annotation
datasets, large values of m and k were preferred and the FFA curves did not show
much variability with respect to the parameters. The FFA curves produced by
HMC-ReliefF were above the expected FFA curves with small differences. This
was due to the nature of the domain and due to the fact that most of the features
in the image annotation datasets were relevant.

For the functional genomics datasets, the results were more complex. The
effect of underestimation of relevance of numeric features with respect to binary
ones was observed, which has also been noted in the original ReliefF. The FFA
curves of one of the datasets, were sensitive to the change of m and k, producing
better FFA curves for smaller values. Finally, the last investigated dataset from
this domain provided the best FFA curves, with values significantly larger than
those of the expected FFA curves.

With this paper and the results presented we performed an initial investiga-
tion of the HMC-ReliefF algorithm. The directions for further work regarding
our HMC-ReliefF algorithm are numerous. One major direction would be to
define an artificial, controlled setting for investigating HMC problems in the
context of feature ranking. Different types of hierarchies should be considered,
which are also differently structured (balanced vs. unbalanced, different width,
different depth), or differently populated by instances (sparse vs. non-sparse).
Within this setting, the effects of the various parameters of HMC-ReliefF can be
investigated and the advantages and limitations of the algorithm can be explored.
Another major direction is to consider different types of structured outputs, such
as multi-label or multi-target classification.

Acknowledgements. We would like to acknowledge the support of the European
Commission through the project MAESTRA - Learning from Massive, Incompletely
annotated, and Structured Data (Grant number ICT-2013-612944).

References

1. Aleksovski, D., Kocev, D., Džeroski, S.: Evaluation of distance measures for hier-
archical multi-label classification in functional genomics. In: ECML/PKDD 2009
Workshop on Learning from Multi-Label Data, pp. 5–16 (2009)

2. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry,
J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill,
D.P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E.,
Ringwald, M., Rubin, G.M., Sherlock, G.: Gene ontology: tool for the unifica-
tion of biology. The gene ontology consortium. Nat. Genet. 25(1), 25–29 (2000).
http://dx.doi.org/10.1038/75556

http://dx.doi.org/10.1038/75556

ReliefF for Hierarchical Multi-label Classification 161

3. Blum, A.L., Langley, P.: Selection of relevant features and examples in machine
learning. Artif. Intell. 97, 245–271 (1997)

4. Clare, A.: Machine learning and data mining for yeast functional genomics. Ph.D.
thesis, University of Wales Aberystwyth, Aberystwyth, Wales, UK (2003)

5. Deselaers, T., Deserno, T.M., Mller, H.: Automatic medical image annotation in
ImageCLEF 2007: overview, results, and discussion. Pattern Recogn. Lett. 29(15),
1988–1995 (2008)

6. Dietterich, T.G., Domingos, P., Getoor, L., Muggleton, S., Tadepalli, P.: Structured
machine learning: the next ten years. Mach. Learn. 73(1), 3–23 (2008)

7. Dimitrovski, I., Kocev, D., Loskovska, S., Džeroski, S.: Hierchical annotation of
medical images. In: Proceedings of the 11th International Multiconference - Infor-
mation Society IS 2008, pp. 174–181. IJS, Ljubljana (2008)

8. Dimitrovski, I., Kocev, D., Loskovska, S., Džeroski, S.: Hierarchical classification
of diatom images using ensembles of predictive clustering trees. Ecol. Inform. 7(1),
19–29 (2012)

9. Gärtner, T., Vembu, S.: On structured output training: hard cases and an efficient
alternative. Mach. Learn. 76, 227–242 (2009)

10. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach.
Learn. Res. 3, 1157–1182 (2003)

11. He, Z., Yu, W.: Review article: stable feature selection for biomarker discovery.
Comput. Biol. Chem. 34, 215–225 (2010)

12. Jaccard, P.: Étude comparative de la distribution florale dans une portion des alpes
et des jura. Bulletin de la Société Vaudoise des Sciences Naturelles 37, 547–579
(1901)

13. Kira, K., Rendell, L.A.: A practical approach to feature selection. In: ML92: Pro-
ceedings of the Ninth International Workshop on Machine Learning, pp. 249–256.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1992)

14. Kocev, D., Vens, C., Struyf, J., Džeroski, S.: Tree ensembles for predicting struc-
tured outputs. Pattern Recogn. 46(3), 817–833 (2013)

15. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artif. Intell. 97,
273–324 (1997)

16. Kononenko, I.: Estimating attributes: analysis and extensions of RELIEF. In:
Bergadano, F., De Raedt, L. (eds.) ECML 1994. LNCS, vol. 784. Springer,
Heidelberg (1994)

17. Kriegel, H.P., Borgwardt, K., Kröger, P., Pryakhin, A., Schubert, M., Zimek, A.:
Future trends in data mining. Data Min. Knowl. Discov. 15, 87–97 (2007)

18. Pesquita, C., Faria, D., Bastos, H., Falcao, A.O., Couto, F.: Evaluating go-based
semantic similarity measures. In: BioOntologies SIG at ISMB/ECCB - 15th Annual
International Conference on Intelligent Systems for Molecular Biology (ISMB)
(2007)

19. Robnik-Šikonja, M., Kononenko, I.: An adaptation of relief for attribute estimation
in regression. In: Fisher, D.H. (ed.) ICML, pp. 296–304. Morgan Kaufmann, San
Francisco (1997)

20. Robnik-Šikonja, M., Kononenko, I.: Theoretical and empirical analysis of ReliefF
and RReliefF. Mach. Learn. 53, 23–69 (2003)

21. Silla, C., Freitas, A.: A survey of hierarchical classification across different appli-
cation domains. Data Min. Knowl. Discov. 22(1–2), 31–72 (2011)

22. Slavkov, I.: An evaluation method for feature rankings. Ph.D. thesis, IPS Jožef
Stefan, Ljubljana, Slovenia (2012)

23. Vens, C., Struyf, J., Schietgat, L., Džeroski, S., Blockeel, H.: Decision trees for
hierarchical multi-label classification. Mach. Learn. 73(2), 185–214 (2008)

The Use of the Label Hierarchy in Hierarchical
Multi-label Classification Improves Performance

Jurica Levatić1,2(B), Dragi Kocev1, and Sašo Džeroski1,2

1 Department of Knowledge Technologies, Jožef Stefan Institute, Ljubljana, Slovenia
{Jurica.Levatic,Dragi.Kocev,Saso.Dzeroski}@ijs.si

2 Jožef Stefan International Postgraduate School, Ljubljana, Slovenia

Abstract. We address the task of learning models for predicting struc-
tured outputs. We consider both global and local approaches to the pre-
diction of structured outputs, the former based on a single model that
predicts the entire output structure and the latter based on a collec-
tion of models, each predicting a component of the output structure.
More specifically, we compare local and global approaches in terms of
predictive performance, learning time and model complexity. Moreover,
we discuss the interpretability of the obtained models. We evaluate the
predictive performance of the considered approaches on six case studies
from three domains: ecological modelling, text classification and image
classification. Finally, we identify the properties of the tasks at hand that
lead to the differences in performance.

Keywords: Predictive clustering trees · Hierarchical multi-label classi-
fication · Multi-label classification · Habitat modelling · Text classifica-
tion · Image classification

1 Introduction

Supervised learning is one of the most widely researched and investigated areas
of machine learning. The goal in supervised learning is to learn, from a set of
examples with known class, a function that outputs a prediction for the class
of a previously unseen example. If the examples belong to two classes (e.g., the
example has some property or not) the task is called binary classification. The
task where the examples can belong to a single class from a given set of m classes
(m ≥ 3) is known as multi-class classification. The case where the output is a
real value is called regression.

However, in many real life problems of predictive modelling the output (i.e.,
the target) is structured, meaning that there can be dependencies between classes
(e.g., classes are organized into a tree-shaped hierarchy or a directed acyclic
graph) or some internal relations between the classes (e.g., sequences). These
types of problems occur very often in various domains, such as life sciences
(predicting gene function, finding the most important genes for a given disease,
predicting toxicity of molecules, etc.), ecology (analysis of remotely sensed data,

A. Appice et al. (Eds.): NFMCP 2013, LNAI 8399, pp. 162–177, 2014.
DOI: 10.1007/978-3-319-08407-7 11, c© Springer International Publishing Switzerland 2014

The Use of the Label Hierarchy in HMC Improves Performance 163

habitat modelling), multimedia (annotation and retrieval of images and videos)
and the semantic web (categorization and analysis of text and web pages). Hav-
ing in mind the needs of these application domains and the increasing quantities
of structured data, Kriegel et al. [1] and Dietterich et al. [2] listed the task of
“mining complex knowledge from complex data” as one of the most challenging
problems in machine learning.

A variety of methods, specialized in predicting a given type of structured
output (e.g., a hierarchy of classes [3]), have been proposed [4]. These methods
can be categorized into two groups of methods for solving the problem of pre-
dicting structured outputs [3,4]. Local methods construct models for predicting
component(s) of the output and then combine the individual models to get the
overall model (i.e., they construct an architecture of several simple(r) models).
Global methods that construct models for predicting the complete structure as
a whole (also known as ‘big-bang’ approaches).

The global methods have several advantages over the local methods. First,
they exploit and use the dependencies that may exist between the components
of the structured output in the model learning phase, which can result in better
predictive performance of the learned models. Next, they are typically more
efficient: it can easily happen that the number of components in the output is
very large (e.g., hierarchies in functional genomics can have several thousands of
components), in which case learning a model for each component is not feasible.
Furthermore, they produce models that are typically smaller than the sum of
the sizes of the models built for each of the components.

Despite the many developed methods and their interesting applications, it
is not clear when it is favorable (performance wise) to apply global and when
local approaches. In this work, we focus on clarifying this important issue for
the task of hierarchical multi-label classification (HMC). HMC is a variant of
classification, where a single example may belong to multiple classes at the same
time and the classes are organized in the form of a hierarchy. An example that
belongs to some class c automatically belongs to all super-classes of c: This is
called the hierarchical constraint. Problems of this kind can be found in many
domains including text classification, functional genomics, and object/scene clas-
sification. Silla and Freitas [3] give a detailed overview of the possible application
areas and the different approaches to HMC.

More specifically, we construct four types of predictive models that exploit
different amounts of the information provided by the output structure, i.e.,
the hierarchical organization of the classes. This corresponds to four different
machine learning tasks that can be formulated to solving the task of HMC:
binary classification, hierarchical single-label classification, multi-label classifi-
cation and hierarchical multi-label classification. The first two tasks construct
(an architecture of) local predictive models, while the last two tasks construct
global models.

To properly evaluate the predictive performance of the different models one
needs to select predictive models from the same type that can solve the four tasks
enumerated above. To this end, we consider predictive clustering trees (PCTs) as

164 J. Levatić et al.

predictive models. PCTs can be viewed as a generalization of standard decision
trees towards predicting structured outputs. PCTs offer a unifying approach for
dealing with different types of structured outputs and construct the predictive
models very efficiently. They are able to make predictions for several types of
structured outputs: tuples of continuous/discrete variables, hierarchies of classes,
and time series [5–7].

We perform the evaluation of the predictive models on six practically rele-
vant HMC datasets. The datasets come from three different domains: habitat
modelling, image classification and text classification. We consider habitat mod-
els for Collembola communities in the soils of Denmark [8] and communities
of organisms living in Slovenian rivers [9]. Next, we use two datasets from the
2007 CLEF cross-language image retrieval campaign [10], where the goal is to
annotate medical X-ray images. From the domain of text classification, we use
two well known datasets: categorization of e-mails from officials of the Enron
corporation [11] and categorization of Reuters newswire stories [12].

The remainder of this paper is organized as follows. Section 2 explains the
predictive clustering trees framework and the extensions for the different tasks
considered here. The experimental setup is presented in Sect. 3. Section 4 presents
the obtained results. Finally, the conclusions are stated in Sect. 5.

2 Predictive Modelling for HMC

In this section, we present in more detail methodology used to construct the
predictive models. We first present global approaches that predict the complete
output (i.e., a single model for all of the possible labels in the dataset) with a
single model. We then briefly describe local approaches that construct several
models - each one predicting a part of the output (i.e., a model for each label
separately).

2.1 Global Predictive Models

The Predictive Clustering Trees (PCTs) framework views a decision tree as a
hierarchy of clusters: the top-node corresponds to one cluster containing all data,
which is recursively partitioned into smaller clusters while moving down the tree.
The PCT framework is implemented in the CLUS system [13], which is available
for download at http://clus.sourceforge.net.

PCTs are induced with a standard top-down induction of decision trees
(TDIDT) algorithm [14]. The algorithm is presented in Table 1. It takes as input
a set of examples (E) and outputs a tree. The heuristic (h) that is used for
selecting the tests (t) is the reduction in variance caused by the partitioning (P)
of the instances corresponding to the tests (t) (see line 4 of the BestTest proce-
dure in Table 1). By maximizing the variance reduction, the cluster homogeneity
is maximized and the predictive performance is improved.

The main difference between the algorithm for learning PCTs and a standard
decision tree learner is that the former considers the variance function and the

http://clus.sourceforge.net

The Use of the Label Hierarchy in HMC Improves Performance 165

Table 1. The top-down induction algorithm for PCTs.

procedure PCT
Input: A dataset E
Output: A predictive clustering
tree

1: (t∗, h∗,P∗) = BestTest(E)
2: if t∗ ∈= none then
3: for each Ei ∩ P∗ do
4: treei = PCT(Ei)

5: return
node(t∗,

⋃
i{treei})

6: else
7: return leaf(Prototype(E))

procedure BestTest
Input: A dataset E
Output: the best test (t∗), its heuristic
score (h∗) and the partition (P∗) it induces
on the dataset (E)

1: (t∗, h∗,P∗) = (none, 0, ≤)
2: for each possible test t do
3: P = partition induced by t on E
4: h = Var(E) − ∑

Ei∈P
|Ei|
|E| Var(Ei)

5: if (h > h∗) ∼ Acceptable(t,P) then
6: (t∗, h∗,P∗) = (t, h,P)

7: return (t∗, h∗,P∗)

prototype function (that computes a label for each leaf) as parameters that can
be instantiated for a given learning task. So far, PCTs have been instantiated for
the following tasks: multi-target prediction (which includes multi-label classifi-
cation) [6], hierarchical multi-label classification [7] and prediction of time-series
[15]. In this article, we focus on the first two tasks.

PCTs for Multi-label Classification. PCTs for multi-label classification can
be considered as PCTs that are able to predict multiple binary (and thus dis-
crete) targets simultaneously. Therefore, the variance function for the PCTs for
MLC is computed as the sum of the Gini indices of the target variables, i.e.,
Var(E) =

∑T
i=1 Gini(E ,Yi). Alternatively, one can also use the sum of the

entropies of class variables as a variance function, i.e., Var(E) =
∑T

i=1 Entropy
(E ,Yi) (this definition has also been used in the context of multi–label predic-
tion [16]). The CLUS system also implements other variance functions, such as
reduced error, gain ratio and the m-estimate. The prototype function returns a
vector of probabilities that an instance belongs to a given class for each target
variable. Using these probabilities, the most probable (majority) class value for
each target can be calculated.

PCTs for Hierarchical Multi-label Classification. CLUS-HMC is the
instantiation (with the distances and prototypes as defined below) of the PCT
algorithm for hierarchical classification implemented in the CLUS system [7].
The variance and prototype are defined as follows. First, the set of labels of each
example is represented as a vector with binary components; the ith component
of the vector is 1 if the example belongs to class ci and 0 otherwise. It is easily
checked that the arithmetic mean of a set of such vectors contains as ith com-
ponent the proportion of examples of the set belonging to class ci. The variance
of a set of examples E is defined as the average squared distance between each

166 J. Levatić et al.

Fig. 1. Toy examples of a hierarchy structured as a tree. (a) Class label names contain
information about the position in the hierarchy, e.g., c2.1 is a subclass of c2. (b) The
set of classes S1 = {c1, c2, c2.2}, shown in bold, are represented as a vector (Lk).

example’s class vector (Li) and the set’s mean class vector (L), i.e.,

Var(E) =
1

|E| ·
∑

Ei∈E

d(Li, L)2.

In the HMC context, the similarity at higher levels of the hierarchy is more
important than the similarity at lower levels. This is reflected in the distance
measure used in the above formula, which is a weighted Euclidean distance:

d(L1, L2) =

√
√
√
√

|L|∑

l=1

w(cl) · (L1,l − L2,l)2,

where Li,l is the lth component of the class vector Li of an instance Ei, |L| is the
size of the class vector, and the class weights w(c) decrease with the depth of the
class in the hierarchy. More precisely, w(c) = w0 · w(p(c)), where p(c) denotes
the parent of class c and 0 < w0 < 1).

For example, consider the toy class hierarchy shown in Fig. 1(a,b), and two
data examples: (X1, S1) and (X2, S2) that belong to the classes S1 = {c1, c2, c2.2}
(boldface in Fig. 1(b)) and S2 = {c2}, respectively. We use a vector representa-
tion with consecutive components representing membership in the classes c1, c2,
c2.1, c2.2 and c3, in that order (preorder traversal of the tree of class labels). The
distance is then calculated as follows:

d(S1, S2) = d([1, 1, 0, 1, 0], [0, 1, 0, 0, 0]) =
√

w0 + w2
0.

Recall that the instantiation of PCTs for a given task requires a proper
instantiation of the variance and prototype functions. The variance function for
the HMC task is instantiated by using the weighted Euclidean distance measure
(as given above), which is further used to select the best test for a given node

The Use of the Label Hierarchy in HMC Improves Performance 167

by calculating the heuristic score (line 4 from the algorithm in Table 1). We now
discuss the instantiation of the prototype function for the HMC task.

A classification tree stores in a leaf the majority class for that leaf, which
will be the tree’s prediction for all examples that will arrive in the leaf. In the
case of HMC, an example may have multiple classes, thus the notion of majority
class does not apply in a straightforward manner. Instead, the mean L̄ of the
class vectors of the examples in the leaf is stored as a prediction. Note that the
value for the ith component of L̄ can be interpreted as the probability that an
example arriving at the given leaf belongs to class ci.

The prediction for an example that arrives at the leaf can be obtained by
applying a user defined threshold τ to the probability; if the ith component of
L̄ is above τ then the examples belong to class ci. When a PCT is making a
prediction, it preserves the hierarchy constraint (the predictions comply with
the parent-child relationships from the hierarchy) if the values for the thresholds
τ are chosen as follows: τi ≤ τj whenever ci ≤h cj (ci is ancestor of cj). The
threshold τ is selected depending on the context. The user may set the threshold
such that the resulting classifier has high precision at the cost of lower recall or
vice versa, to maximize the F-score, to maximize the interpretability or plausi-
bility of the resulting model etc. In this work, we use a threshold-independent
measure (precision-recall curves) to evaluate the performance of the models.

2.2 Local Predictive Models

Local models for predicting structured outputs use a collection of predictive
models, each predicting a component of the overall structure that needs to be
predicted. For the task of predicting multiple targets, local predictive models are
constructed by learning a predictive model for each of the targets separately. In
the task of hierarchical multi-label classification, however, there are four different
approaches that can be used: flat classification, local classifiers per level, local
classifiers per node, and local classifiers per parent node (see [3] for details).

Vens et al. [7] investigated the performance of the last two approaches with
local classifiers over a large collection of datasets from functional genomics. The
conclusion of the study was that the last approach (called hierarchical single-
label classification - HSC) performs better in terms of predictive performance,
smaller total model size and faster induction times.

In particular, the CLUS-HSC algorithm by Vens et al. [7] constructs a deci-
sion tree classifier for each edge (connecting a class c with a parent class par(c))
in the hierarchy, thus creating an architecture of classifiers. The tree that predicts
membership to class c is learnt using the instances that belong to par(c). The
construction of this type of trees uses few instances, as only instances labeled
with par(c) are used for training. The instances labeled with class c are positive
while the ones labeled with par(c), but not with c are negative.

The resulting HSC tree architecture predicts the conditional probability
P (c|par(c)). A new instance is predicted by recursive application of the product
rule P (c) = P (c|par(c))·P (par(c)), starting from the tree for the top-level class.
Again, the probabilities are thresholded to obtain the set of predicted classes.

168 J. Levatić et al.

To satisfy the hierarchy constraint, the threshold τ should be chosen as in the
case of CLUS-HMC.

In this work, we also consider the task of single-label classification. We con-
sider this to be a special case of multi-label classification where the number
of labels is 1. To this end, we use the same algorithm as for the multi-label
classification trees. We call these models single-label classification trees.

3 Experimental Design

In this section, we present the design of the experimental evaluation of the
predictive models built for the four machine learning tasks considered. We begin
by describing the data used. We then outline the specific experimental setup for
constructing the predictive models. Finally, we present the evaluation measure
for assessing the predictive performance of the models.

3.1 Data Description

We use six datasets, which come from three domains: habitat modeling, image
classification and text classification. The main statistics of the datasets are given
in Table 2. We can observe that the datasets vary in the size, number of attributes
and characteristics of the label hierarchy.

Habitat modelling [17] focuses on spatial aspects of the distribution and
abundance of plants and animals. It studies the relationships between environ-
mental variables and the presence/abundance of plants and animals. This is
typically done under the implicit assumption that both are observed at a single
point in time for a given spatial unit (i.e., sampling site). We investigate the
effect of environmental conditions on communities of organisms in two different
ecosystems: river and soil. Namely, we construct habitat models for river water
organisms living in Slovenian rivers [9] and for soil microarthropods from Danish
farms [8]. The data about the organisms that live in the water of Slovenian rivers
was collected during six years (1990 to 1995) of monitoring of water quality per-
formed by the Hydro-meteorological Institute of Slovenia (now Environmental
Agency of Slovenia). The data for the soil microarthropods from Danish farms
describes four experimental farming systems (observed during the period 1989–
1993) and a number of organic farms (observed during the period 2002–2003).
The structured output space in these case studies is the taxonomic hierarchy
of the species. Since different species are considered in the two domains, their
respective output spaces will be different.

In image classification, the goal is to automatically annotate the image con-
tent with labels. The labels typically represent visual concepts that are present in
the images. In this work, we are concerned with the annotation of medical X-ray
images. We use two datasets from the 2007 CLEF cross-language image retrieval
campaign [10]: ImCLEF07A and ImCLEF07D. The goal in these datasets is to
recognize which part of the human anatomy is present in the image or the ori-
entation of the body part, respectively. Images are represented by using edge

The Use of the Label Hierarchy in HMC Improves Performance 169

Table 2. Characteristics of the datasets: N is the number of instances, D/C is the
number of descriptive attributes (discrete/continuous), L is the number of labels (leafs
in the hierarchy), |H| is the number of nodes in the hierarchy, Hd is the maximal depth
of the hierarchy, LL is the average number of labels per example.

Domain N D/C L |H| Hd LL

Slovenian rivers [9] 1060 0/16 491 724 4 25
Danish farms [8] 1944 132/5 35 72 3 7
ImCLEF07A [10] 11006 0/80 63 96 3 1
ImCLEF07D [10] 11006 0/80 26 46 3 1
Enron [11] 1648 0/1001 50 54 3 2.84
Reuters [12] 6000 0/47236 77 100 4 1.2

histograms. An edge histogram represents the frequency and the directionality
of the brightness changes in the image. The structured output space consists of
labels organized in hierarchy. They correspond to the anatomical (ImCLEF07A)
and directional (ImCLEF07D) axis of the IRMA (Image Retrieval in Medical
Applications) code [18].

Text classification is the problem of automatic annotation of textual doc-
uments to one or more categories. We used two datasets from this domain:
Enron and Reuters. Enron is a labeled subset of the Enron corpus [11], prepared
and annotated by the UCBerkeley Enron Email Analysis Project1. The e-mails
are categorized into several hierarchically organized categories concerning the
characteristics of the e-mail, such as genre, emotional tone or topic. Reuters is
a subset of the ‘Topics’ category of the Reuters Corpus Volume I (RCV1) [12].
RCV1 is a collection of English language stories published by the Reuters agency
between August 20, 1996, and August 19, 1997. Stories are categorized into hier-
archical groups according to the major subjects of a story, such as Economics,
Industrial or Government. In both domains, the text documents are described
with their respective bag-of-words representation.

3.2 Experimental Design

We constructed four types of predictive models, as described in the previous
section, for each of the case studies. First, we constructed single-label classi-
fication trees for each label (i.e., leaf in the label hierarchy) separately. Next,
we constructed hierarchical single-label classification tree architecture. Further-
more, we constructed a multi-label classification tree for all of the leaf labels,
without using the hierarchy. Finally, we constructed a hierarchical multi-label
classification tree for all of the labels by using the hierarchy.

We used F -test pruning to ensure that the produced models are not over-
fitted and have better predictive performance [7]. The exact Fisher test is used
to check whether a given split/test in an internal node of the tree results in a

1 http://bailando.sims.berkeley.edu/enron email.html

http://bailando.sims.berkeley.edu/enron_email.html

170 J. Levatić et al.

statistically significant reduction in variance. If there is no such split/test, the
node is converted to a leaf. A significance level is selected from the values 0.125,
0.1, 0.05, 0.01, 0.005 and 0.001 to optimize predictive performance by using
internal 3-fold cross validation.

We evaluate the predictive performance of the models on the classes/labels
that are leafs in the target hierarchy. We made this choice in order to ensure a fair
comparison across the different tasks. Namely, if we consider all labels (the leaf
labels and the inner nodes labels), the single-label classification task will be very
close to the task of hierarchical single-label classification; similarly, the task of
multi-label classification becomes very close to the task of hierarchical multi-label
classification. Moreover, by evaluating only the performance on leaf labels, we are
measuring more precisely the influence of the inclusion of the different kinds of
information in the learning process on the predictive performance of the models.
To further ensure this, we set the w0 parameter for the weighted Euclidean
distance for HMC to the value of 1: all labels in the hierarchy contribute equally.
By doing this, we measure only the effect of including the multi-label information
(considering the multiple labels simultaneously) and the hierarchy information.

3.3 Evaluation Measures

We evaluate the algorithms by using the Area Under the Precision-Recall Curve
(AUPRC), and in particular, the Area Under the Average Precision-Recall Curve
(AUPRC) as suggested by Vens et al. [7]. The points in the PR space are obtained
by varying the value for the threshold τ from 0 to 1 with step 0.02. For each
value of the threshold τ , precision and recall are micro-averaged as follows:

Prec =
∑

i TPi∑
i TPi +

∑
i FPi

, and Rec =
∑

i TPi∑
i TPi +

∑
i FNi

where i ranges over all classes that are leafs in the output hierarchies.
We measure the performance of the predictive models along several dimen-

sions. First, we estimate the predictive performance of the models using 10-fold
cross-validation. Second, we assess the descriptive power of the models by evalu-
ating them on the training set. Next, we measure how much the different models
tend to over-fit on the training data. To this end, we use the relative decrease
of the performance from the training set to the one obtained with 10-fold cross-
validation. We define this as over-fit score (OS = AUPRCtrain−AUPRCtest

AUPRCtrain
). The

smaller values of this score mean that the overfitting of the models is smaller.
Finally, we measure the model complexity and the time efficiency of the predic-
tive models. The model complexity for the global models is the number of nodes
in a given tree, while the model complexity for the local models is the sum of
all nodes from all trees. Similarly, the running time of the global models is the
time needed to construct the model, while the running time for the local models
is the time needed to construct all of the models.

We adopt the recommendations by Demšar [19] for the statistical evaluation
of the results. We use the corrected non-parametric Friedman test for statisti-
cal significance on the per-fold-data for the folds of 10-fold cross validation for

The Use of the Label Hierarchy in HMC Improves Performance 171

each dataset separately. Afterwards, to check where the statistically significant
differences appear (between which methods), we use the Nemenyi post-hoc test
(Nemenyi, 1963). We present the result from the Nemenyi post hoc test with an
average ranks diagram as suggested by Demšar [8]. The ranks are depicted on
the axis, in such a manner that the best ranking algorithms are at the right-
most side of the diagram. The algorithms that do not differ significantly (in
performance) are connected with a line.

4 Results and Discussion

In this section, we present the results from the experimental evaluation. We
discuss the obtained models first in terms of their performance (predictive and
efficiency) and then in terms of their interpretability.

The results from the evaluation of the predictive models are given in Table 3.
A quick inspection of the performance reveals that the best results are obtained
by models that exploit the information about the underlying output hierarchy.
Next, the models that include the hierarchy information tend to over fit less
as compared to the other models. Moreover, the results indicate that the HMC
trees over-fit the least on these datasets. Finally, the global models (especially
HMC) are more efficient than their local counterparts, in terms of both running
time and model complexity.

We further examine the results by performing a statistical significance test. In
particular, we performed the Friedman test to check whether the observed differ-
ences in performance are statistically significant for each dataset separately. The
results from this analysis show that the difference in performance is statistically
significant for each dataset with p-value smaller than 3 · 10−5.

Figure 2 presents the average ranks from the Nemenyi post-hoc test for all
types of models. The diagrams show that the HMC models are best perform-
ing on three domains (Slovenian rivers, Danish farms and Enron), while on the
other three domains (ImCLEF07A, ImCLEF07D and Reuters) the best per-
forming type of model is the HSC architecture. We next discuss the statistically
significant differences in the datasets in more detail.

When HMC trees are the best performing method, they are statistically
significantly better than the single-label trees. In the remaining cases, the dif-
ferences are not statistically significant (although HMC trees are better than
single-label trees also on ImCLEF07A and ImCLEF07D). HMC trees are sta-
tistically significantly better than HSC tree architecture only on the Slovenian
rivers dataset, and HSC tree architecture is statistically significantly better than
HMC trees on the Reuters dataset.

We further complement the information on the performance with the dataset
properties from Table 2. HMC trees perform best on datasets with a large number
of labels per example (25, 7 and 2.84 labels per example for the Slovenian rivers,
Danish farms and Enron datasets, respectively). Conversely, HSC tree architec-
tures perform better on datasets with a small number of labels per example
(1.2, 1 and 1 for Reuters, ImCLEF07A and ImCLEF07D datasets, respectively).

172 J. Levatić et al.

Table 3. Performance of the methods in terms of AUPRC, decrease of training set
performance relative to test set performance. (OS), Learning time (in seconds) and
model complexity (the number of nodes in the decision trees). The best predictive
performance for each dataset is shown in bold.

Dataset Method AUPRC OS Learning time Complexity

Slovenian rivers Single-label 0.239 0.692 23.3 15336
HSC 0.309 0.591 10.2 25035
Multi-label 0.322 0.007 9.4 1
HMC 0.374 0.132 0.6 37

Danish farms Single-label 0.790 0.099 3.7 2605
HSC 0.808 0.083 1.3 2873
Multi-label 0.801 0.112 0.7 265
HMC 0.815 0.065 0.4 259

ImCLEF07A Single-label 0.571 0.375 74.4 3957
HSC 0.665 0.324 27.3 10054
Multi-label 0.530 0.462 13.5 3553
HMC 0.592 0.182 3.4 635

ImCLEF07D Single-label 0.515 0.483 35.4 7418
HSC 0.631 0.361 20.1 9764
Multi-label 0.511 0.484 7.78 3675
HMC 0.615 0.198 3.0 685

Enron Single-label 0.398 0.495 114.7 1740
HSC 0.466 0.434 25.1 3168
Multi-label 0.385 0.584 13.8 1259
HMC 0.488 0.110 3.3 55

Reuters Single-label 0.431 0.546 970.8 3591
HSC 0.481 0.510 781.4 7004
Multi-label 0.332 0.654 191.8 2949
HMC 0.373 0.365 42.5 593

The output hierarchy is much more populated in the former case, thus, allowing
the learning of HMC trees to fully exploit the dependencies between the labels.
This in turn provides predictive models with better predictive power. Similar
behavior can be observed for the models that do not exploit the output hierar-
chy: the multi-label trees are better on datasets with more labels per example,
while the single-label tree are better on datasets with fewer labels per example.

We next discuss the poor performance of the global models on the Reuters
dataset. This is the only dataset where HMC trees have worse predictive perfor-
mance than single-label trees. The poor predictive performance is mainly due to
two reasons: (1) the dataset has a small number of labels per examples and (2)
the dataset is extremely high-dimensional and sparse. However, this prompts
for additional investigation and analysis using more benchmark datasets that
exhibit similar properties.

Besides the predictive power of the models, their interpretability is often
a highly desired property, especially in domains such as habitat modelling.

The Use of the Label Hierarchy in HMC Improves Performance 173

4 3 2 1

HMC

Multi-labelHSC

Single-label

Critical Distance = 1.48321

4 3 2 1

HMC

HSCMulti-label

Single-label

Critical Distance = 1.48321

(a) Slovenian rivers (b) Danish Farms

4 3 2 1

HSC

HMCSingle-label

Multi-label

Critical Distance = 1.48321

4 3 2 1

HSC

HMCSingle-label

Multi-label

Critical Distance = 1.48321

(a) ImCLEF07A (b) ImCLEF07D

4 3 2 1

HMC

HSCSingle-label

Multi-label

Critical Distance = 1.48321

4 3 2 1

HSC

Single-labelHMC

Multi-label

Critical Distance = 1.48321

(a) Enron (b) Reuters

Fig. 2. Average ranks diagrams for the performance of the four methods in terms of
AUPRC for each of the six datasets. Better algorithms are positioned on the right-
hand side, the ones that differ by less than the critical distance for a p-value = 0.05
are connected with a line.

We discuss the interpretability of the models from the perspective of this domain.
The predictive models that we consider here (PCTs) are readily interpretable.
However, the difference in the interpretability of the local and global models is
easy to notice. Firstly, global models, especially HMC trees , have considerably
smaller complexity than the (collections of) local models (Table 3). In Fig. 3, we
present illustrative examples of the predictive models for the Slovenian rivers
dataset. We show several PCTs for single-label classification, a tree for multi-
label classification and a tree for hierarchical multi-label classification.

We can immediately notice the differences between the local and global pre-
dictive models. The local models2 offer information only for a part for the output
2 Note that the hierarchical single-label classification models will be similar to the

single-label classification models, with the difference that the predictive models are
organized into a hierarchical architecture. This makes the interpretation of the HSC
models an even more difficult task.

174 J. Levatić et al.

NO3 > 2.13

yes no

K > 0.89

yes no

Temperature > 19.3

yes no

0.44 0.57

0.71

Conductivity > 192

yes no

NH4 > 0.18

yes no

0.17 0.53

Temperature > 17

yes no

0.02 0.77

Bacillariophyta Cyclotella Comta

NO2 > 0.04

yes no

NO2 > 0.07

yes no

0.88 0.55

Cl > 3.76

yes no

PH > 8.02

yes no

0.0 0.94

CO2 > 6.22

yes no

0.23 0.18

Bacillariophyta Nitzschia Palea

Temperature > 19.3

yes no

SiO2 > 6.13

yes no

SiO2 > 9.44

yes no

0.94 0.59

0.33

NO3 > 2.08

yes no

BPK > 2.3

yes no

0.08 0.58

KMnO4 > 0.8

yes no

0.35 0.33

Diptera Chironomidae Zeleni

Temperature > 15.5

yes no

NH4 > 6.13

yes no

KMnO4 > 0.68

yes no

0.19 0.69

Hardness > 13.5

yes no

0.31 0.34

NO2 > 0.08

yes no

0.76 Cl > 5.7

yes no

0.49 0.20

Bacillariophyta Navicula Cryptocephala Vcryptoceph

. . .

(a)

KMnO4 > 2.5

yes no

BPK > 7.5

yes no

Temperature > 15.2

yes no

Diptera Melanochelia 0.66 Gammarus Fossarum 0.74

Cyclotella Comta 0.73

Temperature > 15.5

yes no

Oscillatoria Putrida 0.87Chydrurus Foetidus 0.86
Cryptocephala Vcryptoceph 0.51

Nitzschia Palea 0.52
Chironomidae Zeleni 0.82
Oligochaeta Tubifex 0.63

Diptera Pedicia 0.87
Diptera Orthocladiinae 0.63
Chironomidae Zeleni 0.51

Gomphonema Olivaceum 0.74
Synedra Ulna 0.50

Cryptocephala Vcryptoceph 0.91
Nitzschia Palea 0.87

Plecoptera Nemoura 0.71
Coleoptera Elmis 0.96
Hemiptera Corixa 0.63

Cryptocephala Vcryptoceph 0.85
Euglena Viridis 0.62
Baetis Rhodani 0.69
Physa Fontinalis 0.70

(b)

KMnO4 > 2.5

yes no

BPK > 7.5

yes no

Bacillariophyta 0.99 Amphipoda 0.69

CO2 > 0.4

yes no

NO3 > 2.6

yes no

Rhodophyta 0.55 none

Temp > 11.1

yes no

Diptera 0.83 Chrysophyta 0.76

- Cymbella 0.83
- Gomphonema 0.71
- Navicula 0.67

- Cryptocephala 0.63
- Vcryptoceph 0.43

- Nitzschia 0.51
- Palea 0.33

Diptera 0.88
- Chironomidae 0.71
- Chironomus 0.27
Oligochaeta 0.76
- Tubifex 0.61

- Gammarus 0.56
- Fossarum 0.53

Bacillariophyta 0.87
- Cocconeis 0.35
- Cyclotella 0.77

- Comta 0.43
- Diatoma 0.81

- Vulgare 0.64
- Nitzschia 0.14

- Acicularis 0.73
- Palea 0.78

- Synedra 0.57

- Audouinella 0.45
- Chalybea 0.33
Trichoptera 0.94
- Limnephilidae 0.67
- Rhyacophila 0.67

- Chironomidae 0.70
- Zeleni 0.64

Ephemeroptera 0.64
- Baetis 0.50
- Ephemerella 0.23

- Hydrurus 0.70
- Foetidus 0.64

(c)

Fig. 3. Illustrative examples of decision trees (PCTs) learnt for the Slovenian rivers
dataset. Single-label classification (a) produces a separate model for each of the species,
whereas multi-label classification (b) and hierarchical multi-label classification (c) con-
sider all of the species in a single tree.

space, i.e., they are valid just for a single species. In order to reconstruct the
complete community model, one needs to look at the separate models and then
try to make some overall conclusions. However, this could be very tedious or

The Use of the Label Hierarchy in HMC Improves Performance 175

even impossible in domains with high biodiversity where there are hundreds of
species present, such as the domain we consider here - Slovenian rivers.

On the other hand, the global models are much easier to interpret. The single
global model is valid for the complete structured output, i.e., for the whole com-
munity of species present in the ecosystem. The global models are able to capture
the interactions present between the species, i.e., which species can co-exist at
a locations with given physico-chemical properties. Moreover, the HMC models,
as compared to the multi-label models, offer additional information about the
higher taxonomic ranks. For example, the HMC model could state that there is
a low probability (0.27) that the species Diptera chironomus is present under
the given environmental conditions, while the is a high probability (0.88) that
the genus Diptera is present (left-most leaf of the HMC tree in Fig. 3).

5 Conclusions

We address the task of learning predictive models for hierarchical multi-label
classification, which take as input a tuple of attribute values and predict a set of
classes organized into a hierarchy. We consider both global and local approaches
for prediction of structured outputs. The former are based on a single model that
predicts the entire output structure, while the latter are based on a collection of
models, each predicting a component of the output structure.

We investigate the differences in performance and interpretability of the local
and global models. More specifically, we examine whether including information
in the form of hierarchical relationships among the labels and considering the
multiple labels simultaneously helps to improve the performance of the predic-
tive models. To this end, we consider four machine learning tasks: single-label
classification, hierarchical single-label classification, multi-label classification and
hierarchical multi-label classification.

We use predictive clustering trees as predictive models, since they can be
used for solving all of the four tasks considered here. We construct and evaluate
four types of trees: single-label trees, hierarchical single-label trees, multi-label
trees and hierarchical multi-label trees.

We compare the performance of local and global predictive models on six
datasets from three practically relevant tasks: habitat modelling, image classifi-
cation and text classification. The results show that the inclusion of the hierar-
chical information in the model construction phase, i.e., for HMC trees and for
HSC tree architecture, improves the predictive performance. The improvement
in performance for HMC trees is more pronounced on domains that have a more
populated hierarchy, i.e., on datasets with a larger number of labels per example.
On the other hand, HSC tree architecture perform better in the domains where
the number of labels per example is closer to one. Moreover, the models that
take the hierarchy into account tend to over-fit less than the models that do not
include such information (this is especially true for the HMC trees). Finally, the
global methods produce less complex models and are much easier to interpret
than the local models offering an overview of the complete output hierarchy.

176 J. Levatić et al.

All in all, the inclusion of hierarchy information improves the performance of
the predictive models and the global models are more efficient and easier to
interpret than local models.

Acknowledgments. We would like to acknowledge the support of the European Com-
mission through the project MAESTRA - Learning from Massive, Incompletely anno-
tated, and Structured Data (Grant number ICT-2013-612944).

References

1. Kriegel, H.P., Borgwardt, K., Kröger, P., Pryakhin, A., Schubert, M., Zimek, A.:
Future trends in data mining. Data Min. Knowl. Disc. 15, 87–97 (2007)

2. Dietterich, T.G., Domingos, P., Getoor, L., Muggleton, S., Tadepalli, P.: Structured
machine learning: the next ten years. Mach. Learn. 73(1), 3–23 (2008)

3. Silla, C., Freitas, A.: A survey of hierarchical classification across different appli-
cation domains. Data Min. Knowl. Disc. 22(1–2), 31–72 (2011)

4. Bakır, G.H., Hofmann, T., Schölkopf, B., Smola, A.J., Taskar, B., Vishwanathan,
S.V.N.: Predicting Structured Data. The MIT Press, Cambridge (2007)

5. Blockeel, H.: Top-down induction of first order logical decision trees. Ph.D. thesis,
Katholieke Universiteit Leuven, Leuven, Belgium (1998)

6. Kocev, D., Vens, C., Struyf, J., Džeroski, S.: Tree ensembles for predicting struc-
tured outputs. Pattern Recogn. 46(3), 817–833 (2013)

7. Vens, C., Struyf, J., Schietgat, L., Džeroski, S., Blockeel, H.: Decision trees for
hierarchical multi-label classification. Mach. Learn. 73(2), 185–214 (2008)

8. Demšar, D., Džeroski, S., Larsen, T., Struyf, J., Axelsen, J., Bruns-Pedersen, M.,
Krogh, P.H.: Using multi-objective classification to model communities of soil.
Ecol. Modell. 191(1), 131–143 (2006)

9. Džeroski, S., Demšar, D., Grbović, J.: Predicting chemical parameters of river
water quality from bioindicator data. Appl. Intell. 13(1), 7–17 (2000)

10. Dimitrovski, I., Kocev, D., Loskovska, S., Džeroski, S.: Hierchical annotation of
medical images. In: Proceedings of the 11th International Multiconference - Infor-
mation Society IS 2008, IJS, Ljubljana, pp. 174–181 (2008)

11. Klimt, B., Yang, Y.: The enron corpus: a new dataset for email classification
research. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.)
ECML 2004. LNCS (LNAI), vol. 3201, pp. 217–226. Springer, Heidelberg (2004)

12. Lewis, D.D., Yang, Y., Rose, T.G., Li, F.: RCV1: a new benchmark collection for
text categorization research. J. Mach. Learn. Res. 5, 361–397 (2004)

13. Blockeel, H., Struyf, J.: Efficient algorithms for decision tree cross-validation. J.
Mach. Learn. Res. 3, 621–650 (2002)

14. Breiman, L., Friedman, J., Olshen, R., Stone, C.J.: Classification and Regression
Trees. Chapman & Hall/CRC, New York (1984)

15. Slavkov, I., Gjorgjioski, V., Struyf, J., Džeroski, S.: Finding explained groups of
time-course gene expression profiles with predictive clustering trees. Mol. BioSyst.
6(4), 729–740 (2010)

16. Clare, A.: Machine learning and data mining for yeast functional genomics. Ph.D.
thesis, University of Wales Aberystwyth, Wales, UK (2003)

17. Džeroski, S.: Machine learning applications in habitat suitability modeling. In:
Haupt, S.E., Pasini, A., Marzban, C. (eds.) Artificial Intelligence Methods in the
Environmental Sciences, pp. 397–412. Springer, Berlin (2009)

The Use of the Label Hierarchy in HMC Improves Performance 177

18. Lehmann, T., Schubert, H., Keysers, D., Kohnen, M., Wein, B.: The IRMA code for
unique classification of medical images. In: Medical Imaging 2003: PACS and Inte-
grated Medical Information Systems: Design and Evaluation, pp. 440–451 (2003)

19. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach.
Learn. Res. 7, 1–30 (2006)

Graphs, Networks
and Relational Data

AGWAN: A Generative Model for Labelled,
Weighted Graphs

Michael Davis1(B), Weiru Liu1, Paul Miller1, Ruth F. Hunter2, and Frank Kee2

1 Centre for Secure Information Technologies, School of Electronics,
Electrical Engineering and Computer Science, Belfast, UK

2 Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences,
Queen’s University, Belfast, UK

{mdavis05,w.liu,p.miller,ruth.hunter,f.kee}@qub.ac.uk

Abstract. Real-world graphs or networks tend to exhibit a well-known
set of properties, such as heavy-tailed degree distributions, clustering and
community formation. Much effort has been directed into creating realis-
tic and tractable models for unlabelled graphs, which has yielded insights
into graph structure and evolution. Recently, attention has moved to
creating models for labelled graphs: many real-world graphs are labelled
with both discrete and numeric attributes. In this paper, we present
Agwan (Attribute Graphs: Weighted and Numeric), a generative model
for random graphs with discrete labels and weighted edges. The model is
easily generalised to edges labelled with an arbitrary number of numeric
attributes. We include algorithms for fitting the parameters of the Agwan
model to real-world graphs and for generating random graphs from the
model. Using real-world directed and undirected graphs as input, we
compare our approach to state-of-the-art random labelled graph genera-
tors and draw conclusions about the contribution of discrete vertex labels
and edge weights to graph structure.

Keywords: Network models · Graph generators · Random graphs ·
Labelled graphs · Weighted graphs · Graph mining

1 Introduction

Network analysis is concerned with finding patterns and anomalies in real-world
graphs, such as social networks, computer and communication networks, or bio-
logical and ecological processes. Real graphs exhibit a number of interesting
structural and evolutionary properties, such as power-law or log-normal degree
distribution, small diameter, shrinking diameter, and the Densification Power
Law (DPL) [6,19,21].

Besides discovering network properties, researchers are interested in the mech-
anisms of network formation. Generative graph models provide an abstrac-
tion of how graphs form: if the model is accurate, generated graphs will obey
the same properties as real graphs. Generated graphs are also useful for sim-
ulation experiments, hypothesis testing and making predictions about graph

A. Appice et al. (Eds.): NFMCP 2013, LNAI 8399, pp. 181–200, 2014.
DOI: 10.1007/978-3-319-08407-7 12, c© Springer International Publishing Switzerland 2014

182 M. Davis et al.

evolution or missing graph elements. Most existing models are for unlabelled,
unweighted graphs [6,19], but some models take discrete vertex labels into
account [13,17,22].

In this paper, we present Agwan, a generative model for labelled, weighted
graphs. Weights are commonly used to represent the number of occurrences of
each edge: the number of e-mails sent between individuals in a social network [1];
the number of calls to a subroutine in a software call graph [9]; or the number
of people walking between a pair of door sensors in a building access control
network [8]. In other applications, the edge weight may represent continuous
values: donation amounts in a bipartite graph of donors and political candi-
dates [1]; distance or speed in a transportation network [9]; or elapsed time to
walk between the sensors in the building network [8]. In some cases, the weight
is a multi-dimensional feature vector [8,9].

Our main motivation for this work is to create a model to better understand
the laws governing the relationship between graph structure and numeric labels
or weights. Furthermore, we want to be able to create realistic random, labelled,
weighted graphs for large-scale simulation experiments for our pattern discovery
algorithms [8]. Our experiments in Sect. 5 show the extent to which various
graph properties are related to labels and weights, and measure exactly how
“realistic” our random graphs are. Graphs generated with Agwan are shown
to have more realistic vertex strength distributions and spectral properties than
the comparative methods.

This paper is arranged as follows: Sect. 2 is an overview of generative graph
models; Sect. 3 presents Agwan, our generative model for weighted and numeric
labelled graphs. We include a fitting algorithm to learn Agwan’s parameters
from a real input graph, and an algorithm to generate random graphs from the
model. Section 4 gives an overview of the datasets that we use in the experi-
ments, and outlines the statistical measures and tests that we use to evaluate
the generated graphs. The experiments in Sect. 5 demonstrate that the vertex
labels and edge weights of a graph can predict the graph structure with high
accuracy. Conclusions are in Sect. 6.

2 Related Work

Our understanding of the mathematical properties of graph structure was pio-
neered by Paul Erdős and Alfréd Rényi [10]. Graph formation is modelled as a
Bernoulli process, parameterised by the number of vertices and a wiring proba-
bility between each vertex pair. While it has been essential to our understanding
of component sizes and expected diameter, the Erdős-Rényi model does not
explain other important properties of real-world graphs such as degree distribu-
tion, transitivity and clustering [6,21].

Barabási and Albert’s Preferential Attachment model [2] uses the “rich get
richer” principle to grow graphs from a few vertices up to the desired size. The
probability of an edge is proportional to the number of edges already connected

AGWAN: A Generative Model for Labelled, Weighted Graphs 183

to a vertex. This generates graphs with power-law degree distributions. A num-
ber of variants of Preferential Attachment have been proposed [6,21]. Still, Pref-
erential Attachment models lack some desired properties, such as community
structure.

The RMat algorithm [7] solves the community structure problem with its
recursive matrix approach. RMat graphs consist of 2n vertices and E edges,
with four probabilities a, b, c, d to determine in which quadrant of the adjacency
matrix each edge falls. These parameters allow the specification of power-law
or log-normal degree distributions; if a = b = c = d, the result will be an
Erdős-Rényi graph.

Kronecker Graphs [19] fulfil all the properties mentioned above, as well as the
DPL and shrinking diameter effect. The model starts with an initiator matrix.
Kronecker multiplication is recursively applied to yield the final adjacency matrix
of the desired size. This work synthesises the previous work in random graphs in
a very elegant way and proves that RMat graphs are a special case of Stochastic
Kronecker graphs.

The models above tend to have a small number of parameters and are analyt-
ically tractable, with simple and elegant proofs of the desired properties. How-
ever, graph labels are not taken into consideration. Stochastic models are another
class of generative algorithm which may not be amenable to analytical proofs,
but can be fit to real-world labelled graphs and used to learn the properties of
those graphs. Models in this category include the Stochastic Block Model [22]
and Latent Space approaches [13].

The Multiplicative Attribute Graph (MAG) model [17] draws on both of the
above strands of research. MAG is parameterised by the number of vertices, a set
of prior probabilities for vertex label values and a set of affinity matrices spec-
ifying the probability of an edge conditioned on the vertex labels. The affinity
matrices can be learned from real graphs using Maximum Likelihood Estima-
tion [16]. Reference [17] proves that Kronecker Graphs are a special case of MAG
graphs, and that suitably-parameterized MAG graphs fulfil all the desired prop-
erties: log-normal or power-law degree distribution, small diameter, the existence
of a unique giant component and the DPL. The MAG model considers discrete
vertex labels only. We believe that our method, described in the next section, is
the first generative model to include numeric labels or weights.

3 AGWAN: A Generative Model for Labelled,
Weighted Graphs

In this section, we present our generative model, Agwan (Attribute Graph:
Weighted and Numeric). The model is illustrated in Fig. 1 for the Enron graph
described in Sect. 4.

Consider a graph G = (V,E) with discrete vertex label values drawn from a
set L. In Fig. 1, u, v ≈ V are vertices and wuv, wvu ≈ R are edge weights. Edges
e ≈ E are specified as a 3-tuple ∗u, v, wuv√. In the discussion which follows,

184 M. Davis et al.

Fig. 1. Agwan parameters. Vertex labels are selected according to prior probability μ.
Edge weight wuv is selected from mixture model κ42 and wvu is selected from mixture
model κ24.

we restrict ourselves to a single label on each vertex; we outline how this can be
extended to multiple labels in Sect. 3.3.

We must choose a suitable probability distribution to model the edge weights
accurately and efficiently. The Gaussian distribution is popular as it has an
analytically tractable Probability Density Function (PDF). However, the edge
weights W ij = {wij} follow an arbitrary probability distribution which is not
necessarily Gaussian. By using a weighted mixture of Gaussian components, we
can get a reasonable approximation to any general probability distribution [3].
The resulting Gaussian Mixture Model (GMM) is quite flexible and is used
extensively in statistical pattern recognition [15].

A parametric GMM can be used where we know the number of components
in advance. In our case, the number of components—and therefore the number
of parameters in the model—changes according to the data. We avoid the prob-
lem of knowing the “correct” number of components by using a non-parametric
model. We assume that W ij consists of an infinite number of components and
use variational inference to determine the optimal number for our model [4].

The Agwan model is parameterised by μ, a set of prior probabilities over L;
and Θ, a set of edge weight mixture parameters: Θ = {Ωij |i, j ≈ L}. For directed
graphs, |Θ| = |L|2 and we need to generate both wuv and wvu (see Fig. 1). For
undirected graphs, Ωij = Ωji, so |Θ| = O(|L|2/2) and wvu = wuv.

For each combination of vertex attributes ∗i, j√, the corresponding mixture
model Ωij parameterises the distribution of edge weights (with an edge weight
of 0 indicating no edge). Ωij is a GMM with M Gaussian components:

Ωij =
M−1∑

m=0

ωij
m · η(μij

m, (σ2)ij
m) (1)

AGWAN: A Generative Model for Labelled, Weighted Graphs 185

where ωij
m is the weight of each component and η(μij

m, (σ2)ij
m) is the Gaussian

PDF with mean μij
m and variance (σ2)ij

m. The mixture weights form a probability
distribution over the components:

∑M−1
m=0 ωij

m = 1. We can specify Ωij such
that the first mixture component encodes the probability of no edge: ωij

0 =
1 − P (eij), where P (eij) is the probability of an edge between pairs of vertices
with labels ∗i, j√. The model degenerates to an unweighted graph if there are
two components, η0(0, 0) and η1(1, 0). Furthermore, if the weights ωij

m are the
same for all ∗i, j√, the model degenerates to an Erdős-Rényi graph.

As the Gaussian distribution has unbounded support, GMMs can be used
to model any set of continuous values. However, if the edge weight is a count-
able quantity representing the number of occurrences of the edge, then W ij is
bounded by [0,∀). Although this case can be modelled as a GMM, it requires
a large number of mixture components to describe the data close to the bound-
ary [20]. We consider alternatives to the GMM for the semi-bounded and bounded
cases in Sect. 6.

3.1 Graph Generation

Algorithm 1 describes how to generate a random graph using Agwan(N,L, μ,Θ).
The number of vertices in the generated graph is specified by N . After assigning
discrete label values to each vertex (lines 2–3, cf. Fig. 1), the algorithm checks
each vertex pair ∗u, v√ for the occurrence of an edge (lines 4–7). If m = 0, ∗u, v√
is not an edge (line 7). If there is an edge, we assign its weight from mixture
component m (lines 8–9). The generated graph is returned as G = (V,E).

Algorithm 1. Agwan Graph Generation
Require: N (no. of vertices), L (set of discrete label values), μ (prior distribution

over L), Δ =
{
κij
}

(set of mixture models)
1: Create vertex set V of cardinality N , edge set E = ∈
2: for all u ∩ V do
3: Assign discrete label lu ∩ L from prior μ
4: for all u, v ∩ V : u ≤= v do
5: i = lu, j = lv
6: Select Gaussian m uniformly at random from κij

7: if m ≤= 0 then
8: Assign edge weight wuv uniformly at random from δ(μij

m, (σ2)ij
m)

9: Create edge e = ∼u, v, wuv∞ , E = E ⊆ {e}
return G = (V, E)

3.2 Parameter Fitting

To create realistic random graphs, we need to learn the parameters μ,Θ from a
real-world input graph G. Let W ij be the set of edge weights between pairs of ver-
tices with labels ∗i, j√. During parameter fitting, we want to create a model Ωij

186 M. Davis et al.

for each W ij in G. Each GMM Ωij has a finite number of mixture components
M . If M is known, Ωij can be estimated using Expectation Maximisation [12].
However, not only is M unknown, but we expect that it will be different for each
Ωij within a given graph model [8].

We solve this problem by modelling Ωij as a non-parametric mixture model
with an unbounded number of mixture components: a Dirichlet Process Gaussian
Mixture Model (DPGMM) [4]. “Non-parametric” does not mean that the model
has no parameters; rather, the number of parameters is allowed to grow as more
data are observed. In essence, the DPGMM is a probability distribution over the
probability distributions of the model.

The Dirichlet Process (DP) over edge weights W ij is a stochastic process
DP (α,H0), where α is a positive scaling parameter and H0 is a finite measure
on W ij ; that is, a mapping of the subsets of W ij to the set of non-negative real
numbers. If we draw a sample from DP (α,H0), the result is a random distribu-
tion over values drawn from H0. This distribution H is discrete, represented as
an infinite sum of atomic measures. If H0 is continuous, then the infinite set of
probabilities corresponding to the frequency of each possible value that H can
return are distributed according to a stick-breaking process. The stick-breaking
representation of H is given as:

ωij
m(x)

m−1∏

n=1

(1 − ωij
n) H =

∈∑

n=1

ωij
n (x)δη∗

m
(2)

where {η∞
1 , η

∞
2 , . . .} are the atoms representing the mixture components. We learn

the mixture parameters using the variational inference algorithm for generating
Dirichlet Process Mixtures described in [4]. The weights of each component are
generated one-at-a-time by the stick-breaking process, which tends to return
the components with the largest weights first. In our experiments, 3–5 mixture
components was sufficient to account for over 99 % of the data. Mixtures with
weights summing to less than 0.01 are dropped from the model, and the remain-
ing weights {ωij

m} are normalised.

Algorithm 2. Agwan Parameter Fitting
Require: Input graph G = (V, E)
1: L = {discrete vertex label values}, d = |L|
2: Calculate vertex label priors, apply Laplace smoothing ◦l ∩ L : P (l) = count(l)+α

N+αd

3: μ = the normalised probability distribution over L such that
∑d

i=1 P (li) = 1
4: ◦i, j ∩ L : W ij = ∈
5: for all u, v ∩ V : u ≤= v do
6: i = lu, j = lv
7: W ij = W ij ⊆ {wuv} � If ∼u, v∞ is not an edge, then wuv has value zero
8: for all i, j ∩ L do
9: estimate κij from W ij using variational inference

10: Δ =
{
κij
}

return μ, Δ

AGWAN: A Generative Model for Labelled, Weighted Graphs 187

Algorithm 2 is the algorithm for Agwan parameter fitting. First, we estimate
the vertex priors (lines 1–3). Next, we sample the edge weights for each possible
combination of vertex label values, with no edge counting as a weight of zero
(lines 4–7). Finally, we estimate the GMMs Ωij from the appropriate set of
samples W ij using the stick-breaking process described above.

3.3 Extending AGWAN to Multiple Attributes

We have presented Agwan for a single discrete vertex label and a single numeric
edge label (the weight). Many graphs have multiple labels on vertices and edges.
Agwan can be extended to multiple numeric edge labels by generalising the
concept of edge weight to k dimensions. In this case, the mean of each mixture
component becomes a k-dimensional vector and the variance (σij

m)2 is replaced
with the k × k covariance matrix Σij

m. The variational algorithm can be acceler-
ated for higher-dimensional data using a kd-tree [18] and has been demonstrated
to work efficiently on datasets of hundreds of dimensions.

A more difficult question is how to extend the model to multiple discrete
vertex labels. With even a small number of labels, modelling the full joint prob-
ability across all possible combinations of label values becomes a complex com-
binatorial problem with hundreds or thousands of parameters. The MAG model
reduces this complexity by assuming that vertex labels are independent, so edge
probabilities can be computed as the product of the probabilities from each
label [17]. For latent attributes, MagFit enforces independence by regularising
the variational parameters using mutual information [16]. However, the MAG
model has not solved this problem for real attributes, where independence can-
not be assumed. Furthermore, multiplying the probabilities sets an upper limit
(proportional to log N) on the number of attributes which can be used in the
model. In our experiments (Sect. 5), MAG typically produced the best results
with one or two latent variables.

An alternative to multiplying independent probabilities is to calculate the
GMM for each edge as the weighted summation of the GMM for each individual
attribute. It is likely that some attributes have a large influence on graph struc-
ture while others affect it little or not at all. The contribution of each attribute
could be estimated using a conditional probability distribution as an approxima-
tion to the joint probability, for example using Markov Random Fields (MRF)
or Factor Graphs. This problem remains a topic for further research.

4 Experiments

We evaluate our approach by comparing Agwan with the state-of-the-art in
labelled graph generation, represented by the MAG model [16,17]. Agwan and
MAG parameters are learned from real-world graphs. We generate random graphs
from each model and calculate a series of statistics on each graph. These statistics
are used to compare how closely the model maps to the input graph.

188 M. Davis et al.

Fig. 2. Input graph datasets, from (a) a health study and (b) the Enron e-mail corpus

Our input datasets are a graph of “who exercised with whom” from a
behavioural health study [14] (Fig. 2a, |V | = 279, |E| = 1308) and the “who
communicates with whom” graph of the Enron e-mail corpus [1] (Fig. 2b, |V | =
159, |E| = 2667). Vertices in the health study graph are labelled with 28 attributes
representing demographic information and health markers obtained from ques-
tionnaire data. Edges are undirected and weighted with the number of mutual
coincidences between actors during the study. Vertices in the Enron graph are
labelled with the job role of the employee. As e-mail communications are not sym-
metric, edges are directed and weighted with the number of e-mails exchanged
between sender and recipient.

We evaluated Agwan against the following models:

Erdős-Rényi Random Graph (ER): The ER model G(n, p) has two para-
meters. We set the number of vertices n and the edge probability p to match the
input graphs as closely as possible. We do not expect a very close fit, but the
ER model provides a useful baseline.

MAG with Real Attributes (MAG-R1): The MAG model with one real
attribute is similar to Agwan with one real attribute, with the difference that
the set of GMMs Θ = {Ωij} is replaced with a set of binary edge probabilities,
Θ = {pij}.

MAG with Latent Attributes (MAG-Lx): The MAG model also allows
for modelling the graph structure using latent attributes. The discrete labels
provided in the input graph are ignored; instead MagFit [16] learns the values

AGWAN: A Generative Model for Labelled, Weighted Graphs 189

of a set of latent attributes to describe the graph structure. To investigate the
relative contributions of vertex labels and edge weights to graph structure, we
compared MAG models with x = 1 . . . 9 latent binary attributes against Agwan
models with synthetic attributes taking 20 . . . 29 values.

As ER and MAG do not generate weighted graphs, we set the weight of the
edges in the generated graphs to the mean edge weight from the input graphs.
This ensures that statistics such as average vertex strength are not skewed by
unweighted edges.

To evaluate the closeness of fit of each model, we use the following statistics:

Vertex Strength: For an unweighted graph, one of the most important mea-
sures is the degree distribution (the number of in-edges and out-edges of each
vertex). Real-world graphs tend to have heavy-tailed power-law or log-normal
degree distributions [6,21]. For a weighted graph, we generalise the concept of
vertex degree to vertex strength [11]:

su =
∑

v ∗=u

wuv (3)

For the undirected graphs, we plot the Complementary Cumulative Distribution
Function (CCDF) of the total strength of each vertex. For the directed graphs,
we plot the CCDFs for in-strength and out-strength.

Spectral Properties: We use Singular Value Decomposition (SVD) to calculate
the singular values and singular vectors of the graph’s adjacency matrix, which
act as a signature of the graph structure. In an unweighted graph, the adjacency
matrix contains binary values, for “edge” or “no edge”. In a weighted graph,
the adjacency matrix contains the edge weights (with 0 indicating no edge). For
SVD UΣV , we plot Cumulative Distribution Functions (CDFs) of the singular
values Σ and the components of the left singular vector U corresponding to the
highest singular value.

Clustering Coefficients: the clustering coefficient C is an important measure
of community structure. It measures the density of triangles in the graph, or the
probability that two neighbours of a vertex are themselves neighbours [21]. We
extend the notion of clustering coefficients to weighted, directed graphs using
the equation in [11]:

Cu =
[W[13]

u + (WT
u)[

1
3]]3uu

2[dtot
u (dtot

u − 1) − 2dℵ
u]

(4)

where Cu is the weighted clustering coefficient for vertex u, Wu is the weighted
adjacency matrix for u and its neighbours, WT is the transpose of W, dtot

u is
the total degree of a vertex (the sum of its in- and out-degrees) and dℵ

u is the
number of bilateral edges in u (the number of neighbours of u which have both
an in-edge and an out-edge between themselves and u).

Triad Participation: Closely related to the clustering coefficient is the concept
of triangle or triad participation. The number of triangles that a vertex is con-
nected to is a measure of transitivity [21]. For the directed graphs, the triangles

190 M. Davis et al.

Fig. 3. Triad patterns in a directed graph

have a different interpretation depending on the edge directions. There are four
types of triangle pattern [11], as shown in Fig. 3. To generalise the concept of
triad participation to weighted, directed graphs, we consider each of the four
triangle types separately, and sum the total strength of the edges in each triad:

tyu =
∑

v,z≥Wu\u

W
y
uvz (5)

where y = {cycle,middleman, in, out} is the triangle type and W
y
uvz is calculated

as shown in Fig. 3 for each triangle type y.
To give a more objective measure of the closeness of fit between the generated

graphs and the input graph, we use a Kolmogorov-Smirnov (KS) test and the L2
(Euclidean) distance between the CDFs for each statistic. As the CDFs are for
heavy-tailed distributions, we use the logarithmic variants of these measures [16].
The KS and L2 statistics are calculated as:

KS(D1,D2) = maxx| log D1(x) − log D2(x)| (6)

L2(D1,D2) =

√
√
√
√ 1

log b − log a

b∑

x=a

(log D1(x) − log D2(x))2 (7)

where [a, b] is the interval for the support of distributions D1 and D2.
The model that generates graphs with the lowest KS and L2 values for each

of the statistics discussed above has the closest fit to the real-world graph.

5 Results

For each model, we generated 10 random graphs and calculated statistics for
each. The plots of the averaged CDFs of the 10 graphs for each model are shown
in Figs. 4, 5, 6, 7, 8, 9, 10 and 11. Tables 1, 2, 3, 4, 5, 6, 7 and 8 for the closeness
of fit of each CDF (KS and L2 statistics) are in the appendix.

AGWAN: A Generative Model for Labelled, Weighted Graphs 191

10-1

100

100

101

101

102

102

103 103

102

101

100

10-1

103

102

101

100

10-1

101 102 103 104 100 101 102 103 104 105103

Vertex Strength

N
o.

 o
f V

er
tic

es
 (

C
C

D
F

)

Real−world graph

Erdos−Renyi

MAG−R1, Age

MAG−R1, T1 Total Mins

MAG−R1, T1 EQ5D State

MAG−R1, Floor

AGWAN, Age

AGWAN, T1 Total Mins

AGWAN, T1 EQ5D State

AGWAN, Floor

Vertex Strength

N
o.

 o
f V

er
tic

es
 (

C
C

D
F

)

Real−world graph

Erdos−Renyi

MAG−R1

AGWAN

Vertex Strength

N
o.

 o
f V

er
tic

es
 (

C
C

D
F

)

Real−world graph

Erdos−Renyi

MAG−R1

AGWAN

Fig. 4. Vertex strength distribution—real attributes

0 50 100 150 200 250 300
0

2000

4000

6000

8000

10000

12000

14000

Rank

S
in

gu
la

r
V

al
ue

 (
C

D
F

)

Real−world graph

Erdos−Renyi

MAG−R1, Age

MAG−R1, T1 Total Mins

MAG−R1, T1 EQ5D State

MAG−R1, Floor

AGWAN, Age

AGWAN, T1 Total Mins

AGWAN, T1 EQ5D State

AGWAN, Floor

0 20 40 60 80 100 120 140 160
0

1

2

3

4

5

6 x 104

Rank

S
in

gu
la

r
V

al
ue

 (
C

D
F

)

Real−world graph

Erdos−Renyi

MAG−R1

AGWAN

0 20 40 60 80 100 120 140 160
0

2

4

6

8

10

12

0
0 50 100 150 200 250 300

Rank

2

4

6

8

10

12

14

16

Rank

P
rim

ar
y

Le
ft

S
in

gu
la

r
V

ec
to

r
C

om
po

ne
nt

s
(C

D
F

)
P

rim
ar

y
Le

ft
S

in
gu

la
r

V
ec

to
r

C
om

po
ne

nt
s

(C
D

F
)

Real−world graph

Erdos−Renyi

MAG−R1

AGWAN

Fig. 5. Spectral properties—real attributes

5.1 Real Attributes

For the undirected graph (Health Study, Fig. 2a), we show results for four vertex
attributes: age; total minutes spent exercising; EQ5D State (a quality-of-life
metric determined by questionnaire); and Floor (the building and floor number
where the person works; people who work on the same floor were highly likely to
exercise together). For the directed graph (Enron, Fig. 2b), we have one vertex
attribute, the person’s job role.

192 M. Davis et al.

10-2

10-1

100

100 101 102 103 100 101 102 101 102

101

101

100

10-1

102 102

101

100

10-1

100

102

Vertex Degree (Total)

C
lu

st
er

in
g

C
oe

ffi
ci

en
t (

C
C

D
F

)

Real−world graph

Erdos−Renyi

MAG−R1, Age

MAG−R1, T1 Total Mins

MAG−R1, T1 EQ5D State

MAG−R1, Floor

AGWAN, Age

AGWAN, T1 Total Mins

AGWAN, T1 EQ5D State

AGWAN, Floor

Vertex In−degree

C
lu

st
er

in
g

C
oe

ffi
ci

en
t (

C
C

D
F

)

Real−world graph

Erdos−Renyi

MAG−R1

AGWAN

Vertex Out−degree

C
lu

st
er

in
g

C
oe

ffi
ci

en
t (

C
C

D
F

)

Real−world graph

Erdos−Renyi

MAG−R1

AGWAN

Fig. 6. Clustering coefficients—real attributes

10-1

100

101

102

102 103 104

103

10-1

100

101

102

103

10-1

100

101

102

103

10-1

100

101

102

103

100 101

103 104 105101 102 10 3 104 105101 102 10 2 103 105104100 101

102 103 104 105100 101
10-1

100

101

102

103

Total Triad Strength

N
o.

 o
f P

ar
tic

ip
at

in
g

V
er

tic
es

Real−world graph

Erdos−Renyi

MAG−R1, Age

MAG−R1, T1 Total Mins

MAG−R1, T1 EQ5D State

MAG−R1, Floor

AGWAN, Age

AGWAN, T1 Total Mins

AGWAN, T1 EQ5D State

AGWAN, Floor

Total Triad Strength

N
o.

 o
f P

ar
tic

ip
at

in
g

V
er

tic
es

Real−world graph

Erdos−Renyi

MAG−R1

AGWAN

Total Triad Strength

N
o.

 o
f P

ar
tic

ip
at

in
g

V
er

tic
es

Real−world graph

Erdos−Renyi

MAG−R1

AGWAN

Total Triad Strength

N
o.

 o
f P

ar
tic

ip
at

in
g

V
er

tic
es

Real−world graph

Erdos−Renyi

MAG−R1

AGWAN

Total Triad Strength

N
o.

 o
f P

ar
tic

ip
at

in
g

V
er

tic
es

Real−world graph

Erdos−Renyi

MAG−R1

AGWAN

Fig. 7. Triad participation—real attributes

100 101 102 103
10−1

100

101

102

103

Vertex Strength

N
o.

 o
f V

er
tic

es
 (

C
C

D
F

)

Real−world graph
AGWAN−L0
AGWAN−L1
AGWAN−L2
AGWAN−L3
AGWAN−L4
AGWAN−L5
AGWAN−L6
AGWAN−L7
AGWAN−L8
AGWAN−L9
MAG−L1
MAG−L2
MAG−L3
MAG−L4
MAG−L5
MAG−L6
MAG−L7
MAG−L8
MAG−L9
AGWAN, T1 EQ5D State

101 102 103 10410−1

100

101

102

103

Vertex Strength

N
o.

 o
f V

er
tic

es
 (

C
C

D
F

)

Real−world graph
AGWAN−L0
AGWAN−L1
AGWAN−L2
AGWAN−L3
AGWAN−L4
AGWAN−L5
AGWAN−L6
AGWAN−L7
AGWAN−L8
AGWAN−L9
MAG−L1
MAG−L2
MAG−L3
MAG−L4
MAG−L5
MAG−L6
MAG−L7
MAG−L8
MAG−L9
AGWAN

100 10510−1

100

101

102

103

Vertex Strength

N
o.

 o
f V

er
tic

es
 (

C
C

D
F

)

Real−world graph
AGWAN−L0
AGWAN−L1
AGWAN−L2
AGWAN−L3
AGWAN−L4
AGWAN−L5
AGWAN−L6
AGWAN−L7
AGWAN−L8
AGWAN−L9
MAG−L1
MAG−L2
MAG−L3
MAG−L4
MAG−L5
MAG−L6
MAG−L7
MAG−L8
MAG−L9
AGWAN

Fig. 8. Vertex strength distribution—synthetic attributes

AGWAN: A Generative Model for Labelled, Weighted Graphs 193

0 100 200 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x 10
4

Rank

S
in

gu
la

r
V

al
ue

 (
C

D
F

)

Real−world graph
AGWAN−L0
AGWAN−L1
AGWAN−L2
AGWAN−L3
AGWAN−L4
AGWAN−L5
AGWAN−L6
AGWAN−L7
AGWAN−L8
AGWAN−L9
MAG−L1
MAG−L2
MAG−L3
MAG−L4
MAG−L5
MAG−L6
MAG−L7
MAG−L8
MAG−L9
AGWAN, T1 EQ5D State

0 100 200 300
0

2

4

6

8

10

12

Rank

P
rim

ar
y

Le
ft

S
in

gu
la

r
V

ec
to

r
C

om
po

ne
nt

s
(C

D
F

)

Real−world graph
AGWAN−L0
AGWAN−L1
AGWAN−L2
AGWAN−L3
AGWAN−L4
AGWAN−L5
AGWAN−L6
AGWAN−L7
AGWAN−L8
AGWAN−L9
MAG−L1
MAG−L2
MAG−L3
MAG−L4
MAG−L5
MAG−L6
MAG−L7
MAG−L8
MAG−L9
AGWAN, T1 EQ5D State

0 50 100 150 200
0

1

2

3

4

5

6

7
x 10

4

Rank

S
in

gu
la

r
V

al
ue

 (
C

D
F

)

Real−world graph
AGWAN−L0
AGWAN−L1
AGWAN−L2
AGWAN−L3
AGWAN−L4
AGWAN−L5
AGWAN−L6
AGWAN−L7
AGWAN−L8
AGWAN−L9
MAG−L1
MAG−L2
MAG−L3
MAG−L4
MAG−L5
MAG−L6
MAG−L7
MAG−L8
MAG−L9
AGWAN

0 50 100 150 200
0

2

4

6

8

10

12

Rank

P
rim

ar
y

Le
ft

S
in

gu
la

r
V

ec
to

r
C

om
po

ne
nt

s
(C

D
F

)

Real−world graph
AGWAN−L0
AGWAN−L1
AGWAN−L2
AGWAN−L3
AGWAN−L4
AGWAN−L5
AGWAN−L6
AGWAN−L7
AGWAN−L8
AGWAN−L9
MAG−L1
MAG−L2
MAG−L3
MAG−L4
MAG−L5
MAG−L6
MAG−L7
MAG−L8
MAG−L9
AGWAN

Fig. 9. Spectral properties—synthetic attributes

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

10
1

10
2

Vertex Degree (Total)

C
lu

st
er

in
g

C
oe

ffi
ci

en
t (

C
C

D
F

)

Real−world graph
AGWAN−L0
AGWAN−L1
AGWAN−L2
AGWAN−L3
AGWAN−L4
AGWAN−L5
AGWAN−L6
AGWAN−L7
AGWAN−L8
AGWAN−L9
MAG−L1
MAG−L2
MAG−L3
MAG−L4
MAG−L5
MAG−L6
MAG−L7
MAG−L8
MAG−L9
AGWAN, T1 EQ5D State

10
0

10
1

10
2

10
−2

10
−1

10
0

10
1

10
2

Vertex In−degree

C
lu

st
er

in
g

C
oe

ffi
ci

en
t (

C
C

D
F

)

Real−world graph
AGWAN−L0
AGWAN−L1
AGWAN−L2
AGWAN−L3
AGWAN−L4
AGWAN−L5
AGWAN−L6
AGWAN−L7
AGWAN−L8
AGWAN−L9
MAG−L1
MAG−L2
MAG−L3
MAG−L4
MAG−L5
MAG−L6
MAG−L7
MAG−L8
MAG−L9
AGWAN

10
0

10
1

10
2

10
−2

10
−1

10
0

10
1

10
2

Vertex Out−degree

C
lu

st
er

in
g

C
oe

ffi
ci

en
t (

C
C

D
F

)

Real−world graph
AGWAN−L0
AGWAN−L1
AGWAN−L2
AGWAN−L3
AGWAN−L4
AGWAN−L5
AGWAN−L6
AGWAN−L7
AGWAN−L8
AGWAN−L9
MAG−L1
MAG−L2
MAG−L3
MAG−L4
MAG−L5
MAG−L6
MAG−L7
MAG−L8
MAG−L9
AGWAN

Fig. 10. Clustering coefficients—synthetic attributes

Vertex Strength (Fig. 4): The graphs generated from Agwan have vertex
strength distributions which map very closely to the input graphs. The graphs
generated from MAG-R1 are better than random (ER), but the vertex strength
distribution is compressed into the middle part of the range, with too few high-
and low-strength vertices. This indicates that vertex strength depends on both
the label distribution and the edge weight distribution; Agwan models both of
these, whereas MAG models only the former.

194 M. Davis et al.

10
0

10
2

10
4

10
−1

10
0

10
1

10
2

10
3

Total Triad Strength

N
o.

 o
f P

ar
tic

ip
at

in
g

V
er

tic
es

Real−world graph
AGWAN−L0
AGWAN−L1
AGWAN−L2
AGWAN−L3
AGWAN−L4
AGWAN−L5
AGWAN−L6
AGWAN−L7
AGWAN−L8
AGWAN−L9
MAG−L1
MAG−L2
MAG−L3
MAG−L4
MAG−L5
MAG−L6
MAG−L7
MAG−L8
MAG−L9
AGWAN, T1 EQ5D State

10
0

10
5

10
−1

10
0

10
1

10
2

10
3

Total Triad Strength

N
o.

 o
f P

ar
tic

ip
at

in
g

V
er

tic
es

Real−world graph
AGWAN−L0
AGWAN−L1
AGWAN−L2
AGWAN−L3
AGWAN−L4
AGWAN−L5
AGWAN−L6
AGWAN−L7
AGWAN−L8
AGWAN−L9
MAG−L1
MAG−L2
MAG−L3
MAG−L4
MAG−L5
MAG−L6
MAG−L7
MAG−L8
MAG−L9
AGWAN

10
0

10
5

10
−1

10
0

10
1

10
2

10
3

Total Triad Strength

N
o.

 o
f P

ar
tic

ip
at

in
g

V
er

tic
es

Real−world graph
AGWAN−L0
AGWAN−L1
AGWAN−L2
AGWAN−L3
AGWAN−L4
AGWAN−L5
AGWAN−L6
AGWAN−L7
AGWAN−L8
AGWAN−L9
MAG−L1
MAG−L2
MAG−L3
MAG−L4
MAG−L5
MAG−L6
MAG−L7
MAG−L8
MAG−L9
AGWAN

10
0

10
5

10
−1

10
0

10
1

10
2

10
3

Total Triad Strength

N
o.

 o
f P

ar
tic

ip
at

in
g

V
er

tic
es

Real−world graph
AGWAN−L0
AGWAN−L1
AGWAN−L2
AGWAN−L3
AGWAN−L4
AGWAN−L5
AGWAN−L6
AGWAN−L7
AGWAN−L8
AGWAN−L9
MAG−L1
MAG−L2
MAG−L3
MAG−L4
MAG−L5
MAG−L6
MAG−L7
MAG−L8
MAG−L9
AGWAN

10
0

10
5

10
−1

10
0

10
1

10
2

10
3

Total Triad Strength

N
o.

 o
f P

ar
tic

ip
at

in
g

V
er

tic
es

Real−world graph
AGWAN−L0
AGWAN−L1
AGWAN−L2
AGWAN−L3
AGWAN−L4
AGWAN−L5
AGWAN−L6
AGWAN−L7
AGWAN−L8
AGWAN−L9
MAG−L1
MAG−L2
MAG−L3
MAG−L4
MAG−L5
MAG−L6
MAG−L7
MAG−L8
MAG−L9
AGWAN

Fig. 11. Triad participation—synthetic attributes

Spectral Properties (Fig. 5): The spectral properties of the Agwan graphs
map very closely to the input graphs. The singular values follow the same curve
as the input graphs, indicating that graphs generated with Agwan have similar
connectivity to the input graph [6]. The primary singular vector components also
follow the same shape and map very closely to the input graph. For MAG-R1, the
singular values follow a straight line rather than a curve, because MAG does not
model the edge weight distribution. The primary singular vector components are
no better than random, because it is not possible to accurately model singular
vectors without taking the edge weights into account.

Clustering Coefficients (Fig. 6): The accuracy of Agwan and MAG-R1 is
similar; better than random but not as close a fit as for the first two statistics.
The results for vertex strength and spectral properties did not strongly depend
on which attribute was chosen, but here it makes a difference: Total Mins and
EQ5D State give better results than Age and Floor. This implies that some
attributes can predict community formation better than others. As the results
for both approaches are similar, we conclude that the processes that give rise to
clustering are independent of the edge weight distribution.

Triad Participation (Fig. 7): As triad participation is closely related to cluster-
ing, it is no surprise that the results are comparable: the accuracy of Agwan and
MAG-R1 is similar; better than random, but not as close as for vertex strength
and spectral properties. Triad participation appears to be dependent to some
extent on vertex label values but independent of the edge weight distribution.

AGWAN: A Generative Model for Labelled, Weighted Graphs 195

One of the findings in [16] was that clustering arises from multiple processes
(homophily and core/periphery). “Simplified MAG” (where all attributes are the
same) could not model the clustering property, implying that it is not possible
to accurately reproduce clustering when the model has only one attribute. We
propose to extend our model to more than one attribute as outlined in Sect. 3.3
to investigate whether this produces a more accurate model of clustering and
triad participation.

5.2 Synthetic Attributes

An alternate interpretation of the MAG model ignores the true attribute val-
ues from the input graph and represents attributes as latent variables, which
are learned using a variational inference EM approach [16]. To compare Agwan
with this approach, we replaced the real labels in the input graph with a syn-
thetic vertex attribute taking 20 . . . 29 values allocated uniformly at random,
then learned the edge weight distributions using variational inference as normal.
We have plotted Agwan with one real attribute alongside for comparison.

Vertex Strength (Fig. 8): Agwan with synthetic attributes has similar accu-
racy to Agwan-R1. Varying the number of synthetic attributes has a small effect
on the accuracy. MAG with latent attributes has similar accuracy to MAG-R1.
Varying the number of synthetic attributes causes a large variation in the accu-
racy. We conclude that vertex strength is dependent on both edge weight and
vertex label distribution, but the edge weights play a more important role.

Spectral Properties (Fig. 9): For Agwan, the spectral properties follow the
same curves as the input graphs. For singular values, varying the number of
synthetic attributes causes a small variation in the closeness of fit. For singular
vectors, the accuracy is highly dependent on the number of synthetic attributes.
For MAG, the singular values are almost a straight line, as the edge weight dis-
tribution is not taken into account. The singular vectors in general do not match
very closely. It is possible to get a good fit using many latent attributes, but this
compromises the other statistics which fit better with few latent attributes. We
conclude that spectral properties are dependent on both edge weight and vertex
label distribution.

Clustering Coefficients (Fig. 10): Both approaches are significantly more accu-
rate using synthetic attributes than they were with real attributes. This implies
that while real labels are influenced by the (unobserved) process which gives rise
to clustering, synthetic labels with more degrees of freedom can model it more
accurately. As before, clustering appears to be independent of the edge weight
distribution.

Triad Participation (Fig. 11): As with clustering, synthetic vertex labels can
model the process that gives rise to triad participation, while edge weights have
little or no influence.

196 M. Davis et al.

In general, MAG achieves the best results when there are one or two vertex
attributes, whereas Agwan performs best when there are 7 or 8 attributes. MAG
assumes that each attribute is independent, so there is a limit on the number
of attributes that can be included in the model (proportional to log N). Above
this limit, the performance of the model degrades. With Agwan, there is no
independence assumption, so the attributes model the full joint probability. As
the number of attribute values (2x) approaches N , there is a danger of overfitting
and the model performance degrades.

6 Conclusions

We presented Agwan, a model for random graphs with discrete labels and
weighted edges. We included a fitting algorithm to learn a model of graph edge
weights from real-world data, and a generative algorithm to generate random
labelled, weighted graphs with similar characteristics to the real-world graph.

We measured the closeness of fit of our generated graphs to the input graph
over a range of graph statistics, and compared our approach to the state-of-
the-art in random graph generative algorithms. Our results demonstrate that
Agwan produces an accurate model of the properties of a weighted real-world
graph. For vertex strength distribution and spectral properties, Agwan is shown
to produce a closer fit than MAG.

For clustering and triad participation, we achieved a closer fit using synthetic
attributes than using real attributes. This is consistent with the results for MAG
for unweighted graphs [17]. Further research is required into the relationship
between vertex attributes and triangle formation in graphs; our results indicate
that edge weights do not play an important part in these processes. We propose
to extend Agwan to multiple vertex labels to investigate the effect on clustering.

In Sect. 3, we considered the case where edge weights are countable quantities
bounded by [0,∀). As GMMs are unbounded, it may be more appropriate to
model the edge weights using a truncated GMM [20] or Beta Mixture Model [5].
We propose to investigate these alternatives in future work.

As discussed in Sect. 3.3, MAG’s method of combining multiple vertex
attributes is unsatisfactory when applied to real attributes, due to the assump-
tion of independence and the limit on the number of attributes which can be
modelled. We have proposed a future line of research based on a weighted sum-
mation of the GMM for each edge. The fitting algorithm would need to regularise
the individual contributions of each edge to take account of dependencies. The
complexity of modelling the full joint distribution could be reduced with an
approach based on Markov Random Fields or Factor Graphs.

AGWAN: A Generative Model for Labelled, Weighted Graphs 197

Appendix: KS and L2 Statistics

Table 1. KS statistic for undirected graph, real attributes (Figs. 4, 5, 6, 7)

E-R MAG-R1 Agwan
Age Total Mins EQ5D State Floor Age Total Mins EQ5D State Floor

Vertex Strength 6.064 5.940 2.957 3.689 5.799 0.799 1.081 0.635 1.674
Singular Values 36.193 35.644 35.393 35.612 36.001 34.482 32.319 33.720 34.946
Singular Vector 1.323 1.239 0.964 0.984 1.134 0.248 0.491 0.450 0.371
Clustering Coefficient 5.224 5.048 2.083 3.343 4.895 5.132 2.493 2.042 5.161
Triad Participation 7.012 6.877 5.704 5.704 6.685 6.328 5.106 5.829 6.768

Table 2. L2 statistic for undirected graph, real attributes (Figs. 4, 5, 6, 7)

E-R MAG-R1 Agwan
Age Total Mins EQ5D State Floor Age Total Mins EQ5D State Floor

Vertex Strength 9.686 7.281 8.265 9.377 10.039 1.829 2.589 1.765 3.294
Singular Values 41.815 41.298 41.052 41.227 41.623 39.629 38.211 39.100 40.060
Singular Vector 5.004 4.940 4.614 4.742 4.852 1.486 3.257 2.914 2.307
Triad Participation 16.879 17.334 18.828 18.861 17.101 19.746 19.434 18.348 20.288

Table 3. KS statistic for directed graph, real attributes (Figs. 4, 5, 6, 7)

E-R MAG-R1 Agwan

In-Vertex Strength 2.469 4.700 1.455
Out-Vertex Strength 2.708 2.659 2.303
Singular Values 37.235 35.752 34.894
Singular Vector 1.915 1.801 0.282
Clustering Coefficient (In-Edges) 3.444 2.208 2.220
Clustering Coefficient (Out-Edges) 3.728 0.769 0.702
Clustering Coefficient 4.347 1.651 3.163
Triad Participation (Cycles) 4.787 4.248 3.555
Triad Participation (Middlemen) 4.382 4.500 4.500
Triad Participation (Ins) 4.700 4.500 2.436
Triad Participation (Outs) 4.382 4.094 4.248

Table 4. L2 statistic for directed graph, real attributes (Figs. 4, 5, 6, 7)

E-R MAG-R1 Agwan

In-Vertex Strength 5.679 4.912 1.816
Out-Vertex Strength 5.100 3.534 2.117
Singular Values 25.044 19.546 18.360
Singular Vector 7.316 7.587 0.988
Clustering Coefficient (In-Edges) 3.528 1.607 1.528
Clustering Coefficient (Out-Edges) 3.145 1.191 1.002
Clustering Coefficient 6.949 1.438 2.284
Triad Participation (Cycles) 3.823 3.000 3.101
Triad Participation (Middlemen) 5.144 4.178 4.207
Triad Participation (Ins) 4.630 4.826 4.332
Triad Participation (Outs) 3.727 3.295 3.203

198 M. Davis et al.

Table 5. KS statistic for undirected graph, synthetic attributes (Figs. 8, 9, 10, 11)

MAG Latent Agwan
1 2 3 4 5 6 7 8 9 EQ5D State

Vertex Strength 2.243 5.106 5.886 5.886 5.670 5.481 4.605 5.561 6.234 0.635
Singular Values 30.901 46.771 89.148 93.658 81.082 93.413 125.855 72.059 85.863 33.720
Singular Vector 0.645 0.654 0.821 0.694 0.590 0.561 0.645 0.579 0.313 0.450
Clustering Coefficient 1.283 4.406 3.863 4.575 4.401 3.470 3.256 4.397 4.773 2.042
Triad Participation 3.829 6.292 6.709 6.593 6.016 5.768 4.868 5.914 6.877 5.829

Agwan
0 1 2 3 4 5 6 7 8 9

Vertex Strength 3.401 2.197 2.303 1.050 1.758 0.916 0.975 0.875 0.854 1.589
Singular Values 35.238 35.194 35.226 35.341 35.542 33.763 32.824 27.713 34.052 37.384
Singular Vector 0.675 0.827 0.847 0.950 1.139 0.559 0.183 0.221 0.258 0.361
Clustering Coefficient 5.353 5.350 3.561 4.615 4.395 4.054 4.470 3.676 3.401 3.440
Triad Participation 6.985 7.090 6.994 5.991 5.872 6.607 6.131 5.561 2.238 1.204

Table 6. L2 statistic for undirected graph, synthetic attributes (Figs. 8, 9, 10, 11)

MAG Latent Agwan
1 2 3 4 5 6 7 8 9 EQ5D State

Vertex Strength 7.944 8.473 9.236 10.783 10.103 8.635 9.120 9.603 21.027 1.765
Singular Values 55.080 94.881 106.265 109.813 104.160 109.673 120.108 113.166 173.884 39.100
Singular Vector 3.231 3.324 3.895 3.622 2.894 3.092 2.873 3.079 0.396 2.914
Triad Participation 12.047 15.550 15.821 17.494 11.038 11.646 10.367 14.507 29.136 18.348

Agwan
0 1 2 3 4 5 6 7 8 9

Vertex Strength 6.266 4.537 3.754 2.584 2.160 1.731 1.343 0.873 0.693 1.229
Singular Values 40.448 40.394 40.391 40.504 40.873 38.980 37.613 27.296 44.148 74.019
Singular Vector 4.477 5.513 5.671 6.316 7.530 3.612 0.866 1.237 1.719 2.351
Triad Participation 22.841 20.975 23.682 17.878 17.287 16.174 15.254 10.310 5.753 2.803

Table 7. KS statistic for directed graph, synthetic attributes (Figs. 8, 9, 10, 11)

MAG Latent Agwan
1 2 3 4 5 6 7 8 9 Employee Type

In-Vertex Strength 4.700 3.602 5.991 6.522 6.142 5.704 3.951 5.347 5.193 1.455
Out-Vertex Strength 4.942 4.605 5.768 5.991 6.234 5.075 4.317 3.466 3.401 2.303
Singular Values 35.715 35.591 27.492 89.063 148.080 32.392 1.708 31.555 37.163 34.894
Singular Vector 1.636 1.630 1.453 0.190 0.765 1.586 1.525 1.526 1.552 0.282
Clustering Coefficient (In-Edges) 2.961 0.897 4.775 5.294 4.578 4.357 3.302 3.770 4.512 2.220
Clustering Coefficient (Out-Edges) 3.164 0.513 5.193 5.877 5.463 4.363 3.142 3.273 2.865 0.702
Clustering Coefficient 3.278 2.347 5.251 6.255 5.839 4.387 3.739 4.339 4.000 3.163
Triad Participation (Cycles) 3.912 2.996 5.347 5.940 6.867 5.247 4.094 3.843 5.704 3.555
Triad Participation (Middlemen) 4.248 3.401 4.942 5.920 6.319 4.339 3.602 3.689 5.858 4.500
Triad Participation (Ins) 3.912 3.912 5.670 5.940 7.170 5.704 4.700 5.075 6.153 2.436
Triad Participation (Outs) 1.476 2.526 4.571 5.695 6.768 5.075 4.500 4.094 4.745 4.248

Agwan
0 1 2 3 4 5 6 7 8 9

In-Vertex Strength 2.418 2.513 2.345 2.590 1.120 2.303 1.897 2.015 2.303 0.693
Out-Vertex Strength 2.996 2.234 2.090 4.248 1.122 1.150 1.514 1.966 1.386 1.204
Singular Values 37.497 37.866 37.377 36.590 36.159 34.801 33.812 32.696 26.494 8.327
Singular Vector 1.887 1.962 1.811 1.665 0.616 1.130 0.824 0.908 0.887 0.789
Clustering Coefficient (In-Edges) 3.477 3.567 4.386 4.159 3.704 3.682 2.678 0.662 0.460 0.492
Clustering Coefficient (Out-Edges) 4.945 4.316 5.134 4.969 4.948 4.747 2.563 3.200 2.605 3.204
Clustering Coefficient 4.580 4.018 4.837 2.691 4.369 3.933 1.501 1.075 2.620 0.848
Triad Participation (Cycles) 4.500 4.500 2.659 3.912 3.602 3.283 2.996 3.912 1.204 1.548
Triad Participation (Middlemen) 4.787 4.787 4.094 5.247 3.843 3.314 3.807 4.248 1.609 1.099
Triad Participation (Ins) 4.700 4.700 4.007 5.298 4.700 3.283 2.862 4.094 1.609 1.099
Triad Participation (Outs) 4.942 4.942 3.624 4.094 3.977 3.912 3.114 2.862 1.696 0.916

AGWAN: A Generative Model for Labelled, Weighted Graphs 199

Table 8. L2 statistic for directed graph, synthetic attributes (Figs. 8, 9, 10, 11)

MAG Latent Agwan
1 2 3 4 5 6 7 8 9 Employee Type

In-Vertex Strength 5.023 3.055 8.856 19.820 15.718 8.678 6.171 8.672 7.066 1.816
Out-Vertex Strength 3.001 3.704 7.805 14.329 10.882 3.740 3.120 2.668 3.737 2.117
Singular Values 19.285 18.938 13.768 90.672 160.831 28.601 6.158 28.074 38.490 18.360
Singular Vector 7.470 7.530 7.100 0.388 4.062 7.453 7.200 7.266 7.339 0.988
Clustering Coefficient (In-Edges) 2.507 1.786 6.733 12.533 7.692 5.841 4.184 5.705 4.819 1.528
Clustering Coefficient 2.450 2.419 10.611 22.886 13.922 5.851 4.568 5.381 7.653 2.284
Triad Participation (Cycles) 2.060 1.800 7.788 15.981 16.270 6.781 6.121 5.378 8.763 3.101
Triad Participation (Middlemen) 2.828 1.771 11.094 19.126 18.575 7.016 7.204 6.517 11.150 4.207
Triad Participation (Ins) 3.293 1.902 11.473 12.061 16.361 9.756 8.905 9.124 13.740 4.332
Triad Participation (Outs) 1.459 1.816 6.646 17.093 14.603 5.950 5.399 4.698 6.315 3.203

Agwan
0 1 2 3 4 5 6 7 8 9

In-Vertex Strength 5.638 5.774 5.473 4.355 3.151 2.071 1.367 1.299 1.412 0.665
Out-Vertex Strength 5.128 4.807 4.732 4.756 3.060 2.224 1.918 2.034 1.415 1.045
Singular Values 25.020 25.815 24.922 22.017 20.767 18.270 16.748 15.010 12.516 8.758
Singular Vector 7.814 6.764 7.798 5.949 2.643 5.471 4.088 4.421 2.725 1.396
Clustering Coefficient (In-Edges) 3.987 4.972 5.834 4.314 3.846 3.413 2.575 1.524 0.999 0.686
Clustering Coefficient 7.065 8.188 9.244 6.606 7.581 6.872 4.951 4.189 3.658 2.536
Triad Participation (Cycles) 3.212 3.017 2.407 4.816 3.728 3.856 3.566 3.733 1.113 1.014
Triad Participation (Middlemen) 4.670 4.310 3.586 7.121 5.734 5.924 5.288 4.942 2.382 0.611
Triad Participation (Ins) 4.391 3.757 3.575 7.742 6.376 6.616 5.902 5.306 2.464 0.936
Triad Participation (Outs) 4.887 4.537 3.305 4.615 4.540 4.963 4.359 3.978 1.947 0.589

References

1. Akoglu, L., McGlohon, M., Faloutsos, C.: OddBall: spotting anomalies in weighted
graphs. In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds.) PAKDD 2010.
LNCS, vol. 6119, pp. 410–421. Springer, Heidelberg (2010)

2. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science
286(5439), 509–512 (1999)

3. Bishop, C.M.: Pattern Recognition and Machine Learning. Information Science
and Statistics, 3rd edn. Springer, New York (2011)

4. Blei, D.M., Jordan, M.I.: Variational inference for Dirichlet process mixtures.
Bayesian Anal. 1, 121–144 (2005)

5. Bouguila, N., Ziou, D., Monga, E.: Practical Bayesian estimation of a finite Beta
mixture through Gibbs sampling and its applications. Stat. Comput. 16(2), 215–
225 (2006)

6. Chakrabarti, D., Faloutsos, C.: Graph Mining: Laws, Tools, and Case Studies.
Synthesis Lectures on Data Mining and Knowledge Discovery. Morgan & Claypool
Publishers, San Rafael (2012)

7. Chakrabarti, D., Zhan, Y., Faloutsos, C.: R-MAT: a recursive model for graph
mining. In: Berry, M.W., Dayal, U., Kamath, C., Skillicorn, D.B. (eds.) SDM.
SIAM (2004)

8. Davis, M., Liu, W., Miller, P.: Finding the most descriptive substructures in
graphs with discrete and numeric labels. J. Intell. Inf. Syst. 42(2), 307–332 (2014).
http://dx.doi.org/10.1007/s10844-013-0299-7, DBLP. http://dblp.uni-trier.de

9. Eichinger, F., Huber, M., Böhm, K.: On the usefulness of weight-based constraints
in frequent subgraph mining. In: Bramer, M., Petridis, M., Hopgood, A. (eds.)
SGAI Conference, pp. 65–78. Springer, London (2010)

10. Erdős, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung.
Acad. Sci. 5, 17–61 (1960)

http://dx.doi.org/10.1007/s10844-013-0299-7
http://dblp.uni-trier.de

200 M. Davis et al.

11. Fagiolo, G.: Clustering in complex directed networks. Phys. Rev. E 76(2), 026107
(2007)

12. Figueiredo, M.A.T., Jain, A.K.: Unsupervised learning of finite mixture models.
IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 381–396 (2002)

13. Hoff, P.D., Raftery, A.E., Handcock, M.S.: Latent space approaches to social net-
work analysis. J. Am. Stat. Assoc. 97(460), 1090–1098 (2002)

14. Hunter, R.F., Davis, M., Tully, M.A., Kee, F.: The physical activity loyalty card
scheme: development and application of a novel system for incentivizing behaviour
change. In: Kostkova, P., Szomszor, M., Fowler, D. (eds.) eHealth 2011. LNICST,
vol. 91, pp. 170–177. Springer, Heidelberg (2012)

15. Jain, A.K., Duin, R.P.W., Mao, J.: Statistical pattern recognition: a review. IEEE
Trans. Pattern Anal. Mach. Intell. 22(1), 4–37 (2000)

16. Kim, M., Leskovec, J.: Modeling social networks with node attributes using the
Multiplicative Attribute Graph model. In: Cozman, F.G., Pfeffer, A. (eds.) UAI,
pp. 400–409. AUAI Press, Corvallis (2011)

17. Kim, M., Leskovec, J.: Multiplicative Attribute Graph model of real-world net-
works. Internet Math. 8(1–2), 113–160 (2012)

18. Kurihara, K., Welling, M., Vlassis, N.A.: Accelerated variational Dirichlet process
mixtures. In: Schölkopf, B., Platt, J.C., Hoffman, T. (eds.) NIPS, pp. 761–768.
MIT Press, Cambridge (2006)

19. Leskovec, J., Chakrabarti, D., Kleinberg, J.M., Faloutsos, C., Ghahramani, Z.:
Kronecker graphs: an approach to modeling networks. J. Mach. Learn. Res. 11,
985–1042 (2010)

20. Lindblom, J., Samuelsson, J.: Bounded support Gaussian mixture modeling of
speech spectra. IEEE Trans. Speech Audio Process. 11(1), 88–99 (2003)

21. Newman, M.: Networks: An Introduction. OUP, New York (2010)
22. Wang, Y., Wong, G.: Stochastic block models for directed graphs. J. Am. Stat.

Assoc. 82(397), 8–19 (1987)

Thresholding of Semantic Similarity Networks
Using a Spectral Graph-Based Technique

Pietro Hiram Guzzi(B), Pierangelo Veltri, and Mario Cannataro

Department of Medical and Surgical Sciences,
University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy

{hguzzi,veltri,cannataro}@unicz.it

Abstract. The functional similarity among terms of an ontology is eval-
uated by using Semantic Similarity Measures (SSM). In computational
biology, biological entities such as genes or proteins are usually annotated
with terms extracted from Gene Ontology (GO) and the most common
application is to find the similarity or dissimilarity among two entities
through the application of SSMs to their annotations. More recently,
the extensive application of SSMs yielded to the Semantic Similarity
Networks (SSNs). SSNs are edge-weighted graphs where the nodes are
concepts (e.g. proteins) and each edge has an associated weight that
represents the semantic similarity among related pairs of nodes. Com-
munity detection algorithms that analyse SSNs, such as protein com-
plexes prediction or motif extraction, may reveal clusters of functionally
associated proteins. Because SSNs have a high number of arcs with low
weight, likened to noise, the application of classical clustering algorithms
on raw networks exhibits low performance. To improve the performance
of such algorithms, a possible approach is to simplify the structure of
SSNs through a preprocessing step able to delete arcs likened to noise.
Thus we propose a novel preprocessing strategy to simplify SSNs based
on an hybrid global-local thresholding approach based on spectral graph
theory. As proof of concept we demonstrate that community detection
algorithms applied to filtered (thresholded) networks, have better per-
formances in terms of biological relevance of the results, with respect to
the use of raw unfiltered networks.

Keywords: Semantic similarity measures · Semantic similarity networks

1 Introduction

The accumulation of raw experimental data about genes and proteins has been
accompanied by the accumulation of functional information, i.e. knowledge about
function. The assembly, organization and analysis of this data has given a con-
siderable impulse to research [9].

Usually biological knowledge is encoded by using annotation terms, i.e. terms
describing for instance function or localization of genes and proteins. Terms are
organized into ontologies, that offer a formal framework to represent biological

A. Appice et al. (Eds.): NFMCP 2013, LNAI 8399, pp. 201–213, 2014.
DOI: 10.1007/978-3-319-08407-7 13, c© Springer International Publishing Switzerland 2014

202 P.H. Guzzi et al.

knowledge [16]. For instance, Gene Ontology (GO) provides a set of descriptions
of biological aspects (namely GO Terms), structured into three main taxonomies:
Molecular Function (MF), Biological Process (BP), and Cellular Component
(CC). Terms are then linked to the related biological concept (e.g. proteins) by
a process known as annotation. Then, for each protein a set of related terms (or
annotations) is currently available and stored in publicly available databases,
such as the Gene Ontology Annotation (GOA) database [7].

The similarity among terms belonging to the same ontology is usually evalu-
ated by using Semantic Similarity Measures (SSM). A SSM takes in input two or
more terms of the same ontology and produces as output a numeric value repre-
senting their similarity. Since proteins are annotated with set of terms extracted
from an ontology, the use of SSMs to evaluate the functional similarity among
proteins is becoming a common task. Consequently the use of SSMs to analyze
biological data is gaining a broad interest from researchers [16].

More specifically, the existing analysis methods based on the use of SSMs
may be categorized in four main classes: (i) the definition of ad-hoc semantic
similarity measures tailored to the characteristics of the biomedical domain [17];
(ii) the definition of measures of comparison among genes and proteins; (iii) the
introduction of methodologies for the systematic analysis of metabolic networks;
and more recently (iv) the analysis of organisms on a system scale using the so
called semantic similarity networks [28].

A semantic similarity network (SSN) of proteins is an edge-weighted graph
Gssu = (V,E), where V is the set of proteins, E is the set of edges, and such
that for each pair of proteins having a semantic similarity greater than zero, an
edge connecting them is added to the graph. Each edge has an associated weight
that represents the semantic similarity among the connected nodes.

The main class of algorithms that analyse SSNs are the so called community
detection algorithms, such as protein complexes prediction or motif extraction,
that may reveal clusters of functionally associated proteins. As we pointed out
in [16], the probability to have a semantic similarity value greater than zero for
any given pair of protein is quite high (especially for complex organisms). Con-
sequently, resulting graph is often a complete graph with n nodes and n×(n−1)

2
edges, containing a relevant number of meaningless edges.

Thus, to take into account the meaningless edges (e.g. edges with little
weight), preprocessing algorithms can be used to remove meaningless edges
improving SSNs analysis performance, e.g. community detection or clustering
algorithms.

Usually such preprocessing is named thresholding because main algorithms
set a similarity threshold and then prune all edges of the SSN with a weight
lower than the threshold. The definition of a correct threshold value able to
retain only the meaningful relationships is obviously relevant. Indeed, an high
treshold value to define significant edge weight may implie loss of relationchips,
while low value threshold may introduce a lot of noise.

Many methods for networks thresholding have been defined in several appli-
cation fields: for instance the use of an arbitrary global threshold [14], the use of

Thresholding of Semantic Similarity Networks 203

only a fraction of the highest relationship [1], as well as statistical-based methods
[30]. Methods based on global threshold, prune all edges with weights lower than
the threshold, while those based on local thresholds usually compute a different
threshold for each node or group of nodes.

Internal characteristics of SSMs (as investigated in [27]) bring to exclude
the use of global thresholds. In fact, small regions of relatively low similarities
may be due to the characteristics of measures while proteins or genes have high
similarity. The use of local threshold may constitute an efficient way, i.e. retaining
only top k-edges for each node [20]. Although this consideration, this choice may
be influenced by the presence of local noise and in general may cause the presence
of biases in different regions.

Starting from these considerations, we developed a novel hybrid threshold-
ing method employing both local and global approaches and based on spectral
graph theory. We apply a local threshold for each node, i.e. we retain only edges
whose weight is higher than the average of all its adjacent. The choice of the
threshold is made by considering a global aspect: the evidentiaition of nearly-
disconnected components. The evidence of the presence of these components is
analyzed by calculating the eigenvalues of the Laplacian matrix [12,26]. The
choice of this simplification has a biological counterpart on the structure of bio-
logical networks. It has been proved in many works that these biological networks
tend to have a modular structure in which hub proteins (i.e. relevant proteins)
have many connections [3,22,33]. Hub proteins usually connect small modules
(or communities), i.e. small dense regions with few link to other regions [31] in
which proteins share a common function [18].

As proof-of-concept, we initially build different SSNs, then we apply different
thresholding (varying the threshold level), and finally we mine these networks by
using Markov Clustering [13]. We show that clustering algorithms on thresholded
networks have in general better performances and that the best ones are reached
when networks are nearly disconnected.

The rest of the paper is structured as follows: Sect. 2 discusses main related
approaches, Sect. 3 presents the proposed approaches, Sect. 4 presents results
through a case study, finally Sect. 5 concludes the paper.

2 Related Work

2.1 Spectral Graph Analysis

Spectral graph theory [10] refers to the study of the properties of a graph by
looking at the properties of the eigenvalues and eigenvectors of matrices associ-
ated to the graph. In particular, we focus on the Laplacian matrix of a graph as
defined in [5,11].

Given an edge-weighted graph G with n nodes, the weighted adjacency matrix
A is the n × n matrix in which the element ai,j is defined as:

ai,j =
{

wi,j ∈ (0, 1] if i,j are connected;
0 if i,j are not connected (1)

204 P.H. Guzzi et al.

For each node vi the degree vol is defined as the sum of the weights of all
the adjacent edges

volvi
= Σjwi,j (2)

Then we may define the Degree Matrix D as follows:

di,j =
{

volvi
, if i=j;

0, elsewhere (3)

Finally, the Laplacian Matrix L is defined as L = D − A [23].
The eigenvector correspondent to the smallest nonzero eigenvalue of a Lapla-

cian Matrix often referred to as Fiedler vector [25] is particularly relevant. The
algebraic multiplicity of this eigenvalue in case of both un-weighted and weighted
graphs corresponds to the number of connected components.

Starting from this consideration, Ding et al. [12] extended the analysis and
they observed that nearly-disconnected components may also identified by ana-
lyzing the Fiedler vector.

2.2 Semantic Similarity Measures

A semantic similarity measure (SSMs) is a formal instrument to quantify the
similarity of two or more terms of the same ontology. Measures comparing only
two terms are often referred to as pairwise semantic measures, while measures
that compare two sets of term yielding a global similarity among sets are referred
to as groupwise measures.

Since proteins and genes are associated to a set of terms coming from Gene
Ontology, SSMs are often extended to proteins and genes. Similarity of proteins
is then translated in the determination of similarity of set of associated terms
[28,32]. Many similarity measures have been proposed (see for instance [16] for a
complete review) that may be categorized according to different strategies used
for evaluating similarity. We here do not discuss deeply SSMs for lack of space,
but we introduce some of them.

For instance, the Resnik’s similarity measure simres of two terms T1 and T2

of GO is based on the determination of the Information Content (IC) of the
their Most Informative Common Ancestor (MICA) [29]:

simres = IC(MICA(T1, T2)) (4)

A drawback of the Resnik’s measure is that it considers mainly the common
ancestor and it does not take into account the distance among the compared
terms and the shared ancestor.

The Lin’s measure [21], simLin, faces with this problem by considering both
terms and yielding to the following formula:

simLin =
IC(MICA(T1, T2)
IC(T1) + IC(T2)

(5)

Thresholding of Semantic Similarity Networks 205

In a similar way the Jiang and Conrath’s measure, simJC , takes into account
this distance by calculating the following formula:

simJC = 1 − IC(T1) + IC(T2) − 2 ∗ IC(MICA(T1, T2) (6)

2.3 Thresholding of Networks

In other fields many methods for thresholding networks have been defined. These
approach may be categorized on the basis of the approaches in global threshold-
ing, i.e. a single value of threshold is applied for all the edges, and local thresh-
olding, in which a different threshold is applied for each node. For instance in
[14], the use of an arbitrary global threshold is proposed, while in [1] the use of
only a fraction of the highest relationship is used. Differently a statistical-based
method is used in [30].

Internal characteristics of SSMs (as investigated in [27]) do not suggest the
use of global thresholds. In fact, the relatively low similarities of small regions of
the network, may be due to the characteristics of measures used, while proteins
or genes have high similarity.

On the other hand, the use of local threshold, e.g. retaining only top k-edges
for each node [20], may constitute an efficient solution for preprocessing a SSN.
Although this consideration, this choice may be influenced by the presence of
local noise and in general may cause the presence of biases in different regions.

2.4 Extraction of Modules in Biological Networks

Markov Clustering (MCL) is a well known algorithm used to find clusters on
graphs, robust with respect to noise and graph alterations. Brohee and Van
Helden demostrated, in an extensive comparison [6], that MCL outperforms
other clustering algorithms, such as MCODE [2], RNSC [19] and Super Para-
magnetic Clustering [4]. More recently, MCL has been employed in a network
alignment algorithm [24] to identify protein complexes on single PINs.

MCL simulates a stochastic flow on the network that resembles a set of ran-
dom walks on the graph. MCL consists of two main operations: expand and
inflate. The expand step spreads the flow out of a vertex to potentially new ver-
tices, particularly enhancing the flow toward those vertices that are reachable by
multiple (and short) paths. The inflation step introduces a modification into the
process, enhancing the flows within the clusters and weakening the inter-cluster
flows. In this way the initial distribution of flows, relatively uniform, becomes
more and more non-uniform, inducing the emergence of a cluster structure, i.e.
local regions with high level of flow.

3 The Proposed Approach

We here introduce a method for threshold selection on weighted graphs, based
on the spectrum of the associated Laplacian matrix. The pruning algorithm

206 P.H. Guzzi et al.

examines each node in the input graph. For each node it stores all the weights
of the adjacent edges. Then it determines a local threshold k = μ + α × sd,
where μ is the average of weights, sd is the standard deviation of weights, and
α is a variable threshold that is fixed globally. In this way we realize an hybrid
approach since the threshold k has a global component α and a local one given
by the average and standard deviation of the weights of the adjacent.

If the weight of an edge is greater than k considering the adjacent of both
its nodes, then it will be inserted into the novel graph with unitary weight.
Otherwise, if the weight of an edge is greater than k considering only one of
its adjacent nodes, then it will be inserted into the novel graph with weight
0, 5. At the end of this process, the Laplacian of the spectrum of the graph is
analyzed as described in Ding et al. [12]. If the graph presents nearly disconnected
components, then the process stops, alternatively a novel graph with a more
stringent threshold k is generated.

3.1 Building Semantic Similarity Networks

The following algorithm explains the building of the semantic similarity network
Gssu by iteratively calculating semantic similarity among each pair of proteins.
For each step two proteins are chosen and the semantic similarity among them
is calculated. Then nodes are added to the graph and an edge is inserted when
the semantic similarity is greater than 0.

Algorithm 1. Building Semantic Similarity Networks
Data: Protein Dataset P, Semantic Similarity Measure SS
Result: Semantic Similarity Network Gssu=Vssu, Essu

initialization;
forall the pi in P do

read pi;
add pi in Vssu ;
forall the pj in P, j ∈= i do

Let σ=SS(pi,pj) ;
if σ > 0 then

add the weighted edge (pi,pj ,σ) to Essu;
end

end

end

3.2 Pruning Semantic Similarity Networks

This Section explains the pruning of a semantic similarity network through an
example. To better clarify the process, we use an auxiliary graph Gpr that is the
final output of pruning. The graph is built in an incremental way by considering

Thresholding of Semantic Similarity Networks 207

all the nodes of Gssu. The pruning algorithm examines each node i ∈ Gssu. For
each node it stores all the weights of the adjacent edges. Then it determines a
local threshold. At the end of this step, the node i and all the adjacent ones are
inserted in to Gpr (only if they are not yet present).

Then each edge adjacent to i with weight greater with the determined local
threshold is inserted into Gpr. If the considered edge is not present in Gpr, the
edge will have weight 0,5, otherwise the weight of the edge is set to 1. We used in
this work two simple thresholds, the average and the median of all the weights.
Finally all the nodes with degree = 1 are deleted from Gpr.

The rationale of this process is that edges that are relevant considering the
neighborhood of both nodes will compare in the pruned graph with unitary
weight while edges that are relevant considering one node will compare with 0.5
weight. For instance, let us consider the network depicted in Fig. 1 and let us
suppose that threshold k = μ+α×sd is represented by the average. Without loss
of generality we suppose α = 0 in this example. Let AV G(nodei) be the average
of the weights of edges adjacent to nodei that is used as threshold. Figure 1
depicts the overall process.

The algorithm initially explores node0, since it has degree 1, it is discarded
from the analysis. Then it explores the neighbors of node1 and it reaches node2.
Then it adds into Gpr node0, node1, node2, and node3 and the edge (node2, node3)
with weight 0,5 - (the average of the weights of the neighbours of node2 is equal to

Fig. 1. The thresholding process.

208 P.H. Guzzi et al.

0,13 and other two edges have a lower weight). Figure 1(b) depicts the produced
graph at this step.

Then the algorithm considers node3. Then node4, and node5 are inserted
into Gpr. The AV G(node3) is equal to 0,46, so only edges (node3, node4) and
(node3, node5) are inserted into Gpr with weight 0.5. Figure 1(b) depicts Gpr

after this step. Then node4 is reached. Since all the adjacent nodes have been
inserted into Gpr, no nodes are added into this step. The AV G(node4) is equal
to 0,6, so all the edges must be inserted. In particular edge (node4, node3) is yet
present, so its weight is updated to 1,0. Diversely, (node4, node5) is inserted with
weight equal to 0,5. Figure 1(d) depicts Gpr after this step.

At this point node5 is reached. node7 and node8 are inserted into Gpr. The
AV G(node5) is 0,575. Consequently the weight of the edges (node5, node3),
(node5, node4) in Gpr are updated to 1, (node6, node7) is inserted into Gpr.
Finally, node7 and node8 are visited but discarded since they have degree equal
to 1. In the last step all the nodes with zero degree are eliminated from Gpr,
producing the resulting graph depicted in Fig. 1(e).

The generation of pruned graph is repeated until the graph has nearly dis-
connected components. This may be evident by analyzing the spectrum of the
associated laplacian for value of threshold.

3.3 Analysis of Semantic Similarity Networks

Starting from a dataset of genes or proteins, a SSN may be built in an itera-
tive way, and once built, algorithms from graph theory may be used to extract
topological properties that encode biological knowledge.

As starting point, the global topology of a semantic similarity network, i.e. the
study of the clustering coefficient or of the diameter, can reveal main properties
of the network.

The study of recurring local topological features and the extraction of rel-
evant modules, i.e. cliques, is interesting. For the purposes of this work, we
focus on the extraction of dense subgraphs under the hypothesis that they could
encode relevant modules, i.e. subsets of functionally associated proteins.

There exist currently many approaches of analysis of protein interaction net-
works that span a broad range, from the analysis of a single network by clustering
to the comparison of two or more networks trough graph alignment approaches.
In this work we consider the use of Markov Clustering Algorithm (MCL) as min-
ing strategy. MCL has been proved to be a good predictor of functional modules
when applied to protein interaction networks.

4 Case Study

In order to show the effectiveness of this strategy we designed the following
assessment strategy:

Thresholding of Semantic Similarity Networks 209

1. we downloaded three datasets of proteins (the CYC20081 dataset, the MIPS
[15] catalog, and the Annotated Yeast High-Throughput Complexes2);

2. for each pair of proteins within a dataset we calculated different semantic
similarities among them using the FastSemSim3 tool;

3. we considered 11 semantic similarity measures from those available in Fast-
SemSim (Czekanowsky-Dice, Dice, G-Sesame, Jaccard, Kin, NTO, SimGic,
SimICND, SimIC, SimUI, TO), see [16]);

4. we used the Biological Process (BP) and Molecular Function (MF) ontologies,
therefore we generated 22 SSNs for each input dataset;

5. for each SSN we applied our thresholding algorithm at increasing levels of
the threshold value, therefore for each SSN we generated a list of thresholded
networks; Since the local threshold computed on each node is k = μ+α× sd,
we varied α ∈ [0, 1];

6. we applied Markov clustering on the raw and simplified networks showing the
improvements of our strategy that is reported in terms of functional enrich-
ment of modules (i.e. the quantification of biological meaning of modules).

As final step we compare our thresholding technique with other global strate-
gies demonstrating the effectiveness of the local thresholding.

4.1 Results

For each generated network we used the markov clustering algorithm (MCL) to
extract modules. The effectiveness of the use of MCL for detecting modules in
networks has been demonstrated in many works (see for instance [8]). We here
have two main objectives: (i) to assess how MCL is able to discover functionally
coherent modules in different semantic similarity networks; (ii) to show how this
clustering process is positively influenced by the proposed network thresholding.

In particular, we show how the process of simplification improves the overall
results and how the best results are obtained when networks presents nearly
disconnected components. For MCL the inflation parameter is set to 1.2.

We evaluated the obtained results in terms of functional coherence of
extracted modules. We define functional coherence FC of a module M as the
average of semantic similarity values of all the pair of nodes (i,j) composing it,
as summarized in the following formula where i, j ∈ M , and N is the number of
the proteins of the module M .

FC =
∑

i,j

SSM(i, j)
N

(7)

Starting from this definition, we consider the FC of all the extracted modules,
and then we average this value to obtain a single value for each set of modules
1 http://wodaklab.org/cyc2008/
2 http://wodaklab.org/cyc2008/
3 http://fastsemsim.sourceforge.net

http://wodaklab.org/cyc2008/
http://wodaklab.org/cyc2008/
http://fastsemsim.sourceforge.net

210 P.H. Guzzi et al.

Average Functional Coherence of Modules for different Threshold on CYC2008 Dataset

Fig. 2. Comparison of average FC at different threshold levels on the CYC2008 dataset.
Each point represents the average functional coherence obtained for a single network.

Average Functional Coherence ofnModules for different Thresholds on MIPS Dataset

Fig. 3. Comparison of average FC at different threshold levels on the MIPS dataset.
Each point represents the average functional coherence obtained for a single network.
Dataset.

extracted by a single network. We consider this average value as a representative
quality index for the thresholded network.

Figures 2, 3, and 4 summarize these results. In particular, Figs. 2, 3, and 4
show the average Functional Coherence of all the extracted modules at different
level of thresholds for all the used similarity measures.

Results confirm an uniform behaviour for all the measures demonstrating
the robustness of the proposed thresholding methods when varying the semantic
similarity measures. Moreover we point out that the improvement on average
functional coherence is not uniform, nor linear, but presents a maximum around
k = 1.2, that also guarantees the insurgence of nearly disconnected components.

Thresholding of Semantic Similarity Networks 211

Average Functional Coherence on Modules for different Thresholds on HTP Dataset

Fig. 4. Comparison of average FC at different threshold levels on the annotated high
throughput complexes datasets. Each point represents the average functional coherence
obtained for a single network.

A similar behaviour is also shown for all the considered datasets, i.e. the
best improvement in FC is obtained when network presents nearly disconnected
components. This result is biologically sound since modules correspond to high
dense subnetworks that are often connected by few edges. Moreover Figs. 3, and 4
evidence that the extraction of modules on raw networks produces always worse
results with respect to thresholded networks.

Finally we want to exclude that results are influenced positively or negatively
by the MCL parameters. Consequently we repeated the tests by considering
Inflation parameter of MCL in the range [1.0 ÷ 3.0]. Results confirmed that the
behaviour of thresholded networks with respect to raw ones is still the same.

5 Conclusion

Semantic Similarity Networks of proteins, that embed into edges weights the
functional similarity among proteins, are becoming an important tool for biolog-
ical research. The analysis of SSNs comprises two main steps: (i) Build a SSN
starting from a set of proteins; (ii) mine the network to determine clusters of
semantically related proteins.

SSNs are often huge and may contain meaningless edges among proteins; thus
they may be pruned using thresholding algorithms. We presented a thresholding
strategy to improve the use of SSNs to obtain biological knowledge in a simple
way.

Taking into account the drawbacks of existing strategies, such as local and
global thresholding, we presented a novel thresholding technique that improves
the use of Semantic Similarity Networks as a framework to mine biological knowl-
edge in a semantic/functional space. To face main drawbacks of current strate-
gies, we proposed a hybrid global-local thresholding strategy based on spectral

212 P.H. Guzzi et al.

graph theory. We described the overall process that comprises the following
steps: (i) building of semantic similarity networks; and (ii) mining of them by
using Markov clustering. Then we described the proposed pruning strategy and
finally we demonstrated that clustering of pruned networks has better results
in terms of functional coherence of the detected modules. We think that such
kind of pruning strategy may represent a step forward to the extensive use of
SSNs to extract biologically meaningful knowledge. Future work will regard the
extensive evaluation of our approach in different species in order to refine the
pruning strategy.

References

1. Ala, U., Piro, R.M., Grassi, E., Damasco, C., Silengo, L., Oti, M., Provero, P.,
Cunto, F.D.: Prediction of human disease genes by human-mouse conserved coex-
pression analysis. PLoS Comput. Biol. 4(3), e1000043 (2008)

2. Bader, G.D., Hogue, C.W.V.: An automated method for finding molecular com-
plexes in large protein interaction networks. BMC Bioinform. 27, 1–27 (2003)

3. Bertolazzi, P., Bock, M.E., Guerra, C.: On the functional and structural charac-
terization of hubs in protein-protein interaction networks. Biotechnol. Adv. 31(2),
274–286 (2013)

4. Domany, E., Blatt, M., Wiseman, S.: Superparamagnetic clustering of data. Phys.
Rev. Lett. 76(18), 3251–3254 (1996)

5. Bolla, M., Tusnády, G.: Spectra and optimal partitions of weighted graphs. Discrete
Math. 128(1), 1–20 (1994)

6. Brohée, S., van Helden, J.: Evaluation of clustering algorithms for protein-protein
interaction networks. BMC Bioinform. 7, 488 (2006)

7. Camon, E., Magrane, M., Barrell, D., Lee, V., Dimmer, E., Maslen, J., Binns, D.,
Harte, N., Lopez, R., Apweiler, R.: The gene ontology annotation (goa) database:
sharing knowledge in uniprot with gene ontology. Nucl. Acids Res. 32(suppl-1),
D262–D266 (2004)

8. Cannataro, M., Guzzi, P.H., Veltri, P.: Protein-to-protein interactions: technolo-
gies, databases, and algorithms. ACM Comput. Surv. 43, 1:1–1:36 (2010)

9. Cannataro, M., Guzzi, P.H., Sarica, A.: Data mining and life sciences applications
on the grid. Wiley Interdisc. Rev.: Data Mining Knowl. Discov. 3(3), 216–238
(2013)

10. Chung, F.: Spectral Graph Theory. Regional Conference Series in Mathematics,
vol. 92. American Mathematical Society, Providence (1994)

11. Cvetković, D., Simić, S.K.: Towards a spectral theory of graphs based on the sign-
less laplacian, ii. Linear Algebra Appl. 432(9), 2257–2272 (2010)

12. Ding, C., He, X., Zha, H.: A spectral method to separate disconnected and nearly-
disconnected web graph components. In: Proceedings of the Seventh ACM Interna-
tional Conference on Knowledge Discovery and Data Mining, San Francisco, 26–29
August 2001

13. Enright, S., Van Dongen, A.J., Ouzounis, C.A.: An efficient algorithm for large-
scale detection of protein families. Nucleic Acids Res. 30(7), 1575–1584 (2002)

14. Freeman, T.C., Goldovsky, L., Brosch, M., van Dongen, S., Maziere, P., Grocock,
R.J., Freilich, S., Thornton, J., Enright, A.J.: Construction, visualization, and clus-
tering of transcription networks from microarray expression data. PLoS Comput.
Biol. 3(10), e206 (2007)

Thresholding of Semantic Similarity Networks 213

15. Guldener, U., Munsterkotter, M., Oesterheld, M., Pagel, P., Ruepp, A., Mewes,
H.W., Stumpflen, V.: Mpact: the mips protein interaction resource on yeast.
Nucleic Acids Res. 34, D436–D441 (2006)

16. Guzzi, P.H., Mina, M., Guerra, C., Cannataro, M.: Semantic similarity analysis of
protein data: assessment with biological features and issues. Briefings Bioinform.
13(5), 569–585 (2012)

17. Harispe, S., Sanchez, D., Ranwez, S., Janaqi, S., Montmain, J.: A framework for
unifying ontology-based semantic similarity measures: a study in the biomedical
domain. J. Biomed. Inform. 48, 38–53 (2014)

18. Ji, J., Zhang, A., Liu, C., Quan, X., Liu, Z.: Survey: functional module detec-
tion from protein-protein interaction networks. IEEE Trans. Knowl. Data Eng.
99(PrePrints), 1 (2013)

19. King, A.D., Przulj, N., Jurisica, I.: Bioinformatics (Oxford, England)
20. Lee, H.K., Hsu, A.K., Sajdak, J., Qin, J., Pavlidis, P.: Coexpression analysis of

human genes across many microarray data sets. Genome Res. 14, 1085–1094 (2004)
21. Lin, D.: An Information-Theoretic Definition of Similarity. Morgan Kaufmann, San

Francisco (1998)
22. Ma, X., Gao, L.: Biological network analysis: insights into structure and functions.

Briefings Funct. Genomics 11(6), 434–442 (2012)
23. Merris, R.: Laplacian matrices of graphs: a survey. Linear Algebra Appl. 197,

143–176 (1994)
24. Mina, M., Guzzi, P.H.: Alignmcl: comparative analysis of protein interaction net-

works through markov clustering. In: BIBM Workshops, pp. 174–181. IEEE (2012)
25. Mohar, B.: The laplacian spectrum of graphs. Graph Theor. Comb. Appl. 2, 871–

898 (1991)
26. Ng, A.Y., Jordan, M.I., Weiss, Y., et al.: On spectral clustering: analysis and an

algorithm. Adv. Neural Inf. Process. Syst. 2, 849–856 (2002)
27. Guzzi, P., Mina, M.: Investigating bias in semantic similarity measures for analysis

of protein interactions. In: Proceedings of 1st International Workshop on Pattern
Recognition in Proteomics, Structural Biology and Bioinformatics (PR PS BB
2011), pp. 71–80, 13 September 2011 (2012)

28. Pesquita, C., Faria, D., O Falcão, A., Lord, P., Couto, F.M.: Semantic similarity
in biomedical ontologies. PLoS Comput. Biol. 5(7), e1000443 (2009)

29. Resnik, P.: Using information content to evaluate semantic similarity in a taxon-
omy. In: IJCAI, pp. 448–453 (1995)

30. Rito, T., Wang, Z., Deane, C.M., Reinert, G.: How threshold behaviour affects the
use of subgraphs for network comparison. Bioinformatics 26(18), i611–i617 (2010)

31. Su, G., Kuchinsky, A., Morris, J.H., States, D.J., Meng, F.: Glay: community
structure analysis of biological networks. Bioinformatics 26(24), 3135–3137 (2010)

32. Wang, H., Zheng, H., Azuaje, F.: Ontology- and graph-based similarity assessment
in biological networks. Bioinformatics 26(20), 2643–2644 (2010)

33. Zhu, X., Gerstein, M., Snyder, M.: Getting connected: analysis and principles of
biological networks. Genes Dev. 21(9), 1010–1024 (2007)

A Relational Unsupervised Approach
to Author Identification

Fabio Leuzzi1, Stefano Ferilli1,2(B), and Fulvio Rotella1

1 Dipartimento di Informatica, Università di Bari, Bari, Italy
2 Centro Interdipartimentale per la Logica e sue Applicazioni,

Università di Bari, Bari, Italy
{fabio.leuzzi,stefano.ferilli,fulvio.rotella}@uniba.it

Abstract. In the last decades speaking and writing habits have changed.
Many works faced the author identification task by exploiting frequency-
based approaches, numeric techniques or writing style analysis. Follow-
ing the last approach we propose a technique for author identification
based on First-Order Logic. Specifically, we translate the complex data
represented by natural language text to complex (relational) patterns
that represent the writing style of an author. Then, we model an author
as the result of clustering the relational descriptions associated to the
sentences. The underlying idea is that such a model can express the typ-
ical way in which an author composes the sentences in his writings. So,
if we can map such writing habits from the unknown-author model to
the known-author model, we can conclude that the author is the same.
Preliminary results are promising and the approach seems viable in real
contexts since it does not need a training phase and performs well also
with short texts.

1 Introduction

Speaking and writing habits have changed in the last decades, and many works
have investigated the author identification task by exploiting frequency-based
approaches, numeric techniques and writing style analysis. The spreading of
documents across the Internet made the writing activity faster and easier com-
pared to past years. Thus, author identification became a primary issue, due to
the increasing number of plagiarism cases. In order to face such problems, several
approaches have been attempted in the Machine Learning field [1,4,13,20].

The authorship attribution task is well-understood (given a document, deter-
mine who wrote it) although amenable to many variations (given a document,
determine a profile of the author; given a pair of documents, determine whether
they were written by the same author; given a document, determine which parts
of it were written by a specific person), and its motivation is clear. In applied
areas such as law and journalism knowing the author’s identity may save lives.

The most common approach for testing candidate algorithms is to cast the
problem as a text classification task: given known sample documents from a
small, finite set of candidate authors, assess if any of those authors wrote a

A. Appice et al. (Eds.): NFMCP 2013, LNAI 8399, pp. 214–228, 2014.
DOI: 10.1007/978-3-319-08407-7 14, c© Springer International Publishing Switzerland 2014

A Relational Unsupervised Approach to Author Identification 215

questioned document of unknown authorship. A more lifelike approach is: given
a set of documents by a single author and a questioned document, determine
whether the questioned document was written by that particular author or not.
This is more interesting for professional forensic linguistics because it is a primary
need in that environment.

This setting motivated us to face the following task: given a small set (no
more than 10, possibly just one) of “known” documents written by a single
person and a “questioned” document, determine whether the latter was written
by the same person who wrote the former.

Performing a deep understanding of the author to seize his style is not trivial,
due to the intrinsic ambiguity of natural language and to the huge amount of
common sense and linguistic/conceptual background knowledge needed to switch
from a purely syntactic representation to the underlying semantics. Traditional
approaches are not able to seize the whole complex network of relationships,
often hidden, between events, objects or a combination of them. Conversely
relational approaches treat natural language texts as complex data from which
mining complex patterns.

So after extracting and making explicit the typed syntactical dependencies of
each sentence, we formally express them in a First-Order Logic representation.
In this way the unstructured texts in natural language are expressed by complex
(relational) patterns on which automatic techniques can be applied. Exploiting
such patterns, the author’s style can be modeled in order to classify a new
document as written by the same author or not.

For the sake of clarity, from now on we refer to the known author used for
training as the base, and to the unknown author that must be classified as target.

This work is organized as follows: the next section describes related works;
Sect. 3 outlines the proposed approach, that is evaluated subsequently. Lastly,
we conclude with some considerations and future works.

2 Related Work

There is a huge amount of research conducted on Author Identification in the
last 10 years. With the spread of anonymous documents in Internet, authorship
attribution becomes important. Researches focus on different properties of texts,
the so-called style markers, to quantify the writing style under different labels
and criteria. Five main types of features can be found: lexical, character, syntac-
tic, semantic and application specific. The lexical and character features consider
a text as a mere sequence of word-tokens or characters, respectively. An example
of the first category is [2] in which new lexical features are defined for use in
stylistic text classification, based on taxonomies of various semantic functions of
certain choice words or phrases. While this work reaches interesting results, it is
based on the definition of arbitrary criteria (such as the 675 lexical features and
taxonomies) and requires language-dependent expertise. Another example is the
approach in [19] which is based on comparing the similarity between the given
documents and a number of external (impostor) documents, so that documents

216 F. Leuzzi et al.

can be classified as having been written by the same author, if they are shown
to be more similar to each other than to the impostors, in a number of trials
exploiting different lexical feature sets.

In [23] the authors build a suffix tree representing all possible character
n-grams of variable length and then extract groups of character n-grams as
features. An important issue of such approaches based on character feature is
the choice of n, because a larger n captures more information but increases the
dimensionality of the representation. On the other hand, a small n might not be
adequate to learn an appropriate model.

Syntactic features are based on the idea that authors tend to unconsciously use
similar syntactic patterns. Therefore they exploit information such as PoS-tags,
sentence and phrase structures. These approaches carry on two major drawbacks:
the former is the need of robust and accurate NLP tools to perform syntactic analy-
sis of texts and the latter is the huge amount of extracted features they require
(e.g., in [21] there are about 900 K features). For instance, the work in [6] defines a
set of coherence features together with some stylometric features. Since such fea-
tures are unavailable for non-English languages, they exploit corresponding trans-
lations produced by Google Translate service. It is easy to note that not only this
work suffers by the drawbacks of the NLP tools, but it also introduces noise in the
representation due to the automatic translation.

Semantic approaches rely on semantic dependencies obtained by external
resources, such as taxonomies or thesauri. In [14] the authors exploit WordNet
[5] to detect “semantic” information between words. Although the use of an
external taxonomic or ontological resource can be very useful for these purposes,
such resources are not always available and often do not exist at all for very
specific domains.

Finally, there are non-general-purpose approaches, that define application-
specific measures to better represent the style in a given text domain. Such
measures are based on the use of greetings and farewells in the messages, types
of signatures, use of indentation, paragraph length, and so on [12].

While the various approaches faced the problem from different perspectives,
a common feature to all of them is their using a flat (vectorial) representa-
tion of the documents/phrases. Even the two before the last approach, although
starting from syntactic trees or word/concept graphs, subsequently create new
flat features, losing in this way the relations embedded in the original texts.
For example, [22] builds graphs based on POS sequences and then extracts
sub-graph patterns. This graph-based representation attempts to capture the
sequence among the sentence words, as well as the sequence among their PoS
tags, with the aim of feeding a graph mining tool which extracts some relevant
relational features. But they lose all relational features when a feature vector
for each document is built upon them as input for a Support Vector Machine
classifier.

A different approach that preserves the phrase structure is presented in [16].
In this work a probabilistic context-free grammar (PCFG) is built for each author
and then each test document is assigned to the author whose PCFG produced the

A Relational Unsupervised Approach to Author Identification 217

highest likelihood for such a document. While this approach takes into account
the syntactic tree of the sentences, it needs many documents per author to learn
the right probabilities. Thus it is not applicable in settings in which a small
set of documents of only one author is available. Moreover we believe that the
exploitation of only parse trees is not enough to characterize the author’s style,
conversely the syntactical relationships would be better enriched with grammat-
ical ones.

Differently from all of these approaches, our proposal aims at preserving
the informative richness of textual data by extracting and exploiting complex
patterns from such complex data.

3 Proposed Approach

Natural Language Text is a complex kind of data encoding implicitly the author’s
style. We propose to translate textual data into a relational description in order
to make explicit the complex patterns representing the author’s style. The rela-
tional descriptions are clustered using the similarity measure presented in [7],
where the threshold to be used as a stopping criterion is automatically recog-
nized. We apply this technique to build both base and target models. Then, the
classification results from the comparison of these two models. The underlying
idea is that the target model describes a set of ways in which the author com-
poses the sentences. If we can bring such writing habits back to the base model,
then we can conclude that the author is the same.

3.1 The Representation Formalism

Natural language texts are processed by ConNeKTion [10] (acronym for ‘CON-
cept NEtwork for Knowledge representaTION’), a framework for conceptual
graph learning and exploitation. This framework aims at partially simulating
some human abilities in the text understanding and concept formation activity,
such as: extracting the concepts expressed in given texts and assessing their rele-
vance [8]; obtaining a practical description of the concepts underlying the terms,
which in turn would allow to generalize concepts having similar description [17];
applying some kind of reasoning ‘by association’, that looks for possible indirect
connections between two identified concepts [11]; identifying relevant keywords
that are present in the text and helping the user in retrieving useful information
[18].

In this work we exploit ConNeKTion in order to obtain a relational rep-
resentation of the syntactic features of the sentences. In particular exploiting
the Stanford Parser and Stanford Dependencies tools [3,9] we obtain phrase
structure trees and a set of grammatical relations (typed dependencies) for each
sentence. These dependencies are expressed as binary relations between pairs
of words, the former of which represents the governor of the grammatical rela-
tion, and the latter its dependent. Words in the input text are normalized using

218 F. Leuzzi et al.

lemmatization instead of stemming, which allows to distinguish their grammat-
ical role and is more comfortable to read by humans. ConNeKTion also embeds
JavaRAP, an implementation of the classic Anaphora Resolution Procedure [15].
Indeed, the subjects/objects of the sentences in long texts are often expressed
as pronouns, referred to the latest occurrence of the actual subject/object. After
applying all these pre-processing steps, we translate each sentence into a rela-
tional pattern. In particular, each sentence is translated into a Horn Clause of
the form:

sentence(IdSentence) : −description(IdSentence).

where description(Idsentence) is a combination of atoms built on the following
predicates, that express the relations between the words in the sentence:

– phrase(Tag, IdSentence, Pos) represents a constituent whose Tag is the type
of phrase (e.g. NP, VP, S,...) and Pos is the term position in the phrase;

– term(IdSentence, Pos, Lemma,PosTag) defines a single term whose posi-
tion in the sentence is Pos, its lemma is Lemma and its part-of-speech (e.g.
N,V,P,...) is PosTag;

– sd(IdSentence, Type, PosGov, PosDep) represents the grammatical relation
Type (e.g. dobj, subj,...) between the governor word in position PosGov and
the dependent word in position PosDep.

This allows us to represent all the relationships between the terms, their gram-
matical relations and the phrases to which they belong.

3.2 The Similarity Measure

The similarity strategy exploited here was presented in [7]. It takes values in]0, 4[
and is computed by repeated applications of the following formula to different
parameters extracted from the relational descriptions:

sf(i′, i′′) = sf(n, l,m) = α
l + 1

l + n + 2
+ (1 − α)

l + 1
l + m + 2

where:

– i′ and i′′ are the two items under comparison;
– n represents the information carried by i′ but not by i′′;
– l is the common information between i′ and i′′;
– m is the information carried by i′′ but not by i′;
– α is a weight that determines the importance of i′ with respect to i′′ (0.5

means equal importance).

More precisely, the overall similarity measure carries out a layered evaluation
that, starting from simpler components, proceeds towards higher-level ones
repeatedly applying the above similarity formula. At each level, it exploits the
information coming from lower levels and extends it with new features. At the

A Relational Unsupervised Approach to Author Identification 219

Algorithm 1. Relational pairwise clustering.
Interface: pairwiseClustering(M,T).
Input: M is the similarity matrix; T is the threshold for similarity function.
Output: set of clusters.

pairs ← empty
averages ← empty
for all Oi | i ∈ O do

newCluster ← Oi

clusters.add(newCluster)
end for
merged ← true
while merged = true do

merged ← false
for all pair(Ck, Cz) | C ∈ clusters ∧ k, z ∈ [0, clusters.size[do

if completeLink(Ck, Cz, T) then
pairs.add(Ck, Cz)
averages.add(getScoreAverage(Ck, Cz))

end if
end for
if pairs.size() > 0 then

pair ← getBestPair(pairs, averages)
merge(pair)
merged = true

end if
end while

completeLink(matrix,cluster1,cluster2,threshold) → TRUE if complete link assumption
for the passed clusters holds, FALSE otherwise.
getBestPair(pairs,averages) → returns the pair having the maximum average.

basic level terms (i.e., constants or variables in a Datalog setting) are consid-
ered, that represent objects in the world and whose similarity is based on their
properties (expressed by unary predicates) and roles (expressed by their position
as arguments in n-ary predicates). The next level involves atoms built on n-ary
predicates: the similarity of two atoms is based on their “star” (the multiset of
predicates corresponding to atoms directly linked to them in the clause body,
that expresses their similarity ‘in breadth’) and on the average similarity of their
arguments. Since each of the four components ranges into]0, 1[, their sum ranges
into]0, 4[. Then, the similarity of sequences of atoms is based on the length of
their compatible initial subsequence and on the average similarity of the atoms
appearing in such a subsequence. Finally, the similarity of clauses is computed
according to their least general generalization, considering how many literals and
terms they have in common and on their corresponding lower-level similarities.

220 F. Leuzzi et al.

Algorithm 2. Best model identification.
Interface: getBestModel(M,Tlower,Thigher)
Input: M is the similarity matrix; Tlower is the starting threshold, Thigher is the
maximum threshold that can be attempted.
Output: bestModel that is the model having the best threshold.

t ← Tlower

models ← ∅
thresholds ← ∅
while t < Thigher do

clusters ← pairwiseClustering(M, t)
models.add(clusters)
thresholds.add(t)
t ← t + 0.005

end while
maxHop ← 0
bestModel ← null
for all mi | mi ∈ models, i > 0 do

hop ← (mi.size ∗ 100)/mi−1.size
if maxHop < hop then

maxHop ← hop
bestModel ← mi−1

end if
end for
return bestModel

3.3 Building Models

After obtaining a relational description for each sentence as described in Sect. 3.1,
we applied the similarity measure described in Sect. 3.2 to pairs of sentences. In
particular, for each training-test pair we computed an upper triangular similarity
matrix between each pair sentences. As can be seen in Fig. 1 the global matrix can
be partitioned into three parts, the top-left submatrix (filled with diagonal lines)
contains the similarity scores between each pair of sentences of known documents
(base). The bottom-right one (filled with solid gray) includes the similarities
between pairs of sentences belonging to the unknown document (target). The
top-right submatrix reports the similarity scores across known and unknown
documents.

Then, we performed an agglomerative clustering to both base and target
submatrices according to Algorithm 1. Initially each description makes up a
different singleton cluster; then the procedure works by iteratively finding the
next pair of clusters to be merged according to a complete link strategy. Com-
plete link states that the distance of the farthest items of the involved clusters
must be less than a given threshold. Since more than one pair can satisfy such a
requirement, the procedure needs the ranking of the pairs, because the ordering
of the pairs affects the final model. Then for each iteration only the pair with
the highest average similarity is merged. In this work we refer to a model as a

A Relational Unsupervised Approach to Author Identification 221

P =

− s1,2 s1,n

−
−

−
− sn−1,n

−

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 1. Global similarity matrix. Each si,j represents the similarity between sentences
i and j calculated as explained in Sect. 3.2

possible grouping of similar descriptions, as obtained by running the clustering
algorithm with a given threshold.

In this perspective, there is the need of establishing the threshold by which
pairwise clustering is carried out for each model. Our approach is based on the
idea that as long as the threshold increases, also the number of clusters grows,
and thus the merging becomes more and more difficult. We consider as a cut
point the largest gap between the number of clusters obtained with a threshold
and the next one obtained by performing clustering with a greater threshold. It
is easy to note that a given difference value obtained with many clusters is less
significant than the one obtained with a smaller number of clusters.

Taking into account such considerations we have defined the following func-
tion that encodes such intuitive assumptions. Given a sequence of models <
m1, ...,mn > obtained by repeating the clustering procedure with the cut-
threshold progressively incremented by step 0.005, and function c(mi) that
computes the number of clusters in the i-th model, we can define:

g(i) =
c(mi+1)
c(mi)

and θ = arg max
i

g(i)

where 0 ≤ i < n and θ is the desired threshold associated to the model mi

yielding the greatest distance from the model mi+1 (see Algorithm 2). Since our
similarity measure ranges in]0, 4[, the threshold varies within such range as well.

Once the appropriate thresholds are chosen, we have defined base and target
models, each of which having its own threshold, thus we can perform the clas-
sification. As can be seen in Algorithm 3, this phase of the procedure works on
clusters having more than one item. For each cluster in the target model, if it
can be merged with at least one cluster in the base model (under the complete
link assumption), the author is the same, otherwise it is not. Such merging check
exploits the similarities in the top-right submatrix and the maximum threshold
between base and target model, making harder a full alignment between such
models. This choice encourages accurate classifications.

222 F. Leuzzi et al.

Algorithm 3. Complete classification procedure.
Input: Oknown is the set of descriptions (represented as in Sect. 3.1) obtained from
the known-author documents; Ounknown is the set of descriptions obtained from the
unknown-author document; Tlower is the starting threshold, Thigher is the maximum
threshold that can be attempted.
Output: Classification outcome.

Mknown ← getSimilarities(Oknown)
modelknown ← getBestModel(Mknown, Tlower, Thigher)
tknown ← getBestThreshold(Mknown, Tlower, Thigher)
Munknown ← getSimilarities(Ounknown)
modelunknown ← getBestModel(Munknown, Tlower, Thigher)
tunknown ← getBestThreshold(Munknown, Tlower, Thigher)
t ← max(tknown, tunknown)
O ← Oknown

O.add(Ounknown)
M ← getSimilarities(O)
for all (Ck, Cu) | Ck ∈ modelknown ∧ Cu ∈ modelunknown do

if (|Ck| ≤ 3 ∧ instances(Ck) ≤ instances(Cu) ∗ 0.2)
∨(|Cu| ≤ 3 ∧ instances(Cu) ≤ instances(Ck) ∗ 0.2) then

return null
else

if !completeLink(M,Ck, Cu, t) then
return false

end if
end if

end for
return true

completeLink(matrix,cluster1,cluster2,threshold) → TRUE if complete link assumption
for the passed clusters holds, FALSE otherwise.
getSimilarities(list) → returns the similarity matrix between all pairs of objects in ‘list’.
instances(model) → returns the number of instances composing the clusters in ‘model’.

3.4 The Gray Zone

In preliminary evaluations performed on the training set (Table 1), we have noted
that in problem ‘EN23’ summing all the sentences of the known documents we
get half of the sentences belonging to the corresponding unknown one. This
strange situation has brought us to hypothesize that, although our system can
build a reliable model using few texts, it cannot deal with too poor text (just
like a human). Due to such a particular behavior we have defined as gray zone
a portion of cases for which the approach must not provide a classification since
it could be unreliable.

According to our hypothesis, we have left out the problems having models
composed just by one, two or three clusters, since they were too poor. For each
model that does not suffer of poorness, if the number of the instances of a model

A Relational Unsupervised Approach to Author Identification 223

Table 1. Training-set details and outcomes.

ID Known docs Unknown doc Outcomes
#docs #clauses µlength #clauses µlength Expected Class Score

EN04 4 261 121.06 62 136.60 Y Y 1.0
EN07 4 260 121.48 44 195.47 N Y 1.0
EN11 2 109 185.87 39 160.41 Y Y 1.0
EN13 3 109 156.99 65 134.65 N N 0.6
EN18 5 274 154.25 53 165.49 Y Y 1.0
EN19 3 139 164.35 56 210.05 Y N 0.37
EN21 2 109 210.89 24 269.21 N N 0.67
EN23 2 51 217.29 97 277.29 Y N 0.92
EN24 5 242 147.06 89 169.08 N N 0.69
EN30 2 95 189.87 33 322.09 N N 0.8

Table 2. Dataset composition.

Set English Greek Spanish

Training 10 20 5
Test 1 20 20 10
Test 2 29 30 25
Total 59 70 40

is less than 20% of the other one, the approach does not try a classification,
since the obtained models could be considered unreliable (see Algorithm 3).

4 Evaluation

We evaluated our procedure using the dataset provided in the 9th evaluation lab
on uncovering plagiarism, authorship, and social software misuse (PAN) held as
part of the CLEF 2013 conference.

The dataset composition is as shown in Table 2: Training is the training
dataset, Test 1 is an early-bird evaluation dataset that is a subset of the complete
evaluation dataset Test 2 (it should have included 30 instances, unfortunately
we found only 29 instances in the archive). Since our approach does not require a
training phase, we were able to consider the training set as part of the dataset. In
this evaluation we have considered the English problems only, since the current
version of ConNeKTion is based on the Stanford NLP tools, that cannot deal
natively with the other two languages. However, our approach can be easily
extended to the other languages, as long as suitable NLP tools for them are
available.

In Table 3 we have reported some statistics about the datasets, such as the
minimum, the average and the maximum value for each perspective, that are
useful to understand the amount of information with which we deal in order to
face this task. In particular there is the number of documents, the total number

224 F. Leuzzi et al.

Table 3. Dataset details.

Set
Known docs

#docs #clauses µlength

min µ max min µ max min µ max

Training 2 3.20 5 51 178.87 274 121.06 166.82 216.37
Test 1 3 4.45 9 29 146.79 329 107.35 218.24 322.82
Test 2 2 4.27 14 29 145.59 367 100.81 209.55 319.59

Total 2 3.96 14 29 157.08 367 100.81 198.2 322.82

Set
Unknown doc

#clauses µlength

min µ max min µ max

Training 24 56.10 96 134.65 194.22 322.09
Test 1 9 117.31 238 117.01 228.11 358.41
Test 2 9 56.00 301 110.29 213.85 351.18

Total 9 76.47 301 110.29 212.06 358.41

Table 4. Outcomes overview that sums up true positives (T.P.), true negatives (T.N.),
false positives (F.P.), false negatives (F.N.) and not classified (N.C.).

Type Set T.P. + T.N. F.P. F.N. N.C.

Training 0.7 0.3 0.0 0.0
Boolean evaluation Test 1 0.7 0.15 0.15 0.0

Test 2 0.45 0.31 0.24 0.0
Total 0.58 0.25 0.17 0.0

Training 0.7 0.1 0.0 0.2
Smoothed evaluation Test 1 0.65 0.1 0.05 0.2

Test 2 0.41 0.14 0.14 0.31
Total 0.55 0.12 0.08 0.25

of clauses built from such documents and their average length for both known
and unknown documents.

Thus we performed an evaluation aimed at investigating how good the app-
roach is with and without using the gray zone. In Table 4, the procedure with-
out the use of the gray zone is referred to as boolean evaluation. Conversely, the
exploitation of the gray zone is referred to as smoothed evaluation. Considering
each sub-dataset along with the related performance, we can see the difference
between the misclassifications (i.e. F.P. + F.N.) with and without the use of
the gray zone as a gain (e.g. in Test 1 we have 0.3 − 0.15 = 0.15), whereas the
difference between the correct classifications (i.e. T.P. + T.N.) as a loss (e.g. in
Test 1 we have 0.7 − 0.65 = 0.05). For each sub-dataset the gain is much more
than the loss. Obviously, this situation is verified for the entire dataset.

Table 5 reports the performance using the standard measures Precision, Recall
and F-measure. Let us to consider each sub-dataset. The difference between the
Precision scores with and without the use of the gray zone can be seen as a gain

A Relational Unsupervised Approach to Author Identification 225

Table 5. Evaluation of the grey zone application.

Type Set Precision Recall F-measure

Training 0.7 0.7 0.7
Boolean evaluation Test 1 0.7 0.7 0.7

Test 2 0.45 0.45 0.45
Total 0.58 0.58 0.58

Training 0.87 0.7 0.77
Smoothed evaluation Test 1 0.81 0.65 0.72

Test 2 0.6 0.41 0.49
Total 0.73 0.55 0.62

(since reducing the amount of cases in which a classification is given, we keep only
the most reliable cases, cutting out several misclassifications), whereas the differ-
ence between the Recall scores can be seen as a loss (since reducing the amount of
cases in which a classification is given, also some relevant cases having a borderline
classification are lost, although they are correct). Unlike the previous perspective
of gain, here both gain and loss are referred to the correct classifications. In par-
ticular, the gain represents the decreasing misclassifications with respect to the
cases in which our approach gives a response, whereas the loss represents the cor-
rect classifications over the entire dataset. Among the three sub-datasets, the gain
is much more than the loss. Such good performances given by the application of
the gray zone affects the F-measure since it combines Precision and Recall. Hence
the score of the F-measure obtained in the second approach is a further evidence
that the use of the gray zone affects positively the performance of our approach.

5 Conclusions

This work proposed a technique for author identification based on First-Order
Logic. It is motivated by the assumption that making explicit the typed syn-
tactical dependencies in the text one may obtain significant features on which
basing the predictions. Thus, this approach translates the complex data rep-
resented by natural language text to complex (relational) patterns that allow
to model the writing style of an author. Then, these models can be exploited
to classify a novel document as written by the author or not. Our approach
consists in translating the sentences into relational descriptions, then clustering
these descriptions (using an automatically computed threshold to stop the clus-
tering procedure). The resulting clusters represent our model of an author. So,
after building the models of the base (known) author and the target (unknown)
one, the comparison of these models suggests a classification (i.e., whether the
target author is the same as the base one or not). The underlying idea is that
the model describes a set of ways in which an author composes the sentences in
its writings. If we can bring back such writing habits from the target model to
the base model, we can conclude that the author is the same. There could be

226 F. Leuzzi et al.

some cases in which the amount of text (i.e., the amount of information from
which capturing the writing style) is not enough. In order to identify such cases
we defined the gray zone that aims at capturing the indeterminacy.

It must be underlined a small number of documents is sufficient, using this
approach, to build an author’s model. This is important because, in real life,
only a few documents are available for the base author, on which basing a clas-
sification. We wanted to stress specifically this aspect in our experiments, using
the dataset released for the PAN 2013 challenge. Preliminary results are promis-
ing. Our approach seems viable in real contexts since it does not need a training
phase and performs well also with short texts.

The current work in progress concerns the refinement of the identification
of the gray zone, in order to keep out as much indeterminacy as possible. As a
future work, we plan to study the quality of the clusters, pursuing an intensional
understanding thereof. In particular, we want to study whether generalizing
the clustered clauses we can obtain a theory expressing the typical sentence
construction that the author exploits in his texts. Such theory would be the
intentional model of the author, which would allow to carry on the investigation
in the learning field.

Acknowledgments. We wish to express our sincere thanks to Paolo Gissi, for many
useful discussions and for the inspiring concept of gray zone. This work was partially
funded by Italian FAR project DM19410 MBLab “Laboratorio di Bioinformatica per
la Biodiversità Molecolare” and Italian PON 2007-2013 project PON02 00563 3489339
“Puglia@Service”.

References

1. Argamon, S., Saric, M., Stein, S.S.: Style mining of electronic messages for multiple
authorship discrimination: first results. In: Getoor, L., Senator, T.E., Domingos,
P., Faloutsos, C. (eds.) Proceedings of the Ninth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 475–480. ACM (2003)

2. Argamon, S., Whitelaw, C., Chase, P., Hota, S.R., Garg, N., Levitan, S.: Stylistic
text classification using functional lexical features: research articles. J. Am. Soc.
Inf. Sci. Technol. 58(6), 802–822 (2007)

3. De Marneffe, M.C., Maccartney, B., Manning, C.D.: Generating typed dependency
parses from phrase structure parses. In: Proceedings of International Conference
on Language Resources and Evaluation (LREC), pp. 449–454 (2006)

4. Diederich, J., Kindermann, J., Leopold, E., Paass, G.: Authorship attribution with
support vector machines. Appl. Intell. 19(1–2), 109–123 (2003)

5. Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database. MIT Press, Cam-
bridge (1998)

6. Feng, V.W., Hirst, G.: Authorship verication with entity coherence and other rich
linguistic features notebook for PAN at CLEF 2013. In: Forner, P., Navigli, R.,
Tufis, D. (ed.) CLEF 2013 Labs and Workshops - Online Working Notes, Padua,
Italy, September 2013. PROMISE (2013)

7. Ferilli, S., Basile, T.M.A., Di Mauro, N., Esposito, F.: Plugging numeric similarity
in first-order logic horn clauses comparison. In: Pirrone, R., Sorbello, F. (eds.)
AI*IA 2011. LNCS, vol. 6934, pp. 33–44. Springer, Heidelberg (2011)

A Relational Unsupervised Approach to Author Identification 227

8. Ferilli, S., Leuzzi, F., Rotella, F.: Cooperating techniques for extracting concep-
tual taxonomies from text. In: Proceedings of The Workshop on Mining Complex
Patterns at AI*IA XIIth Conference (2011)

9. Klein, D., Manning, C.D.: Fast exact inference with a factored model for natural
language parsing. In: Becker, S., Thrun, S., Obermayer, K. (eds.) Advances in
Neural Information Processing Systems, vol. 15. MIT Press, Cambridge (2003)

10. Leuzzi, F., Ferilli, S., Rotella, F.: ConNeKTion: a tool for handling conceptual
graphs automatically extracted from text. In: Catarci, T., Ferro, N., Poggi, A.
(eds.) IRCDL 2013. CCIS, vol. 385, pp. 93–104. Springer, Heidelberg (2014)

11. Leuzzi, F., Ferilli, S., Rotella, F.: Improving robustness and flexibility of con-
cept taxonomy learning from text. In: Appice, A., Ceci, M., Loglisci, C., Manco,
G., Masciari, E., Ras, Z.W. (eds.) NFMCP 2012. LNCS, vol. 7765, pp. 170–184.
Springer, Heidelberg (2013)

12. Li, J., Zheng, R., Chen, H.: From fingerprint to writeprint. Commun. ACM 49(4),
76–82 (2006)

13. Lowe, D., Matthews, R.: Shakespeare vs. fletcher: a stylometric analysis by radial
basis functions. Comput. Humanit. 29(6), 449–461 (1995)

14. Mccarthy, P.M., Lewis, G.A., Dufty, D.F., Mcnamara, D.S.: Analyzing writing
styles with coh-metrix. In: Sutcliffe, G., Goebel, R. (eds.) Proceedings of the Florida
Artificial Intelligence Research Society International Conference (FLAIRS), pp.
764–769. AAAI Press (2006)

15. Qiu, L., Kan, M.-Y., Chua, T.-S.: A public reference implementation of the RAP
anaphora resolution algorithm. In: Proceedings of the Fourth International Confer-
ence on Language Resources and Evaluation, LREC 2004, 26–28 May 2004, Lisbon,
Portugal, pp. 291–294. European Language Resources Association (2004)

16. Raghavan, S., Kovashka, A., Mooney, R.: Authorship attribution using probabilis-
tic context-free grammars. In: Proceedings of the ACL 2010 Conference Short
Papers, ACLShort ’10, pp. 38–42, Stroudsburg, PA, USA, Association for Compu-
tational Linguistics (2010)

17. Rotella, F., Ferilli, S., Leuzzi, F.: An approach to automated learning of conceptual
graphs from text. In: Ali, M., Bosse, T., Hindriks, K.V., Hoogendoorn, M., Jonker,
C.M., Treur, J. (eds.) IEA/AIE 2013. LNCS, vol. 7906, pp. 341–350. Springer,
Heidelberg (2013)

18. Rotella, F., Ferilli, S., Leuzzi, F.: A domain based approach to information retrieval
in digital libraries. In: Agosti, M., Esposito, F., Ferilli, S., Ferro, N. (eds.) IRCDL
2012. CCIS, vol. 354, pp. 129–140. Springer, Heidelberg (2013)

19. Seidman, S.: Authorship verification using the impostors method notebook for
pan at clef 2013. In: Forner, P., Navigli, R., Tufis, D. (eds.) CLEF 2013 Labs
and Workshops - Online Working Notes, Padua, Italy, September 2013. PROMISE
(2013)

20. Tweedie, F.J., Singh, S., Holmes, D.I.: Neural network applications in stylometry:
the federalist papers. Comput. Humanit. 30(1), 1–10 (1996)

21. van Halteren, H.:. Linguistic profiling for author recognition and verification. In:
Proceedings of the 42nd Annual Meeting on Association for Computational Lin-
guistics, ACL ’04, Stroudsburg, PA, USA. Association for Computational Linguis-
tics (2004)

228 F. Leuzzi et al.

22. Vilarino, D., Pinto, D., Gomez, H., Leo, S., Castillo, E.: Lexical-syntactic and
graph-based features for authorship verification - notebook for pan at clef 2013.
In: Forner, P., Navigli, R., Tufis, D. (eds.) CLEF 2013 Labs and Workshops -
Online Working Notes, Padua, Italy, September 2013. PROMISE (2013)

23. Zheng, R., Li, J., Chen, H., Huang, Z.: A framework for authorship identification
of online messages: writing-style features and classification techniques. J. Am. Soc.
Inf. Sci. Technol. 57(3), 378–393 (2006)

Machine Learning and Music Data

From Personalized to Hierarchically Structured
Classifiers for Retrieving Music by Mood

Amanda Cohen Mostafavi1(B), Zbigniew W. Raś1,2,
and Alicja A. Wieczorkowska3

1 Department of Computer Science, University of North Carolina,
Charlotte, NC 28223, USA

2 Institute of Computer Science, Warsaw University of Technology,
00-665 Warsaw, Poland

3 Polish-Japanese Institute of Information Technology, 02-008 Warsaw, Poland
acohen24@uncc.edu

Abstract. With the increased amount of music that is available to the
average user, either online or through their own collection, there is a
need to develop new ways to organize and retrieve music. We propose a
system by which we develop a set of personalized emotion classifiers, one
for each emotion in a set of 16 and a set unique to each user. We train a
set of emotion classifiers using feature data extracted from audio which
has been tagged with a set of emotions by volunteers. We then develop
SVM, kNN, Random Forest, and C4.5 tree based classifiers for each emo-
tion and determine the best classification algorithm. We then compare
our personalized emotion classifiers to a set of non-personalized classi-
fiers. Finally, we present a method for efficiently developing personalized
classifiers based on hierarchical clustering.

Keywords: Music information retrieval · Classification · Clustering

1 Introduction

With the average size of a person’s digital music collection expanding into the
hundreds and thousands, there is a need for creative and efficient ways to search
for and index songs. This problem shows up in several sub-areas of Music Infor-
mation Retrieval (MIR) such as genre classification, automatic artist identifica-
tion, and instrument detection. Here we focus on indexing music by emotion, as
in how the song makes the listener feel. This way the user could select songs that
make him/her happy, sad, excited, depressed, or angry depending on what mood
the listener is in (or wishes to be in). However, the way a song makes someone
feel, or the emotions he associates with the music, varies from person to person
for a variety of reasons ranging from personality and taste to upbringing and
the music the listener was exposed to growing up. This means that any sort of
effective emotion indexing system must be personal and/or adaptive to the user.
This is so far a mostly unexplored area of MIR research, as many researchers that

A. Appice et al. (Eds.): NFMCP 2013, LNAI 8399, pp. 231–245, 2014.
DOI: 10.1007/978-3-319-08407-7 15, c© Springer International Publishing Switzerland 2014

232 A.C. Mostafavi et al.

attempt to personalize their music emotion recognition systems do so from the
perspective of finding how likely the song is to be tagged with certain emotions
rather than finding a way to create a system that can be personalized.

We present a system through which we can build and train personalized user
classifiers, which are unique for individual users. We built these classifiers based
on user data accumulated through an online survey and music data collected
via a feature extraction toolkit called MIRToolbox [1]. We then use four classi-
fication algorithms to determine the best algorithm for this data: support vec-
tor machines (SVM), k-nearest neighbors (kNN), random forest, and C4.5 trees.
Based on the best algorithm, we build a broad non-personalized classifier to com-
pare the personalized classifiers to. Finally, we present a more efficient method
for building personalized classifiers with comparable accuracy and consistency.
This method uses agglomerative clustering to group users based on background
and mood states, then builds classifiers for each of these individual groups.

2 Related Work

There is some discussion as to the possible usefulness of creating a personalized
music recommender system. On the one hand, [2] demonstrated that emotion
in music is not so subjective that it cannot be modeled; on the other hand,
the results from researchers who attempt to build personalized music emotion
recommendation systems are very promising, suggesting personalization is at
least a way to improve emotion classification accuracy. Yang et al. in [3] was
one of the earliest to study the relationship between music emotion recognition
and personality. The authors looked at users demographic information, musical
experience, and user scores on the Big Five personality test to determine possi-
ble relationships and build their system. Classifiers were built based on support
vector regression, and test regressors trained on general data and personalized
data. The results were that the personalized regressors outperformed the general
regressors in terms of improving accuracy, first spotlighting the problem of try-
ing to create personalized recommendation systems for music and mood based
on general groups. However, there has been continued work on collaborative fil-
tering, as well as hybridizing personalized and group based preferences. Lu and
Tseng in [4] proposed a system that combined emotion-based, content-based, and
collaborative-based recommendation and achieved an overall accuracy of 90 %.
In [5], the authors first proposed the idea of using clustering to predict emotions
for a group of users. The results were good, but some improvement was needed.
The users were clustered into only two groups based on their answers to a set
of questions, and the prediction was based on MIDI files rather than real audio.
In this work, we propose creating personalized classifiers first (trained on real
audio data), clustering users, creating representative classifiers for each cluster,
and then allowing the classifiers to be altered based on user behavior.

Each of the possible classification algorithms has been used commonly in pre-
vious MIR research, with varying results. kNN had been evaluated previously in
[6,7] for genre classification. Mckay and Fujinaga achieved a 90 %–98 % classifi-
cation accuracy by combining kNN and Neural Network classifiers and applying

From Personalized to Hierarchically Structured Classifiers 233

them to MIDI files using a 2-level genre hierarchical system. On the other hand,
[7] only achieved a 61 % accuracy at the highest using real audio and k of 3. Ran-
dom Forest was used principally in [8] for instrument classification in noisy audio.
Sounds were created with one primary instrument and artificial noise of varying
levels added in incrementally. The authors found that the percentage error was
overall much lower than previous work done with SVM classifiers on the same
sounds up until the noise level in the audio reached 50 %. They also observed
that Random Forest could indicate the importance of certain attributes in the
classification based on the structure of the resulting trees and the attributes
used in the splitting. SVM classification is one of the more common algorithms
used in MIR for a variety of tasks, such as [9] for mood classification, [10] for
artist identification (compared with kNN and Gaussian Mixture Models), and
[11] for mood tracking. It has also been evaluated beside other classifiers in [7]
for genre identification. These evaluations have shown the SVM classifier to be
remarkably accurate, particularly in predicting mood. Regarding C4.5 decision
trees, the authors in [12] in a comparison of the J48 implementation of C4.5 to
Bayesian network, logical regression, and logically weighted learning classifica-
tion models for musical instrument classification found that J48 was almost uni-
versally the most accurate classifier (regardless of the features used to train the
classifier). The classification of musical instrument families (specifically string or
woodwind) using J48 ranged in accuracy from 90–92 %, and the classification of
actual instruments ranged from 60–75 % for woodwinds and 60–67 % for strings.

3 Data Composition and Collection

3.1 Music Data

Music data was collected from 100 audio clips 25–30 s in length culled from
one of the author’s personal music collection. These clips were split into 12–15
segments (depending on the length of the original clip) of roughly 0.8 seconds
in order to allow for changes in annotation as the clip progresses, resulting in
a total of 1440 clips. These clips originated from several film and video game
sound tracks in order to achieve a similar effect to the dataset composed in
[13] (namely a set composed of songs that are less known and more emotionally
evocative). As such the music was mainly instrumental with few if any intelligible
vocals. The MIRToolbox [1] collection was then used to extract musical features.
MIRToolbox is a set of functions developed for use in MATLAB which uses,
among others, MATLAB’s Signal Processing toolbox. It reads .wav files at a
sample rate of 44100 Hz. The following features were extracted using this toolbox.

– Rhythmic Features (fluctuation peak, fluctuation centroid, frame-based
tempo estimation, autocorrelation, attack time, attack slope): Rhythmic fea-
tures refer to the set of audio features that describe a song’s rhythm and
tempo, or how fast the song is, although features such as attack time and
attack slope are better indicators of the rhythmic style of the audio rather

234 A.C. Mostafavi et al.

than pure tempo estimation. Fluctuation based features are based on calcula-
tions to a fluctuation summary (calculated from the estimated spectrum with
a Bark-band redistribution), while the rest of the rhythmic features are based
on the calculation of an onset detection curve (which shows the rhythmic
pulses in the song in the form of amplitude peaks for each frame).

– Timbral Features (spectral centroid, spectral spread, coefficient of spectral
skewness, kurtosis, spectral flux, spectral flatness, irregularity, Mel-Frequency
Cepstral Coefficients (MFCC) features, zero crossings, brightness): Timbral
features describe a piece’s sound quality, or the sonic texture of a piece of
audio. The timbre of a song can change based on instrument composition as
well as play style. Most of these features are derived from analysis of the audio
spectrum, a decomposition of an audio signal. MFCC features are based on
analysis of audio frequencies (based on the Mel scale, which replicates how
the human ear processes sound). Brightness and zero crossings are calculated
based on the audio signal alone.

– Tonal Features (pitch, chromagram peak and centroid, key clarity, mode,
Harmonic Change Detection Function (HCDF)): Tonal features describe the
tonal aspects of a song such as key, dissonance, and pitch. They are based
primarily on a pitch chromagram, which shows the distribution of energy
across pitches based on the calculation of dominant frequencies in the audio.

3.2 User Data

We have created a questionnaire so that individuals can go through multiple
times and annotate different sets of music based on their moods on a given day.
68 users completed the questionnaire between 1 and 8 times, resulting in almost
400 unique user sessions.

Questionnaire Structure. The Questionnaire is split into 5 sections:

– Demographic Information (where the user is from, age, gender, ethnicity),
– General Interests (favorite books, movies, hobbies),
– Musical Tastes (what music the user generally likes, what he listens to in

various moods),
– Mood Information (a list of questions based on the Profile of Mood States),
– Music Annotation (where the user annotates a selection of musical pieces

based on mood).

The demographic information section is meant to compose a general picture
of the user (see Fig. 1). The questions included ask for ethnicity (based on the
NSF definitions), age, what level of education the user has achieved, what field
they work or study in, where the user was born, and where the user currently
lives. Also included is whether the user has ever lived in a country other than
where he/she was born or where he/she currently lives for more than three years.
This question is included because living in another country for that long would
expose the user to music from that country.

From Personalized to Hierarchically Structured Classifiers 235

Fig. 1. The demographic information section of the questionnaire

The general interests section gathers information on the user’s interests out-
side of music (see Fig. 2). It asks for the user’s favorite genre of books, movies,
and what kind of hobbies he/she enjoys. It also asks whether the user enjoyed
math in school, whether he/she has a pet or would want one, whether he/she
believes in an afterlife, and how he/she would handle an aged parent. These
questions are all meant to build a more general picture of the user.

The musical taste section is meant to get a better picture of how the user
relates to music (Fig. 3). It asks how many years of formal musical training the
user has had, his/her level of proficiency in reading/playing music if any, and
what genre of music the user listens to when they are happy, sad, angry, or calm.

The mood information section is a shortened version of the Profile of Mood
States [14]. The Profile of Mood States asks users to rate how strongly he/she
has been feeling a set of emotions over a period of time from the following list
of possible responses:

– Not at all; A little; Moderately; Quite a bit; Extremely.

The possible emotions asked about in the mood information session are:

– Tense; Shaky; Uneasy; Sad; Unworthy; Discouraged; Angry; Grouchy; Anno-
yed; Lively; Active; Energetic; Efficient.

236 A.C. Mostafavi et al.

Fig. 2. The general interests section of the questionnaire

Fig. 3. The musical taste/background information section of the questionnaire

A sample of these questions can be seen in Fig. 4. This is the section that
is filled out every time the user returns to annotate music, since their mood
would affect how they annotate music on a given day. These answers are later
converted into a mood vector for each session, which describes the user’s mood
state at the time of the session.

From Personalized to Hierarchically Structured Classifiers 237

Fig. 4. Part of the mood state information section of the questionnaire. This section
is filled out every time the user reenters the questionnaire (the user starts on this page
once he/she has filled out the rest of the questionnaire once)

Mood Vector Creation. For each session the user is asked to select an answer
describing how much he/she has been feeling a selection of emotions. Once this
is finished, his/her answers are then converted to a numerical mood vector as
follows: each answer is given a score based on the response, with 0 represent-
ing “Not at all”, 1 – “A little”, 2 – “moderately”, 3 – “Quite a bit”, and 4 –
“Extremely”. From here, sets of mood scores corresponding to different emotions
are added together into a set of scores:

TA = Tense + Shaky + Uneasy (1)

Where TA stands for Tension/Anxiety,

DD = Sad + Unworthy + Discouraged (2)

Where DD stands for Depression/Dejection,

AH = Angry + Grouchy + Annoyed (3)

Where AH stands for Anger/Hostility,

V A = Lively + Active + Energetic (4)

Where V A stands for Vigor/Activity,

FI = WornOut + Fatigued + Exhausted (5)

Where FI stands for Fatigue/Inertia,

CB = (Confused + Muddled) − Efficient (6)

Where CB stands for Confusion/Bewilderment.
These scores are recorded, along with a total score calculated as follows:

Total = (TA + DD + AH + FI + CB) − V A (7)

238 A.C. Mostafavi et al.

Fig. 5. The music emotion annotation section, also filled out every time the user goes
through the questionnaire. The user clicks on a speaker to hear a music clip, then
checks an emotion and supplies a rating 1–3

The mood vector is then defined for user u and session s as

m(u, s) = (TA(u, s), DD(u, s), AH(u, s), F I(u, s), CB(u, s), V A(u, s), T otal(u, s))

(8)

Finally, the music annotation section is where users go to annotate a selection
of clips. 40 clips are selected randomly from the set of 1440 clips mentioned in
Sect. 3.1. The user is then asked to check the checkbox for the emotion he/she
feels in the music, along with a rating from 1–3 signifying how strongly the
user feels that emotion (1 being very little, 3 being very strongly). The user
has a choice of 16 possible emotions to pick (to be specific, 12 emotions and 4
generalizations), based on a 2-D hierarchical emotional plane (see Fig. 6 for the
emotion plane and Fig. 5 for a view of the questionnaire annotation section).

When the user goes through the questionnaire any time after the first time,
he only has to fill out the mood profile and the annotations again. Each of
these separate sections (along with the rest of the corresponding information) is
treated as a separate user, so each individual session has classifiers trained for
each emotion, resulting in 16 emotion classifiers for each user session.

Emotion Model. This model was first presented in [5], and implements a
hierarchy on the 2-dimensional emotion model, while also implementing discrete
elements. The 12 possible emotions are derived from various areas of the 2-
dimensional arousal-valence plane (based on Thayer’s 2-dimensional model of
arousal and valence [15]). However, there are also generalizations for each area of

From Personalized to Hierarchically Structured Classifiers 239

Fig. 6. A diagram of the emotional model

the plane (excited-positive, excited-negative, calm-positive, and calm-negative)
that the users can select as well. This compensates for songs that might be
more ambiguous to the user; if a user generally knows that a song is high-energy
and positive feeling but the words excited, happy, or pleased do not adequately
describe it, they can select the generalization of energetic-positive.

3.3 Classifier Development

Personalized classifiers were trained and tested using the classification algorithms
listed previously (C4.5, SVM, Random Forest, kNN). The user annotation data
was first converted so that each annotation for each song was represented as a
vector of 16 numbers with each number representing the emotion labeling. The
numbers ranged from 0 to 3, with 0 representing an emotion that was not selected
by the user and the remaining numbers being the strength the user entered with
the annotation. These vectors for all the users were then linked with the feature
data extracted from the corresponding music clips. From this resulting table all
the annotations and music data linked with individual user IDs were separated
and used to train and test personalized classifiers for each emotion. This resulted
in each user having at most 16 personalized classifiers (depending on whether
the user used a given emotion during the course of annotating), where for each
classifier the class attribute was one of the 16 possible emotions. The classifiers
were evaluated via Weka [16] using 10-fold cross validation. For the C4.5 classifier
we used the J48 implementation in Weka and for kNN we used Weka’s IBk.
Analysis of the results indicates which classifier is most effective for personalized
classification and, therefore, the most effective cluster-driven classifier.

240 A.C. Mostafavi et al.

Table 1. Table of classifier accuracies and F-scores

Classifier Average accuracy (%) Average F-score Average Kappa

SVM 82.35 0.90 0.137658
IBk 85.7 0.87 0.153468
J48 86.62 0.89 0.076869
Random forest 84.25 0.90 0.133027

4 Results

The results are listed in Table 1. All four classifiers achieved a relatively high
average accuracy, above 80 %. SVM achieved the lowest accuracy, 82.35 %, while
J48 trees achieved the highest accuracy, 86.62 %. However, SVM as well as Ran-
dom Forest achieved the highest average F-score (a combined measure of pre-
cision and recall). IBk on the other hand had the lowest F-score of 0.92. SVM
was expected to have a higher accuracy as it works so well with music data,
but our previous success with J48 means the high accuracy and F-score are not
surprising.

The Kappa statistic reveals further insights into the effectiveness of each
classifier. This statistic measures the agreement between a true class and the
prediction, and the closer to 1 the statistic is the more agreement (1 represents
complete agreement). None of the classifiers reaches higher than 0.1, although
again IBk has the highest average Kappa (J48, again, the lowest). This suggests
that while J48 is overall very accurate it is more inconsistent in terms of this
particular set of data, while SVM is moderately accurate and very consistent.

As it proved to be the most accurate classifier, we have chosen J48 as the
algorithm to use to build the non-personalized classifiers for comparison. We
again built 16 emotion classifiers, this time using all the user annotations to
train and test rather than individual user annotations. The results compared to
the personalized J48 classifiers are shown in Table 2.

The average accuracy does not change too much between personalized and
non-personalized classifiers (only 0.7 % point). However, this was mainly due
to the fact that several of the emotions were not used to the same extent as
others when tagging (for example, the generalized emotions), and in that case
all the classifier did was predict ‘0’ (for emotions that were not selected). This
raised the accuracy for those classifiers, but it is not nearly as indicative as to
the quality of the classifier as the F-Score and Kappa, which showed a great

Table 2. Comparison of classifier accuracies and F-scores between personalized and
non-personalized classifiers

Classifier Average accuracy (%) Average F-score Average Kappa

Personalized J48 86.62 0.89 0.076869
Non-personalized J48 87.29 0.82 0.00015

From Personalized to Hierarchically Structured Classifiers 241

Fig. 7. A visual of the proposed classifier hierarchy

deal of improvement in the personalized classifier. The average F-score for the
non-personalized classifiers is 0.07 less than the average F-score for personalized
classifiers, and the average Kappa for the non-personalized classifiers is far less
than the personalized classifiers. These both signify a significant loss in classifier
consistency once the classifiers are no longer personalized.

5 Hierarchical Cluster Driven Classifiers

We have also developed a more efficient method of developing personalized clas-
sifiers. Using agglomerative clustering, we have developed hierarchical cluster-
based classifiers (see Fig. 7). These clusters are built based on the user data
gathered through the questionnaire (as described in Sect. 3.2).

We can now build a tree structure of classifiers where the leaf nodes of the tree
are labeled by vectors representing individual users and the root of any subtree
is labeled by a smallest generalization vector covering vector labels associated
with all leaves of that subtree. Each node of the tree has its own set of 16
emotion classifiers, one for each possible emotion, based on the annotation data
from the group of users assigned to that node. The lower the node on the tree,
the more specialized its classifiers are. Now, if there is a need, we can assign a
new user to a correct node of the tree structure which is the lowest one labeled
by generalization vector containing the vector label of that user. Then, we can
apply the classifiers associated with that node to annotate the music.

242 A.C. Mostafavi et al.

5.1 Data Storage

Each user’s questionnaire answers are converted into three sets of data: a vector
D (with an appropriate subscript) resulting from the questions the user answered
in the first part of the questionnaire, the set of mood vectors M (with an appro-
priate subscript) built for each user’s session based on the profile of mood states
questions, and a set of classifiers C (with appropriate subscripts) extracted from
decision tables associated with each mood vector.

5.2 User Generalization

Let us assume that we have a group of users where each one is represented by
vector Da, where a is a user identifier and Da shows the answers from the first
part of the questionnaire. We run an agglomerative clustering algorithm on this
set of vectors and a tree T representing the outcome of the algorithm is created.
For each node of T , we first create the smallest generalized description DC of all
the users C assigned to that node.

For example, assume that we have a cluster C with two users a and b. Vector
DC is created as the smallest generalization of vectors Da and Db such that both
of them are included in DC . The coordinate i of DC is built from coordinates i
of Da and Db as:

DCi = {k : min(Dai,Dbi) ≤ k ≤ max(Dai,Dbi)} (9)

The mood vectors and decision tables assigned to the nodes of T which are
not leaves are generalized on a more conditional basis, using the distance between
mood vectors. For example, let us assume that users a1, a2 end up in the same
cluster C and their sessions are represented by mood vectors m[a1,8], m[a2,5],
m[a1,2]. If the distance between any of these vectors is less than λ (a given
threshold), then they are added together by following the same strategy we used
for vectors D representing the first part of the questionnaire. It should be noted
that mood vectors representing sessions of different users can be added together,
whereas vectors representing the same user may remain separated. When the
new mood vectors for a node of T are built, then the new decision table for each
of these new mood vectors is built by taking the union of all decision tables
associated with mood vectors covered by this new mood vector (Fig. 8).

5.3 New User Placement

When a new user, x, fills out the first part of the questionnaire his/her repre-
sentative vector Dx is created. Then it is checked to see if this vector is equal to
one of the representative vectors representing leaves of the tree structure. If this
is not the case, then the representative sets of vectors belonging to the parents
of these leaves are checked to see if one of them contains Dx. This is accom-
plished by comparing the individual column values of each column, Dxi, to each
column range DCi. If every Dxi fits in the range of each DCi, then the user is

From Personalized to Hierarchically Structured Classifiers 243

Fig. 8. A visualization of the data stored for each cluster

assigned to that cluster. If Dx does not fit within any node on a given level, then
it is compared to the parent of the node that Dx most closely matches (based
on the number of column ranges in DC that Dx does fit in). For example, if
on the bottom level Dx cannot be assigned to any cluster, but all i in Dxi fit
in the ranges for DCi except for one, this would make it the closest matched
cluster, and then Dx would be compared to the parent of DC . The goal is to
assign the user to the cluster on the lowest level it can fit in order to utilize the
most specialized classifiers built (since lower level classifiers are built on data
from a more homogenized group of users, and therefore a more unified group of
annotations). These classifiers will therefore be more accurate to the new user,
solving the “cold-start” issue inherent in collaborative recommender systems.

5.4 Test Case: New User

To demonstrate the effectiveness of this system, we analyze one new user using
this system for the first time. This user has filled out the same questionnaire
questions, however they only have one mood vector which (along with their
other questionnaire answers) is used to assign this user to a cluster. This user
also annotated a different set of songs, which had the same feature data extracted
from them as the initial training set.

Once this user is assigned to a node in our tree structure, they are given
the set of emotion classifiers made for the cluster in that part of the tree. The
user’s new annotations were then used to evaluate the classifiers’ effectiveness.
The resulting statistics are shown in Table 3.

244 A.C. Mostafavi et al.

Table 3. Statistics for the classifiers built for a new user

Emotion Accuracy Average precision Average recall Average F-score

Pleased 87.5 0.875 0.875 0.87
Happy 50 0.493 0.500 0.493
Excited 70.8333 0.675 0.708 0.691
Sad 100 1.000 1.000 1.000
Bored 91.6667 0.917 0.917 0.917
Depressed 95.8333 0.918 0.958 0.938
Nervous 79.1667 0.756 0.792 0.773
Annoyed 91.6667 0.917 0.917 0.917
Angry 100 1.000 1.000 1.000
Calm 83.3333 0.761 0.833 0.795
Relaxed 75 0.714 0.750 0.729
Peaceful 62.5 0.594 0.625 0.609
Energetic-positive 87.5 0.911 0.875 0.892
Energetic-negative 87.5 0.875 0.875 0.875
Calm-positive 54.1667 0.574 0.542 0.557
Calm-negative 87.5 0.915 0.875 0.894

The accuracy and F-scores can stay relatively high for each classifier, although
it is not consistent. This could be explained by the user not annotating songs
with certain emotions, which would make the accuracies very difficult to judge.
This could indicate also that certain emotions are easier to classify for songs than
others. Observe that the lower accuracies (aside from Happy) are for emotion
classifiers from the calm-positive quadrant of the arousal-valence plane (Calm,
Relaxed, Peaceful), and Calm-Positive is the least accurate quadrant classifier
(Energetic-Positive, Energetic-Negative, Calm-Positive, Calm-Negative). This
could imply that emotions with a high valence and low arousal are particularly
difficult to detect in music, but this would require further investigation.

6 Conclusion

We have presented a system through which we build personalized music emo-
tion classifiers based on user data accumulated through an online survey. Using
this data, we have built classifiers that are about as accurate as standard, non-
personalized ones but far more consistent. In a real world situation, this would
mean that music that accurately reflects the user’s mood (or desired mood)
would be recommended far more often than not. Future work would involve using
these classifiers in a full music player, and improving classifiers by retraining
them through usage and by ensuring the clusters are disjoint, using Michalski’s
STAR method applied in AQ15 to build disjoint D-vector representations [17].

Acknowledgments. This project was partially supported by the Research Center of
PJIIT, supported by the Polish Ministry of Science and Higher Education.

From Personalized to Hierarchically Structured Classifiers 245

References

1. Lartillot, O., Toiviainen, P., Eerola, T.: MIRtoolbox. University of Jyväskylä (2008)
2. Laurier, C., Herrera, P.: Automatic detection of emotion in music: interaction with

emotionally sensitive machines. In: Vallverdu, D., Casacuberta, D. (eds.) Handbook
of Research on Synthetic Emotions and Sociable Robotics: New Applications in
Affective Computing and Artificial Intelligence, pp. 9–32. IGI Global, Hershey
(2009)

3. Yang, Y.H., Su, Y.F., Lin, Y.C., Chen, H.H.: Music emotion recognition: the role
of individuality. In: Proceedings of International Workshop on Human-Centered
Multimedia 2007 (HCM’07), Augsburg, Germany, September 2007. ACM (2007)

4. Lu, C.C., Tseng, V.S.: A novel method for personalized music recommendation.
Expert Syst. Appl. 36(6), 10035–10044 (2009)

5. Grekow, J., Raś, Z.W.: Detecting emotions in classical music from MIDI files. In:
Rauch, J., Raś, Z.W., Berka, P., Elomaa, T. (eds.) ISMIS 2009. LNCS, vol. 5722,
pp. 261–270. Springer, Heidelberg (2009)

6. Mckay, C., Fujinaga, I.: Automatic genre classification using large high-level musi-
cal feature sets. In: ISMIR 2004, pp. 525–530 (2004)

7. Silla Jr, C.N., Koerich, A.L., Kaestner, C.A.A.: A machine learning approach to
automatic music genre classification. J. Braz. Comp. Soc. 14(3), 7–18 (2008)

8. Kursa, M., Rudnicki, W., Wieczorkowska, A., Kubera, E., Kubik-Komar, A.: Musi-
cal instruments in random forest. In: Rauch, J., Raś, Z.W., Berka, P., Elomaa, T.
(eds.) ISMIS 2009. LNCS, vol. 5722, pp. 281–290. Springer, Heidelberg (2009)

9. Laurier, C., Meyers, O., Marxer, R., Bogdanov, D., Serrà, J., Gómez, E., Herrera,
P., Wack, N.: Music classification using high-level models. In: ISMIR 2009 (2010)

10. Mandel, M.I., Ellis, D.P.W.: Song-level features and support vector machines for
music classification. In: Reiss, J.D., Wiggins, G.A. (eds.) ISMIR 2005, London,
U.K., vol. 6, pp. 594–599. (2005)

11. Panda, R., Paiva, R.P.: Using support vector machines for automatic mood tracking
in audio music. In: 130th Audio Engineering Society Convention (2011)

12. Zhang, X., Ras, Z.: Differentiated harmonic feature analysis on music information
retrieval for instrument recognition. In: IEEE GrC 2006, Atlanta, Georgia, pp.
578–581 (2006)

13. Eerola, T., Vuoskoski, J.K.: A comparison of the discrete and dimensional models
of emotion in music. Psychol. Music 39(1), 18–49 (2011)

14. McNair, D.M., Lorr, M., Droppleman, L.F.: Profile of Mood States (POMS) (1971)
15. Thayer, R.E.: The Biopsychology of Mood and Arousal. Oxford University Press,

New York (1989)
16. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The

WEKA data mining software. ACM SIGKDD Explor. Newslett. 11(1), 10 (2009)
17. Michalski, R., Mozetic, I., Hong, J., Lavarac, N.: The multi-purpose incremental

learning system AQ15 and its testing application to three medical domains. In:
AAAI-86 Proceedings, pp. 1041–1045. AAAI (1986)

Mining Audio Data for Multiple Instrument
Recognition in Classical Music

Elżbieta Kubera1(B) and Alicja A. Wieczorkowska2

1 University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
elzbieta.kubera@up.lublin.pl

2 Polish-Japanese Institute of Information Technology,
Koszykowa 86, 02-008 Warsaw, Poland

alicja@poljap.edu.pl

Abstract. This paper addresses the problem of identification of multiple
musical instruments in polyphonic recordings of classical music. A set of
binary random forests was used as a classifier, and each random forest
was trained to recognize the target class of sounds. Training data were
prepared in two versions, one based on single sounds and their mixes, and
the other containing also sound frames taken from classical music record-
ings. The experiments on identification of multiple instrument sounds in
recordings are presented, and their results are discussed in this paper.

Keywords: Music information retrieval · Sound recognition · Random
forests

1 Introduction

Music information retrieval (MIR) became a topic of broad interest for researchers
several years ago, see e.g. [29,32], and one of the most challenging tasks within
this area is to automatically extract meta-information from audio waveform [23].
Audio data stored as sound amplitude values changing over time represent very
complex data, where multiple sounds of a number of instruments are represented
by a single value (i.e. amplitude value of a complex sound) in each time instant
in the case of monophonic recordings, or by a single value in each recording chan-
nel. Extraction of information about timbre of particular sounds is difficult; still,
it has been addressed in audio research last years, with various accuracy [12]. On
the contrary, the identification of music titles through query-by-example, includ-
ing excerpts replayed on mobile devices, has been quite successfully solved [31,34],
as well as finding pieces of music through query-by-humming [25]. However, iden-
tification of instruments in audio excerpts is still a challenge, sometimes addressed
through multi-pitch tracking [11], often supported with external provision of pitch
data, or limited to the sound identification of a predominant instrument [3,8].

In this paper, we deal with the identification of multiple sounds of multiple
instruments in the recordings of classical music. No pitch tracking is required,
and the classification is performed on the data as is. There are no pre-assumptions

A. Appice et al. (Eds.): NFMCP 2013, LNAI 8399, pp. 246–260, 2014.
DOI: 10.1007/978-3-319-08407-7 16, c© Springer International Publishing Switzerland 2014

Mining Audio Data for Multiple Instrument Recognition in Classical Music 247

regarding the number of instruments playing together (i.e. the polyphony level),
and the recordings can contain any instrument sound, including instruments for
which our classifiers are not trained. This is because we use a set of binary clas-
sifiers, where each classifier is trained to identify a target sound class. If none of
the classifiers recognizes its target class, the analyzed audio sample represents
unknown instrument(s) or silence. Classification is performed for mono or stereo
input data, and a mix (average) of the channels is taken as input for stereo data.

1.1 Identification of Instruments in Audio Signal

Automatic identification of musical instruments has been performed so far by
many researchers, and usually on different sets of instruments, number of classes,
sound parametrization and the resulting feature vector, number of sounds used,
and classifiers used in the research. Identification of a single instrument in a
single isolated sound is the easiest case, and virtually all available classification
tools have been applied for this purpose, including k-nearest neighbors, neural
networks, support vector machines (SVM), rough set based classifiers, decision
trees etc. Quality of the recognition depends heavily on the number of sounds
and instruments/classes applied; it can even reach 100 % for a few classes, or be
as low as 40 % if there are 30 or more classes; for detailed review see [12].

Identification of musical instruments in polyphonic recordings is much more
challenging, since sounds blend with each other, and overlap in time and fre-
quency domains. Still, it is indispensable in order to progress in the endeavor to
achieve the ultimate goal: automatic music transcription, which requires extrac-
tion of all notes from the audio material and assigning them into particular
instruments in the score [2,26]. The presented overview of research in this domain
shows approaches taken and results obtained. Since the research is performed
on various sets of data, it is not feasible to compare all results directly, or to
compare our results with those obtained by other researchers, but it sketches a
general outlook of the state of the art in this area.

In the research performed so far, the recognition of instruments in polyphonic
environment has been addressed in various ways. Usually initial assumptions are
made: on the number of instruments in the polyphony, on pitch data as input,
on the instrument set in the analyzed recordings, or on identifying predominant
sound, see e.g. [8,11]. Since the final goal of such research is score extraction, such
assumptions are understandable, and in some cases the research addresses sound
separation into single sounds. These external data are often manually provided,
not extracted from audio recordings. Training and testing is often performed on
artificial mixes of single sounds. Training sets often include single sounds, but
the recognition improves when mixes are added to the training set [22]. Training
and testing on real recordings is also performed, but it requires tedious labeling
to get ground truth data. This is why mixes are commonly applied in such a
research.

The polyphony in the research performed so far varies, and in the simplest
case is limited to two sounds being played together, i.e. to duets [6,14,21,35].
Since overlapping partials in audio spectrum hamper sound identification, these

248 E. Kubera and A.A. Wieczorkowska

partials are sometimes omitted in the recognition process. For instance, in [6]
missing feature approach was applied, where the timefrequency regions that are
dominated by interfering sounds are considered missing or unreliable. These com-
ponents are marked in a binary mask, and then excluded from the classification
process. Gaussian Mixture Models yielded about 60 % accuracy for duets from 5-
instrument set when using this approach. In [35], a different approach was taken.
Note spectra are represented as sums of instrument-dependent log-power spec-
tra, and chord spectra are represented as sums of note power spectra. Hidden
Markov Models have been applied to model note duration. Training performed
on solo excerpts allows learning sound of time-varying power, vibrato, and so on.
In [5], the approach applied was inspired by non-negative matrix factorization,
with an explicit sparsity control. The experiments were performed on violin and
piano, with tests on mixes, which is often the case in such research, as this way
ground truth data are easily obtained.

Direct spectrum/template matching is sometimes performed in instrument
sound identification, without feature extraction [14,15]. In [14], this approach
was applied to 2-instrumental mixes for 26-instrument set. In [15], an adaptive
method for template matching was used for 3 instruments (flute, violin and
piano), with polyphony up to 3 sounds played together. When musical context
was integrated into their system, the recognition rate reached 88 %.

A variety of classification methods has been applied to the instrument identi-
fication task in polyphonic recordings. SVM, decision trees, and k-nearest neigh-
bor classifiers were used in [22]. This research aimed at recognizing the dominant
instrument. The outcomes vary with the level of target obfuscation, and obtained
correctness was around 50–80 %. In [17], linear discriminant analysis (LDA) was
used. Their approach consists in finding partials which were least influenced
by overlapping, and when musical context was also taken into account, they
obtained 84.1 % recognition rate for duets, 77.6 % for trios, and 72.3 % for quar-
tets. Linear discrimination was also applied in [1]. Their strategy consists in
exploring the spectral disjointness among instruments by identifying isolated
partials. For each such a partial, a pairwise comparison approach (for each pair
of instruments) was taken to determine which instrument most likely has gen-
erated that partial; unisons were excluded from the research because of fully
overlapping partials. For 25 instruments (and therefore 300 pairs) a high recall
of 86–100 % was obtained, with 60 % average precision. In [7], SVMs were applied
in a hierarchical classification scheme, extracted through hierarchical clustering.
The obtained taxonomy of musical ensembles (for jazz in their case) yielded the
average accuracy of 53 %, for the polyphony up to four instruments. Clustering
was also applied in [24] for polyphony up to 4 notes for 6 instruments. Their
approach is based on spectral clustering, and their goal is to achieve sound
separation. Spectral basis decomposition is performed in their research using
Principal Component Analysis (PCA). This approach yielded 46 % recall when
evaluated on 4-note mixtures, with a precision of 56 %.

The task of instrument identification is often combined with sound source
separation, as it is necessary anyway for the automatic music transcription, see

Mining Audio Data for Multiple Instrument Recognition in Classical Music 249

e.g. [11]. Sound separation of instruments can be addressed using statistical
tools when the number of channels is at least equal to the number of instru-
ments, but this usually is not the case (e.g. CD recordings are in stereo format).
In [16], semi-automatic music transcription is addressed through shift-variant
non-negative matrix deconvolution (svNMD) based on constant-Q spectrogram
using multiple spectral templates per instrument and pitch. K-means clustering
was applied for learning, and best accuracy was obtained when each pitch was
represented by more than one spectral template. Mixtures of 2 to 5 instruments
were investigated; the more instruments, the lower the accuracy, below 40 % in
real case scenario for 5 instruments.

In our research, we would like to perform instrument recognition (without
sound separation) with no pre-assumptions, and also without initial data seg-
mentation. We have already performed similar research, for jazz recordings [18],
but it required tedious segmentation and labeling of small frames of the record-
ings in order to obtain ground-truth data. In order to facilitate research, we
decided to perform annotation for 0.5-s excerpts; MIDI files and scores were
used as guidance. Classification was performed using a set of random forests,
since such a classifier proved quite successful in our previous research [18], and
it is resistant to overtraining; also, the accuracy of random forests outperformed
SVM classifier (considered state of the art and comparing well with the others)
by an order of magnitude when compared on the same data [20].

2 Random Forests

A random forest (RF) is a classifier based on a tree ensemble; such classifiers
are gaining increasing popularity last years [30]. RF is constructed using pro-
cedure minimizing bias and correlations between individual trees. Each tree is
built using a different N -element bootstrap sample of the N -element training
set. Since the elements of the N -element sample in bootstrapping are obtained
through drawing with replacement from the original N -element set, roughly 1/3
of the training data are not used in the bootstrap sample for any given tree.
Assuming that objects are described by a vector of K attributes (features), k
attributes out of all K attributes are randomly selected (k ≈ K, often k =

∗
K)

at each stage of tree building, i.e. for each node of any particular tree in RF.
The best split on these k attributes is used to split the data in the node.

The best split of the data in the node is determined as minimizing the Gini
impurity criterion, which is the measure of how often an element would be incor-
rectly labeled if labeled randomly, according to the distribution of labels in the
subset. Each tree is grown to the largest extent possible, without pruning. By
repeating this randomized procedure M times a collection of M trees is obtained,
constituting a random forest. Classification of each object is made by simple vot-
ing of all trees [4].

The classifier used in our research consists of a set of binary random forests.
Each RF is trained to identify the target sound class, representing an instrument,
whether this particular timbre is present in the sound frame under investigation,

250 E. Kubera and A.A. Wieczorkowska

or not. If the percentage of votes of the trees in the RF is 50 % or more, then the
answer of the classifier is considered to be positive, otherwise it is considered to
be negative.

3 Audio Data

Our experiments focused on musical instrument sounds of chordophones (stringed
instruments) and aerophones (wind instruments), typical for classical music.
These instruments produce sounds of definite pitch, but information about pitch
was not used nor retrieved in our research. This way we avoid provision of exter-
nal data on pitch or calculating pitch in polyphonic data, as this can introduce
additional errors.

In our experiments, we chose wind and stringed instruments, played in vari-
ous ways, i.e. with various articulation, including bowing vibrato and pizzicato.
Percussive instruments, i.e. idiophones and membranophones (basically drums)
were excluded from the described research. If none of the classifiers gives positive
answer, then we can conclude that an unknown instrument or instruments are
playing in the investigated sound frame, or it represents silence.

The following sound classes were investigated in the reported research:

– flute (fl),
– oboe (ob),
– bassoon (bn),
– clarinet (cl),
– French horn (fh),
– violin (vn),
– viola (va),
– cello (ce),
– double bass (db), and
– piano (pn).

All sounds were recorded at 44.1 kHz sampling rate with 16-bit resolution,
or converted to this format. If the RMS level for a sound segment (frame) was
below 300, this segment is treated as silence; silence segments are used as negative
training examples in our experiments. The silence threshold was empirically set
in our previous experiments.

3.1 Training Data

Training of the classifiers was performed in two versions, in both cases for the
ten instruments mentioned above, on 40-ms sound frames, as this is the length
of the analyzing frame applied in the parameterization procedure. The training
frames were taken from the audio data with no overlap between the frames used,
to have as diversified data as possible.

The first training (T1) was based on single sounds of musical instruments,
taken from RWC [10], MUMS [28], and IOWA [33] sets of single sounds of musical

Mining Audio Data for Multiple Instrument Recognition in Classical Music 251

Table 1. Number of pieces in RWC Classical Music Database with the selected
instruments playing together

Instrument clarinet cello dbass flute Fhorn piano bassoon viola violin oboe

clarinet 0 8 7 5 6 1 6 8 8 5
cello 8 0 13 9 9 4 8 17 19 8
dbass 7 13 0 9 9 2 8 13 13 8
flute 5 9 9 1 7 1 7 9 9 6
Fhorn 6 9 9 7 3 2 8 9 10 8
piano 1 4 2 1 2 5 1 2 5 0
bassoon 6 8 8 7 8 1 0 8 8 7
viola 8 17 13 9 9 2 8 0 17 8
violin 8 19 13 9 10 5 8 17 17 8
oboe 5 8 8 6 8 0 7 8 8 2

instruments, and also mixes of up to three instrument sounds were added to this
training set. In this training, two sets of data were created, of the size of 20,000
and 40,000 frames, to observe whether increasing the training data set influences
the obtained results. The training set for T1 consisted of 5,000 (or 10,000) frames
of single sounds constituting positive examples for a target instrument, 5,000 (or
10,000) frames of single sounds constituting negative examples, 5,000 (or 10,000)
mixes constituting positive examples, and 5,000 (or 10,000) mixes constituting
negative examples. In positive examples, a target instruments is playing, and in
negative examples is not.

Mixes constitute a single chord or unison, and a set of instruments is always
typical for classical music. Up to 3 instrument sounds are taken for this mix, and
the probability of instruments playing together in the mix reflects the probability
of these instruments playing together in the RWC Classical Music Database.
Table 1 shows how often the instruments investigated play together in the RWC
Classical set.

The second training (T2) consisted of single sounds and mixes from RWC,
MUMS, and IOWA sets, and also sounds taken from recordings, with no initial
segmentation to separate single sounds; these were both solo and polyphonic
recordings. The recordings were taken from RWC Classical Music Database [9],
CDs and .mp3 files converted to .au format. The recordings used include:

– pieces from RWC Classical Music Database: No. 03 – 10, 12, 13, 17, 19, 21,
26 – 28, 36, 41 – 43.

– additional pieces with mainly solo (and also polyphonic) recordings: N. Rimsky-
Korsakov - Scheherezade II. The Kalendar Prince; D. Shostakovich - Symphony
no. 9 op. 70, Largo; J. Hummel - Concerto for Bassoon and Orchestra in F-
major, Allegro Moderato; J.S. Bach - Suite for cello no. 2, Prelude; J.S. Bach
- Partita in A-minor for solo flute, Sarabande; J.S. Bach - Suite BWV 1011; L.
Berio - Psy for double bass; J. Sperger - Jagdmusik (Hornduette), Adagio (Mor-
gensegen), Allegro Moderato, Menuetto, Allegro; Mozart concerto for Flute in

252 E. Kubera and A.A. Wieczorkowska

G-major (KV 313), for Oboe in C-major (KV 314), for Bassoon in B-flat Major
(KV 191), String Quartet no. 19 in C-major (KV 465) - Movement 1;

– .mp3 files: viola Suite No. 1 in G-major BWV 1007, J.S. Bach, for cello solo
transcribed for viola (Prelude and Allemande, [19]); Suite no 1 in G-major,
BWV 1007, J.S. Bach, for cello transcribed for double bass; Clarinet Concerto
in A-major, KV622, W.A. Mozart - Allegro and Adagio; Horn Concerto in
E-flat Major, KV 495, W.A. Mozart - Allegro moderato; Concerto for Flute,
Oboe, Bassoon, Strings and continuo in F-Major (Tempesta di mare), RV570,
A. Vivaldi; Trio For Piano, Clarinet and Viola in E-flat Major (Kegelstatt),
KV498 W.A. Mozart - Menuetto; Duett-Concertino for Clarinet, Bassoon, and
Strings, R. Strauss - Allegro Moderato; Serenade No. 10 for 12 Winds and
Contrabass in B-flat Major (Gran partita), KV 361, W.A. Mozart - Adagio;
Trio for piano, violin, cello No. 1 op. 49, F. Mendelssohn - Movement 1.

When solo and polyphonic segments are taken as training data, such a train-
ing set represents more realistic sounds, which can be encountered in all classical
music recordings, including their compressed file version. This training was also
performed for 20,000 and 40,000 frames data sets. The training sets consisted of
2,500 (or 5,000) single sounds, mixes, solos and polyphonic recordings as both
positive and negative examples.

3.2 Testing Data

Testing was performed on RWC Classical Music Database recordings [9], and for
presentation purposes the first minute of each investigated piece was used. The
following pieces were used:

– No. 1, F.J. Haydn, Symphony no.94 in G major, Hob.I-94 ‘The Surprise’.
1st mvmt., with the following instruments playing in the first minute of the
recording: flute, oboe, bassoon, French horn, violin, viola, cello, double bass;

– No. 2, W.A. Mozart, Symphony no.40 in G minor, K.550. 1st mvmt.; instru-
ments playing in the first minute: flute, oboe, bassoon, French horn, violin,
viola, cello, double bass;

– No. 16, W.A. Mozart, Clarinet Quintet in A major, K.581. 1st mvmt.; instru-
ments playing in the first minute: clarinet, violin, viola, cello;

– No. 18, J. Brahms, Horn Trio in Eb major, op.40. 2nd mvmt.; instruments
playing in the first minute: piano, French horn, violin;

– No. 44, N. Rimsky-Korsakov, The Flight of the Bumble Bee; flute and piano.

These pieces represent various polyphony and pose diverse difficulties for the
classifier, including short sounds, and multiple instruments playing at the same
time. No training data were used in our tests. Testing was performed on 40-ms
frames (with 10-ms hop size, i.e. with overlap, to marginalize errors on note
edges), but labeling the ground truth data for such a frame is a tedious and
difficult task, so labeling was done on 0.5 s segments. For each instrument, the
outputs of the classifier over all frames within the 0.5-s segment were averaged,
and if the result exceeded the 50 % threshold, the output of our binary RF

Mining Audio Data for Multiple Instrument Recognition in Classical Music 253

classifier was considered to be “yes”, meaning that the target instrument is
playing in this 0.5-s segment. This way we also adjust the granularity of the
instrument identification to sound segments of more perceivable length.

4 Feature Set

Audio data are usually parameterized before classification is applied, since raw
data representing amplitude changes vs. time undergo dramatic changes in a
fraction of second, and the amount of the data is overwhelming. The identifica-
tion of musical instruments in audio data depends on the sound parametrization
applied, and there is no one feature set used worldwide; each research group
utilizes a different feature set. Still, some features are commonly used, and our
feature set is also based on these features. We decided to utilize a feature set
which proved successful in our previous, similar research [18]. Our parametriza-
tion is performed for 40-ms frames of audio data. No data segmentation or pitch
extraction are needed, thus multi-pitch extraction is avoided, and no labeling
particular sounds in polyphonic recording with the appropriate pitches is needed.
The feature vector consists of basic features, describing properties of an audio
frame of 40 ms, and additionally difference features, calculated as the difference
between the feature calculated for a 30 ms sub-frame starting from the begin-
ning of the frame, and a 30 ms sub-frame starting with 10 ms offset. Fourier
transform was used to calculate spectral features, with Hamming window. Most
of the features applied represent MPEG-7 low-level audio descriptors, often used
in audio research [13]. Identification of instruments is performed frame by frame,
for consequent frames, with 10 ms hop size. Final classification result is calcu-
lated as an average of classifier output over 0.5-s segment of the recording, in
order to avoid tedious labeling of ground-truth data over shorter frames.

The feature vector we applied consists of the following 91 parameters [18]:

– Audio Spectrum Flatness, flat1, . . . , f lat25 — a multidimensional parameter
describing the flatness property of the power spectrum within a frequency bin
for selected bins; 25 out of 32 frequency bands were used;

– Audio Spectrum Centroid — the power weighted average of the frequency bins
in the power spectrum; coefficients are scaled to an octave scale anchored at
1 kHz [13];

– Audio Spectrum Spread — RMS (root mean square) value of the deviation of
the log frequency power spectrum wrt. Audio Spectrum Centroid [13];

– Energy — energy (in log scale) of the spectrum of the parametrized sound;
– MFCC — a vector of 13 mel frequency cepstral coefficients. The cepstrum

was calculated as the logarithm of the magnitude of the spectral coefficients,
and then transformed to the mel scale, to better reflect properties of the
human perception of frequency. 24 mel filters were applied, and the obtained
results were transformed to 12 coefficients. The 13th coefficient is the 0-order
coefficient of MFCC, corresponding to the logarithm of the energy [27];

– Zero Crossing Rate; a zero-crossing is a point where the sign of the time-
domain representation of the sound wave changes;

254 E. Kubera and A.A. Wieczorkowska

– Roll Off — the frequency below which an experimentally chosen percentage
equal to 85 % of the accumulated magnitudes of the spectrum is concentrated;
parameter originating from speech recognition, where it is applied to distin-
guish between voiced and unvoiced speech;

– NonMPEG7 - Audio Spectrum Centroid — a linear scale version of Audio
Spectrum Centroid ;

– NonMPEG7 - Audio Spectrum Spread — a linear scale version of Audio Spec-
trum Spread ;

– changes (measured as differences) of the above features for a 30 ms sub-frame
of the given 40 ms frame (starting from the beginning of this frame) and the
next 30 ms sub-frame (starting with 10 ms shift), calculated for all the features
shown above;

– Flux — the sum of squared differences between the magnitudes of the DFT
points calculated for the starting and ending 30 ms sub-frames within the
main 40 ms frame; this feature by definition describes changes of magnitude
spectrum, thus it is not calculated in a static version.

Audio data were in mono or stereo format; mixes of the left and right channel
(i.e. the average value of samples in both channels) were taken if the audio signal
was in stereo format.

5 Experiments and Results

The experiments aimed at investigating how many instruments can be identi-
fied correctly in real polyphonic recordings, and whether adding real recordings
representing solos and polyphonic recordings of the same style of music, i.e. clas-
sical music (rather than isolated single sounds and their mixes), can improve the
performance of the classifier. The main problem with such classification is the
recall, which is usually quite low, i.e. instruments in recordings are missed by
classifiers. Another problem is how to assess the results, since many instruments
can be playing in the same segment. As mentioned before, the classification was
performed using RFs, since they proved quite successful in our previous research
[18], and outperformed SVM (considered state of the art and comparing well
with the others). Since we deal with binary classifiers, possible errors include
false negatives (missed target instrument) and false positives (false indication of
the target instrument, not playing in a given segment). The details of classifica-
tion results for both training versions, T1 and T2 are shown in Tables 2 and 3
for 20,000 frames training, and in Tables 4 and 5 for 40,000 frames training. Pre-
cision, recall, f-measure and accuracy were calculated as follows, on the basis of
true positives (TP), true negatives (TN), false positives (FP) and false negatives
(FN):

– precision pr was calculated as pr = TP/(TP + FP),
– recall rec was calculated as rec = TP/(TP + FN),
– f-measure fmeas was calculated as fmeas = 2 · pr · rec/(pr + rec),
– accuracy acc was calculated as acc = (TP + TN)/(TP + TN + FP + FN).

Mining Audio Data for Multiple Instrument Recognition in Classical Music 255

Table 2. Results of the recognition of musical instruments in the selected RWC Classi-
cal recordings, for training on single sounds and mixes (T1), for 20,000 training frames

Result bn ob cl fl fh pn ce va vn db Average

TP 38 31 10 88 19 96 178 110 250 107
FP 64 9 9 2 94 100 162 77 04 083
FN 78 70 32 78 143 70 43 122 124 45
TN 420 490 549 432 344 334 217 291 222 365

Precision 37 % 78 % 53 % 98 % 17 % 49 % 52 % 59 % 98 % 56 % 60 %
Recall 33 % 31 % 24 % 53 % 12 % 58 % 81 % 47 % 67 % 70 % 48 %
F-measure 35 % 44 % 33 % 69 % 14 % 53 % 63 % 53 % 80 % 63 % 51 %
Accuracy 76 % 87 % 93 % 87 % 61 % 72 % 66 % 67 % 79 % 79 % 77 %

Table 3. Results of the recognition of musical instruments in the selected RWC Clas-
sical recordings, for training on single sounds and mixes, and also sounds from real
recordings, representing solos and polyphonic segments (T2), for 20,000 training frames

Result bn ob cl fl fh pn ce va vn db Average

TP 61 34 23 108 40 146 186 188 292 151
FP 98 31 282 49 140 187 95 140 9 173
FN 55 67 19 58 122 20 35 44 82 1
TN 386 468 276 385 298 247 284 228 217 275

Precision 38 % 52 % 8 % 69 % 22 % 44 % 66 % 57 % 97 % 47 % 50 %
Recall 53 % 34 % 55 % 65 % 25 % 88 % 84 % 81 % 78 % 99 % 66 %
F-measure 44 % 41 % 13 % 67 % 23 % 59 % 74 % 67 % 87 % 63 % 54 %
Accuracy 75 % 84 % 50 % 82 % 56 % 66 % 78 % 69 % 85 % 71 % 72 %

Table 4. Results of the recognition of musical instruments in the selected RWC Classi-
cal recordings, for training on single sounds and mixes (T1), for 40,000 training frames

Result bn ob cl fl fh pn ce va vn db Average

TP 30 30 11 82 17 104 184 93 261 103
FP 53 6 6 1 82 93 143 60 2 78
FN 86 71 31 84 145 62 37 139 113 49
TN 431 493 552 433 356 341 236 308 224 370

Precision 36 % 83 % 65 % 99 % 17 % 53 % 56 % 61 % 99 % 57 % 63 %
Recall 26 % 30 % 26 % 49 % 10 % 63 % 83 % 40 % 70 % 68 % 47 %
F-measure 30 % 44 % 37 % 66 % 13 % 57 % 67 % 48 % 82 % 62 % 51 %
Accuracy 77 % 87 % 94 % 86 % 62 % 74 % 70 % 67 % 81 % 79 % 78 %

If the denominator in the formula for calculating precision or recall is equal
to zero, then these measures are undefined.

As we can see, the classifier built for the training on single sounds and mixes
(T1) gives quite low recall, but using real unsegmented recordings for training
(T2) improves the recall significantly, no matter the size of the training set. Also,

256 E. Kubera and A.A. Wieczorkowska

Table 5. Results of the recognition of musical instruments in the selected RWC Clas-
sical recordings, for training on single sounds and mixes, and also sounds from real
recordings, representing solos and polyphonic segments (T2), for 40,000 training frames

Result bn ob cl fl fh pn ce va vn db Average

TP 65 32 20 115 39 144 191 190 294 151
FP 87 28 260 39 144 164 99 136 7 168
FN 51 69 22 51 123 22 30 42 80 1
TN 397 471 298 395 294 270 280 232 219 280

Precision 43 % 53 % 7 % 75 % 21 % 47 % 66 % 58 % 98 % 47 % 52 %
Recall 56 % 32 % 48 % 69 % 24 % 87 % 86 % 82 % 79 % 99 % 66 %
F-measure 49 % 40 % 12 % 72 % 23 % 61 % 75 % 68 % 87 % 64 % 55 %
Accuracy 77 % 84 % 53 % 85 % 56 % 69 % 79 % 70 % 86 % 72 % 73 %

Fig. 1. Outcome of each random forest for the RWC Classical Music No. 1, for each
0.5-s segment of the first minute of the recording, for the training T1 on 40,000 training
frames. If the result for a forest (trained to recognize a target instrument) is 0.5 or
more, then this classifier indicates that the target instrument is playing in this segment.
Ground-truth data are marked in grey.

Mining Audio Data for Multiple Instrument Recognition in Classical Music 257

we can observe that adding more samples to the training set (i.e. increasing the
size from 20,000 to 40,000 samples) does not change results much. The accuracy
compares favorably with [6], since they obtained about 60 % for duets from 5-
instrument set, and with [16], as in their experiments the accuracy dropped
below 40 % in real case scenario for 5 instruments, whereas we obtained above
70 % for 10 instruments and sometimes even higher polyphony.

For some instruments, adding real recordings into the training set improves
the results - for example, bassoon, French horn and cello are better recognized,
both precision and recall are improved. In some cases, precision decreases when
real recordings are added to training data, for example in the case of oboe, clar-
inet, flute, and double bass. In the case of clarinet, the precision drops dramati-
cally. However, the results indicated by the RF are just below the 0.5 threshold
before adding real recordings to the training data, and after that the results shift
just above this threshold (at least this is the case for the first minute of RWC
Classical Music No. 1, see Figs. 1 and 2). Therefore, we think the results can
be improved by playing with this threshold. If the T1-trained classifier shows

Fig. 2. Outcome of each random forest for the RWC Classical Music No. 1, for each
0.5-s segment of the first minute of the recording, for the training T2 on 40,000 training
frames. If the result for a forest (trained to recognize a target instrument) is 0.5 or
more, then this classifier indicates that the target instrument is playing in this segment.
Ground-truth data are marked in grey.

258 E. Kubera and A.A. Wieczorkowska

positive outcome, the indication is just above 0.5. The outcomes for the T2-
trained classifier are much higher, although there are errors, especially for string
instruments. However, this piece is difficult for recognition as an orchestral piece
of high polyphony, so errors in this case were rather unavoidable. Also, the sound
level of particular instruments can be much lower than the other, predominant
instruments, and in such a case (especially in high polyphony) identification of
all instruments playing together is indeed very difficult.

For all instruments, the recall improves after adding real recordings to train-
ing and overall precision decreases. This can be seen as the usual trade-off
between precision and recall, but since F-measure improves, we can conclude
that adding real recordings to training slightly improves instrument identifica-
tion, but the choice of the training data can depend on the task in hand –
whether precision or recall is more important. We should also keep in mind that
working with real recordings is a tedious task, because it requires labeling, prone
to errors. This is why mixes of single sounds are so readily used in this research.

6 Summary and Conclusions

The research presented in this paper aimed at the difficult task of recognizing
multiple instruments in polyphonic recordings of classical music. Ten instrumen-
tal classes were investigated. The training was performed for single instrumental
sounds and their mixes, and excerpts from recordings (without segmentation)
were added in the training of the second classifier. A set of binary random forests
was used as a classifier, where each forest was trained to recognize whether the
target instrument is recorded in the analyzed excerpt. Forty-millisecond seg-
ments were analyzed, but the results were presented for 0.5-s segment, in order
to avoid tedious labeling of ground-truth data. The results show that train-
ing performed on unsegmented real recordings improves the recall dramatically,
but for some instruments precision decreases. Therefore we conclude that the
training data should be adjusted to the target in hand, RF technique should be
further investigated, and the results should be verified, since averaging the RF
output for all the frames through 0.5-s segment may deteriorate overall results.

Acknowledgments. This project was partially supported by the Research Center of
PJIIT, supported by the Polish Ministry of Science and Higher Education.

References

1. Barbedo, J.G.A., Tzanetakis, G.: Musical instrument classification using individual
partials. IEEE Trans. Audio Speech Lang. Process. 19(1), 111–122 (2011)

2. Benetos, E., Dixon, S., Giannoulis, D., Kirchhoff, H., Klapuri, A.: Automatic music
transcription: breaking the glass ceiling. In: 13th International Society for Music
Information Retrieval Conference (ISMIR), pp. 379–384 (2012)

Mining Audio Data for Multiple Instrument Recognition in Classical Music 259

3. Bosch, J.J., Janer, J., Fuhrmann, F., Herrera, P.: A comparison of sound segrega-
tion techniques for predominant instrument recognition in musical audio signals.
In: 13th International Society for Music Information Retrieval Conference (ISMIR),
pp. 559–564 (2012)

4. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)
5. Cont, A., Dubnov, S., Wessel, D.: Realtime multiple-pitch and multiple-instrument

recognition for music signals using sparse non-negativity constraints. In: Proceed-
ings of the 10th International Conference on Digital Audio Effects (DAFx-07), pp.
85–92 (2007)

6. Eggink, J., Brown, G.J.: Application of missing feature theory to the recognition
of musical instruments in polyphonic audio. In: 4th International Conference on
Music Information Retrieval ISMIR (2003)

7. Essid, S., Richard, G., David, B.: Instrument recognition in polyphonic music based
on automatic taxonomies. IEEE Trans. Audio Speech Lang. Process. 14(1), 68–80
(2006)

8. Fuhrmann, F.: Automatic musical instrument recognition from polyphonic music
audio signals. Ph.D. Thesis, Universitat Pompeu Fabra (2012)

9. Goto, M., Hashiguchi, H., Nishimura, T., Oka, R.: RWC music database: popu-
lar, classical, and jazz music databases. In: Proceedings of the 3rd International
Conference on Music Information Retrieval, pp. 287–288 (2002)

10. Goto, M., Hashiguchi, H., Nishimura, T., Oka, R.: RWC music database: music
genre database and musical instrument sound database. In: 4th International Con-
ference on Music Information Retrieval ISMIR, pp. 229–230 (2003)

11. Heittola, T., Klapuri, A., Virtanen, A.: Musical instrument recognition in poly-
phonic audio using source-filter model for sound separation. In: Proceedings of
the 10th International Society for Music Information Retrieval Conference (ISMIR
2009) (2009)

12. Herrera-Boyer, P., Klapuri, A., Davy, M.: Automatic classification of pitched musi-
cal instrument sounds. In: Klapuri, A., Davy, M. (eds.) Signal Processing Methods
for Music Transcription. Springer Science+Business Media LLC, New York (2006)

13. ISO: MPEG-7 Overview. http://www.chiariglione.org/mpeg/
14. Jiang, W., Wieczorkowska, A., Raś, Z.W.: Music instrument estimation in poly-

phonic sound based on short-term spectrum match. In: Hassanien, A.-E., Abraham,
A., Herrera, F. (eds.) Foundations of Computational Intelligence Volume 2. SCI,
vol. 202, pp. 259–273. Springer, Heidelberg (2009)

15. Kashino, K., Murase, H.: A sound source identification system for ensemble music
based on template adaptation and music stream extraction. Speech Commun. 27,
337–349 (1999)

16. Kirchhoff, H., Dixon, S., Klapuri, A.: Multi-template shift-variant non-negative
matrix deconvolution for semi-automatic music transcription. In: 13th Interna-
tional Society for Music Information Retrieval Conference (ISMIR), pp. 415–420
(2012)

17. Kitahara, T., Goto, M., Komatani, K., Ogata, T., Okuno, H.G.: Instrument iden-
tification in polyphonic music: feature weighting to minimize influence of sound
overlaps. EURASIP J. Appl. Signal Process. 2007, 1–15 (2007)

18. Kubera, E., Kursa, M.B., Rudnicki, W.R., Rudnicki, R., Wieczorkowska, A.A.: All
that jazz in the random forest. In: Kryszkiewicz, M., Rybinski, H., Skowron, A.,
Raś, Z.W. (eds.) ISMIS 2011. LNCS (LNAI), vol. 6804, pp. 543–553. Springer,
Heidelberg (2011)

19. Kuperman, M.: Suite N 1 in G-Dur BWV 1007. http://www.viola-bach.info/

http://www.chiariglione.org/mpeg/
http://www.viola-bach.info/

260 E. Kubera and A.A. Wieczorkowska

20. Kursa, M., Rudnicki, W., Wieczorkowska, A., Kubera, E., Kubik-Komar, A.: Musi-
cal instruments in random forest. In: Rauch, J., Raś, Z.W., Berka, P., Elomaa, T.
(eds.) ISMIS 2009. LNCS (LNAI), vol. 5722, pp. 281–290. Springer, Heidelberg
(2009)

21. Leveau, P., Vincent, E., Richard, G., Daudet, L.: Instrument-specific harmonic
atoms for mid-level music representation. IEEE Trans. Audio Speech Lang.
Process. 16(1), 116–128 (2008)

22. Little, D., Pardo, B.: Learning musical instruments from mixtures of audio with
weak labels. In: 9th International Conference on Music Information Retrieval
ISMIR (2008)

23. Martin, K.D.: Toward automatic sound source recognition: identifying musical
instruments. Presented at the 1998 NATO Advanced Study Institute on Com-
putational Hearing, Il Ciocco, Italy (1998)

24. Martins, L.G., Burred, J.J., Tzanetakis, G., Lagrange, M.: Polyphonic instrument
recognition using spectral clustering. In: 8th International Conference on Music
Information Retrieval ISMIR (2007)

25. MIDOMI: Search for Music Using Your Voice by Singing or Humming. http://
www.midomi.com/

26. Müller, M., Ellis, D., Klapuri, A., Richard, G.: Signal processing for music analysis.
IEEE JSTSP 5(6), 1088–1110 (2011)

27. Niewiadomy, D., Pelikant, A.: Implementation of MFCC vector generation in clas-
sification context. J. Appl. Comput. Sci. 16(2), 55–65 (2008)

28. Opolko, F., Wapnick, J.: MUMS – McGill University Master Samples. CD’s (1987)
29. Raś, Z.W., Wieczorkowska, A.A. (eds.): Advances in Music Information Retrieval.

SCI, vol. 274. Springer, Heidelberg (2010)
30. Richards, G., Wang, W.: What influences the accuracy of decision tree ensembles?

J. Intell. Inf. Syst. 39, 627–650 (2012)
31. Shazam Entertainment Ltd., http://www.shazam.com/
32. Shen, J., Shepherd, J., Cui, B., Liu, L. (eds.): Intelligent Music Information Sys-

tems: Tools and Methodologies. Information Science Reference, Hershey (2008)
33. The University of IOWA Electronic Music Studios: Musical Instrument Samples.

http://theremin.music.uiowa.edu/MIS.html
34. TrackID – Sony Smartphones. http://www.sonymobile.com/global-en/support/

faq/xperia-x8/internet-connections-applications/trackid-ps104/
35. Vincent, E., Rodet, X.: Music transcription with ISA and HMM. In: Puntonet,

C.G., Prieto, A.G. (eds.) ICA 2004. LNCS, vol. 3195, pp. 1197–1204. Springer,
Heidelberg (2004)

http://www.midomi.com/
http://www.midomi.com/
http://www.shazam.com/
http://theremin.music.uiowa.edu/MIS.html
http://www.sonymobile.com/global-en/support/faq/xperia-x8/internet-connections-applications/trackid-ps104/
http://www.sonymobile.com/global-en/support/faq/xperia-x8/internet-connections-applications/trackid-ps104/

Author Index

Antunes, Cláudia 100
Appice, Annalisa 67
Asai, Tatsuya 117

Boullé, Marc 18

Cannataro, Mario 201
Clérot, Fabrice 18
Codecasa, Daniele 35

Džeroski, Sašo 148, 162
Davis, Michael 181

Ferilli, Stefano 214

Gay, Dominique 18
Górecki, Jan 132
Guigourès, Romain 18
Guzzi, Pietro Hiram 201

Henriques, Rui 100
Holeňa, Martin 132
Hunter, Ruth F. 181

Inakoshi, Hiroya 117

Kalajdziski, Slobodan 148
Karcheska, Jana 148
Katoh, Takashi 117
Kee, Frank 181
Kobayashi, Vladimer 85
Kocev, Dragi 148, 162
Kubera, El _zbieta 246

Leuzzi, Fabio 214
Levatić, Jurica 162
Liu, Weiru 181

Madeira, Sara C. 100
Malerba, Donato 67
Masciari, Elio 51
Miller, Paul 181
Morikawa, Hiroaki 117
Mostafavi, Amanda Cohen 231

Nanni, Mirco 3

Ong, Rebecca 3

Pedreschi, Dino 3
Pravilovic, Sonja 67

Raś, Zbigniew W. 231
Renso, Chiara 3
Rotella, Fulvio 214

Shi, Gao 51
Shigezumi, Junichi 117
Slavkov, Ivica 148
Stella, Fabio 35

Tago, Shin-ichiro 117

Veltri, Pierangelo 201

Wachowicz, Monica 3
Wieczorkowska, Alicja A. 231, 246

Zaniolo, Carlo 51

	Preface
	Organization
	Evolving Data, Evolving Models(Invited Talk)
	Contents
	Data Streamsand Time Series Analysis
	Parameter Estimation and Pattern Validation in Flock Mining
	1 Introduction
	2 Related Works
	3 Flock Algorithm and Parameter Estimation
	3.1 Context Awareness and Flock Cohesion Distance
	3.2 Observing the Effect of Varying the Parameters
	3.3 Finding a Suitable radius Value

	4 Flock Pattern Validation
	4.1 Supervised Validation
	4.2 Unsupervised Validation

	5 Conclusions and Future Work
	References

	Feature Extraction over Multiple Representations for Time Series Classification
	1 Introduction
	2 Related Work
	3 Feature Construction Process
	3.1 Transformations and Representations
	3.2 Coclustering
	3.3 Feature Construction
	3.4 Supervised Classification Algorithm

	4 Experimental Validation
	4.1 Protocol
	4.2 Results
	4.3 Running Time Results
	4.4 Interpretation: An Example

	5 Conclusion and Perspectives
	References

	A Classification Based Scoring Function for Continuous Time Bayesian Network Classifiers
	1 Introduction
	2 Continuous Time Classification
	2.1 Continuous Time Bayesian Networks
	2.2 Continuous Time Bayesian Network Classifiers

	3 Max-k Classifiers
	3.1 Definitions
	3.2 Learning
	3.3 Log-likelihood and Conditional Log-likelihood

	4 Numerical Experiments
	4.1 Synthetic Data Sets
	4.2 Post-stroke Rehabilitation Data Set

	5 Conclusions
	References

	Trajectory Data Pattern Mining
	1 Introduction
	2 Related Work
	3 Trajectory Size Reduction
	4 Frequent Trajectories Mining
	5 Encoding Paths for Efficient Counting and Querying
	6 Experimental Results
	7 Conclusion
	References

	Process Mining to Forecast the Future of Running Cases
	1 Introduction
	2 Related Work
	3 Basics
	3.1 Event Log
	3.2 Predictive Clustering Trees
	3.3 Sliding Window Model

	4 Framework for PCT-based Event Forecasting
	5 Empirical Study
	5.1 Event Log Description
	5.2 Goal and Experimental Set-up
	5.3 Results and Discussion

	6 Conclusion
	References

	Classification, Clusteringand Pattern Discovery
	A Hybrid Distance-Based Method and Support Vector Machines for Emotional Speech Detection
	1 Introduction
	2 Related Studies
	3 Speech Databases
	4 Pre-processing and Feature Extraction
	4.1 Pre-processing
	4.2 Speech Acoustic Features
	4.3 Feature Selection

	5 Our Proposal
	5.1 Preliminaries
	5.2 First Step: Construction of Emotion Models
	5.3 Second Step: Speech Signal Level Classifier

	6 Results
	7 Summary and Conclusion
	References

	Methods for the Efficient Discovery of Large Item-Indexable Sequential Patterns
	1 Introduction
	2 Background
	2.1 Applications
	2.2 Related Work

	3 Solution
	3.1 IndexSpan: Boosting Item-Indexable SPM
	3.2 MergeIndexBic: Composing Large Item-Indexable Patterns

	4 Results and Discussion
	4.1 Synthetic Datasets
	4.2 Real Datasets

	5 Conclusions
	References

	Mining Frequent Partite Episodes with Partwise Constraints
	1 Introduction
	2 Partite Episodes
	2.1 Input Event Sequence
	2.2 Partite Episodes
	2.3 Occurrences

	3 Partwise Constraints
	4 Algorithm
	4.1 Family Tree
	4.2 Pattern Expansion
	4.3 Incremental Computation
	4.4 Depth-First Enumeration

	5 Experimental Results
	5.1 Method
	5.2 Experiments for an Artificial Data Set
	5.3 Experiments for a Real-World Data Set
	5.4 Summary of Experiments

	6 Conclusion
	References

	Structure Determination and Estimation of Hierarchical Archimedean Copulas Based on Kendall Correlation Matrix
	1 Introduction
	2 Preliminaries
	2.1 Copulas
	2.2 Archimedean Copulas
	2.3 Hierarchical Archimedean Copulas
	2.4 Kendall's Tau and Its Generalization
	2.5 Okhrin's Algorithm for the Structure Determination of HAC

	3 Our Approach
	3.1 HAC Structure Determination
	3.2 HAC Estimation

	4 Experiments
	5 Conclusion
	References

	ReliefF for Hierarchical Multi-label Classification
	1 Introduction
	2 Hierarchical Multi-label Classification
	3 HMC-ReliefF Algorithm
	4 Experiments
	4.1 Experimental Setup
	4.2 Results and Discussion

	5 Conclusions and Further Work
	References

	The Use of the Label Hierarchy in Hierarchical Multi-label Classification Improves Performance
	1 Introduction
	2 Predictive Modelling for HMC
	2.1 Global Predictive Models
	2.2 Local Predictive Models

	3 Experimental Design
	3.1 Data Description
	3.2 Experimental Design
	3.3 Evaluation Measures

	4 Results and Discussion
	5 Conclusions
	References

	Graphs, Networksand Relational Da
	AGWAN: A Generative Model for Labelled, Weighted Graphs
	1 Introduction
	2 Related Work
	3 AGWAN: A Generative Model for Labelled, Weighted Graphs
	3.1 Graph Generation
	3.2 Parameter Fitting
	3.3 Extending AGWAN to Multiple Attributes

	4 Experiments
	5 Results
	5.1 Real Attributes
	5.2 Synthetic Attributes

	6 Conclusions
	References

	Thresholding of Semantic Similarity Networks Using a Spectral Graph-Based Technique
	1 Introduction
	2 Related Work
	2.1 Spectral Graph Analysis
	2.2 Semantic Similarity Measures
	2.3 Thresholding of Networks
	2.4 Extraction of Modules in Biological Networks

	3 The Proposed Approach
	3.1 Building Semantic Similarity Networks
	3.2 Pruning Semantic Similarity Networks
	3.3 Analysis of Semantic Similarity Networks

	4 Case Study
	4.1 Results

	5 Conclusion
	References

	A Relational Unsupervised Approach to Author Identification
	1 Introduction
	2 Related Work
	3 Proposed Approach
	3.1 The Representation Formalism
	3.2 The Similarity Measure
	3.3 Building Models
	3.4 The Gray Zone

	4 Evaluation
	5 Conclusions
	References

	Machine Learning and Music Data
	From Personalized to Hierarchically Structured Classifiers for Retrieving Music by Mood
	1 Introduction
	2 Related Work
	3 Data Composition and Collection
	3.1 Music Data
	3.2 User Data
	3.3 Classifier Development

	4 Results
	5 Hierarchical Cluster Driven Classifiers
	5.1 Data Storage
	5.2 User Generalization
	5.3 New User Placement
	5.4 Test Case: New User

	6 Conclusion
	References

	Mining Audio Data for Multiple Instrument Recognition in Classical Music
	1 Introduction
	1.1 Identification of Instruments in Audio Signal

	2 Random Forests
	3 Audio Data
	3.1 Training Data
	3.2 Testing Data

	4 Feature Set
	5 Experiments and Results
	6 Summary and Conclusions
	References

	Author Index

