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Abstract. This paper discusses the graph covering problem in which
a set of edges in an edge- and node-weighted graph is chosen to sat-
isfy some covering constraints while minimizing the sum of the weights.
In this problem, because of the large integrality gap of a natural lin-
ear programming (LP) relaxation, LP rounding algorithms based on the
relaxation yield poor performance. Here we propose a stronger LP relax-
ation for the graph covering problem. The proposed relaxation is applied
to designing primal-dual algorithms for two fundamental graph cover-
ing problems: the prize-collecting edge dominating set problem and the
multicut problem in trees. Our algorithms are an exact polynomial-time
algorithm for the former problem, and a 2-approximation algorithm for
the latter problem, respectively. These results match the currently known
best results for purely edge-weighted graphs.

1 Introduction

1.1 Motivation

Choosing a set of edges in a graph that optimizes some objective function under
constraints on the chosen edges constitutes a typical combinatorial optimization
problem and has been investigated in many varieties. For example, the spanning
tree problem seeks an acyclic edge set that spans all nodes in a graph, the edge
cover problem finds an edge set such that each node is incident to at least one
edge in the set, and the shortest path problem selects an edge set that connects
two specified nodes. All these problems seek to minimize the sum of the weights
assigned to edges.

This paper discusses several graph covering problems. Formally, the graph
covering problem is defined as follows in this paper. Given a graph G = (V,E)
and family E ⊆ 2E, find a subset F of E that satisfies F ∩ C �= ∅ for each
C ∈ E , while optimizing some function depending on F . As indicated above,
the popular approaches assume an edge weight function w : E → R+ is given,
where R+ denotes the set of non-negative real numbers, and seeks to minimize
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∑
e∈F w(e). On the other hand, we aspire to simultaneously minimize edge and

node weights. Formally, we let V (F ) denote the set of end nodes of edges in
F . Given a graph G = (V,E) and weight function w : E ∪ V → R+, we seek a
subset F of E that minimizes

∑
e∈F w(e)+

∑
v∈V (F )w(v) under the constraints

on F . Hereafter, we denote
∑

e∈F w(e) and
∑

v∈V (F ) w(v) by w(F ) and w(V (F )),
respectively.

Most previous investigations of the graph covering problem have focused on
edge weights. By contrast, node weights have been largely neglected, except in
the problems of choosing node sets, such as the vertex cover and dominating
set problems. To our knowledge, when node weights have been considered in
graph covering problems for choosing edge sets, they have been restricted to the
Steiner tree problem or its generalizations, possibly because the inclusion of node
weights greatly complicates the problem. For example, the Steiner tree problem
in edge-weighted graphs can be approximated within a constant factor (the best
currently known approximation factor is 1.39 [5,15]). Conversely, the Steiner tree
problem in node-weighted graphs is known to extend the set cover problem (see
[19]), indicating that achieving an approximation factor of o(log |V |) is NP-hard.
The literature is reviewed in Section 2. As revealed later, the inclusion of node
weights generalizes the set cover problem in numerous fundamental problems.

However, from another perspective, node weights can introduce rich struc-
ture into the above problems. In fact, node weights provide useful optimization
problems. The objective function counts the weight of a node only once, even if
the node is shared by multiple edges. Hence, the objective function defined from
node weights includes a certain subadditivity, which cannot be captured by edge
weights.

The aim of the present paper is to give algorithms for fundamental graph cov-
ering problems in edge- and node-weighted graphs. In solving the problems, we
adopt a basic linear programming (LP) technique. Algorithms for combinatorial
optimization problems are typically designed using LP relaxations. However,
in problems with node-weighted graphs, the integrality gap of natural relax-
ations may be excessively large. Therefore, we propose tighter LP relaxations
that preclude unnecessary integrality gaps. We then discuss upper bounds on
the integrality gap of these relaxations in two fundamental graph covering prob-
lems: the edge dominating set (EDS) problem and multicut problem in trees.
We prove upper bounds by designing primal-dual algorithms for both problems.
The approximation factors of our proposed algorithms match the current best
approximations in purely edge-weighted graphs.

1.2 Problem Definitions

The EDS problem covers edges by choosing adjacent edges in undirected graphs.
For any edge e, let δ(e) denote the set of edges that share end nodes with e,
including e itself. We say that an edge e dominates another edge f if f ∈ δ(e),
and a set F of edges dominates an edge f if F contains an edge that dominates
f . Given an undirected graph G = (V,E), a set of edges is called an EDS if it
dominates each edge in E. The EDS problem seeks to minimize the weight of
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the EDS. In other words, the EDS problem is the graph covering problem with
E = {δ(e) : e ∈ E}.

The multicut problem specifies an undirected graph G = (V,E) and demand
pairs (s1, t1), . . . , (sk, tk) ∈ V × V . A multicut is an edge set C whose removal
fromG disconnects the nodes in each demand pair. This problem seeks a multicut
of minimum weight. Let Pi denote the set of paths connecting si and ti. The
multicut problem is equivalent to the graph covering problem with E =

⋃k
i=1 Pi.

Our proposed algorithms for solving these problems assume that the given
graphG is a tree. In fact, our algorithms are applicable to the prize-collecting ver-
sions of these problems, which additionally specifies a penalty function π : E →
R+. In this scenario, an edge set F is a feasible solution even if F ∩ C = ∅
for some C ∈ E , but imposes a penalty π(C). The objective is to minimize the
sum of w(F ), w(V (F )), and the penalty

∑
C∈E:F∩C=∅ π(C). The prize-collecting

versions of the EDS and multicut problems are referred to as the prize-collecting
EDS problem and the prize-collecting multicut problem, respectively.

1.3 Our Results

Thus far, the EDS problem has been applied only to edge-weighted graphs.
The vertex cover problem can be reduced to the EDS problem while preserv-
ing the approximation factors [6]. The vertex cover problem is solvable by a
2-approximation algorithm, which is widely regarded as the best possible ap-
proximation. Indeed, assuming the unique game conjecture, Khot and Regev [18]
proved that the vertex cover problem cannot be approximated within a factor
better than 2. Fujito and Nagamochi [10] showed that a 2-approximation al-
gorithm is admitted by the EDS problem, which matches the approximation
hardness known for the vertex cover problem. In the Appendix, we show that
the EDS problem in bipartite graphs generalizes the set cover problem if assigned
node weights and generalizes the non-metric facility location problem if assigned
edge and node weights. This implies that including node weights increases diffi-
culty of the problem even in bipartite graphs.

On the other hand, Kamiyama [17] proved that the prize-collecting EDS prob-
lem in an edge-weighted graph admits an exact polynomial-time algorithm if the
graph is a tree. As one of our main results, we show that this idea is extendible
to problems in edge- and node-weighted trees.

Theorem 1. The prize-collecting EDS problem admits a polynomial-time exact
algorithm for edge- and node-weighted trees.

The proof of Theorem 1 will be sketched in Section 4. We can also show that
the prize-collecting EDS problem in general edge- and node-weighted graphs
admits an O(log |V |)-approximation, which matches the approximation hardness
on the set cover problem and the non-metric facility location problem.

The multicut problem is hard even in edge-weighted graphs; the best reported
approximation factor is O(log k) [13]. The multicut problem is known to be both
NP-hard and MAX SNP-hard [9], and admits no constant factor approximation
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algorithm under the unique game conjecture [7]. However, Garg, Vazirani, and
Yannakakis [14] developed a 2-approximation algorithm for the multicut prob-
lem with edge-weighted trees. They also mentioned that, although the graphs
are restricted to trees, the structure of the problem is sufficiently rich. They
showed that the tree multicut problem includes the set cover problem with
tree-representable set systems. They also showed that the vertex cover prob-
lem in general graphs is simply reducible to the multicut problem in star graphs,
while preserving the approximation factor. This implies that the 2-approximation
seems to be tight for the multicut problem in trees. As a second main result,
we extended this 2-approximation to edge- and node-weighted trees, as stated
in the following theorem.

Theorem 2. The prize-collecting multicut problem admits a 2-approximation
algorithm for edge- and node-weighted trees.

Both algorithms claimed in Theorems 1 and 2 are primal-dual algorithms,
that use the LP relaxations we propose. These algorithms fall into the same
frameworks as those proposed in [14,17] for edge-weighted graphs. However,
they need several new ideas to achieve the claimed performance because our
LP relaxations are much more complicated than those used in [14,17].

The remainder of this paper is organized as follows. After surveying related
work in Section 2, we define our LP relaxation for the prize-collecting graph
covering problem in Section 3. In Sections 4, we sketch the proof of Theorem 1
that uses our proposed LP relaxation. The paper concludes with Section 5. We
omit the proof of Theorem 2, and discussion on the prize-collecting EDS problem
in general graphs with edge- and node-weights, for which we recommend referring
to the full version [12] of the current paper.

2 Related Work

As mentioned in Section 1, the graph covering problem in node-weighted graphs
has thus far been applied to the Steiner tree problem and its generalizations.
Klein and Ravi [19] proposed an O(log |V |)-approximation algorithm for the
Steiner tree problem with node weights. Nutov [23,24] extended this algorithm
to the survivable network design problem with higher connectivity requirements.
An O(log |V |)-approximation algorithm for the prize-collecting Steiner tree prob-
lem with node weights was provided by Moss and Rabani [21]; however, as
noted by Könemann, Sadeghian, and Sanità [20], the proof of this algorithm
contains a technical error. This error was corrected in [20]. Bateni, Hajiaghayi,
and Liaghat [1] proposed an O(log |V |)-approximation algorithm for the prize-
collecting Steiner forest problem and applied it to the budgeted Steiner tree
problem. Chekuri, Ene, and Vakilian [8] gave an O(k2 log |V |)-approximation
algorithm for the prize-collecting survivable network design problem with edge-
connectivity requirements of maximum value k. Later, they improved their ap-
proximation factor to O(k log |V |), and also extended it to node-connectivity
requirements (see [28]). Naor, Panigrahi, and Singh [22] established an online
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algorithm for the Steiner tree problem with node weights which was extended
to the Steiner forest problem by Hajiaghayi, Liaghat, and Panigrahi [16]. The
survivable network design problem with node weights has also been extended to
a problem called the network activation problem [26,25,11].

The prize-collecting EDS problem generalizes the {0, 1}-EDSproblem, in which
given demand edges require being dominated by a solution edge set. The {0, 1}-
EDS problem in general edge-weighted graphs admits a 8/3-approximation,which
was proven by Berger et al. [2]. This 8/3-approximationwas extended to the prize-
collecting EDS problem by Parekh [27]. Berger and Parekh [3] designed an exact
algorithm for the {0, 1}-EDS problem in edge-weighted trees, but their result con-
tains an error [4]. Since the prize-collecting EDS problem embodies the {0, 1}-EDS
problem, the latter problem could be alternatively solved by an algorithm devel-
oped for the prize-collecting EDS problem in edge-weighted trees, proposed by
Kamiyama [17].

3 LP Relaxations

This section discusses LP relaxations for the prize-collecting graph covering prob-
lem in edge and node-weighted graphs.

In a natural integer programming (IP) formulation of the graph covering prob-
lem, each edge e is associated with a variable x(e) ∈ {0, 1}, and each node v is
associated with a variable x(v) ∈ {0, 1}. x(e) = 1 denotes that e is selected as
part of the solution set, while x(v) = 1 indicates the selection of an edge incident
to v. In the prize-collecting version, each demand set C ∈ E is also associated
with a variable z(C) ∈ {0, 1}, where z(C) = 1 indicates that the covering con-
straint corresponding to C is not satisfied. For F ⊆ E, we let δF (v) denote the
set of edges incident to v in F . The subscript may be removed when F = E. An
IP of the prize-collecting graph covering problem is then formulated as follows.

minimize
∑

e∈E

w(e)x(e) +
∑

v∈V

w(v)x(v) +
∑

C∈E
π(C)z(C)

subject to
∑

e∈C

x(e) ≥ 1− z(C) for C ∈ E ,

x(v) ≥ x(e) for v ∈ V, e ∈ δ(v),

x(e) ≥ 0 for e ∈ E,

x(v) ≥ 0 for v ∈ V,

z(C) ≥ 0 for C ∈ E .

In the above formulation, the first constraints specify the covering constraints,
while the second constraints indicate that if the solution contains an edge e
incident to v, then x(v) = 1. In the graph covering problem (without penalties),
z is fixed at 0.

To obtain an LP relaxation, we relax the definitions of x and z in the above
IP to x ∈ R

E∪V
+ and z ∈ R

C
+. However, this relaxation may introduce a large
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integrality gap into the graph covering problem with node-weighted graphs, as
shown in the following example. Suppose that E comprises a single edge set
C, and each edge in C is incident to a node v. Let the weights of all edges and
nodes other than v be 0. In this scenario, the optimal value of the graph covering
problem is w(v). On the other hand, the LP relaxation admits a feasible solution
x such that x(v) = 1/|C| and x(e) = 1/|C| for each edge e ∈ C. The weight
of this solution is w(v)/|C|, and the integrality gap of the relaxation for this
instance is |C|. This phenomenon occurs even in the EDS problem and multicut
problem in trees.

The above poor example can be excluded if the second constraints in the
relaxation are replaced by x(v) ≥ ∑

e∈δ(v) x(e) for v ∈ V . However, the LP
obtained by this modification does not relax the graph covering problem if the
optimal solutions contain high-degree nodes. Thus, we introduce a new variable
y(C, e) for each pair of C ∈ E and e ∈ C, and replace the second constraints
by x(v) ≥ ∑

e∈δ(v) y(C, e), where v ∈ V and C ∈ E . y(C, e) = 1 indicates that

e is chosen to satisfy the covering constraint of C, and y(C, e) = 0 implies the
opposite. Roughly speaking, y(C, ·) represents a minimal fractional solution for
covering a single demand set C. If a single covering constraint is imposed, the
degree of each node is at most one in any minimal integral solution. Then the
graph covering problem is relaxed by the LP even after modification. Summing
up, we formulate our LP relaxation for an instance I = (G, E , w, π) of the prize-
collecting graph covering problem as follows.

P (I) =

minimize
∑

e∈E

w(e)x(e) +
∑

v∈V

w(v)x(v) +
∑

C∈E
π(C)z(C)

subject to
∑

e∈C

y(C, e) ≥ 1− z(C) for C ∈ E ,

x(v) ≥
∑

e∈δC(v)

y(C, e) for v ∈ V,C ∈ E ,

x(e) ≥ y(C, e) for C ∈ E , e ∈ C,

x(e) ≥ 0 for e ∈ E,

x(v) ≥ 0 for v ∈ V,

y(C, e) ≥ 0 for C ∈ E , e ∈ C,

z(C) ≥ 0 for C ∈ E .

Theorem 3. Let I be an instance of the prize-collecting graph covering problem
in edge- and node-weighted graphs. P (I) is at most the optimal value of I.

Proof. Let F be an optimal solution of I. We define a solution (x, y, z) of P (I)
from F . For each C ∈ E , we set z(C) to 0 if F ∩ C �= ∅, and 1 otherwise. If
F ∩ C �= ∅, we choose an arbitrary edge e ∈ F ∩ C, and let y(C, e) = 1. For the
remaining edges e′, we assign y(C, e′) = 0. In this way, the values of variables in
y are defined for each C ∈ E . x(e) is set to 1 if e ∈ F , and 0 otherwise. x(v) is
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set to 1 if F contains an edge incident to v, and 0 otherwise. (x, y, z) is feasible,
and its objective value in P (I) is the optimal value of I. 
�

In some graph covering problems, E is not explicitly given, and |E| is not
bounded by a polynomial on the input size of the problem. In such cases, the
above LP may not be solved in polynomial time because it cannot be written
compactly. However, in this scenario, we may define a tighter LP than the natu-
ral relaxation if we can find E1, . . . , Et ⊆ E such that ∪t

i=1Ei = E , t is bounded by
a polynomial of input size, and the degree of each node is small in any minimal
edge set covering all demand sets in Ei for each i ∈ {1, . . . , t}. Applying these
conditions, the present author obtained a new approximation algorithm for solv-
ing a problem generalizing some prize-collecting graph covering problems [11].

4 Prize-Collecting EDS Problem in Trees

In this section, we prove Theorem 1. We regard the input graph G as a rooted
tree, with an arbitrary node r selected as the root. The depth of a node v is the
number of edges on the path between r and v. When v lies on the path between
r and another node u, we say that v is an ancestor of u and u is a descendant
of v. If the depth of node v is the maximum among all ancestors of u, then v
is defined as the parent of u. If v is the parent of u, then u is a child of v. The
upper and lower end nodes of an edge e are denoted by ue and le, respectively.
We say that an edge e is an ancestor of a node v and v is a descendant of e when
le = v or le is an ancestor of v. Similarly, an edge e is a descendant of a node v
and v is an ancestor of e if v = ue or v is an ancestor of ue. An edge e is defined
as an ancestor of another edge f if e is an ancestor of uf .

Recall that E = {δ(e) : e ∈ E} in the EDS problem. Let I = (G,w, π) be an
instance of the prize-collecting EDS problem. We denote

⋃
e∈δ(v) δ(e) by δ′(v)

for each v ∈ V . Then the dual of P (I) is formulated as follows.

D(I) =

maximize
∑

e∈E

ξ(e)

subject to
∑

e∈δ(e′)

ν(e′, e) ≤ w(e′) for e′ ∈ E, (1)

∑

e∈δ′(v)

μ(v, e) ≤ w(v) for v ∈ V, (2)

ξ(e) ≤ μ(u, e) + μ(v, e) + ν(e′, e) for e ∈ E, e′ = uv ∈ δ(e), (3)

ξ(e) ≤ π(e) for e ∈ E, (4)

ξ(e) ≥ 0 for e ∈ E,

ν(e′, e) ≥ 0 for e′ ∈ E, e ∈ δ(e′),
μ(v, e) ≥ 0 for v ∈ V, e ∈ δ′(v).
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Fig. 1. Edges and nodes in Case B

For an edge set F ⊆ E, let F̃ denote {e ∈ E : δF (e) = ∅}, and let π(F̃ ) denote∑
e∈F̃ π(e). For the instance I, our algorithm yields a solution F ⊆ E and a

feasible solution (ξ, ν, μ) to D(I), both satisfying

w(F ) + w(V (F )) + π(F̃ ) ≤
∑

e∈E

ξ(e). (5)

Since the right-hand side of (5) is at most P (I), F is an optimal solution of I. We
note that the dual solution (ξ, ν, μ) is required only for proving the optimality
of the solution and need not be computed.

The algorithm operates by induction on the number of nodes of depth ex-
ceeding one. In the base case, all nodes are of depth one, indicating that G is a
star centered at r. The alternative case is divided into two sub-cases: Case A,
in which a leaf edge e of maximum depth satisfies π(e) > 0; and Case B, which
contains no such leaf edge. In this paper, we discuss only Case B due to the
space limination.

Case B

In this case, π(e) = 0 holds for all leaf edges e of maximum depth. Let s be
the grandparent of a leaf node of maximum depth. Also, let u1, . . . , uk be the
children of s, and ei be the edge joining s and ui for i ∈ [k]. In the following
discussion, we assume that s has a parent, and that each node ui has at least
one child. This discussion is easily modified to cases in which s has no parent
or some node ui has no child. We denote the parent of s by u0, and the edge
between u0 and s by e0. For each i ∈ [k], let Vi be the set of children of ui, and
Hi be the set of edges joining ui to its child nodes in Vi. Also define hi = uivi as
an edge that attains minuiv∈Hi(w(uiv)+w(v)). The relationships between these
nodes and edges are illustrated in Fig. 1.

Now define θ1 = minki=0(w(ei) + w(ui) + w(s)), θ2 =
∑k

i=1 min{w(ui) +
w(vi) + w(hi), π(ei)}, and let θ = min{θ1, θ2}. We denote the index i ∈ [k] of
an edge ei that attains θ1 = w(ei) + w(ui) + w(s) by i∗, and specify K = {i ∈
[k] : w(ui) + w(vi) + w(hi) ≤ π(ei)}. For a real number ψ, we let (ψ)+ denote
max{0, ψ}.
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We define I ′ = (G′, w′, π′) as follows. If θ1 ≥ θ2, then G′ is the tree obtained by
removing all edges in

⋃
i∈[k] Hi and all nodes in

⋃
i∈[k] Vi from G, and π′ : E′ →

R+ is defined such that

π′(e) =

{
0 if e ∈ {e1, . . . , ek},
π(e) otherwise

for e ∈ E′. In this case, w′ : V ′ ∪ E′ → R+ is defined by

w′(v) =

⎧
⎪⎨

⎪⎩

(w(s)− θ)+ if v = s,

w(ui)− (θ − w(s) − w(ei))+ if v = ui, i ∈ [k]∗

w(v) otherwise

for v ∈ V ′, and

w′(e) =

{
(w(ei)− (θ − w(s))+)+ if e = ei, i ∈ [k]∗,
w(e) otherwise,

for e ∈ E′. If θ1 < θ2, then e1, . . . , ek, and their descendants are removed from
G to obtain G′, and π′ is defined by

π′(e) =

{
0 if e = e0,

π(e) otherwise.

Moreover, w′ for E′ and V ′ is defined as in the case θ1 ≥ θ2, disregarding the
weights of edges and nodes removed from G′.

Since G′ has fewer nodes of depth exceeding one than G, the algorithm in-
ductively finds a solution F ′ to I ′, and a feasible solution (ξ′, ν′, μ′) to D(I ′)
satisfying (5). F is constructed from F ′ as follows.

F =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F ′ ∪ {e0} if δF ′(u0) �= ∅, θ > w(s) + w(e0),

F ′ if δF ′(u0) = ∅ or θ ≤ w(s) + w(e0), δF ′(s) �= ∅,
F ′ ∪ {hi : i ∈ K} if δF ′(u0) = ∅ or θ ≤ w(s) + w(e0), δF ′(s)=∅, θ1 ≥ θ2,

F ′ ∪ {ei∗} if δF ′(u0) = ∅ or θ ≤ w(s) + w(e0), δF ′(s)=∅, θ1 < θ2.

We define ξ(e1), . . . , ξ(ek) such that ξ(ei) ≤ min{w(ui) + w(vi) + w(hi), π(ei)}
for i ∈ [k] and

∑k
i=1 ξ(ei) = θ, which is possible because

∑k
i=1 min{w(ui) +

w(vi) + w(hi), π(ei)} = θ2 ≥ θ. We also define ξ(e) = 0 for each e ∈ ⋃k
i=1 Hi.

The other variables in ξ are set to their values in ξ′. The following lemma states
that this ξ can form a feasible solution to D(I).

Lemma 1. Suppose that ξ(e1), . . . , ξ(ek) satisfy ξ(ei) ≤ min{w(ui) + w(vi) +

w(hi), π(ei)} for each i ∈ [k] and
∑k

i=1 ξ(ei) = θ. Further, suppose that ξ(e) = 0

holds for each e ∈ ⋃k
i=1 Hi, and the other variables in ξ are set to their values

in ξ′. Then there exist ν and μ such that (ξ, ν, μ) is feasible to D(I).
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Proof. For i ∈ [k] and v ∈ Vi, we define μ(v, ei) and ν(uiv, ei) such that μ(v, ei)+
ν(uiv, ei) = min{w(vi) + w(hi), ξ(ei)}. This may be achieved without violating
the constraints, because w(v)+w(uiv) ≥ w(vi)+w(hi). We also define ν(uiv, ei)
as (ξ(ei) − w(ui) − w(hi))+. These variables satisfy (1) for uiv, (2) for v and
ui, and (3) for (ei, uiv). ν(ej , ei) for i ∈ [k] and j ∈ [k]∗, and μ(v, ei) for i ∈ [k]
and v ∈ {s} ∪ {uj : j ∈ [k]∗, j �= i} are set to 0. The other variables in ν and
μ are set to their values in ν′ and μ′. To advance the proof, we introduce an
algorithm that increases ν(ej , ei) for i ∈ [k] and j ∈ [k]∗, and μ(v, ei) for i ∈ [k]
and v ∈ {s, u0, . . . , uk}. At the completion of the algorithm, (ξ, ν, μ) is a feasible
solution to D(I).

The algorithm performs k iterations, and the i-th iteration increases the vari-
ables to satisfy (3) for each pair of ei and ej , where j ∈ [k]∗. The algorithm
retains a set Var of variables to be increased. We introduce a notion of time:
Over one unit of time, the algorithm simultaneously increases all variables in
Var by one. The time consumed by the i-th iteration is ξ(ei).

At the beginning of the i-th iteration, Var is initialized to {μ(uj, ei) : j ∈ [k]∗}.
The algorithm updates Var during the i-th iteration as follows.

– At time (ξ(ei)−w(vi)−w(hi))+, μ(ui, ei) is added to Var if Var �= {μ(s, ei)};
– If (2) becomes tight for uj under the increase of μ(uj, ei) ∈ Var, then μ(uj , ei)

is replaced by ν(ej , ei) for each j ∈ [k]∗;
– If (1) becomes tight for ej under the increase of ν(ej , ei) ∈ Var with some

j ∈ [k]∗, then Var is reset to {μ(s, ei)}.
We note that the time spent between two consecutive updates may be zero.

Var always contains a variable that appears in the right-hand side of (3) for
(ei, ej) with j ∈ [k]∗ \ {i}, and for (ei, ei) after time (ξ(ei) − w(vi) − w(hi))+.
The algorithm updates Var so that (1) and (2) hold for all variables except s.
Hence, to show that (ξ, ν, μ) is a feasible solution to D(I), it suffices to show
that (2) for s does not become tight before the algorithm is completed.

We complete the proof by contradiction. Suppose that (2) for s tightens at
time τ < ξ(ei) in the i-th iteration. Since Var = {μ(s, ei)} at this moment,
there exists j ∈ [k]∗ such that (1) for ej and (2) for uj are tight. The variables
in the left-hand sides of (1) for ej and (2) for uj and s are not simultaneously
increased. Nor are these variables increased over time (ξ(ej)− w(vj)− w(hj))+
in the j-th iteration, and μ(uj , ej) is initialized to (ξ(ej) − w(vj) − w(hj))+.

From this argument, it follows that w(s) + w(uj) + w(ej) <
∑k

i′=1 ξ(ei′) ≤ θ.
However, this result is contradicted by the definition of θ, which implies that
θ ≤ θ1 ≤ w(s) + w(uj) + w(ej). Thus, the claim is proven. 
�
Lemma 2. F and ξ satisfy (5).

Proof. For each i ∈ [k], either ei �∈ E′ holds, or ξ′(ei) = 0 holds (because

π′(ei) = 0). Hence,
∑

e∈E ξ(e) =
∑k

i=1 ξ(ei) +
∑

e∈E′ ξ′(e) = θ +
∑

e∈E′ ξ′(e).
Therefore, it suffices to prove that

∑
e∈F w(e) ≤ θ +

∑
e∈F ′ w′(e).

Without loss of generality, we can assume |δF ′(e0)| ≤ 1 (if false, we can remove
edges ei, i ∈ [k]∗ from F ′ until |δF ′(e0)| = 1). In the sequel, we discuss only the
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case of δF ′(u0) �= ∅ and θ > w(s) + w(e0). In the alternative case, the claim
immediately follows from the definitions of F and w′. δF ′(u0) �= ∅ implies that
w′(u0) is counted in the objective value of F ′. Moreover, w′(s) = w′(e0) = 0
follows from θ > w(s) +w(e0). Thus, the objective values increase from F ′ to F
by w(u0)− w′(u0) + w(e0) + w(s), which equals θ. 
�

5 Conclusion

In this paper, we emphasized a large integrality gap when the natural LP re-
laxation is applied to the graph covering problem that minimizes node weights.
We then formulated an alternative LP relaxation for graph covering problems in
edge- and node-weighted graphs that is stronger than the natural relaxation. This
relaxation was incorporated into an exact algorithm for the prize-collecting EDS
problem in trees, and a 2-approximation algorithm for the multicut problem in
trees. The approximation guarantees for these algorithms match the previously
known best results for purely edge-weighted graphs. In many other graph cov-
ering problems, the integrality gap in the proposed relaxation would increase if
node weights were introduced, because the problems in node-weighted graphs
admit stronger hardness results. Nonetheless, the proposed relaxation is a po-
tentially useful tool for designing heuristics or using IP solvers to solve the above
problems.
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