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Abstract. We consider a variant of the classical k-median problem, in-
troduced by Anthony et al. [1]. In the Robust k-Median problem, we
are given an n-vertex metric space (V, d) and m client sets {Si ⊆ V }mi=1.
We want to open a set F ⊆ V of k facilities such that the worst case
connection cost over all client sets is minimized; that is, minimize maxi∑

v∈Si
d(F, v). Anthony et al. showed an O(logm) approximation

algorithm for any metric and APX-hardness even in the case of uni-
form metric. In this paper, we show that their algorithm is nearly tight
by providing Ω(logm/ log logm) approximation hardness, unless NP ⊆
⋂

δ>0 DTIME(2n
δ

). This result holds even for uniform and line metrics.
To our knowledge, this is one of the rare cases in which a problem on a
line metric is hard to approximate to within logarithmic factor. We com-
plement the hardness result by an experimental evaluation of different
heuristics that shows that very simple heuristics achieve good approxi-
mations for realistic classes of instances.

1 Introduction

In the classical k-median problem, we are given a set of clients located on a
metric space with distance function d : V × V → R. The goal is to open a set of
facilities F ⊆ V , |F | = k, so as to minimize the sum of the connection costs of
the clients in V , i.e., their distances from their nearest facilities in F . This is a
central problem in approximation algorithms, and has received a large amount
of attention in the past two decades [4, 6, 7, 11, 12].

At SODA 2008 Anthony et al. [1] introduced a generalization of the k-median
problem. In their setting, the set of clients that are to be connected to some
facility is not known in advance, and the goal is to perform well in spite of this
uncertainty about the future. They formulated the problem as follows.

Definition 1 (Robust k-Median). An instance of this problem is a triple
(V,S, d). This defines a set of locations V , a collection of m sets of clients
S = {S1, . . . , Sm}, where Si ⊆ V for all i ∈ {1, . . . ,m}, and a metric distance
function d : V × V → R. We have to open a set of k facilities F ⊆ V , |F | = k,
and the goal is to minimize the cost of the most expensive set of clients, i.e.
minimize maxmi=1

∑
v∈Si

d(v, F ). Here, d(v, F ) denotes the minimum distance of
the client v from any location in F , i.e. d(v, F ) = minu∈F d(u, v).
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Robust k-Median is a natural generalization of the classical k-median problem
(for m = 1). Additionally, we can think of it as capturing a notion of fairness.
To see this, interpret each set Si as a group of clients who pay

∑
v∈Si

d(v, F ) for
connecting to a facility. The objective ensures that no single group pays too much,
while minimizing the cost. Anthony et al. [1] gave an O(logm)-approximation
algorithm for this problem, and a lower bound of (2 − ε) by a reduction from
Vertex Cover. The lower bound was improved to logα n for small constant α > 0
in [5]. Note that their lower bound does not hold in the line metric.

Our Results. We prove nearly tight hardness of approximation for Robust k-

Median. We show that, unless NP ⊆ ∩δ>0DTIME(2n
δ

), it admits no poly-time
o(logm/ log logm)-approximation, even on uniform and line metrics.

Our first hardness result is tight up to a constant factor, as a simple rounding
scheme gives a matching upper bound on uniform metrics (Sect. 3.1). Our sec-
ond result shows that Robust k-Median is a rare problem with super-constant
hardness of approximation even on line metrics. This surprising result puts Ro-
bust k-Median in sharp contrast to most other geometric optimization problems
which admit polynomial time approximation schemes, e.g. [2, 10].

Experimentally we show that simple heuristics provide good performance on
a realistic class of instances. The details appear in the full paper.

Our Techniques. First, we note that Robust k-Median on uniform metrics is
equivalent to the following variant of the set cover problem: Given a set U of
ground elements, a collection of sets X = {X ⊆ U}, and an integer t ≤ |X |,
our goal is to select t sets from X in order to minimize the number of times an
element from U is hit (Lemma 2). We call this problem Minimum Congestion
Set Packing (MCSP). This characterization allows us to focus on proving the
hardness of MCSP, and to employ the tools developed for the set cover problem.

We now revisit the reduction used by Feige [8], building on results of Lund
and Yannakakis [13], to prove the hardness of the set cover problem and discuss
how our approach differs. Intuitively, they compose the Label Cover instance
with a set system that has some desirable properties. Informally speaking, in the
Label Cover problem, we are given a graph where each vertex v can be assigned
a label from a set L, and each edge e is equipped with a constraint Πe ⊆ L× L
specifying the accepting pairs of labels for e. Our goal is to find a labeling of
vertices that maximizes the number of accepting edges. This problem is known
to be hard to approximate to within a factor of 2log

1−ε |E| [3, 14], where |E| is
the number of edges. Thus, if we manage to reduce Label Cover to MCSP, we
would hopefully obtain a large hardness of approximation factor for MCSP as
well.

From the Label Cover instance, [13] creates an instance of Set Cover by having
sets of the form S(v, �) for each vertex v and each label � ∈ L. Intuitively the set
S(v, �) means choosing label � for vertex v in the Label Cover instance. Now, if
we assume that the solution is well behaved, in the sense that for each vertex v,
only one set of the form S(v, �) is chosen in the solution, we would be immediately
done (because each set indeed corresponds to a label). However, solutions need
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not have this form, e.g. choosing sets S(v, �) and S(v, �′) translates to having
two labels �, �′ for the Label Cover instance. To prevent an ill-behaved solution,
partition systems were introduced and used in both [13] and [8]. Feige considers
the hypergraph version of Label Cover to obtain a sharper hardness result of
lnn−O(ln lnn) instead of 1

4 lnn in [13]; here n denotes the size of the universe.
Now we highlight how our reduction is different. The high level idea stays the

same, i.e. we have sets of the form S(v, �) that represent assigning label � to
vertex v. However, we need a different partition system and a totally different
analysis. Moreover, while a reduction from standard Label Cover gives nearly
tight O(log n) hardness for Set Cover, it can (at best) only give a 2− ε hardness
for MCSP. For our results, we do need a reduction from Hypergraph Label Cover.
This suggests another natural distinction between MCSP and Set Cover.

Finally, to obtain the hardness result for the line metric, we embed the in-
stance created from the MCSP reduction onto the line while preserving values
of optimal solutions. This way we get the same hardness gap for line metrics.

2 Preliminaries

We will show that Robust k-Median is Ω(logm/ log logm) hard to approximate,
even for the special cases of uniform metrics (Sect. 3) and line metrics (Sect. 4).
Recall that d is a uniform metric iff we have d(u, v) ∈ {0, 1} for all locations
u, v ∈ V . Further, d is a line metric iff the locations in V can be embedded
into a line in such a way that d(u, v) equals the euclidean distance between u
and v, for all u, v ∈ V . Throughout this paper, we will denote any set of the
form {1, 2, . . . , i} by [i]. Our hardness results will rely on a reduction from the
r-Hypergraph Label Cover (HGLC) problem, which is defined as follows.

Definition 2 (r-Hypergraph Label Cover (HGLC)). An instance of this
problem is a triple (G, π, r), where G = (V , E) is a r-partite hypergraph with
vertex set V =

⋃r
j=1 Vj and edge set E. Each edge h ∈ E contains one vertex

from each part of V, i.e. |h ∩ Vj | = 1 for all j ∈ [r]. Every set Vj has an
associated set of labels Lj. Further, for all h ∈ E and j ∈ [r], there is a mapping

πj
h : Lj → C that projects the labels from Lj to a common set of colors C.
The problem is to assign to every vertex v ∈ Vj some label σ(v) ∈ Lj. We say

that an edge h = (v1, . . . , vr), where vj ∈ Vj for all j ∈ [r], is strongly satisfied
under σ iff the labels of all its vertices are mapped to the same element in C,

i.e. πj
h(σ(vj)) = πj′

h (σ(vj′ )) for all j, j′ ∈ [r]. In contrast, we say that the edge is
weakly satisfied iff there exists some pair of vertices in h whose labels are mapped

to the same element in C, i.e. πj
h(σ(vj)) = πj′

h (σ(vj′ )) for some j, j′ ∈ [r], j �= j′.

For ease of exposition, we will often abuse the notation and denote by j(v)
the part of V to which a vertex v belongs, i.e. if v ∈ Vj for some j ∈ [r], then we
set j(v) ← j. The next theorem will be crucial in deriving our hardness result.
The proof of this theorem follows from Feige’s r-Prover system [8].

Theorem 1. Let r ∈ N be a parameter. There is a polynomial time reduction
from n-variable 3-SAT to r-HGLC with the following properties:
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– (Yes-Instance) If the formula is satisfiable, there is a labeling that strongly
satisfies every edge in G.

– (No-Instance) If the formula is not satisfiable, every labeling weakly satisfies
at most a 2−γr fraction of the edges in G, for some universal constant γ.

– The number of vertices in the graph is |V| = nO(r) and the number of edges
is |E| = nO(r). The sizes of the label sets are |Lj| = 2O(r) for all j ∈ [r], and
|C| = 2O(r). Further, we have |Vj | = |Vj′ | for all j, j′ ∈ [r], and each vertex
v ∈ V has the same degree r|E|/|V|.

We use a partition system that is motivated by the hardness proof of the Set
Cover problem [8] but uses a different construction.

Definition 3 (Partition System). Let r ∈ N and let C be any finite set. An
(r, C)-partition system is a pair (Z, {pc}c∈C), where Z is an arbitrary (ground)
set, such that the following properties hold.

– (Partition) For all c ∈ C, pc =
(
A1

c , . . . , A
r
c

)
is a partition of Z, that is

⋃r
j=1 A

j
c = Z, and Aj′

c ∩ Aj
c = ∅ for all j, j′ ∈ [r], j �= j′.

– (r-intersecting) For any r distinct indices c1, . . . , cr ∈ C and not-necessarily
distinct indices j1, . . . , jr ∈ [r], we have that

⋂r
i=1 A

ji
ci �= ∅. In particular,

Aj
c �= ∅ for all c and j.

In order to achieve a good lower bound on the approximation factor, we need
partition systems with small ground sets. The most obvious way to build a
partition system is to form an r-hypercube: Let Z = [r]|C|, and for each c ∈ C
and j ∈ [r], let Aj

c be the set of all elements in Z whose c-th component is j.
It can easily be verified that this is an (r, C)-partition system with |Z| = r|C|.
With this construction, however, we would only get a hardness of Ω(log logm)
for our problem. The following lemma shows that it is possible to construct an
(r, C)-partition system probabilistically with |Z| = rO(r) log |C|.
Lemma 1. There is an (r, C)-partition system with |Z| = rO(r) log |C| elements.
Further, such a partition system can be constructed efficiently with high proba-
bility.

Proof. Let Z be any set of rO(r) log |C| elements. We build a partition system
(Z, {pc}c∈C) as described in Algorithm 1. By construction each pc is a partition
of Z, i.e. the first property stated in Def. 3 is satisfied. We bound the probability
that the second property is violated.

Fix any choice of r distinct indices c1, . . . , cr ∈ C and not necessarily distinct
indices j1, . . . , jr ∈ [r]. We say that a bad event occurs when the intersection of
the corresponding sets is empty, i.e.

⋂r
i=1 A

ji
ci = ∅. To upper bound the prob-

ability of a bad event, we focus on events of the form Ee,i – this occurs when
an element e ∈ Z is included in a set Aji

ci . Since the indices c1 . . . cr are dis-
tinct, it follows that the events {Ee,i} are mutually independent. Furthermore,
note that we have Pr[Ee,i] = 1/r for all e ∈ Z, i ∈ [r]. Hence, the probability
that an element e ∈ Z does not belong to the intersection

⋂r
i=1 A

ji
ci is given by
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Algorithm 1. A randomized construction of an (r, C)-partition system.

input : A ground set Z, a parameters r ∈ N, and a set C.
foreach c ∈ C do

/* Construct the partition pc = (A1
c, . . . , A

r
c) */

Initialize Aj
c to the empty set for all j ∈ [r]

foreach ground element e ∈ Z do
Pick a j ∈ [r] independently and uniformly at random and add e to Aj

c

1−Pr[
⋂r

i=1 Ee,i] = 1− 1/rr. Accordingly, the probability that no element e ∈ Z
belongs to the intersection, which defines the bad event, is equal to (1−1/rr)|Z|.

Now, the number of choices for r distinct indices c1, . . . , cr and r not-necessarily
distinct indices j1, . . . , jr is equal to

(|C|
r

) · rr . Hence, by a union-bound over all
bad events, the second property stated in Def. 3 is violated with probability at
most

(|C|
r

) · rr · (1− rr)|Z| ≤ (|C| r)r · exp(−|Z|/rr). If we set |Z| = d · rd·r log |C|
with large enough constant d, the property is satisfied with high probability. 
�

3 Hardness of Robust k-Median on Uniform Metrics

First, we define Minimum Congestion Set Packing (MCSP), and then show a
reduction from MCSP to Robust k-Median on uniform metrics. In Sect. 3.2, we
will then show that MCSP is hard to approximate by reducing HGLC to MCSP.

Definition 4 (Minimum Congestion Set Packing (MCSP)). An instance
of this problem is a triple (U,X , t), where U is a universe of m elements, i.e.
|U | = m, X is a collection of sets X = {X ⊆ U} such that

⋃
X∈X X = U ,

and t ∈ N and t ≤ |X |. The objective is to find a collection X ′ ⊆ X of size
t that minimizes Cong(X ′) = maxe∈U Cong(e,X ′). Here, Cong(X ′) refers to
the congestion of the solution X ′, and Cong(e,X ′) = |{X ∈ X ′ : e ∈ X}| is the
congestion of the element e ∈ U under the solution X ′.

Lemma 2. Given any MCSP instance (U,X , t), we can construct a Robust k-
Median instance (V,S, d) with the same objective value in poly(|U |, |X |) time,
such that |U | = |S|, |X | = |V |, d is a uniform metric, and k = |V | − t.

Proof. We construct the Robust k-Median instance (V,S, d) as follows. For every
e ∈ U we create a set of clients S(e), and for each X ∈ X we create a location
v(X). Thus, we get V = {v(X) : X ∈ X}, and S = {S(e) : e ∈ U}. We place
the clients in S(e) at the locations of the sets that contain e, i.e. S(e) = {v(X) :
X ∈ X , e ∈ X} for all e ∈ U . The distance is defined as d(u, v) = 1 for all
u, v ∈ V, u �= v, and d(v, v) = 0. Finally, we set k ← |V | − t.

Now, it is easy to verify that the Robust k-Median instance (V,S, d) has
a solution with objective ρ iff the corresponding MCSP instance (U,X , t) has
a solution with objective ρ. The intuition is that a location v(X) ∈ V is not
included in the solution F to the Robust k-Median instance iff the corresponding
set X is included in the solution X ′ to the MCSP instance. Indeed, let F be any



New Approximability Results for the Robust k-Median Problem 55

subset of X of size k (= the set of open facilities) and let X ′ = X − F . Further,
let [X ∈ X ′] be an indicator variable that is set to 1 iff X ∈ X ′. Then

Cong(X ′) = max
e∈U

Cong(e,X ′) = max
e∈U

∑

X;e∈X

[X ∈ X ′]

= max
e∈U

∑

X;e∈X

min
Y ∈F

d(X,Y ) = max
S(e)∈S

∑

v(X)∈S(e)

d(v(X), F ).


�
We devote the rest of Sect. 3 to MCSP and show that it isΩ(log |U |/ log log |U |)

hard to approximate. This, in turn, will imply a Ω(log |S|/ log log |S|) hardness
of approximation for Robust k-Median on uniform metrics. We will prove the
hardness result via a reduction from HGLC.

3.1 Integrality Gap

Before proceeding to the hardness result, we show that a natural LP relaxation
for the MCSP problem [1] has an integrality gap of Ω(logm/ log logm), where
m = |U | is the size of the universe of elements. In the LP, we have a variable
y(X) indicating that the set X ∈ X is chosen, and a variable z which represents
the maximum congestion among the elements.

min z

s.t.
∑

X∈X :e∈X

y(X) ≤ z for all e ∈ U

∑

X∈X
y(X) = t

The Instance: Now, we construct a bad integrality gap instance (U,X , t). Let d
be the intended integrality gap, let η = d2, and let U = {I : I ⊆ [η], |I| = d} be
all subsets of [η] of size d. The collection X consists of η sets X1, . . . , Xη, where
Xi = {I : I ∈ U and i ∈ I}. Note that the universe U consists of |U | = m =

(
η
d

)

elements, and each element I is contained in exactly d sets, namely I ∈ Xi if
and only if i ∈ I. Finally, we set t ← η/d.

Analysis: The fractional solution simply assigns a value of 1/d to each variable
y(Xi); this ensures that the total (fractional) number of sets selected is η/d = t.
Furthermore, each element is contained (fractionally) in exactly one set, so the
fractional solution has cost one. Since t = η/d = d, any integral solution must
choose d sets, say Xi1 , . . . , Xid . Now consider I = {i1, . . . , id} which belongs
to set Xiλ for all λ ∈ [d] and hence the congestion of I is d. Finally, since
|U | = m ≤ ηd ≤ (d2)d, we have d = Ω(logm/ log logm).

Tightness of the Result: The bound on the hardness and integrality gap
is tight for the uniform metric case, as there is a simple O(logm/ log logm)-
approximation algorithm. Pick each setX with probability equal to min(1, 2y(X)).



56 S. Bhattacharya et al.

The expected congestion is 2z for each element. By Chernoff’s bound [9], an
element is covered by no more than z · O(logm/ log logm) sets with high prob-
ability. A similar algorithm gives the same approximation guarantee for Robust
k-Median on uniform metrics.

3.2 Reduction from r-Hypergraph Label Cover to Minimum
Congestion Set Packing

The input is an instance (G, π, r) of r-HGLC (Def. 2). From this we construct
the following instance (U,X , t) of MCSP (Def. 4).

– We define the universe U as a union of disjoint sets. For each edge h ∈ E in
the hypergraph we have a set Uh. All these sets have the same sizem∗ and are
pairwise disjoint, i.e. Uh∩Uh′ = ∅ for all h, h′ ∈ E , h′ �= h. The universe U is
then the union of these sets U =

⋃
h∈E Uh. Since the Uh are mutually disjoint,

we havem = |U | = |E|·m∗. Recall that C is the target set of π. Each set Uh is
the ground set of an (r, C)-partition system (Def. 3) as given by Lemma 1. In
particular we have m∗ = rO(r) log |C|. We denote the r-partitions associated
with Uh by {pc(h)}c∈C , where pc(h) =

(
A1

c(h), . . . , A
r
c(h)

)
.

– We construct the collection of sets X as follows. For each j ∈ [r], v ∈ Vj and

� ∈ Lj , X contains the setX(v, �), whereX(v, �) =
⋃

h:v∈h A
j
πj
h(�)

(h). That is,

X(v, �) ∩ Uh is empty if v �∈ h and is equal to Aj
πj
h(�)

(h) if v ∈ h. Intuitively,

choosing the setX(v, �) corresponds to assigning label � to the vertex v.
– We define t ← |V|. Intuitively, this means each vertex in V gets one label.

We assume for the sequel that the r-HGLC instance is chosen according to
Thm. 1. We assume that the parameter r satisfies r72−γr < 1. In the proof of
the main theorem, we will fix r to a specific value.

3.3 Analysis

We show that the reduction from HGLC to MCSP satisfies two properties. In
Lemma 3, we show that for Yes-Instances (see Thm. 1) the corresponding MCSP
instance admits a solution with congestion one. For No-Instances, Lemma 4 shows
that any solution to the corresponding MCSP instance has congestion at least r.

Lemma 3 (Yes-Instance). If the HGLC instance (G, π, r) admits a labeling
that strongly satisfies every edge, then the MCSP instance (U,X , t) as in Sect. 3.2
admits a solution where the congestion of every element in U is exactly one.

Proof. Suppose that there is a labeling σ that strongly satisfies every edge h ∈ E .
We will show how to pick t = |V| sets from X such that each element in U is
contained in exactly one set. This implies that the maximum congestion is one.
For each j ∈ [r] and each vertex v ∈ Vj , we choose the set X(v, σ(v)). Thus, the
total number of sets chosen is exactly |V|.

To see that the congestion is one, we concentrate on the elements in Uh, where
h = (v1, . . . , vr), vj ∈ Vj for all j ∈ [r], is one of the edges in E . The picked sets
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that intersect Uh are X(vj , σ(vj)), where j ∈ [r]. Since h is strongly satisfied, πh

maps all vertex labels in h to a common c ∈ C, i.e. πj
h(σ(vj)) = c for all j ∈ [r].

Thus Uh ∩X(vj , σ(vj)) = Aj
c(h). By definition (Def. 3), the sets A1

c(h) . . . A
r
c(h)

partition the elements in Uh. This completes the proof. 
�
Now, we turn to the proof of Lemma 4. Towards this end, we fix a collection

X ′ ⊆ X of size t and show that some element in U has congestion at least
r under X ′. The intuition being that many edges in G = (V , E) are not even
weakly satisfied, and the elements in U corresponding to those edges incur large
congestion. Recall that for a v ∈ V , we define j(v) ∈ N to be such that v ∈ Vj(v).

Claim 2. For v ∈ V, let Lv =
{
� ∈ Lj(v) : X(v, �) ∈ X ′}. For h ∈ E, let Λh =

{X(v, �) ∈ X ′ : v ∈ h}. If Cong(X ′) < r, then |Lv| < r2 and |Λh| < r3.

Proof. Since Λh =
⋃

v∈h Lv, it suffices to prove |Lv| < r2 for all v. Assume
otherwise, i.e., |Lv| ≥ r2 for some v ∈ Vj , j ∈ [r]. Let h be any hyper-edge with

v ∈ h. Consider the images of the labels in Lv under πj
h. Either there are at least

r distinct images or at least r elements in Lv are mapped to the same c ∈ C.
In the former case, we have r pairwise distinct labels �1 to �r in Lv and r

pairwise distinct labels c1 to cr in C such that πj
h(�i) = ci for i ∈ [r]. The

set X(v, �i) contains Aj
ci(h) and

⋂
i∈[r] A

j
ci(h) �= ∅ by property (2) of partition

systems (Def. 3). Thus some element has congestion at least r.
In the latter case, we have r pairwise distinct labels �1 to �r in Lv and a label

c in C such that πj
h(�i) = c for i ∈ [r]. The set X(v, �i) contains Aj

c(h) and
hence every element in this non-empty set (property (2) of partition systems)
has congestion at least r. 
�
Definition 5 (Colliding Edge). We say that an edge h ∈ E is colliding iff

there are sets X(v, �), X(v′, �′) ∈ X ′ with v, v′ ∈ h, v �= v′, and π
j(v)
h (�) =

π
j(v′)
h (�′).

Claim 3. Suppose that the solution X ′ has congestion less than r, and more
than a r42−γr fraction of the edges in E are colliding. Then there is a labeling σ
for G that weakly satisfies at least a 2−γr fraction of the edges in E.
Proof. For each v ∈ V , we define Lv = {� ∈ Lj(v) : X(v, �) ∈ X ′}. Then
|Lv| < r2 by Claim 2. We construct a labeling function σ using Algorithm 2.

Now we bound the expected fraction of weakly satisfied edges under σ from be-
low. Take any colliding edge h ∈ E . Then there are vertices v ∈ Vj , v

′ ∈ Vj′ with

Algorithm 2. An algorithm for constructing a labeling function.

foreach vertex v ∈ V do
if Lv �= ∅ then

Pick a color σ(v) uniformly and independently at random from Lv

else
Pick an arbitrary color σ(v) from Lj(v)
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j �= j′, and colors � ∈ Lv, �
′ ∈ Lv′ such that v, v′ ∈ h and πj

h(�) = πj′
h (�′). By

Claim 2, |Lv| and |Lv′ | are both at most r2. Since the colors σ(v) and σ(v′) are cho-
sen uniformly and independently at random from their respective palettes Lv and
Lv′ , we have Pr[σ(v) = � and σ(v′) = �′] ≥ 1/r4. In other words, every colliding
edge is weakly satisfied with probability at least 1/r4. Since more than a r42−γr

fraction of the edges in E are colliding, from linearity of expectation we infer that
the expected fraction of edges weakly satisfied by σ is at least 2−γr. 
�
Claim 4. Let Λh = {X(v, �) ∈ X ′ : v ∈ h} and λ(h) = |Λh|.

∑

h∈E
λ(h) = r|E|.

Proof. This is a simple counting argument. Consider a bipartite graph H with
vertex set A∪̇B, where each vertex in A represents a set X(v, �), and each vertex
in B represents an edge h ∈ E . There is an edge between two vertices iff the
set X(v, �) contains some element in Uh. The quantity

∑
h∈E λ(h) counts the

number of edges in H where one endpoint is included in the solution X ′. Since
X ′ picks t = |V| sets and each set has degree r|E|/|V| in H (Thm. 1), the total
number of edges that are chosen is exactly |V| × (r|E|/|V|) = r|E|. 
�

Let E ′ ⊆ E denote the set of colliding edges, and define E ′′ = E − E ′. Suppose
that we are dealing with a No-Instance (Thm. 1), i.e. the solution X ′ has con-
gestion less than r and every labeling weakly satisfies at most a 2−γr fraction
of the edges in E . Then λ(h) ≤ r3 for all h ∈ E by Claim 2, and no more than
r42−γr|E| edges are colliding, i.e. |E ′| ≤ r42−γr |E|, by Claim 3. Using these facts
we conclude that

∑
h∈E′ λ(h) ≤ r72−γr|E| < |E|, as by assumption r72−γr < 1.

Now, applying Claim 4, we get
∑

h∈E′′ λ(h) = r|E|−∑
h∈E′ λ(h) > (r− 1)|E|. In

particular, there is an edge h ∈ E ′′ with λ(h) ≥ r.
Recall that Λh = {X(v, �) ∈ X ′ : v ∈ h} are the sets in X ′ that intersect Uh

and note that |Λh| = λ(h) ≥ r. Let X ∗ ⊆ Λh be a maximal collection of sets with
the following property: For every two distinct setsX(v, �), X(v′, �′) ∈ X ∗ we have
π
j(v)
h (�) �= π

j(v′)
h (�′). Hence, from the definition of a partition system (Def. 3), it

follows that the intersection of the sets in X ∗ and the set Uh is nonempty.
Now, consider any set X(v, �) ∈ Λh −X ∗. Since the collection X ∗ is maximal,

there must be at least one set X(v′, �′) in X ∗ with π
j(v)
h (�) = π

j(v′)
h (�′). Since h

is not colliding, we must have j(v) = j(v′). Consequently we get X(v, �)∩Uh =
X(v′, �′) ∩ Uh. In other words, for every set X ∈ Λh − X ∗, there is some set
X ′ ∈ X ∗ whereX∩Uh = X ′∩Uh. Thus, Uh∩(

⋂
X∈Λh

X) = Uh∩(
⋂

X∈X ∗ X) �= ∅.
Every element in the intersection of the sets in Λh and Uh will have congestion
|Λh| ≥ r. This leads to the following lemma.

Lemma 4 (No-Instance). If every labeling weakly satisfies at most a 2−γr

fraction of the edges in the hypergragph Label Cover instance (G, π, r), for some
universal constant γ and r72−γr < 1 then the congestion incurred by every solu-
tion to the MCSP instance (U,X , t) constructed in Sect. 3.2 is at least r.

We are now ready to prove the main theorem of this section.

Theorem 5. Robust k-Median (V,S, d) is Ω(logm/ log logm) hard to approxi-

mate on uniform metrics, where m = |S|, unless NP ⊆ ⋂
δ>0 DTIME(2n

δ

).
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Proof. Assume that there is a polynomial time algorithm forRobustk-Median that
guarantees an approximation ratio in o(log |S| / log log |S|). Then, by Lemma 2,
there is an approximation algorithm for the Minimum Congestion Set Packing
problem with approximation guarantee o(log |U | / log log |U |).

Let δ > 0 be arbitrary and set r = �nδ�, where n is the number of variables in
the 3-SAT instance (Thm. 1). Then r72−γr < 1 for all sufficiently large n. We first
bound the size of theMCSP instance (U,X , t) constructed in Sect. 3.2.ByLemma1,
the size of an (r, C)-partition system is |Z| = rO(r) log |C|. By Thm. 1, we have
|C| = 2O(r). So each set Uh has cardinality at most rO(r) · r = rO(r). Also recall
that the number of sets in the MCSP instance is |X | = ∑

j∈[r] |Vj | · |Lj | = nO(r),

and that the number of elements is |U | = m = |E| · rO(r) ≤ (nr)O(r) = nO(r) =

nO(nδ) = 2O(r log r). Thus r ≥ Ω(logm/ log logm).
Thegap in the optimal congestionbetween theYes-Instance and theNo-Instance

is at least r (Thm. 1 and Lemmas 3, 4). More precisely, for Yes-instances the con-
gestion is at most one and for No-instances it is at least r. Since the approximation
ratio of the alleged algorithm is o(logm/ log logm), it is better than r for all suffi-
ciently large n and hence it can be used to decide SAT.

The running time is polynomial in the size of the MCSP instance, i.e., is

poly(nO(nδ)) = nO(nδ) = 2O(n2δ). Since δ is arbitrary, the theorem follows. 
�

4 Hardness of Robust k-Median on Line Metrics

We modify the reduction from r-HGLC to Minimum Congestion Set Packing
(MCSP) to give a Ω(logm/ log logm) hardness of approximation for Robust k-
Median on line metrics as well, where m = |S| is the number of client-sets. For
this section, it is convenient to assume that the label-sets are the initial segments
of the natural numbers, i.e., Lj = {1, . . . , |Lj|} and C = {1, . . . , |C|}.

Given a HGLC instance (G, π, r), we first construct a MCSP instance (U,X , t)
in accordance with the procedure outlined in Sect. 3.2. Next, from this MCSP
instance, we construct a Robust k-Median instance (V,S, d) as described below.

– We create a location in V for every set X(v, �) ∈ X . To simplify the notation,
the symbol X(v, �) will represent both a set in the instance (U,X , t), and
a location in the instance (V,S, d). Thus, we have V = {X(v, �) ∈ X}.
Furthermore, we create a set of clients S(e) for every element e ∈ U , which
consists of all the locations whose corresponding sets in the MCSP instance
contain the element e. Thus, we have S = {S(e) : e ∈ U}, where S(e) =
{X(v, �) ∈ X : e ∈ X(v, �)} for all e ∈ U . This step is same as in Lemma 2.

– We now describe how to embed the locations in V on a given line. For every
vertex v ∈ Vj , j ∈ [r], the locations X(v, 1), . . . , X(v, |Lj|) are placed next to
one another in sequence, in such a way that the distance between any two con-
secutive locations is exactly one. Formally, this gives d(X(v, �), X(v, �′)) =
|�′ − �| for all �, �′ ∈ Lj . Furthermore, we ensure that any two locations
corresponding to two different vertices in V are not close to each other. To
be more specific, we have the following guarantee: d(X(v, �), X(v′, �′)) ≥ 2
whenever v �= v′. It is easy to verify that d is a line metric.



60 S. Bhattacharya et al.

– We define k ← |X| − t.

Note that as k = |X | − t, there is a one to one correspondence between
the solutions to the MCSP instance and the solutions to the Robust k-Median
instance. Specifically, a set in X is picked by a solution to the MCSP instance
iff the corresponding location is not picked in the Robust k-Median instance.

Lemma 5 (Yes-Instance). Suppose that there is a labeling strategy σ that
strongly satisfies every edge in the HGLC instance (G, π, r). Then there is a
solution to the Robust k-Median instance (V,S, d) with objective one.

Proof. Recall the proof of Lemma 3. We construct a solution X ′ ⊆ X , |X ′| = t, to
the MCSP instance (U,X , t) as follows. For every v ∈ Vj , j ∈ [r], the solution X ′

contains the set X(v, σ(v)). Now, focus on the corresponding solution FX ′ ⊆ V
to the Robust k-Median instance, which picks a location X iff X /∈ X ′. Hence,
for every vertex v ∈ Vj , j ∈ [r], all but one of the locationsX(v, 1), . . . , X(v, |Lj|)
are included in FX ′ . Since any two consecutive locations in such a sequence are
unit distance away from each other, the cost of connecting any location in V to
the set FX ′ is either zero or one, i.e., d(X,FX ′) ∈ {0, 1} for all X ∈ V = X .

For the rest of the proof, fix any set of clients S(e) ∈ S, e ∈ U . The proof of
Lemma 3 implies that the element e incurs congestion one under X ′. Hence, the
element belongs to exactly one set in X ′, say X∗. Again, comparing the solution
X ′ with the corresponding solution FX ′ , we infer that S(e) − FX ′ = {X∗}.
In other words, every location in S(e), except X∗, is present in the set FX ′ .
The clients in such locations require zero cost for getting connected to FX ′ .
Thus, the total cost of connecting the clients in S(e) to the set FX ′ is at most:∑

X∈S(e) d(X,FX ′) = d(X∗, FX ′) ≤ 1.
Thus, every set of clients in S requires unit cost for connecting to FX ′ . So the

solution FX ′ to the Robust k-Median instance indeed has objective one. 
�
Lemma 6 (No-Instance). If every labeling weakly satisfies at most a 2−γr

fraction of the edges in the HGLC instance (G, π, r), for some constant γ then
every solution to the Robust k-Median instance (V,S, d) has objective at least r.

Proof. Fix any solution F ⊆ V to the Robust k-Median instance (V,S, d), and
let X ′

F ⊆ X denote the corresponding solution to the MCSP instance (U,X , t).
By Lemma 4 there is some element e ∈ U with congestion at least r under X ′

F . In
other words, there are at least r sets X1, . . . , Xr ∈ X ′

F that contain the element
e. The locations corresponding to these sets are not picked by the solution F .
Furthermore, the way the locations have been embedded on a line ensures that
the distance between any location and its nearest neighbor is at least one. Hence,
we have d(Xi, F ) ≥ 1 for all i ∈ [r]. Summing over these distances, the total cost
of connecting the clients in S(e) to F is at least

∑
i∈[r] d(Xi, F ) ≥ r. Thus, the

solution F to the Robust k-Median instance has objective at least r. 
�
Finally, applying Lemmas 5, 6, and an argument similar to the proof of Thm. 5,

we get the following result.

Theorem 6. The Robust k-Median problem (V,S, d) is Ω(logm/ log logm) hard

toapproximate evenon linemetrics,wherem = |S|, unlessNP ⊆ ∩δ>0DTIME(2n
δ

).
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5 Conclusion and Future Work

We show a logarithmic lower bound for Robust k-median on the uniform and
line metrics. However, the empirical results suggest that real-world instances are
much easier, so it is interesting to see if realistic assumptions can be added to
the problem in order to obtain constant approximation. For instance, one may
assume that the diameter of each set Si is small compared to the real diameter.
This captures the “locality” of communities. Our hardness results do not apply
in this case. Also, one may attack the problem from parameterized complexity’s
angle: Can we obtain an O(1) approximation algorithm in time g(k) poly(n)?
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