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Abstract. In this paper we construct quantum algorithms for matrix
products over several algebraic structures called semirings, including the
(max,min)-matrix product, the distance matrix product and the Boolean
matrix product. In particular, we obtain the following results.
– We construct a quantum algorithm computing the product of two

n × n matrices over the (max,min) semiring with time complexity
O(n2.473). In comparison, the best known classical algorithm for the
same problem has complexity O(n2.687). As an application, we ob-
tain a O(n2.473)-time quantum algorithm for computing the all-pairs
bottleneck paths of a graph with n vertices, while classically the best
upper bound for this task is O(n2.687).

– We construct a quantum algorithm computing the � most signifi-
cant bits of each entry of the distance product of two n × n ma-
trices in time O(20.64�n2.46). In comparison, prior to the present
work, the best known classical algorithm for the same problem had
complexity O(2�n2.69). Our techniques lead to further improvements
for classical algorithms as well, reducing the classical complexity to
O(20.96�n2.69), which gives a sublinear dependency on 2�.

The above two algorithms are the first quantum algorithms that perform
better than the Õ(n5/2)-time straightforward quantum algorithm based
on quantum search for matrix multiplication over these semirings. We
also consider the Boolean semiring, and construct a quantum algorithm
computing the product of two n× n Boolean matrices that outperforms
the best known classical algorithms for sparse matrices.

1 Introduction

Background. Matrix multiplication over semirings has a multitude of appli-
cations in computer science, and in particular in the area of graph algorithms
(e.g., [5,18,19,20,21,23]). One example is Boolean matrix multiplication, related
for instance to the computation of the transitive closure of a graph, where the
product of two n×n Boolean matrices A and B is defined as the n×n Boolean
matrix C = A ·B such that C[i, j] = 1 if and only if there exists a k ∈ {1, . . . , n}
such that A[i, k] = B[k, j] = 1.

More generally, given a set R ⊆ Z ∪ {−∞,∞} and two binary operations
⊕ : R × R → R and � : R × R → R, the structure (R,⊕,�) is a semiring if it
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behaves like a ring except that there is no requirement on the existence of an
inverse with respect to the operation⊕. Given two n×nmatricesA and B overR,
the matrix product over (R,⊕,�) is the n × n matrix C defined as C[i, j] =⊕n

k=1 (A[i, k]�B[k, j]) for any (i, j) ∈ {1, . . . , n} × {1, . . . , n}. The Boolean
matrix product is simply the matrix product over the semiring ({0, 1},∨,∧). The
(max,min)-product and the distance product, which both have applications to
a multitude of tasks in graph theory such as constructing fast algorithms for all-
pairs paths problems (see, e.g., [19]), are the matrix products over the semiring
(Z ∪ {−∞,∞},max,min) and the semiring (Z ∪ {∞},min,+), respectively.

Whenever the operation ⊕ is such that a term as
⊕n

k=1 xk can be computed

in Õ(
√
n) time using quantum techniques (e.g., for ⊕ = ∨ using Grover’s algo-

rithm [8] or for ⊕ = min and ⊕ = max using quantum algorithms for minimum
finding [7]) and each operation � can be implemented in polylog(n) time, the
product of two n × n matrices over the semiring (R,⊕,�) can be computed in
time Õ(n5/2) on a quantum computer.1 This is true for instance for the Boolean
matrix product, and for both the (max,min) and distance matrix products.

A fundamental question is whether we can do better than those Õ(n5/2)-
time straightforward quantum algorithms. For the Boolean matrix product, the
answer is affirmative since it can be computed classically in time Õ(nω), where
ω < 2.373 is the exponent of square matrix multiplication over a field. However,
Boolean matrix product appears to be an exception, and for most semirings it
is not known if matrix multiplication can be done in Õ(nω)-time. For instance,
the best known classical algorithm for the (max,min)-product, by Duan and
Pettie [5], has time complexity Õ(n(3+ω)/2) = O(n2.687) while, for the distance
product, no truly subcubic classical algorithm is even known.

Our Results. We construct in this paper the first quantum algorithms with
exponent strictly smaller than 5/2 for matrix multiplication over several semir-
ings.

We first obtain (in Section 4.1) the following result for multiplication over the
(max,min) semiring.

Theorem 1. There exists a quantum algorithm that computes, with high prob-
ability, the (max,min)-product of two n× n matrices in time O(n2.473).

In comparison, the best known classical algorithm for the (max,min)-product, by
Duan and Pettie [5], has time complexity Õ(n(3+ω)/2) = O(n2.687), as mentioned
above. The (max,min)-product has mainly been studied in the field in fuzzy
logic [6] under the name composition of relations and in the context of computing
the all-pairs bottleneck paths of a graph (i.e., computing, for all pairs (s, t) of
vertices in a graph, the maximum flow that can be routed between s and t). More
precisely, it is well known (see, e.g., [5,18,21]) that if the (max,min)-product of
two n× n matrices can be computed in time T (n), then the all-pairs bottleneck
paths of a graph with n vertices can be computed in time Õ(T (n)). As an
application of Theorem 1, we thus obtain a O(n2.473)-time quantum algorithm

1 In this paper the notation Õ(·) suppresses the no(1) factors.
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computing the all-pairs bottleneck paths of a graph of n vertices, while classically
the best upper bound for this task is O(n2.687), again from [5].

In order to prove Theorem 1, we construct a quantum algorithm that com-
putes the product of two n× n matrices over the existence dominance semiring
(defined in Section 2) in time Õ(n(5+ω)/3) ≤ O(n2.458). The dominance prod-
uct has applications in computational geometry [17] and graph algorithms [20]
and, in comparison, the best known classical algorithm for this product [23] has
complexity O(n2.684). Computing efficiently the existence dominance product is,
nevertheless, not enough for our purpose. We introduce (in Section 3) a new gen-
eralization of it that we call the generalized existence dominance product, and
construct both quantum and classical algorithms that compute this product.

We also show (in Section 4.2) how these results for the generalized exis-
tence dominance product can be used to construct classical and quantum al-
gorithms computing the � most significant bits of each entry of the distance
product of two n×n matrices. In the quantum setting, we obtain time complex-
ity Õ

(
20.640�n(5+ω)/3

) ≤ O(20.640�n2.458). In comparison, prior to the present
work, the best known classical algorithm for the same problem by Vassilevska
and Williams [20] had time complexity Õ

(
2�n(3+ω)/2

) ≤ O(2�n2.687), with a
slight improvement on the exponent of n obtained later by Yuster [23]. We ob-
tain an improvement for this classical time complexity as well, reducing it to
Õ
(
20.960�n(3+ω)/2

)
, which gives a sublinear dependency on 2�.

These results are, to the best of our knowledge, the first quantum algorithms
for matrix multiplication over semirings other than the Boolean semiring im-
proving over the straightforward Õ(n5/2)-time quantum algorithm, and the first
nontrivial quantum algorithms offering a speedup with respect to the best clas-
sical algorithms for matrix multiplication when no assumptions are made on
the sparsity of the matrices involved (sparse matrix multiplication is discussed
below). This shows that, while quantum algorithms may not be able to out-
perform the classical Õ(nω)-time algorithm for matrix multiplication of (dense)
matrices over a ring, they can offer a speedup for matrix multiplication over
other algebraic structures.

We finally investigate under which conditions quantum algorithms faster than
the best known classical algorithms can be constructed for Boolean matrix mul-
tiplication. This question has been recently studied extensively in the output-
sensitive scenario [3,10,12,13], for which quantum algorithms multiplying two
n × n Boolean matrices with query complexity Õ(n

√
λ) and time complexity

Õ(n
√
λ + λ

√
n) were constructed, where λ denotes the number of non-zero en-

tries in the output matrix. In this work, we focus on the case where the input
matrices are sparse (but not necessarily the output matrix), and obtain the
following result.

Theorem 2 (simplified version). Let A and B be two n×n Boolean matrices
each containing at most m non-zero entries. There exists a quantum algorithm
that computes, with high probability, the Boolean matrix product A · B and has
time complexity
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⎧
⎨

⎩

Õ(n2) if m ≤ n1.151,

Õ
(
m0.517n1.406

)
if n1.151 ≤ m ≤ nω−1/2,

Õ(nω) if nω−1/2 ≤ m ≤ n2.

In comparison, the best known classical algorithm, by Yuster and Zwick [24],
has complexity Õ(n2) if m ≤ n1.151, Õ(m0.697n1.199) if n1.151 ≤ m ≤ n(1+ω)/2,
and Õ(nω) if n(1+ω)/2 ≤ m ≤ n2. Our algorithm performs better when n1.151 <
m < nω−1/2. For instance, if m = O(n(1+ω)/2) = O(n1.686...), then our algorithm
has complexity O(n2.277), while the algorithm in [24] has complexity Õ(nω). The
complete statement of Theorem 2, and its proof, are given in the full version of
the present paper [15].

Our main quantum tool is rather standard: quantum enumeration, a variant
of Grover’s search algorithm. We use this technique in various ways to improve
the combinatorial steps in several classical approaches [1,5,21,24] that are based
on a combination of algebraic steps (computing some matrix products over a
field) and combinatorial steps. Moreover, the speedup obtained by quantum
enumeration enables us to depart from these original approaches and optimize
the combinatorial and algebraic steps in different ways, for instance relying on
rectangular matrix multiplication instead of square matrix multiplication. On
the other hand, several subtle but crucial issues appear when trying to apply
quantum enumeration, such as how to store and access information computed
during the preprocessing steps, which induces complications and requires the
introduction of new algorithmic ideas. We end up with algorithms fairly remote
from these original approaches, where most steps are tailored for the use of
quantum enumeration.

2 Preliminaries

Rectangular Matrix Multiplication over Fields. For any k1, k2, k3 > 0, let
ω(k1, k2, k3) represent the minimal value τ such that, over a field, the product
of an nk1 × nk2 matrix by an nk2 × nk3 matrix can be computed with Õ(nτ )
arithmetic operations. The value ω(1, 1, 1) is denoted by ω, and the current best
upper bound on ω is ω < 2.373, see [14,22]. Other important quantities are the
value α = sup{k |ω(1, k, 1) = 2} and the value β = (ω− 2)/(1−α). The current
best lower bound on α is α > 0.302, see [11]. The following facts are known, and
will be used in this paper. We refer to [4,9] for details.

Fact 1. ω(1, k, 1) = 2 for k ≤ α and ω(1, k, 1) ≤ 2 + β(k − α) for α ≤ k ≤ 1.

Fact 2. The following relations hold for any values k1, k2, k3 > 0: (i) for any
k > 0, ω(kk1, kk2, kk3) = kω(k1, k2, k3); (ii) ω(kπ(1), kπ(2), kπ(3)) = ω(k1, k2, k3)
for any permutation π over {1, 2, 3}; (iii) ω(k1, k2, 1 + k3) ≤ ω(k1, k2, 1) + k3;
(iv) ω(k1, k2, k3) ≥ max{k1 + k2, k1 + k3, k2 + k3}.
Matrix Products over Semirings. We define below two matrix products
over semirings considered in Sections 3 and 4, respectively, additionally to the
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Boolean product, the (max,min)-product and the distance product defined in
the introduction. These products were also used in [5,20,21].

Definition 1. Let A be an n× n matrix with entries in Z ∪ {∞} and B be an
n× n matrix with entries in Z ∪ {−∞}. The existence dominance product of A
and B, denoted A∗B, is the n×n Boolean matrix C such that C[i, j] = 1 if and
only if there exists some k ∈ {1, . . . , n} such that A[i, k] ≤ B[k, j]. The product
A � B is the n × n matrix C such that C[i, j] = −∞ if A[i, k] > B[k, j] for all
k ∈ {1, . . . , n}, and C[i, j] = maxk{A[i, k] | A[i, k] ≤ B[k, j]} otherwise.

It is easy to check, as mentioned for instance in [5,21], that computing the
(max,min)-product reduces to computing the product �. Indeed if C denotes the
(max,min)-product of two matrices A and B, then for any (i, j) ∈ {1, . . . , n} ×
{1, . . . , n} we can write C[i, j] = max

{
(A � B)[i, j], (BT

� AT )[j, i]
}
, where AT

and BT denote the transposes of A and B, respectively. Matrix products over
the semirings (min,max), (min,≤) and (max,≥) studied, for instance, in [19],
similarly reduce to computing the product �.

Quantum Algorithms for Matrix Multiplication. We assume that a quan-
tum algorithm can access any entry of the input matrix in a random access
way, similarly to the standard model used in [3,10,12,13] for Boolean matrix
multiplication.

We will use variants of Grover’s search algorithm, as described for instance
in [2], to find elements satisfying some conditions inside a search space of size N .
Concretely, suppose that a Boolean function f : {1, . . . , N} → {0, 1} is given
and that we want to find a solution, i.e., an element x ∈ {1, . . . , n} such that
f(x) = 1. Consider the quantum search procedure (called safe Grover search
in [16]) obtained by repeating Grover’s standard search a logarithmic number
of times, and checking if a solution has been found. This quantum procedure
outputs one solution with probability at least 1− 1/poly(N) if a solution exists,
and always rejects if no solution exists. Its time complexity is Õ(

√
N/max(1, t))),

where t denotes the number of solutions, if the function f can be evaluated in
Õ(1) time. By repeating this procedure and striking out solutions as soon as they
are found, one can find all the solutions with probability at least 1− 1/poly(N)
using Õ

(√
N/t +

√
N/(t− 1) + · · · + √

N/1
)
= Õ(

√
N(t+ 1)) computational

steps. We call this procedure quantum enumeration.

3 Existence Dominance Matrix Multiplication

In this section we present a quantum algorithm that computes the existence
dominance product of two matrices A and B. The underlying idea of our algo-
rithm is similar to the idea in the best classical algorithm for the same problem
by Duan and Pettie [5]: use a search step to find some of the entries of A ∗ B,
and rely on classical algebraic algorithms to find the other entries. We naturally
use quantum search to implement the first part, and perform careful modifica-
tions of their approach to improve the complexity in the quantum setting, taking
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advantage of the features of quantum enumeration. There are two notable differ-
ences: The first one is that the algebraic part of our quantum algorithms uses
rectangular matrix multiplication, while [5] uses square matrix multiplication.
The second and crucial difference is that, for applications in later sections, we
give a quantum algorithm that can handle a new (and more general) version of
the existence dominance product, defined on set of matrices, which we call the
generalized existence dominance product and define below.

Definition 2. Let u, v be two positive integers, and S be the set S = {1, . . . , u}×
{1, . . . , v}. Let ≺ be the lexicographic order over S ∪ {(0, 0)} (i.e., (i, j) ≺ (i′, j′)
if and only if i < i′ or (i = i′ and j < j′)). Consider u matrices A(1), . . . , A(u),
each of size n× n with entries in Z ∪ {∞}, and v matrices B(1), . . . , B(v), each
of size n× n with entries in Z∪ {−∞}. For each (i, j) ∈ {1, . . . , n}× {1, . . . , n}
define the set Sij ⊆ S ∪ {(0, 0)} as follows:

Sij = {(x, y) ∈ S |A(x) ∗B(y)[i, j] = 1} ∪ {(0, 0)}.

The generalized existence dominance product of these matrices is the n×n matrix
C with entries in S ∪ {(0, 0)} defined as follows: for all (i, j) ∈ {1, . . . , n} ×
{1, . . . , n} the entry C[i, j] is the maximum element in Sij , where the maximum
refers to the lexicographic order.

Note that the case u = v = 1 corresponds to the standard existence dominance
product, since C[i, j] = (1, 1) if A(1) ∗B(1)[i, j] = 1 and C[i, j] = (0, 0) if A(1) ∗
B(1)[i, j] = 0.

Proposition 1. Let A(1), . . . , A(u) be u matrices of size n × n with entries in
Z ∪ {∞}, and B(1), . . . , B(v) be v matrices of size n × n with entries in Z ∪
{−∞}. Let m1 ∈ {1, . . . , n2u} denote the total number of finite entries in the
matrices A(1), . . . , A(u), and m2 ∈ {1, . . . , n2v} denote the total number of finite
entries in the matrices B(1), . . . , B(v). For any parameter t ∈ {1, . . . ,m1}, there
exists a quantum algorithm that computes, with high probability, their generalized
existence dominance product in time

Õ

(√
m1m2n

t
+

√
m1m2uv

tn
+ nω(1+logn u,1+logn t,1+logn v)

)

.

Proof. Let t ∈ {1, . . . ,m1} be a parameter to be chosen later. Let L be the list
of all finite entries in A(1), . . . , A(u) sorted in increasing order. Decompose L into
t successive parts L1, . . . , Lt, each containing at most �m1/t� entries. For each

x ∈ {1, . . . , u} and each r ∈ {1, . . . , t} we construct two n×n matrices A
(x)
r , Ā

(x)
r

as follows: for all (i, j) ∈ {1, . . . , n} × {1, . . . , n},

A(x)
r [i, j] =

{
A(x)[i, j] if A(x)[i, j] ∈ Lr,
∞ otherwise,

Ā(x)
r [i, j] =

{
1 if A(x)[i, j] ∈ Lr,
0 otherwise.
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Similarly, for each y ∈ {1, . . . , v} and each r ∈ {1, . . . , t} we construct two n×n

matrices B
(y)
r , B̄

(y)
r as follows: for all (i, j) ∈ {1, . . . , n} × {1, . . . , n},

B(y)
r [i, j] =

{
B(y)[i, j] if minLr ≤ B(y)[i, j] < maxLr,
−∞ otherwise,

B̄(y)
r [i, j] =

{
1 if B(y)[i, j] ≥ maxLr,
0 otherwise.

The cost of this (classical) preprocessing step is O(n2t(u+ v)) time.
It is easy to see that, for each x ∈ {1, . . . , u} and y ∈ {1, . . . , v}, the following

equality holds (where the operators + and
∑

refer to the entry-wise OR):

A(x) ∗B(y) =

t∑

r=1

(
Ā(x)

r · B̄(y)
r

)
+

t∑

r=1

(
A(x)

r ∗B(y)
r

)
. (1)

Indeed, the second term compares entries that are in a same part Lr, while
the first term takes into consideration entries in distinct parts. Define two n ×
n matrices C1 and C2 with entries in S ∪ {(0, 0)} as follows: for all (i, j) ∈
{1, . . . , n} × {1, . . . , n},

C1[i, j] =max

{

{(0, 0)} ∪ {(x, y) ∈ S |
t∑

r=1

Ā(x)
r · B̄(y)

r [i, j] = 1}
}

, (2)

C2[i, j] =max

{

{(0, 0)} ∪ {(x, y) ∈ S |
t∑

r=1

A(x)
r ∗B(y)

r [i, j] = 1}
}

. (3)

From Equation (1), the generalized existence dominance product C satisfies
C[i, j] = max{C1[i, j], C2[i, j]} for all (i, j) ∈ {1, . . . , n}×{1, . . . , n}. The matrix
C can then be computed in time O(n2) from C1 and C2.

The matrix C1 can clearly be computed in time O(n2uv) if all the terms
∑

r Ā
(x)
r · B̄(y)

r are known. We can obtain all these uv terms by computing the
following Boolean product of an nu × nt matrix by an nt × nv matrix (both
matrices can be constructed in time Õ(n2t(u+ v))).

⎡

⎢
⎢
⎣

Ā
(1)
1 · · · Ā

(1)
t

...
...

Ā
(u)
1 · · · Ā(u)

t

⎤

⎥
⎥
⎦ ·

⎡

⎢
⎢
⎣

B̄
(1)
1 · · · · · · B̄(v)

1
...

...

B̄
(1)
t · · · · · · B̄(v)

t

⎤

⎥
⎥
⎦

The cost of this matrix multiplication is Õ
(
nω(1+logn u,1+logn t,1+logn v)

)
. From

item (iv) of Fact 2, we conclude that the matrix C1 can be computed in time

Õ
(
n2uv + n2t(u+ v) + nω(1+logn u,1+logn t,1+logn v)

)

= Õ
(
nω(1+logn u,1+logn t,1+logn v)

)
.
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We now explain how to compute the matrix C2. Intuitively, the main diffi-
culty is that Equation (3) cannot be used directly since we do not know how to
compute the dominance product ∗ efficiently. Lemma 1 below shows that it is
possible to replace this dominance product by a Boolean product if we replace

the matrices A
(x)
r and B

(y)
r by some Boolean matrices Â

(x)
r and B̂

(y)
r (compare

Equation (3) with Equation (4) below). This lemma further shows that the latter
matrices can be computed efficiently by a quantum algorithm (based on quan-
tum search). Actually, for technical reasons we additionally need to replace the
term {(0, 0)} in Equation (3) by the term {D[i, j]} in Equation (4), where D is a
matrix that can also be computed efficiently using a quantum algorithm. While
this lemma is the main technical part of the proof of this proposition, due to
space constraints its proof is omitted (we refer to [15] for all details).

Lemma 1. There exists a quantum algorithm that, with high probability, outputs

– tu Boolean matrices Â
(x)
r , each of size n × 2n, for all x ∈ {1, . . . , u} and

r ∈ {1, . . . , t},
– tv Boolean matrices B̂

(y)
r , each of size 2n × n, for all y ∈ {1, . . . , v} and

r ∈ {1, . . . , t},
– a matrix D of size n × n with entries in S ∪ {(0, 0)} = ({1, . . . , u} ×

{1, . . . , v}) ∪ {(0, 0)},
such that

C2[i, j] = max

{

{D[i, j]} ∪ {(x, y) ∈ S |
t∑

r=1

Â(x)
r · B̂(y)

r [i, j] = 1}
}

(4)

for all (i, j) ∈ {1, . . . , n} × {1, . . . , n}. The time complexity of this quantum
algorithm is

Õ

(

n2t(u + v) +

√
m1m2n

t
+

√
m1m2uv

tn

)

.

After applying the quantum algorithm of Lemma 1, we can obtain the matrix

C2, similarly to the computation of C1, if we know all the terms
∑

r Â
(x)
r · B̂(y)

r .
we obtain all these uv terms by computing the following Boolean product of an
nu× nt matrix by an nt× nv matrix.

⎡

⎢
⎢
⎣

Â
(1)
1 · · · Â

(1)
t

...
...

Â
(u)
1 · · · Â(u)

t

⎤

⎥
⎥
⎦ ·

⎡

⎢
⎢
⎣

B̂
(1)
1 · · · · · · B̂(v)

1
...

...

B̂
(1)
t · · · · · · B̂(v)

t

⎤

⎥
⎥
⎦

The cost of this matrix multiplication is Õ
(
nω(1+logn u,1+logn t,1+logn v)

)
. The

total cost of computing the matrix C2 is thus

Õ

(

n2t(u+ v) +

√
m1m2n

t
+

√
m1m2uv

tn
+ nω(1+logn u,1+logn t,1+logn v)

)

,

which is the desired bound since the term n2t(u+v) is negligible here by item (iv)
of Fact 2. ��
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We can also give a classical version of the algorithm of Proposition 1, as stated
in the following proposition (see [15] for a proof).

Proposition 2. There exists a classical algorithm that computes the generalized
existence dominance product in time Õ

(
m1m2

tn + nω(1+logn u,1+logn t,1+logn v)
)
,

for any parameter t ∈ {1, . . . ,m1}.
We now consider the case u = v = 1 corresponding to the standard existence

dominance product. By optimizing the choice of the parameter t in Proposition 1,
we obtain the following theorem.

Theorem 3. Let A be an n × n matrix with entries in Z ∪ {∞} containing at
most m1 non-(∞) entries, and B be an n× n matrix with entries in Z ∪ {−∞}
containing at most m2 non-(−∞) entries. There exists a quantum algorithm
that computes, with high probability, the existence dominance product of A and
B in time Õ(

√
m1m2n1−μ), where μ is the solution of the equation μ+2ω(1, 1+

μ, 1) = 1 + logn(m1m2). In particular, this time complexity is upper bounded by
Õ
(
(m1m2)

1/3n(ω+1)/3
)
.

Proof. The complexity of the algorithm of Proposition 1 is minimized for t = nμ,
where μ is the solution of the equation μ + 2ω(1, 1 + μ, 1) = 1 + logn(m1m2).
We can use items (ii) and (iii) of Fact 2 to obtain the upper bound ω(1, 1 +
μ, 1) ≤ ω + μ, and optimize the complexity of the algorithm by taking t =⌈
(m1m2)

1/3n(1−2ω)/3
⌉
, which gives the upper bound claimed in the second part

of the theorem. ��

In the case of completely dense input matrices (i.e., m1 ≈ n2 and m2 ≈ n2),
the second part of Theorem 3 shows that the complexity of the algorithm is
Õ(n(5+ω)/3) ≤ O(n2.458).

4 Applications: (max,min)-Product, Distance Product

4.1 Quantum Algorithm for the (max,min)-Product

In this subsection we present a quantum algorithm for the matrix product �,
which immediately gives a quantum algorithm with the same complexity for the
(max,min)-product as explained in Section 2, and then gives Theorem 1. Our
algorithm first exploits the methodology by Vassilevska et al. [21] to reduce the
computation of the product � to the computation of several sparse dominance
products. The main technical difficulty to overcome is that, unlike in the classi-
cal case, computing all the sparse dominance products successively becomes too
costly (i.e., the cost exceeds the complexity of all the other parts of the quantum
algorithm). Instead, we show that it is sufficient to obtain a small fraction of
the entries in each dominance product and that this task reduces to the compu-
tation of a generalized existence dominance product, and then use the quantum
techniques of Proposition 1 to obtain precisely only those entries.
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Theorem 4. There exists a quantum algorithm that computes, for any two n×n
matrices A and B with entries respectively in Z∪{∞} and Z∪{−∞}, the product
A � B with high probability in time Õ(n(5−γ)/2), where γ is the solution of the
equation γ+2ω(1+γ, 1+γ, 1) = 5. In particular, this complexity is upper bounded
by O(n2.473).

Proof. Let g ∈ {1, . . . , n} be a parameter to be chosen later. For each i ∈
{1, . . . , n}, we sort the entries in the i-th row of A in increasing order and
divide the list into s = �n/g� successive parts Ri

1, . . . , R
i
s with at most g entries

in each part. For each r ∈ {1, . . . , s}, define the n × n matrix Ar as follows:
Ar[i, j] = A[i, j] if A[i, j] ∈ Ri

r and Ar[i, j] = ∞ otherwise. The cost of this
(classical) preprocessing is O(n2s) time.

We describe below the quantum algorithm that computes C = A � B.

Step 1. For each (i, j) ∈ {1, . . . , n} × {1, . . . , n}, we compute the largest r ∈
{1, . . . , s} such that (Ar ∗B)[i, j] = 1, if such an r exists. This is done by using
the quantum algorithm of Proposition 1 with u = s, v = 1, A(r) = Ar for each
r ∈ {1, . . . , s} and B(1) = B. Note that m1 ≤ s × (ng) = O(n2) and m2 ≤ n2.
The complexity of this step is thus

Õ

(
n5/2

√
t

+ nω(1+logn s,1+logn t,1)

)

for any parameter t ∈ {1, . . . , n2}. We want to minimize this expression. Let us
write t = nγ and g = nδ. For a fixed δ, the first term is a decreasing function
of γ, while the second term is an increasing function of γ. The expression is thus
minimized for the value of γ solution of the equation

ω(2− δ, 1 + γ, 1) = (5 − γ)/2, (5)

in which case the expression becomes Õ(n(5−γ)/2).

Step 2. Note that at Step 1 we also obtain all (i, j) ∈ {1, . . . , n} × {1, . . . , n}
such that no r satisfying (Ar ∗ B)[i, j] = 1 exists. For all those (i, j), we set
C[i, j] = −∞. For all other (i, j), we will denote by rij the value found at Step
1. We now know that

C[i, j] = max
k: A[i,k]∈Ri

rij

{Arij [i, k] | Arij [i, k] ≤ B[k, j]},

and C[i, j] can be computed in time Õ(
√
g) using the quantum algorithm for

maximum finding [7], since |Ri
rij | ≤ g. The complexity of Step 2 is thus Õ(n2√g).

This algorithm computes, with high probability, all the entries of C = A�B.
Its complexity is

Õ
(
n2s+ n(5−γ)/2 + n2√g

)
= Õ

(
n(5−γ)/2 + n2+δ/2

)
,
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since the term n2s = n3−δ is negligible with respect to n(5−γ)/2 = nω(2−δ,1+γ,1)

by item (iv) of Fact 2. This expression is minimized for δ and γ satisfying δ+γ =
1. Injecting this constraint into Equation (5), we find that the optimal value of γ
is the solution of the equation γ + 2ω(1 + γ, 1 + γ, 1) = 5, as claimed. Using
items (i) and (ii) of Fact 2 and Fact 1, we obtain

5 = γ + 2(1 + γ)ω

(

1, 1,
1

1 + γ

)

≤ γ + 2(1 + γ)

(

2 + β

(
1

1 + γ
− α

))

= (4 + 2β − 2αβ) + (5− 2αβ)γ

and then γ ≥ 1+2αβ−2β
5−2αβ . The complexity is thus Õ

(
n(12−6αβ+β)/(5−2αβ)

) ≤
O(n2.473). ��

4.2 Quantum Algorithm for the Distance Product

In this subsection we present a quantum algorithm that computes the most
significant bits of the distance product of two matrices, as defined below.

Let A and B be two n×n matrices with entries in Z∪{∞}. Let W be a power
of two such that the value of each finite entry of their distance product C is upper
bounded by W . For instance, one can take the smallest power of two larger than
maxi,j{A[i, j]}+maxi,j{B[i, j]}, where the maxima are over the finite entries of
the matrices. Each non-negative finite entry of C can then be expressed using

log2(W ) bits: the entry C[i, j] can be expressed as C[i, j] =
∑log2(W )

k=1 C[i, j]k
W
2k

for bits C[i, j]1, . . . , C[i, j]log2(W ). For any � ∈ {1, . . . , log2(W )}, we say that an
algorithm computes the � most significant bits of each entry if, for all (i, j) ∈
{1, . . . , n}×{1, . . . , n} such that C[i, j] is finite and non-negative, the algorithm
outputs all the bits C[i, j]1, C[i, j]2, · · · , C[i, j]�. Vassilevska and Williams [20]
have studied this problem, and shown how to reduce the computation of the �
most significant bits to the computation of O(2�) existence dominance matrix
products of n × n matrices. By combining this with the Õ(n(3+ω)/2)-time algo-
rithm for dominance product from [17], they obtained a classical algorithm that
computes the � most significant bits of each entry of the distance product of A
and B in time Õ

(
2�n(3+ω)/2

) ≤ Õ
(
2�n2.687

)
.

Here is the main result of this subsection, whose proof is given in [15], ob-
tained by reducing the computation of the � most significant bits to computing
a generalized existence dominance product.

Theorem 5. There exists a quantum algorithm that computes, for any two n×n
matrices A and B with entries in Z∪{∞}, the � most significant bits of each entry
of the distance product of A and B in time Õ

(
20.640�n(5+ω)/3

) ≤ O(20.640�n2.458)
with high probability.

Similarly, we can obtain a better classical algorithm as shown in the following
theorem. We refer to [15] for details.
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Theorem 6. There exists a classical algorithm that computes, for any two n×n
matrices A and B with entries in Z∪{∞}, the � most significant bits of each entry
of the distance product of A and B in time Õ

(
20.960�n(3+ω)/2

) ≤ O(20.960�n2.687).
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