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Abstract. We consider a multiple domination version of the edge dominating
set problem, called the b-EDS problem, where an edge set D ⊆ E of minimum
cardinality is sought in a given graph G = (V, E) with a demand vector b ∈ Z

E

such that each edge e ∈ E is required to be dominated by b(e) edges of D. When a
solution D is not allowed to be a multi-set, it is called the simple b-EDS problem.
We present 2-approximation algorithms for the simple b-EDS problem for the
cases of maxe∈E b(e) = 2 and maxe∈E b(e) = 3. The best approximation guarantee
previously known for these problems is 8/3 due to Berger et al. [2] who showed
the same guarantee to hold even for the minimum cost case and for arbitrarily
large b. Our algorithms are designed based on an LP relaxation of the b-EDS
problem and locally optimal matchings, and the optimum of b-EDS is related to
either the size of such a matching or to the optimal LP value.

1 Introduction

In an undirected graph an edge is said to dominate itself and all the edges adjacent to
it, and a set of edges is an edge dominating set (abbreviated to eds) if the edges in it
collectively dominate all the edges in a graph. The edge dominating set problem (EDS)
asks to find an eds of minimum cardinality (cardinality case) or of minimum total cost
(cost case). It was shown by Yannakakis and Gavril that, although EDS has important
applications in areas such as telephone switching networking, it is NP-complete even
when graphs are planar or bipartite of maximum degree 3 [12]. The classes of graphs
for which its NP-completeness holds were later refined and extended by Horton and
Kilakos to planar bipartite graphs, line and total graphs, perfect claw-free graphs, and
planar cubic graphs [7], although EDS admits a PTAS (polynomial time approximation
scheme) for planar [1] or λ-precision unit disk graphs [8]. Meanwhile, some polyno-
mially solvable special cases have been also discovered for trees [9], claw-free chordal
graphs, locally connected claw-free graphs, the line graphs of total graphs, the line
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graphs of chordal graphs [7], bipartite permutation graphs, cotriangulated graphs [11],
and so on.

There are various variants of the basic EDS problem, and the most general one
among them was introduced by Berger et al. [2] in the form of the capacitated b-edge
dominating set problem (b, c)-EDS, where an instance consists of a graph G = (V, E),
a demand vector b ∈ Z

E
+ , a capacity vector c ∈ Z

E
+ and a cost vector w ∈ Q

E
+ . A set D

of edges in G is called a (b, c)-eds if each e ∈ E is adjacent to at least b(e) edges in D,
where we allow D to contain at most c(e) multiple copies of edge e. The problem asks
to find a minimum cost (b, c)-eds. The (b, c)-EDS problem generalizes the EDS prob-
lem in much the same way that the set multicover problem generalizes the set cover
problem. In the special case when all the capacities c are set to +∞, we call the result-
ing problem the uncapacitated b-EDS problem and its feasible solutions uncapacitated
b-eds’s, whereas it is called the simple b-EDS problem when c(e) = 1 for all e ∈ E. If
b(e)’s are set to a same value for all e ∈ E, it is called uniform (b, c)-EDS.

Let bmax denote maxe∈E be. We mainly focus on the simple b-EDS problem (i.e.,
(b, 1)-EDS), and b-EDS (or b-eds) in what follows usually means the simple one unless
otherwise stated explicitly. It should be noted, however, that this does not impose serious
restrictions in problem solving, as long as bmax is bounded by some constant, since
general (b, c)-EDS can be reduced to (b, 1)-EDS by introducing min{bmax, c(e)} − 1
many copies of e, each of them parallel to e with b = 0, for all the edges e ∈ E.

1.1 Previous Work

It was shown by Yannakakis and Gavril that the minimum EDS can be efficiently ap-
proximated to within a factor of 2 by computing any maximal matching [12]. They used
the theorem of Harary [6] to lower bound the cardinality of a minimum eds by that of a
smallest maximal matching. More recently, a 2.1-approximation algorithm first [4], and
then 2-approximation algorithms [5,10] have been successfully obtained for the cost
case of EDS problem via polyhedral approaches.

Among the approximation results obtained in [2] those relevant to ours are summa-
rized in the following list (note: their results hold even for the cost cases of (b, c)-EDS
problems):

– The (b, c)-EDS problem can be approximated within a factor of 8/3.
– The uniform and uncapacitated b-EDS problem can be approximated within a fac-

tor of 2.1 if b = 1 or a factor of 2 if b ≥ 2.
– The integrality gap of the LP relaxation they used for (b, c)-EDS, much more com-

plex one than ours with additional valid inequalities, is at most 8/3 and it is tight
even when b(e) ∈ {0, 1}, ∀e ∈ E.

A linear-time 2-approximation algorithm for uncapacitated b-EDS was obtained by
Berger and Parekh [3].

1.2 Our Work

One of the main subjects studied in the current paper is the approximate min-max re-
lationships between simple b-EDS and locally optimal matchings. A most well-known
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example of such is perhaps the one between the vertex cover number and the size of
a maximal matching. Let τ(G) denote the vertex cover number of G (i.e., the cardinal-
ity of any smallest vertex cover for G) and M be any maximal matching in G. Then,
|M| ≤ τ(G) ≤ 2 |M|.

Let us simplify matters in the following discussion by restricting ourselves to the
case of uniform and simple b-EDS, and let γb(G) denote the cardinality of any smallest
(b, 1)-eds for G = (V, E) where b(e) ≡ b, ∀e ∈ E. To introduce lower bounds on γb(G),
we start with the following integer program, the most natural IP formulation for simple
b-EDS:

min {x(E) | x(δ(e)) ≥ b(e) and xe ∈ {0, 1},∀e ∈ E} ,
where x(F) =

∑
e∈F xe for F ⊆ E, and δ(e) = {e}∪{e′ ∈ E | e′ is adjacent to e} for e ∈ E.

Replacing the integrality constraints by linear constraints 0 ≤ xe ≤ 1 would result in
the following LP:

min {x(E) | x(δ(e)) ≥ b(e) and 0 ≤ xe ≤ 1,∀e ∈ E} .
Relaxing the LP above further by dropping the upper bound constraint on each xe, we
obtain an LP and its dual in the following forms:

LP: (P) min zP(x) = x(E) LP: (D) max zD(y) =
∑

e∈E
b(e)ye

subject to: x(δ(e)) ≥ b(e), ∀e ∈ E subject to: y(δ(e)) ≤ 1, ∀e ∈ E

xe ≥ 0, ∀e ∈ E ye ≥ 0, ∀e ∈ E

Notice here that (P) coincides with the LP relaxation of uncapacitated b-EDS rather
than simple one.

For any matching M in G = (V, E), let yM ∈ R
E be a vector of dual variables such

that

yM
e =

⎧
⎪⎪⎨
⎪⎪⎩

1
2 if e ∈ M

0 otherwise

As δ(e) contains at most two edges of M for any e ∈ E, yM is always feasible for (D),
and its value zD(y) equals to b|M|/2. So, b|M|/2 can serve as a lower bound on γb(G)
for any matching M in G.

Following the way locally optimal solutions are often termed in the local search
optimization, we say that a matching M in G is k-opt if, for any matching N in G larger
than M, |M \ N| ≥ k (So, a maximal matching is 1-opt). As for upper bounds on γb(G),
|M1| provides itself as such a bound on γ1(G) for any 1-opt matching M1. It is also the
case, as will be shown later (Corollary 1), that γ2(G) ≤ 2 |M2| for any 2-opt matching
M2 in G. So it would be extremely pleasing if the following min-max relationships hold
for all b ∈ N:

b |Mb|
2
≤ γb(G) ≤ b |Mb| ,

where Mb is any b-opt matching in G. It is, however, too good to be true, and it will
be shown (in Section 4) that γb(G) cannot be bounded above by b |Mb| in general when
b ≥ 3.
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Nevertheless, γ3(G) can be related to a stronger bound as follows. Letting dual(G)
denote the optimal value of LP:(D) above for graph G, it will be seen (in Corollary 2)
that the following min-max relation to hold:

dual(G) ≤ γ3(G) ≤ 2 · dual(G)

for any G (recall that dual(G) is the optimal value of the LP relaxation for uncapacitated
b-EDS).

These upper bounds are obtained algorithmically; our algorithms, building solutions
upon b-opt matchings, approximate the (unweighted) simple b-EDS problems within
a factor of 2, where b is not assumed to be uniform, for bmax = 2 and for bmax = 3.
Unlike the polyhedral approaches explored in [2], ours is more graph theoretic and our
algorithms are purely combinatorial.

2 Preliminaries

In this paper only graphs with no loops are considered. For an edge set F ⊆ E, V[F]
denotes the set of vertices induced by the edges in F (i.e., the set of all the endver-
tices of the edges of F). For a vertex set S ⊆ V let δ(S ) denote the set of edges in-
cident to a vertex in S . When S is an edge set, we let δ(S ) = δ(∪e∈S e) where edge
e is a set of two vertices; then, δ(S ) also denotes the set of edges dominated by S .
When S is a singleton set {s}, δ({s}) is abbreviated to δ(s). For a vertex set U ⊆ V ,
N(U) denotes the set of neighboring vertices of those in U (i.e., N(U) = {v ∈ V |
{u, v} ∈ E for some u ∈ U}), and N(u) means N({u}). The degree of a vertex u is de-
noted by d(u). When δ(S ),N(U), and d(u) are considered only within a subgraph H of
G (or when restricted to within a vertex subset or edge subset T ), they are denoted by
δH(S ),NH(U), and dH(u) (or δT (S ),NT (U), and dT (u)), respectively.

When an edge e is dominated by up to b(e) edges, it is said to be fully dominated.

3 A 2-Opt Algorithm for 2-EDS

Here a 2-approximation algorithm for the simple 2-EDS problem is presented. The
algorithm is quite simple: Compute a 2-opt matching M2 so that no augmenting path of
length 3 or shorter occurs. Then, for each matched edge e ∈ M2, if one of its endvertices
is a neighbor of an exposed vertex via edge e′, add e′ besides e itself to a solution set
while, if neither has, add any edge adjacent to e.

Divide the edge set E of an instance graph G according to demands into E1 and E2,
where Ei = {e ∈ E | b(e) = i}. Let Gi = (Vi, Ei) denote the subgraph of G induced
by Ei.

1. Compute a 2-opt matching M2 in G2 = (V2, E2); so no augmenting paths of length
3 or shorter occurs.

2. D2 ← M2.

Let X ⊆ V2 denote the set of vertices in G2 exposed by M2, and consider NG2 (u)
and NG2 (v) for each e = {u, v} ∈ M2. If both of them contain vertices exposed by M2,
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they must be same and unique, i.e., NG2 (u) ∩ X = NG2 (v) ∩ X = {x} for some x ∈ X;
otherwise, an augmenting path of length 3 having e in the middle is found. One edge
adjacent to e is added to D2, and which one to add is determined according to which of
NG2 (u) and NG2 (v) contains an exposed vertex.

3. For each e = {u, v} ∈ M2,
(a) if NG2 (u) contains an exposed vertex x ∈ X, then add edge {u, x} into D2,
(b) else if NG2 (v) contains an exposed vertex, then add any edge in δG(v) (other

than e) into D2,
(c) else add any edge in δG(e) (other than e) into D2.

Note: If it is only to dominate twice the edges in δG2 (u), we may choose any one of
them in Step 3(a). It could be the case, however, that both of NG2 (u) and NG2 (v) contain
the exposed vertex x as a unique exposed vertex in common, and it is then necessary to
choose {u, x} in this step to fully dominate {v, x}.

By this time all the edges in E2 are fully dominated. It remains only to dominate
those in E1 that are not yet dominated even once.

4. Set E′1 ← E1 \ δG(D2).
5. Compute a 1-opt matching M1 in G[E′1] and output D2 ∪ M1.

Theorem 1. The 2-opt algorithm given above is a 2-approximation algorithm for the
(b, 1)-EDS problem when bmax = 2.

Proof. Consider an edge e ∈ E2. It becomes fully dominated, if e ∈ M2, when an edge
adjacent to e is added to D2 in step 3. For e � M2, if both of its endvertices are matched
by M2, it is made dominated fully by M2 (in step 2). If e = {u, x} � M2 is incident to
an exposed vertex x, another unmatched edge incident to either u or x must be chosen
into D2 in step 3. Therefore, all the edges in E2 become fully dominated after step 3.
As not-yet-dominated edges in E1 are taken care of in step 5 when a maximal matching
M1 is entirely chosen into a solution, the algorithm computes a simple 2-eds for G.

The performance analysis of this algorithm is omitted here as it can be subsumed by
the one for the 3-opt algorithm for 3-EDS presented in Section 5. ��
In case when b(e) is uniformly equal to 2 in the above, G2 = G and |D2| ≤ 2|M2|. Thus,

Corollary 1. For any 2-opt matching M2 in G, γ2(G) ≤ 2 |M2|.

4 b-Opt Matchings and γb(G)

4.1 Case of 3-EDS

This subsection shows that the ratio of γb(G) to b |Mb| for a b-opt matching Mb in G can
be larger than 1 even for b = 3.

Let P4 = {ei,1ei,2ei,3ei,4 | 1 ≤ i ≤ k} be a collection of simple paths of length
4, starting and ending at the common vertices u1 and u2 respectively, and being mu-
tually vertex disjoint except at these two vertices. Construct a graph G by attaching
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two edges e0,1 and e0,2 at u1 and u2, respectively, but disjointly at the other endver-
tices of e0,1 and e0,2 from other vertices in G. Let M be a matching in G such that
M = {e0,1, e0,2, ei,3 | 1 ≤ i ≤ k}. Then, M is a maximum matching in G with |M| = k+2 as
there exists no augmenting path w.r.t. M. Meanwhile, γ3(G) = 4k since all the edges in
all the paths of P4 must be used to constitute a 3-eds for G, and hence, γ3(G)

3|M| =
4k

3(k+2) > 1
for k > 6 even if M is a maximum matching in G.

4.2 Case of b-EDS

This subsection shows that the ratio of γb(G) to b |Mb| for a b-opt matching Mb in G can
be arbitrarily large as b grows.

Let S i be a star graph centered at vertex si with b/2 edges, for 1 ≤ i ≤ b/2 (“small”
stars). Let Li also be a star graph centered at vertex li with (b/2)2 edges, for 1 ≤ i ≤ b/2
(“large” stars). Construct a bipartite graph G with all the center vertices in S i’s and Li’s
on one side, and a set U of (b/2)2 vertices on the other side, by attaching leaves of S i’s
and Li’s at the vertices in U. Each leaf of Li is attached to a distinct vertex of U for
1 ≤ i ≤ b/2. There are (b/2)2 leaves of S i’s in total, and they are also attached to the
vertices of U distinctively.

Observe now that d(si) = b/2, d(li) = (b/2)2 for 1 ≤ i ≤ b/2, d(u) = b/2 + 1 for
u ∈ U, and |δ(e)| = b/2 + b/2 = b for any edge e in δ(si). Therefore, any b-eds for
G = (V, E) must contain all of δ(e)’s for all e ∈ δ(si), covering all the edges of G, and
meaning that γb(G) = |E| = (b/2)2(b/2+1). On the other hand, there exist b/2+b/2 = b
vertices on the other side of U, and hence, |M| ≤ b for any matching M in G. It thus
follows that

γb(G)
b |M| ≥

(b/2)2(b/2 + 1)
b2

=
b + 2

8

even if M is a maximum matching in G.

5 A 3-Opt Algorithm for 3-EDS

Here a 2-approximation algorithm for the simple 3-EDS problem is presented. In the
beginning the algorithm dominates all the edges with demands of 3 using a 3-opt match-
ing M3. As was observed in the previous section, however, it is not good enough to
choose the M3-edges along with some edges adjacent to them. Moreover, as we treat
the case when edges with demands of 2 or less are allowed to coexist, a part of the
solution dominating those demand-3 edges may interfere with another part dominat-
ing those with smaller demands, and it makes the task of designing an algorithm more
complicated than otherwise.

Divide the edge set E of an instance graph G according to demands into E1, E2, and
E3, where Ei = {e ∈ E | b(e) = i}. Let Gi = (Vi, Ei) denote the subgraph of G induced
by Ei.

1. Compute a 3-opt matching M3 in G3 = (V3, E3); so no augmenting paths of length
5 or shorter occurs.

2. D3 ← M3.
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Note: At this point an edge in M3 is dominated once, and one in E3 \ M3 is also domi-
nated once if it is incident to an exposed vertex but otherwise, it is dominated twice by
D3 = M3.

We need to exercise special care in handling those edges incident to the vertices
exposed by M3, and a bipartite subgraph of G3 induced by those edges is constructed
for that purpose as follows; this will be the main body of algorithmic operations and
analysis provided later.

– Let X ⊆ V3 be the set of vertices in G3 exposed by M3. Notice that X is an in-
dependent set in G3 since M3 does not allow an augmenting path of length 1 to
exist.

– Let A ⊆ V3 be the set of neighboring vertices of X in G3, i.e., A = NG3 (X).
– Let B = (X ∪ A, EB) denote the bipartite subgraph graph of G3, consisting of the

vertex partition (X, A), and the set EB of E3-edges lying between them.
– Let M′ ⊆ M3 be the set of matched edges having an endvertex in A, i.e., M′ = {e ∈

M3 | e ∩ A � ∅}.
– Let Mc = {e ∈ M′ | e ⊆ A}. Then, each edge in M′ \ Mc has exactly one of its

endvertices in A; denote it by a(e) and the other endvertex of e by ā(e), for each
e ∈ M′ \ Mc.

– Divide M′ \Mc further, according to the G-degree of a(e), into Ms = {e ∈ M′ \Mc |
dG(a(e)) = 2}, and Md = {e ∈ M′ \ Mc | dG(a(e)) ≥ 3}.

– Accordingly divide A into Ac = {both endvertices of e | e ∈ Mc}, As = {a(e) | e ∈
Ms}, and Ad = {a(e) | e ∈ Md}, and EB into Ec = δB(Ac), Es = δB(As), and Ed =

δB(Ad).

Clearly, dB(a) ≥ 1 for all a ∈ A. Observe that dB(a(e)) = 1 for all a(e) ∈ As since
only two edges are incident to a(e) in G and they are {x, a(e)} for some x ∈ X and
{a(e), ā(e)} ∈ Ms where ā(e) � A. It is also the case that dB(a) = 1 for all a ∈ Ac:
Consider a pair of vertices, a1, a2, in Ac such that they are the endvertices of one edge
in Mc. Then, they must be adjacent to a unique and same vertex in X as otherwise, an
augmenting path of length 3 would result.

Consider the subgraph Bd = (Xd ∪ Ad, Ed) of B induced by Ed, where Xd = NB(Ad)
⊆ X.

3. Compute a maximal edge subset N of Ed in Bd such that |δB(x) ∩ N| ≤ 2 for each
x ∈ Xd and |δB(a) ∩ N| ≤ 1 at the same time for each a ∈ Ad.

4. Set D3 ← D3 ∪ Ec ∪ Es ∪ N.

At this point, every edge in Ec (and those in Mc) is fully dominated by Ec∪Mc ⊆ D3,
and there could be such edges also in Es ∪ Ed. Let Ẽs and Ẽd denote the subsets of
Es and Ed, respectively, consisting of edges (of Es and Ed) not-yet fully dominated by
M3 ∪ Ec ∪ Es ∪ N. As each edge in Es is dominated at least twice by M3 ∪ Es, if it is
adjacent to any other in Ec ∪ Es ∪ N, it must be fully dominated. Therefore, Ẽs forms a
matching in G, and no edge in Ẽs is adjacent to any in N ∪ Ec.

In the next two steps, all the edges in Es ∪ Ms will be made fully dominated.
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5. For e ∈ Ẽs, add one edge from E incident to the exposed endvertex of e occurring
in X, into D3; such an edge must exist as otherwise, e cannot be fully dominated.

6. For each e ∈ Ms, add any edge in δG(ā(e)) (such an edge must exist in δG(ā(e)) as,
otherwise, e cannot be fully dominated).

Suppose, for some a ∈ Ad, δB(a) ∩ N = ∅. Then, every edge in δB(a) must be fully
dominated by N ∪ Md; if e ∈ δB(a) is not, it can be added to N contradicting the
maximality of N. Therefore, every edge in Ẽd must be either in N or adjacent to an
N-edge, implying that it is dominated at least twice by N ∪ M3.

In the next two steps, the algorithm adds edges to D3 so that all the edges in Ed ∪Md

become fully dominated. Let MN ⊆ Md denote the set of Md-edges adjacent to an edge
in N.

7. For each e ∈ MN , if δB(a(e)) contains an edge in Ẽd, add one more edge from
δG(a(e)) \N into D3, which must exist as dG(a(e)) ≥ 3. If δB(a(e)) contains no edge
in Ẽd, add any edge in δG(ā(e)) if it exists (if it doesn’t, add instead any edge in
δG(a(e))), into D3.

8. For each e ∈ Md \ MN , add two edges into D3, one from δG(a(e)) and another from
δG(ā(e)) if it exists (if it doesn’t, add instead any edge in δG(a(e))).

We also need to take care of the edges in M3 \ M′ and those around them, and two
adjacent edges are added in a simple way for each of these matched edges.

9. For each e ∈ M3 \M′, add any edge in E incident to the endvertices of e, one each,
into D3; in case when either of them does not exist take two edges, instead of one,
from the other end of e.

Finally, all the remaining edges in E \ E3 are taken care of by simply running the
2-opt algorithm for 2-EDS on G after the demands are appropriately adjusted. Let E′i
denote the set of edges with demands of i adjusted right after step 9. Then, E′3 = ∅ and
E3 ⊆ E′0 since any edge in E3 has been fully dominated by now (Lemma 1). Moreover,
E′2 = E2 \ δE2 (D3), E′1 ⊆ (E1 \ δE1 (D3)) ∪ (E2 ∩ δE2 (D3)) and E′0 ⊆ (E1 ∩ δE1 (D3)) ∪
(E2 ∩ δE2 (D3)) ∪ E3.

10. Run the 2-opt algorithm for 2-EDS on G after setting b′(e) ← max{0, b(e) −
|δG(e) ∩ D3|} for e ∈ E, and compute a 2-eds D2 ∪ M1 for (G, b′).

11. Output D3 ∪ D2 ∪ M1.

Lemma 1. Every edge in E3 becomes fully dominated after step 9.

Proof. 1. Consider e ∈ M′ ∪ EB. Since M′ ∪ Ec ∪ Es ⊆ D3, e ∈ Mc ∪ Ec is fully
dominated whereas e ∈ Ms ∪ Es is at least twice dominated by the end of step 4,
and if not yet fully dominated, e is made so in steps 5 and 6. Any edge in Ed

becomes fully dominated by the end of step 7, while any edge in Md does by the
end of step 8.

2. Any edge e ∈ M3 \ M′ is made fully dominated in step 9.
3. Consider e ∈ E3 \ (M3∪EB). Both endvertices of e are matched by M3 ensuring that

e is twice dominated by M3. Observe now that for any matched vertex u ∈ V3 \ X,
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δG(u) contains only one edge in D3 (namely, the matched edge incident to u) only
if dG(u) = 1 or u = ā(e) for some e ∈ Md with an N-edge incident to a(e). For
any other matched vertex u ∈ V3 \ X, δG(u) \M3 contains at least one D3-edge, and
hence, if either endvertex of e is such a vertex, e is fully dominated.
The case that dG(u) = 1 at an endvertex of e is excluded since e is unmatched.
What remains is the case when u = ā(e1) and v = ā(e2) for e = {u, v} such that
both e1 and e2 are in Md and each of a(e1) and a(e2) has an N-edge incident to it.
Since no augmenting path of length 5 exists in G3, {e, e1, e2} together with those
two N-edges incident to a(e1) and a(e2) must form a blossom (of length 5). There
cannot exist another edge in EB incident to either a(e1) or a(e2) as it would imply
an augmenting path of length 5. So, each of a(e1) and a(e2) has only one incident
edge in B, and both of them are N-edges having a common exposed vertex at their
endvertices. It means, however, that those N-edges are fully dominated even before
step 7, and hence, δB(a(e)) contains no edge in Ẽd when step 7 is executed. There-
fore, an unmatched edge in δG(u) or δG(v) is added to D3 in step 7, ensuring e being
fully dominated. ��

Thus, the correctness of the algorithm above follows from this lemma and the cor-
rectness of the 2-opt algorithm for 2-EDS:

Theorem 2. The 3-opt algorithm for the (b, 1)-EDS problem given above computes a
feasible 3-eds for G when bmax = 3.

5.1 Performance Analysis of 3-opt Algorithm for 3-EDS

Recall the dual of our LP relaxation for b-EDS:

LP: (D) max zD(y) =
∑

e∈E
b(e)ye

subject to: y(δ(e)) ≤ 1, ∀e ∈ E

ye ≥ 0, ∀e ∈ E

Suppose M3 ⊆ E3 is a matching computed in step 1 of the 3-opt algorithm. Recall
that Ẽs ⊆ Es forms a matching in G, and no edge in Ẽs is adjacent to any in N ∪ Ec. Set
the value of ye for e ∈ E3 as follows:

ye =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2 if e ∈ M3 \ MN
1
4 if e ∈ N ∪ MN
1
6 if e ∈ Ẽs

0 otherwise

Let M2 and M1 denote the matchings computed, within the run of the 2-opt algorithm
for 2-EDS, in step 10 of the 3-opt algorithm. Recall E′i , the set of edges with demands
of i adjusted right after step 9. Note that M2 ⊆ E′2 = E2\δE2 (D3) and hence, M2 contains
edges with b(e) = 2 only, and no edge in M2 can be adjacent to any in D3. The set E′1
on the other hand may contain E2-edges e as b(e) could have been lowered to 1 if it is
dominated once by D3, and so may M1 ⊆ E′1 \ δG(D2).
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Set the value of ye for e ∈ E2 ∪ E1 as follows:

ye =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2 if e ∈ M2
1
2 if e ∈ M1 ∩ E1
1
4 if e ∈ M1 ∩ E2

0 otherwise

Lemma 2. The vector y ∈ R
E of dual variables with its values assigned as above is

feasible in LP:(D).

Proof. The dual feasibility of y follows easily if y(δG(u)) ≤ 1/2 for all u ∈ V . Although
this does not hold for all the vertices in G, we will check how large y(δG(u)) could be
depending on where u is located, and will consider the cases when it exceeds 1/2 in
what follows.

As stated above, V[D3] ∩ V[M2] = ∅ and V[D2] ∩ V[M1] = ∅, but V[D3] and V[M1]
are not necessarily disjoint. So, if u ∈ V[D2], y(δG(u)) = y(δD2(u)) = y(δM2(u)), and
hence, y(δG(u)) ≤ 1/2 in this case.

Suppose u ∈ V[D3] ∩ V[M1]. Then, the M1-edge e in δG(u) must come from E2

and it has to be dominated exactly once by D3. Consider now for which vertex u of
V[D3] we may have 1) exactly one edge of D3 is incident to u, 2) the edge in 1) carries
a positive dual, and 2) dG(u) ≥ 2. It can be verified that such u must be either ā(e)
for e ∈ MN , or the exposed endvertex of an N edge. In either case the positive dual
carried by a D3-edge is 1/4, while the one carried by an M1-edge is also 1/4; hence,
y(δG(u)) ≤ 1/4 + 1/4 = 1/2 in this case.

If u ∈ V[M1] \ V[D3], the M1-edge contained in δG(u) must come from E1, and
hence, y(δG(u)) = 1/2.

What remains is the case when u ∈ V[D3] \ V[M1]. As observed in passing within
the algorithm description, Ẽs forms a matching and no edge in it is adjacent to any in
N. It can be verified from such observations that δE3 (e) contains at most two edges with
positive dual values for any e ∈ D3, and those two are either one each from Ẽs and Ms,
one each from MN and N, or both from N. Among these y(δE3 (u)) = 1/2 + 1/6 > 1/2
in the first case only, and y(δE3 (u)) ≤ 1/2 in the remaining cases. In the first case,
however, dG(u) = 2 and there is no edges incident to u other than those two edges,
e1 ∈ Ẽs and e2 ∈ Ms. Moreover, letting u1 and u2 be the other endvertices of e1 and e2,
respectively, the algorithm adds an edge, with no positive dual, incident to each of
u1 and u2 into D3 resulting in dD3 (u1) = dD3 (u2) = 2. Hence, no more edge can be
added to either of u1 or u2 in step 10, and each of y(δG(e1)) and y(δG(e2)) remains no
larger than 1 in the end.

Therefore, we may conclude that y(δG(e)) ≤ 1 for all e ∈ E. ��

Lemma 3. For y ∈ R
E of dual variables with its values assigned as above, the 3-opt

algorithm computes an output of size no larger than twice the objective value of y in
LP:(D), i.e.,

|D3 ∪ D2 ∪ M1| ≤ 2zD(y) = 2
∑

e∈E
b(e)ye.
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Proof. The term in the objective function of LP:(D) corresponding to ye is b(e)ye. So if
at most 2b(e)ye edges are used per e in dominating all the edges, the claimed inequality
holds. For e ∈ M2 ∪ (M1 ∩ E1), ye is set to 1/2, and 2 edges per e ∈ M2 and 1 edge per
e ∈ M1 ∩ E1 are used. On the other hand, 1 edge per e ∈ M1 ∩ E2 is used with ye = 1/4,
and it suffices because 2b(e)ye = 2 · 2 · (1/4) = 1.

As for D3, 3 edges are used per e ∈ M3 where ye = 1/2 if e ∈ M3 \ MN but ye = 1/4
if e ∈ MN . For each e1 ∈ MN , however, there exists a mate e2 ∈ N of its own, carrying
ye2 = 1/4, and hence, together with e2, e1 can pay 1/2 that is sufficient for 3 edges.

Besides e and two edges adjacent to e per e ∈ M3, D3 uses one more edge per e′ ∈ Ẽs,
and it can be paid for by ye′ as 2b(e′)ye′ = 2 · 3 · (1/6) = 1. ��

It follows immediately from these preceding two lemmas that the 3-opt algorithm
computes a feasible eds of size no larger than twice the optimum:

Theorem 3. The 3-opt algorithm is a 2-approximation algorithm for the (b, 1)-EDS
problem when bmax = 3.

Corollary 2. γ3(G) ≤ 2 · dual(G).
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