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Abstract. We study a variant of online bin packing, called colorful bin
packing. In this problem, items that are presented one by one are to
be packed into bins of size 1. Each item i has a size si ∈ [0, 1] and a
color ci ∈ C, where C is a set of colors (that is not necessarily known
in advance). The total size of items packed into a bin cannot exceed its
size, thus an item i can always be packed into a new bin, but an item
cannot be packed into a non-empty bin if the previous item packed into
that bin has the same color, or if the occupied space in it is larger than
1− si. This problem generalizes standard online bin packing and online
black and white bin packing (where |C| = 2). We prove that colorful bin
packing is harder than black and white bin packing in the sense that an
online algorithm for zero size items that packs the input into the smallest
possible number of bins cannot exist for |C| ≥ 3, while it is known that
such an algorithm exists for |C| = 2. We show that natural generalizations
of classic algorithms for bin packing fail to work for the case |C| ≥ 3, and
moreover, algorithms that perform well for black and white bin packing
do not perform well either, already for the case |C| = 3. Our main results
are a new algorithm for colorful bin packing that we design and analyze,
whose absolute competitive ratio is 4, and a new lower bound of 2 on
the asymptotic competitive ratio of any algorithm, that is valid even for
black and white bin packing.

1 Introduction

Colorful bin packing is a packing problem where a sequence of colored items is
presented to the algorithm, and the goal is to partition (or pack) the items into
a minimal number of bins. The set of items is denoted by {1, 2, . . . , n}, where
0 ≤ si ≤ 1 is the size of item i, and ci ∈ C is its color. The items are to be packed
one by one (according to their order in the input sequence), such that the items
packed into each bin have a total size of at most 1, and any two items packed
consecutively into one bin have different colors. Since the input is viewed as a
sequence rather than a set, the natural scenario for this problem is an online
one; after an item has been packed, the next item is presented. In an online
environment, the algorithm packs an item without any knowledge regarding the
further items, and the set C (or even its cardinality) is not necessarily known to
the algorithm. The number of items, n, is typically unknown to the algorithm
as well. In the case that inputs are viewed as sequences and not as sets, online
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algorithms are typically compared to optimal offline algorithms that must pack
the items exactly in the same order as they appear in the input.

Consider an input for colorful bin packing with N red items of size zero, fol-
lowed by N blue items of size zero. This input requires N bins, but reordering
the items reduces the required number of bins to 1. Thus, distinguishing reason-
able online algorithms from less successful ones cannot be done by comparison
to offline algorithms that are allowed to reorder the input. The offline algorithms
to which we compare our online algorithm are therefore not allowed to reorder
the input. Such an optimal offline algorithm is denoted by OPT (OPT denotes
a specific optimal offline algorithm, and we use OPT to denote also the number
of bins that it uses for a given input). The absolute competitive ratio of an algo-
rithm is the supremum ratio over all inputs between the number of bins that it
uses and the number of bins that OPT uses (for the same input). The asymptotic
competitive ratio is the limit of absolute competitive ratios RK when K tends
to infinity and RK takes into account only inputs for which OPT uses at least
K bins. Note that (by definition), for a given algorithm (for some online bin
packing problem), its asymptotic competitive ratio never exceeds its absolute
competitive ratio.

The special case of colorful bin packing, called black and white packing, was
introduced in [1]. In this variant there are just two colors, called black and white.
The motivation for black and white bin packing was in assignment to containers
of items so that any two items packed consecutively into one bin can be easily
distinguished later. An example for such items was articles that are printed on
either white paper or recycled paper, in which case bins simply contain piles
of paper, and packing articles printed on the two kinds of paper so that the
two kinds alternate allows to distinguish them easily. Colorful bin packing is the
generalization where there is a number of different kinds of printing paper (for
example, paper of distinct colors that is used for printing advertisement flyers),
and in order to distinguish between two items (two piles of flyers), they have to
have different colors of printing paper.

It was shown [1] that the natural generalizations of several well-known algo-
rithms fail to obtain finite competitive ratios. For example, Next Fit (NF) for
colorful bin packing (and for black and white bin packing) packs items into a
single active bin, and moves to a new active bin as soon as packing an item
into the active bin is impossible. For standard bin packing, a new active bin is
opened when there is no space for the new item in the previous active bin, but
for colorful bin packing a new bin will be opened either in this case, or when the
last item of the active bin and the new item have the same color. It was shown in
[1] that this algorithm fails to achieve a finite competitive ratio (already for two
colors). Harmonic algorithms [10], that partition items into sub-inputs according
to sizes and pack each sub-input independently of the other sub-inputs, were also
shown to have unbounded competitive ratios [1]. On the other hand, there are
some basic online bin packing algorithms that can be adapted successfully for
black and white bin packing. The generalizations of Any Fit (AF) algorithms,
that never use a new bin unless there is not other way to pack a new item, were
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shown to have constant absolute competitive ratios. The generalized versions
of such algorithms for colorful bin packing open a new bin only if the current
item cannot be packed into an existing bin such that the color constraint is kept
and the total size of items packed into the bin will remain at most 1. Three
important special cases of AF are First Fit (FF), Best Fit (BF), and Worst Fit
(WF). These algorithms select the bin where a new item is packed (out of the
feasible options) to be the bin of minimum index, the a bin with the smallest
empty space, and a bin with the largest empty space, respectively. The difference
with classical bin packing is that the infeasible bins can be of two kinds, either
those that do not have sufficient empty space, and those where the last packed
item has the same color as the color of the new item. It was shown that all AF
algorithms have absolute and asymptotic competitive ratios of at least 3 and at
most 5 for black and white bin packing. Veselý [16] tightened the bound and
showed an upper bound of 3 on the absolute competitive ratio of AF algorithms.
The results of [1,16] in fact show that the absolute competitive ratio of WF is
2 + 1

d−1 , if all items have sizes in (0, 1
d ] (while FF and BF still have absolute

and asymptotic competitive ratios of exactly 3 even in this restricted case). The
positive results for AF algorithms are valid only for black and white packing but
not for colorful bin packing. In contrast to these last results, we will show that
AF algorithms do not have constant (absolute or asymptotic) competitive ratios
for colorful bin packing with |C| ≥ 3.

Colorful bin packing is also a generalization of standard bin packing (since
already black and white bin packing is such a generalization). For standard bin
packing, NF has an asymptotic and an absolute competitive ratio of 2 [8]. Any
Fit algorithms all have absolute competitive ratios of at most 2 [14,7,8,9,3] (some
of these algorithms have smaller absolute or asymptotic competitive ratios; for
example, in [3] it is shown that FF has an absolute competitive ratio of 1.7,
and an asymptotic bound of 1.7 was known for FF for many years [9]). There
are algorithms with smaller asymptotic competitive ratios, and the best possible
asymptotic competitive ratio is known to be in [1.5403, 1.58889] [15,13,2]. Other
variants of bin packing where the sequence of items must remain ordered even
for offline solutions include Packing with LIB (largest item in the bottom) con-
straints, where an item can be packed into a bin with sufficient space if it is no
larger than any item packed into this bin [11,6,12,5,4].

In our algorithms, we say that a bin B has color c if the last item that
was packed into B has this color. Obviously, a bin changes its color as items
are packed into it. For simplicity, we use names of colors as the elements of
C. Another algorithm for black and white bin packing presented in [1] is the
algorithm Pseudo. This algorithm keeps a list of pseudo-bins, each being a list
of (valid) bins. Each new item is assigned to a pseudo-bin and then to a bin of
this pseudo-bin. The color of a (non-empty) pseudo-bin is defined to be the color
of its last bin. An item is first assigned to a pseudo-bin of the opposite color (that
is, a white item to a black pseudo-bin and a black item to a white pseudo-bin),
opening a new pseudo-bin for the item if this assignment is impossible (there is
no pseudo-bin of the other color). A pseudo-bin is split into bins in an online
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fashion; a new item is packed into the last bin of the pseudo-bin where it was
assigned (note that this is always possible with respect to the color of the item),
and a new bin (for this pseudo-bin) is opened if the empty space in the current
last bin of the pseudo-bin is insufficient. In the case that there are multiple
pseudo-bins that are suitable for the new item (multiple pseudo-bins have the
opposite color), then in principle any one of them is chosen (that is, the analysis
holds for arbitrary tie-breaking), but the algorithm was defined such that such a
bin of minimum index is selected. A simple generalization of Pseudo for colorful
packing is to assign a new item to a pseudo-bin of a minimum index whose color
is different from the color of the new item. We show that this algorithm has
an unbounded (absolute and asymptotic) competitive ratio. We show, however,
that the tie-breaking rule can be modified, and a variant of this algorithm, called
Balanced-Pseudo (BaP ), has an absolute (and asymptotic) competitive ratio
of 4. Roughly speaking, BaP tries to balance the colors of pseudo-bins; for a new
item it finds the most frequent color of pseudo-bins (excluding the pseudo-bins
having the same color as the new item), and assigns the new item to such a
pseudo-bin. Interestingly, this approach is much more successful.

Finally, we design two new lower bounds. We give a lower bound of 2 on the
asymptotic (and absolute) competitive ratio of any algorithm. This last lower
bound is valid already for |C| = 2 (i.e., for black and white bin packing) and
it significantly improves the previous lower bound of approximately 1.7213 [1].
We also consider zero size items. It was shown in [1] that Pseudo is an optimal
algorithm for zero size items (its absolute competitive ratio is 1). We show that
in contrast, if |C| ≥ 3, then the asymptotic competitive ratio of any algorithm
for such items is at least 3

2 . This implies that the two problems (colorful bin
packing and black and white bin packing) are different.

In Section 2 we demonstrate that the existing algorithms have poor perfor-
mance, we define algorithm BaP , analyze its competitive ratio for arbitrary
items and for zero size items, and show that the analysis is tight. Lower bounds
for arbitrary online algorithms are given in Section 3. Some proofs were omitted
due to space constraints and can be found in http://arxiv.org/abs/1404.3990.

2 Algorithms

We start this section with examples showing that the algorithms that had a good
performance for black and white bin packing (or their natural generalizations,
all defined in the introduction) have a poor performance for colorful packing.

Proposition 1. The algorithms FF, BF, WF, AF, and Pseudo have unbounded
asymptotic competitive ratios for colorful bin packing.

A New Algorithm.We define an algorithm calledBalanced-Pseudo (BaP ).
The algorithm keeps a sequence of pseudo-bins denoted by P1, P2, . . ., where
each pseudo-bin is a sequence of bins. For pseudo-bin Pj , its sequence of bins is

denoted by Bj
1,B

j
2,. . . ,B

j
nj
. Let k denote the number of pseudo-bins (at a given

time). For any 1 ≤ j ≤ k, Cj denotes the color of the last item assigned to Pj
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(this will be the color of the last item of Bj
nj
), and it is called the color of the

pseudo-bin Pj .
Algorithm BaP is similar to algorithm Pseudo [1], but it tries to balance

the number of pseudo-bins of different colors, and it prefers to assign an item
to a pseudo-bin of a color that occurs a maximum number of times (excluding
pseudo-bins having the same color as the new item). For a new item i, if all
pseudo-bins have the color ci, then a new pseudo-bin Pk+1 is opened, where it
consists of one bin Bk+1

1 . In this case, we let k = k + 1, nk = 1. Otherwise, for
any color g �= ci, let Ng be the number of pseudo-bins of color g. Let g′ be a
color for which Ng′ is maximal. Assign item i to a pseudo-bin Pj of color g′. If i
can be packed into Bj

nj
(with respect to the total size of items, as by definition

the color of Pj is g′ �= ci, so the color of i does not prevent its packing), then
add it to this bin (as its last item), and otherwise, let nj = nj + 1, and pack i
into Bj

nj
as its only item. For all cases, if i was assigned to pseudo-bin Pj , then

let Cj = ci (this is done no matter how j is chosen).

Analysis. The analysis separates the effect of sizes from the effect of colors. This
is possible since BaP (similarly to Pseudo) already has such a separation. The
number of pseudo-bins is independent of the sizes of items, while the partition
of a pseudo-bin into bins is independent of the colors. The algorithm that is
applied on every pseudo-bin is simply NF, and moreover, a new bin is used
when there is no space for the current item in the previous bin of the same
pseudo-bin. Every pair of consecutive bins of one pseudo-bin have items whose
total size exceeds 1, thus the resulting bins are occupied by a total size above
1
2 on average, possibly except for one bin of each pseudo-bin. We show that at
each time that a new pseudo-bin is opened, an optimal solution cannot have less
than half the number of bins, even if items have zero sizes. Informally, the reason
is that a new pseudo-bin is opened when all pseudo-bins have the color of the
new item. However, once the number of pseudo-bins of this color exceeds half
the number of pseudo-bins, BaP prefers to use such bins as much as possible
(in this case their number decreases), and an increase in their number can only
be caused by an input where there is a large number of items of the same color
arriving almost consecutively. Obviously, such inputs require large numbers of
bins in any solution.

We let LB0 =
∑n

i=1 si. Obviously, OPT ≥ LB0. Let 1 ≤ i ≤ j ≤ n. For any
color c that appears in the subsequence of consecutive j−i+1 items i, i+1, ..., j,
let C(i, j, c) be the number of times that it appears. Let

LB(i, j, c) = C(i, j, c)− (j − i+ 1− C(i, j, c)) = 2C(i, j, c)− j + i− 1 , (1)

LB(i, j) = maxc LB(i, j, c), and LB1 = maxi,j LB(i, j). For any non-empty
input we have LB1 ≥ 1 since LB(i, i, ci) = 1 for any i. Note that LB(i, j, c) is
positive only if the number of times that c appears in the subsequence i, . . . , j is
more than j−i+1

2 (i.e., more than half the items of this subsequence are of color
c), and thus for computing LB1 it is sufficient to consider for every subsequence
only a color c that appears a maximum number of times in this subsequence.
The following lemma generalizes a property proved in [1].
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Lemma 1. OPT ≥ LB1.

Consider the action of BaP , and let k be the index of the last pseudo-bin
(i.e., k is the final value of the variable k). For 1 ≤ m ≤ k, let LBm denote LB1

at the time that the first item is assigned to Pm. Let Ym be the (index of the)
first item that is assigned to Pm, and let Xm be its color (thus Y1 = 1 holds
by definition, i.e., the first item of the input is also the first item assigned to
the first pseudo-bin). For convenience, let Yk+1 = n + 1. Let phase m be the
subsequence of consecutive items Ym, . . . , Ym+1 − 1. In the lemmas below, when
we discuss properties holding during phase m, we mean that they hold starting
the time just after Ym is packed and ending right after Ym+1 − 1 is packed.

Theorem 1. For any 1 ≤ m ≤ k, there exists i ≤ Ym such that C(i, Ym, Xm) ≥
m+3
4 + Ym−i

2 .

Proof. We prove the claim by induction. For m = 1, Ym = 1, and C(1, 1, c1) = 1
as required. For m = 2, the items Y2 and Y2−1 have the same color X2 (as Y2−1
was assigned to P1 and Y2 is assigned to P2). Thus, we find C(Y2−1, Y2, X2) = 2.
Next, assume that the claim holds for some m ≥ 2. We will prove the claim for
m+ 1 by considering phase 2 ≤ m ≤ k − 1.

Lemma 2. If at some time in phase m (where 2 ≤ m ≤ k − 1) an item i
of a color that is not Xm+1 is assigned to a pseudo-bin of a color that is not
Xm+1 (the two last items that the pseudo-bin receives are of colors different
from Xm+1), then just before assigning i (the second item out of the two items
whose colors are not Xm+1) there are less than (m+1)/2 (that is, at most m/2)
pseudo-bins of color Xm+1.

Lemma 3. If during phase m there are always at least (m + 1)/2 pseudo-bins
of color Xm+1, then Xm = Xm+1. In this case, letting t be the number of items
of color Xm in phase m, phase m contains t− 1 items of other colors.

If the condition of Lemma 3 holds, then let i be such that C(i, Ym, Xm) ≥
m+3
4 + Ym−i

2 , and let t be the number of items of color Xm = Xm+1 in phase m.

We have C(i, Ym+1, Xm+1) ≥ m+3
4 + Ym−i

2 + t, and Ym+1 − Ym = 2t− 1. Thus,

C(i, Ym+1, Xm+1) ≥ m+3
4 + Ym−i

2 + Ym+1−Ym+1
2 > (m+1)+3

4 + Ym+1−i
2 as required.

Lemma 4. If there is a time in phase m that at most m/2 bins were of color
Xm+1, then there exists an index i such that Ym ≤ i ≤ Ym+1 − 1 where

C(i, Ym+1, Xm+1) ≥ m+ 4

4
+

Ym+1 − i

2
.

Proof. Consider the last time during phase m that there are at most m/2 bins
of color Xm+1, and let i be the first item right after this time. Since after item
Ym+1 − 1 arrives, all m pseudo-bins have color Xm+1 and m > m/2, the time
just after Ym+1 − 1 arrives does not satisfy the condition, so the last such time
must be earlier, i is well-defined, and i ≤ Ym+1 − 1. We have ci = Xm+1 as its
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assignment to a pseudo-bin increased the number of pseudo-bins of this color.
Moreover, starting this time, there are at least (m + 1)/2 bins of color Xm+1

at all times until after the arrival of Ym+1 (by the choice of the time, and since
Ym+1 has the same color and causes the creation of a new pseudo-bin of this
color). If m is even, then just before i is packed, there are exactly m/2 pseudo-
bins of color Xm+1 and m/2 pseudo-bins of other colors, and after item Ym+1

is assigned, there are m + 1 pseudo-bins of color Xm+1. Moreover, while the
items i, . . . , Ym+1 − 1 are being assigned, every item whose color is not Xm+1 is
assigned to a pseudo-bin of color Xm+1, so every pseudo-bin receives alternating
colors (items of colorXm+1 alternate with other colors). Thus, if there are t items
whose colors are not Xm+1 among these items, there are t + m

2 items of color
Xm+1, and the total number of items is Ym+1 − i = 2t+ m

2 . Including Ym+1, we

have C(i, Ym+1, Xm+1) = t+ m
2 +1 = m

2 +1+ Ym+1−i
2 − m

4 = (m+1)+3
4 + Ym+1−i

2
as required. If m is odd, then if there are t items whose colors are not Xm+1

among these items, there are t+ m+1
2 items of color Xm+1, and the total number

of items is Ym+1 − i = 2t+ m+1
2 . We have C(i, Ym+1, Xm+1) = t + m+1

2 + 1 =
m
2 + 3

2 + Ym+1−i
2 − m+1

4 > m+4
4 + Ym+1−i

2 as required. ��
This completes the proof of the theorem. ��

The next corollary follows from choosing j = Yk and i such that C(i, Yk, Xk)
≥ m+3

4 + Ym−i
2 , and using (1).

Corollary 1. We have LB1 ≥ LBk ≥ LB(i, Yk, Xk) ≥ k+1
2 .

Corollary 2. The absolute competitive ratio of BaP is at most 4 for arbitrary
items, and at most 2 for zero size items.

We can show that the analysis of BaP is tight.

Proposition 2. The asymptotic competitive ratio of BaP is at least 2 for zero
size items, and at least 4 for arbitrary items.

Proof. We will use the following parameters. Let N ≥ 2 be a large integer. Let
M = 4N+1, let a1 = 1, and for i > 1, let ai = (3ai−1 + 2)/4.

Lemma 5. We have 1 ≤ ai < 2, ai > ai−1 for all i, and limi→∞ ai = 2.
Moreover, ai = 2− (3/4)i−1 holds.

We start with an input of zero size items. In this input all items are white,
red, or blue. The input consists of the following N + 1 phases. In phase 0, M
white items arrive. In phase i (for 1 ≤ i ≤ N), ai · M/2 red items arrive, and
then (1− ai/2)M blue items arrive. We find ai ·M/2 = (2− (3/4)i−1)4N+1/2 =
2(4N − 3i−1 · 4N−i+1), and (1 − ai/2)M = 2 · 4N − 2 · 4N + 2 · 3i−1 · 4N−i+1.
The numbers of red and blue items are even integers in (0,M), and their sum
is M . Phase i ends with the arrival of M white items. We have OPT = M .
Obviously, M bins are needed already for the first M white items. Each bin of
the optimal solution receives one white item in phase 0, and in each additional
phase it receives one red item or one blue item, and additionally one white item.
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Lemma 6. After i phases BaP has ai+1M pseudo-bins, all of which are white.

Proof. By induction. This holds for i = 0. Assume that it holds after phase
i−1. In phase i, first the red items are assigned to distinct pseudo-bins, and now
there are ai ·M/2 red pseudo-bins and ai ·M/2 white pseudo-bins. Now the blue
items are packed such that half of them join red pseudo-bins and half join white
pseudo-bins. The number of white pseudo-bins is now ai ·M/2−(1−ai/2)M/2 =
M/4(3ai − 2). The number of pseudo-bins that are either red or blue is now
ai ·M/2+ (1− ai/2)M/2 = M(ai +2)/4. Note that (ai + 2)/4 < 1 since ai < 2.
The M white items can join M/4(ai + 2) pseudo-bins that are either red or
blue, and the remaining M −M/4(ai+2) items cause the opening of new white
pseudo-bins. The total number of pseudo-bins now is ai ·M +(M −M(ai+2)/4)
and they are all white. The last number is equal to M(ai + 1 − ai/4 − 1/2) =
M(3ai + 2)/4 = M · ai+1. ��

We find that afterN+1 phases, the algorithm has (2−(3/4)N)·M pseudo-bins,
each consisting of one bin, which implies the lower bound.

In order to prove that the asymptotic competitive ratio is at least 4 for arbi-
trary item sizes, we start with presenting the input above to BaP . At this time,
all items are of three colors and have zero sizes, OPT = M , the algorithm has
2M − m pseudo-bins where m = (34 )

NM . The input continues as follows (we
ensure that OPT = M will hold for the complete input). There are 2M −m− 1
items, all of different new colors (none of these colors is white or red or blue).
Moreover, we reserve the color black for later, and thus we require that none of
these colors is black. Each of these items has size 2ε (for some ε < 1/(8M)).
OPT will use one bin for items of size 2ε, while BaP will assign each item
to a different pseudo-bin. Now all the bins of BaP have different colors (one
pseudo-bin remains white). Next, M − 1 black items arrive, where each item has
size 1− ε. OPT adds them to its white bins, the algorithm assigns at most one
item to a white pseudo-bin, so at least M − 2 items are assigned to different
pseudo-bins whose color was not white, red, blue, or black (and the last item
assigned to this pseudo-bin had size 2ε). Thus, there are at least M − 1 black
pseudo-bins, and at least M − 2 of them consist of two bins each, as the total
size of items assigned to it is above 1. Next, there are M−2 items all of different
and new colors and sizes of 2ε. OPT packs them into the bin that already has
items of this size, while the algorithm adds them to its black pseudo-bins, and
at least M − 3 pseudo-bins now consist of three bins. The algorithm will have
at least 2M −m + (M − 2) + (M − 3) = 4M −m bins, while OPT = M . The
competitive ratio approaches 4 for a sufficiently large value of N .

Note that this example does not require any assumptions regarding the be-
havior of BaP in cases of ties. The example requires, however, a large number
of different colors. We provide a different example that is valid for a run of BaP
where ties between pseudo-bins of one color are broken in favor of smaller in-
dices, and C = {white, red, blue}. Once again, the input starts with the items of
zero size as above. Afterwards, there are three batches of items, consisting of M
blue items, M white items, and M blue items, respectively, of sizes that we will
define. Since the number of pseudo-bins is above M and all of them are white,
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blue items must join white pseudo-bins, and white items must join blue pseudo-
bins. The three batches are packed into the first M pseudo-bins, where the jth
item of a batch is packed into the pseudo-bin of index j. For 1 ≤ t ≤ M + 1, let
δt = ε/4t (thus we have δt+1 = δt/4). The size of the tth item in the first batch
(of blue items) is δt (t = 1, ...,M). The size of the tth item in the second batch
(of white items) is 1− 3δt+1 (t = 1, ...,M). The size of the tth item in the third
batch (of blue items) is δt (t = 1, ...,M). We have δt + (1 − 3 · δi+1) > 1 since
δt − 3 · δt+1 = δt/4. Therefore, each pseudo-bin t = 1, . . . ,M consists of three
bins.

We show that for this input OPT ≤ M + 2. Given the packing into M white
bins, for t = 1, ...,M − 1 we group the items of sizes δt, 1 − 3 · δt, δt (of colors
blue, white, and blue, respectively) and pack them into M − 1 bins. A blue item
of size δM is added to the remaining bin, and the two items of sizes δM and
1− 3 · δM+1 are packed into new bins. ��

3 Lower Bounds

The (absolute or asymptotic) competitive ratio cannot decrease if the cardinality
of C grows. Thus, when we claim a negative result for |C| ≥ �, it is sufficient to
prove it for |C| = �. Thus, the lower bound for arbitrary items is proved for
|C| = 2, and the lower bound for zero size items is proved for |C| = 3.

3.1 An Asymptotic Lower Bound of 2

We will consider an algorithm, and construct an input consisting of black and
white items based on its behavior. The construction is carried out in phases,
where in each phase the algorithm has to pack a black item after a white item.
If they are packed together, it turns out that it would have been better to pack
this last black item separately, since another smaller black item arrives, and a
large white item that should have been combined with the first black item of
this phase. Since no other combination is possible, the algorithm has two new
bins instead of just one. If the algorithm uses a new bin for the first black item,
it turns out that the phase ends, and the algorithm used a new bin when this
was not necessary. The first situation is slightly better for the algorithm, and
a ratio of 2 will follow from that. The precise construction is presented in the
proof of the following theorem.

Theorem 2. The asymptotic competitive ratio of any algorithm for colorful bin
packing is at least 2.

Proof. Consider an online algorithm A. LetN > 3 be a large integer. Let ε = 1
N3 ,

and δi =
1

5i·N3 for 1 ≤ i ≤ N2. Let C = { black, white}. The list of items will
consist of white items called regular white items, each of size ε, white items called
huge white items, whose sizes are either of the form 1−2δi (for some 1 ≤ i ≤ N2)
or 1, black items called special black items, whose sizes are of the form 3δi, and
black items called regular black items whose sizes are of the form δi.
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The list is created as follows. An index i is used for the number of regular
white items that have arrived so far (each such item is followed by a regular
black item). An index j is used for the number of huge white items that have
arrived so far (each such item is preceded by a black item and followed by a
black item). The input stops when one of i = N2 and j = N happens (even if
the second event did not happen). Let i = 0 and j = 0.

1. If j = N , then stop. Else, if i = N2, then N − j huge white items of size 1
each arrive; stop.
2. Let i = i + 1; a regular white item arrives; a regular black item of size δi
arrives.
3. If the last black item is packed into a new bin, the phase ends. Go to step 1
to start a new phase.
4. Else, it must be the case that the last black item is packed into a bin where
the last item is white. Let j = j+1, a special black item of size 3δi arrives, then
a huge white item of size 1− 2δi arrives, and finally, a regular black item of size
δi arrives, and the phase ends. Go to step 1 to start a new phase.

Lemma 7. Any huge white item is strictly larger than 1− ε. Any black item is
strictly smaller than ε. The total size of a huge white item of phase i and a black
item of an earlier phase is above 1.

Lemma 8. N ≤ OPT ≤ N + 1.

Proof. There are N huge white items, each of size above 1
2 , thus, since a pair

of such items cannot be packed into a bin together even with a black item,
OPT ≥ N . We create a packing with N + 1 bins as follows. If there are huge
white items of size 1, each such item is packed into a separate bin. We show how
the remaining items can be packed into j bins (where j is the final value of the
variable j). Every remaining huge white item is packed in a bin with the last
regular black item that arrived before it, and the regular black item that arrived
after it. The total size of such three items of phase i is 1. This leaves a sequence
of items of alternating colors, where some of the black items are special. The
white items in the remaining input are regular, and the black item of phase i
has a size of either δi or 3δi. In this sequence, every item is no larger than ε, and
there are 2i ≤ 2N2 items (where i is the final value of this variable). Thus, the
total size of these items is below 1, and they are all packed into a single bin. ��
Lemma 9. The number of bins used by the algorithm up to a time when i = i′

is at least i′. The number of black bins at a time when j = j′ is at least 2j′ + 1.

For a fixed value of N , if the input was terminated since i = N2 but j < N ,
then the cost of the algorithm is at least N2+N−j ≥ N2+1. As OPT ≤ N+1,
we find a competitive above N − 1 > 2. If j = N , then the cost of the algorithm
is at least 2N + 1 (as this is a lower bound on the number of black bins), while
OPT ≤ N + 1, and we find a ratio of at least 2 − 1

N+1 . We found that for any
N > 3, there is an input where OPT ≥ N , and the competitive ratio for this
input is at least 2− 1

N+1 . This implies the claim. ��
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3.2 A Lower Bound for Zero Size Items

It was shown in [1] that if all items have zero sizes, then the algorithm Pseudo
finds an optimal solution (that is, its absolute competitive ratio is 1). Our anal-
ysis of BaP implies that its absolute and asymptotic competitive ratios for zero
size items are equal to 2. Here, we show that there cannot be an online algo-
rithm for colorful bin packing with at least three colors and zero size items that
produces an optimal solution (a solution that uses the minimum number of bins).

Theorem 3. Any algorithm for zero size items with |C| ≥ 3 has an asymptotic
competitive ratio of at least 3

2 .

Proof. We will use C = {white, red, blue}. Recall that all items have zero sizes,
thus for every presented item we only specify its color. Let M ≥ 2 be a large
integer. We construct an input for which M ≤ OPT ≤ M + 3. The input starts
with phase 0 that consists of M white items. Thus, OPT ≥ M . The remainder
of the input is presented in phases. In parallel to presenting the input, we will
create a packing π for the complete input. This packing will consist of M + 3
bins. The M items of phase 0 are packed in π into M bins called regular bins. In
addition to the M regular bins of π, there will be a special bin of each color in
π (this bin is empty after phase 0). The regular bins of π (M bins in total), will
always be of one color (this color can be any of the three colors). Each phase i
will have a color G(i) associated with it. This is the color of the M regular bins
of π. The color associated with phase 0 is white.

Phase i is defined as follows. Let ci and c′i be the two colors that are not the
color associated with phase i − 1 (i.e., ci, ci′ ∈ C \ {G(i − 1)}, ci �= ci′ . There
are 2M items of alternating colors; the items of odd indices are of color ci, and
the items of even indices are of color c′i. Let Wi, Ri, and Bi, be the numbers of
white, red, and blue bins, that the algorithm has after the last 2M items have
arrived. Phase i ends with M items of the color for which the number of bins of
the algorithm is maximal after the 2M first items of phase i have been packed
by the algorithm (that is, letting X = max{Wi, Ri, Bi}, the last M items are
white if X = Wi, otherwise, if X = Ri, then they are red, and otherwise they
are blue). Let G(i) be the color of the last M items of phase i.

Let Ni be the number of bins of the algorithm after phase i. We have N0 = M .
In phase i ≥ 1 the algorithm obviously has at least Ni−1 bins after the first 2M

items of phase i have arrived, and there are at least Ni−1

3 bins of color G(i).
Therefore, after M items of color G(i) arrive, the algorithm has M additional

bins of color G(i), and there are at least Ni−1

3 + M bins of color G(i). We get

Ni ≥ Ni−1

3 +M . Thus, Ni ≥ M · 3i+1−1
2·3i . This holds for i = 0 as N0 = M , and

31−1
2·30 = 1, and using the recurrence, Ni+1 ≥ (3

i+1−1
2·3i )M/3 +M = (3

i+2−1
2·3i+1 )M .

Due to symmetry, we describe the packing π for the case that the color as-
sociated with phase i − 1 is white, and the first 2M items of phase i alternate
between red and blue (starting with red). If the last M items of phase i are
blue or red, then the first 2M items are packed into the blue special bin (which
remains blue), and the last M items are packed into the M regular bins. If the
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last M items are white, each bin receives a red item and an blue item. Now all
regular bins are blue, and the last M white items can be packed into them. The
color associated with phase i is indeed G(i).

We find that the competitive ratio of the algorithm is at least M
M+3 · 3i+1−1

2·3i .

Letting M and i grow without bound we find a lower bound of 3
2 on the asymp-

totic competitive ratio. ��
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