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Abstract. In this paper we give upper bounds on the number of mini-
mal separators and potential maximal cliques of graphs w.r.t. two graph
parameters, namely vertex cover (vc) and modular width (mw). We prove
that for any graph, the number of minimal separators is O∗(3vc) and
O∗(1.6181mw), the number of potential maximal cliques is O∗(4vc) and
O∗(1.7347mw), and these objects can be listed within the same running
times. (The O∗ notation suppresses polynomial factors in the size of the
input.) Combined with known results [3,12], we deduce that a large fam-
ily of problems, e.g., Treewidth, Minimum Fill-in, Longest Induced

Path, Feedback vertex set and many others, can be solved in time
O∗(4vc) or O∗(1.7347mw).

1 Introduction

The vertex cover of a graph G, denoted by vc(G), is the minimum number of
vertices that cover all edges of the graph. The modular width mw(G) can be
defined as the maximum degree of a prime node in the modular decomposition
of G (see [20] and Section 4 for definitions). The main results of this paper are
of combinatorial nature: we show that the number of minimal separators and
the number of potential maximal cliques of a graph (see Section 2 and also [3]
for definitions) are upper bounded by a function in each of these parameters.
More specifically, we prove the number of minimal separators is at most 3vc

and O∗(1.6181mw), and the number of potential maximal cliques is O∗(4vc) and
O∗(1.7347mw), and these objects can be listed within the same running time
bounds. Recall that the O∗ notation suppresses polynomial factors in the size
of the input, i.e., O∗(f(k)) should be read as f(k) · nO(1) where n is the num-
ber of vertices of the input graph. Minimal separators and potential maximal
cliques have been used for solving several classical optimization problems, e.g.,
Treewidth, Minimum Fill-In [10], Longest Induced Path, Feedback
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Vertex Set or Independent Cycle Packing [12]. Pipelined with our com-
binatorial bounds, we obtain a series of algorithmic consequences in the area of
FPT algorithms parameterized by the vertex cover and the modular width of
the input graph. In particular, the problems mentioned above can be solved in
time O∗(4vc) and O∗(1.7347mw). These results are complementary in the sense
that graphs with small vertex cover are sparse, while graphs with small modular
width may be dense.

Vertex cover and modular width are strongly related to treewidth (tw) and
cliquewidth (cw) parameters, since for any graph G we have tw(G) ≤ vc(G)
and cw(G) ≤ mw(G)+ 2. The celebrated theorem of Courcelle [6] states that all
problems expressible in Counting Monadic Second Order Logic (CMSO2) can be
solved in time f(tw) ·n for some function f depending on the problem. A similar
result for cliquewidth [7] shows that all CMSO1 problems can be solved in time
f(cw) · n, if the clique-decomposition is also given as part of the input. (See
the full version [11] for definitions of different types of logic. Informally, CMSO2

allows logic formulae with quantifiers over vertices, edges, edge sets and vertex
sets, and counting modulo constants. The CMSO1 formulae are more restricted,
we are not allowed to quantify over edge sets.)

Typically function f is a tower of exponentials, and the height of the tower
depends on the formula. Moreover Frick and Grohe [15] proved that this depen-
dency on treewidth or cliquewidth cannot be significantly improved in general.
Lampis [18] shows that the running time for CMSO2 problems can be improved

22
O(vc) ·n when parametrized by vertex cover, but he also shows that this cannot

be improved to O∗(22
o(vc)

) (under the exponential time hypothesis). We are not
aware of similar improvements for parameter modular width, but we refer to [16]
for discussions on problems parameterized by modular width.

Most of our algorithmic applications concern a restricted, though still large
subset of CMSO2 problems, but we guarantee algorithms that are single expo-
nential in the vertex cover: O∗(4vc) and in the modular width: O∗(1.7347mw).
We point out that our result for modular width extends the result of [13,12],
who show a similar bound of O∗(1.7347n) for the number of potential maximal
cliques and for the running times for these problems, but parameterized by the
number of vertices of the input graph.

We use the following generic problem proposed by [12], that encompasses
many classical optimization problems. Fix an integer t ≥ 0 and a CMSO2 formula
ϕ. Consider the problem of finding, in the input graph G, an induced subgraph
G[F ] together with a vertex subset X ⊆ F , such that the treewidth of G[F ] is
at most t, the graph G[F ] together with the vertex subset X satisfy formula ϕ,
and X is of maximum size under this conditions. This optimization problem is
called Max Induced Subgraph of tw ≤ t satisfiying ϕ:

Max |X |
subject to There is a set F ⊆ V such that X ⊆ F ;

The treewidth of G[F ] is at most t;
(G[F ], X) |= ϕ.

(1)
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Note that our formula ϕ has a free variable corresponding to the vertex subset
X . For several examples, in formula ϕ the vertex set X is actually equal to F .
E.g., even when ϕ only states that X = F , for t = 0 we obtain the Maximum

Independent set problem, and for t = 1 we obtain the Maximum Induced

Forest. If t = 1 and ϕ states that X = F and G[F ] is a path we obtain the
Longest Induced Path problem. Still under the assumption that X = F , we
can express the problem of finding the largest induced subgraph G[F ] excluding
a fixed planar graphH as a minor, or the largest induced subgraph with no cycles
of length 0 mod l. ButX can correspond to other parameters, e.g. we can choose
the formula ϕ such that |X | is the number of connected components of G[F ].
Based on this we can express problems like Independent Cycle Packing,
where the goal is to find an induced subgraph with a maximum number of
components, and such that each component induces a cycle.

The result of [12] states that problem Max Induced Subgraph of tw ≤ t
satisfiying ϕ can be solved in a running time of the type #pmc ·nt+4 · f(ϕ, t)
where #pmc is the number of potential maximal cliques of the graph, as-
suming that the set of all potential maximal cliques is also part of the in-
put. Thanks to our combinatorial bounds we deduce that the problem Max

Induced Subgraph of tw ≤ t satisfiying ϕ can be solved in time O(4vcnt+c)
and O(1.7347mwnt+c), for some small constant c.

There are several other graph parameters that can be computed in time
O∗(#pmc) if the input graph is given together with the set of its potential
maximal cliques. E.g.,Treewidth, Minimum Fill-in [10], their weighted ver-
sions [1,17] and several problems related to phylogeny [17], or Treelength [19].
Pipelined with our main combinatorial result, we deduce that all these problems
can be solved in time O∗(4vc) or O∗(1.7347mw). Recently Chapelle et al. [5]
provided an algorithm solving Treewidth and Pathwidth in O∗(3vc), but
those completely different techniques do not seem to work for Minimum Fill-

in or Treelength. The interested reader may also refer., e.g., to [8,9] for more
(layout) problems parameterized by vertex cover.

2 Minimal Separators and Potential Maximal Clique

Let G = (V,E) be an undirected, simple graph. We denote by n its number
of vertices and by m its number of edges. The neighborhood of a vertex v is
N(v) = {u ∈ V : {u, v} ∈ E}. We say that a vertex x sees a vertex subset S (or
vice-versa) if N(x) intersects S. For a vertex set S ⊆ V we denote by N(S) the
set

⋃
v∈S N(v) \S. We write N [S] (resp. N [x]) for N(S)∪S (resp. N(x)∪ {x}).

Also G[S] denotes the subgraph of G induced by S, and G − S is the graph
G[V \ S].

A connected component of graph G is the vertex set of a maximal induced
connected subgraph of G. Consider a vertex subset S of graph G. Given two
vertices u and v, we say that S is a u, v-separator if u and v are in different
connected components of G− S. Moreover, if S is inclusion-minimal among all
u, v-separators, we say that S is a minimal u, v-separator. A vertex subset S is
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called a minimal separator of G if S is a u, v-minimal separator for some pair of
vertices u and v.

Let C be a component of G−S. IfN(C) = S, we say that C is a full component
associated to S.

Proposition 1 (folklore). A vertex subset S of G is a minimal separator if
and only if G− S has at least two full components associated to S. Moreover, S
is a minimal x, y-separator if and only if x and y are in different full components
associated to S.

A graph H is chordal or triangulated if every cycle with four or more vertices
has a chord, i.e., an edge between two non-consecutive vertices of the cycle. A
triangulation of a graph G = (V,E) is a chordal graph H = (V,E′) such that
E ⊆ E′. Graph H is a minimal triangulation of G if for every edge set E′′ with
E ⊆ E′′ ⊂ E′, the graph F = (V,E′′) is not chordal.

A set of vertices Ω ⊆ V of a graph G is called a potential maximal clique if
there is a minimal triangulation H of G such that Ω is a maximal clique of H .

The following statement due to Bouchitté and Todinca [3] provides a char-
acterization of potential maximal cliques, and in particular allows to test in
polynomial time if a vertex subset Ω is a potential maximal clique of G:

Proposition 2 ([3]). Let Ω ⊆ V be a set of vertices of the graph G = (V,E) and
{C1, . . . , Cp} be the set of connected components of G − Ω. We denote S(Ω) =
{S1, S2, . . . , Sp}, where Si = N(Ci) for all i ∈ {1, . . . , p}. Then Ω is a potential
maximal clique of G if and only if

1. each Si ∈ S(Ω) is strictly contained in Ω;
2. the graph on the vertex set Ω obtained from G[Ω] by completing each Si ∈

S(Ω) into a clique is a complete graph.

Moreover, if Ω is a potential maximal clique, then S(Ω) is the set of minimal
separators of G contained in Ω.

Another way of stating the second condition is that for any pair of vertices
u, v ∈ Ω, if they are not adjacent in G then there is a component C of G − Ω
seeing both x and y.

To illustrate Proposition 2, consider, e.g., the cube graph depicted in Figure 2.
The set Ω1 = {a, e, g, c, h} is a potential maximal clique and the minimal sepa-
rators contained in Ω1 are {a, e, g, c} and {a, h, c}. Another potential maximal
clique of the cube graph is Ω2 = {a, c, f, h} containing the minimal separators
{a, c, f}, {a, c, h}, {a, f, h} and {c, f, h}.

Based on Propositions 1 and 2, one can easily deduce:

Corollary 1 (see e.g., [3]). There is an O(m) time algorithm testing if a
given vertex subset S is a minimal separator of G, and O(nm) time algorithm
testing if a given vertex subset Ω is a potential maximal clique of G.

We also need the following observation.

Proposition 3 ([3]). Let Ω be a potential maximal clique of G and let S ⊂ Ω
be a minimal separator. Then Ω \ S is contained in a unique component C of
G− S, and moreover C is a full component associated to S.
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Fig. 1. Cube graph (left) and watermelon graph (right)

3 Relations to Vertex Cover

A vertex subsetW is a vertex cover of G if each edge has at least one endpoint in
W . Note that if W is a vertex cover, that V \W induces an independent set in G,
i.e. G−W contains no edges. We denote by vc(G) the size of a minimum vertex
cover of G. The parameter vc(G) is called the vertex cover number or simply
(by a slight abuse of language) the vertex cover of G. There is a well-known
(folklore) branching algorithm computing the vertex cover of the input graph in
time O∗(2vc).

Let us show that any graph G has at most 3vc(G) minimal separators.

Lemma 1. Let G = (V,E) be a graph, W be a vertex cover and S ⊆ V be a
minimal separator of G. Consider a three-partition (D1, S,D2) of V such that
both D1 and D2 are formed by a union of components of G − S, and both D1

and D2 contain some full component associated to S. Denote DW
1 = D1 ∩ W

and DW
2 = D2 ∩W .

Then S \W = {x ∈ V \W | N(x) intersects both DW
1 and DW

2 }.
Proof. Let C1 ⊆ D1 and C2 ⊆ D2 be two full components associated to S. Let
x ∈ S \W . Vertex x must have neighbors both in C1 and C2, hence both in D1

and D2. Since x 	∈ W and W is a vertex cover, we have N(x) ⊆ W . Consequently
x has neighbors both in DW

1 and DW
2 .

Conversely, let x ∈ V \W s.t. N(x) intersects both DW
1 and DW

2 . We prove
that x ∈ S. By contradiction, assume that x 	∈ S, thus x is in some component
C of G − S. Suppose w.l.o.g. that C ⊆ D1. Since N(x) ⊆ C ∪ N(C), we must
have N(x) ⊆ D1 ∪ S. Thus N(x) cannot intersect D2—a contradiction. 
�
Theorem 1. Any graph G has at most 3vc(G) minimal separators. Moreover the
set of its minimal separators can be listed in O∗(3vc(G)) time.

Proof. Let W be a minimum size vertex cover of G. For each three-partition
(DW

1 , SW , DW
2 ) ofW , let S = SW ∪{x ∈ V \W | N(x) intersects DW

1 and DW
2 }.

According to Lemma 1, each minimal separator of G will be generated this way,
by an appropriate partition (DW

1 , SW , DW
2 ) of W . Thus the number of minimal

separators is at most 3vc(G), the number of three-partitions of W .
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These arguments can be easily turned into an enumeration algorithm, we
simply need to compute an optimum vertex cover (recall this can be done in
O∗(2(vc(G)) time) then test, for each set S generated from a three-partition, if S
is indeed a minimal separator. The latter takes O(m) time for each set S using
Corollary 1. 
�

Observe that the bound of Theorem 1 is tight up to a constant factor. Indeed
consider the watermelon graph Wk,3 formed by k disjoint paths of three vertices
plus two vertices u and v adjacent to the left, respectively right ends of the
paths (see Figure 2). Note that this graph has vertex cover k+2 (the minimum
vertex cover contains the middle of each path and vertices u and v) and it also
has 3k minimal u, v-separators, obtained by choosing arbitrarily one of the three
vertices on each of the k paths.

We now extend Theorem 1 to a similar result on potential maximal cliques.
Let us distinguish a particular family of potential maximal cliques, which have
active separators. They have a particular structure which makes them easier to
handle.

Definition 1 ([4]). Let Ω ⊆ V be a potential maximal clique of graph G =
(V,E), let {C1, . . . , Cp} be the set of connected components of G − Ω and let
Si = N(Ci), for 1 ≤ i ≤ p.

Consider now the graph G+ obtained from G by completing into a clique all
minimal separators Sj, 2 ≤ i ≤ p, such that Sj 	⊆ S1.

We say that S1 is an active separator for Ω if Ω is not a clique in this graph
G+. A pair of vertices x, y ∈ Ω that are not adjacent in G+ is called an active
pair. Note that, by Proposition 2, we must have x, y ∈ S1.

The following statement characterizes potential maximal cliques with active
separators.

Proposition 4. Let Ω be a potential maximal clique having an active separator
S ⊂ Ω, with an active pair x, y ∈ S. Denote by C the unique component of
G − S containing Ω \ S. Then Ω \ S is a minimal x, y-separator in the graph
G[C ∪ {x, y}].

Again on the cube graph of Figure 2, for the potential maximal clique Ω1 =
{a, e, g, c, h}, both minimal separators are active. E.g., for the minimal separator
S = {a, e, g, c} the pair {e, g} is active. Not all potential maximal cliques have
active separators, as illustrated by the potential maximal clique Ω2 = {a, c, f, h}
of the same graph.

Let us first focus on potential maximal cliques having an active separator. We
give a result similar to Lemma 1, showing that such a potential maximal clique
can be determined by a certain partition of the vertex cover W of G.

Lemma 2. Let G = (V,E) be a graph and W be a vertex cover of G. Consider a
potential maximal clique Ω of G having an active separator S ⊆ Ω and an active
pair x, y ∈ S. Let C be the unique connected component of G − S intersecting
Ω and let DS be the union of all other connected components of G− S. Denote
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by Dx the union of components of G − Ω contained in C, seeing x, by Dy the
union of components of G−Ω contained in C not seeing x.

Now let DW
S = DS ∩W , DW

x = Ds ∩W and DW
y = Dy ∩W .

Then one of the following holds:

1. There is a vertex t ∈ Ω such that Ω \ S = N(t) ∩ C.
2. There is a vertex t ∈ Ω such that Ω = N [t].
3. A vertex z 	∈ W is in Ω if and only if

(a) z sees DW
S and DW

x ∪DW
y , or

(b) z does not see DW
S but is sees DW

x ∪ {x}, DW
y ∪ {y} and DW

x ∪DW
y .

Proof. Note that Dx, Dy, DS and Ω form a partition of the vertex set V .
We first prove that any vertex z 	∈ W satisfying conditions 3a or 3b must be

in Ω.
Consider first the case 3a when z sees DW

S and DW
x ∪ DW

y . So z sees DS

and C; we can apply Lemma 1 to partition (DS , S, C) thus z ∈ S. Consider
now the case 3b when z sees DW

x ∪DW
y , Dx ∪ {x} and Dy ∪ {y} but not DW

S .
Again by Lemma 1 applied to partition (DS , S, C), vertex z cannot be in S.
Since z has a neighbor in Dx ∪Dy, we have z ∈ C. Let H = G[C ∪ {x, y}] and
T = Ω ∩ C (thus we also have T = Ω \ S). Recall that T is an x, y-minimal
separator in H by Proposition 4. By definition of set Dx, we have that Dx∪{x}
is exactly the component of H−T containing x. Note that Dy ∪{y} is the union
of the component of H − T containing y and of all other components of H − T
(that no not see x nor y). By applying Lemma 1 on graph H , with vertex cover
(W ∩ C) ∪ {x, y} and with partition (Dx ∪ {x}, T,Dy ∪ {y}) we deduce that
z ∈ T .

Conversely, let z ∈ Ω \W . We must prove that either z satisfies conditions 3a
or 3b, or we are in one of the first two cases of the Lemma. We distinguish
the cases z ∈ S and z ∈ T . When z ∈ S, by Lemma 1 applied to partition
(DS , S, C), z must see DS and C. If z sees some vertex in C \ Ω, we are done
because z sees DW

x ∪DW
y so we are in case 3a. Assume now that N(z)∩C ⊆ Ω,

we prove that actually N(z)∩C = T = Ω \S, so we are in case 1. Assume there
is u ∈ T \N(z). By Proposition 2, there must be a connected component D of
G−Ω such that z, u ∈ N(D). Since u ∈ C, this component D must be a subset
of C, so D ⊆ C \ Ω. Together with z ∈ N(D), this contradicts the assumption
N(z) ∩ C ⊆ Ω.

It remains to treat the case z ∈ T . Clearly z ∈ C cannot see DS because S
separates C from DS. We again take graphH , with vertex cover (W ∩C)∪{x, y},
and apply Lemma 1 with partition (Dx ∪ {x}, T,Dy ∪ {y}). We deduce that z
sees both DW

x ∪ {x} and DW
y ∪ {y}. Assume that z does not see DW

x ∪ DW
y .

So N(z) ∩ C \ Ω = ∅ thus N [z] ⊆ Ω. If Ω contains some vertex u 	∈ N [z], no
component of G − Ω can see both z and u (because N(z) ⊆ Ω), contradicting
Proposition 2. We conclude that either z seesDW

x ∪DW
y (so satisfies condition 3b)

or Ω = N [z] (thus we are in the second case of the Lemma). 
�
Theorem 2. Any graph G has O∗(4vc(G)) potential maximal cliques. Moreover
the set of its potential maximal cliques can be listed in O∗(4vc(G)) time.
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Proof. Let us first give the upper bound and the enumeration algorithm for
potential maximal cliques with active separators.

The number of potential maximal cliques with active separators satisfying the
second condition of Lemma 2 is at most n, and they can all be listed in polynomial
time by checking, for each vertex t, ifN [t] is a potential maximal clique.

For enumerating the potential maximal cliques with active separators satis-
fying the first condition of Lemma 2, we enumerate all minimal separators S
using Theorem 1, then for each t ∈ S and each of the at most n components C
of G − S we check if S ∪ (C ∩ N(t)) is a potential maximal clique. Recall that
testing if a vertex set is a potential maximal clique can be done in polynomial
time by Corollary 1. Thus the whole process takes O∗(3vc(G)) time, and this is
also an upper bound on the number of listed objects.

It remains to enumerate the potential maximal cliques with active separators
satisfying the third condition of Lemma 2. For this purpose, we “guess” the sets
DW

S DW
x , DW

y as in the Lemma and then we compute Ω. More formally, for

each four-partition (DW
S , DW

x , DW
y , ΩW ) of W , we let ΩW be the set of vertices

z 	∈ W satisfying conditions 3a or 3b of Lemma 2, and we test using Corollary 1

if Ω = ΩW ∪ ΩW is indeed a potential maximal clique. By Lemma 2, this
enumerates in O∗(4vc(G)) all potential maximal cliques of this type.

We have proven that G has O∗(4vc(G)) potential maximal cliques with active
separators and these objects can be listed within the same running time. Due to
space restrictions, the extension to all potential maximal cliques, including the
ones with no active separators, is given in the full version [11]. 
�

4 Relations to Modular Width

A module of graph G = (V,E) is a set of vertices W such that, for any vertex
x ∈ V \ W , either W ⊆ N(x) or W does not intersect N(x). For the reader
familiar with the modular decompositions of graphs, the modular width mw(G)
of a graph G is the maximum size of a prime node in the modular decomposition
tree. Equivalently, graph G is of modular width at most k if:

1. G has at most one vertex (the base case).
2. G is a disjoint union of graphs of modular width at most k.
3. G is a join of graphs of modular width at most k. I.e., G is obtained from a

family of disjoint graphs of modular width at most k by taking the disjoint
union and then adding all possible edges between these graphs.

4. The vertex set of G can be partitioned into p ≤ k modules V1, . . . , Vp such
that G[Vi] is of modular width at most k, for all i, 1 ≤ i ≤ p.

The modular width of a graph can be computed in linear time, using e.g. [20].
Moreover, this algorithm outputs the algebraic expression of G corresponding to
this grammar.

Let G = (V,E) be a graph with vertex set V = {v1, . . . , vk} and let Mi =
(Vi, Ei) be a family of pairwise disjoint graphs, for all i, 1 ≤ i ≤ k. Denote by
H the graph obtained from G by replacing each vertex vi by the module Mi. I.e.,
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H = (V1 ∪· · ·∪Vk, E1 ∪· · ·∪Ek ∪{ab | a ∈ Vi, b ∈ Vj s.t. vivj ∈ E}). We say that
graphH has been obtained fromG by expanding each vertex vi by the moduleMi.

A vertex subset W of H is an expansion of vertex subset WG of G if W =
∪vi∈WGVi. Given a vertex subset W of H , the contraction of W is {vi | Vi

intersects W}.
We prove in Lemma 3 (resp. Lemma 4) that each minimal separator (resp.

each potential maximal clique of H) actually corresponds to a minimal separator
(resp. potential maximal clique) of G or to a minimal separator (resp. potential
maximal clique) of one of the modules Mi. Due to space restrictions, the proofs
of these statements are given [11].

Lemma 3. Let S be a minimal separator of H. One of the following holds :

1. S is the expansion of a minimal separator SG of G.
2. There is i ∈ {1, . . . , k} such that S ∩ Vi is a minimal separator of Mi and

S \ Vi = NH(Vi).

Lemma 4. Let Ω be a potential maximal clique ofH. One of the following holds :

1. Ω is the expansion of a potential maximal clique ΩG of G.
2. There is some i ∈ {1, . . . , k} such that Ω ∩ Vi is a potential maximal clique

of Mi and Ω \ Vi = NH(Vi).

Lemma 3 (resp. Lemma 4) provide an injective mapping from the set of min-
imal separators (resp. the set of potential maximal cliques) of H to the union of
the sets of minimal separators (resp. of potential maximal cliques) of G and of
the graphs Mi. Therefore we have:

Corollary 2. The number of minimal separators (resp. of potential maximal
cliques) of graph H is at most the number of minimal separators (resp. of po-
tential maximal cliques) of G plus the number of minimal separators (resp. of
potential maximal cliques) of each Mi.

The following proposition bounds the number of minimal separators and po-
tential maximal cliques of arbitrary graphs with respect to n.

Proposition 5 ([13,14]). Every n-vertex graph has O(1.6181n) minimal sep-
arators and O(1.7347n) potential maximal cliques. Moreover, these objects can
be enumerated within the same running times.

We can now prove the main result of this section.

Theorem 3. For any graph G = (V,E), the number of its minimal separa-
tors is O(n · 1.6181mw(G)) and the number of its potential maximal cliques is
O(n · 1.7347mw(G)). Moreover, the minimal separators and the potential maxi-
mal cliques can be enumerated in O∗(1.6181mw(G)) and O∗(1.7347mw(G)) time
respectively.

Proof. Let k = mw(G). By definition of modular width, there is a decomposition
tree of graph G, each node corresponding to a leaf, a disjoint union, a join or
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a decomposition into at most k modules. The leaves of the decomposition tree
are disjoint graphs with a single vertex, thus these vertices form a partition of
V . There are at most n leaves and, since each internal node is of degree at least
two, there are O(n) nodes in the decomposition tree. For each node N , let G(N)
be the graph associated to the subtree rooted in N . We prove that G(N) has
O(n(N) · 1.6181k) minimal separators and O(n(N) · 1.7347k) potential maximal
cliques, where n(N) is the number of nodes of the subtree rooted in N . We
proceed by induction from bottom to top. The statement is clear for leaves.

Let N be an internal node N1, N2, . . . , Np be its sons in the tree. Graph
G(N) is the expansion of some graph G′(N) by replacing the i-th vertex with
module G(Ni). If N is a join node, then G′(N) is a clique. When N is a disjoint
union node, graph G′(N) is an independent set, and in the last case G′(N)
is a graph of at most k vertices. In all cases, by Proposition 5 graph G′(N)
has O(1.6181k) minimal separators. Thus G(N) has at most O(1.6181k) more
minimal separators than all its sons taken together, which completes our proof
for minimal separators.

Concerning potential maximal cliques, whenG′(N) is a clique it has exactly one
potential maximal clique, and when G′(N) is of size at most k is has O(1.7347k)
potential maximal cliques. We must be more careful in the case whenG′(N) is an
independent set (i.e.,N is a disjoint union node), since in this case it has p potential
maximal cliques, one for each vertex, and p can be as large as n. Consider a poten-
tial maximal cliqueΩ ofG(N) corresponding to an expansion of vertices ofG′(N)
(see Lemma 4). It follows that this potential maximal clique is exactly the vertex
set of some G(Ni), for a child Ni of N . By construction this vertex set is discon-
nected from the rest ofG(N), and by Proposition 2 the only possibility is that this
vertex set induces a clique in G(N). But in this case Ω is also a potential maximal
clique of G(Ni). This proves that, when N is of type disjoint union, G(N) has no
more potential maximal cliques than the sum of the numbers of potential maximal
cliques of all its sons. Hence the whole graphG has O(n · 1.7347k) potential max-
imal cliques. All arguments are constructive and can be turned into enumeration
algorithms for these objects. 
�

5 Applications

The treewidth of graph G = (V,E), denoted tw(G), is the minimum number k
such that G has a triangulation H = (V,E′) of clique size at most k + 1. The
minimum fill in of G is the minimum size of F , over all (minimal) triangulations
H = (V,E∪F ) of G. The treelength of G is the minimum k such that there exists
a minimal triangulation H , with the property that any two vertices adjacent in
H are at distance at most k in graph G.

Proposition 6. Let ΠG denote the set of potential maximal cliques of graph
G. The following problems are solvable in O∗(|ΠG|) time, when ΠG is given
in the input : (Weighted) Treewidth [10,2], (Weighted) Minimum Fill-

In [10,17], Treelength [19].
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Recall the Max Induced Subgraph of tw ≤ t satisfiying ϕ problem
where, for a fixed integer t and a fixed CMSO2 formula ϕ, the goal is to find a
pair of vertex subsets X ⊆ F ⊆ V such that tw(G[F ]) ≤ t, (G[F ], X) models ϕ
and X is of maximum size.

Proposition 7 ([12]). For any fixed integer t > 0 and any fixed CMSO2 for-
mula ϕ, problem Max Induced Subgraph of tw ≤ t satisfiying ϕ is solvable
in O(|ΠG| · nt+4) time, when ΠG is given in the input.

Problem Max Induced Subgraph of tw ≤ t satisfiying ϕ generalizes
many classical problems, for example Maximum Induced Forest, Longest
Induced Path,Maximum Induced Matching, Independent Cycle Pack-

ing, k-in-a-Path, k-in-a-Tree,Maximum Induced Subgraph With a For-

bidden Planar Minor. More examples of particular cases are given in the full
version [11], see also [12]. From Theorems 2 and 3, we deduce:

Theorem 4. Problems Max Induced Subgraph of tw ≤ t satisfiying ϕ,
(Weighted) Treewidth, (Weighted) Minimum Fill-In and Treelength

can be solved in time O∗(4vc) and in time O∗(1.7347mw).

6 Conclusion

We have provided single exponential upper bounds for the number of minimal
separators and the number of potential maximal cliques of graphs, with respect
to parameters vertex cover and modular width.

A natural question is whether these results can be extended to other natural
graph parameters. We point out that for parameters like clique-width or maxi-
mum leaf spanning tree, one cannot obtain upper bounds of type O∗(f(k)) for
any function f . A counterexample is provided by the graph Wp,q, formed by p
disjoint paths of q vertices plus two vertices u and v seeing the left, respectively
right ends of the paths (similar to the watermelon graph of Figure 2). Indeed
this graph has a maximum leaf spanning tree with p leaves and a cliquewidth of
no more than 2p+ 1, but it has roughly (n/p)p minimal u, v-separators.

Finally, we point out that our bounds on the number of potential maximal
cliques w.r.t. vertex cover and to modular width do not seem to be tight. Any
improvement on these bounds, together with faster enumeration algorithms for
the potential maximal cliques, will immediately provide improved algorithms for
the problems mentioned in Section 5.
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4. Bouchitté, V., Todinca, I.: Listing all potential maximal cliques of a graph. Theor.
Comput. Sci. 276(1-2), 17–32 (2002)

5. Chapelle, M., Liedloff, M., Todinca, I., Villanger, Y.: Treewidth and pathwidth pa-
rameterized by the vertex cover number. In: Dehne, F., Solis-Oba, R., Sack, J.-R.
(eds.) WADS 2013. LNCS, vol. 8037, pp. 232–243. Springer, Heidelberg (2013)

6. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of
finite graphs. Inf. Comput. 85(1), 12–75 (1990)

7. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization prob-
lems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150
(2000)

8. Cygan, M., Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: On cutwidth
parameterized by vertex cover. Algorithmica 68(4), 940–953 (2014)

9. Fellows, M.R., Lokshtanov, D., Misra, N., Rosamond, F.A., Saurabh, S.: Graph
layout problems parameterized by vertex cover. In: Hong, S.-H., Nagamochi,
H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 294–305. Springer,
Heidelberg (2008)

10. Fomin, F.V., Kratsch, D., Todinca, I., Villanger, Y.: Exact algorithms for treewidth
and minimum fill-in. SIAM J. Comput. 38(3), 1058–1079 (2008)

11. Fomin, F.V., Liedloff, M., Montealegre, P., Todinca, I.: Algorithms parameterized
by vertex cover and modular width, through potential maximal cliques (2014),
http://arxiv.org/abs/1404.3882

12. Fomin, F.V., Todinca, I., Villanger, Y.: Large induced subgraphs via trian-
gulations and cmso. In: Chekuri, C. (ed.) SODA, pp. 582–583. SIAM (2014),
http://arxiv.org/abs/1309.1559

13. Fomin, F.V., Villanger, Y.: Finding induced subgraphs via minimal triangulations.
In: Marion, J.Y., Schwentick, T. (eds.) STACS. LIPIcs, vol. 5, pp. 383–394. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2010)

14. Fomin, F.V., Villanger, Y.: Treewidth computation and extremal combinatorics.
Combinatorica 32(3), 289–308 (2012)

15. Frick, M., Grohe, M.: The complexity of first-order and monadic second-order logic
revisited. Ann. Pure Appl. Logic 130(1-3), 3–31 (2004)
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