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Abstract. Estimating the number of triangles in graph streams using
a limited amount of memory has become a popular topic in the last
decade. Different variations of the problem have been studied, depend-
ing on whether the graph edges are provided in an arbitrary order or as
incidence lists. However, with a few exceptions, the algorithms have con-
sidered insert-only streams. We present a new algorithm estimating the
number of triangles in dynamic graph streams where edges can be both
inserted and deleted. We show that our algorithm achieves better time
and space complexity than previous solutions for various graph classes,
for example sparse graphs with a relatively small number of triangles.
Also, for graphs with constant transitivity coefficient, a common situa-
tion in real graphs, this is the first algorithm achieving constant process-
ing time per edge. The result is achieved by a novel approach combining
sampling of vertex triples and sparsification of the input graph.

1 Introduction

Many relationships between real life objects can be abstractly represented as
graphs. The discovery of certain structural properties in a graph, which ab-
stractly describes a given real-life problem, can often provide important insights
into the nature of the original problem. The number of triangles, and the closely
related clustering and transitivity coefficients, have proved to be an important
measure used in applications ranging from social network analysis and spam de-
tection to motif detection in protein interaction networks. We refer to [23] for a
detailed discussion on the applications of triangle counting.

The best known algorithm for triangle counting in the RAM model runs in

time O(m
2ω

ω+1 ) [4] where ω is the matrix multiplication exponent, the best known
bound is ω = 2.3727 [24]. However, this algorithm is mainly of theoretical impor-
tance since exact fast matrix multiplication algorithms do not admit an efficient
implementation for input matrices of reasonable size.

The last decade has witnessed a rapid growth of available data. This has led
to a shift in attitudes in algorithmic research and solutions storing the whole
input in main memory are not any more considered a feasible choice for many
real-life problems. Classical algorithms have been adjusted in order to cope with
the new requirements and many new techniques have been developed [17].
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Approximate Triangle Counting in Streamed Graphs. For many appli-
cations one is satisfied with a good approximation of the number of triangles
instead of their exact number, thus researchers have designed randomized ap-
proximation algorithms returning with high probability a precise estimate using
only small amount of main memory. Two models of streamed graphs have been
considered. In the incidence list stream model the edges incident to each vertex
arrive consecutively and in the adjacency stream model edges arrive in arbitrary
order. Also, it has been distinguished between algorithms using only a single pass
over the input, and algorithms assuming that the input graph can be persistently
stored on a secondary device and multiple passes are allowed. The one-pass al-
gorithms with the best known space complexity and constant processing time
per edge, both in the incidence list stream and adjacency stream model, are due
to Buriol et al. [8], and when several passes are allowed – by Kolountzakis et
al. [14]. For an overview of results and developed techniques we refer to [23].

Dynamic graph streams have a wider range of applications. Consider for
example a social network like Facebook where one is allowed to befriend and
“unfriend” other members, or join and leave groups of interest. Estimating the
number of triangles in a network is a main building block in algorithms for
the detection of emerging communities [7], and thus it is required that triangle
counting algorithms can also handle edge deletions. The problem of designing
triangle counting algorithms for dynamic streams matching the space and time
complexity of algorithms for insert-only streams has been presented as an open
question in the 2006 IITK Workshop on Algorithms for Data Streams [15]. The
best known algorithms for insert-only streams work by sampling a non-empty
subgraph on three vertices from the stream (e.g. an edge (u, v) and a vertex w).
Then one checks whether the arriving edges will complete the sampled subgraph
to a triangle (we look for (u,w) and (v, w)). The approach does not work for dy-
namic streams because an edge in the sampled subgraph might be deleted later.
Proposed solutions [1,16] have explored different ideas. These approaches, how-
ever, only partially resolve the open problem from [15] because of high processing
time per edge update, see Section 3 for more details.

Our Contribution. In this work we propose a method to adjust sampling to
work in dynamic streams and show that for graphs with constant transitivity
coefficient, a ubiquitous assumption for real-life graphs, we can achieve constant
processing time per edge. At a very high level, the main technical contribution
of the present work can be summarized as follows.

For dynamic graph streams sampling-based approaches fail because we don’t
know how many of the sampled subgraphs will survive after edges have been
deleted. On the other hand, graph sparsification approaches [19,22,23] can handle
edge deletions but the theoretical guarantees on the complexity of the algorithms
depend on specific properties of the underlying graph, e.g., the maximum number
of triangles an edge is part of. The main contribution in the present work is a
novel technique for sampling 2-paths after the stream has been processed. It is
based on the combination of standard 2-path sampling with graph sparsification.
The main technical challenge is to show that sampling at random a 2-path in
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a sparsified graph is (almost) equivalent to sampling at random a 2-path in the
original graph. In the course of the analysis, we also obtain combinatorial results
about general graphs that might be of independent interest.

2 Preliminaries

Notation. A simple undirected graph without loops is denoted as G = (V,E)
with V = {1, 2, . . . , n} being a set of vertices and E a set of edges. The edges are
provided as a stream of insertions and deletions in arbitrary order. We assume the
strict turnstile model where each edge can be deleted only after being inserted.
We assume that n is known in advance1 and that the number of edges cannot
exceed m. For an edge connecting the vertices u and v we write (u, v) and u
and v are the endpoints of the edge (u, v). Vertex u is neighbor of v and vice
versa and N(u) is the set of u’s neighbors. We say that edge (u, v) is isolated
if |N(u)| = |N(v)| = 1. We consider only edges (u, v) with u < v. A 2-path
centered at v, (u, v, w), consists of the edges (u, v) and (v, w). A k-clique in
G is a subgraph of G on k vertices v1, . . . , vk such that (vi, vj) ∈ E for all
1 ≤ i < j ≤ k. A 3-clique on u, v, w is called a triangle on u, v, w, and is denoted
as 〈u, v, w〉. We denote by P2(v) the number of 2-paths centered at a vertex
v, and P2(G) =

∑
v∈V P2(v) and T3(G) the number of 2-paths and number of

triangles in G, respectively. We will omit G when clear from the context.
We say that two 2-paths are independent if they have at most one common

vertex. The transitivity coefficient of G is

α(G) =
3T3

∑
v∈V

(
dv

2

) =
3T3

P2
,

i.e., the ratio of 2-paths in G contained in a triangle to all 2-paths in G. When
clear from the context, we will omit G.

Hashing. A family F of functions from U to a finite set S is k-wise independent
if for a function f : U → S chosen uniformly at random from F it holds

Pr[f(u1) = c1 ∧ f(u2) = c2 ∧ · · · ∧ f(uk) = ck] = 1/sk

for s = |S|, distinct ui ∈ U and any ci ∈ S and k ∈ N. We will call a function cho-
sen uniformly at random from a k-wise independent family k-wise independent
function and a function f : U → S fully random if f is |U |-wise independent.
We will say that a function f : U → S behaves like a fully random function if
for any set of input from U , with high probability f has the same probability
distribution as a fully random function.

We will say that an algorithm returns an (ε, δ)-approximation of some quantity
q if it returns a value q̃ such that (1 − ε)q ≤ q̃ ≤ (1 + ε)q with probability at
least 1− δ for every 0 < ε, δ < 1.

1 Our results hold when the n vertices come from some arbitrary universe U and are
known in advance. We omit this generalization due to lack of space.
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3 The New Approach

The following theorem is our main result.

Theorem 1. Let G = (V,E) be a graph given as a stream of edge insertions
and deletions with no isolated edges and vertices, V = {1, 2, . . . , n} and |E| ≤
m. Let P2, T3 and α be the number of 2-paths, number of triangles and the
transitivity coefficient of G, respectively. Let ε, δ ∈ (0, 1) be user defined and
b = max(n, P2/n). Assuming fully random hash functions, there exists a one-pass
algorithm running in expected space O( m√

bε3α
log 1

δ ) and O( 1
ε2α log 1

δ ) processing

time per edge. After processing the stream, an (ε, δ)-approximation of T3 can be

computed in expected time O( log n
ε2α log 1

δ ) and worst case time O( log
2 n

ε2α log 1
δ ) with

high probability.

(For simplicity, we assume that there are no isolated edges in G. More gener-
ally, the result holds by replacing n with nC , where nC is the number of vertices
in connected components with at least two edges. We recall again that we assume
m and n can be described in O(1) words.)

Table 1. Overview of time and space bounds. It holds b = max(n, P2/n).

Space Update time

Ahn et al.[1] O( mn
ε2T3

1 log 1
δ
) O(n log n)

Manjunath et al. [16] O( m3

ε2T2
3
log 1

δ
) O( m3

ε2T2
3
log 1

δ
)

This work O( m√
bε3α

log 1
δ
) O( 1

ε2α
log 1

δ
)

Table 2. Comparison of the theoretical guarantees for the per edge processing time
for varying z

n log n m3/T 2
3

z < 1/2 T3 = ω(C2/(n2z log n)) T3 = o(Cn2−z)

1/2 < z < 1 T3 = ω(C2/(n log n)) T3 = o(Cn3−3z)

z > 1 T3 = ω(C2/(n log n)) T3 = o(C)

Before presenting the algorithm, let us compare the above to the bounds
in [1,16]. The algorithm in [1] estimates T3 by applying �0 sampling [11] to
non-empty subgraphs on 3 vertices. There are O(mn) such subgraphs, thus
O( mn

ε2T3
log 1

δ ) samples are needed for an (ε, δ)-approximation. However, each edge
insertion or deletion results in the update of n − 2 non-empty subgraphs on 3
vertices. Using the �0 sampling algorithm from [12], this results in processing
time of O(n logn) per edge. The algorithm by Manjunath et al. [16] estimates
the number of triangles (and more generally of cycles of fixed length) in streamed
graphs by computing complex valued sketches of the stream. Each of them yields

an unbiased estimator of T3. The average of O( m3

ε2T 2
3
log 1

δ ) estimators is an (ε, δ)-

approximation of T3. However, each new edge insertion or deletion has to update

all estimators, resulting in update time of O( m3

ε2T 2
3
log 1

δ ). The algorithm was gen-

eralized to counting arbitrary subgraphs of fixed size in [13].
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The time and space bounds are summarized in Table 1. Comparing our space
complexity to the bounds in [1,16], we see that for several graph classes our algo-
rithm is more time and space efficient. (We ignore ε and δ and logarithmic factors
in n for the space complexity.) For d-regular graphs the processing time per edge
is better than O(n logn) for T3 = ω(d2/ logn), and better than O(m3/T 3

2 ) for
T3 = o(n2d). Our space bound is better than O(mn/T3) when d = o(n1/4), and
better than O(m3/T 2

3 ) for T3 = o(max(n3/2, nd)). Most real-life graphs exhibit
a skewed degree distribution adhering to some form of power law, see for exam-
ple [2]. Assume vertices are sorted according to their degree in decreasing order
such that the ith vertex has degree C/iz for some C ≤ n, and constant z > 0,
i.e., we have Zipfian distribution with parameter z. It holds

∑n
i=1 i

−z = O(n1−z)
for z < 1 and

∑n
i=1 i

−z = O(1) for z > 1. Table 2 summarizes for which values
of T3 our algorithm achieves faster processing time than [1,16], and Table 3 – for
which values of C our algorithm is more space-efficient than [1], and for which
values of T3 – more space-efficient than [16].

However, the above values are for arbitrary graphs adhering to a certain de-
gree distribution. We consider the main advantage of the new algorithm to be
that it achieves constant processing time per edge for graphs with constant tran-
sitivity coefficient. This is a common assumption for real-life networks, see for
instance [3,8]. Note that fast update is essential for real life applications. Con-
sider for example the Facebook graph. In May 2011, for less than eight years
existence, there were about 69 billion friendship links [6]. This means an average
of above 300 new links per second, without counting deletions and peak hours.

In the full version of the paper 2 we compare the theoretical guarantees for
several real life graphs. While such a comparison is far from being a rigorous
experimental evaluation, it clearly indicates that the processing time per edge
in [1,16] is prohibitively large and the assumption that the transitivity coefficient
is constant is justified. Also, for graphs with a relatively small number of triangles
our algorithm is much more space-efficient.

Table 3. Comparison of the theoretical guarantees for the space usage for varying z

mn/T3 m3/T 2
3

z < 1/2 C = o(n1/4+z) T3 = o(max(n3/2, Cn1−z))

1/2 < z < 1 C = o(n3/4) T3 = o(n5/2−2z)

z > 1 C = o(n3/4) T3 = o(n1/2)

3.1 The Main Idea

The main idea behind our algorithm is to design of a new sampling technique for
dynamic graph streams. It exploits a combination of the algorithms by Buriol
et al. [8] for the incidence stream model, and the Doulion algorithm [22] and its
improvement [19]. Let us briefly describe the approaches.

2 http://arxiv.org/pdf/1404.4696.pdf

http://arxiv.org/pdf/1404.4696.pdf
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The Buriol et al. Algorithm for Incidence List Streams. Assume we
know the total number of 2-paths in G. One chooses at random one of them, say
(u, v, w), and checks whether the edge (u,w) appears later in the stream. For
a triangle 〈u, v, w〉 the three 2-paths (u, v, w), (w, u, v), (v, w, u) appear in the
incidence list stream, thus the probability that we sample a triangle is exactly α.
One chooses independently at random K 2-paths and using standard techniques
shows that for K = O( 1

ε2α log 1
δ ) we compute an (ε, δ)-approximation of α(G).

One can get rid of the assumption that the number of 2-paths is known in
advance by running O(log n) copies of the algorithm in parallel, each guessing
the right value. The reader is referred to the original work for more details.
For incidence streams, the number of 2-paths in G can be computed exactly by
updating a single counter, thus T̃3 = α̃P2 is an (ε, δ)-approximation of T3.

Doulion and Monochromatic Sampling. The Doulion algorithm [22] is a
simple and intuitive sparsification approach. Each edge is sampled independently
with probability p and added to a sparsified graph GS . We expect pm edges to be
sampled and a triangle survives in GS with probability p3, thus multiplying the
number of triangles in GS by 1/p3 we obtain an estimate of T3. The algorithm
was improved in [19] by using monochromatic sampling. Instead of throwing a
biased coin for each edge, we uniformly at random color each vertex with one
of 1/p colors. Then we keep an edge in the sparsified graph iff its endpoints
have the same color. A triangle survives in GS with probability p2. It is shown
that for a fully random coloring the variance of the estimator is better than in
Doulion. However, in both algorithms it depends on the maximum number of
triangles an edge is part of, and one might need constant sampling probability
in order to obtain an (ε, δ)-approximation on T3. The algorithm can be applied
to dynamic streams because one counts the number of triangles in the sparsified
graph after all edges have been processed. However, it can be expensive to obtain
an estimate since the exact number of triangles in GS is required.

Combining the above Approaches. The basic idea behind the new algorithm
is to use the estimator of Buriol et al. for the incidence stream model: (i) estimate
the transitivity coefficient α(G) by choosing a sufficiently large number of 2-paths
at random and check which of them are part of a triangle, and (ii) estimate
the number of 2-paths P2 in the graph. We first observe that estimating P2 in
dynamic graph streams can be reduced to second moment estimation of streams
of items in the turnstile model, see e.g. [21]. For (i), we will estimate α(G) by
adjusting the monochromatic sampling approach. Its main advantage compared
to the sampling of edges separately is that if we have sampled the 2-path (u, v, w),
then we must also have sampled the edge (u,w), if existent. So, the idea is to use
monochromatic sampling and then in the sparsified graph to pick up at random
a 2-path and check whether it is part of a triangle. Instead of random coloring
of the vertices, we will use a suitably defined hash function and we will choose
a sampling probability guaranteeing that for a graph with no isolated edges
(or rather a small number of isolated edges) the sparsified graph will contain a
sufficiently big number of 2-paths. A 2-path in the sparsified graph picked up
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at random, will then be used to estimate α(G). Thus, unlike in [8], we sample
after the stream has been processed and this allows to handle edge deletions.
The main technical obstacles are to analyze the required sampling probability p
and to show that this sampling approach indeed provides an unbiased estimator
of α(G). We will obtain bounds on p and show that even if the estimator might
be biased, the bias can be made arbitrarily small and one can still achieve an
(ε, δ)-approximation of α(G). Also, we present an implementation for storing a
sparsified graph GS such that each edge is added or deleted in constant time
and a random 2-path in GS , if existent, can be picked up without explicitly
considering all 2-paths in GS .

3.2 The Algorithm

Pseudocode description of the algorithm is given in Figure 1. We assume that
the graph is given as a stream S of pairs ((u, v), $), where (u, v) ∈ E and $
∈ {+,−} with the obvious meaning that the edge (u, v) is inserted or deleted
from G. In EstimateNumberOfTwoPaths each incoming pair ((u, v), $) is
treated as the insertion, respectively deletion, of two items u and v, and these
update a second moment estimator SME, working as a blackbox algorithm.
We refer to the proof of Lemma 1 for more details. In SparsifyGraph we
assume access to a fully random coloring hash function f : V → C. Each edge
(u, v) is inserted/deleted to/from a sparsified graph GS iff f(u) = f(v). At
the end GS consists of all monochromatic edges that have not been deleted. In
EstimateNumberOfTriangles we run in parallel the algorithm estimating P2

and K copies of SampleRandom2Path. For each Gi
S , 1 ≤ i ≤ K, with at least

s pairwise independent 2-paths we choose at random a 2-path and check whether
it is a triangle. (Note that we require the existence of s pairwise independent 2-
paths but we choose a 2-path at random from all 2-paths in GS .) The ratio of
triangles to all sampled 2-paths and the estimate of P2 are then used to estimate
T3. In the next section we obtain bounds on the user defined parameters C,K
and s. In Lemma 6 we present en efficient implementation of GS that guarantees
constant time updates and allows the sampling of a random 2-path in expected
time O(log n) and worst case time O(log2 n) with high probability.

3.3 Theoretical Analysis

We will prove the main result in several lemmas. Due to lack of space, proofs
which are not essential for the understanding of the main ideas can be found in
the full version of the paper. The next lemma provides an estimate of P2 using
an estimator for the second frequency moment of data streams [21].

Lemma 1. Let G be a graph with no isolated edges given as a stream of
edge insertions and deletions. There exists an algorithm returning an (ε, δ)-
approximation of the number of 2-paths in G in one pass over the stream of
edges which needs O( 1

ε2 log
1
δ ) space and O(log 1

δ ) processing time per edge.
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EstimateNumberOfTwoPaths

Input: stream of edge deletions and insertions S , algorithm SME estimating the
second moment items streams

1. m = 0
2. for each ((u, v), $) in S do
3. if $= + then
4. m = m+ 1
5. SME.update(u, 1), SME.update(v, 1)
6. else
7. m = m− 1
8. SME.update(u,−1), SME.update(v,−1)
9. return SME.estimate/2−m

SparsifyGraph

Input: stream of edge deletions and insertions S , coloring function f : V → C

1. GS = ∅
2. for each ((u, v), $) ∈ S do
3. if f(u) = f(v) then
4. if $= + then
5. GS = GS ∪ (u, v).
6. else
7. GS = GS\(u, v).
8. Return GS .

SampleRandom2Path

Input: sparsified graph GS

1. choose at random a 2-path (u, v, w) in GS

2. if the vertices {u, v, w} form a triangle then
3. return 1
4. else
5. return 0

EstimateNumberOfTriangles

Input: streamed graph S , set of K independent fully random coloring functions F ,
algorithm SME estimating the second moment of streams of items, threshold s

1. run in parallel EstimateNumberOfTwoPaths(S , SME) and let P̃2 be the re-
turned estimate

2. run in parallel K copies of SparsifyGraph(S, fi), fi ∈ F
3. � = 0
4. for each Gi

S with at least s pairwise independent 2-paths do
5. X+ = SampleRandom2Path(Gi

S)
6. �+ = 1
7. α̃ = X/�

8. return α̃P̃2
3

Fig. 1. Estimating the number of 2-paths in G, the transitivity coefficient and the
number of triangles
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The next two lemmas will show a lower bound on the number of pairwise
independent 2-paths in a graph without isolated edges. The results are needed in
order to obtain bounds on the required sampling probability. First we show that
a graph without isolated edges contains a linear number of pairwise independent
2-paths.

Lemma 2. Let G = (V,E) be a graph over n vertices without isolated edges.
Then there exist at least Ω(n) pairwise independent 2-paths.

The next result gives a lower bound on the number of pairwise independent
2-paths in terms of the total number of 2-paths. For denser graphs it implies the
existence of ω(n) pairwise independent 2-paths.

Lemma 3. Let the number of 2-paths in a graph G = (V,E) be P2. There exist
Ω(P2/n) pairwise independent 2-paths.

Next we obtain bounds on the sampling probability such that there are suf-
ficiently many pairwise independent 2-paths in GS . As we show later, this is
needed to guarantee that SampleRandom2Path will return an almost unbi-
ased estimator of the transitivity coefficient. The events for two 2-paths being
monochromatic are independent, thus the next lemma follows from Lemma 2
and Chebyshev’s inequality. Note that we still don’t need the coloring function
f to be fully random.

Lemma 4. Let f be 6-wise independent and p ≥ 5
√
3

ε
√
b
for b = max(n, P2/n) and

ε ∈ (0, 1]. Then with probability at least 3/4 SparsifyGraph returns GS such
that there are at least 18/ε2 pairwise independent 2-paths in GS.

Lemma 5. Assume we run EstimateNumberOfTriangles with s = 18/ε2

and let X be the value returned by SampleRandom2Path. Then (1 − ε)α ≤
E[X ] ≤ (1 + ε)α.

Proof. We analyze how much differs the probability between 2-paths to be se-
lected by SampleRandom2Path. Consider a given 2-path (u, v, w). It will be
sampled if the following three events occur:

1. (u, v, w) is monochromatic, i.e., it is in the sparsified graph GS .
2. There are i ≥ 18/ε2 pairwise independent 2-paths in GS .
3. (u, v, w) is selected by SampleRandom2Path.

The first event occurs with probability p2. Since f is fully random, the condition
that (u, v, w) is monochromatic does not alter the probability for any 2-path
independent from (u, v, w) to be also monochromatic. The probability to be in
GS changes only for 2-paths containing two vertices from {u, v, w}, which in
turn changes the number of 2-paths in GS and thus probability for (u, v, w) to
be picked up by SampleRandom2Path. In the following we denote by pGS the
probability that a given 2-path is monochromatic and there are at least 18/ε2

pairwise independent 2-paths in GS , note that pGS is equal for all 2-paths.
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Consider a fixed coloring to V \{u, v, w}. We analyze the difference in the
number of monochromatic 2-paths depending whether f(u) = f(v) = f(w) or
not. There are two types of 2-paths that can become monochromatic condition-
ing on f(u) = f(v) = f(w): either (i) 2-paths with two endpoints in {u, v, w}
centered at some {u, v, w}, or (ii) 2-paths with two vertices in {u, v, w} centerer
at a vertex x /∈ {u, v, w}. For the first case assume w.l.o.g. there is a 2-path

(u, v, w) ∈ GS centered at v and let d
f(v)
v = |{z ∈ N(v)\{u,w} : f(z) = f(v)}|,

i.e., d
f(v)
v is the number of v’s neighbors different from u and w, having the same

color as v. Thus, the number of monochromatic 2-paths centered at v varies

by 2d
f(v)
v conditioning on the assumption that f(u) = f(v) = f(w). The same

reasoning applies also to the 2-paths centered at u and w. For the second case
consider the vertices u and v. Conditioning on f(u) = f(w), we additionally add
to GS 2-paths (u, xi, w) for which f(xi) = f(u) = f(w) and xi ∈ N(u) ∩N(w).

The number of such 2-paths is at most min(d
f(u)
u , d

f(w)
w ). The same reasoning

applies to any pair of vertices from {u, v, w}. Therefore, depending on whether
f(u) = f(v) = f(w) or not, the number of monochromatic 2-paths centered at
a vertex from {u, v, w} varies between

∑

y∈{u,v,w}

(
d
f(y)
y

2

)

and
∑

y∈{u,v,w}

(
d
f(y)
y

2

)

+ 3df(y)y .

Set k = 18/ε2. Consider now two different, but not necessarily independent,
2-paths (u1, v1, w1), (u2, v2, w2) ∈ G. We analyze the probability for each of
them to be selected by SampleRandom2Path. Let C be a partial coloring to
V \{uj, vj , wj}, j = 1, 2. If C is completed to a coloring of all vertices such that
both (u1, v1, w1) and (u2, v2, w2) are monochromatic, then clearly they are picked
up with the same probability. Assume that with probability pi, i− 1 2-paths are
colored monochromatic by C and consider extensions of C that make exactly one
of (u1, v1, w1) and (u2, v2, w2) monochromatic. Under the assumption there are
i ≥ k 2-paths in GS and following the above discussion about the number of
2-paths with at least two vertices from {uj, vj , wj}, we see that the number of

monochromatic 2-paths can vary between i and i+ 3
√
2i. Thus, the probability

for (u1, v1, w1) and (u2, v2, w2) to be sampled varies between

pGS

∑

i≥k

pi
i

and pGS

∑

i≥k

pi

i+ 3
√
2i
.

We assume GS contains at least k 2-paths, thus
∑

i≥k pi = 1 and there exists

r ≥ k, r ∈ R such that
∑

i≥k pii
−1 = 1/r. Thus we bound

∑

i≥k

pi

i+ 3
√
2i

=
∑

i≥k

pi

i(1 + 3
√
2/i)

≥ 1

1 + 3
√
2/k

∑

i≥k

pi
i
=

1

r(1 + 3
√
2/k)

.

Since the function f is fully random, each coloring is equally probable. The
above reasoning applies to any pair of 2-paths in G, thus for any 2-path the
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probability to be sampled varies between

pGS

r
and

pGS

(1 +
√
18/k)r

=
pGS

(1 + ε)r
.

Assume first the extreme case that 2-paths which are not part of a triangle
are sampled with probability 1

r and 2-paths part of a triangle with probability
1

(1+ε)r . We have X =
∑

(u,v,w)∈P2
I(u,v,w), where I(u,v,w) is an indicator random

variable denoting whether (u, v, w) is part of a triangle. Thus

E[X ] ≥ pGS3T3

(1 + ε)r

r

pGSP2
=

α

1 + ε
≥ (1− ε)α.

On the other extreme, assuming that we select 2-paths part of triangles with
probability 1

r and 2-paths not part of a triangle with probability 1
r(1+ε) , using

similar reasoning we obtain E[X ] ≤ (1 + ε)α. ��
Applying a variation of rejection sampling, in the next lemma we show how to
store a sparsified graph GS such that we efficiently sample a 2-path uniformly
at random and GS is updated in constant time.

Lemma 6. Let GS = (V,ES) be a sparsified graph over m′ monochromatic
edges. There exists an implementation of GS in space O(m′) such that an edge
can be inserted to or deleted from GS in constant time with high probability. A
random 2-path, if existent, can be selected from GS in expected time O(log n)
and O(log2 n) time with high probability.

Now we have all components in order to prove the main result.

Proof. (of Theorem 1).
Assume EstimateNumberOfTriangles runs K copies in parallel of Spar-

sifyGraph with p = 5
√
3

ε
√
b
for b = max(n, P2/n). By Lemma 4 with probability

3/4 we have a sparsified graph with at least s = 18/ε2 pairwise independent
2-paths. Thus, we expect to obtain from 3K/4 of them an indicator random
variable. A standard application of Chernoff’s inequality yields that with prob-
ability O(2−K/36) we will have � ≥ K/2 indicator random variables Xi denot-
ing whether the sampled 2-path is part of a triangle. By Lemma 5 we have
(1 − ε)α ≤ E[Xi] ≤ (1 + ε)α and as an estimate of α we return

∑�
i=1 Xi/�.

Observe that (1+ ε/3)2 ≤ 1+ ε, respectively (1− ε/3)2 ≥ 1− ε. From the above
discussion and applying Chernoff’s inequality and the union bound, we see that
for K = 36

ε2α log 2
δ , we obtain an (ε, δ/2)-approximation of α.

By Lemma 1 we can compute an (ε, δ/2)-approximation of the number of
2-paths in space O( 1

ε2 log
1
δ ) and O(log 1

δ ) per edge processing time. It is trivial
to show that this implies an (3ε, δ)-approximation of the number of triangles
for ε < 1/3. Clearly, one can rescale ε in the above, i.e. ε = ε/3, such that
EstimateNumberOfTriangles returns an (ε, δ)-approximation.

By Lemma 6, each sparsified graph with m′ edges uses space O(m′) and each
update takes constant time with high probability, thus we obtain that each edge
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is processed with high probability in time O(K). Each monochromatic edge and
its color can be represented in O(log n) bits.

By Lemma 6, in expected time O(log n) and worst case time O(log2 n) with
high probability we sample uniformly at random a 2-path from each GS with at
least 18/ε2 pairwise independent 2-paths. ��
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