
R. Ravi
Inge Li Gørtz (Eds.)

 123

LN
CS

 8
50

3

14th Scandinavian Symposium and Workshops
Copenhagen, Denmark, July 2–4, 2014
Proceedings

Algorithm Theory –
SWAT 2014

Lecture Notes in Computer Science 8503
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

R. Ravi Inge Li Gørtz (Eds.)

Algorithm Theory –
SWAT 2014

14th Scandinavian Symposium and Workshops
Copenhagen, Denmark, July 2-4, 2014
Proceedings

13

Volume Editors

R. Ravi
Carnegie Mellon University
Tepper School of Business
Pittsburgh, PA, USA
E-mail: ravi@cmu.edu

Inge Li Gørtz
DTU Compute
Kongens Lyngby, Denmark
E-mail: inge@dtu.dk

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-08403-9 e-ISBN 978-3-319-08404-6
DOI 10.1007/978-3-319-08404-6
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014941604

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the papers presented at the 14th Scandinavian Symposium
and Workshops on Algorithm Theory (SWAT 2014), held during July 2–4, 2014,
in Copenhagen, Denmark. A total of 134 papers were submitted, out of which
the Program Committee selected 33 for presentation at the symposium. Each
submission was reviewed by at least three members of the Program Committee.
In addition, invited lectures were given by Carsten Thomassen from the Technical
University of Denmark, Nikhil Bansal from Eindhoven University of Technology
and Mikkel Thorup from University of Copenhagen. The Program Committee
decided to grant the best student paper award to Keigo Oka and Yoichi Iwata
both from the University of Tokyo for the paper titled“Fast Dynamic Algorithms
for Parameterized Problems”.

SWAT is held biennially in the Nordic countries; it alternates with the Algo-
rithms and Data Structures Symposium (WADS) and is a forum for researchers
in the area of design and analysis of algorithms and data structures. The call
for papers invited submissions in all areas of algorithms and data structures, in-
cluding but not limited to approximation algorithms, parameterized algorithms,
computational biology, computational geometry and topology, distributed algo-
rithms, external-memory algorithms, exponential algorithms, graph algorithms,
online algorithms, optimization algorithms, randomized algorithms, streaming
algorithms, string algorithms, sublinear algorithms, and algorithmic game the-
ory. Starting from the first meeting in 1988, previous SWAT meetings have
been held in Halmstad, Bergen, Helsinki, Aarhus, Reykjav́ık, Stockholm, Bergen,
Turku, Humlebæk, Riga, Gothenburg, Bergen and Helsinki. Proceedings of all
the meetings have been published in the LNCS series, as volumes 318, 447, 621,
824, 1097, 1432, 1851, 2368, 3111, 4059, 5124, 6139 and 7357.

We would like to thank all the people who contributed to making SWAT
2014 a success. We thank the Steering Committee for selecting Copenhagen as
the venue for SWAT 2014, and for their help and guidance in different issues.
The meeting would not have been possible without the considerable efforts of
the local organization teams of SWAT 2014. We thank Otto Mønsteds Fond
and the Technical University of Denmark for their financial and organizational
support. The EasyChair conference system provided invaluable assistance in co-
ordinating the submission and review process. Finally, we thank the members of
the Program Committee and all of our many colleagues whose timely and metic-
ulous efforts helped the committee to evaluate the large number of submissions
and select the papers for presentation at the symposium.

May 2014 R. Ravi
Inge Li Gørtz

Organization

Organizing Committee

Philip Bille (chair) Technical University of Denmark, Denmark
Patrick Hagge Cording Technical University of Denmark, Denmark
Inge Li Gørtz (chair) Technical University of Denmark, Denmark
Benjamin Sach University of Bristol, UK
Hjalte Wedel Vildhøj Technical University of Denmark, Denmark
Søren Vind Technical University of Denmark, Denmark

Steering Committee

Lars Arge Aarhus University, Denmark
Magnús M. Halldórsson Reykjav́ık University, Iceland
Andrzej Lingas Lund University, Sweden
Jan Arne Telle University of Bergen, Norway
Esko Ukkonen University of Helsinki, Finland

Program Committee

Boris Aronov Polytechnic Institute of NYU, USA
Per Austrin KTH Stockholm, Sweden
Siu-Wing Cheng HKUST Hong Kong, China
Tamal Dey Ohio State University, USA
David Eppstein University of California at Irvine, USA
Sándor Fekete TU Braunschweig, Germany
Petr Golovach University of Bergen, Norway
Magnús Halldórsson Reykjav́ık University, Iceland
Sariel Har-Peled University of Illinois at Urbana-Champagne,

USA
Satoru Iwata Tokyo University, Japan
Tibor Jordan Eötvös Loránd University, Hungary
Inge Li Goertz Technical University of Denmark, Denmark
Aleksander Madry EPFL, Switzerland
Daniel Marx Hungarian Academy of Sciences, Hungary
Marcin Mucha University of Warsaw, Poland
Viswanath Nagarajan IBM Research, USA
Alantha Newman CNRS, Grenoble, France
Andrzej Proskurowski University of Oregon, USA
Harald Raecke Technische Universität Munichen, Germany
Venkatesh Raman IMSc Chennai, India

VIII Organization

R. Ravi Tepper School of Business, Carnegie Mellon
University, USA

Mohammad Salavatipour University of Alberta, Canada
Emo Welzl ETH Zurich, Switzerland

Additional Reviewers

Agarwal, Pankaj
Aichholzer, Oswin
Alam, Muhammad Jawaherul
Ambainis, Andris
Amit, Mika
An, Hyung-Chan
Antoniadis, Antonios
Aurenhammer, Franz
Azar, Yossi
Bansal, Nikhil
Bar-Noy, Amotz
Behsaz, Babak
Bienkowski, Marcin
Bodlaender, Hans L.
Bonsma, Paul
Brimkov, Valentin
Brodal, Gerth
Byrka, Jaroslaw
Békési, József
Bérczi, Kristóf
Cabello, Sergio
Carr, Robert
Chalermsook, Parinya
Chan, Timothy M.
Chechik, Shiri
Chiu, Man Kwun
Chrobak, Marek
Connamacher, Harold
Cording, Patrick Hagge
Crochemore, Maxime
Daruki, Samira
Doerr, Carola
Driemel, Anne
Durocher, Stephane
Dürr, Christoph
Erickson, Jeff
Ezra, Esther
Fagerberg, Rolf

Fiala, Jiri
Fiala, Jirka
Fleiner, Tamas
Fleszar, Krzysztof
Fredriksson, Kimmo
Freydenberger, Dominik D.
Friedrichs, Stephan
Fuchs, Moritz
Fukunaga, Takuro
Gaertner, Bernd
Gagie, Travis
Ganian, Robert
Gaspers, Serge
Gawrychowski, Pawel
Ghosh, Subir
Grossi, Roberto
Grünbaum, Branko
Gyorgyi, Peter
Halldorsson, Magnus
Hemmer, Michael
Hertli, Timon
Hoffmann, Michael
Huang, Sangxia
Hüffner, Falk
I, Tomohiro
Iacono, John
Ito, Takehiro
Jacob, Riko
Jaggi, Martin
Jankó, Zsuzsanna
Jeffery, Stacey
Jeż, Artur
Jørgensen, Allan Grønlund
Karp, Jeremy
Kavitha, Telikepalli
Keil, Mark
Kiraly, Tamas
Király, Csaba

Organization IX

Király, Zoltán
Kis-Benedek, Ágnes
Kolay, Sudeshna
Kolliopoulos, Stavros
Kolpakov, Roman
Komusiewicz, Christian
Konrad, Christian
Kopelowitz, Tsvi
Korolova, Aleksandra
Kothari, Robin
Kowalik, Lukasz
Kowaluk, Miroslaw
Kral, Daniel
Kucherov, Gregory
Kumar, Nirman
Kusters, Vincent
Kuszner, Lukasz
Laekhanukit, Bundit
Lancia, Giuseppe
Lau, Man-Kit
Li, Minming
Lokshtanov, Daniel
Lubiw, Anna
Manlove, David
Mathieson, Luke
Meijer, Henk
Meister, Daniel
Melsted, Pall
Mestre, Julian
Meyer, Ulrich
Michalewski, Henryk
Misra, Neeldhara
Miyazaki, Shuichi
Moldenhauer, Carsten
Molinaro, Marco
Morin, Pat
Mouawad, Amer
Muller, Haiko
Mömke, Tobias
Nagano, Kiyohito
Nair, Chandra
Nandy, Subhas
Ng, Ken
Nguyen, Huy
Nicholson, Patrick K.

Nikolov, Aleksandar
Nikzad, Afshin
Nilsson, Stefan
Okamoto, Yoshio
Onak, Krzysztof
Otachi, Yota
Ottaviano, Giuseppe
Paluch, Katarzyna
Panigrahi, Debmalya
Panolan, Fahad
Parekh, Ojas
Paulusma, Daniel
Pemmaraju, Sriram
Pettie, Seth
Pinkau, Chris
Pirwani, Imran
Poláček, Lukáš
Popa, Alexandru
Pruhs, Kirk
Radoszewski, Jakub
Raichel, Benjamin
Rajaraman, Rajmohan
Raman, Rajeev
Razenshteyn, Ilya
Reidl, Felix
Sach, Benjamin
Sadakane, Kunihiko
Salson, Mikaël
Sanders, Peter
Satti, Srinivasa Rao
Saurabh, Nitin
Saurabh, Saket
Schalekamp, Frans
Scheder, Dominik
Schmid, Markus L.
Schmidt, Christiane
Shachnai, Hadas
Shah, Chintan
Simons, Joseph A.
Singh, Mohit
Smid, Michiel
Spalek, Robert
Speckmann, Bettina
Stein, Cliff
Straszak, Damian

X Organization

Svitkina, Zoya
Szeider, Stefan
Tarjan, Robert
Telikepalli, Kavitha
Thankachan, Sharma
Thilikos, Dimitrios
Thomas, Antonis
Todinca, Ioan
Toman, Stefan
Täubig, Hanjo
Uno, Takeaki
Van ’T Hof, Pim
van Leeuwen, Erik Jan
van Stee, Rob
van Zuylen, Anke
Verbitsky, Oleg
Vildhøj, Hjalte Wedel

Villamil, Fernando Sanchez
Vind, Søren
Vinyals, Marc
Walen, Tomasz
Wang, Yusu
Ward, Justin
Weihmann, Jeremias
Weimann, Oren
Wettstein, Manuel
Wiese, Andreas
Wild, Sebastian
Xiao, Mingyu
Xu, Jinhui
Yan, Lie
Yi, Ke
Ásgeirsson, Eyjólfur Ingi
�L ↪acki, Jakub

Keynote Papers

The Power of Iterated Rounding

Nikhil Bansal

Department of Mathematics and Computer Science

Eindhoven University of Technology

Abstract. In recent years iterated rounding has emerged as a simple,
yet extremely powerful technique in algorithm design. In this talk, we
will look at various applications of this technique. In particular, we will
see how it gives simple new proofs of various classical results, and then
consider more recent applications and refinements of the technique.

Orientations and Decompositions of Graphs

Carsten Thomassen

Department of Applied Mathematics and Computer Science

Technical University of Denmark

Abstract. Latin squares, Steiner triple systems and block designs are
structures that can be expressed as graph decompositions. A result of
Dehn on rigidity of convex polyhedra motivated an early result on claw
decompositions of graphs.

In this lecture we focus on the interplay between graph decomposition
and graph flow, for example Tutte’s flow conjectures. Special emphasis
will be on the recent solution of the so-called weak 3-flow conjecture
formulated by Jaeger in 1988.

Fast and Powerful Hashing using Tabulation

Mikkel Thorup�

University of Copenhagen

Abstract. Randomized algorithms are often enjoyed for their simplic-
ity, but the hash functions employed to yield the desired probabilistic
guarantees are often too complicated to be practical. Here we discuss
how simple hashing schemes based on tabulation provide unexpectedly
strong guarantees.

Simple tabulation hashing dates back to Zobrist [1970]. Keys are
viewed as consisting of q characters and we have precomputed character
tables h1, ..., hq mapping characters to random hash values. A key x =
(x1, ..., xq) is hashed to h1[x1]⊕ h2[x2].....⊕ hq [xq]. This schemes is very
fast with character tables in cache.

While simple tabluation is not even 4-independent, we show that it
provides many of the guarantees that are normally obtained via higher
independence, e.g., linear probing and Cuckoo hashing.

Next we consider twisted tabulation where one character is “twisted”
with some simple operations. The resulting hash function has powerful
distributional properties: Chernoff-Hoeffding type tail bounds and a very
small bias for min-wise hashing.

Finally, we consider double tabulation where we compose two simple
tabulation functions, applying one to the output of the other, and show
that this yields very high independence in the classic framework of Carter
and Wegman [1977].

While these tabulation schemes are all easy to implement and use,
their analysis is not.

The talk surveys result from

– Mihai Pǎtraşcu and Mikkel Thorup: The power of simple tabulation hashing.
J. ACM 59(3): 14 (2012). First announced at STOC 2011: 1-10

– Mihai Pǎtraşcu and Mikkel Thorup: Twisted Tabulation Hashing. SODA
2013: 209-228

– Mikkel Thorup: Simple Tabulation, Fast Expanders, Double Tabulation, and
High Independence. FOCS 2013: 90-99.

– Søren Dahlgaard and Mikkel Thorup: Approximately Minwise Independence
with Twisted Tabulation. SWAT 2014.

* Research partly supported by an Advanced Grant from the Danish Council for
Independent Research under the Sapere Aude research carrier programme.

Table of Contents

I/O-Efficient Range Minima Queries . 1
Peyman Afshani and Nodari Sitchinava

Online Makespan Minimization with Parallel Schedules 13
Susanne Albers and Matthias Hellwig

Expected Linear Time Sorting for Word Size Ω(log2 n log logn) 26
Djamal Belazzougui, Gerth Stølting Brodal, and
Jesper Sindahl Nielsen

Amortized Analysis of Smooth Quadtrees in All Dimensions 38
Huck Bennett and Chee Yap

New Approximability Results for the Robust k -Median Problem 50
Sayan Bhattacharya, Parinya Chalermsook, Kurt Mehlhorn, and
Adrian Neumann

Trees and Co-trees with Bounded Degrees in Planar 3-connected
Graphs . 62

Therese Biedl

Approximating the Revenue Maximization Problem with Sharp
Demands . 74

Vittorio Bilò, Michele Flammini, and Gianpiero Monaco

Reconfiguring Independent Sets in Claw-Free Graphs 86
Paul Bonsma, Marcin Kamiński, and Marcin Wrochna

Competitive Online Routing on Delaunay Triangulations 98
Prosenjit Bose, Jean-Lou De Carufel, Stephane Durocher, and
Perouz Taslakian

Optimal Planar Orthogonal Skyline Counting Queries 110
Gerth Stølting Brodal and Kasper Green Larsen

B-slack Trees: Space Efficient B-Trees . 122
Trevor Brown

Approximately Minwise Independence with Twisted Tabulation 134
Søren Dahlgaard and Mikkel Thorup

Separability of Imprecise Points . 146
Mark de Berg, Ali D. Mehrabi, and Farnaz Sheikhi

XVIII Table of Contents

Line-Distortion, Bandwidth and Path-Length of a Graph 158
Feodor F. Dragan, Ekkehard Köhler, and Arne Leitert

Colorful Bin Packing . 170
György Dósa and Leah Epstein

Algorithms Parameterized by Vertex Cover and Modular Width,
through Potential Maximal Cliques . 182

Fedor V. Fomin, Mathieu Liedloff, Pedro Montealegre, and
Ioan Todinca

Win-Win Kernelization for Degree Sequence Completion Problems 194
Vincent Froese, André Nichterlein, and Rolf Niedermeier

On Matchings and b-Edge Dominating Sets: A 2-Approximation
Algorithm for the 3-Edge Dominating Set Problem 206

Toshihiro Fujito

Covering Problems in Edge- and Node-Weighted Graphs 217
Takuro Fukunaga

Colored Range Searching in Linear Space . 229
Roberto Grossi and Søren Vind

Fast Dynamic Graph Algorithms for Parameterized Problems 241
Yoichi Iwata and Keigo Oka

Extending Partial Representations of Proper and Unit Interval
Graphs . 253

Pavel Klav́ık, Jan Kratochv́ıl, Yota Otachi, Ignaz Rutter,
Toshiki Saitoh, Maria Saumell, and Tomáš Vyskočil

Minimum Tree Supports for Hypergraphs and Low-Concurrency Euler
Diagrams . 265

Boris Klemz, Tamara Mchedlidze, and Martin Nöllenburg

Additive Spanners: A Simple Construction . 277
Mathias Bæk Tejs Knudsen

Assigning Channels via the Meet-in-the-Middle Approach 282
�Lukasz Kowalik and Arkadiusz Soca�la

Consistent Subset Sampling . 294
Konstantin Kutzkov and Rasmus Pagh

Triangle Counting in Dynamic Graph Streams . 306
Konstantin Kutzkov and Rasmus Pagh

Linear Time LexDFS on Cocomparability Graphs . 319
Ekkehard Köhler and Lalla Mouatadid

Table of Contents XIX

Quantum Algorithms for Matrix Products over Semirings 331
François Le Gall and Harumichi Nishimura

Ranked Document Selection . 344
J. Ian Munro, Gonzalo Navarro, Rahul Shah, and
Sharma V. Thankachan

Approximation Algorithms for Hitting Triangle-Free Sets of Line
Segments . 357

Anup Joshi and N.S. Narayanaswamy

Reduction Techniques for Graph Isomorphism in the Context of Width
Parameters . 368

Yota Otachi and Pascal Schweitzer

Approximate Counting of Matchings in (3,3)-Hypergraphs 380
Andrzej Dudek, Marek Karpinski, Andrzej Ruciński, and
Edyta Szymańska

Author Index . 393

I/O-Efficient Range Minima Queries

Peyman Afshani1,� and Nodari Sitchinava2

1 MADALGO, Department of Computer Science, University of Aarhus, Denmark
peyman@madalgo.au.dk

2 Department of Information and Computer Sciences, Univ. of Hawaii – Manoa, USA
nodari.sitchinava@hawaii.edu

Abstract. In this paper we study the offline (batched) range minima
query (RMQ) problem in the external memory (EM) and cache-oblivious
(CO) models. In the static RMQ problem, given an array A, a query
rmqA(i, j) returns the smallest element in the range A[i, j].

If B is the size of the block and m is the number of blocks that
fit in the internal memory in the EM and CO models, we show that
Q range minima queries on an array of size N can be answered in
O
(
N
B

+ Q
B
logm

Q
B

)
= O(scan(N) + sort(Q)) I/Os in the CO model and

slightly better O(scan(N) + Q
B
logm min{Q

B
, N
B
}) I/Os in the EM model

and linear space in both models. Our cache-oblivious result is new and
our external memory result is an improvement of the previously known
bound. We also show that the EM bound is tight by proving a matching
lower bound. Our lower bound holds even if the queries are presorted in
any predefined order.

In the batched dynamic RMQ problem, the queries must be an-
swered in the presence of the updates (insertions/deletions) to the ar-
ray. We show that in the EM model we can solve this problem in
O
(
sort(N) + sort(Q) logm

N
B

)
I/Os, again improving the best previously

known bound.

1 Introduction

Given an array A on N entries, the range minimum query (RMQ) rmq(i, j),
such that 1 ≤ i ≤ N , asks for the item in the range A[i..j] with the smallest
value.1 Range minima queries have many practical applications such as data
compression, text indexing and graph algorithms and they have been studied
extensively. In internal memory, there are many papers that deal with answering
range minima queries in constant time and the main basic idea is to use Cartesian
trees [12] and to find least common ancestors [10] (see also [7,8,3] for a subset
of other results on reducing space and other improvements).

� Work supported in part by the Danish National Research Foundation grant DNRF84
through Center for Massive Data Algorithmics (MADALGO).

1 The query might ask for the index of the item instead, but this variation is an easy
adaptation of the known solutions – including the ones in this paper.

R Ravi and I.L. Gørtz (Eds.): SWAT 2014, LNCS 8503, pp. 1–12, 2014.
c© Springer International Publishing Switzerland 2014

2 P. Afshani and N. Sitchinava

Table 1. Previous and new results on static and dynamic RMQs in the external mem-
ory model (EM) and the cache-oblivious model (CO)

Problem I/Os Space Notes

Static RMQ, EM O((n+ q) logm(n+ q)) O(Q+N logm N) [5]

Static RMQ, EM O((n+ q) logm(n+ q)) O(N +Q) [2]

Static RMQ, EM O(n+ q logm min {q, n}) O(N +Q) new

Static RMQ, EM, CO Ω(n+ q logm min {q, n}) - new

Static RMQ, CO O(n+ q logm q) O(N +Q) new

Dynamic RMQ, EM O((n+ q) log2
m(n+ q)) O(N +Q) [2]

Dynamic RMQ, EM O((n+ q logm q) logm n) O(N +Q) new

In this paper we are interested in the RMQ problem in the external memory
model. The external memory model (also known as the I/O model or disk ac-
cess model (DAM)) was introduced by Aggarwal and Vitter [1] and addresses
situations where the data is so big that it can only be stored in slow external
storage. The external storage is divided into blocks of size B and all the compu-
tations must be done in the internal memory of size M . Each data transfer, an
input/output (I/O) operation, between the external and internal memory can
transfer a single block. The complexity metric of the model, I/O complexity,
measures the number of such transfers. In this paper we use the common nota-
tions n = N/B, m = M/B, q = Q/B, and sort(N) = O (n logm n) – the I/O
complexity to sort an array of N elements.

In the external memory model, the online RMQ problem where we require
that the answer to each query must be provided immediately, one must spend
at least one I/O operation to report the output and, therefore, constant time
solutions in the RAM model translate to the optimal solutions in the EM model
as well. Instead, Chiang et al. [5] considered the offline version of the problem. In
the offline (batched) range minima problem we are given a sequence of Q range
minima queries rmq(i, j) and we are asked to answer each query eventually and
in arbitrary order by presenting the output as pairs of the input queries and the
corresponding answers.

Previous results in the EM model. Chiang et al. [5] presented an algorithm that
answers a batch of Q queries using O (sort(N +Q)) = O ((n+ q) logm(n+ q))
I/Os and O (Q+N logmN) space. Very recently, Arge et al. [2] improved the
space to O(N +Q) while keeping the same I/O complexity. They also showed a
solution for the dynamic version of the problem where the sequence of queries is
intermixed with insertions and deletions of entries to and from the array. Their
solution requires O

(
(n+ q) log2m(n+ q)

)
I/Os. They left a few open questions

and in fact they explicitly conjectured that even the static range minima queries
should require Ω((n + q) logm(n + q)) I/Os in the worse case. The conjecture
is non-trivial and interesting because in internal memory, the constant time per
query trivially implies O(N +Q) time to answer Q queries in an array of size N .

I/O-Efficient Range Minima Queries 3

Our Results. We offer a number of improvements to both static and dynamic
batched RMQs. In Section 2, we prove a lower bound of Ω(n+q logmmin {q, n})
I/Os for the static batched RMQ problem, partially confirming the suspicion of
Arge et al. [2] that it is impossible to achieve linear O(n+ q) I/O complexity in
the EM model. Our lower bound assumes the standard indivisibility of individual
records and holds even if the queries are presorted. In the process of proving the
lower bound we present an algebraic notation which simplifies the presentation
of permutation lower bound proofs and might be of independent interest.

In Section 3 we present a matching upper bound in the EM model, thus
proving that our lower bound is asymptotically optimal. Our upper bound im-
mediately implies an improvement to the dynamic version of the RMQ problem
by Arge et al. [2], which can be solved in O(sort(N) + sort(Q) · logm n) I/Os
(Section 5).

In Section 4 we present the first solution for the static RMQs in the cache-
oblivious model2. The cache-oblivious (CO)model [9] is similar to the EM model,
except the algorithms are not allowed to make use of the parameters M and B.
Instead, the data transfer between the external and internal memory is performed
automatically by a separate paging algorithm implemented by the system with a
reasonable cache replacement strategy, e.g., least recently used (LRU) strategy.
Our cache-oblivious solution requires O(n + q logm q) beating all the previous
results in the EM model.

Table 1 lists our results in comparison with the previous results in the external
memory and the cache-oblivious models.

Finally, in Section 5 we discuss some additional simple improvements if some
blocks of the input array are not covered by any queries.

2 Lower Bound In Both Models

In this section, we prove a lower bound showing that under a standard assump-
tion of indivisibility of individual items it is impossible to answer Q RMQ queries
on a static array of size N in fewer than Ω(n+ q logm min{q, n}) I/Os.

Atomic elements. We assume each query is accompanied by a label that is a
string obtained by concatenating the representation of its left and right bound-
aries. So, a query qi = [�i, ri] is represented by (s�iri , �i, ri), where s�iri is its
label. Query labels and values in the array A are considered atomic elements.

The Model. We conceptually view the external memory as a (horizontal) tape
of infinite size consisting of cells arranged from left to right that are also orga-
nized into blocks of B cells. Each cell can store one atomic element. Any other
information can be stored and accessed for free by the algorithm (i.e., we as-
sume unlimited computational power and full information). The only restriction
placed on the algorithm is that it cannot create new atomic elements, but can
only make copies of the existing ones. Thus, to manipulate labels or values, the

2 Previously, only online results were known. E.g., see [6,11].

4 P. Afshani and N. Sitchinava

algorithm can load one block (containing some atomic elements) from the tape
into the internal memory or it can select B atomic elements from the internal
memory and write copies of them somewhere on the tape as one block. The
algorithm starts with a tape that contains the input values of A in n blocks and
the Q queries in the q following blocks and it must end with a tape configuration
where each query label is followed by its answer (i.e., a pair (s�iri , A[j]) where
A[j] is the answer to the query [�i, ri] labeled s�i,rj).

Sequences. In this model, a subset of K cells naturally defines a sequence of K
atomic elements, by considering the atomic elements stored in the cells in the
left-to-right order. In the rest of this section, we slightly extend the definition of a
sequence: a sequence representation (seq-rep for short) is a sequence of K atomic
elements that is stored in O(K/B) blocks3 on the tape from left to right. Note
that we allow some inefficiency in the storage as there could be blocks that store
only a few atomic elements. Observe that one sequence can have two different
seq-reps S1 and S2 and the atomic elements of each block could occupy different
addresses within that block. Nonetheless, one can convert one representation
into another in O(K/B) I/Os. This implies that for a given sequence, all the
seq-reps are essentially equivalent up to an additive term of O(K/B) I/Os.

The Main Idea and Intuition. We prove our lower bound using known hardness
results for the problem of permuting array entries. Intuitively, the hard input
instance to the RMQ algorithm is a set of queries where the left end points and
the right end points correspond to two very “different” permutations; our lower
bound follows from the fact that the permutation corresponding to the left end
points needs Ω(min {Q, q logm n} I/Os to be transformed into the permutation
corresponding to the right end points.

Although our lower bound approach does not introduce fundamentally new
techniques, it does require rather complicated logical steps. To follow the argu-
ment with greater ease, we introduce a new algebraic notation, which could be
considered an interesting way of presenting permutation lower bounds.

An Algebraic Notation. Let X := X1, . . . , XN be a sequence of N atomic ele-
ments. For a given permutation π : {1, · · · , N} → {1, · · · , N}, π(X) is defined as
the sequence Xπ(1), . . . , Xπ(N) and we denote Xπ(i) with π

(i)(X). Furthermore,
if we can permute one seq-rep of π(X) into another seq-rep of κ(X) using t
I/Os, then we can permute any seq-rep of π(X) into any seq-rep of κ(X) using
t+O(n) I/Os (n = N/B). Note that we can also permute any seq-rep of κ(X)
into any seq-rep of π(X) using the same t + O(n) I/Os. We denote such trans-

formation with π(X) ��
t+O(n)

�������� κ(X). Easy to see but important consequences of
the indivisibility assumption are summarized below.

3 The O-notation here hides a universal constant that does not depend on any machine
or input parameter. We need this constant since during some steps of our proof, we
will be working with the sequences that do not necessarily pack B elements in each
block.

I/O-Efficient Range Minima Queries 5

Observation 1. Consider two sequences of symbols X := X1, . . . , XN and Y :=
Y1, . . . , YN . Let κ, π and ϕ be three permutations. The following properties hold
in the indivisibility model regarding the seq-reps of these sequences.

(a) If π(X) ��
t+O(n)

�������� κ(X) then π(Y) ��
t+O(n)

�������� κ(Y)

(b) Ifπ(X) ��
t+O(n)

�������� κ(X) thenπ(ϕ(X)) ��
t+O(n)

�������� κ(ϕ(X))andϕ(π(X)) ��
t+O(n)

�������� ϕ(κ(X))

(c) If π(X) ��
t+O(n)

�������� κ(X) and κ(X) ��
r+O(n)

�������� ϕ(X) then π(X) ��
t+r+O(n)

�������� ϕ(X).

Remark. The constants hidden in the O-notations above can grow. This is be-
cause we are working with any seq-rep of permutations rather than specific ones.

The Query Order. We actually prove a stronger lower bound claim. We show
that the problem stays hard even if the queries are given in the order of the left
end points, or the right end points, or any other ordering that does not depend
on the input array A. We model this claim precisely. Let Q be the list of queries.
Before showing the algorithm the input set A, we allow the algorithm to pick
whatever order that it desires for the queries, i.e., the algorithm can permute
the queries for free. Once that order is picked (for example, the algorithm can
sort the list of queries by the left end points), the algorithm is given an array
A. We show that even in this relaxed formulation, the algorithm cannot achieve
O(n+ q) bound on the number of I/Os.

Observe in the case Q < N we simply need to prove a lower bound for Q
queries and an input array of size Q since the upper bound in the previous
section has linear dependency on n. Thus, the non-trivial case of the problem
is when Q = Ω(N). Due to this, w.l.o.g, we assume the following in the rest of
this section: the range of the queries run from 1 to N and Q = αN where α ≥ 1
is an integer. We also need the following lemma, which is an easy generalization
of the permutation lower bound [1].

Lemma 1. Let N and α be two integral parameters, and let S1 be the non-
decreasing sequence of length αN composed of α repetitions of i, i = 1, · · · , N .
Assuming 2 < B < cM < N for a constant c, there exists a permutation S2 of
S1, s.t., permuting S1 into S2 requires Ω

(
min{αN, αNB logm

N
B }
)
I/Os.

Proof. The proof is almost identical to the one presented by Aggarwal and Vit-
ter [1] for the general permutations. The only difference is that we need to
calculate the number of permutations of S1. Using straightforward combina-
torial arguments and Stirling’s formula, the number of permutations of S1 is∏N−1

i=0

(
α(N−i)

α

)
≥
(

1√
α

)N
(N !)α. Using this bound instead of N ! at the right

hand side of the inequality in Section 4 of Aggarwal and Vitter’s paper [1] gives
the claimed bound. ��

Now we are ready to prove our lower bound result.

Theorem 1. A set of Q range minima queries on a static array of size N
requires Ω(min {Q, q logm n} I/Os in the worst case, assuming indivisibility.

6 P. Afshani and N. Sitchinava

Proof. Consider the sequences S1 and S2 defined in Lemma 1; observe both have
α repetitions of every value i between 1 and N . We create the sequence of queries
Q based on S2 in the following way: if the i-th element of S2 is j, we create the
query interval [�i/α�, j] with its appropriate label. We presentQ to the algorithm
and let κ(Q) be the ordering of the queries picked by the algorithm (remember
this is done for free). Note that Q is sorted by the left end point.

We now define two different input arrays, A1[1, · · · , N] and A2[1, · · · , N]: A1

is strictly increasing and A2 is strictly decreasing. This means, the left end points
of the queries give the indices of the answers for the queries on A1, while the
right end points do the same on A2. However, remember that the final answer
should contain the labels of the queries. We claim that one of these two inputs
should be difficult to solve regardless of choice of κ.

Let r1 be the number of I/Os used by an algorithm to solve the problem when
presented with A1 and σ1 be the permutation that describes the order of the
atomic elements (the query label, value pair) in the output. For simplicity, we
assume Q is the sequence of the query labels. Observe that σ1(κ(S1)) describes
the sequence of indices of the answers to the queries in the first input: a query
interval [i, j] in the output is followed by A1[i] and since queries were originally
ordered by the left end point, σ1(κ(S1)) gives the ordering of the indices of the
answer.

Now consider the input A2. Let r2 be the number of I/Os used by an algorithm
to solve the problem when presented with A2 and σ2 be the permutation that
describes the order of the atomic elements (the query label, value pair) in the
output. A query interval [i, j] in the output if followed by A2[j]. This means the
sequence of indices of the answers to the queries in the second input is described
by σ2(κ(ϕ(S1))) where ϕ is a permutation such that ϕ(S1) = S2.

Thus, we have the following (explanations below):

κ(Q) ��
r1 �������� σ1(κ(Q)) (1)

κ(Q) ��
r2 �������� σ2(κ(Q)) (2)

S1
��

r1 �������� σ1(κ(S1)) (3)

S1
��

r2 �������� σ2(κ(ϕ(S1))) (4)

The above equations describe how the order of the atomic elements in the
output correspond to the order of the atomic elements given to the algorithm,
with the difference that (for simplicity) instead of dealing with the values in the
arrays A1 and A2, we are dealing with their indices; S1 in the left hand side of
the equations correspond to the indices of the values in arrays A1 and A2.

Applying Observation 1(c) to (1) through (4), we get

σ1(κ(Q)) ��
r1+r2+O(q)

�������� σ2(κ(Q)) (5)

σ1(κ(S1)) ��
r1+r2+O(q)

�������� σ2(κ(ϕ(S1))) (6)

I/O-Efficient Range Minima Queries 7

Applying Observation 1(a) to (5) we get σ1(κ(S1)) ��
r1+r2+O(q)

�������� σ2(κ(S1)). Finally,

with (6) and Observation 1(c) we obtain σ1(κ(S1)) ��
O(r1+r2+q)

�������� σ1(κ(ϕ(S1))). Set

ϕ as an inverse of σ1 in Observation 1(b) and this gives κ(S1) ��
O(r1+r2+q)

�������� κ(ϕ(S1))

and similarly S1
��

O(r1+r2+q)
�������� ϕ(S1) = S2. Thus, by Lemma 1, we must have

r1 + r2 = Ω(min{Q, q logm n}), so the problem is hard on either A1 or A2. ��

3 Solution in the External Memory Model

In this section we prove a matching upper bound for the static RMQ problem
in the EM model.

Theorem 2. A set of Q range minima queries on a static array of N elements
can be answered in O(n+ q ·min {logm n, logm q}) I/Os and O(N +Q) space.

Note that when Q = Θ(N) the I/O complexity in the above theorem matches
the I/O complexity O(sort(N +Q)) = O((n+ q) logm(n+ q)) of Arge et al. [2].
Thus, we concentrate on two cases: (i) when N = ω(Q) and (ii) when Q = ω(N).

Without loss of generality we assume that each query rmq(i, j) has a unique
identifier – it can be, for example, the initial index in the list of the input queries.

Lemma 2. The problem of answering a set of Q range minima queries on a
static array A of N = ω(Q) elements can be reduced to the problem of answering
Q range minima queries on a static array A′ of size O(Q) in O(n + q logm q)
I/Os and O(N +Q) = O(N) space.

Proof. Consider any two adjacent array entries A[i] and A[i+1]. Observe that if
no query starts or ends with an index i and i+1, then the larger of the two entries
A[i] and A[i + 1] will not be the answer to any of the queries. More generally,
for any contiguous region of the array A[i..j], i < j, if there are no queries with
endpoint indices in the range [i, j], then we can compact the subarray A[i..j]
to a single element that is the minimum in the range A[i..j] without affecting
the answers to the queries. Since there are 2Q query endpoints, the size of the
compacted array is O(Q). Obviously, if we compact the input array to a smaller
array, we have to adjust the query endpoints appropriately, which we show how
to do next.

For each query rmq(i, j) we create two items ei and ej associated with the
two endpoints of the query. Each endpoint ei (resp. ej) contains full information
about the query rmq(i, j), i.e., the unique identifier of the query and the index
j (resp. i) of the other endpoint.

We sort the set of endpoints ex by their indices x. By simultaneously scanning
the input array and the sorted set of endpoints we can identify the ranges of array
indices that contain no query endpoints. During the scan we can also identify
the minimum within each range and copy them into a new array A′. Let s[i] be
the number of items among A[1..i] that were not copied to A′. We can compute

8 P. Afshani and N. Sitchinava

the values s[i] for all 1 ≤ i ≤ N during the scan. To adjust the queries, we need
to update the index of each query endpoint ei from i to i − s[i]. This can be
accomplished with a simultaneous scan of the sorted endpoints and the values
s[i]. Finally, a sort of the endpoints by the query identifiers will place the two
endpoints of each query in adjacent memory locations and with a final scan of
this sorted sequence we can create the updated queries rmq(i − s[i], j − s[j])
for each original query rmq(i, j). The I/O complexity of the whole process is
O(n+ sort(Q)) = O(n+ q logm q) I/Os because it is just O(1) scans of arrays of
size O(N) and O(1) sorts of sets of size O(Q). ��
Lemma 3. A set of Q range minima queries on a static array A of N = o(Q)
elements can be answered in O(q logm n) I/Os and O(N +Q) = O(Q) space.

Proof. In the algorithm of Arge et al. [2], it is difficult to avoid the O(sort(N+Q))
cost; to summarize, they do the following: first they build a full k-ary tree T
for k ∈ Θ(m) on the array A, with each of Θ(N/M) leaves associated with a
contiguous range of Θ(M) entries. The algorithm processes the queries down
this tree level by level, by computing a running answer for each endpoint of a
query and distributing the endpoints to the appropriate children of a node. At
the leaves of the tree, the answer to each query rmq(i, j) is the minimum of the
running answers at the two endpoints ei and ej . The two endpoints might be in
two different leaves of the tree, i.e., in arbitrary locations in external memory.
To compute the minimum of each pair I/O-efficiently, the algorithm sorts the
endpoints by the query identifier, which results in the two endpoints being in
adjacent memory locations and the minimum can be computed with a simple
scan. The I/O complexity of this solution consists of O(sort(N)) I/Os to build
the tree, O(q logm(N/M)) to propagate all queries down to the leaves of the tree
(the distribution involves scanning Q queries at each of O(logm(N/M)) levels of
the tree), and O(sort(Q)) I/Os to compute the minima of pairs of endpoints at
the leaves of the tree. Note, when N = o(Q) the I/O complexity of this solution
reduces to O(sort(Q)) = O(q logm q) I/Os.

To improve the I/O complexity to O(q logm n) we show how to compute the
minima of the pairs of endpoints at the leaves of the tree more efficiently. In
particular, we observe that the distribution of the query endpoints to the children
nodes of the tree is performed stably – that is, the relative order of the queries
distributed to each child node is the same as in the (parent) node itself. Thus, we
maintain the invariant that at each node the query endpoints are sorted by the
initial order of the input queries. Initially, at the root of the node, the invariant
is trivially true and the stability of the distribution ensures that the invariant is
maintained at each consequent level.

Once the query endpoints reach the leaf level, we do the following. We load
O(M) array entries associated with a leaf into internal memory and scan the
endpoints within that leaf, finding and reporting the answers to queries that
contain both endpoints within that leaf. Once a query answer is determined
unambiguously, we stop considering it any further. At this point, instead of
sorting the remaining endpoints, we propagate them up the tree, merging them
by comparing the original indices of the query in the input set. Since the query

I/O-Efficient Range Minima Queries 9

endpoints at each node are sorted in this order, we can perform this merge I/O
efficiently and if the two endpoints ei and ej of a query rmq(i, j) are present in
the subtrees rooted at two children wk and wk′ of some tree node v, the merging
process at node v will place them next to each other and we can compute the
minima among both endpoints, report it as the answer to query rmq(i, j) and
stop considering the two endpoints any further.

The I/O complexity of the merging process is O(n+ q) to process the leaves
and O(q logm(N/M)) I/Os to perform the merge up the tree. Thus the total I/O
complexity of the whole algorithm adds up to O(q logm n) I/Os. ��

The proof of the Theorem 2 follows from Lemma 2 and Lemma 3.

4 Solution in the Cache-Oblivious Model

In this section we will prove the following result:

Theorem 3. In the cache-oblivious model a set of Q range minima queries on
an array of size N can be answered in O(n + q logm q) I/Os, assuming M =
Ω(B1+ε).

First, note that Lemma 2 holds in the cache-oblivious model because the
reduction consists of a constant number of scans and sorts, which can be ac-
complished cache-obliviously [9]. Thus, it only remains to show how to answer
Q range minima queries on an array of size N = O(Q) in O(q logm q) I/Os.

The static solution of Arge et al. [2] can be viewed as using the top-down
distribution sweeping approach, where at each node of the recursive tree the
queries are considered in some predetermined order (a sweep of queries) and dis-
tributed to the Θ(M/B) children of the node. Brodal and Fagerberg [4] presented
a framework to implement distribution sweeping paradigm cache-obliviously by
a bottom-up recursive process, where at each recursive level the objects of the
children nodes are merged. We will show how to answer the range minima queries
by merging the queries bottom up instead, thus allowing us to use the cache-
oblivious distribution sweeping framework of Brodal and Fagerberg.

Again, without loss of generality, we assume that each query rmq(i, j) has a
unique identifier.

We proceed as follows. For each query rmq(i, j) we create two items ei and
ej associated with the two endpoints of the query. Each endpoint ei (resp. ej)
contains full information about the query rmq(i, j), i.e., the unique identifier
of the query and the index j (resp. i) of the other endpoint. Each endpoint ex
we will maintain a running answer rmqex . At the end of the computation, both
rmqei and rmqej will hold the answer to the query rmq(i, j).

Initially, we sort the endpoints ex by its index x and initialize rmqei = A[i] and
rmqej = A[j]. Next we perform the following merging algorithm. Conceptually,
we can visualize a merge tree built on top of the sorted list of endpoints with a
single endpoint at each leaf of the merge tree. A node v of the tree represents
a contiguous range R(v) of the indices in the array, such that R(v) = R(wL) ∪

10 P. Afshani and N. Sitchinava

R(wR), where wL and wR are the two children of v. Each node v of the tree
maintains minS(v) – the smallest array entry among the indices in its range
R(v). This value is defined as rmqe at the leaf node e and can be computed at
each internal node v as minS(v) = min{minS(wL),minS(wR)} and is updated
as the first step before the merging at that node begins.

During the merge up the tree the endpoints are compared by the unique
identifiers of the queries associated with that endpoint. For the merge step at
each internal node v with the two children wL and wR we do the following.
If the next two smallest endpoints ei and ej are for the same query rmq(i, j),
we set rmqi = rmqj = min{rmqi, rmqj} (the final answer to query rmq(i, j))
and the two endpoints are discarded and never considered again in the merging
process. If the next two smallest endpoints are not of the same query, assume the
smallest endpoint e is the left endpoint of a query (the right endpoints are treated
symmetrically). Then if e is coming from the right child wR, we propagate e to
the output of node v without altering it. If e is coming from the left child wL,
we set rmqe = min{rmqe,minS(wR)} and then propagate it to the output of v.

Lemma 4. At the end of the merging process, all pairs of items ei and ej as-
sociated with each query rmq(i, j) store the answer to the query in rmqei and
rmqej .

Proof. The proof is by induction on the level of recursion. First observe that
at node v, if ei ∈ R(wL) and ej ∈ R(wR) and they represent the same query
rmq(i, j), they will be considered together at some point during merging at
node v, because the comparisons are performed by the query identifiers, which
are unique and equal for ei and ej . Thus an item e ∈ R(v) is propagated to the
output of a node v iff e’s other endpoint is not inR(v)’s subtree. Let Av represent
the subarray of A which is defined by the indices in the range R(v). Then the
correctness of the algorithm follows from the fact that for i < j, if ei ∈ wL and
ej �∈ wR, rmqAwR

∪AwL
(i,+∞) = min{rmqAwL

(i,+∞),rmqAwR
(−∞,+∞)},

and if ei ∈ wR and ej �∈ wR, rmqAwR
∪AwL

(i,+∞) = rmqAwR
(i,+∞). The case

of ej is symmetrical. ��

Now we are ready to prove Theorem 3 stated at the beginning of this section.

Proof (of Theorem 3). Creation of the items can be performed with a single
scan of the queries, which is trivially cache-oblivious. The initial sorting of the
items is implemented using one of the cache-oblivious sorting algorithms [9].
The initialization of rmqe is implemented using a simultaneous scan of the input
array and the sorted items. Finally, the merging is implemented using the lazy
funnels [4]. Note, that we compute the value minS(v) only once – the first time
a merger at node v is invoked. Both cache-oblivious sorting and lazy funnels
require the tall cache assumption M = Ω(B1+ε). The I/O complexity follows
from [4]. ��

Note, we can extend the above merging algorithm to solve the problem in the
external memory model using merging, rather than distribution, which might

I/O-Efficient Range Minima Queries 11

be of independent interest. This is accomplished by performing Θ(M/B)-way
merging at each node and maintaining at each node Θ(M/B) minima of all its
children.

5 Additional Improvements

The techniques described in the previous sections are quite simple and can be
applied to other contexts. We briefly discuss some of these in this section.

Towards an adaptive analysis: In special cases when large portions of the input
array do not overlap with the query ranges, one can achieve better I/O com-
plexity than of the algorithms presented here. Let n′ ≤ n denote the number of
blocks of the input which overlap with the union of ranges defined by the queries.
Then both our upper bounds and lower bounds can easily be extended to show
that the support of batched RMQ queries is within Θ(n′ + q logm min{q, n′})
accesses and linear space, in both the external memory model and the cache
oblivious model.

Dynamic batched RMQ problem: In the dynamic RMQ problem we are given a
sequence that contains Q queries and N update operations (insertions and dele-
tions). There are many different ways to model the behavior of the insertions and
deletions with respect to the array indices. As discussed by Arge et al. [2], one
can consider an array version in which the updates shift the indices (an insertion
at position i increases all the succeeding indices by one; a deletion reduces them
by one), or a geometric version in which such shifting does not occur and the
indices are in fact x-coordinates, or a linked list version where indices are in fact
pointers. All these formulations are equivalent up to an additive O(sort(N +Q))
term. Previously, Arge et al. had shown how to solve such dynamic problems in
O(sort(N +Q) logm(n+ q)) I/Os. Using our static O(n+ q logm min{q, n}) solu-
tion as the base case in their solution, we can easily improve the I/O complexity
of the dynamic batched RMQ solution to O(sort(N) + sort(Q) logm n) I/Os.

6 Conclusions

In this paper, we investigate batched range minimum query (RMQ) problem in
the external memory (EM) and the cache-oblivious (CO) models. Improving on
the previous papers, we obtain matching upper and lower bounds for the static
version of the problem in the EM model. Interestingly, our lower bound shows
that the problem cannot be solved in linear I/O complexity (in the number of
queries) even if we allow the algorithm to reorder the queries in any arbitrary
order for free before it is presented with the input array. We also present the
first cache-oblivious solution to the problem and although we do not know if it
is optimal, it is faster than the previous external memory solutions.

12 P. Afshani and N. Sitchinava

Open problems. Although our work closes the case of the static version of the
problem in the EM model, there are still several interesting open problems re-
maining. There is no better lower bound known for the dynamic version of the
problem than the lower bound that we presented here for the static version. And
although we improved the upper bound of the dynamic version of the problem,
there is still a gap of O(logm n) I/Os remaining between the upper and lower
bounds. Closing this gap remains an open problem.

In the cache-oblivious model, the merge-based solution presented here seems
to require sorting all the queries. Our EM model solutions on the other hand
show that when Q
 N we can avoid the complexity of sorting the queries. It
would be interesting to see if similar bound can be shown in the cache-oblivious
model or the sorting of the queries is inherently required in the cache-oblivious
model.

Acknowledgements. The authors would like to thank Jérémy Barbay for many
useful discussions that inspired and motivated us in this work.

References

1. Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting and related
problems. Communications of the ACM 31, 1116–1127 (1988)

2. Arge, L., Fischer, J., Sanders, P., Sitchinava, N.: On (dynamic) range minimum
queries in external memory. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS
2013. LNCS, vol. 8037, pp. 37–48. Springer, Heidelberg (2013)

3. Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Proc. 4th Latin
American Theoretical Informatics Symposium, pp. 88–94 (2000)

4. Brodal, G.S., Fagerberg, R.: Cache oblivious distribution sweeping. In: Proc. 29th
International Colloquium on Automata, Languages, and Programming, pp. 426–438
(2002)

5. Chiang, Y.J., Goodrich, M.T., Grove, E.F., Tamassia, R., Vengroff, D.E., Vitter,
J.S.: External-memory graph algorithms. In: Proc. 6th ACM/SIAM Symposium
on Discrete Algorithms, pp. 139–149 (1995)

6. Demaine, E.D., Landau, G.M., Weimann, O.: On cartesian trees and range mini-
mum queries. Algorithmica 68(3), 610–625 (2014)

7. Fischer, J., Heun, V.: Space-efficient preprocessing schemes for range minimum
queries on static arrays. SIAM Journal on Computing 40(2), 465–492 (2011)

8. Fischer, J.: Optimal succinctness for range minimum queries. In: Proc. 9th Latin
American Theoretical Informatics Symposium, pp. 158–169 (2010)

9. Frigo, M., Leiserson, C.E., Prokop, H., Ramachandran, S.: Cache-oblivious algo-
rithms. In: Proc. 40th IEEE Symposium on Foundations of Computer Science,
pp. 285–297 (1999)

10. Gabow, H.N., Bentley, J.L., Tarjan, R.E.: Scaling and related techniques for ge-
ometry problems. In: Proc. 16th ACM Symposium on Theory of Computation,
pp. 135–143 (1984)

11. Hasan, M., Moosa, T.M., Rahman, M.S.: Cache oblivious algorithms for the RMQ
and the RMSQ problems. Mathematics in Computer Science 3(4), 433–442 (2010)

12. Vuillemin, J.: A unifying look at data structures. Comm. ACM 23(4), 229–239
(1980)

Online Makespan Minimization with Parallel

Schedules�

Susanne Albers1 and Matthias Hellwig2

1 Technische Universität München
albers@in.tum.de

2 Humboldt-Universität zu Berlin
hub1@matthias-hellwig.de

Abstract. Online makespan minimization is a classical problem in
which a sequence of jobs σ = J1, . . . , Jn has to be scheduled on m iden-
tical parallel machines so as to minimize the maximum completion time
of any job. In this paper we investigate the problem in a model where
extra power/resources are granted to an algorithm. More specifically, an
online algorithm is allowed to build several schedules in parallel while
processing σ. At the end of the scheduling process the best schedule is
selected. This model can be viewed as providing an online algorithm with
extra space, which is invested to maintain multiple solutions.

As a main result we develop a (4/3 + ε)-competitive algorithm, for
any 0 < ε ≤ 1, that uses a constant number of schedules. The constant
is equal to 1/εO(log(1/ε)). We also give a (1 + ε)-competitive algorithm,
for any 0 < ε ≤ 1, that builds a polynomial number of (m/ε)O(log(1/ε)/ε)

schedules. This value depends on m but is independent of the input
σ. The performance guarantees are nearly best possible. We show that
any algorithm that achieves a competitiveness smaller than 4/3 must
construct Ω(m) schedules. On the technical level, our algorithms make
use of novel guessing schemes that (1) predict the optimum makespan
of σ to within a factor of 1 + ε and (2) guess the job processing times
and their frequencies in σ. In (2) we have to sparsify the universe of all
guesses so as to reduce the number of schedules to a constant.

1 Introduction

Makespan minimization is a fundamental and extensively studied problem in
scheduling theory. Consider a sequence of jobs σ = J1, . . . , Jn that has to be
scheduled on m identical parallel machines. Each job Jt is specified by a pro-
cessing time pt > 0, 1 ≤ t ≤ n. Preemption of jobs is not allowed. The goal is
to minimize the makespan, i.e. the maximum completion time of any job in the
constructed schedule. We focus on the online version of the problem, initially
introduced by Graham [18]. Here the jobs of σ arrive one by one as elements of a
list. Each incoming job Jt has to be assigned immediately to one of the machines
without knowledge of any future jobs Jt′ , t

′ > t. Once all jobs have arrived, the
execution of the constructed schedule starts.

� Work supported by the German Research Foundation, grant AL 464/7-1.

R Ravi and I.L. Gørtz (Eds.): SWAT 2014, LNCS 8503, pp. 13–25, 2014.
c© Springer International Publishing Switzerland 2014

14 S. Albers and M. Hellwig

Online algorithms for makespan minimization have been studied since the
1960s. In his early paper Graham [18] showed that the famous List scheduling
algorithm is (2 − 1/m)-competitive. The best online strategy currently known
achieves a competitiveness of about 1.92 [16]. Makespan minimization has also
been studied with various types of resource augmentation, giving an online al-
gorithm additional information or power while processing σ. The following sce-
narios were considered. (1) A online algorithm may use more machines than an
offline algorithm. (2) An online algorithm knows the optimum makespan or the
sum of the processing times of σ. (3) An online strategy has a buffer that can be
used to reorder σ. Whenever a job arrives, it is inserted into the buffer; then one
job of the buffer is removed and placed in the current schedule. (4) An online
algorithm may migrate a certain number or volume of jobs.

In this paper we investigate makespan minimization assuming that an online
algorithm is allowed to build several schedules in parallel while processing a job
sequence σ. Each incoming job is sequenced in each of the schedules. At the
end of the scheduling process the best schedule is selected. We believe that this
is a sensible form of resource augmentation: In the classical online makespan
minimization problem, studied in the literature so far, an algorithm constructs
a schedule while jobs arrive one by one. Only when all jobs have arrived, the
schedule is executed. Hence there is a priori no reason why an algorithm should
not be able to construct several solutions, the best of which is finally chosen.

The investigated setting can be viewed as providing an online algorithm with
extra space, which is used to maintain several solutions. Very little is known
about the value of extra space in the design of online algorithms. Makespan
minimization with parallel schedules is of particular interest in parallel process-
ing environments where each processor can take care of a single or a small set of
schedules. We develop algorithms that require hardly any coordination or com-
munication among the schedules. Moreover, the proposed setting is interesting
w.r.t. the foundations of scheduling theory, giving insight into the value of mul-
tiple candidate solutions. Our study complements work along another line of
research, investigating online algorithms with advice, see e.g. [11,13,24]. In that
scenario an online algorithm, at any time, can query some information about
future input and thereby achieve an improved solution.

Makespan minimization with parallel schedules was also addressed by Kellerer
et al. [22]. However, the paper focused on the restricted setting with m = 2 ma-
chines. In this paper we explore the problem for a general numberm of machines.
As a main result we show that a constant number of schedules suffices to achieve
a significantly improved competitiveness, compared to the standard setting with-
out resource augmentation. The competitive ratios obtained are at least as good
and in most cases better than those attained in the other models of resource
augmentation mentioned above.

Problem Definition:We investigate the problem Makespan Minimization with
Parallel Schedules (MPS). As always, the jobs of a sequence σ = J1, . . . , Jn arrive
one by one and must be scheduled non-preemptively on m identical parallel

Online Makespan Minimization with Parallel Schedules 15

machines. Each job Jt has a processing time pt > 0. In MPS, an online algorithm
Amay maintain a set S = {S1, . . . , Sl} of schedules during the scheduling process
while jobs of σ arrive. Each job Jt is sequenced in each schedule Sk, 1 ≤ k ≤ l.
At the end of σ, algorithm A selects a schedule Sk ∈ S having the smallest
makespan and outputs this solution. The other schedules of S are deleted.

As we shall show MPS can be reduced to the problem variant where the opti-
mum makespan of the job sequence to the processed is known in advance. Hence
let MPSopt denote the variant of MPS where, prior to the arrival of the first
job, an algorithm A is given the value of the optimum makespan opt(σ) for the
incoming job sequence σ. An algorithm A for MPS or MPSopt is ρ-competitive
if, for every job sequence σ, it outputs a schedule whose makespan is at most ρ
times opt(σ).

Our Contribution: We present a comprehensive study of MPS. We develop a
(4/3+ ε)-competitive algorithm, for any 0 < ε ≤ 1, that uses a constant number
of 1/εO(log(1/ε)) schedules. Furthermore, we give a (1+ε)-competitive algorithm,
for any 0 < ε ≤ 1, that uses a polynomial number of schedules. The number is
(m/ε)O(log(1/ε)/ε), which depends on m but is independent of the job sequence
σ. These performance guarantees are nearly best possible. The algorithms are
obtained via some intermediate results that may be of independent interest.

First, in Section 2 we show that the original problem MPS can be reduced
to the variant MPSopt in which the optimum makespan is known. More specif-
ically, given any ρ-competitive algorithm A for MPSopt we construct a (ρ+ ε)-
competitive algorithmA∗(ε), for any 0 < ε ≤ 1. If A uses l schedules, then A∗(ε)
uses l · �log(1+ 6ρ

ε)/ log(1+
ε
3ρ)� schedules. The construction works for any algo-

rithm A for MPSopt. In particular we could use a 1.6-competitive algorithm by
Chen et al. [12] that assumes that opt(σ) is known and builds a single schedule.

We proceed to develop algorithms for MPSopt. In Section 3 we give a (1 + ε)-
competitive algorithm, for any 0 < ε ≤ 1, using (�2m/ε�+ 1)�log(2/ε)/ log(1+ε/2)�

schedules. In Section 4 we devise a (4/3 + ε)-competitive algorithm, for any
0 < ε ≤ 1, that uses 1/εO(log(1/ε)) schedules. Combining these algorithms with
A∗(ε), we derive the two algorithms for MPS mentioned in the above paragraph;
see also Section 5. The number of schedules used by our strategies depends on
1/ε and exponentially on log(1/ε) or 1/ε. Such a dependence seems inherent if
we wish to explore the full power of parallel schedules. The trade-offs resem-
ble those exhibited by PTASs in offline approximation. Recall that the PTAS
by Hochbaum and Shmoys [20] for makespan minimization achieves a (1 + ε)-

approximation with a running time of O((n/ε)1/ε
2

).
In Section 6 we present lower bounds. We show that any online algorithm for

MPS that achieves a competitive ratio smaller than 4/3 must construct more
than �m/3� schedules. Hence the competitive ratio of 4/3 is best possible using a
constant number of schedules. We show a second lower bound that implies that
the number of schedules of our (1 + ε)-competitive algorithm is nearly optimal,
up to a polynomial factor.

16 S. Albers and M. Hellwig

Our algorithms make use of novel guessing schemes. A∗(ε) works with guesses
on the optimum makespan. Guessing and doubling the value of the optimal
solution is a technique that has been applied in other load balancing problems,
see e.g. [6]. However here we design a refined scheme that carefully sets and
readjusts guesses so that the resulting competitive ratio increases by a factor
of 1 + ε only, for any ε > 0. Moreover, the readjustment and job assignment
rules have to ensure that scheduling errors, made when guesses were too small,
are not critical. Our (4/3 + ε)-competitive algorithm works with guesses on the
job processing times and their frequencies in σ. In order to achieve a constant
number of schedules, we have to sparsify the set of all possible guesses in an
appropriate/novel way.

All our algorithms have the property that the parallel schedules are con-
structed basically independently. The algorithms for MPSopt require no coordi-
nation at all among the schedules. In A∗(ε) a schedule only has to report when
it fails, i.e. when a guess on the optimum makespan is too small.

The competitive ratios achievedwith parallel schedules are considerably smaller
than the best ratios of about 1.92 known for the scenariowithout resource augmen-
tation. Our ratio of (4/3+ε), for small ε, is lower than the competitiveness of about
1.46 obtained in the settings where a reordering buffer of size O(m) is available or
O(m) jobs may be reassigned [2,14]. Sanders et al. [27] gave an online algorithm
that is (1 + ε)-competitive if, before the assignment of any job Jt, jobs of process-

ing volume 2O((1/ε) log2(1/ε))pt may be migrated. Hence the total amount of extra
resources used while scheduling σ depends on the input sequence. As for online
computation with advice, Renault et al. [24] devised an algorithm that is (1 + ε)-
competitive and, per incoming job, queries O(1ε log

1
ε) bits about future input, for

any 0 < ε < 1/2.

Remark: Due to space limitations the proofs of the theorems and corollaries de-
veloped in this paper are given in the full version of this article.

Related Work: Makespan minimization with parallel schedules was first stud-
ied by Kellerer et al. [22]. They assume that m = 2 machines are available
and two schedules may be constructed. They show that in this case the optimal
competitive ratio is 4/3.

We summarize results known for online makespan minimization without re-
source augmentation. As mentioned before, List is (2 − 1/m)-competitive. De-
terministic online algorithms with a smaller competitive ratio were presented
in [1,10,16,17,21]. The best algorithm currently known is 1.9201-competitive [16].
Lower bounds on the performance of deterministic strategies were given in
[1,9,15,19,25,26]. The best bound currently known is 1.88, see [25].

We next review the results for the various models of resource augmenta-
tion. Azar et al. [8] devise an online algorithm attaining a competitiveness of
1 + (1/2)m

′/m(1−o(1)) assuming that the algorithm may use m′ ≥ m machines.
Articles [3,4,5,7,12,22] study makespan minimization assuming that an online

Online Makespan Minimization with Parallel Schedules 17

algorithm knows the optimum makespan opt(σ) or the sum of the process-
ing times of σ. Chen et al. [12] developed a 1.6-competitive algorithm. Azar
and Regev [7] showed that no online algorithm can attain a competitive ratio
smaller than 4/3 if opt(σ) is known. The setting in which an online algorithm
is given a reordering buffer was explored in [14,22]. Englert et al. [14] presented
an algorithm that, using a buffer of size O(m), achieves a competitive ratio of
W−1(−1/e2)/(1+W−1(−1/e2)) ≈ 1.46, where W−1 is the Lambert W function.
No algorithm using a buffer of size o(n) can beat this ratio.

Makespan minimization with job migration was addressed in [2,27]. An algo-
rithm that achieves again a competitiveness ofW−1(−1/e2)/(1+W−1(−1/e2)) ≈
1.46 and uses O(m) job reassignments was devised in [2]. No algorithm using o(n)
reassignments can obtain a smaller competitiveness. We refer again to Sanders
et al. [27] for a study of scenario in which before the assignment of each job Jt,
jobs up to a total processing volume of βpt may be migrated, for some constant
β. Specifically, for β = 4/3, they also present a 1.5-competitive algorithm.

As for memory in online algorithms, Sleator and Tarjan [28] studied the pag-
ing problem assuming that an online algorithm has a larger fast memory than
an offline strategy. Raghavan and Snir [23] traded memory for randomness in
online caching.

Notation: Throughout this paper it will be convenient to associate schedules
with algorithms, i.e. a schedule Sk is maintained by an algorithm Ak that spec-
ifies how to assign jobs to machines in Sk. Thus an algorithm A for MPS or
MPSopt can be viewed as a family {Ak}k∈K of algorithms that maintain the
various schedules. We will write A = {Ak}k∈K. If A is an algorithm for MPSopt,
then the value opt(σ) is of course given to all algorithms of {Ak}k∈K. Further-
more, the load of a machine always denotes the sum of the processing times of
the jobs already assigned to that machine.

2 Reducing MPS to MPSopt

In this section we will show that any ρ-competitive algorithm A for MPSopt can
be used to construct a (ρ + ε)-competitive algorithm A∗(ε) for MPS, for any
0 < ε ≤ 1. The main idea is to repeatedly execute A for a set of guesses on the
optimum makespan. The initial guesses are small and are increased whenever a
guess turns out to be smaller than opt(σ). The increments are done in small
steps so that, among the final guesses, there exists one that is upper bounded
by approximately (1 + ε)opt(σ). In the analysis of this scheme, we will have to
bound machine loads caused by scheduling “errors” made when guesses were too
small. Unfortunately the execution of A, given a guess γ �= opt(σ), can lead to
undefined algorithmic behavior. As we shall show, guesses γ ≥ opt(σ) are not
critical. However, guesses γ < opt(σ) have to be handled carefully.

So let A = {Ak}k∈K be a ρ-competitive algorithm for MPSopt that, given
guess γ, is executed on a job sequence σ. Upon the arrival of a job Jt, an al-
gorithm Ak ∈ A may fail because the scheduling rules of Ak do not specify

18 S. Albers and M. Hellwig

a machine where to place Jt in the current schedule Sk. We define two fur-
ther conditions when an algorithm Ak fails. The first one identifies situations
where a makespan of ργ is not preserved and hence ρ-competitiveness may not
be guaranteed. More precisely, Ak would assign Jt to a machine Mj such that
�(j)+pt > ργ, where �(j) denotesMj’s machine load before the assignment. The
second condition identifies situations where γ is not consistent with lower bounds
on the optimum makespan, i.e. γ is smaller than the average machine load or
the processing time of Jt. Formally, an algorithm Ak fails if a job Jt, 1 ≤ t ≤ n,
has to be scheduled and one of the following conditions holds: (i) Ak does not
specify a machine where to place Jt in the current schedule Sk. (ii) There holds
�(j) + pt > ργ, for machine Mj to which Ak would assign Jt in Sk. (iii) There
holds γ <

∑
t′≤t pt′/m or γ < pt.

Algorithm for MPS: We describe our algorithm A∗(ε, h) for MPS, where
0 < ε ≤ 1 and h ∈ N may be chosen arbitrarily. The construction takes as input
any algorithm A = {Ak}k∈K for MPSopt. For a proper choice of h, A∗(ε, h) will
be (ρ+ ε)-competitive, provided that A is ρ-competitive.

At any time A∗(ε, h) works with h guesses γ1 < . . . < γh on the optimum
makespan for the incoming job sequence σ. These guesses may be adjusted during
the processing of σ; the update procedure will be described in detail below. For
each guess γi, 1 ≤ i ≤ h, A∗(ε, h) executes A. Hence A∗(ε, h) maintains a total
of h|K| schedules, which can be partitioned into subsets S1, . . . ,Sh. Subset Si
contains those schedules generated by A using γi, 1 ≤ i ≤ h. Let Sik ∈ Si denote
the schedule generated by Ak using γi.

A job sequence σ is processed as follows. Initially, upon the arrival of the first
job J1, the guesses are initialized as γ1 = p1 and γi = (1+ε)γi−1, for i = 2, . . . , h.
Each job Jt, 1 ≤ t ≤ n, is handled in the following way. Of course each such job is
sequenced in every schedule Sik, 1 ≤ i ≤ h and 1 ≤ k ≤ |K|. Algorithm A∗(ε, h)
checks if Ak using γi fails when having to sequence Jt in Sik. This check can
be performed easily by just verifying if one of the conditions (i–iii) holds. If Ak

using γi does not fail and has not failed since the last adjustment of γi, then in
Sik job Jt is assigned to the machine specified by Ak using γi. The initialization
of a guess is also regarded as an adjustment. If Ak using γi does fail, then Jt
and all future jobs are always assigned to a least loaded machine in Sik until γi
is adjusted the next time.

Suppose that after the sequencing of Jt all algorithms of A = {Ak}k∈K using
a particular guess γi have failed since the last adjustment of this guess. Let
i∗ be the largest index i with this property. Then the guesses γ1, . . . , γi∗ are
adjusted. Set γ1 = (1 + ε)max{γh, pt,

∑
1≤t′≤t pt′/m} and γi = (1 + ε)γi−1, for

i = 2, . . . , i∗. For any readjusted guess γi, 1 ≤ i ≤ i∗, algorithm A using γi
ignores all jobs Jt′ with t′ < t when processing future jobs of σ. Specifically,
when making scheduling decisions and determining machine loads, algorithm
Ak using γi ignores all job Jt′ with t′ < t in its schedule Sik. These jobs are
also ignored when A∗(ε, h) checks if Ak using guess γi fails on the arrival of
a job. Furthermore, after the assignment of Jt, machines in Sik machines are

Online Makespan Minimization with Parallel Schedules 19

renumbered so that Jt is located on a machine it would occupy if it were the
first job of an input sequence.

When guesses have been adjusted, they are renumbered, together with the
corresponding schedule sets Si, such that again γ1 < . . . < γh. Hence at any
time γ1 = min1≤i≤h γi and γi ≥ (1 + ε)γi−1, for i = 2, . . . , h. We also observe
that whenever a guess is adjusted, its value increases by a factor of at least
(1 + ε)h.

Theorem 1. Let A = {Ak}k∈K be a ρ-competitive algorithm for MPSopt. Then
for any 0 < ε ≤ 1 and h = �log(1 + 6ρ

ε)/ log(1 + ε
3ρ)�, algorithm A∗(ε) =

A∗(ε/(3ρ), h) for MPS is (ρ+ ε)-competitive and uses h|K| schedules.

3 A (1 + ε)-Competitive Algorithm for MPSopt

We present an algorithm A1(ε) for MPSopt that attains a competitive ratio of
1 + ε, for any ε > 0. The algorithms will yield a (1 + ε)-competitive strategy
for MPS and will be useful in the next section where we develop a (4/3 + ε)-
competitive algorithm for MPSopt. There A1(ε) will be used as subroutine for a
small, constant number of m.

Description of A1(ε): Let ε > 0 be arbitrary. Assume without loss of generality
that opt(σ) = 1. Then all job processing times are in (0, 1]. Set ε′ = ε/2. First
we partition the range of possible job processing times into intervals I0, . . . , Il
such that, within each interval Ii with i ≥ 1, the values differ by a factor of
at most 1 + ε′. Such a partitioning is standard and has been used e.g. in the
PTAS for offline makespan minimization [20]. Let l = �log(1/ε′)/ log(1 + ε′)�.
Set I0 = (0, ε′] and Ii = ((1 + ε′)i−1ε′, (1 + ε′)iε′], for i = 1, . . . , l. Obviously
I0 ∪ . . . ∪ Il = (0, (1 + ε′)lε′] and (0, 1] ⊆ (0, (1 + ε′)lε′]. A job is small if its
processing time is at most ε′ and hence contained in I0; otherwise the job is
large.

Each σ with opt(σ) = 1 contains at most �m/ε′� large jobs. For each pos-
sible distribution of large jobs over the processing time intervals I1, . . . , Il, al-
gorithm A1(ε) prepares one algorithm/schedule. Let V = {(v1, . . . , vl) ∈ Nl

0 |
vi ≤ �m/ε′�}. There holds |V | = (�m/ε′� + 1)l. Let A1(ε) = {Av}v∈V . For any
vector v = (v1, . . . , vn) ∈ V , algorithm Av works as follows. It assumes that the
incoming job sequence σ contains exactly vi jobs with a processing time in Ii, for
i = 1, . . . , l. Moreover, it pessimistically assumes that each processing time in Ii
takes the largest possible value (1+ ε′)iε′. Hence, initially Av computes an opti-
mal schedule S∗

v for a job sequence consisting of vi jobs with a processing time of
(1 + ε′)iε′, for i = 1, . . . , l. Small jobs are ignored. Let n∗

i (j) denote the number
of jobs with a processing time of (1 + ε′)iε′ ∈ Ii assigned to machine Mj in S∗

v ,

where 1 ≤ i ≤ l and 1 ≤ j ≤ m. Moreover, let �∗(j) =
∑l

i=1 n
∗
i (j)(1 + ε′)iε′ be

the load on machine Mj in S∗
v , 1 ≤ j ≤ m.

When processing the actual job sequence σ and constructing a real schedule
Sv, Av uses S∗

v as a guideline to make scheduling decisions. At any time during

20 S. Albers and M. Hellwig

the scheduling process, let ni(j) be the number of jobs with a processing time in
Ii that have already been assigned to machine Mj in Sv, where again 1 ≤ i ≤ l
and 1 ≤ j ≤ m. Each incoming job Jt, 1 ≤ t ≤ n, is handled as follows. If Jt
is large, then let Ii with 1 ≤ i ≤ l be the interval such that pt ∈ Ii. Algorithm
Av checks if there is a machine Mj such that n∗

i (j) − ni(j) > 0, i.e. there is a
machine that can still accept a job with a processing time in Ii as suggested
by the optimal schedule S∗

v . If such a machine Mj exists, then Jt is assigned to
it; otherwise Jt is scheduled on an arbitrary machine. If Jt is small, then Jt is
assigned to a machine Mj with the smallest current value �∗(j) + �s(j). Here
�s(j) denotes the current load on machine Mj caused by small jobs in Sv.

Theorem 2. For any ε > 0, A1(ε) is (1 + ε)-competitive and uses at most
(�2m/ε�+ 1)�log(2/ε)/ log(1+ε/2)� schedules.

4 A (4/3 + ε)-Competitive Algorithm for MPSopt

We develop an algorithm A2(ε) for MPSopt that is (4/3 + ε)-competitive, for
any 0 < ε ≤ 1, if the number m of machines is not too small. We then combine
A2(ε) with A1(ε), presented in the last section, and derive a strategy A3(ε) that
is (4/3 + ε)-competitive, for arbitrary m. The number of required schedules is
1/εO(log(1/ε)), which is a constant independent of n and m.

Before describing A2(ε) in detail, we explain the main ideas of the algorithm.
One concept is identical to that used by A1(ε): Partition the range of possible job
processing times into intervals or job classes and consider distributions of jobs
over these classes. However, in order to achieve a constant number of schedules,
we have to refine this scheme and incorporate new ideas. First, the job classes
have to be chosen properly so as to allow a compact packing of jobs on the
machines. An important, new aspect in the construction of A2(ε) is that we will
not consider the entire set V of tuples specifying how large jobs of an input
sequence σ are distributed over the job classes. Instead we will define a suitable
sparsification V ′ of V . Each v ∈ V ′ represents an estimate or guess on the
number of large jobs arising in σ. More specifically, if v = (v1, . . . , vl), then it is
assumed that σ contains at least vi jobs with a processing time of job class i.

The job sequence σ may contain more than vi jobs of class i, 1 ≤ i ≤ l, the
exact number of which is unknown. Furthermore, it is unknown which portion
of the total processing time of σ will arrive as small jobs. In order to cope with
these uncertainties A2(ε) has to construct robust schedules. To this end the
number of machines is partitioned into two setsMc andMr. For the machines
of Mc, the algorithm initially determines a good assignment or configuration
assuming that vi jobs of job class i will arrive. The machines ofMr are reserve
machines and will be assigned additional large jobs as they arise in σ. Small jobs
will always be placed on machines in Mc. The initial configuration determined
for these machines has the property that, no matter how many small jobs arrive,
a machine load never exceeds 4/3 + ε times the optimum makespan.

Online Makespan Minimization with Parallel Schedules 21

We next describe A2(ε) in detail. Let 0 < ε ≤ 1 and set ε′ = ε/8. Again we
assume without loss of generality that, for an incoming job sequence, there holds
opt(σ) = 1. Hence the processing time of any job is upper bounded by 1.

Job Classes: A job Jt, 1 ≤ t ≤ n, is small if pt ≤ 1/3 + 2ε′; otherwise Jt is
large. We divide the range of possible job processing times into job classes. Let
Is = (0, 1/3 + 2ε′] be the interval containing the processing times of small jobs.
Let λ = �log(38 + 1

48ε′)� and l = λ + 2, where the logarithm is taken to base 2.
For i = 1, . . . , l, let

ai = max{ 13−2ε′+(1
12 +

3
2ε

′) 1
2λ+1−i ,

1
3 +2ε′} and bi =

1
3−2ε′+(1

12 +
3
2ε

′) 1
2λ−i .

It is easy to verify that a1 = 1/3 + 2ε′ and ai < bi, for i = 1, . . . , l. Further-
more bl−1 = 1/2 + ε′ and bl = 2/3 + 4ε′. For i = 1, . . . , l define Ii = (ai, bi].
There holds

⋃
1≤i≤l Ii = (1/3 + 2ε′, 2/3+ 4ε′]. Moreover, for i = 1, . . . , l− 1, let

Il+i = (2ai, 2bi]. Intuitively, Il+i contains the processing times that are twice as
large as those in Ii, 1 ≤ i ≤ l−1. There holds

⋃
1≤i≤l−1 Il+i = (2/3+4ε′, 1+2ε′].

Hence Is ∪ I1 ∪ . . .∪ I2l−1 = (0, 1+2ε′]. In the following Ii represents job class i,
for i = 1, . . . , 2l−1. We say that Jt is a class-i job if pt ∈ Ii, where 1 ≤ i ≤ 2l−1.

Definition of Target Configurations: As mentioned above, for any incom-
ing job sequence σ, A2(ε) works with estimates on the number of class-i jobs
arising in σ, 1 ≤ i ≤ 2l − 1. For each estimate, the algorithm initially deter-
mines a virtual schedule or target configuration on a subset of the machines,
assuming that the estimated set of large jobs will indeed arrive. Hence we par-
tition the m machines into two setsMc andMr. Let μ = � 1+ε′

1+2ε′m�. Moreover,
let Mc = {M1, . . . ,Mμ} and Mr = {Mμ+1, . . . ,Mm}. Set Mc contains the
machines for which a target configuration will be computed; Mr contains the
reserve machines. The proportion of |Mr| to |Mc| is roughly 1 : 1 + 1/ε′.

A target configuration has the important property that any machineMj ∈Mc

contains large jobs of only one job class i, 1 ≤ i ≤ 2l − 1. Therefore, a target
configuration is properly defined by a vector c = (c1, . . . , cμ) ∈ {0, . . . , 2l − 1}μ.
If cj = 0, then Mj does not contain any large jobs in the target configuration,
1 ≤ j ≤ μ. If cj = i, where i ∈ {1, . . . , 2l − 1}, then Mj contains class-i jobs,
1 ≤ j ≤ μ. The vector c implicitly also specifies how many large jobs reside on
a machine. If cj = i with 1 ≤ i ≤ l, then Mj contains two class-i jobs. Note that
there exist i ∈ {1, . . . , l} such that a third job cannot be placed on the machine
without exceeding a load bound of 4/3 + ε. If cj = i with l + 1 ≤ i ≤ 2l − 1,
then Mj contains one class-i job. Again, the assignment of a second job is not
feasible in general. Given a configuration c,Mj is referred to as a class-i machine
if cj = i, where 1 ≤ j ≤ μ and 1 ≤ i ≤ 2l − 1.

With the above interpretation of target configurations, each vector
c = (c1, . . . , cμ) encodes inputs containing 2|{cj ∈ {c1, . . . cμ} : cj = i}| class-i
jobs, for i = 1, . . . , l, as well as |{cj ∈ {c1, . . . cμ} : cj = i}| class-i jobs, for
i = l+1, . . . , 2l− 1. Hence, for an incoming job sequence, instead of considering
estimates on the number of class-i jobs, for any 1 ≤ i ≤ 2l − 1, we can equiv-
alently consider target configurations. Unfortunately, it will not be possible to

22 S. Albers and M. Hellwig

work with all target configurations c ∈ {0, . . . , 2l− 1}μ since the resulting num-
ber of schedules to be constructed would be (2l)μ = (log(1/ε))Ω(m). Therefore,
we will work with a suitable sparsification of the set of all configurations.

Sparsification of the Set of Target Configurations: Let κ =
�2(2 + 1/ε′)(2l − 1)� and U = {0. . . . , κ}2l−1. We can show that
κ�(m − μ)/(2l − 1)� ≥ m if m is not too small. This property in turn
will ensure that any job sequence σ can be mapped to a u ∈ U . For any
vector u = (u1, . . . , u2l−1) ∈ U , we define a target configuration c(u) that
contains ui�(m − μ)/(2l − 1)� class-i machines, for i = 1, . . . , 2l − 1, provided

that
∑2l−1

i=1 ui�(m − μ)/(2l − 1)� does not exceed μ. More specifically, for any

u = (u1, . . . , u2l−1) ∈ U , let π0 = 0 and πi =
∑i

j=1 uj�(m − μ)/(2l − 1)�, be
the partial sums of the first i entries of u, multiplied by �(m− μ)/(2l− 1)�, for
i = 1, . . . , 2l− 1. Let μ′ = π2l−1. First construct a vector c′(u) = (c′1, . . . , c

′
μ′) of

length μ′ that contains exactly ui�(m−μ)/(2l−1)� class-i machines. That is, for
i = 1, . . . , 2l− 1, let c′j = i for j = πi−1 + 1, . . . , πi. We now truncate or extend
c′(u) to obtain a vector of length μ. If μ′ ≥ μ, then c(u) is the vector consisting
of the first μ entries of c′(u). If μ′ < μ, then c(u) = (c′1, . . . , c

′
μ′ , 0, . . . , 0), i.e. the

last μ − μ′ entries are set to 0. Let C = {c(u) | u ∈ U} be the set of all target
configurations constructed from vectors u ∈ U .

The Algorithm Family: Let A2(ε) = {Ac}c∈C . For any c ∈ C, algorithm Ac

works as follows. Initially, prior to the arrival of any job of σ, Ac determines the
target configuration specified by c = (c1, . . . , cμ) and uses this virtual schedule for
the machines ofMc to make scheduling decisions. Consider a machineMj ∈Mc

and suppose cj > 0, i.e. Mj is a class-i machine for some i ≥ 1. Let �−(j) and
�+(j) be the targeted minimal and maximal loads caused by large jobs on Mj ,
according to the target configuration. More precisely, if i ∈ {1, . . . , l}, then
�−(j) = 2ai and �+(j) = 2bi. Recall that in a target configuration a class-i
machine contains two class-i jobs if 1 ≤ i ≤ l. If i ∈ {l+1, . . . , 2l− 1} and hence
i = l + i′ for some i′ ∈ {1, . . . , l − 1}, then �−(j) = 2ai′ and �+(j) = 2bi′ . If
Mj ∈ Mc is a machine with cj = 0, then �−(j) = �+(j) = 0. While the job
sequence σ is processed, a machine Mj ∈ Mc may or may not be admissible.
Again assume that Mj is a class-i machine with i ≥ 1. If i ∈ {1, . . . , l}, then at
any time during the scheduling process Mj is admissible if it has received less
than two class-i jobs so far. Analogously, if i ∈ {l + 1, . . . , 2l − 1}, then Mj is
admissible if it has received no class-i job so far. Finally, at any time during the
scheduling process, let �(j) be the current load of machine Mj and let �s(j) be
the load due too small jobs, 1 ≤ j ≤ m.

Algorithm Ac schedules each incoming job Jt, 1 ≤ t ≤ n, in the following
way. First assume that Jt is a large job and, in particular, a class-i job, 1 ≤
i ≤ 2l − 1. The algorithm checks if there is a class-i machine in Mc that is
admissible. If so, Jt is assigned to such a machine. If there is no admissible
class-i machine available, then Jt is placed on a machine inMr. There jobs are
scheduled according to the Best-Fit policy. More specifically, Ac checks if there

Online Makespan Minimization with Parallel Schedules 23

exists a machine Mj ∈ Mr such that �(j) + pt ≤ 4/3 + ε. If this is the case,
then Jt is assigned to such a machine with the largest current load �(j). If no
such machine exists, Jt is assigned to an arbitrary machine inMr. Next assume
that Jt is small. The job is a assigned to a machine in Mc, where preference is
given to machines that have already received small jobs. Algorithm Ac checks if
there is an Mj ∈ Mc with �s(j) > 0 such that �+(j) + �s(j) + pt ≤ 4/3 + ε. If
this is the case, then Jt is assigned to any such machine. Otherwise Ac considers
the machines of Mc which have not yet received any small jobs. If there exists
an Mj ∈ Mc with �s(j) = 0 such that �+(j) + pt ≤ 4/3 + ε, then among these
machines Jt is assigned to one having the smallest targeted load �−(j). If again
no such machine exists, Jt is assigned to an arbitrary machine inMc.

Theorem 3. A2(ε) is (4/3+ε)-competitive, for any 0 < ε ≤ 1 andm ≥ 2l/(ε′)2.
It uses 1/εO(log(1/ε)) schedules. Again l = λ+ 2 and λ = �log(38 + 1

48ε′)�.

A2(ε) is (4/3 + ε)-competitive if, for the chosen ε, the number of machines
is at least 2l/(ε′)2. If the number of machines is smaller, we can simply apply
algorithm A1(ε) with an accuracy of ε0 = 1/3. Let A3(ε) be the following com-
bined algorithm. If for the chosen ε, m < 2l/(ε′)2, execute A1(1/3). Otherwise
execute A2(ε).

Corollary 1. A3(ε) is (4/3 + ε)-competitive, for any 0 < ε ≤ 1, and uses
1/εO(log(1/ε)) schedules.

5 Algorithms for MPS

We derive our algorithms for MPS. The strategies are obtained by simply com-
bining A∗(ε), presented in Section 2, with A1(ε) and A3(ε). In order to achieve
a precision of ε in the competitive ratio, the strategies are combined with a pre-
cision of ε/2 in its parameters. For any 0 < ε ≤ 1, let A∗

3(ε) be the algorithm
obtained by executing A3(ε/2) in A∗(ε/2). For any 0 < ε ≤ 1, let A∗

1(ε) be the
algorithm obtained by executing A1(ε/2) in A∗(ε/2).

Corollary 2. A∗
3(ε) is a (4/3 + ε)-competitive algorithm for MPS and uses

1/εO(log(1/ε)) schedules, for any 0 < ε ≤ 1.

Corollary 3. A∗
1(ε) is a (1 + ε)-competitive algorithm for MPS and uses

(m/ε)O(log(1/ε)/ε) schedules, for any 0 < ε ≤ 1.

6 Lower Bounds

We present lower bounds that apply to both MPS and MPSopt.

Theorem 4. Let A be a deterministic online algorithm for MPS or MPSopt. If
A achieves a competitive ratio smaller than 4/3, then it must maintain at least
�m/3�+ 1 schedules.

24 S. Albers and M. Hellwig

Theorem 5 gives a lower bound on the number of schedules required by a (1+ε)-
competitive algorithm, where 0 < ε < 1/4. It implies that, for any fixed ε,
the number asymptotically depends on mΩ(1/ε), as m increases. For instance,
any algorithm with a competitive ratio smaller than 1 + 1/12 requires Ω(m2)
schedules. Any algorithm with a competitiveness smaller than 1 + 1/16 needs
Ω(m3) schedules.

Theorem 5. Let A be a deterministic online algorithm for MPS or MPSopt.
If A achieves a competitive ratio smaller than 1 + ε, where 0 < ε ≤ 1/4,

then it must maintain at least
(
m′+h−1

h−1

)
schedules, where m′ = �m/2� and

h = �1/(4ε)�. The binomial coefficient increases as ε decreases and is at least
Ω((εm)�1/(4ε)�−1/2/

√
m).

References

1. Albers, S.: Better bounds for online scheduling. SIAM J. Comput. 29, 459–473
(1999)

2. Albers, S., Hellwig, M.: On the value of job migration in online makespan min-
imization. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501,
pp. 84–95. Springer, Heidelberg (2012)

3. Angelelli, E., Nagy, A.B., Speranza, M.G., Tuza, Z.: The on-line multiprocessor
scheduling problem with known sum of the tasks. J. Scheduling 7, 421–428 (2004)

4. Angelelli, E., Speranza, M.G., Tuza, Z.: Semi-on-line scheduling on two parallel
processors with an upper bound on the items. Algorithmica 37, 243–262 (2003)

5. Angelelli, E., Speranza, M.G., Tuza, Z.: New bounds and algorithms for on-line
scheduling: two identical processors, known sum and upper bound on the tasks.
Discrete Mathematics & Theoretical Computer Science 8, 1–16 (2006)

6. Azar, Y.: On-line load balancing. In: Fiat, A., Woeginger, G.J. (eds.) Online Al-
gorithms 1996. LNCS, vol. 1442, pp. 178–195. Springer, Heidelberg (1998)

7. Azar, Y., Regev, O.: On-line bin-stretching. Theor. Comput. Sci. 268, 17–41 (2001)
8. Azar, Y., Epstein, L., van Stee, R.: Resource augmentation in load balancing.

In: Halldórsson, M.M. (ed.) SWAT 2000. LNCS, vol. 1851, pp. 189–199. Springer,
Heidelberg (2000)

9. Bartal, Y., Karloff, H., Rabani, Y.: A better lower bound for on-line scheduling.
Infomation Processing Letters 50, 113–116 (1994)

10. Bartal, Y., Fiat, A., Karloff, H., Vohra, R.: New algorithms for an ancient schedul-
ing problem. Journal of Computer and System Sciences 51, 359–366 (1995)

11. Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R.: On the advice complex-
ity of the k-server problem. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP
2011, Part I. LNCS, vol. 6755, pp. 207–218. Springer, Heidelberg (2011)

12. Cheng, T.C.E., Kellerer, H., Kotov, V.: Semi-on-line multiprocessor scheduling
with given total processing time. Theor. Comput. Sci. 337, 134–146 (2005)

13. Emek, Y., Fraigniaud, P., Korman, A., Rosén, A.: Online computation with advice.
Theor. Comput. Sci. 2412(24), 2642–2656 (2011)

14. Englert, M., Özmen, D., Westermann, M.: The power of reordering for online min-
imum makespan scheduling. In: Proc. 49th IEEE FOCS, pp. 603–612 (2008)

15. Faigle, U., Kern, W., Turan, G.: On the performance of on-line algorithms for
partition problems. Acta Cybernetica 9, 107–119 (1989)

Online Makespan Minimization with Parallel Schedules 25

16. Fleischer, R., Wahl, M.: Online scheduling revisited. J. Scheduling 3, 343–353
(2000)

17. Galambos, G., Woeginger, G.: An on-line scheduling heuristic with better worst
case ratio than Graham’s list scheduling. SIAM J. Comput. 22, 349–355 (1993)

18. Graham, R.L.: Bounds for certain multi-processing anomalies. Bell System Tech-
nical Journal 45, 1563–1581 (1966)

19. Gormley, T., Reingold, N., Torng, E., Westbrook, J.: Generating adversaries for
request-answer games. In: Proc. 11th ACM-SIAM SODA, pp. 564–565 (2000)

20. Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for schedul-
ing problems: Theoretical and practical results. J. ACM 34, 144–162 (1987)

21. Karger, D.R., Phillips, S.J., Torng, E.: A better algorithm for an ancient scheduling
problem. Journal of Algorithms 20, 400–430 (1996)

22. Kellerer, H., Kotov, V., Speranza, M.G., Tuza, Z.: Semi on-line algorithms for the
partition problem. Operations Research Letters 21, 235–242 (1997)

23. Raghavan, P., Snir, M.: Memory versus randomization in on-line algorithms. IBM
Journal of Research and Development 38, 683–708 (1994)

24. Renault, M.P., Rosén, A., van Stee, R.: Online Algorithms with advice for bin
packing and scheduling problems. CoRR abs/1311.7589 (2013)

25. Rudin III., J.F.: Improved bounds for the on-line scheduling problem. Ph.D. Thesis
(2001)

26. Rudin III., J.F., Chandrasekaran, R.: Improved bounds for the online scheduling
problem. SIAM J. Comput. 32, 717–735 (2003)

27. Sanders, P., Sivadasan, N., Skutella, M.: Online scheduling with bounded migra-
tion. Mathematics of Operations Reseach 34(2), 481–498 (2009)

28. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Communications of the ACM 28, 202–208 (1985)

Expected Linear Time Sorting for Word Size

Ω(log2 n log log n)

Djamal Belazzougui1,�, Gerth Stølting Brodal2, and Jesper Sindahl Nielsen2

1 Helsinki Institute for Information Technology (hiit),
Department of Computer Science, University of Helsinki

dbelaz@liafa.univ-paris-diderot.fr
2 MADALGO��, Department of Computer Science, Aarhus University, Denmark

{gerth,jasn}@cs.au.dk

Abstract. Sorting n integers in the word-RAM model is a fundamental
problem and a long-standing open problem is whether integer sorting is
possible in linear time when the word size is ω(log n). In this paper we
give an algorithm for sorting integers in expected linear time when the
word size is Ω(log2 n log log n). Previously expected linear time sorting
was only possible for word size Ω(log2+ε n). Part of our construction is a
new packed sorting algorithm that sorts n integers of w/b-bits packed in
O(n/b) words, where b is the number of integers packed in a word of size w
bits. The packed sorting algorithm runs in expected O(n

b
(log n+log2 b))

time.

1 Introduction

Sorting is one of the most fundamental problems in computer science and has
been studied widely in many different computational models. In the comparison
based setting the worst case and average case complexity of sorting n elements
is Θ(n log n), and running time O(n log n) is e.g. achieved by Mergesort and
Heapsort [19]. The lower bound is proved using decision trees, see e.g. [4], and
is also valid in the average case.

In the word-RAM model with word size w = Θ(log n) we can sort n w-bit
integers in O(n) time using radix sort. The exact bound for sorting n integers of
w bits each using radix sort is Θ(n w

log n). A fundamental open problem is if we

can still sort in linear time when the word size is ω(logn) bits. The RAM dictio-
nary of van Emde Boas [17] allows us to sort in O(n logw) time. Unfortunately
the space usage by the van Emde Boas structure cannot be bounded better than
O(2w). The space usage can be reduced to O(n) by using the Y-fast trie of
Willard [18], but the time bound for sorting becomes expected. For polyloga-

rithmic word sizes, i.e. w = logO(1) n, this gives sorting in time O(n log logn).
Kirkpatrick and Reisch gave an algorithm achievingO(n log w

logn) [11], which also

� Work done while visiting MADALGO.
�� Center for Massive Data Algorithmics, a Center of the Danish National Research

Foundation (grant DNRF84).

R Ravi and I.L. Gørtz (Eds.): SWAT 2014, LNCS 8503, pp. 26–37, 2014.
c© Springer International Publishing Switzerland 2014

Expected Linear Time Sorting for Word Size Ω(log2 n log log n) 27

gives O(n log logn) for w = logO(1) n. Andersson et al. [3] showed how to sort
in expected O(n) time for word size w = Ω(log2+ε n) for any ε > 0. The result
is achieved by exploiting word parallelism on “signatures” of the input elements
packed into words, such that a RAM instruction can perform several element
operations in parallel in constant time. Han and Thorup [10] achieved running
time O(n

√
log(w/ log n)), implying the best known bound of O(n

√
log logn) for

sorting integers that is independent of the word size. Thorup established that
maintaining RAM priority queues and RAM sorting are equivalent problems by
proving that if we can sort in time O(n · f(n)) then there is a priority queue
using O(f(n)) time per operation [15].

Our results. We consider for which word sizes we can sort n w-bit integers in
the word-RAM model in expected linear time. We improve the previous best
word size of Ω(log2+ε n) [3] to Ω(log2 n log log n). Word-level parallelism is used
extensively and we rely on a new packed sorting algorithm (see Section 5) in
intermediate steps. The principal idea for the packed sorting algorithm is an
implementation of the randomized Shell-sort of Goodrich [7] using the parallelism
in the RAM model. The bottleneck in our construction is O(log logn) levels of
packed sorting ofO(n) elements each ofΘ(log n) bits, where each sorting requires

time O(n log2 n
w). For w = Ω(log2 n log logn), the overall time becomes O(n).

This paper is structured as follows: Section 2 contains a high level description
of the ideas and concepts used by our algorithm. In Section 3 we summarize the
RAM operations adopted from [3] that are needed to implement the algorithm
outlined in Section 2. In Section 4 we give the details of implementing the al-
gorithm on a RAM and in Section 5 we present the packed sorting algorithm.
Finally, in Section 6 we discuss how to adapt our algorithm to work with an
arbitrary word size.

2 Algorithm

In this section we give a high level description of the algorithm. The input is n
words x1, x2, . . . , xn, each containing a w-bit integer from U = {0, 1, . . . , 2w−1}.
We assume the elements are distinct. Otherwise we can ensure this by hashing
the elements into buckets in expected O(n) time and only sorting a reduced
input with one element from each bucket. The algorithm uses a Monte Carlo
procedure, which sorts the input with high probability. While the output is not
sorted, we repeatedly rerun the Monte Carlo algorithm, turning the main sorting
algorithm into a Las Vegas algorithm.

The Monte Carlo algorithm is a recursive procedure using geometrically de-
creasing time in the recursion, ensuring O(n) time overall. We view the algorithm
as building a Patricia trie over the input words by gradually refining the Patri-
cia trie in the following sense: on the outermost recursion level characters are
considered to be w bits long, on the next level w/2 bits, then w/4 bits and so
on. The main idea is to avoid considering all the bits of an element to decide
its rank. To avoid looking at every bit of the bit string e at every level of the

28 D. Belazzougui, G.S. Brodal, and J.S. Nielsen

recursion, we either consider the MSH(e) (Most Significant Half, i.e. the |e|
2 most

significant bits of e) or LSH(e) (Least Significant Half) when moving one level
down in the recursion (similar to the recursion in van Emde Boas trees).

The input to the ith recursion is a list (id1, e1), (id2, e2), . . . , (idm, em) of
lengthm, where n ≤ m ≤ 2n−1, idj is a logn bit id and ej is a w/2

i bit element.
At most n elements have equal id. The output is a list of ranks π1, π2, . . . , πm,
where the j’th output is the rank of ej among elements with id identical to idj
using log n bits. There are m(logn+ w

2i) bits of input to the ith level of recursion
andm logn bits are returned from the ith level. On the outermost recursion level
we take the input x1, x2, . . . , xn and produce the list (1, x1), (1, x2), . . . , (1, xn),
solve this problem, and use the ranks π1, π2, . . . , πn returned to permute the
input in sorted order in O(n) time.

To describe the recursion we need the following definitions.

Definition 1 ([6]). The Patricia trie consists of all the branching nodes and
leaves of the corresponding compacted trie as well as their connecting edges.
All the edges in the Patricia trie are labeled only by the first character of the
corresponding edge in the compacted trie.

Definition 2. The Patricia trie of x1, x2, . . . , xn of detail i, denoted T i, is the
Patricia trie of x1, . . . , xn when considered over the alphabet Σi = {0, 1}w/2i.

The input to the ith recursion satisfies the following invariants, provided the
algorithm has not made any errors so far:

i. The number of bits in an element is |e| = w
2i .

ii. There is a bijection from id’s to non leaf nodes in T i.
iii. The pair (id, e) is in the input if and only if there is an edge from a node

v ∈ T i corresponding to id to a child labeled by a string in which e ∈ Σi is
the first character.

That the maximum number of elements at any level in the recursion is at
most 2n−1 follows because a Patricia trie on n strings has at most 2n−1 edges.

The recursion. The base case of the recursion is when |e| = O(w
log n) bits, i.e. we

can pack Ω(log n) elements into a single word, where we use the packed sorting
algorithm from Section 5 to sort (idj , ej, j) pairs lexicographically by (id, e) in
time O(n

logn (log n + (log logn)2)) = O(n). Then we generate the ranks πj and

return them in the correct order by packed sorting pairs (j, πj) by j.
When preparing the input for a recursive call we need to halve the number

of bits the elements use. To maintain the second invariant we need to find all
the branching nodes of T i+1 to create a unique id for each of them. Finally
for each edge going out of a branching node v in T i+1 we need to make the
pair (id, e), where id is v’s id and e is the first character (in Σi+1) on an edge
below v. Compared to level i, level i+1 may have two kinds of branching nodes:
inherited nodes and new nodes, as detailed below (Figure 1).

In Figure 1 we see T i and T i+1 on 5 bit-strings. In T i characters are 4 bits
and in T i+1 they are 2 bits. Observe that node a is not going to be a branching

Expected Linear Time Sorting for Word Size Ω(log2 n log log n) 29

a

b c

anew

binh cinh

bnew

Detail i Detail i + 1

0

1
0
0

00

0

0

0
0

0 0

0 0

0
0

1
1

1

1

1

1
1

1

1

1

1 1

1 0

0

0 0

0 0

1

1

1
1

1

1

11

0

Fig. 1. Example of how nodes are introduced and how they disappear from detail i to
i+ 1. The bits that are marked by a dotted circle are omitted in the recursion.

node when characters are 2 bits because “00” are the first bits on both edges
below it. Thus the “00” bits below a should not appear in the next recursion
– this is captured by Invariant iii. A similar situation happens at the node b,
however since there are two different 2-bit strings below it, we get the inherited
node binh. At the node c we see that the order among its edges is determined
by the first two bits, thus the last two bits can be discarded. Note there are 7
elements in the ith recursion and 8 in the next – the number of elements may
increase in each recursion, but the maximum amount is bounded by 2n− 2.

By invariant ii) every id corresponds to a node v in T i. If we find all elements
that share the same id, then we have all the outgoing edges of v. We refine an edge
labeled e out of v to have the two characters MSH(e)LSH(e) both of w/2i+1 bits.
Some edges might then share their MSH. The node v will appear in level i + 1 if
and only if at least two outgoing edges do not share MSH – these are the inherited
nodes. Thus we need only count the number of unique MSHs out of v to decide if
v is also a node in level i + 1. The edges out of v at level i + 1 will be the unique
MSH characters (in Σi+1) on the edges down from v at level i.

If at least two edges out of v share the same first character c (MSH), but not
the second, then there is a branching node following c – these are the new nodes.
We find all new nodes by detecting for each MSH character c ∈ Σi+1 going out
of v if there are two or more edges with c as their first character. If so, we have
a branching node following c and the labels of the edges are the LSHs. At this
point everything for the recursion is prepared.

We receive for each id/node of T i+1 the ranks of all elements (labels on the
outgoing edges) from the recursion. A relative rank for an element at level i is
created by concatenating the rank of MSH(e) from level i + 1 with the rank of
LSH(e) from level i+1. All edges branching out of a new node needs to receive the
rank of their MSH (first character). If the MSH was not used for the recursion, it
means it did not distinguish any edges, and we can put an arbitrary value as the
rank (we use 0). The same is true for the LSHs. Since each relative rank consists
of 2 logn bits we can sort them fast using packed sorting (Section 5) and finally
the actual ranks can be returned based on that.

30 D. Belazzougui, G.S. Brodal, and J.S. Nielsen

3 Tools

This section is a summary of standard word-parallel algorithms used by our
sorting algorithm; for an extensive treatment see [12]. In particular the prefix
sum and word packing algorithms can be derived from [13]. For those familiar
with “bit tricks” this section can be skipped.

We adopt the notation and techniques used in [3]. A w-bit word can be in-
terpreted as a single integer in the range 0, . . . , 2w − 1 or the interpretation can
be parameterized by (M, f). A word under the (M, f) interpretation uses the
rightmostM(f+1) bits asM fields using f+1 bits each and the most significant
bit in each field is called the test bit and is 0 by default.

0 x1 0 x2 · · · xM0

w bits

f + 1 bits test-bits

We write X = (x1, x2, . . . , xM) where xi uses f bits, meaning the word X has
the integer x1 encoded in its leftmost field, x2 in the next and so on. If xi ∈ {0, 1}
for all i we may also interpret them as boolean values where 0 is false and 1 is
true. This representation allows us to do “bit tricks”.

Comparisons. Given a word X = (x1, x2, . . . , xM) under the (M, f) inter-
pretation, we wish to check xi > 0 for 1 ≤ i ≤ M , i.e. we want a word
Z = [X > 0] = (z1, z2, . . . , zM), in the (M, f) interpretation, such that zi = 1
(true) if xi > 0 and zi = 0 (false) otherwise. Let kM,f be the word where the
number k is encoded in each field where 0 ≤ k < 2f . Create the word 0M,f

and set all test bits to 1. Evaluate ¬(0M,f − X), the ith test bit is 1 if and
only if xi > 0. By masking away everything but the test bit and shifting right
by f bits we have the desired output. We can also implement more advanced
comparisons, such as comparing [X ≤ Y] by setting all test bits to 1 in Y and 0
in X and subtracting the word X from Y . The test bits now equal the result of
comparing xi ≤ yi.

Hashing. We will use a family of hash functions that can hash n elements in
some range 0, . . . ,m − 1 with m > nc to 0, . . . nc − 1. Furthermore a family of
hash functions that are injective on a set with high probability when chosen
uniformly at random, can be found in [5]. Hashing is roughly just multiplication
by a random odd integer and keeping the most significant bits. The integer is at
most f bits. If we just multiply this on a word in (M, f) interpretation one field
might overflow to the next field, which is undesirable. To implement hashing on
a word in (M, f) representation we first mask out all even fields, do the hash-
ing, then do the same for odd fields. The details can be found in [3]. In [5] it
is proved that if we choose a function ha uniformly at random from the family
Hk,� = {ha | 0 < a < 2k, and a is odd} where ha(x) = (ax mod 2k) div 2k−�

for 0 ≤ x < 2k then Pr[ha(x) = ha(y)] ≤ 1
2�−1 for distinct x, y from a set

of size n. Thus choosing � = c logn + 1 gives collision probability ≤ 1/nc.

Expected Linear Time Sorting for Word Size Ω(log2 n log log n) 31

The probability that the function is not injective on n elements: Pr[∃x, y :

x �= y ∧ ha(x) = ha(y)] ≤ n2

nc (union bound on all pairs).

Prefix sum. Let A = (a1, . . . , aM) be the input with M = b, f = w/b and

ai ∈ {0, 1}. In the output B = (b1, . . . , bM), bi = 0 if ai = 0 and bi =
∑i−1

j=1 aj
otherwise. We describe an O(log b) time algorithm. The invariant is that in
the jth iteration ai has been added to its 2j immediately right adjacent fields.
Compute B1, which is A shifted right by f bits and added to itself1: B1 =
A + (A ↓ f). Let Bi = (Bi−1 ↓ 2i−1f) + Bi−1. This continues for log b steps.
Then we keep all fields i from Blog b where ai = 1, subtract 1 from all of these
fields and return it.

Packing words. We are given a word X = (x1, . . . , xM) in (M, f) = (b, w/b)
representation. Some of the fields are zero fields, i.e. a field only containing bits
set to 0. We want to produce a “packed word”, such that reading from left to
right there are no zero fields, followed only by zero fields. The fields that are
nonzero in the input must be in the output and in the same order. This problem
is solved by Andersson et al. [3, Lemma 6.4]

Expanding. Given a word with fields using b′ bits we need to expand each field to
using b bits i.e., given X = (x1, . . . , xk) where |xi| = b′ we want Y = (y1, . . . , yk)
such that yi = xi but |yi| = b. We assume there are enough zero fields in the
input word such that the output is only one word. The general idea is to just do
packing backwards. The idea is to write under each field the number of bits it
needs to be shifted right, this requires at most O(log b) bits per field. We now
move items based on the binary representation. First we move those who have
the highest bit set, then we continue with those that have the second highest bit
set and so on. The proof that this works is the same as for the packing algorithm.

Creating index. We have a list of n elements of w/b bits each, packed in an
array of words X1, X2, . . . , Xn/b, where each word is in (b, w/b) representation
and w/b ≥ �logn�. Furthermore, the rightmost �logn� bits in every field are 0.
The index of an element is the number of elements preceding it and we want to
put the index in the rightmost bits of each field. First we will spend O(b) time to
create the word A = (1, 2, 3, . . . , b) using the rightmost bits of the fields. We also
create the word B = (b, b, . . . , b). Now we run through the input words, update
Xi = Xi + A, then update A = A + B. The time is O(n/b + b), which in our
case always is O(n/b), since we always have b = O(log n log logn).

4 Algorithm – RAM Details

In this section we describe how to execute each step of the algorithm outlined in
Section 2. We first we describe how to construct T i+1 from T i, i.e. advance one
level in the recursion. Then we describe how to use the output of the recursion

1 We use ↑ and ↓ as the shift operations where x ↑ y is x · 2y and x ↓ y is �x div 2y�.

32 D. Belazzougui, G.S. Brodal, and J.S. Nielsen

for T i+1 to get the ranks of the input elements for level i. Finally the analysis
of the algorithm is given.

The input to the ith recursion is a list of pairs: (id, e) using log n + w
2i bits

each and satisfying the invariants stated in Section 2. The list is packed tightly

in words, i.e. if we have m input elements they occupy O(m·(log n+w/2i)
w) words.

The returned ranks are also packed in words, i.e. they occupy O(m·log n
w) words.

The main challenge of this section is to be able to compute the necessary opera-
tions, even when the input elements and output ranks are packed in words. For
convenience and simplicity we assume tuples are not split between words.

Finding branching nodes. We need to find the branching nodes (inherited and
new) of T i+1 given T i. For each character ej in the input list (i.e. T i) we create
the tuple (idj , Hj, j) where idj corresponds to the node ej branches out of,
Hj = h(MSH(ej)) is the hash function applied to the MSH of ej , and j is
the index of ej in the input list. The list L consists of all these tuples and L is
sorted. We assume the hash function is injective on the set of input MSHs, which
it is with high probability if |Hj | ≥ 4 logn (see the analysis below). If the hash
function is not injective, this step may result in an error which we will realize
at the end of the algorithm, which was discussed in Section 2. The following is
largely about manipulating the order of the elements in L, such that we can
create the recursive sub problem, i.e. T i+1.

To find Inherited nodes we find all the edges out of nodes that are in both T i

and T i+1 and pair them with unique identifiers for their corresponding nodes
in T i+1. Consider a fixed node a which is a branching node in T i – this cor-
responds to an id in L. There is a node ainh in T i+1 if a and its edges satisfy
the following condition: When considering the labels of the edges from a to its
children over the alphabet Σi+1 instead of Σi, there are at least two edges from
a to its children that do not share their first character. When working with the
list L the node a and its edges correspond to the tuples where the id is the id
that corresponds to a. This means we need to compute for each id in L whether
there are at least 2 unique MSHs, and if so we need to extract precisely all the
unique MSHs for that id.

The list L is sorted by (idj , Hj , j), which means all edges out of a particular
node are adjacent in L, and all edges that share their MSH are adjacent in L
(with high probability), because they have the same hash value which is distinct
from the hash value of all other MSHs (with high probability). We select the
MSHs corresponding to the first occurrence of each unique hash value with a
particular id for the recursion (given that it is needed). To decide if a tuple
contains a first unique hash value, we need only consider the previous tuple: did
it have a different hash value from the current, or did it have a different id?
To decide if MSH(ej) should be extracted from the corresponding tuple we also
need to compute whether there are at least two unique hash values with id idj .
This tells us we need to compute two things for every tuple (idj , Hj , j) in L:

1. Is j the first index such that (idj−1 = idj ∧Hj−1 �= Hj) ∨ idj−1 �= idj?

2. Is there an i such that idi = idj and Hi �= Hj?

Expected Linear Time Sorting for Word Size Ω(log2 n log log n) 33

To accomplish the first task we do parallel comparison of idj and Hj with idj−1

and Hj−1 on L and L shifted left by one tuple length (using the word-level
parallel comparisons described in Section 3). The second task is tedious but
conceptually simple to test: count the number of unique hash values for each id,
and test for each id if there are at least two unique hash values.

The details of accomplishing the two tasks are as follows (keep in mind that
elements of the lists are bit-strings). LetB be a list of length |L| and consider each
element in B as being the same length as a tuple in L. Encode 1 in element j of B
if and only if idj−1 �= idj in L. Next we create a list C with the same element size
as B. There will be a 1 in element j of C if and only if Hj �= Hj−1 ∧ idj = idj−1

(this is what we needed to compute for task 1). The second task is now to
count how many 1s there are in C between two ones in B. Let CC be the prefix
sum on C (described in Section 3) and keep only the values where there is a
corresponding 1 in B, all other elements become 0 (simple masking). Now we
need to compute the difference between each non-zero value and the next non-
zero value in CC – but these are varying lengths apart, how do we subtract them?
The solution is to pack the list CC (see Section 3) such that the values become
adjacent. Now we compute the difference, and by maintaining some information
from the packing we can unpack the differences to the same positions that the
original values had. Now we can finally test for the first tuple in each id if there
are at least two different hash values with that id. That is, we now have a list D
with a 1 in position j if j is the first position of an id in L and there are at
least two unique MSHs with that id. In addition to completing the two tasks
we can also compute the unique identifiers for the inherited nodes in T i+1 by
performing a prefix sum on D.

Finding the new nodes is simpler than finding the inherited nodes. The only
case where an LSH should be extracted is when two or more characters out of a
node share MSH, in which case all the LSHs with that MSH define the outgoing
edges of a new node. Observe that if two characters share MSH then their LSHs
must differ, due to the assumption of distinct elements propagating through the
recursion. To find the relevant LSHs we consider the sorted list L. Each new
node is identified by a pair (id,MSH) where (idj , h(MSH(ej)), ·) appears at least
twice in L, i.e. two or more tuples with the same id and hash of MSH. For each
new node we find the leftmost such tuple j in L.

Technically we scan through L and evaluate (Hj−1 �= Hj ∨ idj−1 �= idj) ∧
(Hj+1 = Hj ∧ idj+1 = idj). If this evaluates to true then j is a new node
in T i+1. Using a prefix sum we create and assign all ids for new nodes and
their edges. In order to test if LSHj should be in the recursion we evaluate
(Hj−1 = Hj ∧ idj−1 = idj) ∨ (Hj+1 = Hj ∧ idj+1 = idj). This evaluates to true
only if the LSH should be extracted for the recursion because we assume distinct
elements.

Using results from the recursion. We created the input to the recursion by first
extracting all MSHs, packing them and afterwards extracting all LSHs and then
packing them. Finally concatenate the two packed arrays. Now we simply have
to reverse this process, first for the MSHs, then the LSHs. Technically after

34 D. Belazzougui, G.S. Brodal, and J.S. Nielsen

the recursive call the array of tuples (j, rankMSHj
, rankLSHj

, Hj , idj , ranknew) is
filled out. Some of the fields are just additional fields to the array L. The three
ranks use logn bits each and are initialized to 0. First rankMSHj is filled out and
afterwards rankLSHj

. The same procedure is used for both.
For retrieving rankMSHi

, we know how many MSHs were extracted for the
recursion, so we separate the ranks of MSHs and LSHs and now only consider
MSHs ranks. We first expand the MSH ranks as described in Section 3 such
that each rank uses the same number of bits as an entire tuple. Recall that the
MSHs were packed and we now need to unpack them. If we saved information
on how we packed elements, we can also unpack them. The information we need
to retain is how many elements each word contributed and for each element in
a word its initial position in that word. Note that for each unique Hj we only
used one MSH for the recursion, thus we need to propagate its rank to all other
elements with the same hash and id. Fortunately the hash values are adjacent,
and by noting where the hash values change we can do an operation similar to
a prefix sum to copy the ranks appropriately.

Returning. As this point the only field not filled out is ranknew . To fill it out
we sort the list by the concatenation of rankMSHj

and rankLSHj
. In this sorted

list we put the current position of the elements in ranknew (see Section 3 on
creating index). The integer in ranknew is currently not the correct rank, but by
subtracting the first ranknew in an id from the other ranknews with that id we
get the correct rank. Then we sort by j, mask away everything except ranknew ,
pack the array and return. We are guaranteed the ranks from the recursion use
logn bits each, which means the concatenation uses 2 logn bits so we can sort
the array efficiently.

Analysis. We argue that the algorithm is correct and runs in linear time.

Lemma 1. Let n be the number of integers we need to sort then the maximum
number of elements in any level of the recursion is 2n− 1.

Proof. This follows immediately from the invariants. ��

Theorem 1. The main algorithm runs in O(n) time.

Proof. At level i of the recursion |e| = w
2i . After log logn levels we switch to the

base case where there are b = 2log logn = logn elements per word. The time used
in the base case is O(nb (log

2 b+ logn)) = O(n
logn ((log logn)

2 + logn)) = O(n).
At level i of the recursion we have b = 2i elements per word and the time to

work with each of the O(nb) words using the methods of Section 3 is O(log b).
The packed sorting at each level sorts elements with O(log n) bits, i.e. O

(
w

logn

)
elements per word in time O

(
n

w/ logn

(
log2 w

logn + logn
))

. Plugging in our as-

sumption w = Ω(log2 n log logn), we get time O
(

n
log logn

)
. For all levels the

total time becomes
∑log log n

i=0

(
n
2i i+

n
log logn

)
= O(n). ��

Expected Linear Time Sorting for Word Size Ω(log2 n log log n) 35

≤ ≤

≤

≤ ≤

≤

≤

≤

≤

· · · ≤

≤

≤

· · ·

· · ·

···

···

···

···

x1,b

x1,2

x1,1 x2,1

x2,2

x2,b x3,b xn/b,b

x3,2

x3,1 xn/b,1

xn/b,2

x1 x2 x3 xn/b

≤

· · ·

· · ·

· · ·

···

···

···

xb,1

x2,1

x1,1 x1,2

x2,2

xb,2 xb,b

x1,b

x2,b

y1 y2 yb

≤
≤

≤
≤

≤

≤
≤

≤ ···

xb+b,1

xb+1,1

xb+2,1

yb+1

≤
≤

≤ ···
xb+b,2

xb+1,2

xb+2,2

yb+2

≤
≤

≤

· · ·

· · ·

· · ·L1

L2

Lb

≤≤

Fig. 2. Transposing and concatenating blocks

The probability of doing more than one iteration of the algorithm is the
probability that there is a level in the recursion where the randomly chosen
hash function was not injective. The hash family can be designed such that
the probability of a hash function not being injective when chosen uniformly at
random is less than 1/n2 [5]. We need to choose log logn such functions. The
probability that at least one of the functions is not injective is O(log logn/n2) <
O(1/n). In conclusion the sorting step works with high probability, thus we
expect to repeat it O(1) times.

5 Packed Sorting

We are given n elements of w
b bits packed into n

b words using (M, f) = (b, w/b)
representation that we need to sort. Albers and Hagerup [2] describe how to per-
form a deterministic packed sorting in timeO(nb logn·log b). We describe a simple
randomized word-level parallel sorting algorithm running in time O(nb (logn +

log2 b)). Packed sorting proceeds in four steps described in the following sections.
The idea is to implement b sorting networks in parallel using word-level paral-
lelism. In sorting networks one operation is available: compare the elements at
positions i and j then swap i and j based on the outcome of the comparison.
Denote the �th element of word i at any point by xi,�. First we use the �th
sorting network to get a sorted list L�: x1,� ≤ x2,� ≤ · · · ≤ xn/b,� for 1 ≤ � ≤ b.
Each L� then occupies field � of every word. Next we reorder the elements such
that each of the b sorted lists uses n/b2 consecutive words, i.e. xi,j ≤ xi,j+1 and
xi,w/b ≤ xi+1,1, where n/b

2 · k < i ≤ n/b2 · (k + 1) and 0 ≤ k ≤ b − 1 (See Fig-
ure 2). From that point we can merge the lists using the RAM implementation
of bitonic merging (see below). The idea of using sorting networks or oblivious
sorting algorithms is not new (see e.g. [9]), but since we need to sort in sublinear
time (in the number of elements) we use a slightly different approach.

Data-oblivious sorting. A famous result is the AKS deterministic sorting net-
work which uses O(n log n) comparisons [1]. Other deterministic O(n log n) sort-
ing networks were presented in [2,8]. However, in our application randomized
sorting suffices so we use the simpler randomized Shell-sort by Goodrich [7]. An
alternative randomized sorting-network construction was given by Leighton and
Plaxton [14].

36 D. Belazzougui, G.S. Brodal, and J.S. Nielsen

Randomized Shell-sort sorts any permutation with probability at least 1 −
1/N c (N = n/b is the input size), for any c ≥ 1. We choose c = 2. The probability
that b arbitrary lists are sorted is then at least 1− b/N c ≥ 1−N c−1. We check
that the sorting was correct for all the lists in time O(nb). If not, we redo the
oblivious sorting algorithm. Overall the expected running time is O(nb log

n
b).

The Randomized Shell-sort algorithm works on any adversarial chosen per-
mutation that does not know the random choices of the algorithm. The algo-
rithm uses randomization to generate a sequence of Θ(n logn) comparisons (a
sorting network) and then applies the sequence of comparisons to the input ar-
ray. We start the algorithm of Goodrich [7] to get the sorting network. We run
it with N = n/b as the input size. When the network compares i and j, we
compare words i and j field-wise. That is, the first element of the two words
are compared, the second element of the words are compared and so on. Us-
ing the result we can implement the swap that follows. After this step we have
x1,� ≤ x2,� ≤ · · · ≤ xn/b,� for all 1 ≤ � ≤ b.

The property of Goodrich’ Shellsort that makes it possible to apply it in
parallel is its data obliviousness. In fact any sufficiently fast data oblivious sorting
algorithm would work.

Verification step. The verification step proceeds in the following way: we have
n/b words and we need to verify that the words are sorted field-wise. That is,
to check that xi,� ≤ xi+1,� for all i, �. One packed comparison will be applied
on each pair of consecutive words to verify this. If the verification fails, then we
redo the oblivious sorting algorithm.

Rearranging the sequences. The rearrangement in Figure 2 corresponds to look-
ing at b words as a b × b matrix (b words with b elements in each) and then
transposing this matrix. Thorup [16, Lemma 9] solved this problem in O(b log b)
time. We transpose every block of b consecutive words. The transposition takes
overall time O(nb log b). Finally, we collect in correct order all the words of each
run. This takes time O(nb). Building the ith run for 1 ≤ i ≤ b consists of putting
together the ith words of the blocks in the block order. This can be done in a
linear scan in O(n/b) time.

Bitonic merging. The last phase is the bitonic merging. We merge pairs of runs
of n

b2 words into runs of 2n
b2 words, then runs of 2n

b2 words into runs of size 4n
b2

and so on, until we get to a single run of n/b words. We need to do log b rounds,
each round taking time O(nb log b) making for a total time of O(nb log

2 b) [2].

6 General Sorting

In this section we tune the algorithm slightly and state the running time of the
tuned algorithm in terms of the word size w. We see that for some word sizes
we can beat the O(n

√
log logn) bound. We use the splitting technique of [10,

Theorem 7] that given n integers can partition them into sets X1, X2, . . .Xk of
at most O(

√
n) elements each, such that all elements in Xi are less than all ele-

ments in Xi+1 in O(n) time. Using this we can sort in O(n log logn√
w/ logw

) time.

Expected Linear Time Sorting for Word Size Ω(log2 n log log n) 37

The algorithm repeatedly splits the set S of inital size n0 into smaller subsets
of size nj =

√
nj−1 until we get lognj ≤

√
w/ logw where it stops and sorts

each subset in linear time using our sorting algorithm. The splitting is performed

log((log n)/(
√
w/ logw)) = 1

2 log
log2 n logw

w = O(log log2 n log logn
w) times. An in-

teresting example is to sort in time O(n log log logn) for w = log2 n
(log logn)c for any

constant c. When w = log2 n

2Ω(
√

log log n) , the sorting time is Ω(n
√
log logn).

References

1. Ajtai, M., Komlós, J., Szemerédi, E.: An O(n log n) sorting network. In: STOC,
pp. 1–9 (1983)

2. Albers, S., Hagerup, T.: Improved parallel integer sorting without concurrent writ-
ing. Inf. Comput. 136(1), 25–51 (1997)

3. Andersson, A., Hagerup, T., Nilsson, S., Raman, R.: Sorting in linear time? Journal
of Computer and System Sciences 57, 74–93 (1998)

4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. MIT Press and McGraw Hill (2009)

5. Dietzfelbinger, M., Hagerup, T., Katajainen, J., Penttonen, M.: A reliable random-
ized algorithm for the closest-pair problem. J. Algorithms 25(1), 19–51 (1997)

6. Ferragina, P., Grossi, R.: The string B-tree: A new data structure for string search
in external memory and its applications. J. ACM 46(2), 236–280 (1999)

7. Goodrich, M.T.: Randomized shellsort: A simple data-oblivious sorting algorithm.
J. ACM 58(6), 27 (2011)

8. Goodrich, M.T.: Zig-zag sort: A simple deterministic data-oblivious sorting algo-
rithm running in O(n log n) time. CoRR, abs/1403.2777 (2014)

9. Hagerup, T.: Sorting and searching on the word RAM. In: STACS, pp. 366–398
(1998)

10. Han, Y., Thorup, M.: Integer sorting in O(n
√
log log n) expected time and linear

space. In: FOCS, pp. 135–144 (2002)
11. Kirkpatrick, D., Reisch, S.: Upper bounds for sorting integers on random access

machines. Theoretical Computer Science 28(3), 263–276 (1983)
12. Knuth, D.E.: The Art of Computer Programming, volume 4A: Combinatorial Al-

gorithms. Addison-Wesley Professional (2011)
13. Leighton, F.T.: Introduction to Parallel Algorithms and Architectures: Arrays,

Trees, Hypercubes. In: Packing, Spreading, and Monotone Routing Problems,
ch. 3.4.3, Morgan Kaufmann Publishers, Inc. (1991)

14. Leighton, T., Plaxton, C.G.: Hypercubic sorting networks. SIAM Journal on Com-
puting 27(1), 1–47 (1998)

15. Thorup, M.: On RAM priority queues. SIAM J. Comput. 30(1), 86–109 (2000)
16. Thorup, M.: Randomized sorting in O(n log log n) time and linear space using

addition, shift, and bit-wise boolean operations. J. Alg. 42(2), 205–230 (2002)
17. van Emde Boas, P.: Preserving order in a forest in less than logarithmic time. In:

FOCS, pp. 75–84 (1975)
18. Willard, D.E.: Log-logarithmic worst-case range queries are possible in space Θ(n).

Inf. Process. Lett. 17(2), 81–84 (1983)
19. Williams, J.W.J.: Algorithm 232: Heapsort. CACM 7(6), 347–348 (1964)

Amortized Analysis of Smooth Quadtrees in All

Dimensions�

Huck Bennett and Chee Yap

Department of Computer Science, Courant Institute, New York University
{hbennett,yap}@cs.nyu.edu

Abstract. Quadtrees are a well-known data structure for representing
geometric data in the plane, and naturally generalize to higher dimen-
sions. A basic operation is to expand the tree by splitting a given leaf. A
quadtree is smooth if adjacent leaf boxes differ by at most one in height.

In this paper, we analyze quadtrees that maintain smoothness with
each split operation and also maintain neighbor pointers. Our main re-
sult shows that the smooth-split operation has an amortized cost of O(1)
time for quadtrees of any fixed dimension D. This bound has exponen-
tial dependence on D which we show is unavoidable via a lower bound
construction. We additionally give a lower bound construction showing
an amortized cost of Ω(log n) for splits in a related quadtree model that
does not maintain smoothness.

1 Introduction

Quadtrees [dBCvKO08, FB74, Sam90b] are a well-known data structure for rep-
resenting geometric data in two dimensions. In this case there exists a natural
one-to-one correspondence between quadtree nodes v and boxes B in an under-
lying subdivision of a square which allows us to refer to boxes and nodes inter-
changeably. Here we consider the extension to a subdivision of a D-dimensional
box in which an internal node is a box containing 2D congruent subboxes. We
refer the reader to [dBCvKO08, Chap. 14] whose nomenclature we largely follow.

Two boxes (or nodes in a quadtree) are adjacent if the boxes share a (D− 1)-
dimensional facet, but have disjoint interiors. The neighbors of a box B are those
boxes adjacent to B. We call a quadtree smooth if any two adjacent leaf boxes
differ by at most one in height. Other sources use the term balanced to refer to
this condition, which we avoid in order to avoid conflation with the standard
meaning of balanced trees in computer science.

We study three operations on quadtrees: split, smooth, and neighbor query

as well as the hybrid operation ssplit which combines a split and a smooth.
A basic operation is a split of a leaf box B, written split(B). This divides B

into 2D congruent subboxes which become its children (B is no longer a leaf). A
split operation is a useful abstraction of many common operations performed
on quadtrees including point insertion and mesh refinement. A smooth operation

� This work was supported by NSF Grant CCF-0917093.

R Ravi and I.L. Gørtz (Eds.): SWAT 2014, LNCS 8503, pp. 38–49, 2014.
c© Springer International Publishing Switzerland 2014

Amortized Analysis of Smooth Quadtrees in All Dimensions 39

performs the minimum sequence of splits necessary to restore smoothness. A
smooth split operation or ssplit(B) is a split split(B) followed by a smooth

of the resulting tree.
Let d ∈ {±1,±2, , . . . , ,±D} identify one of the 2D semi-axis directions. If box

B′ is a neighbor of B, and the depth of B′ is maximal subject to depth(B′) ≤
depth(B) over all neighbors of B in direction d, then we call B′ the principal
d-neighbor of B. We note that the principal d neighbor of a box B is unique
if it exists (it may not if B is on the boundary of the subdivision). A neighbor
query operation neighbor query(B, d) returns the principal d-neighbor of B.
This operation has been used in [dBCvKO08, ABCC06].

In many quadtree applications one is interested in the set of leaf neighbors of
a box [WCY13]. The goal is to enumerate these in time O(1) per leaf neighbor.
This is achieved by giving each box a set of pointers to its principal neighbors.
We can then enumerate all leaf neighbors of a box by going to each principal
neighbor, and enumerating all leaf neighbors in the corresponding subtree. With-
out such pointers, neighbor queries require Θ(h) time in order to traverse to the
nearest common ancestor. We also show that a tree with neighbor pointers must
maintain smoothness to ensure amortized O(1) splits.

This neighbor enumeration functionality makes smooth quadtrees useful in
motion planning [WCY13]. They are also useful in other domains including good
mesh generation [dBCvKO08, BEG94].

1.1 The Smooth Quadtree Model

In this paper we present and analyze a quadtree model that we call the smooth
quadtree which maintains smoothness as an invariant between splits via the
smooth split operation, and maintains principal neighbor pointers. This model
has been proposed before such as in Exercise 14.8 in [dBCvKO08], but to the
best of our knowledge the complexity of smooth splits has never been studied
rigorously. To provide context for our smooth quadtree model, we discuss two
options in designing quadtrees:

1. A quadtree can either maintain or not maintain neighbor pointers. The in-
dicator for this option is P (Pointer) or N (No Pointer).

2. A quadtree can either maintain or not maintain smoothness as an invari-
ant. It maintains smoothness by supporting ssplit instead of split. The
indicator for this option is S (Smooth) or U (Unsmooth).

If a quadtree maintains neighbor pointers, we assume the pointers are to the
2D principal neighbor. Then the neighbor query operation requires worst case
O(1) time. These considerations give rise to four models of quadtrees: PS, PU, NS,
NU, where our smooth quadtree corresponds to the PS quadtree model because
it maintains both pointers and smoothness. We also refer to the NU quadtree
model as the simple quadtree model. The simple quadtree model is frequently
used as the primary definition of quadtrees [dBCvKO08]. Intermediate between
these two extreme models are the PU and NS models. NS quadtrees are similar

40 H. Bennett and C. Yap

Table 1. Comparison of operational costs in three quadtree models where h denotes
height and n the number of nodes in the quadtree. Costs are worst-case unless otherwise
noted. All four models have Θ(n) space complexity.

Smooth (PS) Quadtrees PU Quadtrees Simple (NU) Quadtrees

neighbor query Θ(1) Θ(1) Θ(h)
ssplit/split Amortized Θ(1) Amortized Ω(log n) Θ(1)
smooth (Maintained as invariant) Ω(n log n) O((h+ 1)n)

Algorithm 1. Smooth Split (ssplit)

Input: Smooth quadtree T , Leaf v ∈ T to split
Output: Smooth quadtree T ′

split(v)
foreach v′ ∈ v.principal neighbors \ v.siblings do

if v′.depth < v.depth then
ssplit(v′)

end

end

to PS quadtrees, but may lose a factor of h in the cost of neighbor query and
ssplit because traversing to the nearest common ancestor requires O(h) time.

Table 1 compares the cost of our three main operations on these quadtree
models. Here, n is the number of nodes in a quadtree and h is its height.

The smooth (PS) quadtree achieves improvements to the neighbor query and
smooth operations at the cost of split operations requiring amortized rather
than worst-case O(1) time. The O(1) time bounds for the ssplit and split

operations are for the local operations, i.e., when the algorithm already has a
pointer to the box it wishes to split such as in the scenario described in [WCY13].

Algorithm 1 shows the simplicity of the smooth split algorithm: recursively
check whether any neighbors of a node need to be split to regain smoothness.
Nevertheless, the amortized analysis of the algorithm is subtle.

1.2 Our Results

The primary contribution of this paper is a proof that amortized O(1) additional
split operations are sufficient for each smooth split operation in quadtrees of any
fixed dimension. We prove this result in section 2, and give a self-contained,
elementary proof of the 2-dimensional case in the full version of the paper [BY].
More formally we have:

Theorem 1 (Main Theorem). Starting from an initially trivial subdivision
consisting of one box, the total cost of any sequence of smooth splits ssplit(B1),
. . . , ssplit(Bn) is O(n). Thus the amortized cost of a smooth split is O(1).

Amortized Analysis of Smooth Quadtrees in All Dimensions 41

Additionally, we give lower bounds motivating our data structure and analysis.
We first show that without smoothing we cannot achieve an amortized O(1) cost
for both splits and neighbor queries.

We also address the dependence on dimension in the O(1) amortized bound on
the number of splits per smooth split. In dimension D, the proof of Theorem 1
gives an upper bound of O(2D(D + 1)!), while the proof of Lemma 6 gives a
lower bound of Ω(D2D).

1.3 Related Work

The following theorem is a well-known result, saying that a simple quadtree can
be smoothed using O(n) splits:

Fact 1 (Theorem 14.4 in [dBCvKO08], Theorem 3 in [Moo95]). Let T be a
simple quadtree with n nodes and of height h. Then the smooth version of T has
O(n) nodes and can be constructed in O((h + 1)n) time.

Fact 1 gives a bound for monolithic tree smoothing, the operation that we
call smooth in Table 1. It says that given an arbitrary quadtree we can smooth
it all at once in O(n) time. Here we study dynamic tree smoothing in which we
smooth the tree after each split, instead of performing an arbitrary number of
splits before smoothing.

Intuitively a single splitting operation does not unsmooth a quadtree much, so
only a few additional splits should be required to resmooth a tree after one split.
To show this formally one might try applying the analysis given by Fact 1 to a
sequence of smooth splits ssplit(B1), . . . , ssplit(Bn). However that analysis
does not consider any measure of how smooth the starting tree is, and only
gives a worst-case linear time bound of O(i) for smoothing after the ith split
in a sequence split(B1), . . . , split(Bn) where B1 is the root. This analysis
shows that a sequence of smooth splits ssplit(B1), . . . , ssplit(Bn) requires∑n

i=1O(i) = O(n2) time for an amortized bound of O(n) which is no better
than the worst-case bound. Therefore although Theorem 1 implies Fact 1, the
converse implication is unclear.

1.4 Other Results

In recent work Löffler et al. [LSS13] recognize that maintaining smoothness
“could cause a linear ‘cascade’ of cells needing to be split.” This cascading be-
havior – what we define formally in terms of forcing chains – is the focus of our
analysis and main result.

A natural question asks whether there exists a worst-case O(1)-time algo-
rithm for smooth splitting a box B. The most natural such algorithm would
recursively check whether neighbors of a split box must themselves be split, as
in Algorithm 1, but would only recurse to some fixed depth. However, a forcing
chain may be arbitrarily long in general meaning that this approach does not
work in our model.

42 H. Bennett and C. Yap

We may generalize the notion of smoothness as follows: call two neighbors
k-smooth if the the boxes differ in height by at most k in the quadtree. In two
dimensions this is equivalent to having at most 2k neighbors in a given direction.
We have used the term “smoothness” to denote 1-smoothness. A natural question
asks whether the relaxed smoothness constraint induced by increasing k would
lead to a worst-case O(1) algorithm. In general, this does not help because a
forcing chain may still be arbitrarily long.

However, Löffler et al. [LSS13] sketch an O(1) worst-case algorithm for per-
forming smooth splits in a related quadtree model. The most important distinc-
tion in their model comes from defining two tiers of quadtree nodes – true cells
which would be present in any unsmoothed quadtree, and B -cells which are only
present to ensure smoothness. Different smoothness invariants hold for these two
tiers of cells – true cells are required to be 1-smooth with respect to their neigh-
bors while B-cells are only required to be 2-smooth. The splitting operation is
defined on true cells whose children are not true cells. If a true cell A has B-cells
as children then ssplit(A) promotes the children of A to true cells.

The algorithm sketched in the paper and private correspondence [Sim] omits
details and a proof of correctness for several key points, such as the promotion of
B-cells to true cells, however it appears to be correct. The model differs from ours
in that it only allows splits on “true” nodes, maintains a weaker balance invari-
ant, and requires more complicated algorithms. Our result, although requiring
involved analysis, shows that smoothing is efficient using a simple algorithm and
quadtree model.

Moore [Moo92, Moo95] proves that “monolithic” smoothing of arbitrary quad-
trees requires O(n) splits as given in Fact 1. Although this result seems to have
been known earlier, Moore reproves this result in [Moo95] for basic quadtrees
using a gadget called a “barrier”, and then extends the result to generalizations
of quadtrees including triangular quadtrees, higher degree quadtrees, and higher
dimensional quadtrees. Fact 1 states this result in the standard setting.

In [dBRS12], de Berg et al. study refinement of compressed quadtrees. They
consider a refinement T1 of a quadtree T0 to be an extension of T0 in which all
boxes that were in T0 have O(1) neighbors in T1. This is a relaxation of the
notion of balancing both in terms of the precise number of neighbors that a
box may have (which is simply assumed to be bounded, but not by a particular
constant) and in the sense that boxes in T1 need not be smooth with respect to
each other. The authors prove that a refinement of a compressed quadtree may
be performed in O(n) time, where n is the size of the quadtree. This result has
a similar flavor to the “monolithic” balancing result described in Fact 1.

Amortized analysis of quadtree operations has appeared in previous work.
Park and Mount [PM12] introduce the splay quadtree, in which they use amor-
tized analysis to analyze the cost of a sequence of data accesses in a quadtree
whose balance is dynamically updated using rotations in a similar manner to
standard splay trees. Overmars and van Leeuwen [OvL82] analyze dynamic
quadtrees, studying the amortized (what they call average-case) cost of insertions
into quadtrees.

Amortized Analysis of Smooth Quadtrees in All Dimensions 43

Recently Sheehy [She] proposed extending results in his previous work on
optimal mesh sizes [She12] to prove the efficient smoothing results presented in
this paper. A reviewer proposed a similar proof strategy based on Ruppert’s work
on local feature size [Rup93]. Future work involves studying these continuous
techniques, and determining whether the approach is both viable and leads to
better bounds than those given by the combinatorial approach.

1.5 Neighbor Pointers without Smoothing

The motivation for studying the quadtree model presented in this paper comes
from the ineffectiveness of other natural models to support both efficient split
and neighbor query operations. Here we analyze what happens if we use our
model but without smoothing.

Suppose that we maintain principal neighbor pointers in an unsmoothed sub-
division. This is the UP quadtree model in Table 1. The following result gives an
amortized Ω(log n) lower bound on the time complexity of a split in this model,
based on the high number of neighbor pointer updates required:

Lemma 1. Let B1 denote the root box. In the worst case, both a sequence of n
splits split(B1), . . . , split(Bn) and a smooth in the UP quadtree model require
Ω(n logn) time.

2 Analysis of Forcing Chains

In order to prove Theorem 1 for quadtrees in arbitrary dimensions, we will
need to develop some notation and concepts. The idea behind the proof is to
analyze what conditions lead to balancing splits propagating through the data
structure, and to show that a suitably defined cost-potential invariant is only
violated a bounded number of times per smooth split. Due to space constraints
and for clarity some proofs are omitted. All missing proofs, a detailed lower
bound construction, and a self-contained proof of the 2-dimensional case are
contained in the full version of this paper [BY].

2.1 Basic Terminology

We give a brief summary of the concepts needed. The appendix contains full
details. We consider subdivision of the standard cube [−1, 1]D in D ≥ 1 di-
mensions. A (box) subdivision tree T is a finite tree rooted at [−1, 1]D whose
nodes are subboxes of [−1, 1]D, and where each internal node has 2D congruent
children. The set of leaves of T constitute a subdivision of [−1, 1]D. Nodes of T
are also called aligned boxes, and every aligned box has a natural depth. Con-
versely, given any subdivision S of aligned boxes, there is a unique subdivision
tree T(S). Henceforth, we use the terminology “subdivision tree” synonymously
with “quadtree in any dimension”.

Let j ∈ {0, . . . , D}. We say that boxes B,B′ are j-adjacent if B ∩ B′ is a
j-dimensional box. Two special cases are noteworthy: if they are D-adjacent, we
say B and B′ overlap and if they are (D−1)-adjacent, we say they are neighbors.

44 H. Bennett and C. Yap

Fact 2. Let B,B′ be overlapping aligned boxes. Then either B ⊆ B′ or B′ ⊆ B.

By an indicator we mean an element d ∈ {1, 0,−1}D. If d has exactly one non-
zero component, we call it a direction indicator ; if it has no zero components, we
call it a child indicator (we do not need child indicators in this paper, but it will be
useful in coding these algorithms). Two directions d and d′ are opposite if d = −d′,
and adjacent if d �= ±d′. If B is a child of B′, then we write B ≺ B′, and denote
the parent by p(B) = B′. For example, p2(B) is the grandparent of B.

If B and B′ are (D− 1)-adjacent, there is a unique direction indicator d such

that B′ is adjacent to B in direction d, which we denote by B
d−→B′. Moreover,

B
d−→B′ if and only if B′ −d−→B. We may simply write B−→B′ if there exists some

d such that B
d−→B′. See the appendix for the formal definition of this relation.

Given a box B, we can project and co-project it in one of D directions: let
i ∈ {1, . . . , D}.

– (Projection) Proji(B) :=
∏D

j=1,j
=i Ij is a (D − 1) dimensional box.

– (Co-Projection) Coproji(B) := Ii is the ith interval of B =
∏D

j=1 Ij .

2.2 Forcing Chains

Let S be a subdivision of the standard cube [−1, 1]D. We say S is smooth if any
two neighboring boxes B,B′ in S differ in depth by at most 1. We are interested
in maintaining smooth subdivisions. More precisely, if S is smooth, and we split
a box in S, there is minimal set of additional boxes in S that must be split in
order to maintain smoothness.

If B
d−→B′, and the depth(B) > depth(B′) then we denote this relationship by

B
d

=⇒B′. We say B d-forces B′ (or simply, B forces B′). Intuitively it means that
if B,B′ are boxes in a subdivision and we split B, then we are forced to split B′

if we want to make the subdivision smooth. Because we maintain smoothness as
an invariant, B=⇒B′ means depth(B) = depth(B′) + 1.

A sequence of such forcing relations C : B0
d1=⇒B1

d2=⇒· · · dk=⇒Bk is called a
forcing chain or simply chain with k links. The set {d1, . . . , dk} are the directions
of C; we say C is monotone if its direction set does not contain any pair of
opposite directions.

The following lemma follows from the definition of forcing:

Lemma 2 (Forcing). The forcing relationship B
d

=⇒B′ is equivalent to the fol-
lowing two conditions:

(i) Projd(B) ≺ Projd(B
′)

(ii) Coprojd(B)=⇒ Coprojd(B
′)

Note that conditions (i) and (ii) refer to child and forcing relationships in
dimensions D − 1 and 1, respectively.

Amortized Analysis of Smooth Quadtrees in All Dimensions 45

(c) B
1

=⇒B′
2

=⇒B′′
(b) B

1
=⇒B′

1
=⇒B′′I I ′ I ′′

(a) I=⇒I ′=⇒I ′′

B′

B′′

B′

B′′

B′
B′′

B′
B′′

Fig. 1. Analysis of 2-Link Chains

2.3 Analysis of 2-Link Chains

In this part, we consider chains with 2-links: B
d

=⇒B′ d′
=⇒B′′. There are two cases

to understand: when d = d′ and when d �= d′. We first have

Theorem 2 (Single Direction). Suppose B
d

=⇒B′ d
=⇒B′′ holds for boxes in a

smooth subdivision. Then p2(B) = p(B′).

It is useful to understand the idiom “p2(B) = p(B′)” as telling us that p(B)
and B′ are siblings. Figure 1(b) illustrates two cases of Theorem 2 when D = 2.

Next, consider the chain B
d

=⇒B′ d′
=⇒B′′ where d �= d′:

Theorem 3 (TwoDirections).Considerboxes inasmoothsubdivisionof [−1, 1]D

(D ≥ 2). SupposeB
d

=⇒B′ d′
=⇒B′′ holds where d �= d′. Then p2(B) �= p(B′).

Two cases in the 2-dimensional case are illustrated by figure Figure 1(c): in

both cases, we have that B
1

=⇒B′ 2
=⇒B′′. In the first case, the subdivision is

smooth and p2(B) �= p(B′). In the second case, p2(B) = p(B′) but the subdivi-
sion is not smooth, thus confirming the theorem in the contrapositive.

The next result is a kind of commutative diagram argument. Its proof depends
on the Two Directions result (Theorem 3).

Theorem 4 (Commutative Diagram). Consider boxes in a smooth subdivi-

sion S of [−1, 1]D for D ≥ 2. Suppose B
d

=⇒B′ d′
=⇒B′′ holds for some d �= d′.

Then there exists a box A′ in S such that A′ d
=⇒B′′.

This theorem is best understood in terms of a commutative diagram as shown
in Figure 2. It says that there exists some A where p(A) = p(B) and some A′

such that A
d

=⇒B′ d′
=⇒B′′ and A

d′
=⇒A′ d

=⇒B′′. Intuitively we can project a higher
dimensional subdivision into the plane spanned by directions d, d′ and then apply
the reasoning shown in Figure 2.

2.4 Monotonicity in Smooth Subdivisions

Theorem 4 motivates the following notions for boxes in a subdivision S: for allB ∈
S, if there existsA ∈ S such thatA

d
=⇒B thenwe sayB is d-forced, andwrite ∗ d

=⇒B.
Furthermore, let R(B) denote the set of directions d such that B is d-forced, and

46 H. Bennett and C. Yap

I ′

I

J

I ′′

J ′

J ′′

K

B
1

=⇒B′
2

=⇒B′′

B′

B′′

B

A

A′

p2(B) p(B′)

A′′

(b) (c)(a)

(A) d′

d′

d

d

B′′

d′

d

dp2(B) p(B′)

d′

A′′A′ B′′

B′B

Fig. 2. Commutative Diagram for Forcing

let r(B) = |R(B)| be its cardinality. Note that 0 ≤ r(B) ≤ 2D. Similarly, we

writeB
d

=⇒∗ if there existsA ∈ S such thatB
d

=⇒A, and let S(B) denote the set of

directions d such that B
d

=⇒∗; let s(B) = |S(B)|. Clearly, 0 ≤ s(B) ≤ D.

Note that A
d

=⇒B and B
−d
=⇒B′ would imply p2(A) ⊆ B′. This is impossible

since A,B′ are boxes of a subdivision. In other words, d ∈ R(B) implies −d /∈
S(B), and conversely d ∈ S(B) implies −d /∈ R(B). Thus:

R(B) ∩ −S(B) = ∅. (1)

The following follows directly from Theorem 4:

Theorem 5. For boxes in a smooth subdivision, B=⇒B′ implies R(B) ⊆ R(B′)
and hence r(B) ≤ r(B′).

In a general subdivision, we could have non-monotone chains (i.e., a chain
whose directions include both d and −d for some d). We show that smoothness
implies monotone chains:

Theorem 6. Chains in a smooth subdivision are monotone.

Proof. Consider any chain C : B0
d1=⇒B1

d2=⇒· · · dk=⇒Bk. It follows from the
above corollary that {d1, . . . , di} ⊆ R(Bi) for each i. It suffices to show that
−di+1 /∈ R(Bi). Note that di+1 ⊆ S(Bi). Therefore (1) implies −di+1 /∈ R(Bi).

Q.E.D.

If A=⇒B and p2(A) = p(B), then p(A) is called a split adjacent sibling of B.
The next lemma upper bounds s(B) when B has split adjacent siblings:

Lemma 3.
(i) If B has exactly one split adjacent sibling, then s(B) ≤ 1.
(ii) If B has at least two split adjacent siblings, then s(B) = 0.

The next result is critical. It shows that r(B) must increase whenever B can
force in more than one direction:

Amortized Analysis of Smooth Quadtrees in All Dimensions 47

Lemma 4. Let B=⇒B′ in a smooth subdivision. If s(B) > 1 then r(B) < r(B′).

The next lemma shows that an increase in r(B) implies a decrease in s(B):

Lemma 5. For any non-root, s(B) ≤

⎧⎨⎩
0 if r(B) > D, (CASE 0)
1 if r(B) = D, (CASE 1)
D − r(B) if r(B) < D. (CASE 2)

Let B ∈ S(T). The forcing graph F (B) of B is the directed acyclic graph
rooted at B, whose maximal paths are all the maximal chains beginning at B.
Note that the nodes in F (B) belong to S(T). The smooth split of B amounts to
splitting every node in F (B). Each node B′ in F (B) has s(B′) children; so B′

is a leaf (or sink) if and only if s(B′) = 0. If s(B′) > 1, we call B′ a branching
node. Note that F (B) would be a tree rooted at B if all the maximal chains are
disjoint except at B. However, in general, maximal chains can merge.

Using the preceding two lemmas (Lemma 4 and Lemma 5) we can prove the
following about F (B):

Theorem 7. Let B be a box in a smooth subdivision. There are at most (D −
r(B))! maximal paths in the forcing graph F (B) where we define x! = 1 for
x ≤ 0.

3 Amortized Bounds for Smooth Splits

The analysis of forcing chains in the last section will now be used to obtain an
upper bound on the amortized complexity of smooth splits. We also provide a
lower bound construction.

3.1 Potential of Subdivision Tree

Let S be a smooth subdivision. Denote by T = T(S) the subdivision tree whose
leaves constitute S. Define the potential Φ(T) of the subdivision tree T to be the
sum of the potential Φ(B) of all the nodes B ∈ T. The potential of node B is

Φ(B) :=

{
0 if B has no split children,
of unsplit children of B otherwise.

(2)

Note that Φ(B) = 0 if and only if it has no split children or all its children are
split. Otherwise, 1 ≤ Φ(B) ≤ 2D − 1. Intuitively, each unit of potential pays for
the cost of a single split.

For B ∈ S(T), let c(B) denote the number of nodes B′ in F (B) such that
Φ(p(B′)) = 0. But Φ(p(B′)) = 0 if and only if p(B′) has no split children or all
of its children is split. Since B′ is a leaf in T, Φ(p(B′)) = 0 implies that B′ has
no split siblings. Thus, c(B) is counting the number of nodes in F (B) with no
split siblings.

Theorem 1[Main Theorem]. Starting from an initially trivial subdivision con-
sisting of one box, the total cost of any sequence of smooth splits ssplit(B1),
. . . , ssplit(Bn) is O(n). Thus the amortized cost of a smooth split is O(1).

48 H. Bennett and C. Yap

Proof. We show that starting from the initial box [−1, 1]D, a sequence of n
smooth splits produces at most (2D(D+1)!)n splits. Therefore for fixed D each
smooth split produces amortized O(1) splits.

The smooth split of B amounts to splitting each node in its forcing graph
F (B). Recall that c(B) is the number of nodes B′ ∈ F (B) with Φ(p(B′)) = 0.
We show that c(B) ≤ (D + 1)!.

By Theorem 7 we know that there are at most D! maximal paths in F (B).
We need to show that each maximal chain has at most D+1 indices i ∈ [k] such
that Φ(p(Bi)) = 0. For such an i, we claim that r(Bi) < r(Bi+1). To show this,
it suffices to prove that di+1 /∈ R(Bi) because di+1 ∈ R(Bi+1). Among the D

adjacent siblings of Bi, there is one, say A, such that A
di+1−→Bi. If di+1 ∈ R(Bi)

then A′di+1
=⇒Bi for some child A′ of A. Since Φ(p(Bi)) = 0, A has not been split

and so A′ does not exist. Therefore, if there are ≥ D+1 such indices, the (D+1)-
st index i has the property that r(Bi+1) ≥ D+1. Then s(Bi+1) = 0 by Lemma 5.
Hence Bi+1 must be the last node Bk in the chain. This proves our claim.

The smooth split of B amounts to splitting each box B′ ∈ F (B). There are
two cases of B′:

– Φ(p(B′)) > 0. Then splitting B′ can be charged to the corresponding unit
decrease in potential Φ(T), since Φ(p(B′)) decreases by one when B′ is split.

– Φ(p(B′)) = 0. Then splitting of B′ will be charged 2D, corresponding to one
unit for splitting B′ and 2D − 1 units for increase in Φ(p(B′)).

It follows that the total charge for the smooth split of B is at most 2Dc(B) ≤
2D(D + 1)!, as claimed. Q.E.D.

3.2 Lower Bound on Smooth Split Complexity

We also give a lower bound showing that the amortized cost of smooth splits is
exponential in the dimension D in dynamically smoothed quadtrees. The con-
struction and a proof are given in the full version of the paper.

Lemma 6. The cost of a sequence ssplit(B1), . . . , ssplit(Bn) of smooth split
operations in the worst case is Ω(nD2D). This implies that the amortized cost
of the smooth split operation is Ω(D2D).

This shows that although our amortized cost upper bound of O((D + 1)!2D)
is likely not tight, the exponential dependence on dimension D is unavoidable.
We analyze the exact amortized asymptotic cost of a split in more detail in the
full version of this paper.

4 Conclusion

We have given a combinatorial proof that for any fixed dimension the amortized
cost of performing a smooth split is O(1). We did this by defining a suitable po-
tential function based on the number of split siblings of a node, and by present-
ing a sequence of lemmas reasoning about how smooth splitting can propagate
through the data structure. Our smooth quadtree model is useful in applications,
and we have implemented it in the Core Library [Cor].

Amortized Analysis of Smooth Quadtrees in All Dimensions 49

Acknowledgements. We would like to thank Don Sheehy for discussions, Joe
Simons for answering questions about [LSS13], and the anonymous reviewers for
helpful references and clarifications.

References

[ABCC06] Aronov, B., Bronnimann, H., Chang, A.Y., Chiang, Y.-J.: Cost predic-
tion for ray shooting in octrees. Computational Geometry: Theory and
Applications 34(3), 159–181 (2006)

[BEG94] Bern, M.W., Eppstein, D., Gilbert, J.R.: Provably good mesh genera-
tion. J. Comput. Syst. Sci. 48(3), 384–409 (1994)

[BY] Bennett, H., Yap, C.: Amortized Analysis of Smooth Quadtrees in All
Dimensions,
http://www.cs.nyu.edu/exact/doc/smoothSubdiv2014.pdf

[CLRS09] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to
Algorithms, 3rd edn. MIT Press (2009)

[Cor] Core Library homepage. Software download, source, documentation and
links: http://cs.nyu.edu/exact/core/

[dBCvKO08] de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computa-
tional Geometry: Algorithms and Applic., 3rd edn. Springer (2008)

[dBRS12] de Berg, M., Roeloffzen, M., Speckmann, B.: Kinetic compressed
quadtrees in the black-box model with applications to collision detection
for low-density scenes. In: [EF 2012], pp. 383–394

[EF12] Epstein, L., Ferragina, P. (eds.): ESA 2012. LNCS, vol. 7501. Springer,
Heidelberg (2012)

[FB74] Finkel, R.A., Bentley, J.L.: Quad trees: A data structure for retrieval
on composite keys. Acta Inf. 4, 1–9 (1974)

[LSS13] Löffler, M., Simons, J.A., Strash, D.: Dynamic planar point location
with sub-logarithmic local updates. In: Dehne, F., Solis-Oba, R., Sack,
J.-R. (eds.) WADS 2013. LNCS, vol. 8037, pp. 499–511. Springer,
Heidelberg (2013)

[Moo92] Moore, D.: Simplicial Mesh Generation with Applications. PhD thesis,
Cornell University (1992)

[Moo95] Moore, D.: The cost of balancing generalized quadtrees. In: Symposium
on Solid Modeling and Applications, pp. 305–312 (1995)

[OvL82] Overmars, M.H., van Leeuwen, J.: Dynamic multi-dimensional data
structures based on quad- and k-d trees. Acta Inf. 17, 267–285 (1982)

[PM12] Park, E., Mount, D.M.: A self-adjusting data structure for multidimen-
sional point sets. In: [EF 2012], pp. 778–789

[Rup93] Ruppert, J.: A new and simple algorithm for quality 2-dimensional mesh
generation. In: SODA, pp. 83–92. ACM/SIAM (1993)

[Sam90a] Samet, H.: Applications of spatial data structures - computer graphics,
image processing, and GIS. Addison-Wesley (1990)

[Sam90b] Samet, H.: The Design and Analysis of Spatial Data Structures.
Addison-Wesley (1990)

[She] Sheehy, D.R.: Private correspondence
[She12] Sheehy, D.R.: New Bounds on the Size of Optimal Meshes. Computer

Graphics Forum 31(5), 1627–1635 (2012)
[Sim] Simons, J.A.: Private correspondence
[WCY13] Wang, C., Chiang, Y.-J., Yap, C.: On soft predicates in subdivision

motion planning. In: 29th SoCG, pp. 349–358. ACM (2013)

http://www.cs.nyu.edu/exact/doc/smoothSubdiv2014.pdf
http://cs.nyu.edu/exact/core/

New Approximability Results for the Robust

k-Median Problem

Sayan Bhattacharya, Parinya Chalermsook,
Kurt Mehlhorn, and Adrian Neumann

Max-Planck Institut für Informatik
{bsayan,parinya,mehlhorn,aneumann}@mpi-inf.mpg.de

Abstract. We consider a variant of the classical k-median problem, in-
troduced by Anthony et al. [1]. In the Robust k-Median problem, we
are given an n-vertex metric space (V, d) and m client sets {Si ⊆ V }mi=1.
We want to open a set F ⊆ V of k facilities such that the worst case
connection cost over all client sets is minimized; that is, minimize maxi∑

v∈Si
d(F, v). Anthony et al. showed an O(logm) approximation

algorithm for any metric and APX-hardness even in the case of uni-
form metric. In this paper, we show that their algorithm is nearly tight
by providing Ω(logm/ log logm) approximation hardness, unless NP ⊆⋂

δ>0 DTIME(2n
δ

). This result holds even for uniform and line metrics.
To our knowledge, this is one of the rare cases in which a problem on a
line metric is hard to approximate to within logarithmic factor. We com-
plement the hardness result by an experimental evaluation of different
heuristics that shows that very simple heuristics achieve good approxi-
mations for realistic classes of instances.

1 Introduction

In the classical k-median problem, we are given a set of clients located on a
metric space with distance function d : V × V → R. The goal is to open a set of
facilities F ⊆ V , |F | = k, so as to minimize the sum of the connection costs of
the clients in V , i.e., their distances from their nearest facilities in F . This is a
central problem in approximation algorithms, and has received a large amount
of attention in the past two decades [4, 6, 7, 11, 12].

At SODA 2008 Anthony et al. [1] introduced a generalization of the k-median
problem. In their setting, the set of clients that are to be connected to some
facility is not known in advance, and the goal is to perform well in spite of this
uncertainty about the future. They formulated the problem as follows.

Definition 1 (Robust k-Median). An instance of this problem is a triple
(V,S, d). This defines a set of locations V , a collection of m sets of clients
S = {S1, . . . , Sm}, where Si ⊆ V for all i ∈ {1, . . . ,m}, and a metric distance
function d : V × V → R. We have to open a set of k facilities F ⊆ V , |F | = k,
and the goal is to minimize the cost of the most expensive set of clients, i.e.
minimize maxmi=1

∑
v∈Si

d(v, F). Here, d(v, F) denotes the minimum distance of
the client v from any location in F , i.e. d(v, F) = minu∈F d(u, v).

R Ravi and I.L. Gørtz (Eds.): SWAT 2014, LNCS 8503, pp. 50–61, 2014.
c© Springer International Publishing Switzerland 2014

New Approximability Results for the Robust k-Median Problem 51

Robust k-Median is a natural generalization of the classical k-median problem
(for m = 1). Additionally, we can think of it as capturing a notion of fairness.
To see this, interpret each set Si as a group of clients who pay

∑
v∈Si

d(v, F) for
connecting to a facility. The objective ensures that no single group pays too much,
while minimizing the cost. Anthony et al. [1] gave an O(logm)-approximation
algorithm for this problem, and a lower bound of (2 − ε) by a reduction from
Vertex Cover. The lower bound was improved to logα n for small constant α > 0
in [5]. Note that their lower bound does not hold in the line metric.

Our Results. We prove nearly tight hardness of approximation for Robust k-

Median. We show that, unless NP ⊆ ∩δ>0DTIME(2n
δ

), it admits no poly-time
o(logm/ log logm)-approximation, even on uniform and line metrics.

Our first hardness result is tight up to a constant factor, as a simple rounding
scheme gives a matching upper bound on uniform metrics (Sect. 3.1). Our sec-
ond result shows that Robust k-Median is a rare problem with super-constant
hardness of approximation even on line metrics. This surprising result puts Ro-
bust k-Median in sharp contrast to most other geometric optimization problems
which admit polynomial time approximation schemes, e.g. [2, 10].

Experimentally we show that simple heuristics provide good performance on
a realistic class of instances. The details appear in the full paper.

Our Techniques. First, we note that Robust k-Median on uniform metrics is
equivalent to the following variant of the set cover problem: Given a set U of
ground elements, a collection of sets X = {X ⊆ U}, and an integer t ≤ |X |,
our goal is to select t sets from X in order to minimize the number of times an
element from U is hit (Lemma 2). We call this problem Minimum Congestion
Set Packing (MCSP). This characterization allows us to focus on proving the
hardness of MCSP, and to employ the tools developed for the set cover problem.

We now revisit the reduction used by Feige [8], building on results of Lund
and Yannakakis [13], to prove the hardness of the set cover problem and discuss
how our approach differs. Intuitively, they compose the Label Cover instance
with a set system that has some desirable properties. Informally speaking, in the
Label Cover problem, we are given a graph where each vertex v can be assigned
a label from a set L, and each edge e is equipped with a constraint Πe ⊆ L× L
specifying the accepting pairs of labels for e. Our goal is to find a labeling of
vertices that maximizes the number of accepting edges. This problem is known
to be hard to approximate to within a factor of 2log

1−ε |E| [3, 14], where |E| is
the number of edges. Thus, if we manage to reduce Label Cover to MCSP, we
would hopefully obtain a large hardness of approximation factor for MCSP as
well.

From the Label Cover instance, [13] creates an instance of Set Cover by having
sets of the form S(v, �) for each vertex v and each label � ∈ L. Intuitively the set
S(v, �) means choosing label � for vertex v in the Label Cover instance. Now, if
we assume that the solution is well behaved, in the sense that for each vertex v,
only one set of the form S(v, �) is chosen in the solution, we would be immediately
done (because each set indeed corresponds to a label). However, solutions need

52 S. Bhattacharya et al.

not have this form, e.g. choosing sets S(v, �) and S(v, �′) translates to having
two labels �, �′ for the Label Cover instance. To prevent an ill-behaved solution,
partition systems were introduced and used in both [13] and [8]. Feige considers
the hypergraph version of Label Cover to obtain a sharper hardness result of
lnn−O(ln lnn) instead of 1

4 lnn in [13]; here n denotes the size of the universe.
Now we highlight how our reduction is different. The high level idea stays the

same, i.e. we have sets of the form S(v, �) that represent assigning label � to
vertex v. However, we need a different partition system and a totally different
analysis. Moreover, while a reduction from standard Label Cover gives nearly
tight O(log n) hardness for Set Cover, it can (at best) only give a 2− ε hardness
for MCSP. For our results, we do need a reduction from Hypergraph Label Cover.
This suggests another natural distinction between MCSP and Set Cover.

Finally, to obtain the hardness result for the line metric, we embed the in-
stance created from the MCSP reduction onto the line while preserving values
of optimal solutions. This way we get the same hardness gap for line metrics.

2 Preliminaries

We will show that Robust k-Median is Ω(logm/ log logm) hard to approximate,
even for the special cases of uniform metrics (Sect. 3) and line metrics (Sect. 4).
Recall that d is a uniform metric iff we have d(u, v) ∈ {0, 1} for all locations
u, v ∈ V . Further, d is a line metric iff the locations in V can be embedded
into a line in such a way that d(u, v) equals the euclidean distance between u
and v, for all u, v ∈ V . Throughout this paper, we will denote any set of the
form {1, 2, . . . , i} by [i]. Our hardness results will rely on a reduction from the
r-Hypergraph Label Cover (HGLC) problem, which is defined as follows.

Definition 2 (r-Hypergraph Label Cover (HGLC)). An instance of this
problem is a triple (G, π, r), where G = (V , E) is a r-partite hypergraph with
vertex set V =

⋃r
j=1 Vj and edge set E. Each edge h ∈ E contains one vertex

from each part of V, i.e. |h ∩ Vj | = 1 for all j ∈ [r]. Every set Vj has an
associated set of labels Lj. Further, for all h ∈ E and j ∈ [r], there is a mapping

πj
h : Lj → C that projects the labels from Lj to a common set of colors C.
The problem is to assign to every vertex v ∈ Vj some label σ(v) ∈ Lj. We say

that an edge h = (v1, . . . , vr), where vj ∈ Vj for all j ∈ [r], is strongly satisfied
under σ iff the labels of all its vertices are mapped to the same element in C,

i.e. πj
h(σ(vj)) = πj′

h (σ(vj′)) for all j, j′ ∈ [r]. In contrast, we say that the edge is
weakly satisfied iff there exists some pair of vertices in h whose labels are mapped

to the same element in C, i.e. πj
h(σ(vj)) = πj′

h (σ(vj′)) for some j, j′ ∈ [r], j �= j′.

For ease of exposition, we will often abuse the notation and denote by j(v)
the part of V to which a vertex v belongs, i.e. if v ∈ Vj for some j ∈ [r], then we
set j(v) ← j. The next theorem will be crucial in deriving our hardness result.
The proof of this theorem follows from Feige’s r-Prover system [8].

Theorem 1. Let r ∈ N be a parameter. There is a polynomial time reduction
from n-variable 3-SAT to r-HGLC with the following properties:

New Approximability Results for the Robust k-Median Problem 53

– (Yes-Instance) If the formula is satisfiable, there is a labeling that strongly
satisfies every edge in G.

– (No-Instance) If the formula is not satisfiable, every labeling weakly satisfies
at most a 2−γr fraction of the edges in G, for some universal constant γ.

– The number of vertices in the graph is |V| = nO(r) and the number of edges
is |E| = nO(r). The sizes of the label sets are |Lj| = 2O(r) for all j ∈ [r], and
|C| = 2O(r). Further, we have |Vj | = |Vj′ | for all j, j′ ∈ [r], and each vertex
v ∈ V has the same degree r|E|/|V|.

We use a partition system that is motivated by the hardness proof of the Set
Cover problem [8] but uses a different construction.

Definition 3 (Partition System). Let r ∈ N and let C be any finite set. An
(r, C)-partition system is a pair (Z, {pc}c∈C), where Z is an arbitrary (ground)
set, such that the following properties hold.

– (Partition) For all c ∈ C, pc =
(
A1

c , . . . , A
r
c

)
is a partition of Z, that is⋃r

j=1 A
j
c = Z, and Aj′

c ∩ Aj
c = ∅ for all j, j′ ∈ [r], j �= j′.

– (r-intersecting) For any r distinct indices c1, . . . , cr ∈ C and not-necessarily
distinct indices j1, . . . , jr ∈ [r], we have that

⋂r
i=1 A

ji
ci �= ∅. In particular,

Aj
c �= ∅ for all c and j.

In order to achieve a good lower bound on the approximation factor, we need
partition systems with small ground sets. The most obvious way to build a
partition system is to form an r-hypercube: Let Z = [r]|C|, and for each c ∈ C
and j ∈ [r], let Aj

c be the set of all elements in Z whose c-th component is j.
It can easily be verified that this is an (r, C)-partition system with |Z| = r|C|.
With this construction, however, we would only get a hardness of Ω(log logm)
for our problem. The following lemma shows that it is possible to construct an
(r, C)-partition system probabilistically with |Z| = rO(r) log |C|.

Lemma 1. There is an (r, C)-partition system with |Z| = rO(r) log |C| elements.
Further, such a partition system can be constructed efficiently with high proba-
bility.

Proof. Let Z be any set of rO(r) log |C| elements. We build a partition system
(Z, {pc}c∈C) as described in Algorithm 1. By construction each pc is a partition
of Z, i.e. the first property stated in Def. 3 is satisfied. We bound the probability
that the second property is violated.

Fix any choice of r distinct indices c1, . . . , cr ∈ C and not necessarily distinct
indices j1, . . . , jr ∈ [r]. We say that a bad event occurs when the intersection of
the corresponding sets is empty, i.e.

⋂r
i=1A

ji
ci = ∅. To upper bound the prob-

ability of a bad event, we focus on events of the form Ee,i – this occurs when
an element e ∈ Z is included in a set Aji

ci . Since the indices c1 . . . cr are dis-
tinct, it follows that the events {Ee,i} are mutually independent. Furthermore,
note that we have Pr[Ee,i] = 1/r for all e ∈ Z, i ∈ [r]. Hence, the probability
that an element e ∈ Z does not belong to the intersection

⋂r
i=1A

ji
ci is given by

54 S. Bhattacharya et al.

Algorithm 1. A randomized construction of an (r, C)-partition system.

input : A ground set Z, a parameters r ∈ N, and a set C.
foreach c ∈ C do

/* Construct the partition pc = (A1
c, . . . , A

r
c) */

Initialize Aj
c to the empty set for all j ∈ [r]

foreach ground element e ∈ Z do
Pick a j ∈ [r] independently and uniformly at random and add e to Aj

c

1−Pr[
⋂r

i=1 Ee,i] = 1− 1/rr. Accordingly, the probability that no element e ∈ Z
belongs to the intersection, which defines the bad event, is equal to (1−1/rr)|Z|.

Now, the number of choices for r distinct indices c1, . . . , cr and r not-necessarily
distinct indices j1, . . . , jr is equal to

(|C|
r

)
· rr . Hence, by a union-bound over all

bad events, the second property stated in Def. 3 is violated with probability at
most

(|C|
r

)
· rr · (1− rr)|Z| ≤ (|C| r)r · exp(−|Z|/rr). If we set |Z| = d · rd·r log |C|

with large enough constant d, the property is satisfied with high probability. ��

3 Hardness of Robust k-Median on Uniform Metrics

First, we define Minimum Congestion Set Packing (MCSP), and then show a
reduction from MCSP to Robust k-Median on uniform metrics. In Sect. 3.2, we
will then show that MCSP is hard to approximate by reducing HGLC to MCSP.

Definition 4 (Minimum Congestion Set Packing (MCSP)). An instance
of this problem is a triple (U,X , t), where U is a universe of m elements, i.e.
|U | = m, X is a collection of sets X = {X ⊆ U} such that

⋃
X∈X X = U ,

and t ∈ N and t ≤ |X |. The objective is to find a collection X ′ ⊆ X of size
t that minimizes Cong(X ′) = maxe∈U Cong(e,X ′). Here, Cong(X ′) refers to
the congestion of the solution X ′, and Cong(e,X ′) = |{X ∈ X ′ : e ∈ X}| is the
congestion of the element e ∈ U under the solution X ′.

Lemma 2. Given any MCSP instance (U,X , t), we can construct a Robust k-
Median instance (V,S, d) with the same objective value in poly(|U |, |X |) time,
such that |U | = |S|, |X | = |V |, d is a uniform metric, and k = |V | − t.

Proof. We construct the Robust k-Median instance (V,S, d) as follows. For every
e ∈ U we create a set of clients S(e), and for each X ∈ X we create a location
v(X). Thus, we get V = {v(X) : X ∈ X}, and S = {S(e) : e ∈ U}. We place
the clients in S(e) at the locations of the sets that contain e, i.e. S(e) = {v(X) :
X ∈ X , e ∈ X} for all e ∈ U . The distance is defined as d(u, v) = 1 for all
u, v ∈ V, u �= v, and d(v, v) = 0. Finally, we set k ← |V | − t.

Now, it is easy to verify that the Robust k-Median instance (V,S, d) has
a solution with objective ρ iff the corresponding MCSP instance (U,X , t) has
a solution with objective ρ. The intuition is that a location v(X) ∈ V is not
included in the solution F to the Robust k-Median instance iff the corresponding
set X is included in the solution X ′ to the MCSP instance. Indeed, let F be any

New Approximability Results for the Robust k-Median Problem 55

subset of X of size k (= the set of open facilities) and let X ′ = X − F . Further,
let [X ∈ X ′] be an indicator variable that is set to 1 iff X ∈ X ′. Then

Cong(X ′) = max
e∈U

Cong(e,X ′) = max
e∈U

∑
X;e∈X

[X ∈ X ′]

= max
e∈U

∑
X;e∈X

min
Y ∈F

d(X,Y) = max
S(e)∈S

∑
v(X)∈S(e)

d(v(X), F).

��

We devote the rest of Sect. 3 to MCSP and show that it isΩ(log |U |/ log log |U |)
hard to approximate. This, in turn, will imply a Ω(log |S|/ log log |S|) hardness
of approximation for Robust k-Median on uniform metrics. We will prove the
hardness result via a reduction from HGLC.

3.1 Integrality Gap

Before proceeding to the hardness result, we show that a natural LP relaxation
for the MCSP problem [1] has an integrality gap of Ω(logm/ log logm), where
m = |U | is the size of the universe of elements. In the LP, we have a variable
y(X) indicating that the set X ∈ X is chosen, and a variable z which represents
the maximum congestion among the elements.

min z

s.t.
∑

X∈X :e∈X

y(X) ≤ z for all e ∈ U

∑
X∈X

y(X) = t

The Instance: Now, we construct a bad integrality gap instance (U,X , t). Let d
be the intended integrality gap, let η = d2, and let U = {I : I ⊆ [η], |I| = d} be
all subsets of [η] of size d. The collection X consists of η sets X1, . . . , Xη, where
Xi = {I : I ∈ U and i ∈ I}. Note that the universe U consists of |U | = m =

(
η
d

)
elements, and each element I is contained in exactly d sets, namely I ∈ Xi if
and only if i ∈ I. Finally, we set t← η/d.

Analysis: The fractional solution simply assigns a value of 1/d to each variable
y(Xi); this ensures that the total (fractional) number of sets selected is η/d = t.
Furthermore, each element is contained (fractionally) in exactly one set, so the
fractional solution has cost one. Since t = η/d = d, any integral solution must
choose d sets, say Xi1 , . . . , Xid . Now consider I = {i1, . . . , id} which belongs
to set Xiλ for all λ ∈ [d] and hence the congestion of I is d. Finally, since
|U | = m ≤ ηd ≤ (d2)d, we have d = Ω(logm/ log logm).

Tightness of the Result: The bound on the hardness and integrality gap
is tight for the uniform metric case, as there is a simple O(logm/ log logm)-
approximation algorithm. Pick each setX with probability equal to min(1, 2y(X)).

56 S. Bhattacharya et al.

The expected congestion is 2z for each element. By Chernoff’s bound [9], an
element is covered by no more than z · O(logm/ log logm) sets with high prob-
ability. A similar algorithm gives the same approximation guarantee for Robust
k-Median on uniform metrics.

3.2 Reduction from r-Hypergraph Label Cover to Minimum
Congestion Set Packing

The input is an instance (G, π, r) of r-HGLC (Def. 2). From this we construct
the following instance (U,X , t) of MCSP (Def. 4).

– We define the universe U as a union of disjoint sets. For each edge h ∈ E in
the hypergraph we have a set Uh. All these sets have the same sizem∗ and are
pairwise disjoint, i.e. Uh∩Uh′ = ∅ for all h, h′ ∈ E , h′ �= h. The universe U is
then the union of these sets U =

⋃
h∈E Uh. Since the Uh are mutually disjoint,

we havem = |U | = |E|·m∗. Recall that C is the target set of π. Each set Uh is
the ground set of an (r, C)-partition system (Def. 3) as given by Lemma 1. In
particular we have m∗ = rO(r) log |C|. We denote the r-partitions associated
with Uh by {pc(h)}c∈C , where pc(h) =

(
A1

c(h), . . . , A
r
c(h)

)
.

– We construct the collection of sets X as follows. For each j ∈ [r], v ∈ Vj and
� ∈ Lj , X contains the setX(v, �), whereX(v, �) =

⋃
h:v∈hA

j
πj
h(�)

(h). That is,

X(v, �) ∩ Uh is empty if v �∈ h and is equal to Aj
πj
h(�)

(h) if v ∈ h. Intuitively,

choosing the setX(v, �) corresponds to assigning label � to the vertex v.
– We define t← |V|. Intuitively, this means each vertex in V gets one label.

We assume for the sequel that the r-HGLC instance is chosen according to
Thm. 1. We assume that the parameter r satisfies r72−γr < 1. In the proof of
the main theorem, we will fix r to a specific value.

3.3 Analysis

We show that the reduction from HGLC to MCSP satisfies two properties. In
Lemma 3, we show that for Yes-Instances (see Thm. 1) the corresponding MCSP
instance admits a solution with congestion one. For No-Instances, Lemma 4 shows
that any solution to the corresponding MCSP instance has congestion at least r.

Lemma 3 (Yes-Instance). If the HGLC instance (G, π, r) admits a labeling
that strongly satisfies every edge, then the MCSP instance (U,X , t) as in Sect. 3.2
admits a solution where the congestion of every element in U is exactly one.

Proof. Suppose that there is a labeling σ that strongly satisfies every edge h ∈ E .
We will show how to pick t = |V| sets from X such that each element in U is
contained in exactly one set. This implies that the maximum congestion is one.
For each j ∈ [r] and each vertex v ∈ Vj , we choose the set X(v, σ(v)). Thus, the
total number of sets chosen is exactly |V|.

To see that the congestion is one, we concentrate on the elements in Uh, where
h = (v1, . . . , vr), vj ∈ Vj for all j ∈ [r], is one of the edges in E . The picked sets

New Approximability Results for the Robust k-Median Problem 57

that intersect Uh are X(vj , σ(vj)), where j ∈ [r]. Since h is strongly satisfied, πh
maps all vertex labels in h to a common c ∈ C, i.e. πj

h(σ(vj)) = c for all j ∈ [r].
Thus Uh ∩X(vj , σ(vj)) = Aj

c(h). By definition (Def. 3), the sets A1
c(h) . . . A

r
c(h)

partition the elements in Uh. This completes the proof. ��

Now, we turn to the proof of Lemma 4. Towards this end, we fix a collection
X ′ ⊆ X of size t and show that some element in U has congestion at least
r under X ′. The intuition being that many edges in G = (V , E) are not even
weakly satisfied, and the elements in U corresponding to those edges incur large
congestion. Recall that for a v ∈ V , we define j(v) ∈ N to be such that v ∈ Vj(v).

Claim 2. For v ∈ V, let Lv =
{
� ∈ Lj(v) : X(v, �) ∈ X ′}. For h ∈ E, let Λh =

{X(v, �) ∈ X ′ : v ∈ h}. If Cong(X ′) < r, then |Lv| < r2 and |Λh| < r3.

Proof. Since Λh =
⋃

v∈h Lv, it suffices to prove |Lv| < r2 for all v. Assume
otherwise, i.e., |Lv| ≥ r2 for some v ∈ Vj , j ∈ [r]. Let h be any hyper-edge with

v ∈ h. Consider the images of the labels in Lv under πj
h. Either there are at least

r distinct images or at least r elements in Lv are mapped to the same c ∈ C.
In the former case, we have r pairwise distinct labels �1 to �r in Lv and r

pairwise distinct labels c1 to cr in C such that πj
h(�i) = ci for i ∈ [r]. The

set X(v, �i) contains Aj
ci(h) and

⋂
i∈[r]A

j
ci(h) �= ∅ by property (2) of partition

systems (Def. 3). Thus some element has congestion at least r.
In the latter case, we have r pairwise distinct labels �1 to �r in Lv and a label

c in C such that πj
h(�i) = c for i ∈ [r]. The set X(v, �i) contains Aj

c(h) and
hence every element in this non-empty set (property (2) of partition systems)
has congestion at least r. ��

Definition 5 (Colliding Edge). We say that an edge h ∈ E is colliding iff

there are sets X(v, �), X(v′, �′) ∈ X ′ with v, v′ ∈ h, v �= v′, and π
j(v)
h (�) =

π
j(v′)
h (�′).

Claim 3. Suppose that the solution X ′ has congestion less than r, and more
than a r42−γr fraction of the edges in E are colliding. Then there is a labeling σ
for G that weakly satisfies at least a 2−γr fraction of the edges in E.

Proof. For each v ∈ V , we define Lv = {� ∈ Lj(v) : X(v, �) ∈ X ′}. Then
|Lv| < r2 by Claim 2. We construct a labeling function σ using Algorithm 2.

Now we bound the expected fraction of weakly satisfied edges under σ from be-
low. Take any colliding edge h ∈ E . Then there are vertices v ∈ Vj , v′ ∈ Vj′ with

Algorithm 2. An algorithm for constructing a labeling function.

foreach vertex v ∈ V do
if Lv �= ∅ then

Pick a color σ(v) uniformly and independently at random from Lv

else
Pick an arbitrary color σ(v) from Lj(v)

58 S. Bhattacharya et al.

j �= j′, and colors � ∈ Lv, �
′ ∈ Lv′ such that v, v′ ∈ h and πj

h(�) = πj′
h (�′). By

Claim 2, |Lv| and |Lv′ | are both at most r2. Since the colors σ(v) and σ(v′) are cho-
sen uniformly and independently at random from their respective palettes Lv and
Lv′ , we have Pr[σ(v) = � and σ(v′) = �′] ≥ 1/r4. In other words, every colliding
edge is weakly satisfied with probability at least 1/r4. Since more than a r42−γr

fraction of the edges in E are colliding, from linearity of expectation we infer that
the expected fraction of edges weakly satisfied by σ is at least 2−γr. ��
Claim 4. Let Λh = {X(v, �) ∈ X ′ : v ∈ h} and λ(h) = |Λh|.

∑
h∈E

λ(h) = r|E|.

Proof. This is a simple counting argument. Consider a bipartite graph H with
vertex set A∪̇B, where each vertex in A represents a set X(v, �), and each vertex
in B represents an edge h ∈ E . There is an edge between two vertices iff the
set X(v, �) contains some element in Uh. The quantity

∑
h∈E λ(h) counts the

number of edges in H where one endpoint is included in the solution X ′. Since
X ′ picks t = |V| sets and each set has degree r|E|/|V| in H (Thm. 1), the total
number of edges that are chosen is exactly |V| × (r|E|/|V|) = r|E|. ��

Let E ′ ⊆ E denote the set of colliding edges, and define E ′′ = E − E ′. Suppose
that we are dealing with a No-Instance (Thm. 1), i.e. the solution X ′ has con-
gestion less than r and every labeling weakly satisfies at most a 2−γr fraction
of the edges in E . Then λ(h) ≤ r3 for all h ∈ E by Claim 2, and no more than
r42−γr|E| edges are colliding, i.e. |E ′| ≤ r42−γr |E|, by Claim 3. Using these facts
we conclude that

∑
h∈E′ λ(h) ≤ r72−γr|E| < |E|, as by assumption r72−γr < 1.

Now, applying Claim 4, we get
∑

h∈E′′ λ(h) = r|E|−
∑

h∈E′ λ(h) > (r− 1)|E|. In
particular, there is an edge h ∈ E ′′ with λ(h) ≥ r.

Recall that Λh = {X(v, �) ∈ X ′ : v ∈ h} are the sets in X ′ that intersect Uh

and note that |Λh| = λ(h) ≥ r. Let X ∗ ⊆ Λh be a maximal collection of sets with
the following property: For every two distinct setsX(v, �), X(v′, �′) ∈ X ∗ we have

π
j(v)
h (�) �= π

j(v′)
h (�′). Hence, from the definition of a partition system (Def. 3), it

follows that the intersection of the sets in X ∗ and the set Uh is nonempty.
Now, consider any set X(v, �) ∈ Λh−X ∗. Since the collection X ∗ is maximal,

there must be at least one set X(v′, �′) in X ∗ with π
j(v)
h (�) = π

j(v′)
h (�′). Since h

is not colliding, we must have j(v) = j(v′). Consequently we get X(v, �)∩Uh =
X(v′, �′) ∩ Uh. In other words, for every set X ∈ Λh − X ∗, there is some set
X ′ ∈ X ∗ whereX∩Uh = X ′∩Uh. Thus, Uh∩(

⋂
X∈Λh

X) = Uh∩(
⋂

X∈X ∗ X) �= ∅.
Every element in the intersection of the sets in Λh and Uh will have congestion
|Λh| ≥ r. This leads to the following lemma.

Lemma 4 (No-Instance). If every labeling weakly satisfies at most a 2−γr

fraction of the edges in the hypergragph Label Cover instance (G, π, r), for some
universal constant γ and r72−γr < 1 then the congestion incurred by every solu-
tion to the MCSP instance (U,X , t) constructed in Sect. 3.2 is at least r.

We are now ready to prove the main theorem of this section.

Theorem 5. Robust k-Median (V,S, d) is Ω(logm/ log logm) hard to approxi-

mate on uniform metrics, where m = |S|, unless NP ⊆
⋂

δ>0 DTIME(2n
δ

).

New Approximability Results for the Robust k-Median Problem 59

Proof. Assume that there is a polynomial time algorithm forRobustk-Median that
guarantees an approximation ratio in o(log |S| / log log |S|). Then, by Lemma 2,
there is an approximation algorithm for the Minimum Congestion Set Packing
problem with approximation guarantee o(log |U | / log log |U |).

Let δ > 0 be arbitrary and set r = �nδ�, where n is the number of variables in
the 3-SAT instance (Thm. 1). Then r72−γr < 1 for all sufficiently large n. We first
bound the size of theMCSP instance (U,X , t) constructed in Sect. 3.2.ByLemma1,
the size of an (r, C)-partition system is |Z| = rO(r) log |C|. By Thm. 1, we have
|C| = 2O(r). So each set Uh has cardinality at most rO(r) · r = rO(r). Also recall
that the number of sets in the MCSP instance is |X | =

∑
j∈[r] |Vj | · |Lj | = nO(r),

and that the number of elements is |U | = m = |E| · rO(r) ≤ (nr)O(r) = nO(r) =

nO(nδ) = 2O(r log r). Thus r ≥ Ω(logm/ log logm).
Thegap in the optimal congestionbetween theYes-Instance and theNo-Instance

is at least r (Thm. 1 and Lemmas 3, 4). More precisely, for Yes-instances the con-
gestion is at most one and for No-instances it is at least r. Since the approximation
ratio of the alleged algorithm is o(logm/ log logm), it is better than r for all suffi-
ciently large n and hence it can be used to decide SAT.

The running time is polynomial in the size of the MCSP instance, i.e., is

poly(nO(nδ)) = nO(nδ) = 2O(n2δ). Since δ is arbitrary, the theorem follows. ��

4 Hardness of Robust k-Median on Line Metrics

We modify the reduction from r-HGLC to Minimum Congestion Set Packing
(MCSP) to give a Ω(logm/ log logm) hardness of approximation for Robust k-
Median on line metrics as well, where m = |S| is the number of client-sets. For
this section, it is convenient to assume that the label-sets are the initial segments
of the natural numbers, i.e., Lj = {1, . . . , |Lj|} and C = {1, . . . , |C|}.

Given a HGLC instance (G, π, r), we first construct a MCSP instance (U,X , t)
in accordance with the procedure outlined in Sect. 3.2. Next, from this MCSP
instance, we construct a Robust k-Median instance (V,S, d) as described below.

– We create a location in V for every set X(v, �) ∈ X . To simplify the notation,
the symbol X(v, �) will represent both a set in the instance (U,X , t), and
a location in the instance (V,S, d). Thus, we have V = {X(v, �) ∈ X}.
Furthermore, we create a set of clients S(e) for every element e ∈ U , which
consists of all the locations whose corresponding sets in the MCSP instance
contain the element e. Thus, we have S = {S(e) : e ∈ U}, where S(e) =
{X(v, �) ∈ X : e ∈ X(v, �)} for all e ∈ U . This step is same as in Lemma 2.

– We now describe how to embed the locations in V on a given line. For every
vertex v ∈ Vj , j ∈ [r], the locations X(v, 1), . . . , X(v, |Lj|) are placed next to
one another in sequence, in such a way that the distance between any two con-
secutive locations is exactly one. Formally, this gives d(X(v, �), X(v, �′)) =
|�′ − �| for all �, �′ ∈ Lj . Furthermore, we ensure that any two locations
corresponding to two different vertices in V are not close to each other. To
be more specific, we have the following guarantee: d(X(v, �), X(v′, �′)) ≥ 2
whenever v �= v′. It is easy to verify that d is a line metric.

60 S. Bhattacharya et al.

– We define k ← |X| − t.
Note that as k = |X | − t, there is a one to one correspondence between

the solutions to the MCSP instance and the solutions to the Robust k-Median
instance. Specifically, a set in X is picked by a solution to the MCSP instance
iff the corresponding location is not picked in the Robust k-Median instance.

Lemma 5 (Yes-Instance). Suppose that there is a labeling strategy σ that
strongly satisfies every edge in the HGLC instance (G, π, r). Then there is a
solution to the Robust k-Median instance (V,S, d) with objective one.

Proof. Recall the proof of Lemma 3. We construct a solution X ′ ⊆ X , |X ′| = t, to
the MCSP instance (U,X , t) as follows. For every v ∈ Vj , j ∈ [r], the solution X ′

contains the set X(v, σ(v)). Now, focus on the corresponding solution FX ′ ⊆ V
to the Robust k-Median instance, which picks a location X iff X /∈ X ′. Hence,
for every vertex v ∈ Vj , j ∈ [r], all but one of the locationsX(v, 1), . . . , X(v, |Lj|)
are included in FX ′ . Since any two consecutive locations in such a sequence are
unit distance away from each other, the cost of connecting any location in V to
the set FX ′ is either zero or one, i.e., d(X,FX ′) ∈ {0, 1} for all X ∈ V = X .

For the rest of the proof, fix any set of clients S(e) ∈ S, e ∈ U . The proof of
Lemma 3 implies that the element e incurs congestion one under X ′. Hence, the
element belongs to exactly one set in X ′, say X∗. Again, comparing the solution
X ′ with the corresponding solution FX ′ , we infer that S(e) − FX ′ = {X∗}.
In other words, every location in S(e), except X∗, is present in the set FX ′ .
The clients in such locations require zero cost for getting connected to FX ′ .
Thus, the total cost of connecting the clients in S(e) to the set FX ′ is at most:∑

X∈S(e) d(X,FX ′) = d(X∗, FX ′) ≤ 1.
Thus, every set of clients in S requires unit cost for connecting to FX ′ . So the

solution FX ′ to the Robust k-Median instance indeed has objective one. ��
Lemma 6 (No-Instance). If every labeling weakly satisfies at most a 2−γr

fraction of the edges in the HGLC instance (G, π, r), for some constant γ then
every solution to the Robust k-Median instance (V,S, d) has objective at least r.

Proof. Fix any solution F ⊆ V to the Robust k-Median instance (V,S, d), and
let X ′

F ⊆ X denote the corresponding solution to the MCSP instance (U,X , t).
By Lemma 4 there is some element e ∈ U with congestion at least r under X ′

F . In
other words, there are at least r sets X1, . . . , Xr ∈ X ′

F that contain the element
e. The locations corresponding to these sets are not picked by the solution F .
Furthermore, the way the locations have been embedded on a line ensures that
the distance between any location and its nearest neighbor is at least one. Hence,
we have d(Xi, F) ≥ 1 for all i ∈ [r]. Summing over these distances, the total cost
of connecting the clients in S(e) to F is at least

∑
i∈[r] d(Xi, F) ≥ r. Thus, the

solution F to the Robust k-Median instance has objective at least r. ��
Finally, applying Lemmas 5, 6, and an argument similar to the proof of Thm. 5,

we get the following result.

Theorem 6. The Robust k-Median problem (V,S, d) is Ω(logm/ log logm) hard

toapproximate evenon linemetrics,wherem = |S|, unlessNP ⊆ ∩δ>0DTIME(2n
δ

).

New Approximability Results for the Robust k-Median Problem 61

5 Conclusion and Future Work

We show a logarithmic lower bound for Robust k-median on the uniform and
line metrics. However, the empirical results suggest that real-world instances are
much easier, so it is interesting to see if realistic assumptions can be added to
the problem in order to obtain constant approximation. For instance, one may
assume that the diameter of each set Si is small compared to the real diameter.
This captures the “locality” of communities. Our hardness results do not apply
in this case. Also, one may attack the problem from parameterized complexity’s
angle: Can we obtain an O(1) approximation algorithm in time g(k) poly(n)?

References

1. Anthony, B.M., Goyal, V., Gupta, A., Nagarajan, V.: A plant location guide for
the unsure: Approximation algorithms for min-max location problems. Math. Oper.
Res. 35(1), 79–101 (2010) (Also in SODA 2008)

2. Arora, S.: Polynomial time approximation schemes for euclidean traveling salesman
and other geometric problems. J. ACM 45(5), 753–782 (1998)

3. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and
the hardness of approximation problems. J. ACM 45(3), 501–555 (1998)

4. Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.:
Local search heuristics for k-median and facility location problems. SIAM J. Com-
put. 33(3), 544–562 (2004)

5. Bansal, N., Khandekar, R., Könemann, J., Nagarajan, V., Peis, B.: On generaliza-
tions of network design problems with degree bounds. Math. Program. 141(1-2),
479–506 (2013)

6. Charikar, M., Guha, S.: Improved combinatorial algorithms for the facility location
and k-median problems. In: FOCS, pp. 378–388. IEEE Computer Society (1999)

7. Charikar, M., Guha, S., Tardos, É., Shmoys, D.B.: A constant-factor approximation
algorithm for the k-median problem. J. Comput. Syst. Sci. 65(1), 129–149 (2002)

8. Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45(4), 634–652
(1998)

9. Hagerup, T., Rüb, C.: A guided tour of Chernoff bounds. Information Processing
Letters 33(6), 305–308 (1990),
http://www.sciencedirect.com/science/article/pii/002001909090214I

10. Kolliopoulos, S.G., Rao, S.: A nearly linear-time approximation scheme for the
euclidean k-median problem. In: Nešetřil, J. (ed.) ESA 1999. LNCS, vol. 1643,
pp. 378–389. Springer, Heidelberg (1999)

11. Li, S., Svensson, O.: Approximating k-median via pseudo-approximation. In:
Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) STOC, pp. 901–910. ACM
(2013)

12. Lin, J.H., Vitter, J.S.: Approximation algorithms for geometric median problems.
Inf. Process. Lett. 44(5), 245–249 (1992)

13. Lund, C., Yannakakis, M.: On the hardness of approximating minimization prob-
lems. J. ACM 41(5), 960–981 (1994)

14. Raz, R.: A parallel repetition theorem. SIAM J. Comput. 27(3), 763–803 (1998)

http://www.sciencedirect.com/science/article/pii/002001909090214I

Trees and Co-trees with Bounded Degrees

in Planar 3-connected Graphs�

Therese Biedl

David R. Cheriton School of Computer Science, University of Waterloo,
Waterloo, Ontario N2L 1A2, Canada

Abstract. This paper considers the conjecture by Grünbaum that every
planar 3-connected graph has a spanning tree T such that both T and
its co-tree have maximum degree at most 3. Here, the co-tree of T is the
spanning tree of the dual obtained by taking the duals of the non-tree
edges. While Grünbaum’s conjecture remains open, we show that every
planar 3-connected graph has a spanning tree T such that both T and
its co-tree have maximum degree at most 5. It can be found in linear
time.

Keywords: Planar graph, canonical ordering, spanning tree, maximum
degree.

1 Introduction

In 1966, Barnette showed that every planar 3-connected graph has a spanning
tree with maximum degree at most 3 [2]. (In the following, a k-tree denotes a
tree with maximum degree at most k.) Since the dual of a 3-connected planar
graph is also 3-connected, the dual graph G∗ also has a spanning 3-tree. In 1970,
Grünbaum [11] conjectured that there are spanning 3-trees in the graph and
its dual that are simultaneous in the sense of being tree and co-tree. For any
spanning tree T in a planar graph, define the co-tree to be the subgraph of the
dual graph formed by taking the dual edges of the edges in G − T . Since cuts
in planar graphs correspond to union of cycles in the dual graph, it is easy to
see that the co-tree is a spanning tree of G∗. Grünbaum conjecture is hence the
following:

Conjecture 1. [11] Every planar 3-connected graph has a spanning 3-tree for
which the co-tree is a spanning 3-tree of the dual graph.

This conjecture was still open in 2007 [12], and to our knowledge remains open
today. This paper proves a slightly weaker statement: Every planar 3-connected
graph has a spanning 5-tree for which the co-tree is a spanning 5-tree of the dual
graph.

� Supported by NSERC and the Ross and Muriel Cheriton Fellowship. Research ini-
tiated while participating at Dagstuhl seminar 13421.

R Ravi and I.L. Gørtz (Eds.): SWAT 2014, LNCS 8503, pp. 62–73, 2014.
c© Springer International Publishing Switzerland 2014

Trees and Co-trees with Bounded Degrees in Planar 3-connected Graphs 63

Our approach is to read this spanning 5-tree from the canonical ordering, a
decomposition that exists for all 3-connected planar graphs [14] and that has
properties useful for many algorithms for graph drawing (see e.g. [6,14,16]) and
other applications (see e.g. [13]). This will be formally defined in Section 2.
There are readily available implementations for finding a canonical ordering (see
for example [4,7]), and getting our tree from the canonical ordering is nearly
trivial, so our trees not only can be found in linear time, but it would be very
easy to implement the algorithm.

The canonical ordering is useful for Barnette’s theorem as well. Barnette’s
proof [2] is constructive, but the algorithm that can be derived from the proof
likely has quadratic run-time (he did not analyze it). With a slightly more struc-
tured proof and suitable data structures, it is possible to find the 3-tree in linear
time [18]. But in fact, the 3-tree can be directly read from the canonical ordering.
This was mentioned by Chrobak and Kant in their technical report [5], but no
details were given as to why the degree-bound holds, and they did not include
the result in their journal version [6]. We provide these details in Section 3,
somewhat as a warm-up and because the key lemma will be needed later. Then
we prove the weakened version of Grünbaum’s conjecture in Section 4.

2 Background

Assume that G = (V,E) is a planar graph, i.e., it can be drawn in the plane
without crossing. Also assume that G is 3-connected, i.e., for any two vertices
{u, v} the graph resulting from deleting u and v is still connected. By Whitney’s
theorem a 3-connected planar graph G has a unique combinatorial embedding,
i.e., in any planar drawing of G the circular clockwise order of edges around each
vertex v is the same, up to reversal of all these orders. Given a planar drawing
Γ , a face is a maximal connected region of R2−Γ . The unbounded face is called
the outer-face, all other faces are interior faces.

Define the dual graph G∗ as follows. For every face f in G, add a vertex f∗ to
G∗. If e is an edge of G with incident faces f� and fr, then add edge e∗ := (f∗

� , f
∗
r)

to G∗; e∗ is called the dual edge of e.
De Fraysseix, Pach and Pollack [9] were the first to introduce a canonical

ordering for triangulated planar graphs. Kant [14] generalized the canonical or-
dering to all 3-connected planar graphs.

Definition 1. [14] A canonical ordering of a planar graph G with a fixed com-
binatorial embedding and outer-face is an ordered partition V = V1 ∪ · · · ∪ VK
that satisfies the following:

– V1 consists of two vertices v1 and v2 where v2 is the counter-clockwise neigh-
bour of v1 on the outer-face.

– VK is a singleton {vn} where vn is the clockwise neighbour of v1 on the
outer-face.

– For each k in 2, . . . ,K, the graph G[V1 ∪ · · · ∪ Vk] induced by V1 ∪ · · · ∪ Vk is
2-connected and contains edge (v1, v2) and all vertices of Vk on the outer-face.

64 T. Biedl

– For each k in 2, . . . ,K − 1 one of the two following conditions hold:
1. Vk contains a single vertex z that has at least two neighbours in V1 ∪
· · · ∪ Vk−1 and at least one neighbour in Vk+1 ∪ · · · ∪ VK .

2. Vk contains � ≥ 2 vertices that induce a path z1−z2−· · ·−z�, enumerated
in clockwise order around the outer-face of G[V1∪· · ·∪Vk]. Vertices z1 and
z� have exactly one neighbour each in V1 ∪ · · · ∪ Vk−1, while z2, . . . , z�−1

have no such neighbours. Each zi, 1 ≤ i ≤ � has at least one neighbour
in Vk+1 ∪ · · · ∪ VK .

vn

V2 ∪ . . . ∪ VK−1

v1

v2

V2 ∪ . . . ∪ Vk−1

v1

v2

Vk = {z}

V2 ∪ . . . ∪ Vk−1

v1

v2

z1
z2 z�

Vk = {z1, . . . , z�}

Fig. 1. The canonical ordering with its implied edge directions (defined in Section 2.1)

Figure 1 illustrates this definition. A set Vk, k = 1, . . . ,K is called a group of
the canonical ordering; a group with one vertex is a singleton-group, all other
groups are chain-groups. Edges with both ends in the same group are called
intra-edges, all others are inter-edges. Notice that when adding group Vk for
k ≥ 2, there exists some faces (one for a chain-group, one or more for a singleton-
group) that are interior faces of G[V1 ∪ · · · ∪ Vk] but were not interior faces of
G[V1 ∪ · · · ∪ Vk−1]; these faces are called the faces completed by group Vk.

Kant [14] showed that any 3-connected planar graph has such a canonical
ordering, even if the outer-face and the 2-path vn − v1 − v2 on it to be used for
the canonical ordering have been fixed. Furthermore, it can be found in linear
time.

2.1 Edge Directions

Given a canonical ordering, one naturally directs inter-edges from the lower-
indexed to the higher-indexed group. For proving Barnette’s theorem, it will be
useful to direct intra-edges as well as follows:

Definition 2. Given a canonical ordering, enumerate the vertices as v1, . . . , vn
as follows. Group V1 consists of v1 and v2. For 2 ≤ k ≤ K, let s = |V1|+ · · ·+
|Vk−1|.

Trees and Co-trees with Bounded Degrees in Planar 3-connected Graphs 65

– If Vk is a singleton group {z}, then set vs+1 := z.

– If Vk is a chain-group z1, . . . , z�, then let vh and vi be the neighbours of z1
and z� in V1 ∪ · · · ∪ Vk−1, respectively. If h < i, then set vs+j := zj for
j = 1, . . . , �, else set vs+j := z�−j+1 for j = 1, . . . , �.

Let idx(v) be the index of vertex v in this enumeration. Consider edges to be
directed from the lower-indexed to the higher-indexed vertex, with the exception
of edge (v1, vn), which we direct vn → v1. These edge directions are illustrated
in Figure 1, with higher-indexed vertices drawn with larger y-coordinate.

Observation 1 (1) Every vertex has, in its clockwise order of incident edges,
a non-empty interval of incoming edges followed by a non-empty interval of out-
going edges.

(2) The edges on each of the two faces incident to (v1, vn) form a directed
cycle.

(3) For every face not incident to (v1, vn), the incident edges form two directed
paths.

Proof. For purposes of this proof only, consider edge (v1, vn) to be directed
v1 → vn. Then by properties of the canonical ordering, every vertex except v1
has at least one incoming edge, and every vertex except vn has at least one
outgoing inter-edge. Therefore this orientation is bi-polar: it is acyclic with a
single source v1 and a single sink vn. It is known [19] that property (1) holds
for all vertices �= v1, vn in a bi-polar orientation in a planar graph. Orienting
edge (v1, vn) as vn → v1 also makes (1) hold at v1 and vn, since they then have
exactly one incoming/one outgoing edge.

In the bi-polar orientation, property (3) holds for any face f [19]. Orienting
edge (v1, vn) as vn → v1 will not change the property unless f is incident to
(v1, vn). If f is incident to (v1, vn), then v1 (as a source) was necessarily the
beginning and vn was necessarily the end of the two directed paths. Orienting
edge (v1, vn) as vn → v1 therefore turns the two directed paths into one directed
cycle. So (2) holds.

Define the first and last outgoing edge to be the first and last edge in the clock-
wise order around v that is outgoing; this is well-defined by Observation 1(1).
Also define the following:

Definition 3. For any vertex vi, i ≥ 2, let the parent-edge be the incoming edge
vh → vi for which h is maximized.

If e = v → w is a directed edge, then w is the head of e, v is the tail of e, and
v is a predecessor of w. The left face of e is the face to the left when walking from
the tail to the head, and the right face of e is the other face incident to e. The
predecessor at the parent-edge of w is called the parent of w. The predecessors
of group Vk are all vertices that are predecessors of some vertex in Vk.

66 T. Biedl

2.2 Edge Labels

To read trees from the canonical ordering, it helps to assign labels to the edges
incident to a vertex. They are very similar to Felsner’s triorientation derived from
Schnyder labellings [8] (which in turn can easily be derived from the canonical
ordering [15]), but differ slightly in the handling of intra-edges and edge (v1, vn).

Definition 4. Given a canonical ordering, label the edge-vertex-incidences as
follows:

– If Vk is a singleton-group {z} with 2 ≤ k ≤ K, then the first incoming edge of
z (in clockwise order) is labelled SE, the last incoming edge of z (in clockwise
order) is labelled SW, and all other incoming edges of z are labelled S.

– If Vk is a chain-group {z1, . . . , z�} with 2 ≤ k < K, then the incoming inter-
edge of z1 is labelled SW at z1, the incoming inter-edge of z� is labelled SE
at z�, and any intra-edge (zi, zi+1) is labelled E at zi and W at zi+1.

– Edge v1 → v2 is labelled E at v1 and W at v2.
– Edge vn → v1 is labelled S at v1.
– If an inter-edge v → w is labelled SE / S / SW at w, then label it NW / N

/ NE at v.

Call an edge an L-edge (for L ∈ {S, SW,W,NW,N,NE,E, SE}) if it is labelled
L at one endpoint.

SW
SE

SS

V1 ∪ . . . ∪ Vk−1

f
v

x

z
W

SE

V1 ∪ . . . ∪ Vk−1

SW

W

z1
z2

z�

E

E

v

x

f

Fig. 2. The canonical ordering with its implied edge labelling. We also illustrate nota-
tions for the proof of Lemma 2.

See Figure 2 for an illustration of this labelling. The following properties are
easily verified (see also [6] and [8] for similar results):

Lemma 1. – At each vertex there are, in clockwise order, some edges labelled
S, at most one edge labelled SW, at most one edge labelled W, some edges
labelled NW, at most one edge labelled N, some edges labelled NE, at most
one edge labelled E, and at most one edge labelled SE.

– An edge is an intra-edge if and only if it is labelled E at one endpoint and
W at the other.

– No vertex has an edge labelled W and an edge labelled SW.
– No vertex has an edge labelled E and an edge labelled SE.

Trees and Co-trees with Bounded Degrees in Planar 3-connected Graphs 67

3 Barnette’s Theorem via the Canonical Ordering

We now show that Barnette’s theorem has a proof where the tree can be read
directly from a canonical ordering.

Theorem 1. Let G be a planar graph with a canonical ordering. Then the
parent-edges forms a spanning tree of maximum degree 3.

Proof. Let T be the set of parent edges. First note that each vertex v2, . . . , vn
has exactly one incoming edge in T , and there is no directed cycle since (v1, vn)
is not a parent-edge and therefore edges are directed according to indices. So T is
indeed a spanning tree. To see the bound on the maximum degree, the following
lemma suffices:

Lemma 2. Assume v → w is a parent-edge of w. Then either v → w is the
first outgoing edge at v and labelled W or NW or N at v, or v → w is the last
outgoing edge at v and labelled E or NE or N at v.

Proof. w = v1 is impossible since v1 has no parent. If w = v2, then its parent-
edge v1 → v2 is the last outgoing edge of v1 and labelled W, so the claim holds.
Now consider w = vi for some i ≥ 3, which means that w belongs to some group
Vk for k ≥ 2. There are two cases:

– Vk is a chain-group z1 − · · · − z�, which implies k < K. Assume that the
chain is directed z1 → · · · → z�; the other case is symmetric. Refer to
Figure 2(right). Note that zi is the parent of zi+1 for 1 ≤ i < �, and zi →
zi+1 is the last outgoing edge of zi and labelled E, so the claim holds for
w ∈ {z2, . . . , z�}.
Consider w = z1. The parent v of z1 is the predecessor of Vk adjacent to z1.
Let x be the other predecessor of Vk (it is adjacent to z�). The direction of
the chain implies idx(v) > idx(x). Let f be the face completed by Vk and
observe that it does not contain (v1, vn). By Observation 1(3) the boundary
of f consists of two directed paths, which both end at z�. The vertex where
these two paths begin cannot be v, otherwise there would be a directed path
from v to x and therefore idx(x) > idx(v). So v has at least one incoming
edge on face f , and hence v → z1 is its last outgoing edge. Also, this edge is
labelled SW at z1, hence NE at v, as desired.

– Vk is a singleton-group {z} with z = w. Refer to Figure 2(left). Let x → w
be an incoming edge of w that comes before or after v → w in the clockwise
order of edges at w. Such an edge must exist since w has at least two incoming
edges (this holds for w = vn by 3-connectivity). Assume that the clockwise
order at w contains x→ w followed by v → w; the other case is similar.
Let f be the face incident to edges v → w and x→ w. By construction f is
not incident to (v1, vn), and by Observation 1(3) the boundary of f consists
of two directed paths, which both end at w. The vertex where these two
paths begin cannot be v, otherwise there would be a directed path from v to
x, hence idx(x) > idx(v) contradicting the definition of parent-edge v → w.

68 T. Biedl

So v has at least one incoming edge on face f . hence v → w is the last
outgoing edge at v. Furthermore, v → w cannot be labelled SE at w (since
x→ w comes clockwise before it), so it is labelled SW or S at w, hence NE
or N at v as desired.

So in T , every vertex is incident to at most three edges: the parent-edge,
the first outgoing edge, and the last outgoing edge. This finishes the proof of
Theorem 1.

In a later paper [3], Barnette strengthened his own theorem to show that in
addition one can pick one vertex and require that it has degree 1 in the spanning
tree. Using the canonical ordering allows us to strengthen this result even further:
All vertices on one face have degree at most 2, and two of them can be required
to have degree 1.

Corollary 1. Let G be a planar graph with vertices u,w on a face f , and assume
that the graph that results from adding edge (u,w) to G is 3-connected. Then G
has a spanning tree T with maximum degree 3 such that degT (u) = 1 = degT (w),
and all other vertex x on face f have degT (x) ≤ 2.

Proof. Let G+ = G∪(u,w) and find a canonical ordering of G+ with u = v1 and
w = vn. Let T be the spanning 3-tree of G+ obtained from the parent-edges;
this will satisfy all properties.

Observe that (v1, vn) is not a parent-edge, so T is a spanning tree of G as well.
Let f� and fr be the left and right face of vn → v1. Both faces are completed
by VK = {vn}. It follows that any edge on f� (except vn → v1) is a SW-
edge, because only such edges may have a not-yet-completed face on their left.
Therefore for any vertex x �= vn on f� the first outgoing edge is labelled NE and
by Lemma 2 it does not belong to T . So degT (x) ≤ 2 for all x ∈ f�. Similarly
one shows that degT (x) ≤ 2 for all x ∈ fr. Finally, degT (vn) = 1 since vn has
no outgoing parent-edges, and degT (v1) = 1 since all vertices other than v2 have
higher-indexed predecessors.

4 On Grünbaum’s Conjecture

One can easily find an example of a graph where the 3-tree from Theorem 1 yields
a co-tree with unbounded degree. So unfortunately the proof of Theorem 1 does
not help to solve Grünbaum’s conjecture. In this section, we show that every
planar 3-connected graph G has a spanning tree T such that both T and its
co-tree T ∗ are 5-trees. Tree T will again be read from the canonical ordering,
but with a different approach. Assume throughout this section that a canonical
order of G has been fixed.

A crucial insight is that a canonical ordering implies a dual canonical ordering,
i.e., a canonical ordering of the dual graph G∗. This was shown, for example,
by Badent et al. [1]. An inspection of the construction shows also that the edge
labels of G and G∗ relate as follows:

Trees and Co-trees with Bounded Degrees in Planar 3-connected Graphs 69

Theorem 2. For any canonical ordering of a 3-connected planar graph G, there
exists a canonical ordering of the dual graph G∗ such that the following hold:

– The dual of any intra-edge of G is a S-edge in G∗.
– The dual of any S-edge of G is an intra-edge in G∗.
– The dual of any SW-edge e of G is a SE-edge in G∗, and directed from the

left face of e to the right face of e.
– The dual of any SE-edge e of G is a SW-edge in G∗, and directed from the

right face of e to the left face of e.

Now define a subgraph of G from the labels of its edges. If a vertex has NW-
edges, then let the last one (in clockwise order around v) be the NNW-edge.
Similarly define the NNE-edge as the first NE-edge in clockwise order.

Definition 5. Presume a canonical ordering of a planar graph G is fixed. An
edge e of G is called an H-edge if it satisfies one of the following:

(H1) e is an intra-edge,
(H2) e is the NNW-edge of its tail,
(H3) e is the NNE-edge of its tail,
(H4) e is the parent-edge of its head and the N-edge of its tail.

The graph formed by the H-edges of G is denoted H(G).

SW SE

S

N

use if parent-edge

SS

use if NNE-edge use if NNW-edge

NE
NE

E

NNE-edge: use

don’t usedon’t use

NNW-edge: use

W useuse

use if parent-edge

NW

NW

Fig. 3. Illustration of H-edges. Solid edges are H-edges; thick dashed edges may be
H-edges depending on the other endpoint.

Lemma 3. Any vertex v has at most 5 incident H-edges.

Proof. Observe first that v has at most two incident H-edges that are outgoing
inter-edges. For no such edge is added under rule (H1). Rules (H2), (H3) and
(H4) add at most one such H-edge each. But if rule (H4) adds edge e, then e
is the N-edge of v. By Lemma 2 it also is the first or last outgoing edge of v.

70 T. Biedl

Therefore if rule (H4) applies then v has no NW-edge or no NE-edge, and so one
of rules (H2) and (H3) does not apply.

Next consider the group of edges at v consisting of the intra-edges at v, and the
SW-edge and SE-edge. Clearly this group has at most four edges, but actually
they are only two edges by Lemma 1. So v has at most two incident H-edges in
this group.

All edges at v that are neither outgoing inter-edges nor in the above group
are incoming edges labelled S. Only one such edge (namely, the parent-edge of
v) can be an H-edge. So v has at most 5 incident H-edges.

Let H(G∗) be the graph formed by the H-edges of G∗, using the dual canon-
ical ordering. H(G∗) also has maximum degree 5. Neither H(G) nor H(G∗) is
necessarily a tree, and it is not even obvious that they are connected. The plan
is now to find a spanning tree of H(G) for which the co-tree belongs to H(G∗).
Two lemmas are needed for this.

Lemma 4. Let e be an edge in G −H(G). Then the dual edge e∗ of e belongs
to H(G∗).

Proof. If e is a N-edge, then its dual is an intra-edge and hence belongs to
H(G∗). Edge e cannot be a NNW-edge or NNE-edge or intra-edge since it is not
in H(G). The remaining case is hence that e is a NW-edge of its tail v, but not
the NNW-edge. (The case of a NE-edge that is not the NNE-edge is similar.)
Figure 4 (left) illustrates this case.

Let e′ be the clockwise next edge at v; this is also a NW-edge of v since e
is not the NNW-edge. Let f be the face between e and e′ at v. By Theorem 2,
edge (e′)∗ is labelled SW at f∗ while e∗ is labelled NE. Since e∗ and e′∗ are
consecutive at f∗, therefore e∗ is the NNE-edge of f∗ and hence in H(G∗).

v

e

e′

NW

�

f
NE

NW

SW

v

e
e′

NW

�

f

NE

not SE

not NE

vNW

�

NE

fih

f

fi�
fi0 �

�

e1e3

e2zh zh+1

�

SE

NE

NENW

NW

SW
WE

Fig. 4. For the proofs of Lemma 4 and 5. Edges in the dual are dashed.

Lemma 5. Let C be a cycle of edges in H(G). Then there exists an edge e ∈ C
such that e∗ belongs to H(G∗).

Proof. There are three cases where e can be found easily; the bulk of the proof
deals with the more complicated situation where none of them applies.

Case (C1): C contains a N-edge e. Then e∗ is an intra-edge and belongs to H(G∗)
by rule (H1).

Trees and Co-trees with Bounded Degrees in Planar 3-connected Graphs 71

Case (C2): C contains a NW-edge e such that the clockwise next edge e′ at the
tail v of e is not a SE-edge. This case is illustrated in Figure 4(middle). Let f
be the face between e and e′. Since e is a NW-edge, e∗ is a NE-edge. Since e′ is
not a SE-edge, (e′)∗ is not a NE-edge. So e∗ is the NNE-edge of f∗ and belongs
to H(G∗) by rule (H2).

Case (C3): C contains a NE-edge e such that the counter-clockwise next edge at
e’s tail is not a SW-edge. With a symmetric argument to (C2) one then shows
that e∗ is a NNW-edge and belongs to H(G∗) by rule (H3).

Case (C4): None of the above cases applies. Since intra-edges form paths, cycle
C must contain some inter-edges. Let e1 be the inter-edge of C that minimizes
the index of its tail v. e1 is not a N-edge, otherwise (C1) would apply. So e1
is either a NW-edge or a NE-edge of v. By definition of H-edges, therefore e1
is the NNW-edge or the NNE-edge of v. Assume the former, the other case is
symmetric. We will show that the situation is as in Figure 4(right).

Let e2 be the other edge in C incident to v. Edge e2 cannot be a N-edge
at v, otherwise (C1) would apply. It also cannot be a NE-edge or E-edge at
v, otherwise the clockwise edge after e1 at v is not a SE-edge and (C2) would
apply. Edge e2 also cannot be a SE-edge or S-edge or SW-edge at v, otherwise
it would be an incoming inter-edge and its tail would have a smaller index than
v, contradicting the choice of e1. Also e2 cannot be a NW-edge at v, because the
NNW-edge e1 is the only NW-edge that is an H-edge at v. Thus edge e2 must
be an intra-edge labelled W at v.

Let Vk = {z1, . . . , z�} be the chain-group containing edge e2. Notice that v
has no E-edge (otherwise (C2) would apply), so v = z�. Let a be the minimal
index such that that path za − za+1 − · · · − z� is part of C. Let e3 be the edge
incident to za that is on C and different from (za, za+1). Observe that e3 is an
inter-edge, for if it were an intra-edge then its other endpoint would be za−1,
contradicting the definition of a. Also observe that e3 cannot be incoming at za,
for otherwise the index of its tail would be smaller than all indices in Vk, and in
particular smaller than the index of v = z�; this contradicts the choice of e1.

So e3 is an outgoing inter-edge at za. If e3 were a N-edge then (C1) would
apply. If it were a NW-edge, then (due to E-edge (za, za+1)) (C2) would apply.
So e3 is a NE-edge. Since it is an H-edge, it is the NNE-edge of za. Since (C3)
does not apply, za cannot have a W-edge, which shows that a = 1.

Let f be the face completed by the chain-group Vk, and let f∗
i0 , . . . , f

∗
i�
be the

predecessors of f∗ in the dual canonical order. By the correspondence of edge-
label of Theorem 2, fi0 shares the SW-edge of z1 with f , face fih (for 1 ≤ h < �)
shares (zi, zi+1) with f , and fi� shares the SE-edge of z� with f .

Let f∗
ip
→ f∗ be the parent-edge of f∗ in the dual canonical ordering. Observe

that p �= 0. For edge (f∗
i0 , f

∗) is a NW-edge at f∗
i0 , as is e

∗
3. Thus (f

∗
i0 , f

∗) is not
the first outgoing edge at f∗

i0 , and by Lemma 2 hence not a parent-edge. Likewise
one shows p �= �. So 1 ≤ p < � and the parent-edge of f∗ is a N-edge. By rule
(H4) the parent-edge of f∗ is in H(G∗). Setting e = (zp, zp+1) yields the result.

72 T. Biedl

4.1 Putting It All Together

Theorem 3. Every planar 3-connected graph G has a spanning tree T such that
both T and its co-tree have maximum degree at most 5. T can be found in linear
time.

Proof. First observe that H(G) is connected. For if it were disconnected, then
there would exist a non-trivial cut with all cut-edges in G−H(G). By Lemma 4
the duals of the cut-edges belong to H(G∗). Since cuts in a planar graph corre-
spond to unions of cycles in the dual, hence the duals of the cut-edges contain a
non-empty cycle C of edges in H(G∗). By Lemma 5 one edge of C has its dual
in H(G), contradicting the definition of the cut.

Let H0 be all those edges in H(G) for which the dual edge does not belong
to H(G∗). By Lemma 5 H0 contains no cycle, so it is a forest. Assign a weight
of 0 to all edges in H0, a weight of 1 to all edges in H(G)−H0, and a weight of
∞ to all edges in G −H(G). Then compute a minimum spanning tree T of G.
Since H0 is a forest, all its edges are in T . Since H(G) is connected, no edge in
G−H(G) belongs to T . So T is a subgraph of H(G) and has maximum degree
at most 5. All edges in the co-tree T ∗ of T are duals of edges that are in G−H0,
and by definition of H0 and Lemma 4 these edges belong to H(G∗). So T ∗ is a
subgraph of H(G∗) and has maximum degree at most 5.

It remains to analyze the time complexity. One can compute a canonical or-
dering in linear time, and from it, obtain the dual canonical ordering and the
edge-sets H(G) and H(G∗) in linear time. The bottleneck is hence the computa-
tion of the minimum spanning tree. But there are only 3 different weights, and
using a bucket-structure, rather than a priority queue, in Prim’s algorithm, we
can find the next vertex to add to the tree in constant time. Hence the minimum
spanning tree can be found in linear time.

5 Conclusion

In this paper, we showed that every planar 3-connected graph has a spanning
tree of maximum degree 5 such that the co-tree also has a spanning tree of
maximum degree 5. This is a first step towards proving Grünbaum’s conjecture.

Barnette’s theorem has as easy consequence that every planar 3-connected
graph has a 3-walk: a walk that visits every vertex at most 3 times. But in
fact, one can show a stronger statement: Every planar 3-connected graph has
a 2-walk [10]. The results in the paper imply similar results: every planar 3-
connected graph has a walk that alternates between faces and incident vertices
and visits every vertex and every face at least once and at most 5 times. (Here
by “visit v” we mean that the walk alternates between v and incident faces, and
similarly for “visiting f”.) An interesting open problem is, as a first step towards
Grünbaum’s conjecture, to try to reduce this “5” to a smaller number.

A second open problem concerns generalizations to other surfaces. Barnette’s
theorem generalizes to 3-connected graphs on the projective plane, torus or the
Klein bottle [3]; see also a recent survey [17] for many related results. For what

Trees and Co-trees with Bounded Degrees in Planar 3-connected Graphs 73

k can one find a spanning k-tree in, say, a toroidal 3-connected graph such that
the duals of the non-tree edges form a graph of maximum degree at most k?

References

1. Badent, M., Baur, M., Brandes, U., Cornelsen, S.: Leftist canonical ordering.
In: Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 159–170.
Springer, Heidelberg (2010)

2. Barnette, D.W.: Trees in polyhedral graphs. Canad. J. Math. 18, 731–736 (1966)
3. Barnette, D.W.: 3-trees in polyhedral maps. Israel Journal of Mathematics 79,

251–256 (1992)
4. boost C + + libraries on planar graphs (2013), http://www.boost.org/ (last ac-

cessed December 2, 2013)
5. Chrobak, M., Kant, G.: Convex grid drawings of 3-connected planar graphs. Tech-

nical Report RUU-CS-93-45, Rijksuniversiteit Utrecht (1993)
6. Chrobak, M., Kant, G.: Convex grid drawings of 3-connected planar graphs. Inter-

nat. J. Comput. Geom. Appl. 7(3), 211–223 (1997)
7. de Fraysseix, H., Ossona de Mendez, P.: P.I.G.A.L.E., Public Implementation of

Graph Algorithm Libeary and Editor (2013), http://pigale.sourceforge.net/
(last accessed December 2, 2013)

8. Felsner, S.: Convex drawings of planar graphs and the order dimension of 3-
polytopes. Order 18, 19–37 (2001)

9. de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid.
Combinatorica 10, 41–51 (1990)

10. Gao, Z., Richter, R.B.: 2-walks in circuit graphs. J. Comb. Theory, Ser. B 62(2),
259–267 (1994)

11. Grünbaum, B.: Polytopes, graphs, and complexes. Bull. Amer. Math. Soc. 76,
1131–1201 (1970)

12. Grünbaum, B.: Graphs of polyhedra; polyhedra as graphs. Discrete Mathemat-
ics 307(3-5), 445–463 (2007)

13. He, X., Kao, M.-Y., Lu, H.-I.: Linear-time succinct encodings of planar graphs via
canonical orderings. SIAM J. Discrete Math. 12(3), 317–325 (1999)

14. Kant, G.: Drawing planar graphs using the canonical ordering. Algorithmica 16,
4–32 (1996)

15. Miura, K., Azuma, M., Nishizeki, T.: Canonical decomposition, realizer, Schny-
der labeling and orderly spanning trees of plane graphs. Int. J. Found. Comput.
Sci. 16(1), 117–141 (2005)

16. Nishizeki, T., Rahman, M.S.: Planar Graph Drawing. Lecture Notes Series on
Computing, vol. 12. World Scientific (2004)

17. Ozeki, K., Yamashita, T.: Spanning trees: A survey. Graphs and Combina-
torics 27(1), 1–26 (2011)

18. Strothmann, W.-B.: Bounded-degree spanning trees. PhD thesis, FB Math-
ematik/Informatik und Heinz-Nixdorf Institute, Universität-Gesamthochschule
Paderborn (1997)

19. Tamassia, R., Tollis, I.: A unified approach to visibility representations of planar
graphs. Discrete Computational Geometry 1, 321–341 (1986)

http://www.boost.org/
http://pigale.sourceforge.net/

Approximating the Revenue Maximization

Problem with Sharp Demands�

Vittorio Bilò1, Michele Flammini2,3, and Gianpiero Monaco2

1 Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento
Provinciale Lecce-Arnesano, P.O. Box 193, 73100 Lecce, Italy

vittorio.bilo@unisalento.it
2 Department of Information Engineering Computer Science and Mathematics,

University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy
{flammini,gianpiero.monaco}@di.univaq.it
3 Gran Sasso Science Institute, L’Aquila, Italy

Abstract. We consider the revenue maximization problem with sharp
multi-demand, in which m indivisible items have to be sold to n potential
buyers. Each buyer i is interested in getting exactly di items, and each
item j gives a benefit vij to buyer i. We distinguish between unrelated
and related valuations. In the former case, the benefit vij is completely
arbitrary, while, in the latter, each item j has a quality qj , each buyer
i has a value vi and the benefit vij is defined as the product viqj . The
problem asks to determine a price for each item and an allocation of
bundles of items to buyers with the aim of maximizing the total revenue,
that is, the sum of the prices of all the sold items. The allocation must be
envy-free, that is, each buyer must be happy with her assigned bundle
and cannot improve her utility. We first prove that, for related valua-
tions, the problem cannot be approximated to a factor O(m1−ε), for any
ε > 0, unless P = NP and that such result is asymptotically tight. In fact
we provide a simple m-approximation algorithm even for unrelated val-
uations. We then focus on an interesting subclass of “proper” instances,
that do not contain buyers a priori known not being able to receive
any item. For such instances, we design an interesting 2-approximation
algorithm and show that no (2 − ε)-approximation is possible for any
0 < ε ≤ 1, unless P = NP. We observe that it is possible to efficiently
check if an instance is proper, and if discarding useless buyers is allowed,
an instance can be made proper in polynomial time, without worsening
the value of its optimal solution.

1 Introduction

A major decisional process in many business activities concerns whom to sell
products (or services) to and at what price, with the goal of maximizing the

� This work was partially supported by the PRIN 2010–2011 research project ARS
TechnoMedia: “Algorithmics for Social Technological Networks” funded by the Ital-
ian Ministry of University.

R Ravi and I.L. Gørtz (Eds.): SWAT 2014, LNCS 8503, pp. 74–85, 2014.
c© Springer International Publishing Switzerland 2014

Approximating the Revenue Maximization Problem with Sharp Demands 75

total revenue. On the other hand, consumers would like to buy at the best
possible prices and experience fair sale criteria.

In this work, we address such a problem froma computational point of view, con-
sidering a two-sidedmarket in which the supply side consists ofm indivisible items
and the demand one is populated by n potential buyers (in the following also called
consumers or customers), where each buyer i has a demand di (the number of items
that i requests) and valuations vij representing the benefit i gets when owing item
j. As several papers on this topic (see for instance [19,9,16]), we assume that, by
means of market research or interaction with the consumers, the seller knows each
customer’s valuation for each item. The seller sets up a price pj for each item j and
assigns (i.e., sells) bundle of items to buyers with the aim of maximizing her rev-
enue, that is the sum of the prices of all the sold items.When a consumer is assigned
(i.e., buys) a set of items, her utility is the difference between the total valuation of
the items she gets (valuations being additive) and the purchase price. The sets of
the sold items, the purchasing customers and their purchase prices are completely
determined by the allocation of bundles of items to customers unilaterally decided
by the seller. Nevertheless, we require such an allocation to meet two basic fairness
constraints: (i) each customer i is allocated at most one bundle not exceeding her
demand di and providing her a non-negative utility, otherwise she would not buy
the bundle; (ii), the allocationmust be envy-free [25], i.e., each customer i does not
prefer any subset of di items different from the bundle she is assigned. Notice that
in our scenario a trivial envy-free solution always exists that lets pj = ∞ for each
item j and does not assign any item to any buyer.

Many papers (see the Related Work section for a detailed reference list) consid-
ered the unit demand case inwhich di = 1 for each consumer i. Arguably, themulti-
demand case, where di ≥ 1 for each consumer i, is more general and finds much
more applicability. To this aim, we can identify two main multi-demand schemes.
The first one is the relaxed multi-demand model, where each buyer i requests at
most di ≥ 1 items, and the second one is the sharp multi-demand model, where
each buyer i requests exactly di ≥ 1 items and, therefore, a bundle of size less than
di has no value for buyer i. For relaxedmulti-demandmodels, a standard technique
can reduce the problem to the unit demand case in the following way: each buyer
i with demand di is replaced by di copies of buyer i, each requesting a single item.
However, such a trick does not apply to the sharp demandmodel. Moreover, as also
pointed out in [9], the sharpmulti-demand model exhibits a property that unit de-
mand and relaxed multi-demand ones do not posses. In fact, while in the latter
model any envy-free pricing is such that the price pj is always at most the value of
vij , in the sharp demand model, a buyer i may pay an item j more than her own
valuation for that item, i.e., pj > vij and compensate her loss with profits from the
other items she gets (see section 3.1 of [9]). Such a property, also called overpricing,
clearly adds an extra challenge to find an optimal revenue.

The sharp demand model is quite natural in several settings. Consider, for
instance, a scenario in which a public organization has the need of buying a
fixed quantity of items in order to reach a specific purpose (i.e. locations for
offices, cars for services, bandwidth, storage, or whatever else), where each

76 V. Bilò, M. Flammini, and G. Monaco

item might have a different valuation for the organization because of its size,
reliability, position, etc. Yet, suppose a user wants to store on a remote server
a file of a given size s and there is a memory storage vendor that sells slots
of fixed size c, where each cell might have different features depending on the
server location and speed and then yielding different valuations for the user. In
this case, a number of items smaller than

⌈
s
c

⌉
has no value for the user. Similar

scenarios also apply to cloud computing. In [9], the authors used the following
applications for the sharp multi-demand model. In TV (or radio) advertising
[21], advertisers may request different lengths of advertising slots for their
ads programs. In banner (or newspaper) advertising, advertisers may request
different sizes or areas for their displayed ads, which may be decomposed into
a number of base units. Also, consider a scenario in which advertisers choose
to display their advertisement using medias (video, audio, animation) [2,22]
that would usually need a fixed number of positions, while text ads would
need only one position each. An example of formulation sponsored search using
sharp multi-demands can be found in [14]. Other results concerning the sharp
multi-demand model in the Bayesian setting can be found in [13].

Related Work. Pricing problems have been intensively studied in the lit-
erature, see e.g., [23,1,18] just to cite a few, both in the case in which the
consumers’ preferences are unknown (mechanism design [24]) and in the case
of full information that we consider in this paper. In fact, our interest here
is in maximizing the seller’s profit assuming that consumers’ preferences are
gathered through market research or conjoint analysis [19,9,16]. From an
algorithmic point of view, [19] is the first paper dealing with the problem of
computing the envy-free pricing of maximum revenue. The authors considered
the limited supply unit demand and the unlimited supply single minded cases
for which they gave O(log n) and O(log n + logm) approximation algorithms,
respectively. An Ω(logε n) hardness result has been showed in [4] for the unit
demand case, and a tight hardness results of Ω(log1−ε n) recently appeared in
[5,6,7]. For the single minded case an Ω(log n) hardness result can be found
in [11]. The subcase in which every buyer positively evaluates at most two
items has been studied in [8]. The authors proved that the problem is solvable
in polynomial time and it becomes NP-hard if some buyer gets interested
in at least three items. For the multi-demand model, Chen et. al. [10] gave
an O(logD) approximation algorithm when there is a metric space behind
all items, where D is the maximum demand, and Briest [4] showed that the
problem is hard to approximate within a ratio of O(nε) for some ε > 0.

To the best of our knowledge, [9] is the first paper explicitly dealing with
the sharp multi-demand model. The authors considered a particular valuation
scheme (also used in [15] for keywords advertising scenarios) where each item j
has a parameter qj measuring the quality of the item and each buyer i has a
value vi representing the benefit that i gets when owing an item of unit quality.
Thus, the benefit that i obtains from item j is given by viqj . For such a problem,
the authors proved that computing the envy-free pricing of maximum revenue is

Approximating the Revenue Maximization Problem with Sharp Demands 77

NP-hard. Moreover, they showed that if the demand of each buyer is bounded
by a constant, the problem becomes solvable in polynomial time. We remark
that this valuation scheme is a special case of the one in which the valuations
vij are completely arbitrary and given as an input of the problem. Throughout
the paper, we will refer to the former scheme as to related valuations and to
the latter as to unrelated valuations. Recently [12] considered the sharp multi-
demand model with the additional constraint in which items are arranged as a
sequence and buyers want items that are consecutive in the sequence.

Finally [16] studied the pricing problem in the case in which buyers have
a budget, but no demand constraints. The authors considered a special case
of related valuations in which all qualities are equal to 1 (i.e., qj = 1 for
each item j). They proved that the problem is still NP-hard and provided a
2-approximation algorithm. Such algorithm assigns the same price to all the
sold items. Many of the papers listed above deal with the case of limited supply.
Another stream of research considers unlimited supply, that is, the scenario in
which each item j exists in ej copies and it is explicitly allowed that ej = ∞.
The limited supply setting seems generally more difficult than the unlimited
supply one. In this paper we consider the limited supply setting. Interesting
results for unlimited supply can be found in [19,11].

Our Contribution. We consider the revenue maximization problem with
sharp multi-demand and limited supply. We first prove that, for related
valuations, the problem cannot be approximated to a factor O(m1−ε), for any
ε > 0, unless P = NP and that such result is asymptotically tight. In fact we
provide a simple m-approximation algorithm even for unrelated valuations. Our
inapproximability proof relies on the presence of some buyers not being able to
receive any bundle of items in any envy-free outcome. Thus, it becomes natural
to ask oneself what happens for instances of the problem, that we call proper,
where no such pathological buyers exist. For proper instances, we design an
interesting 2-approximation algorithm and show that the problem cannot be
approximated to a factor 2− ε for any 0 < ε ≤ 1 unless P = NP. Therefore, also
in this subcase, our results are tight. We remark that it is possible to efficiently
decide whether an instance is proper. Moreover, if discarding useless buyers is
allowed, an instance can be made proper in polynomial time, without worsening
the value of its optimal solution.

Paper Organization. Next section contains the necessary definitions and some
preliminary results, while Section 3 defines a useful pricing scheme of fundamen-
tal importance for our analysis. Finally, Sections 4 and 5 contains our results
for general and proper instances, respectively. Due to space constraints, some
details and almost all proofs have been removed and can be found in the full
version of the paper [3].

2 Model and Preliminaries

In theRevenueMaximization Problem with SharpMulti-Demands (RMPSD) inves-
tigated in this paper, we are given a market made up of a setM = {1, 2, . . . ,m}

78 V. Bilò, M. Flammini, and G. Monaco

of items and a set N = {1, 2, . . . , n} of buyers. Each item j ∈ M has unit supply
(i.e., only one available copy). We consider both unrelated and related valuations.
In the former each buyers i has valuations vij representing the benefit i gets when
owing item j. In the latter each item is characterized by a quality (or desirability)
qj > 0, while each buyer i ∈ N has a value vi > 0, measuring the benefit that
she gets when receiving a unit of quality, thus, the valuation that buyer i has for
item j is vij = viqj . We notice that related is a special case of unrelated valuations.
Throughout thepaper,whennot explicitly indicated,we refer to relatedvaluations.
Finally each buyer i has a demand di ∈ Z+, which specifies the exact number of
items she wants to get. In the following we assume items and bidders ordered in
non-increasing order, that is, vi ≥ vi′ for i < i′ and qj ≥ qj′ for j < j′.

An allocation vector is an n-tuple X = (X1, . . . , Xn), where Xi ⊆ M , with
|Xi| ∈ {0, di},

∑
i∈N |Xi| ≤ m and Xi ∩Xi′ = ∅ for each i �= i′ ∈ N , is the set

of items sold to buyer i. A price vector is an m-tuple p = (p1, . . . , pm), where
pj > 0 is the price of item j. An outcome of the market is a pair (X,p).

Given an outcome (X,p), we denote with uij(p) = vij − pj the utility that
buyer i gets when she is sold item j and with ui(X,p) =

∑
j∈Xi

uij(p) the
overall utility of buyer i in (X,p). When the outcome (or the price vector) is
clear from the context, we simply write ui and uij . An outcome (X,p) is feasible
if ui ≥ 0 for each i ∈ N .

We denote with M(X) =
⋃

i∈N Xi the set of items sold to some buyer accord-
ing to the allocation vector X. We say that a buyer i is a winner if Xi �= ∅ and
we denote with W (X) the set of all the winners in X. For an item j ∈ M(X),
we denote with bX(j) the buyer i ∈ W (X) such that j ∈ Xi, while, for an item
j /∈ M(X), we define bX(j) = 0. Moreover, for a winner i ∈ W (X), we denote
with fX(i) = min{j ∈M : j ∈ Xi} the best-quality item in Xi. Also in this case,
when the allocation vector is clear from the context, we simply write b(j) and
f(i). Finally, we denote with β(X) = max{i ∈ N : i ∈W (X)} the maximum in-
dex of a winner in X. An allocation vectorX is monotone if minj∈Xi{qj} ≥ qf(i′)
for each i, i′ ∈ W (X) with vi > vi′ , that is, all the items of i are of quality greater
of equal to the one of all the items of i′.

Definition 1. A feasible outcome (X,p) is an envy-free outcome if, for each
buyer i ∈ N , ui ≥

∑
j∈T uij for each T ⊆M of cardinality di.

Notice that, by definition, an outcome (X,p) is envy-free if and only if the
following three conditions holds: (i) ui ≥ 0 for each i ∈ N , (ii) uij ≥ uij′ for
each i ∈ W (X), j ∈ Xi and j′ /∈ Xi, (iii)

∑
j∈T uij ≤ 0 for each i /∈ W (X)

and T ⊆ M of cardinality di. Note also that, as already remarked, envy-free
solutions always exist, since the outcome (X,p) such that Xi = ∅ for each i ∈ N
and pj =∞ for each j ∈M is envy-free. Moreover, deciding whether an outcome
is envy-free can be done in polynomial time.

By the definition of envy-freeness, if i ∈W (X) is a winner, then all the buyers
i′ with vi′ > vi and di′ ≤ di must be winners as well, otherwise i′ would envy a
subset of the bundle assigned to i. This motivates the following definition, which
restricts to instances not containing buyers not being a priori able to receive
items in any envy-free assignment (useless buyers).

Approximating the Revenue Maximization Problem with Sharp Demands 79

Definition 2. An instance I is proper if, for each buyer i ∈ N , it holds di +∑
i′|vi′>vi,di′≤di

di′ ≤ m.

The (market) revenue generated by an outcome (X,p) is defined as
rev(X,p) =

∑
j∈M(X) pj . RMPSD asks for the determination of an envy-free

outcome of maximum revenue. We observe that it is possible to efficiently check
if an instance is proper, and if discarding useless buyers is allowed, an instance
can be made proper in polynomial time, without worsening the value of its op-
timal solution. An instance of the RMPSD problem can be modeled as a triple
(V,D,Q), where V = (v1, . . . , vn) and D = (d1, . . . , dn) are the vectors of buy-
ers’ values and demands, while Q = (q1, . . . , qm) is the vector of item qualities.
We conclude this section with three lemmas describing some properties that need
to be satisfied by any envy-free outcome.

Lemma 1 ([9]). If an outcome (X,p) is envy-free, then X is monotone.

Given an outcome (X,p), an item j ∈ Xi is overpriced if uij < 0.

Lemma 2 ([9]). Let (X,p) be an envy-free outcome. For each overpriced item
j′ ∈M(X), it holds b(j′) = β(X).

3 A Pricing Scheme for Monotone Allocation Vectors

Since we are interested only in envy-free outcomes, by Lemma 1, in the following
we will implicitly assume that any considered allocation vector is monotone.

We call pricing scheme a function which, given an allocation vectorX, returns
a price vector. In this section, we propose a pricing scheme for allocation vectors
which will be at the basis of our approximability and inapproximability results.
For the sake of readability, in describing the following pricing function, given X,
we assume a re-ordering of the buyers in such a way that all the winners appear
first, still in non-increasing order of vi.
For an allocation vector X, define the price vector p̃ such that, for each j ∈M ,

p̃j = ∞ if b(j) = 0 and p̃j = vb(j)qj −
β(X)∑

k=b(j)+1

(
(vk−1 − vk)qf(k)

)
otherwise.

Quite interestingly, such a scheme resembles one presented [20]. Next lemma
shows that p̃ is indeed a price vector.

Lemma 3. For each j ∈M , it holds p̃j > 0.

We continue by showing the following important property, closely related to
the notion of envy-freeness, possessed by the outcome (X, p̃) for each allocation
vector X.

Lemma 4. For each allocation vector X, the outcome (X, p̃) is feasible and, for
each winner i ∈ W (X), ui ≥

∑
j∈T uij for each T ⊆M of cardinality di. Thus,

the allocation is envy-free for the subset of the winners buyers.

80 V. Bilò, M. Flammini, and G. Monaco

4 Results for Generic Instances

In this section, we show that it is hard to approximate the RMPSD to a factor
O(m1−ε) for any ε > 0, even when considering related valuations, whereas a
simple m-approximation algorithm can be designed for unrelated valuations.

4.1 Inapproximability Result

For an integer k > 0, we denote with [k] the set {1, . . . , k}. Recall that an instance
of the Partition problem is made up of k strictly positive numbers q1, . . . , qk
such that

∑
i∈[k] qi = Q, where Q > 0 is an even number. It is well-known that

deciding whether there exists a subset J ⊂ [k] such that
∑

i∈J qi = Q/2 is an NP-
complete problem. The inapproximability result that we derive in this subsection
is obtained through a reduction from a specialization of the Partition problem,
that we call Constrained Partition problem, which we define in the following.

An instance of the Constrained Partition problem is made up of an even number
k of non-negative numbers q1, . . . , qk such that

∑
i∈[k] qi = Q, where Q is an even

number and 3
2 mini∈[k]{qi} ≥ maxi∈[k]{qi}. In this case, we are asked to decide

whether there exists a subset J ⊂ [k], with |J | = k/2, such that
∑

i∈J qi = Q/2.

Lemma 5. The Constrained Partition problem is NP-complete.

We can now proceed to show our first inapproximability result, by means
of the following reduction. Given an integer k ≥ 3, consider an instance I of
the Constrained Partition problem with 2(k − 1) numbers q1, . . . , q2(k−1) such

that
∑2(k−1)

i=1 qi = Q and define qmin = mini∈[2(k−1)]{qi}. Remember that, by

definition, Q is even and it holds 3
2qmin ≥ maxi∈[2(k−1)]{qi}. Note that, this last

property, together with Q ≥ 2(k−1)qmin, implies that qj ≤ 3Q
4(k−1) <

Q
2 for each

j ∈ [2(k − 1)] since k ≥ 3.
For any ε > 0, define α =

⌈
2
ε

⌉
+ 1 and λ = kα. Note that, by definition,

λ ≥ k2. We create an instance I ′ of the RMPSD as follows. There are n = 5
buyers and m = λ + k − 1 items divided into four groups: k items of quality
Q, one item of quality Q/2, 2(k − 1) items of qualities qi, with i ∈ [2(k − 1)],
inherited from I, and λ− 2k items of quality q := qmin

100 > 0. The five buyers are

such that v1 = 2 and d1 = k, v2 = 1+ 1
λ

Q−2kq+kQ(λ+1)/2
Qk+Q−2kq+λq and d2 = λ, v3 = 1+ 1

λ

and d3 = k, v4 = 1 + 1
λ

Q−kq
Q+(λ−2k)q and d4 = λ− k, v5 = 1 and d5 = λ− 2k.

Note that it holds vi > vi+1 for each i ∈ [4]. In fact, v4 > 1 = v5, since
λ > 2k and Q ≥ 2(k − 1)qmin = 200(k − 1)q > kq for k ≥ 2. Moreover,
v4 < 1+ 1

λ , since λ > k implies Q−kq < Q+(λ−2k)q. Finally, v2 > 1+ 1
λ , since

λ > 2 = kQ
k(Q−Q/2) >

kQ
kQ−2q implies Q− 2kq+ kQ(λ+1)

2 > Qk+Q− 2kq+λq and

v2 < 2 = v1, since λ >
k
2 +1 implies Q− 2kq+ kQ(λ+1)

2 < λ(Qk+Q− 2kq+λq).
The basic ideas behind this reduction are the following ones: (i) although buy-

ers 2 and 4 are useless, they do generate envy; (ii) each envy-free assignment of
sufficiently high revenue has to satisfy the demand of buyer 5; (iii) in any envy-free

Approximating the Revenue Maximization Problem with Sharp Demands 81

assignment satisfying the demand of buyer 5, the set of items allocated to buyer 3
has to provide a positive answer to the ConstrainedPartition problem I, otherwise
either buyer 2 or 4 become envious. In particular, we show that, if there exists a
positive answer to I, then there exists an envy-free outcome for I ′ of revenue at
least (λ − 2k)q, while, if a positive answer to I does not exists, then no envy-free
outcome of revenue greater than 6(k + 3)(k − 1)qmin can exist for I ′.

Lemma 6. If there exists a positive answer to I, then there exists an envy-free
outcome for I ′ of revenue greater than (λ− 2k)q.

Now we stress the fact that, in any envy-free outcome (X,p) for I ′ such that
rev(X,p) > 0, it must be X1 �= ∅. In fact, assume that there exists an envy-free
outcome (X,p) such that X1 = ∅ and Xi �= ∅ for some 2 ≤ i ≤ 5, then, since
d1 ≤ di and v1 > vi for each 2 ≤ i ≤ 5, it follows that there exists a subset of d1
items T such that u1 > ui ≥ 0, which contradicts the envy-freeness of (X,p). As
a consequence of this fact and of the definition of the demand vector, it follows
that each possible envy-free outcome (X,p) for I ′ can only fall into one of the
following three cases:

1. X1 �= ∅ and Xi = ∅ for each 2 ≤ i ≤ 5,
2. X1, X3 �= ∅ and X2, X4, X5 = ∅,
3. X1, X3, X5 �= ∅ and X2, X4 = ∅.

Note that, for each envy-free outcome (X,p) falling into one of the first two
cases, it holds rev(X,p) ≤ v1kQ+v3

3
2Q ≤ Q(2k+3) ≤ (2k+3)2(k−1)32qmin =

6(k+3)(k−1)qmin. In the remaining of this proof, we will focus only on outcomes
falling into case (3). First, we show that, if any such an outcome is envy-free,
then the sum of the qualities of the items assigned to buyer 3 cannot exceed Q.

Lemma 7. In any envy-free outcome (X,p) falling into case (3), it holds∑
j∈X3

qj ≤ Q.

On the other hand, we also show that, for any envy-free outcome (X,p) falling
into case (3), the sum of the qualities of the items assigned to buyer 3 cannot
be smaller than Q.

Lemma 8. In any envy-free outcome (X,p) falling into case (3), it holds∑
j∈X3

qj ≥ Q.

As a consequence of Lemmas 7 and 8, it follows that there exists an envy-free
outcome (X,p) falling into case (3) only if

∑
j∈X3

qj = Q. Since, as we have
already observed, in such a case the item of quality Q/2 has to belong to X3, it
follows that there exists an envy-free outcome (X,p) falling into case (3) only if
there are k− 1 items inherited from I whose sum is exactly Q/2, that is, only if
I admits a positive solution.

Any envy-free outcome not falling into case (3) can raise a revenue of at
most 6(k + 3)(k − 1)qmin. Hence, if there exists a positive answer to I, then,
by Lemma 6, there exists a solution to I ′ of revenue greater than (λ − 2k)q,

82 V. Bilò, M. Flammini, and G. Monaco

while, if there is no positive answer to I, then there exists no solution to I ′ of
revenue more than 6(k+3)(k− 1)qmin. Thus, if there exists an r-approximation

algorithm for the RMPSD with r ≤ (λ−2k)qmin

600(k+3)(k−1)qmin
, it is then possible to

decide in polynomial time the Constrained Partition problem, thus implying P =
NP. Since, by the definition of α, λ−2k

600(k+3)(k−1) = O
(
kα−2

)
= O

(
m1−2/α

)
and

m1−ε < m1−2/α, the following theorem holds.

Theorem 1. For any ε > 0, the RMPSD cannot be approximated to a factor
O(m1−ε) unless P = NP.

We stress that this inapproximability result heavily relies on the presence of
two useless buyers, namely buyers 2 and 4, who cannot be winners in any envy-
free solution. This situation suggests that better approximation guarantees may
be possible for proper instances, as we will show in the next section.

4.2 The Approximation Algorithm

In this subsection, we design a simple m-approximation algorithm for the gen-
eralization of the RMPSD in which the buyers have unrelated valuations. The
inapproximability result given in Theorem 1 shows that, asymptotically speak-
ing, this is the best approximation one can hope for unless P = NP.

For each i ∈ N , let Ti = argmaxT⊆M :|T |=di

{∑
j∈T vij

}
be the set of the di

best items for buyer i and define Ri =
(∑

j∈Ti
vij

)
/di. Let i

∗ be the index of the

buyer with the highest value Ri. Consider the algorithm best which returns the
outcome (X,p) such that Xi∗ = Ti∗ , X i = ∅ for each i �= i∗, pj = Ri∗ for each
j ∈ Ti∗ and pj = ∞ for each j /∈ Ti∗ . It is easy to see that the computational
complexity of Algorithm best is O(nm).

Theorem 2. Algorithm best returns an m-approximate solution for the RMPSD
with unrelated valuations.

5 Results for Proper Instances

Given a proper instance I = (V,D,Q), denote with δ the number of different
values in V and, for each k ∈ [δ], let Ak ⊆ N denote the set of buyers with the
kth highest value and v(Ak) denote the value of all buyers in Ak. For k ∈ [δ],

define A≤k =
⋃k

h=1Ah, A≥k =
⋃δ

h=k Ah, A>k = A≥k \Ak and A<k = A≤k \Ak,
while, for each subset of buyers A ⊆ N , define d(A) =

∑
i∈A di. Let δ

∗ ∈ [δ]

be the minimum index such that d(A≤δ∗) > m and let Ã ⊂ Aδ∗ be a subset

of buyers in Aδ∗ such that Ã = argmaxA⊂Aδ∗ :d(A)+d(A<δ∗)≤m {d(A)} . In other

words Ã is the subset of buyers in Aδ∗ that feasibly extends A<δ∗ (i.e., such

that the sum of the requested items of buyers in A<δ∗ ∪ Ã is at most m) and
maximizes the number of allocated items.

Approximating the Revenue Maximization Problem with Sharp Demands 83

Note that any instance I for which δ∗ does not exist can be suitably extended
with a dummy buyer n + 1, such that vn+1 < vn and dn+1 = m + 1, which is
equivalent in the sense that it does not change the set of envy-free outcomes of
I. Hence, in this section, we will always assume that δ∗ is well-defined for each
proper instance of the RMPSD.

For our purposes we need to break ties among values of the buyers in Aδ∗ in
such a way that each buyer in Ã comes before any buyer in Aδ∗ \ Ã. In order

to achieve this task, we need to explicitly compute the set of buyers Ã. Such a
computation can be done by reducing this problem to the knapsack problem. It is
easy to see that, in this case, the well-known pseudo-polynomial time algorithm
for knapsack is polynomial in the dimensions of I, as di ≤ m for every i ∈ N .

Because of the above discussion, from now on we can assume that ties among
values of the buyers in Aδ∗ are broken in such a way that each buyer in Ã comes
before any buyer in Aδ∗ \ Ã. For each k ∈ [δ∗], define

α(k) =

{
max{i ∈ Ak} if k ∈ [δ∗ − 1],

max{i ∈ Ã} if k = δ∗.

By the definition of δ∗ and Ã and by the tie breaking rule imposed on the buyers

in Aδ∗ , it follows that
∑α(k)

i=1 di ≤ m for each k ∈ [δ∗].
We say that an allocation vector X is an h-prefix of I, with h ∈ [α(δ∗)], if X

is monotone and i ∈ W (X) if and only if i ∈ [h].

5.1 Computing an h-Prefix of I of Maximum Revenue

Let X be an h-prefix of I. We show that (X, p̃) is an envy-free outcome.

Lemma 9. The outcome (X, p̃) is envy-free.

Given an allocation vector X, for each i ∈ [δ], denote with Mi(X) = {j ∈
M(X) : vb(j) = v(Ai)} the set of items allocated to the buyers with the ith
highest value inV. Recall that, sinceX is an h-prefix of I, it holds β(X) = h. The
following lemma gives a lower bound on the revenue generated by the outcome
(X, p̃).

Lemma 10. rev(X, p̃) ≥ vh
∑

j∈Mh(X) qj.

We now prove a very important result stating that the price vector p̃ is the best
one can hope for when overpricing is not allowed. Such a result, of independent
interest, plays a crucial role in the proof of the approximation guarantee of the
algorithm we define in this section.

Lemma 11. Let X be an h-prefix of I. Then (X, p̃) is an optimal envy-free
outcome when overpricing is not allowed.

We design a polynomial time algorithm ComputePrefix (described in the full
version [3]) which, given a proper instance I and a value h ∈ [α(δ∗)], outputs the
h-prefix X∗

h such that the outcome (X∗
h, p̃) achieves the highest revenue among

all possible h-prefixes of I in time O(mh).

84 V. Bilò, M. Flammini, and G. Monaco

5.2 The Approximation Algorithm

Our approximation algorithm Prefix for proper instances generates a set of pre-
fixes of I for which it computes the allocation of items yielding maximum revenue
by exploiting the algorithm ComputePrefix as a subroutine. Then, it returns the
solution with the highest revenue among them.

Prefix(input: instance I, output: allocation vector X∗):
opt := ∅; value := −1;
compute Ã;
reorder the buyers in such a way that each i ∈ Ã comes before any i′ ∈ Aδ∗ \ Ã;
for each h = 1, . . . , α(δ∗) do
| X∗

h := ComputePrefix(I, h);
| if rev(X∗

h, p̃) > value then
| | opt := X∗

h; value := rev(X∗
h, p̃);

for each k = 0, . . . , δ∗ − 1 do
| for each i ∈ Ak+1 do
| | reorder the buyers in Ak+1 in such a way that i is the first buyer in Ak+1;
| | if d(A≤k) + di ≤ m then X∗

k := ComputePrefix(I, |A≤k|+ 1);
| | if rev(X∗

k, p̃) > value then
| | | opt := X∗

k; value := rev(X∗
k, p̃);

return opt;

It is easy to see that the computational complexity of Algorithm Prefix is
O(n3m). As a major positive contribution of this work, we show that it approx-
imates the RMPSD to a factor 2 on proper instance.

Theorem 3. The approximation ratio of Algorithm Prefix is 2 when applied to
proper instances.

We conclude this section by showing that the approximation ratio achieved
by Algorithm Prefix is the best possible one for proper instances.

Theorem 4. For any 0 < ε ≤ 1, the RMPSD on proper instances cannot be
approximated to a factor 2− ε unless P = NP.

References

1. Aggarwal, G., Feder, T., Motwani, R., Zhu, A.: Algorithms for Multi-Product Pric-
ing. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004.
LNCS, vol. 3142, pp. 72–83. Springer, Heidelberg (2004)

2. Bezjian-Avery, A., Calder, B., Iacobucci, D.: New Media Interative Advertising vs.
Traditional Advertising. Journal of Advertising Research, 23–32 (1998)

3. Bilò, V., Flammini, M., Monaco, G.: Approximating the Revenue Maximization
Problem with Sharp Demands. CoRR, arXiv:1312.3892 (2013)

4. Briest, P.: Uniform Budgets and the Envy-Free Pricing Problem. In: Aceto, L.,
Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I.
(eds.) ICALP2008,Part I. LNCS, vol. 5125, pp. 808–819. Springer,Heidelberg (2008)

Approximating the Revenue Maximization Problem with Sharp Demands 85

5. Chalermsook, P., Chuzhoy, J., Kannan, S., Khanna, S.: Improved Hardness Results
for Profit Maximization Pricing Problems with Unlimited Supply. In: Gupta, A.,
Jansen, K., Rolim, J., Servedio, R. (eds.) APPROX 2012 and RANDOM 2012.
LNCS, vol. 7408, pp. 73–84. Springer, Heidelberg (2012)

6. Chalermsook, P., Laekhanukit, B., Nanongkai, D.: Independent Set, Induced
Matching, and Pricing: Connections and Tight (Subexponential Time) Approx-
imation Hardnesses. In: Proceedings of FOCS 2013, pp. 370–379 (2013)

7. Chalermsook, P., Laekhanukit, B., Nanongkai, D.: Graph Products Revisited:
Tight Approximation Hardness of Induced Matching, Poset Dimension and More.
In: Proceedings of SODA 2013, pp. 1557–1576 (2013)

8. Chen, N., Deng, X.: Envy-Free Pricing in Multi-item Markets. In: Abramsky, S.,
Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP
2010. LNCS, vol. 6199, pp. 418–429. Springer, Heidelberg (2010)

9. Chen, N., Deng, X., Goldberg, P.W., Zhang, J.: On Revenue Maximization with
Sharp Multi-Unit Demands. In: CoRR, arXiv:1210.0203 (2012)

10. Chen, N., Ghosh, A., Vassilvitskii, S.: Optimal Envy-Free Pricing with Metric
Substitutability. SIAM Journal on Computing 40(3), 623–645 (2011)

11. Demaine, E.D., Feige, U., Hajiaghayi, M., Salavatipour, M.R.: Combination Can
Be Hard: Approximability of the Unique Coverage Problem. SIAM Journal on
Computing 38(4), 1464–1483 (2008)

12. Deng, X., Goldberg, P., Sun, Y., Tang, B., Zhang, J.: Pricing Ad Slots with Con-
secutive Multi-unit Demand. In: Vöcking, B. (ed.) SAGT 2013. LNCS, vol. 8146,
pp. 255–266. Springer, Heidelberg (2013)

13. Deng, X., Goldberg, P.W., Tang, B., Zhang, J.: Multi-unit Bayesian Auction with
Demand or Budget Constraints. In: Proceedings of WIT-EC 2012 (2012)

14. Deng, X., Sun, Y., Yin, M., Zhou, Y.: Mechanism Design for Multi-slot Ads Auction
in Sponsored Search Markets. In: Lee, D.-T., Chen, D.Z., Ying, S. (eds.) FAW 2010.
LNCS, vol. 6213, pp. 11–22. Springer, Heidelberg (2010)

15. Edelman, B., Ostrovsky, M., Schwarz, M.: Internet Advertising and the Generalized
Second-Price Auction. American Economic Review 97(1), 242–259 (2007)

16. Feldman, M., Fiat, A., Leonardi, S., Sankowski, P.: Revenue Maximizing Envy-Free
Multi-Unit Auctions with Budgets. In: Proceedings of EC 2012, pp. 532–549 (2012)

17. Foley, D.: Resource Allocation and the Public Sector. Yale Economic Essays 7,
45–98 (1967)

18. Glynn, P., Rusmevichientong, P., Van Roy, B.: A Non-Parametric Approach to
Multi-Product Pricing. Operations Research 54(1), 82–98 (2006)

19. Guruswami, V., Hartline, J.D., Karlin, A.R., Kempe, D., Kenyon, C., McSherry, F.:
On Profit-Maximizing Envy-Free Pricing. In: Proceedings of SODA 2005,
pp. 1164–1173 (2005)

20. Hartline, J.D., Yan, Q.: Envy, Truth, and Profit. In: Proceedings of EC 2011,
pp. 243–252 (2011)

21. Nisan, N., et al.: Google’s Auction for TV Ads. In: Albers, S., Marchetti-
Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part
II. LNCS, vol. 5556, pp. 309–327. Springer, Heidelberg (2009)

22. Rosenkrans, G.: The Creativeness and Effectiveness of Online Interactive Rich
Media Advertising. Journal of Interactive Advertising 9(2) (2009)

23. Shocker, A.D., Srinivasan, V.:Multiattribute Approaches for Product Concept Eval-
uation andGeneration:ACriticalReview.Journal ofMarketingResearch16, 159–180
(1979)

24. Vickrey, W.: Counterspeculation, Auctions, and Competitive Sealed Tenders. Jour-
nal of Finance 16, 8–37 (1961)

25. Walras, L.: Elements of Pure Economics. Allen and Unwin (1954)

Reconfiguring Independent Sets in Claw-Free

Graphs

Paul Bonsma1, Marcin Kamiński2, and Marcin Wrochna2,�

1 University of Twente, Faculty of EEMCS, PO Box 217, 7500 AE Enschede,
The Netherlands

p.s.bonsma@ewi.utwente.nl
2 Uniwersytet Warszawski, Institute of Computer Science, Warsaw, Poland

mjk@mimuw.edu.pl, mw290715@students.mimuw.edu.pl

Abstract. We present a polynomial-time algorithm that, given two in-
dependent sets in a claw-free graph G, decides whether one can be trans-
formed into the other by a sequence of elementary steps. Each elementary
step is to remove a vertex v from the current independent set S and to
add a new vertex w (not in S) such that the result is again an indepen-
dent set. We also consider the more restricted model where v and w have
to be adjacent.

1 Introduction

Reconfiguration Problems. To obtain a reconfiguration version of an algorith-
mic problem, one defines a reconfiguration rule – a (symmetric) adjacency relation
between solutions of the problem, describing small transformations one is allowed
to make. The main focus is on studying whether one given solution can be trans-
formed into another by a sequence of such small steps. We call this a reachabil-
ity problem. For example, in a well-studied reconfiguration version of vertex color-
ing [1,2,3,4,5,6],weare given twok-colorings of thevertices of a graphandwe should
decide whether one can be transformed into the other by recoloring one vertex at
a time so that all intermediate solutions are also proper k-colorings.

A useful way to look at reconfiguration problems is through the concept of
the solution graph. Given a problem instance, the vertices of the solution graph
are all solutions to the instance, and the reconfiguration rule defines its edges.
Clearly, one solution can be transformed into another if they belong to the
same connected component of the solution graph. Other well-studied questions
in the context of reconfiguration are as follows: can one efficiently decide (for
every instance) whether the solution graph is connected? Can one efficiently
find shortest paths between two solutions? Common non-algorithmic results are
giving upper and lower bounds on the possible diameter of components of the

� The first author was supported by the European Community’s Seventh Framework
Programme (FP7/2007-2013), grant agreement n◦ 317662. The second and third
author were supported by the Foundation for Polish Science (HOMING PLUS/2011-
4/8) and the National Science Center (SONATA 2012/07/D/ST6/02432).

R Ravi and I.L. Gørtz (Eds.): SWAT 2014, LNCS 8503, pp. 86–97, 2014.
c© Springer International Publishing Switzerland 2014

Reconfiguring Independent Sets in Claw-Free Graphs 87

solution graph, in terms of the instance size, or studying how much the solution
space needs to be increased in order to guarantee connectivity.

Reconfiguration is a natural setting for real-life problems in which solutions
evolve over time and an interesting theoretical framework that has been grad-
ually attracting more attention. The theoretical interest is based on the fact
that reconfiguration problems provide a new perspective and offer a deeper un-
derstanding of the solution space as well as a potential to develop heuristics to
navigate that space.

The reconfiguration paradigm has recently been applied to a number of al-
gorithmic problems: vertex coloring [1,2,3,4,5], list-edge coloring [7], clique, set
cover, integer programming, matching, spanning tree, matroid bases [8], block
puzzles [9], satisfiability [10], independent set [9,8,11], shortest paths [12,13,14],
and dominating set [15]; recently also in the setting of parameterized complexity
[16]. A recent survey [17] gives a good introduction to this area of research.

Reconfiguration of Independent Sets. The topic of this paper is reconfig-
uration of independent sets. An independent set in a graph is a set of pairwise
nonadjacent vertices. We will view the elements of an independent set as tokens
placed on vertices. Three different reconfiguration rules have been studied in the
literature: token sliding (TS), token jumping (TJ), and token addition/removal
(TAR). The reconfiguration rule in the TS model allows to slide a token along
an edge. The reconfiguration rule in the TJ model allows to remove a token
from a vertex and place it on another unoccupied vertex. In the TAR model, the
reconfiguration rule allows to either add or remove a token as long as at least k
tokens remain on the graph at any point, for a given integer k. In all three cases,
the reconfiguration rule may of course only be applied if it maintains an inde-
pendent set. A sequence of moves following these rules is called a TS-sequence,
TJ-sequence, or k-TAR-sequence, respectively. Note that the TS model is more
restricted than the TJ model, in the sense that any TS-sequence is also a TJ-
sequence. Kamiński et al. [11] showed that the TAR model generalizes the TJ
model, in the sense that there exists a TJ-sequence between two solutions I and
J with |I| = |J | if and only if there exists a k-TAR-sequence between them, with
k = |I| − 1. TS seems to have been introduced by Hearn and Demaine [9], TAR
was introduced by Ito et al. [8] and TJ by Kamiński et al. [11].

In all three models, the corresponding reachability problems are PSPACE-
complete in general graphs [8] and even in perfect graphs [11] or in planar graphs
of maximum degree 3 [9] (see also [3]). We remark that in [9], only the TS-model
was explicitly considered, but since only maximum independent sets are used,
this implies the result for the TJ model (see Proposition 2 below) and for the
TAR model (using the aforementioned result from [11]).

Claw-Free Graphs. A claw is the tree with four vertices and three leaves.
A graph is claw-free if it does not contain a claw as an induced subgraph. A
claw is not a line graph of any graph and thus the class of claw-free graphs
generalizes the class of line graphs. The structure of claw-free graphs is not
simple but has been recently described by Chudnovsky and Seymour in the
form of a decomposition theorem [18].

88 P. Bonsma, M. Kamiński, and M. Wrochna

There is a natural one-to-one correspondence between matchings in a graph
and independent sets in its line graph. In particular, a maximum matching in
a graph corresponds to a maximum independent set in its line graph. Hence,
Edmonds’ maximum matching algorithm [19] gives a polynomial-time algorithm
for finding maximum independent sets in line graphs. This results has been
extended to claw-free graphs independently by Minty [20] and Sbihi [21]. Both
algorithms work for the unweighted case, while the algorithm of Minty, with a
correction proposed by Nakamura and Tamura in [22], applies to weighted graphs
(see also [23, Section 69]). Recently Nobili and Sassano [24] improved this to
give an O(n4 logn) algorithm, while Faenza et al. [25] proved a decomposition
theorem that allows to solve the problem in O(n3) time.

Our Results. In this paper, we study the reachability problem for independent
set reconfiguration, using the TS and TJ model. Our main result is that these
problems can be solved in polynomial time for the case of claw-free graphs.
Along the way, we prove some results that are interesting in their own right.
For instance, we show that for connected claw-free graphs, the existence of a
TJ-sequence implies the existence of a TS-sequence between the same pair of
solutions. This implies that for connected claw-free and even-hole-free graphs,
the solution graph is always connected, answering an open question posed in [11].

Since claw-free graphs generalize line graphs, our results generalize the result
by Ito et al. [8] on matching reconfiguration. Since a vertex set I of a graph G
is an independent set if and only if V (G)\I is a vertex cover, our results also
apply to the recently studied vertex cover reconfiguration problem [16]. The new
techniques we introduce can be seen as an extension of the techniques introduced
for finding maximum independent sets in claw-free graphs, and we expect them
to be useful for addressing similar reconfiguration questions, such as efficiently
deciding whether the solution graph is connected.

Because of space constraints, some proof details are omitted. Statements for
which more proof details can be found in the full version of this paper [26] are
marked with a star.

2 Preliminaries

For graph theoretic terminology not defined here, we refer to [27]. For a graph
G and vertex set S ⊆ V (G), we denote the subgraph induced by S by G[S], and
denote G − S = G[V \S]. The set of neighbors of a vertex v ∈ V (G) is denoted
by N(v), and the closed neighborhood of v is N [v] = N(v)∪{v}. A walk from v0
to vk of length k is a sequence of vertices v0, v1, . . . , vk such that vivi+1 ∈ E(G)
for all i ∈ {0, . . . , k− 1}. It is a path if all of its vertices are distinct, and a cycle
if k ≥ 3, v0 = vk and v0, . . . , vk−1 is a path. We use V (C) to denote the vertex
set of a path or cycle, viewed as a subgraph of G. A path or graph is called
trivial if it contains only one vertex. Edges of a directed graph or digraph D are
called arcs, and are denoted by the ordered tuple (u, v). A directed path in D
is a sequence of distinct vertices v0, . . . , vk such that for all i ∈ {0, . . . , k − 1},
(vi, vi+1) is an arc of D.

Reconfiguring Independent Sets in Claw-Free Graphs 89

We denote the distance of two vertices u, v ∈ V (G) by dG(u, v). By diam(G)
we denote the diameter of a connected graph G, defined as maxu,v∈V (G) dG(u, v).
For a vertex set S of a graph G and integer i ∈ N, we denote Ni(S) = {v ∈
V (G)\S : |N(v) ∩ S| = i}.

For a graph G, by TSk(G) we denote the graph that has as its vertex the set
of all independent sets of G of size k, where two independent sets I and J are
adjacent if there is an edge uv ∈ E(G) with I\J = {u} and J\I = {v}. We say
that J can be obtained from I by sliding a token from u to v, or by the move
u → v for short. A walk in TSk(G) from I to J is called a TS-sequence from I
to J . We write I ↔ts J to indicate that there is a TS-sequence from I to J .

Analogously, by TJk(G) we denote the graph that has as its vertex set the set
of all independent sets of G of size k, where two independent sets I and J are
adjacent if there is a vertex pair u, v ∈ V (G) with I\J = {u} and J\I = {v}.
We say that J can be obtained from I by jumping a token from u to v. A walk
in TSk(G) from I to J is called a TJ-sequence from I to J . We write I ↔tj J
to indicate that there exists a TJ-sequence from I to J . Note that TSk(G) is a
spanning subgraph of TJk(G).

The reachability problem for token sliding (resp. token jumping) has as input
a graph G and two independent sets I and J of G with |I| = |J |, and asks
whether I ↔ts J (resp. I ↔tj J). These problems are called TS-Reachability
and TJ-Reachability, respectively.

If H is a claw with vertex set {u, v, w, x} such that N(u) = {v, w, x}, then H
is called a u-claw with leaves v, w, x. Sets I\{v} and I ∪{v} are denoted by I−v
and I + v respectively. The symmetric difference of two sets I and J is denoted
by IΔJ = (I\J) ∪ (J\I). The following observation is used implicitly in many
proofs:

Proposition 1. Let I and J be independent sets in a claw-free graph G. Then
every component of G[IΔJ] is a path or an even length cycle.

By α(G) we denote the size of the largest independent set of G. An inde-
pendent set I is called maximum if |I| = α(G). A vertex set S ⊆ V (G) is a
dominating set if N [v]∩ S �= ∅ for all v ∈ V (G). Observe that a maximum inde-
pendent set is a dominating set, thus the only possible token jumps from it are
between adjacent vertices, and hence all are token slides:

Proposition 2. Let G be any graph and k = α(G). Then, TSk(G) = TJk(G).
In particular, for any two maximum independent sets I and J in G, I ↔ts J if
and only if I ↔tj J .

3 The Equivalence of Sliding and Jumping

In our main result (Theorem 17), we will consider equal size independent sets
I and J of a claw-free graph G, and show that in polynomial time, it can be
verified whether I ↔ts J and whether I ↔tj J . In this section, we show
that if G is connected and G[IΔJ] contains no cycles, then I ↔ts J . From this,
we will subsequently conclude that for connected claw-free graphs I ↔ts J holds
if and only if I ↔tj J holds, even in the case of nonmaximum independent sets.

90 P. Bonsma, M. Kamiński, and M. Wrochna

Lemma 3 (*). Let I and J be independent sets in a connected claw-free graph
G with |I| = |J |. If G[IΔJ] contains no cycles, then I ↔ts J .

Proof sketch: We show that I or J can be modified using token slides so that the
two resulting independent sets are closer to each other in the sense that either
|I \ J | is smaller, or it is unchanged and the minimum distance between vertices
u, v with u ∈ I \J and v ∈ J \ I is smaller. The claim then follows by induction.

Suppose first that G[IΔJ] contains at least one nontrivial component C. Since
it is not a cycle by assumption, it must be a path. Choose an end vertex u of this
path, and let v be its unique neighbor on the path. If u ∈ J then N(u)∩I = {v},
so we can obtain a new independent set I ′ = I + u − v from I using a single
token slide. The new set I ′ is closer to J in the sense that |I ′\J | < |I\J |, so we
may use induction to conclude that I ′ ↔ts J , and thus I ↔ts J . On the other
hand, if u ∈ I then we can obtain a new independent set J ′ = J − v + u from
J , and conclude the proof similarly by applying the induction assumption to J ′

and I.
In the remaining case, we may assume that G[IΔJ] consists only of isolated

vertices. Choose u ∈ I\J and v ∈ J\I, such that the distance d := dG(u, v)
between these vertices is minimized. Starting with I, we intend to slide the
token on u to v, to obtain an independent set I ′ = I − u+ v that is closer to J .
To this end, we choose a shortest path P = v0, . . . , vd in G from v0 = u to vd = v.
If the token can be moved along this path while maintaining an independent set
throughout, then I ↔ts I

′, and the proof follows by induction as before.
So now suppose that this cannot be done, that is, at least one of the vertices

on P is equal to or adjacent to a vertex in I − u. In that case, we choose i
maximum such that N(vi) ∩ I �= ∅. Using some simple observations (including
the fact that G is claw-free), one can now show that N(vi)∩I consists of a single
vertex x. By choice of vi, starting with I, the token on x can be moved along the
path x, vi, vi+1, . . . , vd while maintaining an independent set throughout. This
yields an independent set I ′′ = I − x + v, with I ↔ts I ′′. It can also easily
be shown that dG(u, x) < dG(u, v) and dG(x, v) < dG(u, v). So considering the
choice of u and v, it follows that x ∈ I ∩ J , and thus |I ′′\J | = |I\J |. Since now
the pair u ∈ I ′′\J and x ∈ J\I ′′ has a smaller distance dG(u, x) < dG(u, v) = d,
we may assume by induction that I ′′ ↔ts J , and thus I ↔ts J . �

Corollary 4. Let I and J be independent sets in a connected claw-free graph
G. Then I ↔ts J if and only if I ↔tj J .

Proof: Let J be obtained from I by jumping a token from u to v. Then G[IΔJ]
contains only two vertices and therefore no cycles. So by Lemma 3, any token
jump can be replaced by a sequence of token slides. �

We now consider implications of the above corollary for graphs that are claw-
and even-hole-free. A graph is even-hole-free if it contains no even cycle as an
induced subgraph. Kamiński et al. [11] proved the following statement.

Theorem 5 ([11]). Let I and J be two independent sets of a graph G with
|I| = |J |. If G[IΔJ] contains no even cycles, then there exists a TJ-sequence
from I to J of length |I\J |, which can be constructed in linear time.

Reconfiguring Independent Sets in Claw-Free Graphs 91

In particular, if G is even-hole-free, then TJk(G) is connected (for every k). How-
ever, TSk(G) is not necessarily connected (consider a claw with two tokens). This
motivated the question asked in [11] whether for connected, claw-free and even-
hole-free graph G, TSk(G) is connected. Combining Corollary 4 with Theorem 5
shows that the answer to this question is affirmative.

Corollary 6. Let G be a connected claw-free and even-hole-free graph. Then
TSk(G) is connected.

4 Nonmaximum Independent Sets

We now continue studying connected claw-free graphs. By Lemma 3 it remains
to consider the case that G[IΔJ] contains (even length) cycles. In this section,
we show that if I and J are not maximum independent sets of G, such cycles
can always be resolved. This requires various techniques developed for finding
maximum independent sets in claw-free graphs, and the following definitions.

A vertex v ∈ V (G) is free (with respect to an independent set I of G) if v /∈ I
and |N(v) ∩ I| ≤ 1. Let W = v0, . . . , vk be a walk in G, and let I ⊆ V (G).
Then W is called I-alternating if |{vi, vi+1} ∩ I| = 1 for i = 0, . . . , k − 1. In the
case that W is a path, W is called chordless if G[{v0, . . . , vk}] is a path. In the
case that W is a cycle (so v0 = vk), W is called chordless if G[{v0, . . . , vk−1}]
is a cycle. A cycle W = v0, . . . , vk is called I-bad if it is I-alternating and
chordless. A path W = v0, . . . , vk with k ≥ 2 is called I-augmenting if it is I-
alternating and chordless, and v0 and vk are both free vertices. This definition of
I-augmenting paths differs from the usual definition, as it is used in the setting of
finding maximum independent sets, since the chordless condition is stronger than
needed in such a setting. However, we observe that in a claw-free graph G, the
two definitions are equivalent, so we may apply well-known statements about
I-augmenting paths proved elsewhere. In particular, we use the following two
results originally proved by Minty [20] and Sbihi [21] (see also [23, Section 69.2]).

Theorem 7 ([23]). Let I be an independent set in a claw-free graph G. In
polynomial time, it can be decided whether an I-augmenting path between two
given free vertices x and y exists, and if so, one can be computed.

Proposition 8 ([23]). Let I be a nonmaximum independent set in a claw-free
graph G. Then I is not a dominating set, or there exists an I-augmenting path.

We use Proposition 8 to handle the case of nonmaximum independent sets.
The next statement is formulated for token jumping, and (by Corollary 4) implies
the same result for token sliding, in the case of connected graphs.

Lemma 9 (*). Let I be a nonmaximum independent set in a claw-free graph
G. Then for any independent set J with |J | = |I|, I ↔tj J holds.

Proof sketch: By Theorem 5, it suffices to consider the case where G[IΔJ] con-
tains at least one cycle C. Let C = u1, v1, u2, v2, . . . , vk, u1, so that ui ∈ I and
vi ∈ J for all i.

92 P. Bonsma, M. Kamiński, and M. Wrochna

Suppose first that I is not a dominating set. Then we can choose a vertex w
with N [w] ∩ I = ∅. With a single token jump, we can obtain the independent
set I ′ = I + w − u1 from I. Next, apply the moves uk → vk, uk−1 → vk−1,. . . ,
u2 → v2, in this order. (This is possible since C is chordless.) Finally, jump the
token from w to v1. It can be verified that this yields a token jumping sequence
from I to I ′ = IΔV (C). This way, all cycles can be resolved one by one, until
no more cycles remain and Theorem 5 can be applied to prove the statement.

On the other hand, if I is a dominating set, then Proposition 8 shows that
there exists an I-augmenting path P = v0, u1, v1, . . . , ud, vd, with ui ∈ I for
all i. Since vd is a free vertex, we can first apply the moves ud → vd, ud−1 →
vd−1,. . .u1 → v1, in this order (which can be done since P is chordless), to obtain
an independent set I ′ from I, with I ↔ts I

′. Then v0 is not dominated by I ′,
so the previous argument shows that I ′ ↔tj J , which implies I ↔tj J . �

5 Resolving Cycles

It now remains to study the case where G[IΔJ] contains (even) cycles and
both I and J are maximum independent sets. In this case, there may not be
a TS-sequence from I to J (even though we assume that G is connected and
claw-free) – consider for instance the case where G itself is an even cycle. In this
section, we characterize the case where I ↔ts J holds, by showing that this
is equivalent with every cycle being resolvable in a certain sense (Theorem 11
below). Subsequently, we show that resolvable cycles fall into two cases: internally
or externally resolvable cycles, which are characterized next. We first define the
notion of resolving a cycle.

Cycles in G[IΔJ] are clearly both I-bad and J-bad. The I-bipartition of an
I-bad cycle is the ordered tuple [V (C)∩ I, V (C)\I]. We say that an I-bad cycle
C with I-bipartition [A,B] is resolvable (with respect to I) if there exists an
independent set I ′ such that I ↔ts I ′ and G[I ′ ∪ B] contains no cycles. A
corresponding TS-sequence from I to I ′ is called a resolving sequence and is said
to resolve C. By combining such a resolving sequence with a sequence of moves
similar to the previous proof, and then reversing the moves in the sequence
from I ′ to I, except for moves of tokens on the cycle, one can show that every
resolvable cycle can be ‘turned’:

Lemma 10 (*). Let I be an independent set in a claw-free graph G and let C
be an I-bad cycle. If C is resolvable with respect to I, then I ↔ts IΔV (C).

We can now prove the following useful characterization: I ↔ts J if and only
if every cycle in G[IΔJ] is resolvable. By symmetry, it does not matter whether
one considers resolvability with respect to I or to J .

Theorem 11. Let I and J be independent sets in a claw-free connected graph
G. Then I ↔ts J if and only if every cycle in G[IΔJ] is resolvable with respect
to I.

Reconfiguring Independent Sets in Claw-Free Graphs 93

Proof: Consider an I-bad cycle C in G[IΔJ] with I-bipartition [A,B], and a TS-
sequence from I to J . Since N2(B) eventually contains no tokens, this sequence
must contain a move u→ v with u ∈ N2(B) and v �∈ N2(B). The first such move
can be shown to resolve the cycle.

The other direction is proved by induction on the number k of cycles in
G[IΔJ]. If k = 0, then by Lemma 3, I ↔ts J . If k ≥ 1, then consider an
I-bad cycle C in G[IΔJ]. Let I ′ = IΔV (C). By Lemma 10, I ↔ts I ′. The
graph G[I ′ΔJ] has one cycle fewer than G[IΔJ]. Every cycle in G[I ′ΔJ] remains
resolvable with respect to I ′ (one can first consider a TS-sequence from I ′ to I,
and subsequently a TS-sequence from I that resolves the cycle). So by induction,
I ′ ↔ts J , and therefore, I ↔ts J . �

Finally, we show that if an I-bad cycle C can be resolved, it can be resolved
in at least one of two very specific ways. Let [A,B] be the I-bipartition of C. A
move u→ v is called internal if {u, v} ⊆ N2(B) and external if {u, v} ⊆ N0(B).
A resolving sequence I0, . . . , Im for C is called internal (or external) if every
move except the last is an internal (respectively, external) move. (Obviously, to
resolve the cycle, the last move can neither be internal nor external, and can in
fact be shown to always be a move from N2(B) to N1(B).) The I-bad cycle C
is called internally resolvable resp. externally resolvable if such sequences exist.

Lemma 12 (*). Let I be an independent set in a claw-free graph G and let C
be an I-bad cycle. Then any shortest TS-sequence that resolves C is an internal
or external resolving sequence.

Proof sketch: Let [A,B] be the I-bipartition of C. Since G is claw-free, it follows
that there are no edges between vertices in N2(B) and N0(B). This can be
used to show that informally, any resolving sequence for C remains a resolving
sequence after either omitting all noninternal moves or omitting all nonexternal
moves, while keeping the last move, which subsequently resolves the cycle. �

Theorem 11 and Lemma 12 show that to decide whether I ↔ts J , it suffices to
check whether every cycle in G[IΔJ] is externally or internally resolvable. Next
we give characterizations that allow polynomial-time algorithms for deciding
whether an I-bad cycle is internally or externally resolvable. For the external
case, we use the assumption that I is a maximum independent set to show that
in a shortest external resolving sequence I0, . . . , Im, every token moves at most
once (that is, for every move u → v, both u ∈ I0 and v ∈ Im hold), so these
moves outline an augmenting path in a certain auxiliary graph.

Theorem 13 (*). Let I be a maximum independent set in a claw-free graph
G and let C be an I-bad cycle with I-bipartition [A,B]. Then C is externally
resolvable if and only if there exists an (I\A)-augmenting path in G − A − B
between a pair of vertices x ∈ N0(B) and y ∈ N1(B).

For a given I-bad cycle C with I-bipartition [A,B], there is a quadratic num-
ber of vertex pairs x ∈ N0(B) and y ∈ N1(B) that need to be considered, and

94 P. Bonsma, M. Kamiński, and M. Wrochna

c0

c1

c2

c3

c4

c6

c6

c7

b

c0

c1

c2

c3

c4

c6

c6

c7

b

Fig. 1. An example of a claw-free graph G with an internally resolvable cycle, along
with the corresponding auxiliary digraph D(G,C).

for every such a pair, testing whether there is an (I\A)-augmenting path be-
tween these in G−A−B can be done in polynomial time (Theorem 7). So from
Theorem 13 we conclude:

Corollary 14. Let I be a maximum independent set in a claw-free graph G,
and let C be an I-bad cycle. In polynomial time, it can be decided whether C is
externally resolvable.

Next, we characterize internally resolvable cycles. Shortest internal resolving
sequences cannot be as easy to describe as external ones, since a token can move
several times (see Figure 1). Nevertheless, these sequences can be shown to have
a very specific structure, which can be characterized using paths in the following
auxiliary digraphs.

To define these digraphs, consider an I-bad cycle C = c0, c1, . . . , c2n−1, c0
in G, with ci ∈ I for even i. Let [A,B] be the I-bipartition of C. For every
i ∈ {0, . . . , n − 1}, define the corresponding layer as follows: Li = {v ∈ V (G) |
N(v)∩B = N(c2i)∩B}. So when starting with I and using only internal moves,
it can be seen that the token that starts on c2i will stay in the layer Li.

For such an I-bad cycle C of length at least 8, define D(G,C) to be a digraph
with vertex set V (G), with the following arc set. For every i ∈ {0, . . . , n − 1}
and all pairs u ∈ Li, v ∈ L(i+1) mod n with uv �∈ E(G), add an arc (u, v). For
every i ∈ {0, . . . , n − 1} and b ∈ N1(B) with N(b) ∩ B = {c(2i−1) mod 2n}, and
every v ∈ Li with bv �∈ E(G), add an arc (b, v). We denote the reversed cycle
by Crev = c0, c2n−1, . . . , c1, c0. This defines a similar digraph D(G,Crev) (where
arcs between layers are reversed, and arcs from N1(B) go to different layers).
These graphs can be used to characterize whether C is internally resolvable.

Theorem 15 (*). Let I be an independent set in a claw-free graph G. Let
C = c0, c1, . . . , c2n−1, c0 be an I-bad cycle (c0 ∈ I) with I-bipartition [A,B],
of length at least 8. Then C is internally resolvable if and only if D(G,C) or
D(G,Crev) contains a directed path from a vertex b ∈ N1(B) with N(b)∩ I ⊆ A
to a vertex in A.

Reconfiguring Independent Sets in Claw-Free Graphs 95

Corollary 16. Let I be an independent set in a claw-free graph G on n vertices
and let C be an I-bad cycle. It can be decided in polynomial time whether C is
internally resolvable.

Proof: If C has length at least 8, then Theorem 15 shows that it suffices to
make a polynomial number of depth-first-searches in D(G,C) and D(G,Crev).
Otherwise, let [A,B] be the I-bipartition of C. |A| ≤ 3, so there are only O(n3)
independent sets I ′ with |I ′| = |I| and I\A ⊆ I ′. So in polynomial time we can
generate the subgraph of TSk(G) induced by these sets, and search whether it
contains a path from I to an independent set I∗ with I\A ⊆ I∗ where G[B ∪ I∗]
contains no cycle. C is internally resolvable if and only if such a path exists. �

6 Summary of the Algorithm

We now summarize how the previous lemmas yield a polynomial time algorithm
for TS-Reachability and TJ-Reachability in claw-free graphs.

Theorem 17. Let I and J be independent sets in a claw-free graph G. We can
decide in polynomial time whether I ↔ts J and whether I ↔tj J .

Proof: Assume |I| = |J |; otherwise, we immediately return NO. We first consider
the case when G is connected. By Corollary 4, since G is connected, I ↔ts J if
and only if I ↔tj J , thus we only need to consider the sliding model.

We test whether I and J are maximum independent sets of G, which can
be done in polynomial time (by combining Proposition 8 and Theorem 7; see
also [20,21,23]). If not, then by Lemma 9, I ↔tj J holds, and thus I ↔ts J , so
we may return YES.

Now consider the case that both I and J are maximum independent sets.
Theorem 11 shows that I ↔ts J if and only if every cycle in G[IΔJ] is resolvable
with respect to I. By Lemma 12, it suffices to check for internal and external
resolvability of such cycles. This can be done in polynomial time by Corollary 14
(since I is a maximum independent set of G) and Corollary 16. We return YES
if and only if every cycle in C was found to be internally or externally resolvable.

Now let us consider the case when G is disconnected. Clearly tokens cannot
slide between different connected components, so for deciding whether I ↔ts J ,
we can apply the argument above to every component, and return YES if and
only if the answer is YES for every component. If I is a not a maximum inde-
pendent set then Lemma 9 shows that I ↔tj J always holds. If I is maximum,
then Proposition 2 shows that I ↔tj J holds if and only if I ↔ts J . �

7 Discussion

The results presented here have two further implications. Firstly, combined with
techniques from [28], it follows that I ↔tj J can be decided for any graph G

96 P. Bonsma, M. Kamiński, and M. Wrochna

that can be obtained from a collection of claw-free graphs using disjoint union
and complete join operations. See [28] for more details.

Secondly, a closer look at constructed reconfiguration sequences shows that
when G is claw-free, components of both TSk(G) and TJk(G) have diameter
bounded polynomially in |V (G)|. This is not surprising, since the same behavior
has been observed many times. To our knowledge, the only known examples
of polynomial time solvable reconfiguration problems that nevertheless require
exponentially long reconfiguration sequences are on artificial instance classes,
which are constructed particularly for this purpose (see e.g. [3,14]).

References

1. Bonamy, M., Bousquet, N.: Recoloring bounded treewidth graphs. Electronic Notes
in Discrete Mathematics 44, 257–262 (2013)

2. Bonamy, M., Johnson, M., Lignos, I., Patel, V., Paulusma, D.: Reconfiguration
graphs for vertex colourings of chordal and chordal bipartite graphs. Journal of
Combinatorial Optimization 27(1), 132–143 (2014)

3. Bonsma, P., Cereceda, L.: Finding paths between graph colourings: PSPACE-
completeness and superpolynomial distances. Theor. Comput. Sci. 410(50), 5215–
5226 (2009)

4. Cereceda, L., van den Heuvel, J., Johnson, M.: Connectedness of the graph of
vertex-colourings. Discrete Math. 308(5-6), 913–919 (2008)

5. Cereceda, L., van den Heuvel, J., Johnson, M.: Mixing 3-colourings in bipartite
graphs. European J. of Combinatorics 30(7), 1593–1606 (2009)

6. Ito, T., Kawamura, K., Ono, H., Zhou, X.: Reconfiguration of list L(2, 1)-labelings
in a graph. In: Chao, K.-M., Hsu, T.-S., Lee, D.-T. (eds.) ISAAC 2012. LNCS,
vol. 7676, pp. 34–43. Springer, Heidelberg (2012)

7. Ito, T., Kamiński, M., Demaine, E.D.: Reconfiguration of list edge-colorings in a
graph. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009.
LNCS, vol. 5664, pp. 375–386. Springer, Heidelberg (2009)

8. Ito, T., Demaine, E.D., Harvey, N.J.A., Papadimitriou, C.H., Sideri, M., Uehara,
R., Uno, Y.: On the complexity of reconfiguration problems. Theoret. Comput.
Sci. 412(12-14), 1054–1065 (2011)

9. Hearn, R.A., Demaine, E.D.: PSPACE-completeness of sliding-block puzzles and
other problems through the nondeterministic constraint logic model of computa-
tion. Theor. Comput. Sci. 343(1-2), 72–96 (2005)

10. Gopalan, P., Kolaitis, P.G., Maneva, E.N., Papadimitriou, C.H.: The connectiv-
ity of Boolean satisfiability: Computational and structural dichotomies. SIAM J.
Comput. 38(6), 2330–2355 (2009)

11. Kamiński, M., Medvedev, P., Milanič, M.: Complexity of independent set reconfig-
urability problems. Theor. Comput. Sci. 439, 9–15 (2012)

12. Bonsma, P.: Rerouting shortest paths in planar graphs. In: D’Souza, D., Kavitha,
T., Radhakrishnan, J. (eds.) FSTTCS. LIPIcs, vol. 18, pp. 337–349. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2012)

13. Bonsma, P.: The complexity of rerouting shortest paths. Theor. Comput. Sci. 510,
1–12 (2013)

14. Kamiński, M., Medvedev, P., Milanič, M.: Shortest paths between shortest paths.
Theor. Comput. Sci. 412(39), 5205–5210 (2011)

Reconfiguring Independent Sets in Claw-Free Graphs 97

15. Suzuki, A., Mouawad, A.E., Nishimura, N.: Reconfiguration of dominating sets.
CoRR abs/1401.5714 (2014)

16. Mouawad, A.E., Nishimura, N., Raman, V., Simjour, N., Suzuki, A.: On the param-
eterized complexity of reconfiguration problems. In: Gutin, G., Szeider, S. (eds.)
IPEC 2013. LNCS, vol. 8246, pp. 281–294. Springer, Heidelberg (2013)

17. van den Heuvel, J.: The complexity of change. Surveys in Combinatorics, 127–160
(2013)

18. Chudnovsky, M., Seymour, P.D.: The structure of claw-free graphs. In: Webb, B.S.
(ed.) Surveys in Combinatorics. London Mathematical Society Lecture Note Series,
vol. 327, pp. 153–171. Cambridge University Press (2005)

19. Edmonds, J.: Paths, trees, and flowers. Canad. J. Math. 17, 449–467 (1965)
20. Minty, G.J.: On maximal independent sets of vertices in claw-free graphs. J. Comb.

Theory, Ser. B 28(3), 284–304 (1980)
21. Sbihi, N.: Algorithme de recherche d’un stable de cardinalité maximum dans un

graphe sans étoile. Discrete Mathematics 29(1), 53–76 (1980)
22. Nakamura, D., Tamura, A.: A revision of Minty’s algorithm for finding a maximum

weight stable set of a claw-free graph. Journal of the Operations Research Society
of Japan 44(2), 194–204 (2001)

23. Schrijver, A.: Combinatorial optimization: Polyhedra and efficiency, vol. 24. Springer
(2003)

24. Nobili, P., Sassano, A.: A reduction algorithm for the weighted stable set problem
in claw-free graphs. Discrete Applied Mathematics (2013)

25. Faenza, Y., Oriolo, G., Stauffer, G.: An algorithmic decomposition of claw-free
graphs leading to an O(n3)-algorithm for the weighted stable set problem. In:
SODA, pp. 630–646. SIAM (2011)

26. Bonsma, P., Kamiński, M., Wrochna, M.: Reconfiguring independent sets in claw-
free graphs. CoRR abs/1403.0359 (2014)

27. Diestel, R.: Graph Theory. Electronic Edition. Springer-Verlag (2005)
28. Bonsma, P.: Independent set reconfiguration in cographs. CoRR abs/1402.1587

(2014); Extended abstract accepted for WG 2014

Competitive Online Routing on Delaunay

Triangulations�

Prosenjit Bose1, Jean-Lou De Carufel1, Stephane Durocher2,
and Perouz Taslakian3

1 Carleton University, Ottawa, Canada
jit@scs.carleton.ca, jdecaruf@cg.scs.carleton.ca

2 University of Manitoba, Winnipeg, Canada
durocher@cs.umanitoba.ca

3 American University of Armenia, Yerevan, Armenia
ptaslakian@aua.am

Abstract. The sequence of adjacent nodes (graph walk) visited by a
routing algorithm on a graph G between given source and target nodes
s and t is a c-competitive route if its length in G is at most c times the
length of the shortest path from s to t in G. We present 21.766-, 17.982-
and 15.479-competitive online routing algorithms on the Delaunay trian-
gulation of an arbitrary given set of points in the plane. This improves
the competitive ratio on Delaunay triangulations from the previous best
of 45.749. We present a 7.621-competitive online routing algorithm for
Delaunay triangulations of point sets in convex position.

1 Introduction

We study the fundamental problem of finding a route in a geometric graph from
a given source vertex s to a given target vertex t. In our context, a geomet-
ric graph G is a weighted graph whose vertex set is a set P of n points in the
plane, and whose edges are line segments joining pairs of points in P , where each
edge is weighted by its length (the Euclidean distance between its endpoints).
When full knowledge of the graph is provided, numerous algorithms exist for
finding shortest paths in a weighted graph (e.g., Dijkstra’s algorithm [10,12]).
The problem is more challenging in the online setting, where a route is con-
structed incrementally and a partial route from s ending at a node u is extended
by selecting one of u’s neighbours as a function of limited information available
locally at u. Without knowledge of the full graph, an online routing algorithm
cannot identify a shortest path in general; the goal is to follow a path whose
length is as short as possible. A path between two vertices s and t in G is a
c-spanning path if its length is at most c times the length of the shortest path
from s to t in G. An online routing algorithm is c-competitive on a class G of
geometric graphs if for any graph G ∈ G and any pair of vertices {s, t} in G,

� This work was supported in part by the Natural Sciences and Engineering Research
Council of Canada (NSERC).

R Ravi and I.L. Gørtz (Eds.): SWAT 2014, LNCS 8503, pp. 98–109, 2014.
c© Springer International Publishing Switzerland 2014

Competitive Online Routing on Delaunay Triangulations 99

the algorithm constructs a c-spanning path from s to t inG. When c is a constant,
we say the online routing algorithm is competitive. In this paper we examine the
problem of designing an online routing algorithm that is c-competitive on the
Delaunay triangulation for the smallest value c possible.

The Delaunay triangulation, denoted DT(P), of a point set P in the plane is
a triangulation of P with the property that the triangle abc is a face in DT(P)
if and only if {a, b, c} ⊆ P and ©abc ∩ P = {a, b, c}, where ©abc denotes the
unique disk that has a, b, and c on its boundary. The Delaunay triangulation
and its dual, the Voronoi diagram, are well studied; see [1,22] for comprehensive
surveys of these structures. To simplify the presentation we assume that points
in P are in general position.

An online routing algorithm sends a message m together with a header h
from a source vertex s to a target vertex t in a graph G. Both the header and
the message can be considered to be bit strings. Initially the algorithm only
has knowledge of s, t and N(s), where for each vertex v, N(v) denotes the set
of vertices directly adjacent to v in G (and their respective coordinates). Upon
reception of a message m and its header h, a node u must select one of its
neighbours to which to forward the message as a function of h and N(u). This
procedure repeats until the message reaches the target node t. Different routing
algorithms are possible depending on the size of h and the fraction of G that is
known to each node. In the setting considered in this paper, the header h stores
the coordinates of the node s from which the message originated, the coordinates
of the node t which is the final destination of the message, the coordinates of
the neighbour of u that last forwarded the message, and possibly one additional
value that is computed from distances between vertices visited by the message
and may be modified by the algorithm during computation.

Online routing is also known as local geometric routing on geometric graphs,
or simply as local routing when geometric information is not provided (or
does not exist). Previous work in online routing includes results on triangu-
lations [6,9,19,23], on more general planar or near-planar geometric graphs
[7,9,14,15,16,17,19,21], and on arbitrary (non-geometric) graphs [3,8]. When h
stores only the coordinates of the destination node t, we say an online routing
algorithm is oblivious. That is, the forwarding decision at each node u is made
as a function of only u, N(u), and t. No competitive oblivious online routing
algorithm exists [20], even on Delaunay triangulations [2]. In this paper we focus
on competitive online routing algorithms. Allowing the header h to store slightly
more information (some of which can be modified dynamically during routing)
enables an online routing algorithm to guarantee not only that each route reaches
its destination, but that it does so along a c-competitive path.

The spanning ratio of a graph G is the maximum ratio τ between the length
of a shortest path σ on G joining any pair of nodes s and t and the Euclidean
distance between s and t. That is, for any for any two vertices s and t in G there
exists a path σ from s to t in G such that |σ| ≤ τ |st|, where |σ| denotes the sum
of the lengths of the edges in σ and |st| denotes the Euclidean distance from s to
t in G. Several previous results examine upper bounds on the spanning ratio τ of

100 P. Bose et al.

the Delaunay triangulation [11,13,18,24]. Dobkin et al. [13] proved that τ ≤ (1+√
5)π/2 in DT(P). Using this bound, Bose and Morin [6] found a (9(1+

√
5)π/2)-

competitive online routing algorithm for Delaunay triangulations (where 9(1 +√
5)π/2 ≈ 45.749). To the authors’ knowledge, this was the smallest known

competitive ratio for an online routing algorithm on Delaunay triangulations
prior to our results.

We show that for each known upper bound τ on the spanning ratio of the De-
launay triangulation, for every set of points P and every {s, t} ⊆ P , there exists
a path σ from s to t that is contained on the edges of the sequence of Delaunay
triangles that intersects the line segment from s to t such that |σ| ≤ τ |st|. This
property of the location of the path allows us to apply a hybrid of searching
techniques developed in [5] with new techniques to define a corresponding online
routing algorithm whose competitive ratio is at most 9τ for each previous upper
bound on τ . The current best upper bound is τ ≤ 1.998, resulting in a corre-
sponding competitive ratio of 9 · 1.998 ≈ 17.982. Although this technique yields
two new online routing algorithms for Delaunay triangulations, both of which
improve on the previous best competitive ratio, we apply a new strategy to de-
fine a third online routing algorithm that reduces the competitive ratio further
still to π(5π + 4)/4 ≈ 15.479. Therefore, we improve the previous best compet-
itive ratio for online routing on Delaunay triangulations by describing (4π

√
3)-

competitive, 17.982-competitive, and (π(5π + 4)/4)-competitive online routing
algorithms in Sections 2.1, 2.2, and 2.3, respectively, where 4π

√
3 ≈ 21.766 and

π(5π + 4)/4 ≈ 15.479. In Section 3 we examine Delaunay triangulations of sets
of points in convex position for which we present a (11 + 3

√
2)/2-competitive

online routing algorithm using new techniques, where (11 + 3
√
2)/2 ≈ 7.621.

2 Routing on Delaunay Triangulations of Points in
General Position

The problem of designing a competitive online routing algorithm on DT(P)
is challenging, in large part, because it seems difficult to compute a shortest
path between two points in DT(P) when complete knowledge of the graph is
unavailable. This difficulty is related to the fact that a small perturbation in P
can cause the the shortest path from s to t to change drastically. By focusing
on specific local triangles in DT(P) to the reduce the search space of candidate
vertices to which to forward the message, and by exploiting geometric properties
of the Delaunay triangulation, we can design online routing algorithms with good
competitive ratios.

The search space is restricted by focusing on two specific paths that lie re-
spectively above and below the line segment from s to t, where s and t denote
the respective source and target nodes in DT(P). Consider the ordered sequence
of triangles that intersect the line segment st. Each triangle in this sequence
has at least one edge whose interior is either completely above or completely
below the line segment st. Define two ordered subsequences of triangles with one
subsequence containing the triangles with an edge that lies above st, and the

Competitive Online Routing on Delaunay Triangulations 101

other containing the triangles with an edge that lies below st. The subsequence
of edges lying above st determines a path from s to t in DT(P). As is done by
Bose and Morin [5], we refer to this path as the upper chain from s to t and
denote it by U . The subsequence of edges lying below st forms the lower chain
from s to t and is denoted by L. Refer to Figure 1(a).

s = u0 = �0

U

L
�1 �2 �4 �5

u1
u2

u3
u4

t = u5 = �6

�3

(a)

s t

U
DT (P)

L
�1 �2

u1
u2

u3 u4
(b)

s

t

u1

u2�1

�2

(c)

Fig. 1. (a) A Delaunay triangulation with the upper and lower chains (in bold) with
respect to s and t. (b) The upper chain U follows the sequence s, u1, u2, u3, u4, u2,
u1, t. (c) The vertices �1 and u2 can be moved arbitrarily far from st, implying that
neither U nor L is a constant spanning path.

The upper chain is not necessarily a simple path since it may contain re-
peated edges or vertices (Figure 1(b)). Moreover, neither the upper chain nor
the lower chain is necessarily a constant spanning path (Figure 1(c)). However,
the subgraph of DT(P) induced by U ∪ L contains a path whose length is at
most (1+

√
5)|st|π/2, which is the property used to provide the only competitive

online routing algorithm [6] with competitive ratio at most 9(1 +
√
5)|st|π/2.

Bose and Morin [5] generalized this approach slightly to triangulated weakly
simple polygons. A polygon is weakly simple provided that the graph defined by
its vertices and edges is plane, the outer face is a cycle, and one bounded face
is adjacent to all vertices and edges. The weakly simple polygon is triangulated
when the bounded face is triangulated.

Theorem 1 (Bose and Morin [5]). Given a plane geometric graph G that is
a triangulated weakly simple polygon, and two vertices s, t in G, there exists an
online competitive routing strategy that computes a path from s to t in G whose
competitive ratio is at most 9.

Notice that the subgraph of DT(P) induced by U ∪L is a triangulated weakly
simple polygon since it is the ordered sequence of triangles intersecting st in
DT(P). Therefore, showing the existence of a short path in this subgraph im-
mediately gives a competitive online routing algorithm whose ratio is at most

102 P. Bose et al.

9 times the length of this short path. This approach was used in [6], where the
proof of the constant spanning ratio of the Delaunay triangulation by Dobkin et
al. [13] was shown to construct a path of length at most (1+

√
5)|st|π/2 ≈ 45.749

in the subgraph induced by U ∪L. On the other hand, Xia [24] proves that there
exists a path in the subgraph induced by U ∪L whose length is at most 1.998|st|,
which implies an online routing algorithm whose ratio is at most 17.982.

In Section 2.1, we will use the proof by Keil and Gutwin [18] (showing an
upper bound on the spanning ratio of the Delaunay triangulation) to give a new
online routing algorithm with competitive ratio at most 4π

√
3 ≈ 21.766. Note

that Keil and Gutwin’s [18] inductive proof does not necessarily construct a
path in the subgraph induced by U ∪ L; however, we show that whenever their
proof satisfies the inductive hypothesis by including a vertex in a shortest path
that lies outside the induced subgraph, there always exists an alternate vertex
in the induced subgraph that also satisfies the requirements of the inductive
hypothesis.

In Section 2.3 we introduce a different strategy to define an online routing
algorithm with competitive ratio at most π(5π + 4)/4 ≈ 15.479, drawing inspi-
ration from Dobkin et al. [13] and Bose and Morin [6].

2.1 (4π
√
3) ≈ 21.766-Competitive Online Routing

Keil and Gutwin [18] proved that for any two vertices s and t in DT (P), there

exists a path σ from s to t in DT (P) such that |σ| ≤ 4π
√
3

9 |st| ≤ 2.419|st|.
Although the path in the original proof may fall outside U ∪L, we show that the
proof also implies the existence of a path of the same length among the vertices
in U ∪L. We follow the construction given by Bose and Keil [4] (who proved the
same result, but for the more general constrained Delaunay triangulations).

The proof has two main parts. The first part is a geometric property of De-
launay triangulations. The second part uses the geometric property to prove the
result by induction. We begin with the former.

Consider the directed line segment st from s to t. Let ��st be a circle through
s and t such that the part of ��st below st does not contain any points of P .
We say that ��st is a right-empty circle with respect to s and t. Let r denote
the radius of ��st and let θ(s, t) denote its spanning angle, corresponding to
the reflex angle ∠sat, where a denotes the centre of ��st. Let ��mst denote the
right-empty circle with respect to s and t that has the minimum spanning angle
and let θm(s, t) denote its spanning angle. Bose and Keil [4, Lemma 2.1] proved
the following lemma by induction on the rank of the minimum-spanning angles
(with ties being broken arbitrarily).

Lemma 1 (Bose and Keil [4]). For any set of points P in the plane and any
{s, t} ⊆ P , if there is a right-empty circle ��st with radius r and spanning angle
θ(s, t), then there exists a path τ in DT (P) from s to t whose length is at most
r · θ(s, t) such that every edge in τ has length at most |st|.

The path τ of Lemma 1 satisfies the following property. Due to space con-
straints, we omit the proof.

Competitive Online Routing on Delaunay Triangulations 103

Lemma 2. All the vertices of the path τ are in U ∪ L.

We now outline the construction of the 2.419-path σ. Before doing this, we
need to define a lune. Let p be a point on st and Γsp be the circular arc from s
to p such that Γsp is above sp and the tangent to Γsp at s makes an angle of π/3
with st (refer to Figure 2(a)). Let Γ ′

sp be the circular arc that is the reflection of

s
tp

Γsp

Γ′
sp

Lsp

1
3π

(a)

s t

v

w

u1

�1Lsp ©svv′
p

v′

u2

(b)

Fig. 2. (a) The lune Lsp with respect to s and p. (b) An example where the first vertex
we hit by growing a lune from s is not in U ∪ L.

Γsp across sp. The lune Lsp with respect to s and p is defined to be Γsp ∪ Γ ′
sp.

To construct the 2.419-path σ from s to t, we consider the largest empty lune
Lsp that has a vertex v ∈ P on its boundary. If there is more than one vertex
on the boundary of Lsp, we consider the one closest to s. We can see this as the
process of growing a lune from s until it hits a vertex v ∈ P . To construct σ,
we first travel from s to v using the path of Lemma 2 (by considering a specific
right-empty circle ��sv; refer to the proof of Theorem 1.1 in [4]). Then, we apply
induction from v to t. When we apply Lemma 2 from s to v, we need to consider
a good right-empty circle. A right empty circle ��sv is good with respect to Lsp

if it is centered on so, where o is the center of Γ ′
sp.

It is possible that the first vertex v of P we encounter by growing a lune from
s is not in U ∪L (refer to Figure 2(b)). In the original proof by Keil and Gutwin
as well as the proof in Bose and Keil, it was not necessary for v to be in U ∪L to
prove the spanning ratio. However, to be able to route, we need this property to
apply Theorem 1. Fortunately, we are able to show that there exists a point v′ in
U ∪L that satisfies the same properties as v and allows the inductive argument
to go through. We outline this below.

Lemma 3. Suppose that the first vertex v ∈ DT (P) we hit by growing a lune
from s is not in U ∪ L. Let u1 ∈ U and �1 ∈ L be such that su1 ∈ DT (P) and
s�1 ∈ DT (P). If we keep growing the lune until it hits a vertex v′ ∈ U ∪ L, then
v′ = u1 or v′ = �1. Moreover, if v′ = u1 (respectively v′ = �1), there exists a
good right-empty circle ��su1 (respectively ���1s) with respect to Lsp.

Proof. Without loss of generality, suppose that v is above the line through st.
Denote by Lsp the empty lune that has v on its boundary. Denote by Lsp′ the
(not necessarily empty) lune that has u1 on its boundary. We have that v is
outside of©su1�1, where©su1�1 defines su1�1 ∈ DT (P). Therefore, the part

104 P. Bose et al.

of Lsp′ that is below su1 is inside the empty circle ©su1�1. Consequently, if we
keep growing Lsp until it hits a vertex v′ ∈ U ∪L, then v′ = u1. Moreover, since
the part of Lsp′ that is below su1 is empty, there exists a good right-empty circle��su1 with respect to Lsp. ��

The proof of Theorem 1.1 in [4] is based on finding a good right-empty circle
before applying induction. In our case, we can use Lemma 3 within Theorem 1.1
to find such a circle; this will guarantee that there exists a 2.419-path σ ∈ U ∪L.
Therefore, we can apply Theorem 1 to find the shortest path on U ∪ L. The
length of our routing path is at most 9 4π

√
3

9 |st| = 4π
√
3|st| ≈ 21.766|st|. This

gives the following theorem.

Theorem 2. There is a (4π
√
3)-competitive online routing algorithm for De-

launay triangulations.

2.2 17.982-Competitive Online Routing

Xia [24] showed that the stretch factor of a Delaunay triangulation of a set of
points in the plane is less than 1.998. His proof restricts the search space to
the set of triangles intersecting st as outlined in the proof of Corollary 1 in
[24]. Therefore, by applying Theorem 1, we obtain a competitive online routing
strategy whose competitive ratio is at most 17.982.

Theorem 3. There is a 17.892-competitive online routing algorithm for Delau-
nay triangulations.

2.3 (π(5π + 4)/4) ≈ 15.479-Competitive Online Routing

We propose an online competitive routing algorithm inspired by the work of
Dobkin et al. [13] and Bose and Morin [6]. Let P denote any set of n points in
general position and let s and t denote any two vertices in P . Without loss of
generality, assume s and t lie on the x-axis, with s having a smaller x-coordinate
than t. Let V0, . . . , Vm−1 be the cells of the Voronoi diagram intersected by the
line segment st, with V0 being the Voronoi cell of s and Vm−1 being the cell of
t. The path from s to t in DT(P) obtained by following the sites generating the
cells V0, . . . , Vm−1, in order, shall be referred to as the Voronoi path and denoted
VP(s, t). Label the vertices on this path s = v0, . . . , vm−1 = t. The Voronoi
path is x-monotone and it is not necessarily a constant spanning path [13] (see
Figure 3). Dobkin et al. [13] proved the following.

Lemma 4 (Dobkin et al. [13]). Let N be the set of edges of VP(s, t) that do
not cross the segment st. The sum of the lengths of the edges in N is at most
|st|π/2.

If the vertices on VP(s, t) all lie above the line through s and t, the Voronoi
path is called one-sided. The above lemma implies that if VP(s, t) is one-sided,
then |VP(s, t)| ≤ |st|π/2. Therefore, VP(s, t) is a π/2-spanning path when it is
one-sided. Note that VP(s, t) is not necessarily a constant spanning path when

Competitive Online Routing on Delaunay Triangulations 105

s t

Fig. 3. This example shows that the number of times the Voronoi path (in bold) crosses
st is unbounded in general. Consequently, the Voronoi path is not a constant spanning
path.

it crosses st. Consider a Voronoi path from s to t that is not one-sided. Let
s = b0, b1, . . . , bq = t be the subsequence of vertices of the Voronoi path that lie
above the x-axis. Consider two consecutive vertices in this subsequence bi = vj
and bi+1 = vk that are not consecutive on the Voronoi path, i.e. k �= j + 1. This
means that the edge vjvj+1 and vk−1vk both cross st. (refer to Figure 4). Let

bi = vj

bi+1 = vk

h w
s t

vj+1

vk−1

b1

bq−1
PU

PV

Fig. 4. The red and dashed line represents the Voronoi path PV from b0 = s to bq = t.
The circles are centered on st. They are the ones that define the Voronoi path. This is
an example where we would follow the Voronoi path since h ≤ 1

4
w.

PV be the Voronoi path vj , vj+1, . . . , vk and let PU be the path from vj to vk on
the upper chain. For a point p ∈ P , let x(p) and y(p) be the x-coordinate and y-
coordinate of p, respectively. Define h = minj<z<k |y(vz)| and w = x(vj)−x(vk).
Dobkin et al. [13] proved the following:

Lemma 5 (Dobkin et al. [13]). If h ≤ w/4, |PV | is at most (1 +
√
5)wπ/2

and the path from vj+1 to vk−1 has length at most wπ/2.

Using the construction given by Dobkin et al. [13], Bose and Morin [6] proved:

Lemma 6 (Bose and Morin [6]). If h > w/4, |PU | is at most wπ2/4.

Intuitively, the two lemmas state that when the Voronoi path from vj to vk
comes “close” to the x-axis, then the length of the Voronoi path is at most
a constant times w, otherwise, the length of the upper chain from vj to vk is

106 P. Bose et al.

at most a constant times w. These two lemmas taken together imply that the
Delaunay triangulation is a (1 +

√
5)π/2-spanner. Notice that given a vertex v

on the upper (resp. lower) chain from s to t, one can locally determine if v is on
VP(s, t) simply by examining N(v). Consider all the empty circles defined by
the Delaunay triangles in N(v) that intersect st. If any one of these circles has
its center below (resp. above) the x-axis, then v is on the Voronoi path from s
to t since its Voronoi cell intersects st. Armed with this observation, Lemmas 5
and 6 seem to suggest the following competitive online routing algorithm:

When at a vertex bi, if bi+1 is adjacent to bi on the Voronoi path from s to t,
follow the edge. If bi and bi+1 are not adjacent on the Voronoi path, follow PV

from bi to bi+1 when h ≤ w/4 and PU when h > w/4. Unfortunately, the main
caveat to this approach is that we do not know how to compute h or w locally
from vertex bi. It seems that knowledge of PV is required to compute h and w,
which is not necessarily available locally at bi.

To overcome this obstacle, we slightly modify the above approach. When bi
and bi+1 are adjacent on the Voronoi path, we still follow the edge. However,
when they are not adjacent, we take the following approach. Let d = |vjvj+1|.
From vj , follow PU until either vk is reached or a distance of at most d has been
travelled on PU . Should the latter occur at a vertex u on the upper chain, let v
be the vertex furthest along the lower chain adjacent to u. Note that v must be
on PV . Move to v and continue on PV . Proceed in this manner until t is reached.
We refer to this online routing strategy as OnlineDelaunayRoute.

Theorem 4. OnlineDelaunayRoute is an online routing strategy that is (π(5π+
4)/4)-competitive on Delaunay triangulations.

Proof. When bi and bi+1 are consecutive on the Voronoi path from s to t, the
message follows the edge. By Lemma 4, the sum of all the edges of the Voronoi
path that do not cross st is at most |st|π/2.

When bi and bi+1 are not consecutive, the message follows two different paths
depending on the length of PU . If PU has length at most d, then the messages
travels on PU . Otherwise, it travels on PU for a distance of d, crosses over onto
PV and then continues travelling on PV . Notice that by the triangle inequality,
this is shorter than travelling on PU for distance of at most d, returning to bi
and travelling on PV . Therefore, the total distance travelled is at most 2d+ |PV |.
We bound this distance in terms of w. There are 4 cases to consider.

Case 1: h ≤ w/4 and the message travels |PU |.
By Lemma 5, we have |PV | ≤ (1 +

√
5)wπ/2. Since the edge vjvj+1 ∈ PV , we

have that d ≤ |PV |. Since the message remains on PU , we have that |PU | ≤ d.
Therefore, |PU | ≤ (1 +

√
5)wπ/2 ≤ 5.09w.

Case 2: h ≤ w/4 and the message travels 2d+ |PV |.
By Lemma 5, we have |PV | ≤ (1 +

√
5)wπ/2. Since the edge vjvj+1 ∈ PV , we

have that d ≤ |PV |. Therefore, 2d+ |PV | ≤ 3|PV | ≤ 3(1 +
√
5)wπ/2 ≤ 15.25w.

Case 3: h > w/4 and the message travels |PU |.
By Lemma 6, |PU | ≤ wπ2/4 ≤ 2.47w.

Competitive Online Routing on Delaunay Triangulations 107

Case 4: h > w/4 and the message travels 2d+ |PV |.
By Lemma 6, |PU | ≤ wπ2/4. By construction, d ≤ |PU |. Since the portion of
PV that lies below the x-axis is a one-sided Voronoi path, its length is at most
wπ/2 by Lemma 5. By the triangle inequality, |PV | ≤ 2d+πw+ |PU |. Therefore,
putting it all together, we have 2d+ |PV | ≤ π(5π + 4)w/4 ≤ 15.479w.

Since the cost of the path is dominated by the value obtained in Case 4, the
result follows. ��

3 (11 + 3
√
2)/2 ≈ 7.621-Competitive Online Routing for

Points in Convex Position

We present an online routing algorithm with a competitive ratio of at most
(11 + 3

√
2)/2 for Delaunay triangulations of sets of points in convex position,

where (11 + 3
√
2)/2 ≈ 7.621. Throughout this section we assume that P is a

set of points in convex position in the plane. For ease of exposition, we assume
without loss of generality that the line segment st is horizontal, with s to the left
of t. Let "st be the circle whose diameter is the line segment st. Let S(s, t) be
the axis-parallel square whose bisector is the line segment st. Again, let U and L
denote the respective upper and lower chains of s and t in DT(P). Before proving
Theorem 10, we begin with a few geometric lemmas and observations used to
prove the correctness of the algorithm and to bound its competitive ratio.

Lemma 7. If a line � is not parallel to any side of a convex polygon Q, then �
intersects the boundary of Q in at most two points.

Lemma 8. If vertex v ∈ U (respectively v ∈ L) is outside of "st then v is
adjacent to at least one vertex v′ ∈ L (respectively v′ ∈ U) that is in "st.

Proof. Suppose that both v and v′ are outside "st. By definition, every edge
between a vertex in U and a vertex in V must intersect st. Since vv′ intersect
st and st is the diameter of "st, every circle with v and v′ on its boundary will
either contain s in its interior or t in its interior. This contradicts the fact that
vv′ is an edge of the Delaunay triangulation. ��

We now describe the routing algorithm. The message starts at a node s with
destination t. The algorithm first forwards the message from s to one of its
neighbours on U ∪ L that is in S(s, t). Such a vertex must exist by Lemma 8.
The algorithm makes a forwarding decision at each vertex v along the route,
which we now describe. Without loss of generality, suppose that v is on the
upper chain (an analogous symmetric case applies if v is on the lower chain). Let
u be the vertex adjacent to v on the upper chain and let � be the vertex adjacent
to v that is furthest right on the lower chain. If u is in S(s, t) then forward the
message to u, otherwise forward it to �. This decision can be made locally given
the following information stored in the header: the source s, the destination t
and N(v), the set of vertices adjacent to v. Let σ be the path followed by the
message.

108 P. Bose et al.

Lemma 9. The path σ taken by the message m crosses st at most 3 times before
reaching t.

Proof. Notice that prior to crossing the boundary of the square, the path σ
crosses st. Without loss of generality, assume that σ crosses st for the first time
from a vertex on the upper chain to a vertex on the lower chain. Let x1y1 be this
edge with x1 ∈ U and y1 ∈ L. Since the path crosses st, x1 must be adjacent to
a vertex x′1 ∈ U that is outside S(s, t). By Lemma 8, y1 must be in "st since
it is also adjacent to x′1. By Observation 7, the portion of the upper chain from
x1 to t in clockwise order and the portion of the lower chain from y1 to t in
counter-clockwise order intersects S(s, t) a total of 6 times.

Suppose, for a contradiction, that σ crossed st four times with the first edge
as above from x1 to y1. Let the other three edges be x2y2, x3y3, and x4y4 with
xi ∈ U and yi ∈ L. This means that the upper chain intersects S(s, t) twice from
x1 to x2 since x′1 is outside S(s, t) and x2 is inside S(s, t) by Lemma 8. Similarly,
the lower chain between y2 and y3 intersects S(s, t) twice. The upper chain from
x3 to x4 intersects S(s, t) twice. Finally, the edge on the lower chain adjacent
to y4 intersects S(s, t) since this is what prompted the algorithm to cross to x4.
However, this is at least 7 intersections which is a contradiction. ��

Lemma 10. The length of the path σ is at most (11 + 3
√
2)|st|/2.

Proof. Let U ′ be the sequence s = u′0, u
′
1, ...u

′
k = t of vertices followed by

the message on U and L′ be s = �′0, �
′
1, ...�

′
b = t be the sequence followed by

the message on L. By construction, neither U ′ nor L′ go outside S(s, t). Since
the union of these two sequences is a convex polygon inside S(s, t), its perimeter
is at most the perimeter of the square which is 4|st|. This accounts for all of σ
except for the crossing edges.

By Lemma 9, σ crosses st at most 3 times. Each of those edges has one
endpoint in S(s, t) and one endpoint in "st. Therefore, its length is at most
(
√
2/2 + 1/2)|st| since the longest such edge has one endpoint on the corner of

the square and the other diametrically opposed on the boundary of the circle.
Summing the components gives an upper bound on σ of (11 + 3

√
2)|st|/2. ��

Theorem 5 follows from Lemma 10:

Theorem 5. There is a (11 + 3
√
2)/2-competitive online routing algorithm for

Delaunay triangulations of convex point sets.

References

1. Aurenhammer, F., Klein, R., Lee, D.-T.: Voronoi Diagrams and Delaunay Trian-
gulations. World Scientific (2013)

2. Bose, P., Brodnik, A., Carlsson, S., Demaine, E.D., Fleischer, R., López-Ortiz, A.,
Morin, P., Munro, I.: Online routing in convex subdivisions. Int. J. Comp. Geom.
& App. 12(4), 283–295 (2002)

3. Bose, P., Carmi, P., Durocher, S.: Bounding the locality of distributed routing
algorithms. Dist. Comp. 26(1), 39–58 (2013)

Competitive Online Routing on Delaunay Triangulations 109

4. Bose, P., Keil, J.M.: On the stretch factor of the constrained Delaunay triangula-
tion. In: ISVD, pp. 25–31 (2006)

5. Bose, P., Morin, P.: Competitive online routing in geometric graphs. Theor. Comp.
Sci. 324(2-3), 273–288 (2004)

6. Bose, P., Morin, P.: Online routing in triangulations. SIAM J. Comp. 33(4), 937–951
(2004)

7. Bose, P., Morin, P., Stojmenović, I., Urrutia, J.: Routing with guaranteed delivery
in ad hoc wireless networks. Wireless N. 7(6), 609–616 (2001)

8. Braverman, M.: On ad hoc routing with guaranteed delivery. In: PODC, vol. 27,
p. 418. ACM (2008)

9. Chen, D., Devroye, L., Dujmović, V., Morin, P.: Memoryless routing in convex
subdivisions: Random walks are optimal. In: EuroCG, pp. 109–112 (2010)

10. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. MIT Press (2009)

11. Cui, S., Kanj, I.A., Xia, G.: On the stretch factor of Delaunay triangulations of
points in convex position. Comp. Geom. 44(2), 104–109 (2011)

12. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1,
269–271 (1959)

13. Dobkin, D.P., Friedman, S.J., Supowit, K.J.: Delaunay graphs are almost as good
as complete graphs. Disc. & Comp. Geom. 5, 399–407 (1990)

14. Durocher, S., Kirkpatrick, D., Narayanan, L.: On routing with guaranteed delivery
in three-dimensional ad hoc wireless networks. Wireless Net. 16, 227–235 (2010)

15. Fraser, M.: Local routing on tori. Adhoc and Sensor Wireless Net. 6, 179–196
(2008)

16. Fraser, M., Kranakis, E., Urrutia, J.: Memory requirements for local geometric
routing and traversal in digraphs. In: CCCG, vol. 20, pp. 195–198 (2008)

17. Guan, X.: Face Routing in Wireless Ad-Hoc Networks. PhD thesis, University of
Toronto (2009)

18. Keil, J.M., Gutwin, C.A.: Classes of graphs which approximate the complete eu-
clidean graph. Disc. & Comp. Geom. 7, 13–28 (1992)

19. Kranakis, E., Singh, H., Urrutia, J.: Compass routing on geometric networks. In:
CCCG, vol. 11, pp. 51–54 (1999)

20. Kuhn, F., Wattenhofer, R., Zollinger, A.: Asymptotically optimal geometric mobile
adhoc routing. In: DIALM, pp. 24–33. ACM (2002)

21. Kuhn, F., Wattenhofer, R., Zollinger, A.: Ad-hoc networks beyond unit disk graphs.
In: DIALM-POMC, pp. 69–78. ACM (2003)

22. Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tessellations: Concepts
and Applications of Voronoi Diagrams. Wiley Series in Probability and Statistics.
Wiley (2009)

23. Si, W., Zomaya, A.Y.: New memoryless online routing algorithms for Delaunay
triangulations. IEEE Trans. Par. & Dist. Sys. 23(8) (2012)

24. Xia, G.: The stretch factor of the Delaunay triangulation is less than 1.998. SIAM
J. Comp. 42(4), 1620–1659 (2013)

Optimal Planar Orthogonal Skyline Counting

Queries�

Gerth Stølting Brodal and Kasper Green Larsen

MADALGO��, Department of Computer Science, Aarhus University
{gerth,larsen}@cs.au.dk

Abstract. The skyline of a set of points in the plane is the subset of
maximal points, where a point (x, y) is maximal if no other point (x′, y′)
satisfies x′ ≥ x and y′ ≥ y. We consider the problem of preprocessing a
set P of n points into a space efficient static data structure supporting or-
thogonal skyline counting queries, i.e. given a query rectangle R to report
the size of the skyline of P ∩R. We present a data structure for storing
n points with integer coordinates having query time O(lg n/ lg lg n) and
space usage O(n) words. The model of computation is a unit cost RAM
with logarithmic word size. We prove that these bounds are the best pos-
sible by presenting a matching lower bound in the cell probe model with
logarithmic word size: Space usage n lgO(1) n implies worst case query
time Ω(lgn/ lg lgn).

1 Introduction

In this paper we consider orthogonal range skyline queries for a set of points in
the plane. A point (x, y) ∈ R2 dominates a point (x′, y′) if and only if x′ ≤ x
and y′ ≤ y. For a set of points P , a point p ∈ P is maximal if no other point
in P dominates p, and the skyline of P , Skyline(P), is the subset of maximal
points in P .

We consider the problem of preprocessing a set P of n points in the plane with
integer coordinates into a data structure to support orthogonal range skyline
counting queries: Given an axis-aligned query rectangle R = [x1, x2]× [y1, y2] to
report the size of the skyline of the subset of the points from P contained in R,
i.e. report |Skyline(P ∩R)|. The main results of this paper are matching upper
and lower bounds for data structures supporting such queries, thus completely
settling the problem. Our model of computation is the standard unit cost RAM
with logarithmic word size.

Previous Work. Orthogonal range searching is one of the most fundamental
and well-studied topics in computational geometry, see e.g. [1] for an extensive
list of previous results. For orthogonal range queries in the plane, with integer
coordinates in [n] × [n] = {0, . . . , n − 1} × {0, . . . , n − 1}, the main results are

� The full version of this paper is available at arxiv.org/abs/1304.7959
�� Center for Massive Data Algorithmics, a Center of the Danish National Research

Foundation, grant DNRF84.

R Ravi and I.L. Gørtz (Eds.): SWAT 2014, LNCS 8503, pp. 110–121, 2014.
c© Springer International Publishing Switzerland 2014

arxiv.org/abs/1304.7959

Optimal Planar Orthogonal Skyline Counting Queries 111

Table 1. Previous and new results for
skyline counting queries

Space (words) Query time Reference

n lg2 n
lg lgn

lg3/2 n
lg lgn

[6]

n lg n lg n [7]

n lg3 n
lg lgn

lg n
lg lgn

[8]

n lg n
lg lgn

New

Table 2. Previous and new results for skyline
reporting queries

Space (words) Query time Reference

n lgn lg2 n+ k [9] (dynamic)
n lgn lg n+ k [10,7]

n lg n
lg lgn

lg n
lg lgn

+ k [6]

n lgε n (k + 1) lg lgn [11]

n lgε n lg n
lg lgn

+ k New

n lg lg n (k + 1)(lg lgn)2 [11]

n lg lg n lg n
lg lgn

+ k lg lg n New

n (k + 1) lgε n [11]

the following: For the orthogonal range counting problem, i.e. queries report the
total number of input points inside a query rectangle, optimal O(lg n/ lg lg n)
query time using O(n) space was achieved in [2]. Optimality was shown in [3],
where it was proved that space n lgO(1) n implies query time Ω(lg n/ lg lg n) for
range counting queries.

For range reporting queries it is known that space n lgO(1) n implies query
time Ω(lg lg n+ k), where k is the number of points reported within the query
range [4]. The best upper bounds known for range reporting are: Optimal space
O(n) and query time O((k + 1) lgε n) [1], and optimal query time O(lg lgn+ k)
with space O(n lgε n) [5]. In both cases ε > 0 is an arbitrarily small constant.

Orthogonal range skyline counting queries were first consider in [6], where
a data structure was presented with space usage O(n lg2 n/ lg lgn) and query
time O(lg3/2 n/ lg lgn). This was subsequently improved to O(n lg n) space and
O(lg n) query time [7]. Finally, a data structure achieving an even faster query
time of O(lg n/ lg lgn) was presented, however the space usage of that solution
was a prohibitive O(n lg3 n/ lg lg n) [8]. Thus to date, no linear space solution
exists with a non-trivial query time. Also, from a lower bound perspective, it
is not known whether the problem is easier or harder than the standard range
counting problem.

For orthogonal skyline reporting queries, the best bound is O(n lg n/ lg lg n)
space with query time O(lg n/ lg lg n+ k) [6], where k is the size of the reported
skyline. Note that an Ω(lg lg n) search term is needed for skyline range reporting
since the Ω(lg lgn) lower bound for standard range reporting was proved even
for the case of determining whether the query rectangle is empty [4].

In [11] solutions for the sorted range reporting problem were presented, i.e.
the problem of reporting the k leftmost points within a query rectangle in sorted
order of increasing x-coordinate. With space O(n), O(n lg lg n) and O(n lgε n),
respectively, query times O((k+1) lgε n), O((k+1)(lg lg n)2), and O(k+ lg lg n)
were achieved, respectively. The structures of [11] support finding the rightmost
(skyline) point in a query range (k = 1). By recursing on the rectangle above
the reported point one immediately get the bounds for skyline reporting listed
in Table 2, where only the linear space solution achieves query times matching
those of general orthogonal range reporting.

112 G.S. Brodal and K.G. Larsen

Our Results. In Section 3 we present a linear space data structure supporting
orthogonal range skyline counting queries in O(lg n/ lg lgn) time, thus for the
first time achieving linear space and improving over all previous tradeoffs. In Sec-
tion 2 we show that this is the best possible by proving a matching lower bound.
More specifically, we prove a lower bound stating that the query time t must
satisfy t = Ω(lg n/ lg(Sw/n)). Here S ≥ n is the space usage in number of words
and w = Ω(lg n) is the word size in bits. For w = lgO(1) n) and S = n lgO(1) n,
this bound becomes t = Ω(lg n/ lg lgn). The lower bound is proved in the cell
probe model of Yao [12], which is more powerful than the unit cost RAM and
hence the lower bound also applies to RAM data structures.

As a side result, we can also modify our counting data structure to support
reporting queries. The details are in the full version of the paper. Our reporting
data structure has query time O(lg n/ lg lg n+k) and space usage O(n lgε n). The
best previous reporting structure with a linear term in k has O(lg n/ lg lgn+ k)
query time but O(n lg n/ lg lg n) space [6]. The reporting structure can also be
modified to achieve O(lg n/ lg lgn+ k lg lg n) query time and O(n lg lgn) space.
See Table 2 for a comparison to previous results.

Our lower bound follows from a reduction of reachability in butterfly graphs
to two-sided skyline counting queries, extending reductions by Pǎtraşcu [13]
for two-dimensional rectangle stabbing and range counting queries. Our upper
bounds are achieved by constructing a balanced search tree of degree Θ(lgε n)
over the points sorted by x-coordinate. At each internal node we store several
space efficient rank-select data structures storing the points in the subtrees sorted
by rank-reduced y-coordinates. Using a constant number of global tables, queries
only need to spend O(1) time at each level of the tree.

Preliminaries. If the coordinates of the input and query points are arbitrary
integers fitting into a machine word, then we can map the coordinates to the
range [n] by using the RAM dictionary from [14], which support predecessor
queries on the lexicographical orderings of the points in time O(

√
lgn/ lg lg n)

using O(n) space. This is less than the O(lg n/ lg lgn) query time we are aiming
for. Our solution makes extensive use of the below results from succinct data
structures.

Lemma 1 ([15]). A vector X [1..s] of s zero-one values, with t values equal to
one, can be stored in a data structure of size O(t(1+lg s/t)) bits supporting rank
and select in O(1) time, where rank(i) returns the number of ones in X [1..i],
provided X [i] = 1, and select(i) returns the position of the i’th one in X.

Lemma 2 ([16]). Let X [1..s] be a vector of s non-negative integers with total
sum t. There exists a data structure of size O(s lg(2 + t/s)) bits, supporting the

lookup of X [i] and the prefix sum
∑i

j=1X [j] in O(1) time, for i = 1, . . . , s.

Lemma 3 ([17,18]). Let X [1..s] be a vector of integers. There exists a data
structure of size O(s) bits supporting range-maximum-queries in O(1) time, i.e.
given i and j, 1 ≤ i ≤ j ≤ s, reports the index k, i ≤ k ≤ j, such that
X [k] = max(X [i..j]). Queries only access this data structure, i.e. the vector X
is not stored.

Optimal Planar Orthogonal Skyline Counting Queries 113

2 Lower Bound

That an orthogonal range skyline counting data structure requires Ω(n lg n) bits
space, follows immediately since each of the n! different input point sets of size n,
where points have distinct x- and y-coordinates from [n], can be reconstructed
using query rectangles considering each possible point in [n]2 independently, i.e.
the space usage is at least �lg2(n!)� = Ω(n lg n) bits.

In the remainder of this section, we prove that any data structure using S ≥ n
words of space must have query time t = Ω(lg n/ lg(Sw/n)), where w = Ω(lg n)

denotes the word size in bits. In particular for w = lgO(1) n, this implies that any
data structure using n lgO(1) n space must have query time t = Ω(lg n/ lg lg n),
showing that our data structure from Section 3 is optimal. Our lower bound holds
even for data structures only supporting skyline counting queries inside 2-sided
rectangles, i.e. query rectangles of the form (−∞, x]× (−∞, y]. The lower bound
is proved in the cell probe model of Yao [12] with word size w = Ω(lg n). Since
we derive our lower bound by reduction, we will not spend time on introducing
the cell probe model, but merely note that lower bounds proved in this model
applies to data structures developed in the unit cost RAM model. See e.g. [3]
for a brief description of the cell probe model.

Reachability in the Butterfly Graph. We prove our lower bound by reduction
from the problem known as reachability oracles in the butterfly graph [13]. A
butterfly graph of degree B and depth d is a directed graph with d + 1 layers,
each having Bd nodes ordered from left to right. The nodes at level 0 are the
sources and the nodes at level d are the sinks. Each node, except the sinks, has
out-degree B, and each node, except the sources, has in-degree B.

If we number the nodes at each level with 0, . . . , Bd− 1 from left to right and
interpret each index i ∈ [Bd] as a vector v(i) = v(i)[d− 1] · · · v(i)[0] ∈ [B]d (just
write i in base B), then the node at index i at layer k ∈ [d] has an out-going
edge to each node j at layer k+1 for which v(j) and v(i) differ only in the k’th
coordinate. Here the 0’th coordinate is the coordinate corresponding to the least
significant digit when thinking of v(i) and v(j) as numbers written in base B.
Observe that there is precisely one directed path between each source-sink pair.
For the s’th source and the t’th sink, this path corresponds to “morphing” one
digit of v(s) into the corresponding digit in v(t) for each layer traversed in the
butterfly graph.

The input to the problem of reachability oracles in the butterfly graph, with
degree B and depth d, is a subset of the edges of the butterfly graph, i.e. we are
given a subgraph G of the butterfly as input. A query is specified by a source-
sink pair (s, t) and the goal is to return whether there exists a directed path
from the given source s to the given sink t in G. Pǎtraşcu proved the following:

Theorem 1 (Pǎtraşcu [13], Section 5). Any cell probe data structure an-
swering reachability queries in subgraphs of the butterfly graph with degree B and
depth d, having space usage S words of w bits, must have query time t = Ω(d),
provided B = Ω(w2) and lgB = Ω(lg Sd/N). Here N denotes the number of
non-sink nodes in the butterfly graph.

114 G.S. Brodal and K.G. Larsen

We derive our lower bound by showing that any cell probe data structure for
skyline range counting can be used to answer reachability queries in subgraphs
of the butterfly graph for any degree B and depth d.

Edges to 2-d Rectangles. Consider the butterfly graph with degree B and depth
d. The first step of our reduction is inspired by the reduction Pǎtraşcu used
to obtain a lower bound for 2-d rectangle stabbing: Consider an edge of the
butterfly graph, leaving the i’th node at layer k ∈ [d] and entering the j’th node
in layer k + 1. We denote this edge ek(i, j). The source-sink pairs (s, t) that are
connected through ek(i, j) are those for which:

1. The source has an index s satisfying v(s)[h] = v(i)[h] for h ≥ k, i.e. s and i
agree on the d− k most significant digits when written in base B.

2. The sink has an index t satisfying v(t)[h] = v(j)[h] for h ≤ k + 1, i.e. t and
j agree on the k + 1 least significant digits when written in base B.

We now map each edge ek(i, j) of the butterfly graph to a rectangle in 2-d. For
the edge ek(i, j), we create the rectangle rk(i, j) = [x1, x2]× [y1, y2] where:

– x1 = v(i)[d − 1]v(i)[d− 2] · · · v(i)[k]0 · · · 0 in base B,
– x2 = v(i)[d − 1]v(i)[d− 2] · · · v(i)[k](B − 1) · · · (B − 1) in base B,
– y1 = v(j)[0]v(j)[1] · · · v(j)[k + 1]0 · · · 0 in base B, and
– y2 = v(j)[0]v(j)[1] · · · v(j)[k + 1](B − 1) · · · (B − 1) in base B.

The crucial observation is that for a source-sink pair, where the source is the
s’th source and the sink is the t’th sink, the edges on the path from the source
to the sink in the butterfly graph are precisely those edges ek(i, j) for which the
corresponding rectangle rk(i, j) contains the point (s, revB(t)), where revB(t) is
the number obtained by writing t in base B and then reversing the digits.

We now collect the set of rectangles R, containing each rectangle rk(i, j)
corresponding to an edge of the butterfly graph. Given an input subgraph G, we
mark all rectangles rk(i, j) ∈ R for which the corresponding edge ek(i, j) is also
in G. It follows that there is a directed path from the s’th source to the t’th sink
in the subgraph G if and only if (s, revB(t)) is not contained in any unmarked
rectangle in R.

Our goal is now to transform marked and unmarked rectangles to points, such
that we can use a skyline counting data structure to determine whether a given
point (s, revB(t)) is contained in an unmarked rectangle. Note that our reduction
only works for the rectangle set R obtained from the butterfly graph, and not for
any set of rectangles, i.e. we could not have reduced from the general problem
of 2-d rectangle stabbing.

2-d Rectangles to Points. To avoid tedious details, we from this point on allow the
input to skyline queries to have multiple points with the same x- or y-coordinate
(though not two points with both coordinates identical). This assumption can
easily be removed, but it would only distract the reader from the main ideas of
our reduction. We still use the definition that a point (x, y) dominates a point
(x′, y′) if and only if x′ ≤ x and y′ ≤ y.

Optimal Planar Orthogonal Skyline Counting Queries 115

The next step of the reduction is to map the rectangles R to a set of points. For
this, we first transform the coordinates slightly: For every rectangle rk(i, j) ∈ R,
having coordinates [x1, x2] × [y1, y2], we modify each of the coordinates in the
following way: x1 ← dx1 + (d − 1 − k), x2 ← dx2 + d − 1, y1 ← dy1 + k, and
y2 ← dy2+d−1. The multiplication with d essentially corresponds to expanding
each point with integer coordinates to a d × d grid of points. The purpose of
adding k to y1 and (d − 1 − k) to x1 is to ensure that, if two rectangles share
a lower-left corner (only possible for two rectangles rk(i, j) and rk′ (i′, j′) where
k �= k′), then those corners do not dominate each other in the transformed set
of rectangles. We will see later that the particular placement of the points based
on k also plays a key role. We use π : [Bd]4 → [dBd]4 to denote the above map.
With this notation, the transformed set of rectangles is denoted π(R) and each
rectangle rk(i, j) ∈ R is mapped to π(rk(i, j)) ∈ π(R).

We now create the set of points P ′ containing the set of lower-left corner points
for all rectangles π(rk(i, j)) ∈ π(R), i.e. for each π(rk(i, j)) = [x1, x2] × [y1, y2],
we add the point (x1, y1) to P

′. The set P ′ has the following crucial property:

Lemma 4. Let (x, y) be a point with coordinates in [Bd] × [Bd]. Then for the
two-sided query rectangle Q = (−∞, dx+ d− 1]× (−∞, dy+ d− 1], it holds that
Skyline(Q∩P ′) contains precisely the points in P ′ corresponding to the lower-left
corners of the rectangles π(rk(i, j)) ∈ π(R) for which rk(i, j) contains (x, y).

Proof. First let p = (x1, y1) ∈ P ′ be the lower-left corner of a rectangle π(rk(i, j))
such that rk(i, j) contains the point (x, y). We want to show that p ∈ Skyline(Q∩
P ′). Since rk(i, j) contains the point (x, y), we have x ≥ �x1/d� and y ≥ �y1/d�.
From this, we get dx + d − 1 ≥ d�x1/d� + (d − 1 − k) = x1 and dy + d − 1 ≥
d�y1/d� + k = y1, i.e. p is inside Q. Since (x, y) is inside rk(i, j), we also have
that (dx+d−1, dy+d−1) is dominated by the upper-right corner of π(rk(i, j)),
i.e. (dx+ d− 1, dy + d− 1) is inside π(rk(i, j)).

What remains to be shown is that no other point in Q ∩ P ′ dominates p. For
this, assume for contradiction that some point p′ = (x′1, y

′
1) ∈ P ′ is both in Q and

also dominates p. First, since p′ is dominated by (dx+d− 1, dy+d− 1) and also
dominates p, we know that p′ must be inside π(rk(i, j)). Now let π(rk′ (i′, j′)) �=
π(rk(i, j)) be the rectangle in π(R) from which p′ was generated, i.e. p′ is the
lower-left corner of π(rk′ (i′, j′)). We have three cases:

1. First, if k′ = k we immediately get a contradiction since the rectangles
π(R)k = {π(rk′ (i′, j′)) ∈ π(R) | k′ = k} are pairwise disjoint and hence p′

could not have been inside π(rk(i, j)).

2. If k′ < k, we know that π(rk′ (i′, j′)) is shorter in x-direction and longer in
y-direction than π(rk(i, j)). From our transformation, we know that (y1 mod
d) = k and (y′1 mod d) = k′ < k. Thus since p′ dominates p, we must have
�y′1/d� > �y1/d�. But these two values are precisely the y-coordinates of the
lower-left corners of rk(i, j) and rk′ (i′, j′). By definition, we get:

v(j′)[0]v(j′)[1] · · · v(j′)[k′ + 1]0 · · · 0 > v(j)[0]v(j)[1] · · · v(j)[k + 1]0 · · ·0 .

116 G.S. Brodal and K.G. Larsen

Since k′ < k, this furthermore gives us

v(j′)[0]v(j′)[1] · · · v(j′)[k′ + 1] > v(j)[0]v(j)[1] · · · v(j)[k′ + 1] .

From this it follows that

v(j′)[0] · · · v(j′)[k′ + 1]0 · · ·0 > v(j)[0] · · · v(j)[k + 1](B − 1) · · · (B − 1) ,

i.e. the lower-left corner of rk′ (i′, j′) is outside rk(i, j), which also implies
that the lower-left corner of π(rk′ (i′, j′)) is outside π(rk(i, j)). That is, p

′ is
outside π(rk(i, j)), which gives the contradiction.

3. The case for k′ > k is symmetric to the case k′ < k, just using the x-
coordinates instead of the y-coordinates to derive the contradiction.

The last step of the proof is to show that no point p = (x1, y1) ∈ P ′ can be
in Skyline(Q ∩ P ′) but at the same time correspond to the lower-left corner of
a rectangle π(rk(i, j)) where rk(i, j) does not contains the point (x, y). First
observe that (dx + d − 1, dy + d − 1) is contained in precisely one rectangle
π(rk′ (i′, j′)) for each value of k′ ∈ [d]. Now let π(rk(i

′, j′)) �= π(rk(i, j)) be the
rectangle containing (dx+ d− 1, dy+ d− 1) amongst the rectangles π(R)k. The
lower-left corner of this rectangle is dominated by (dx + d − 1, dy + d − 1) but
also dominates p, hence p is not in Skyline(Q ∩ P ′). ��

Handling Marked and Unmarked Rectangles. The above steps are all independent
of the concrete input subgraph G. As discussed, we need a way to determine
whether a query point is contained in an unmarked rectangle or not. This step is
now very simple in light of Lemma 4: First, multiply all coordinates of points in
P ′ by 2. This corresponds to expanding each point with integer coordinates into
a 2× 2 grid. Now for every point p ∈ P ′, if the rectangle π(rk(i, j)) from which
p was generated is marked, then we add 1 to both the x- and y-coordinate of p,
i.e. we move p to the upper-right corner of the 2 × 2 grid in which it is placed.
If π(rk(i, j)) is unmarked, we replace it by two points, one where we add 1 to
the x-coordinate, and one where we add 1 to the y-coordinate. We denote the
resulting set of points P (G). It follows immediately that:

Corollary 1. Let G be a subgraph of the butterfly graph with degree B and
depth d. Also, let (x, y) be a point with coordinates in [Bd]× [Bd]. Then for the
two-sided query rectangle Q = (−∞, 2d(x+1)−1]× (−∞, 2d(y+1)−1], it holds
that Skyline(Q∩P (G)) contains precisely one point from P (G) for every marked
rectangle in R that contains (x, y), two points from P (G) for every unmarked
rectangle in R that contains (x, y), and no other points, i.e. |Skyline(Q∩P (G))|−
d equals the number of unmarked rectangles in R which contains (x, y).

Corollary 2. Let G be a subgraph of the butterfly graph with degree B and
depth d. Let s be the index of a source and t the index of a sink. Then the s’th
source can reach the t’th sink in G if and only if |Skyline(Q∩P (G))| = d for the
two-sided query rectangle Q = (−∞, 2d(s+ 1)− 1]× (−∞, 2d(revB(t) + 1)− 1].

Optimal Planar Orthogonal Skyline Counting Queries 117

Deriving the Lower Bound. The lower bound can be derived from Corollary 2
and Theorem 1 as follows. First note that the set R contains NB rectangles,
since each rectangle corresponds to an edge of the buttefly graph and each of
the N non-sink nodes of the butterfly graph has B outgoing edges. Each of these
rectangles gives one or two points in P (G). Letting n denote |P (G)|, we have
NB ≤ n ≤ 2NB. From N = d · Bd ≤ n we get d ≤ lg n and d = Θ(lgB N).

Given n, w ≥ lgn, and S ≥ n, we now derive a lower bound on the query
time. Setting B = S

nw
2 we have B = Ω(w2) and lgB = Ω(lg Sd

N) (as required by

Theorem 1), where the last bound follows from lg Sd
N ≤ lg S·lgn

n/2B ≤ lg(2B S·w
n) ≤

lg(2B2) = O(lgB). Furthermore we have lg Sw
n = 1

2 lg(
Sw
n)2 ≥ 1

2 lg(
S
nw

2) =
1
2 lgB. From Theorem 1 we can now bound the time for a skyline counting
query by t = Ω(d) = Ω(lgB N) = Ω(lg n/ lgB) = Ω(lg n/ lg(Sw/n)).

3 Skyline Counting Data Structure

In this section we describe a data structure using O(n) space supporting orthog-
onal skyline counting queries in O(lg n/ lg lgn) time. We describe the basic idea
of how to support queries, and present the details of the stored data structure.
The details of the query can be found in the full version of the paper.

The basic idea is to store the n points in left-to-right x-order at the leaves
of a balanced tree T of degree Θ(logε n), i.e. height O(log n/ log logn), and for
each internal node v have a list Lv of the points in the subtree rooted in v
in sorted y-order. The slab of v is the narrowest infinite vertical band contain-
ing Lv. To obtain the overall linear space bound, Lv will not be stored explic-
itly but implicitly and rank-reduced using rank-select data structures, where
navigation is performed using fractional cascading on rank-select data struc-
tures (details below). A 4-sided query R decomposes into 2-sided subqueries at
O(log n/ log logn) nodes (in Figure 1, R is decomposed into subqueries R1-R5,
white points are nodes on the skyline within R, double circled points are the top-
most points within each Ri). For skyline queries (both counting and reporting)
it is important to consider the subqueries right-to-left, and the lower y-value for
the subquery in Ri is raised to the maximal y-value of a point in the subqueries
to the right. Since the tree T has non-constant degree, we need space efficient
solutions for multislab queries at each node v. We partition Lv into blocks of
size O(log2ε n), and a query Ri decomposes into five subqueries (1-5), see Fig-
ure 2: (1) and (3) are on small subsets of points within a single block and can be
answered by tabulation (given the signature of the block); (2) is a block aligned
multislab query; (4) and (5) are for single slabs (at the children of v). For (2,4,5)
the skyline size between points i and j (numbered bottom-up) can be computed
as one plus the difference between the size of the skyline from 1 to j and 1
to k, where k is the rightmost point between i and j (see Figure 3, white and
black circles and crosses are all points, crosses indicate the skyline from i to j,
white circles from 1 to k, and white circles together with crosses from 1 to j).
Finally, the skyline size from 1 to i can be computed from a prefix sum, if we for
point i store the number of points in the skyline from 1 to i− 1 dominated by i

118 G.S. Brodal and K.G. Larsen

y1

y2
R1R2R3R4

T

R
R5

I3I5 I1I2I4

x2x1

v1

v2

v5

v3

v4

Fig. 1. The base tree T with Δ = 4

������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������

����������
����������
����������
����������

������������������������������
������������������������������
������������������������������
������������������������������

������
������
������
������

������
������
������
������Btop

Bbottom ybottom

ytop

Δ2

v

civ cjvck1
v ck3

v

p3

p4

p2

p1

(5)

(2)

(1)

(3)

(4)

Fig. 2. Skyline queries for multislabs

1

j

k

i

Fig. 3. SkyCountv(i, j)

0
1
0
0
0
2
0
1
0
5

Fig. 4. |Skyline(Lv[1..i])|

(see Figure 4, the skyline between 1 and 6 consists of the three white nodes, and
the size is 6− (2 + 0 + 0 + 0 + 1 + 0) = 3).

The details of the construction are as follows. We let Δ = max{2, �lgε n�} be
a parameter of our construction, where 0 < ε < 1/3 is a constant. We build a
balanced base tree T over the set of points P , where the leafs from left-to-right
store the points in P in sorted order w.r.t. x-coordinate. Each internal node of T
has degree at most Δ and T has height �lgΔ n�+ 1. (See Figure 1)

For each internal node v of T we store a set of data structures. Before de-
scribing these we need to introduce some notation. The subtree of T rooted
at a node v is denoted Tv, and the set of points stored at the leaves of Tv
is denoted Pv. We let nv = |Pv| and Lv[1..nv] be the list of the points in Pv

sorted in increasing y-order. We let Iv = [�v, rv] denote the x-interval defined by
the x-coordinates of the points stored at the leaves of Tv, and denote Iv × [n]
the slab spanned by v. The degree of v is denoted dv, the children of v are
from left-to-right denoted c1v, . . . , c

dv
v , and the parent of node v is denoted pv.

A list Lv is partitioned into a sequence of blocks Bv[1..�nv/Δ
2�] of size Δ2,

such that Bv[i] = Lv[(i − 1)Δ2 + 1..min{nv, iΔ
2}]. The signature σv[i] of a

block Bv[i] is a list of pairs: For each point p from Bv[i] in increasing y-order
we construct a pair (j, r), where j is the index of the child cjv of v storing p
and r is the rank of p’s x-coordinate among all points in Bv[i] stored at the

Optimal Planar Orthogonal Skyline Counting Queries 119

same child cjv as p. The total number of bits required for a signature is at most
Δ2(lgΔ+ lgΔ2) = O(lg2ε n · lg lg n).

To achieve overall O(n) space we need to encode succinctly sufficient infor-
mation for performing queries. In particular we will not store the points in Lv

explicitly at the node v, but only partial information about the points relative
position will be stored.

Queries on a block Bv[i] are handled using table lookups in global tables using
the block signature σv[i]. We have tables for the below block queries, where we
assume σ is the signature of a block storing points p1, . . . , pΔ2 distributed in Δ
child slabs.

Below(σ, t, i) Returns the number of points from p1, . . . , pt contained in slab i.
Rightmost(σ, b, t, i, j) Returns k, where pk is the rightmost point among pb, . . . , pt

contained in slabs [i, j]. If no such point exists, -1 is returned.
Topmost(σ, b, t, i, j) Returns k, where pk is the topmost point among pb, . . . , pt

contained in slabs [i, j]. If no such point exists, -1 is returned.
SkyCount(σ, b, t, i, j) Returns the size of the skyline for the subset of the points

pb, . . . , pt contained in slabs [i, j].

The arguments to each of the above lookups consists of at most |σ|+2 lgΔ2+
2 lgΔ = |σ| + O(lg lg n) = O(lg2ε n · lg lg n) bits and the answer is lg(Δ + 1) =
O(lg lg n) bits, i.e. each query can be answered in O(1) time using a table of size

O(2lg
2ε n·lg lgn · lg lgn) = o(n) bits, since ε < 1/3.

For each internal node v of T we store the following data structures, each
having O(1) access time.

Cv(i) Compact array that for each i, where 1 ≤ i ≤ nv, stores the index of the
child of v storing Lv[i], i.e. 1 ≤ Cv(i) ≤ Δ. Space usage O(nv lgΔ) bits.

πv(i) For each i, 1 ≤ i ≤ nv, stores the index of Lv[i] in Lpv , i.e. Lpv [πv(i)] =
Lv[i]. This can be supported by constructing the select data structure of
Lemma 1 on the bit-vector X , where X [i] = 1 if and only if Lpv [i] is
in Lv. A query to πv(i) simply becomes a select(i) query. Space usage
O(nv lg(npv/nv)) = O(nv lgΔ) bits.

σv(i) Array of signatures for the blocks Bv[1..�nv/Δ
2�]. Space usage O(nv/Δ

2 ·
Δ2 · lgΔ) = O(nv lgΔ) bits.

Predv(t, i) / Succv(t, i) Supports finding the predecessor/successor of Lv[t] in
the i’th child list Lciv

. Returns max{k | 1 ≤ k ≤ nciv
∧ πciv [k] ≤ t} and

min{k | 1 ≤ k ≤ nciv
∧ πciv [k] ≥ t}, respectively. For each child index i,

we construct an array X i of size �n/Δ2�, such that X i[b] is the number
of points in block Bv[b] that are stored in the i’th child slab. The prefix
sums of each X i are stored using the data structure of Lemma 2 using
space O((nv/Δ

2) lg(Δ2)) bits. The total space for all Δ children of v be-
comes O(Δ · nv/Δ

2 · lgΔ) = O(nv) bits. The result of a Predv(t, i) query is∑�t/Δ2�−1
j=1 X i[j] + Below(σv(�t/Δ2�), 1 + (t− 1 mod Δ2), i), where the first

term can be computed in O(1) time by Lemma 2 and the second term is a
constant time global table lookup. The result of Succv(t, i) = Predv(t, i) if
Cv[t] = i, otherwise Succv(t, i) = Predv(t, i) + 1.

120 G.S. Brodal and K.G. Larsen

Rightmostv(i, j) Returns the index k, where i ≤ k ≤ j, such that Lv[k] has
the maximum x-value among Lv[i..j]. Using Lemma 3 on the array of the
x-coordinates of the points in Lv we achieve O(1) time queries and space
usage O(nv) bits.

SkyCountv(i) Returns |Skyline(Lv[1..i])|. Construct an array X , where X [i] is
the number of points in Skyline(Lv[1..i − 1]) dominated by Lv[i]. (See Fig-

ure 4) We can now compute |Skyline(Lv[1..i])| as i −
∑i

j=1X [j]. Using
Lemma 2 the query time becomes O(1) and the space usage O(nv) bits,
since

∑nv

j=1X [j] ≤ nv − 1.

SkyCountv(i, j) Returns |Skyline(Lv[i..j])|, computable by the following expres-
sion: SkyCountv(j)− SkyCountv(Rightmostv(i, j)) + 1 (see Figure 3).

Finally, we store for each node v and slab interval [i, j] the following data
structures.

Rightmostv,i,j(b, t) Returns k, where Lv[k] is the rightmost point among the
points in blocks Bv[b..t] contained in slabs [i, j]. If no such point exists, -1 is
returned. Can be solved by applying Lemma 3 to the array X , where X [s] is
the x-coordinate of the rightmost point in Bv[s] contained in slabs [i, j]. A
query first finds the block � containing the rightmost point using this data
structure, and then returns (� − 1)Δ2 + Rightmost(σv[�], 1, Δ

2, i, j). Space
usage O(nv/Δ

2) bits.

Topmostv,i,j(b, t) Returns k, where Lv[k] is the topmost point among the points
in blocks Bv[b..t] contained in slabs [i, j]. If no such point exists, -1 is
returned. Can be solved by first using Lemma 3 on the array X , where
X [s] = s if there exists a point in Bv[s] contained in slabs [i, j]. Otherwise
X [s] = 0. Let � be the block found using Lemma 3. Return the result of
(�− 1)Δ2 +Topmost(σv [�], 1, Δ

2, i, j). Space usage O(nv/Δ
2) bits.

SkyCountv,i,j(b, t) Returns the size of the skyline for the subset of points in
blocks Bv[b..t] contained in slabs [i, j]. Can be supported by two applications
of Lemma 2 on two arrays X and Y : Let X [s] = SkyCount(σv[s], 1, Δ

2, i, j),
i.e. the size of the skyline of the points in block Bv[s] contained in slabs [i, j].
Let Bv,i,j [s] denote the points in Bv[s] contained in slabs [i, j]. Let Y [s] =
|Skyline(Bv,i,j [1..s − 1]) \ Skyline(Bv,i,j [1..s])|, i.e. the number of points on
Skyline(Bv,i,j [1..s − 1]) dominated by points in Bv,i,j [s]. Space usage for
X and Y is O(nv/Δ

2 · lgΔ2) bits. We can compute SkyCountv,i,j(b, t) =∑t
s=kX [s]−

∑t
s=k+1 Y [s], where k = �Rightmostv,i,j(b, t)/Δ

2�.

The total space of our data structure, in addition to the o(n) bits for our
global tables, can be bounded as follows. The total space for all O(Δ2) multislab
data structures for a node v is O(Δ2 · nv/Δ

2 · lgΔ) bits. The total space for
all data structures at a node v becomes O(nv lgΔ) bits. Since the sum of all
nv for a level of T is at most n, the total space for all nodes at a level of T
is O(n lgΔ) bits. Since T has height O(lgΔ n), the total space usage becomes
O(n lgΔ · lgΔ n) = O(n lg n) bits, i.e. O(n) words. The data structure can be
constructed bottom-up in O(n logn) time.

Optimal Planar Orthogonal Skyline Counting Queries 121

References

1. Chan, T.M., Larsen, K.G., Pătraşcu, M.: Orthogonal range searching on the RAM,
revisited. In: 27th ACM Symposium on Computational Geometry, pp. 1–10. ACM
(2011)

2. JáJá, J., Mortensen, C.W., Shi, Q.: Space-efficient and fast algorithms for multidi-
mensional dominance reporting and counting. In: Fleischer, R., Trippen, G. (eds.)
ISAAC 2004. LNCS, vol. 3341, pp. 558–568. Springer, Heidelberg (2004)

3. Pătraşcu, M.: Lower bounds for 2-dimensional range counting. In: 39th Annual
ACM Symposium on Theory of Computing, pp. 40–46. ACM (2007)

4. Pătraşcu, M., Thorup, M.: Time-space trade-offs for predecessor search. In: 38th
Annual ACM Symposium on Theory of Computing, pp. 232–240. ACM (2006)

5. Alstrup, S., Brodal, G.S., Rauhe, T.: New data structures for orthogonal range
searching. In: 41st Annual Symposium on Foundations of Computer Science,
pp. 198–207. IEEE Computer Society (2000)

6. Das, A.S., Gupta, P., Kalavagattu, A.K., Agarwal, J., Srinathan, K., Kothapalli, K.:
Range aggregate maximal points in the plane. In: Rahman,M. S., Nakano, S.-i. (eds.)
WALCOM 2012. LNCS, vol. 7157, pp. 52–63. Springer, Heidelberg (2012)

7. Kalavagattu, A.K., Agarwal, J., Das, A.S., Kothapalli, K.: Counting range max-
ima points in plane. In: Arumugam, S., Smyth, W.F. (eds.) IWOCA 2012. LNCS,
vol. 7643, pp. 263–273. Springer, Heidelberg (2012)

8. Das, A.S., Gupta, P., Srinathan, K.: Counting maximal points in a query orthogonal
rectangle. In: Ghosh, S.K., Tokuyama, T. (eds.) WALCOM 2013. LNCS, vol. 7748,
pp. 65–76. Springer, Heidelberg (2013)

9. Brodal, G.S., Tsakalidis, K.: Dynamic planar range maxima queries. In: Aceto, L.,
Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 256–267.
Springer, Heidelberg (2011)

10. Kalavagattu, A.K., Das, A.S., Kothapalli, K., Srinathan, K.: On finding skyline
points for range queries in plane. In: 23rd Annual Canadian Conference on Com-
putational Geometry (2011)

11. Nekrich, Y., Navarro, G.: Sorted range reporting. In: Fomin, F.V., Kaski, P. (eds.)
SWAT 2012. LNCS, vol. 7357, pp. 271–282. Springer, Heidelberg (2012)

12. Yao, A.C.C.: Should tables be sorted? Journal of the ACM 28(3), 615–628 (1981)
13. Pǎtraşcu, M.: Unifying the landscape of cell-probe lower bounds. SIAM Journal

on Computing 40(3), 827–847 (2011)
14. Beame, P., Fich, F.E.: Optimal bounds for the predecessor problem. In: 31st Annual

ACM Symposium on Theory of Computing, pp. 295–304. ACM (1999)
15. Raman, R., Raman, V., Rao, S.S.: Succinct indexable dictionaries with applications

to encoding k-ary trees and multisets. In: 13th Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 233–242. SIAM (2002)

16. Raman, R., Raman, V., Satti, S.R.: Succinct indexable dictionaries with applica-
tions to encoding k-ary trees, prefix sums and multisets. ACM Transactions on
Algorithms 3(4) (2007)

17. Sadakane, K.: Succinct data structures for flexible text retrieval systems. Journal
of Discrete Algorithms 5(1), 12–22 (2007)

18. Fischer, J.: Optimal succinctness for range minimum queries. In: López-Ortiz, A.
(ed.) LATIN 2010. LNCS, vol. 6034, pp. 158–169. Springer, Heidelberg (2010)

B-slack Trees: Space Efficient B-Trees

Trevor Brown

Department of Computer Science, University of Toronto, Canada
tabrown@cs.toronto.edu

Abstract. B-slack trees, a subclass of B-trees that have substantially
better worst-case space complexity, are introduced. They store n keys
in height O(logb n), where b is the maximum node degree. Updates can
be performed in O(log b

2
n) amortized time. A relaxed balance version,

which is well suited for concurrent implementation, is also presented.

1 Introduction

B-trees are balanced trees designed for block-based storage media. Internal nodes
contain between b/2 and b child pointers, and one less key. Leaves contain be-
tween b/2 and b keys. All leaves have the same depth, so access times are pre-
dictable. If memory can be allocated on a per-byte basis, nodes can simply be
allocated the precise amount of space they need to store their data, and no space
is wasted. However, typically, all nodes have the same, fixed capacity, and some
of the capacity of nodes is wasted. As much as 50% of the capacity of each node is
wasted in the worst case. This is particularly problematic when data structures
are being implemented in hardware, since memory allocation and reclamation
schemes are often very simplistic, allowing only a single block size to be allocated
(to avoid fragmentation). Furthermore, since hardware devices must include suf-
ficient resources to handle the worst-case, good expected behaviour is not enough
to allow hardware developers to reduce the amount of memory included in their
devices. To address this problem, we introduce B-slack trees, which are a variant
of B-trees with substantially better worst-case space complexity. We also intro-
duce relaxed B-slack trees, which are a variant of B-slack trees that are more
amenable to concurrent implementation.

The development of B-slack trees was inspired by a collaboration with a man-
ufacturer of internet routers, who wanted to build a concurrent router based on
a tree. In such embedded devices, storage is limited, so it is important to use
it as efficiently as possible. A suitable tree would have a simple algorithm for
updates, small space complexity, fast searches, and searches that would not be
blocked by concurrent updates. Updates were expected to be infrequent. One
naive approach is to rebuild the entire tree after each update. Keeping an old
copy of the tree while rebuilding a new copy would allow searches to proceed
unhindered, but this would double the space required to store the tree.

Search trees can be either node-oriented, in which each key is stored in an
internal node or leaf, or leaf-oriented, in which each key is stored at a leaf and the

R Ravi and I.L. Gørtz (Eds.): SWAT 2014, LNCS 8503, pp. 122–133, 2014.
c© Springer International Publishing Switzerland 2014

B-slack Trees: Space Efficient B-Trees 123

keys of internal nodes serve only to direct a search to the appropriate leaf. In a
node-oriented B-tree, the leaves and internal nodes have different sizes (because
internal nodes contain keys and pointers to children, and leaves contain only
keys). So, if only one block size can be allocated, a significant amount of space is
wasted. Moreover, deletion in a node-oriented tree sometimes requires stealing a
key from a successor (or predecessor), which can be in a different part of the tree.
This is a problem for concurrent implementation, since the operation involves a
large number of nodes, namely, the nodes on the path between the node and its
successor.

B-slack trees are leaf-oriented trees with many desirable properties. The av-
erage degree of nodes is high, exceeding b− 1.4 for trees of height at least three.
Their space complexity is better than all of their competitors. Consider a dictio-
nary implemented by a leaf-oriented search tree, in which, along with each key, a
leaf stores a pointer to associated data. Suppose that each key and each pointer
to a child or to data occupies a single word. Then, 2b

b−2.4n is an upper bound

on the number of words needed to store a B-slack tree with n > b3 keys. For
large b, this tends to 2n, which is optimal. B-slack trees have logarithmic height,
and the number of rebalancing steps performed after a sequence of m updates
to a B-slack tree of size n is amortized O(log(n+m)) per update. Furthermore,
the number of rebalancing steps needed to rebalance the tree can be reduced to
amortized constant per update at the cost of slightly increased space complexity,
as will be explained in the full version of the paper.

The rest of this paper is organized as follows. Section 2 surveys related work.
Section 3 introduces B-slack trees and relaxed B-slack trees. Height, average de-
gree, space complexity and rebalancing costs of relaxed B-slack trees (and, hence,
of B-slack trees) are analyzed in Section 4. Finally, we conclude in Section 5.

2 Related Work

B-trees were initially proposed by Bayer and McCreight in 1970 [4]. Insertion into
a full node in a B-tree causes it to split into two nodes, each half full. Deletion
from a half-full node causes it to merge with a neighbour. Arnow, Tenenbaum
and Wu proposed P-trees [2], which enjoy moderate improvements to average
space complexity over B-trees, but waste 66% of each node in the worst case.

A number of generalizations of B-trees have been suggested that achieve much
less waste if no deletions are performed. Bayer and McCreight also proposed B*-
trees in [4], which improve the worst-case space complexity. At most a third of
the capacity of each node in a B*-tree is wasted. This is achieved by splitting a
node only when it and one of its neighbours are both full, replacing these two
nodes by three nodes. Küspert [9] generalized B*-trees to trees where each node
contains between � bm

m+1� and b pointers or keys, where m ≤ b − 1 is a design
parameter. Such a tree behaves just like a B*-tree everywhere except at the
leaves. An insertion into a full leaf causes keys to be shifted among the nearest
m − 1 siblings to make room for the inserted key. If the m − 1 nearest siblings
are also full, then these m nodes are replaced by m+1 nodes which evenly share
keys. Large values of m yield good worst-case space complexity.

124 T. Brown

Baeza-Yates and Per-̊ake Larson introduced B+trees with partial expansions
[3]. Several node sizes are used, each a multiple of the block size. An insertion to
a full node causes it to expand to the next larger node size. With three node sizes,
at most 33% of each node can be wasted, and worst-case utilization improves
with the number of block sizes used. However, this technique simply pushes
the complexity of the problem onto the memory allocator. Memory allocation is
relatively simple for one block size, but it quickly becomes impractical for simple
hardware to support larger numbers of block sizes.

Culik, Ottmann and Wood introduced strongly dense multiway trees (SDM-
trees) [7]. An SDM-tree is a node-oriented tree in which all leaves have the same
depth, and the root contains at least two pointers. Apart from the root, every
internal node u with fewer than b pointers has at least one sibling. Each sibling
of u has b pointers if it is an internal node and b keys if it is a leaf. Insertion can
be done in O(b3 + (logn)b−2) time. Deletion is not supported, but the authors
mention that the insertion algorithm could be modified to obtain a deletion
algorithm, and the time complexity of the resulting algorithm “would be at
most O(n) and at least O((log n)b−1).” Besides the long running times for each
operation (and the lack of better amortized results), the insertion algorithm
is very complex and involves many nodes, which makes it poorly suited for
hardware implementation. Furthermore, in a concurrent setting, an extremely
large section of the tree would have to be modified atomically, which would
severely limit concurrency.

Srinivasan introduced a leaf-oriented B-tree variant called an Overflow tree
[12]. For each parent of a leaf, its children are divided into one or more groups,
and an overflow node is associated with each group. The tree satisfies the B-tree
properties and the additional requirement that each leaf contains at least b−1−s
keys, where s ≥ 2 is a design parameter and b is the maximum degree of nodes.
Inserting a key into a full leaf causes the key to be inserted into the overflow
node instead; if the overflow node is full, the entire group is reorganized. Deleting
from a leaf is the same as in a B-tree unless it will cause the leaf to contain too
few keys, in which case, a key is taken from the overflow node; if a key cannot be
taken from the overflow node, the entire group is reorganized. Each search must
look at an overflow node. The need to atomically modify and search two places
at once makes this data structure poorly suited for concurrent implementation.

Hsuang introduced a class of node-oriented trees called H-trees [8], which
are a subclass of B-trees parameterized by γ and δ. These parameters specify
a lower bound on the number of grandchildren of each internal node (that has
grandchildren), and a lower bound on the number of keys contained in each
leaf, respectively. Larger values of δ and γ yield trees that use memory more
efficiently. When δ and γ are as large as possible, each leaf contains at least

b − 3 keys, and each internal node has zero or at least � b2+1
2 � grandchildren.

The paper presents O(log n) insertion and deletion algorithms for node-oriented
H-trees. The algorithms are very complex and involve many cases. H-trees have
a minimum average degree of approximately b/

√
2 for internal nodes, which is

much smaller than the b− 1.4 of B-slack trees (for trees of height at least three).

B-slack Trees: Space Efficient B-Trees 125

The full version of the paper describes families of B-trees, H-trees and Over-
flow trees which require significantly more space than B-slack trees.

Rosenberg and Snyder introduced compact B-trees [11], which can be con-
structed from a set of keys using the minimum number of nodes possible. No
compactness preserving insertion or deletion procedures are known. The authors
suggested using regular B-tree updates and periodically compacting a data struc-
ture to improve efficiency. However, experiments in [1] showed that starting with
a compact B-tree and adding only 1.6% more keys using standard B-tree oper-
ations reduced storage utilization from 99% to 67%.

An impressive paper by Brønnimann et al. [5] presented three ways to trans-
form an arbitrary sequential dictionary into a more space efficient one. One of
these ways will be discussed here; of the other two, one is extremely complex and
poorly suited for concurrent hardware implementation, and the other pushes the
complexity onto the memory allocator.

Brønnimann’s transformation takes any sequential tree data structure and
modifies it by replacing each key in the sequential data structure with a chunk,
which is a group of b− 2, b− 1 or b keys, where b is the memory block size. All
chunks in the data structure are also kept in a doubly linked list to facilitate
iteration and movement of keys between chunks. For instance, a BST would be
transformed into a tree in which each node has zero, one or two children, and
b − 2, b − 1 or b keys. All keys in chunks in the left subtree of a node u would
be smaller than all keys in u’s chunk, and all keys in chunks in the right subtree
of u would be larger than all keys in u’s chunk. A search for key k behaves the
same as in the sequential data structure until it reaches the only chunk that can
contain k, and searches for k within the chunk. An insertion first searches for
the appropriate chunk, then it inserts the key into this chunk. Inserting into a
full chunk requires shifting the keys of the b nearest other chunks to make room.
If the b closest neighboring chunks are full, then a key is taken from each, and
a new node containing b keys is inserted using the sequential data structure’s
insertion algorithm. Deletion is similar. Each operation in the resulting data
structure runs in O(f(n) + b2) steps, where f(n) is the number of steps taken
by the sequential data structure to perform the same operation.

After this transformation, a B-tree with maximum degree b requires 2n +
O(n/b) words to store n keys and pointers to data. In the worst-case, each
chunk wastes 2/b of its space, which is somewhat worse than in B-slack trees.
Furthermore, supporting fast searches can introduce significant complexity to
the hardware design. A node in the transformed B-tree contains up to b − 1
chunks, each of which occupies one block of memory. Therefore, hardware must
be able to quickly load up to b − 1 blocks at once, or else deciding which child
pointer to follow will be slow.

3 B-slack trees

A B-slack tree is a variant of a B-tree. Each node stores its keys in sorted order,
so binary search can be used to determine which child of an internal node should

126 T. Brown

be visited next by a search, or whether a leaf contains a key. Let p0, p1, ..., pm be
the sequence of pointers contained in an internal node, and k1, k2, ..., km be its
sequence of keys. For each 1 ≤ i ≤ m, the subtree pointed to by pi−1 contains
keys strictly smaller than ki, and the subtree pointed to by pi contains keys
greater than or equal to ki. We say that the degree of an internal node is the
number of non-Nil pointers it contains, and the degree of a leaf is the number
of keys it contains. This unusual definition of degree simplifies our discussion.
The degree of node v is denoted deg(v). If the maximum possible degree of a
node is b, and its degree is b− x, then we say it contains x slack.
A B-slack tree is a leaf-oriented search tree with maximum degree b > 4 in which:

P1: every leaf has the same depth,
P2: internal nodes contain between 2 and b pointers (and one less key),
P3: leaves contain between 0 and b keys, and
P4: for each internal node u, the total slack contained in the children of u is

at most b− 1.

P4 is the key property that distinguishes B-slack trees from other variants of
B-trees. It limits the aggregate space wasted by a number of nodes, as opposed
to limiting the space wasted by each node. Alternatively, P4 can be thought of
as a lower bound on the sum of the degrees of the children of each internal node.
Formally, for each internal node with children v1, v2, ..., vl, deg(v1) + deg(v2) +
...+ deg(vl) ≥ lb− (b− 1) = lb− b+1. This interpretation is useful to show that
all nodes have large subtrees. For instance, it implies that a node u with two
internal children must have at least b + 1 grandchildren. If these grandchildren
are also internal nodes, we can conclude that u must have at least b2 − b + 2
great grandchildren.

A tree that satisfies P1, and in which every node has degree b − 1, is an
example of a B-slack tree. Another example of a B-slack tree is a tree of height
two, where b is even, the root has degree two, its two children have degree b/2
and b/2+1, respectively, and the grandchildren of the root are leaves with degree
b, except for two, one in the left subtree of the root, and one in the right subtree,
that each have degree one. This tree contains the smallest number of keys of any
B-slack tree of height two.

3.1 Relaxed B-slack trees

A relaxed balance search tree decouples updates that rebalance (or reorganize
the keys of) the tree from updates that modify the set of keys stored in the
tree [10]. The advantages of this decoupling are twofold. First, updates to a
relaxed balance version of a search tree are smaller, so a greater degree of con-
currency is possible in a multithreaded setting. Second, for some applications,
it may be useful to temporarily disable rebalancing to allow a large number of
updates to be performed quickly, and to gradually rebalance the tree afterwards.

A relaxed B-slack tree is a relaxed balance version of a B-slack tree that has
weakened the properties. A weight of zero or one is associated with each node.

B-slack Trees: Space Efficient B-Trees 127

These weights serve a purpose similar to the colors red and black in a red-black
tree. We define the relaxed depth of a node to be one less than the sum of the
weights on the path from the root to this node. A relaxed B-slack tree is a leaf-
oriented search tree with maximum degree b > 4 in which:

P0′: every node with weight zero contains exactly two pointers,
P1′: every leaf has the same relaxed depth,
P2′: internal nodes contain between 1 and b pointers (and one less key), and
P3 : leaves contain between 0 and b keys

To clarify the difference between B-slack trees and relaxed B-slack trees, we
identify several types of violations of the B-slack trees properties that can be
present in a relaxed B-slack tree. We say that a weight violation occurs at a
node with weight zero, a slack violation occurs at a node that violates P4, and
a degree violation occurs at an internal node with only one child (violating P2).
Observe that P1 is satisfied in a relaxed B-slack tree with no weight violations.
Likewise, P2 is satisfied in a relaxed B-slack tree with no degree violations, and
P4 is satisfied in a relaxed B-slack tree with no slack violations. Therefore, a
relaxed B-slack tree that contains no violations is a B-slack tree. Rebalancing
steps can be performed to eliminate violations, and gradually transform any
relaxed B-slack tree into a B-slack tree.

3.2 Updates to Relaxed B-slack trees

We now describe the algorithms for inserting and deleting keys in a relaxed
B-slack trees (in a way that maintains P0′, P1′, P2′ and P3). The updates for
relaxed B-slack trees are shown in Figure 1. There, weights appear to the right
of nodes, and shaded regions represent slack. If u is a node that is not the root,
then we let π(u) denote the parent of u. Our insertion and deletion algorithms
always ensure that all leaves have weight one.

Deletion. First, a search is performed to find the leaf u where the deletion
should occur. If the leaf does not contain the key to be deleted, then the dele-
tion terminates immediately, and the tree does not change. If the leaf contains
the key to be deleted, then the key is removed from the sequence of keys stored
in that leaf. Deleting this key may create a slack violation.

Insertion. To perform an insertion, a search is first performed to find the leaf
u where the insertion should occur. If u contains some slack, then the key is
added to the sequence of keys in u, and the insertion terminates. Otherwise, u
cannot accommodate the new key, so Overflow is performed. Overflow replaces
u by a subtree of height one consisting of an internal node with weight zero,
and two leaves with weight one. The b keys stored in u, plus the new key, are
evenly distributed between the children of the new internal node. If u was the
root before the insertion, then the new internal node becomes the new root.
Otherwise, u’s parent π(u) before the insertion is changed to point to the new

128 T. Brown

Delete 1
Delete(β) α1α γ γβ

Insert
1

Insert(β)α 1α γγ β

Overflow
α 1

leaf contains b keys 1 1

0

leaves containing b+ 1 keys

evenly distributed

α1 α3

Insert(β)

α2β

Root-Zero
α0 1root α

Root-
Replace

α
1

1

if the root has only one child, make that child the new root

root

α

Absorb

α γ

β
γα β

0

1

1

initially, π(u) contains less than b pointers

u

Split

α

β 0

1γ

α

0

1γ1 1

initially, π(u) contains b pointers; afterwards, all pointers

in α, β, γ are evenly distributed between the two children

βu γ2

Compress
k ≥ 2 children with total degree c ≤ kb− b �c/b� children containing the same

pointers or keys, evenly distributed

1

1 1 1 1

1u

One-Child

k ≥ 2 children with total degree c > kb− b evenly distribute the pointers

1

1 1 1 1

1

and some child with one pointer

u

Fig. 1. Updates to B-slack trees (and relaxed B-slack trees). Nodes with weight zero
contain exactly two pointers.

B-slack Trees: Space Efficient B-Trees 129

internal node instead of u. After Overflow, there is a weight violation at the new
internal node. Additionally, since the new internal node contains b − 2 slack,
whereas u contained no slack, there may be a slack violation at π(u).

Delete, Insert and Overflow maintain the properties of a relaxed B-slack tree.
They will also maintain the properties of a B-slack tree, provided that rebalanc-
ing steps are performed to remove any violations that are created.

3.3 Rebalancing Steps

There are six different rebalancing steps for relaxed B-slack trees: Root-Zero,
Root-Replace, Absorb, Split, One-Child and Compress. If there is a degree vio-
lation at the root, then Root-Replace is performed. If not, but there is a weight
violation at the root, Root-Zero is performed. If there is a weight violation at an
internal node that is not the root, then Absorb or Split is performed. Suppose
there are no weight violations. If there is a degree violation at a node u and no
degree or slack violation at π(u), then One-Child is performed. If there is a slack
violation at a node u and no degree violation at u, then Compress is performed.
Figure 1 illustrates these steps. The goal of rebalancing is to eliminate all viola-
tions, while maintaining the relaxed B-slack tree properties.

Root-Zero. Root-Zero changes the weight of the root from zero to one, elimi-
nating a weight violation, and incrementing the relaxed depth of every node. If
P1′ held before Root-Zero, it holds afterwards.

Root-Replace. Root-Replace replaces the root r by its only child u, and sets
u’s weight to one. This eliminates a degree violation at r, and any weight vio-
lation at u. If u had weight zero before Root-Replace, then the relaxed depth
of every leaf is the same before and after Root-Replace. Otherwise, the relaxed
depth of every leaf is decremented by Root-Replace. In both cases, if P1′ held
before Root-Replace, it holds afterwards.

Absorb. Let u be a non-root node with weight zero. Absorb is performed when
π(u) contains less than b pointers. In this case, the two pointers in u are moved
into π(u), and u is removed from the tree. Since the pointer from π(u) to u is
no longer needed once u is removed, π(u) now contains at most b pointers. The
only node that was removed is u and, since it had weight zero, the relaxed depth
of every leaf remains the same. Thus, if P1′ held before Absorb, it also holds
afterwards. Absorb eliminates a weight violation at u, but may create a slack
violation at π(u).

Split. Let u be a non-root node with weight zero. Split is performed when π(u)
contains exactly b pointers. In this case, there are too many pointers to fit in
a single node. We create a new node v with weight one, and evenly distribute
all of the pointers and keys of u and π(u) (except for the pointer from π(u) to
u) between u and v. Now π(u) has two children, u and v. The weight of u is
set to one, and the weight of π(u) is set to zero. As above, this does not change

130 T. Brown

the relaxed depth of any leaf, so P1′ still holds after Split. Split moves a weight
violation from u to π(u) (closer to the root, where it can be eliminated by a
Root-Zero or Root-Replace), but may create slack violations at u and v.

Compress. Compress is performed when there is a slack violation at an inter-
nal node u, there is no degree violation at u, and there are no weight violations
at u or any of its k ≥ 2 children. Let c ≤ kb − b be the number of pointers
or keys stored in the children of u. Compress evenly distributes the pointers or
keys contained in the children of u amongst the first �c/b� children of u, and
discards the other children. This will also eliminate any degree violations at
the children of u if c > 1. After the update, u satisfies P4. Compress does not
change the relaxed depth of any node, so P1′ still holds after. Compress removes
at least one child of u, so it increases the slack of u by at least one, possibly
creating a slack violation at π(u). (However, it decreases the total amount of
slack in the tree by at least b− 1.) Thus, after a Compress, it may be necessary
to perform another Compress at π(u). Furthermore, as Compress distributes
keys and pointers, it may move nodes with different parents together, under the
same parent. Even if two parents initially satisfied P4 (so the children of each
parent contain a total of less than b slack), the children of the combined parent
may contain b or more slack, creating a slack violation. Therefore, after a Com-
press, it may also be necessary to perform Compress at some of the children of u.

One-Child. One-Child is performed when there is a degree violation at an
internal node u, there are no weight violations at u or any of its siblings, and
there is no violation of any kind at π(u). Let k be the degree of π(u). Since there
is no slack violation at π(u), there are a total of c > kb − b = b(k − 1) pointers
stored in u and its siblings. Since u has only one child pointer, each of its other
k−1 siblings must contain b pointers. One-Child evenly distributes the keys and
pointers of the children of π(u). One-Child does not change the relaxed depth of
any node, so P1′ still holds after. One-Child eliminates a degree violation at u,
but, like Compress, it may move children with different parents together under
the same parent, possibly creating slack violations at some children of π(u). So,
it may be necessary to perform Compress at some of the children of π(u).

All of these updates maintain P0′, P2′ and P3. While rebalancing steps are
being performed to eliminate the violation created by an insertion or deletion,
there is at most one node with weight zero.

We prove that a rebalancing step can be applied to any relaxed B-slack tree
that is not a B-slack tree.

Lemma 1. Let T be a relaxed B-slack tree. If T is not a B-slack tree, then a
rebalancing step can be performed.

Proof. If T is not a B-slack tree, it contains a weight violation, a slack violation
or a degree violation. If there is weight violation, then Root-Zero, Absorb or Split
can be performed. Suppose there are no weight violations. Let u be the node at
the smallest depth that has a slack or degree violation. Suppose u has a degree
violation. If u is the root, then Root-Replace can be performed. Otherwise, π(u)

B-slack Trees: Space Efficient B-Trees 131

has no violation, so One-Child can be performed. Suppose u does not have a
degree violation. Then, u must have a slack violation, and Compress can be
performed. ��

4 Analysis

Due to space constraints, this section merely gives an outline of results proved
about B-slack trees. In the full version of the paper, we provide a detailed analysis
of B-slack trees that store n keys, by giving: an upper bound on the height of
the tree, a lower bound on the average degree of nodes (and, hence, utilization),
and an upper bound on the space complexity.

Arbitrary B-slack trees are difficult to analyze, so we begin by studying a class
of trees called b-overslack trees. A b-overslack tree has a root with degree two,
and satisfies P1, P2 and P3, but instead of P4, the children of each internal node
contain a total of exactly b slack. Thus, a b-overslack tree is a relaxed B-slack tree,
but not a B-slack tree. Consider a b-overslack tree T of height h that contains n
keys. We prove that the total degree at depth δ ≤ h in T is d(δ) = 2−δ(αδ +γδ),
where α = b +

√
b2 − 4b and γ = b −

√
b2 − 4b. Since the total degree at the

lowest depth is precisely the number of keys in the tree, every b-overslack tree
of height h contains exactly d(h) keys. Furthermore, when h ≥ 3, we also have
(b − 1.4)h < (b − γ

2)
h ≤ d(h) ≤ bh. Therefore, for n > b3 (which implies height

at least three), h satisfies �logb n� ≤ h ≤ �logb−γ/2 n� < �logb−1.4 n�. We also

prove that the average degree of nodes in T is b·d(h−1)−b+2
b·d(h−2)−b+3 , which is greater than

b− 1.4 for h ≥ 3.
We next prove some connections between overslack trees and B-slack trees.

First, we show that each b-overslack tree of height h has a smaller total degree
of nodes at each depth than any B-slack tree of height h. We do this by starting
with an arbitrary B-slack tree of height h, and repeatedly removing pointers and
keys from the children of each internal node that satisfies P4 (taking care not
to violate P1, P2 or P3), until we obtain a b-overslack tree. It follows that each
b-overslack tree of height h contains fewer keys than any B-slack tree of height
h. Consequently, every b-overslack tree with n keys has height at least as large
as any B-slack tree with n keys. We next prove that every b-overslack tree of
height h has a smaller average node degree than any B-slack tree of height h. As
above, the proof starts with an arbitrary B-slack tree of height h, and removes
pointers and keys from nodes until the tree becomes a b-overslack tree. However,
in this proof, every time we remove a pointer, we must additionally show that
the average degree of nodes in the tree decreases.

We then compute the space complexity of a B-slack tree containing n keys,
which is the number of words needed to store it. Consider a leaf-oriented tree with
maximum degree b. For simplicity, we assume that each key and each pointer to
a child or data occupies one word in memory. Thus, a leaf occupies 2b words, and
an internal node occupies 2b − 1 words. A memory block size of 2b is assumed.
Let D̄ be the average degree of nodes. Then, U = D̄/b is the proportion of space
that is utilized (which we call the average space utilization of the tree), and

132 T. Brown

1 − U is the proportion of space that is wasted. The space complexity is 2bF ,
where F is the number of nodes in the tree. Suppose the tree contains n keys.
By definition, the sum of the degrees of all nodes is F − 1 + n, since each node,
except the root, has a pointer into it and the degree of a leaf is the number of
keys it contains. Additionally, FD̄ is equal to the sum of degrees of all nodes, so
F = (n − 1)/(D̄ − 1). Therefore, the space complexity is 2b(n− 1)/(D̄ − 1). In
order to compute an upper bound on the space complexity for a B-slack tree of
height h, we simply need a lower bound on D̄. Above, we saw that D̄ > b−1.4 for
B-slack trees of height at least three. It follows that a B-slack tree with n > b3

keys has space complexity at most 2b(n− 1)/(b− 2.4) < 2b
b−2.4n.

The full version of the paper describes pathological families of B-trees, Over-
flow trees and H-trees, and compares the space complexity of example trees in
these families with the worst-case upper bound on the space complexity of a
B-slack tree. By studying these families, we obtain lower bounds on the space
complexity of these trees that are above the upper bound for B-slack trees.

We also study the number of rebalancing steps necessary to maintain balance
in a relaxed B-slack tree. Consider a relaxed B-slack tree obtained by starting
from a B-slack tree containing n keys and performing a sequence of i insertions
and d deletions. We prove that such a relaxed B-slack tree will be transformed
back into a B-slack tree after at most 2i(2 + �log� b

2 �
(n + i)/2�) + d/(b − 1)

rebalancing steps, irrespective of which rebalancing steps are performed, and in
which order. Hence, insertions perform amortized O(log(n+i)) rebalancing steps
and deletions perform an amortized constant number of rebalancing steps.

5 Conclusion

We introduced B-slack trees, which have excellent space complexity in the worst
case, and amortized logarithmic updates. The data structure is simple, requires
only one block size, and is well suited for hardware implementation.

Modifying the definition of B-slack trees so that the total slack shared amongst
the children of each internal node of degree k is at most b + k − 1, instead of
b − 1, yields a data structure with amortized constant rebalancing (with small
constants), and only a slight increase in space complexity. Specifically, such a
tree containing n > b3 keys occupies at most 2b

b−3.4n words. Details appear in
the full version of the paper.

The recently introduced technique of Brown, Ellen and Ruppert [6] can be
used to obtain a concurrent implementation of relaxed B-slack trees that tol-
erates process crashes and guarantees some process will always make progress.
In the resulting implementation, localized updates to disjoint parts of the tree
can proceed concurrently, and searches can proceed without synchronizing with
updates, which makes them extremely fast. The implementation can be designed
such that, in a quiescent state, when no updates are in progress, the data struc-
ture is a B-slack tree.

B-slack trees have been implemented in Java, and code is freely available from
http://www.cs.utoronto.ca/∼tabrown. Experiments have been performed to val-
idate the theoretical worst-case bounds, and to better understand the level of

http://www.cs.utoronto.ca/~tabrown

B-slack Trees: Space Efficient B-Trees 133

pessimism in them. The results indicate that few rebalancing steps are performed
in practice, and average degree is somewhat better than the already good worst-
case bounds. For instance, for b = 16 and b = 32, over a variety of simulated
random workloads with tree sizes varying between 25 = 32 and 220 = 1,048,576
keys, there were at most 1.2 rebalancing steps per insertion or deletion, and
average degrees for trees were approximately b− 0.5, which is extremely close to
optimal.

Acknowledgments. This work was dramatically improved by the insightful
comments of my supervisor, Faith Ellen.

References

1. Arnow, D.M., Tenenbaum, A.M.: An empirical comparison of B-trees, compact
B-trees and multiway trees. ACM SIGMOD Record 14, 33–46 (1984)

2. Arnow, D.M., Tenenbaum, A.M., Wu, C.: P-trees: Storage efficient multiway trees.
In: Proceedings of the 8th Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval, pp. 111–121. ACM (1985)

3. Baeza-Yates, R.A., Larson, P.-A.: Performance of B+-trees with partial expansions.
IEEE Transactions on Knowledge and Data Eng. 1(2), 248–257 (1989)

4. Bayer, R., McCreight, E.: Organization and maintenance of large indexes. Technical
Report D1-82-0989, Boeing Scientific Research Laboratories (1970)

5. Brönnimann, H., Katajainen, J., Morin, P.: Putting your data structure on a diet.
CPH STL Rep, 1 (2007)

6. Brown, T., Ellen, F., Ruppert, E.: A general technique for non-blocking trees. In:
Proc. of the 19th ACM SIGPLAN Symp. on Principles and Practice of Parallel
Programming, PPoPP 2014, pp. 329–342. ACM, New York (2014)

7. Culik II, K., Ottmann, T., Wood, D.: Dense multiway trees. ACM Transactions on
Database Systems (TODS) 6(3), 486–512 (1981)

8. Huang, S.-H.S.: Height-balanced trees of order (β, γ, δ). ACM Trans. Database
Syst. 10(2), 261–284 (1985)

9. Küspert, K.: Storage utilization in B*-trees with a generalized overflow technique.
Acta Informatica 19(1), 35–55 (1983)

10. Larsen, K., Soisalon-Soininen, E., Widmayer, P.: Relaxed balance through standard
rotations. In: Rau-Chaplin, A., Dehne, F., Sack, J.-R., Tamassia, R. (eds.) WADS
1997. LNCS, vol. 1272, pp. 450–461. Springer, Heidelberg (1997)

11. Rosenberg, A.L., Snyder, L.: Compact B-trees. In: Proceedings of the 1979 ACM
SIGMOD International Conference on Management of Data, SIGMOD 1979,
pp. 43–51. ACM, New York (1979)

12. Srinivasan, B.: An adaptive overflow technique to defer splitting in B-trees. The
Computer Journal 34(5), 397–405 (1991)

Approximately Minwise Independence
with Twisted TabulationÆ

Søren Dahlgaard and Mikkel Thorup

University of Copenhagen
{soerend,mthorup}@di.ku.dk

Abstract. A random hash function h is ε-minwise if for any set S, �S� �
n, and element x � S, Pr�h�x� � min h�S�� � �1 � ε�	n. Minwise hash
functions with low bias ε have widespread applications within similarity
estimation.

Hashing from a universe �u�, the twisted tabulation hashing of
Pǎtraşcu and Thorup [SODA’13] makes c � O�1� lookups in tables of
size u1�c. Twisted tabulation was invented to get good concentration for
hashing based sampling. Here we show that twisted tabulation yields
Õ�1	u1�c�-minwise hashing.

In the classic independence paradigm of Wegman and Carter
[FOCS’79] Õ�1	u1�c�-minwise hashing requires Ω�log u�-independence
[Indyk SODA’99]. Pǎtraşcu and Thorup [STOC’11] had shown that sim-
ple tabulation, using same space and lookups yields Õ�1	n1�c�-minwise
independence, which is good for large sets, but useless for small sets. Our
analysis uses some of the same methods, but is much cleaner bypassing
a complicated induction argument.

1 Introduction

The concept of minwise hashing (or the “MinHash algorithm” according to 1) is a
basic algorithmic tool suggested by Broder et al. [1,2] for problems related to set
similarity and containment. After the initial application of this algorithm in the
early AltaVista search engine to detecting and clustering similar documents, the
scheme has reappeared in numerous other applications1 and is now a standard
tool in data mining where it is used for estimating similarity [2,1,3], rarity [4],
document duplicate detection [5,6,7,8], large-scale learning [9], etc. [10,11,12,13].

The basic motivation of minwise independence is to use hashing to select an
element from a set S. With a hash function h, we simply pick the element x � S
with the minimum hash value. If the hash function is fully random and no two
keys get the same hash, then x is uniformly distributed in S.

A nice aspect of minwise selection is that minh�A � B� �
min�minh�A�,min h�B��. This makes it easy, e.g., to select a ran-
dom leader in many distributed settings. It also implies that that
Æ Research partly supported by Thorup’s Advanced Grant from the Danish Council

for Independent Research under the Sapere Aude research carrier programme.
1 See http://en.wikipedia.org/wiki/MinHash

R Ravi and I.L. Gørtz (Eds.): SWAT 2014, LNCS 8503, pp. 134–145, 2014.
c© Springer International Publishing Switzerland 2014

http://en.wikipedia.org/wiki/MinHash

Approximately Minwise Independence with Twisted Tabulation 135

minh�A � B� � h�A 	 B�
� minh�A� � minh�B�. Therefore, if h is
fully random and collision free,

Pr
h
�minh�A� � minh�B�
 � �A	B�

�A�B� .

Thus, if we, for two sets A and B, have stored minh�A� and minh�B�, then
we can use �minh�A� � min h�B�
2 as an unbiased estimator for the Jaccard
similarity �A	B���A�B�.

Unfortunately, we cannot realistically implement perfect minwise hash func-
tions where each x � S has probability 1��S� of being the unique minimum
[2]. More precisely, to handle any subset S of a universe U , we need a random
permutation h : U � U represented using Θ��U �� bits.

Instead we settle for a bias ε. Formally, a random hash function h : U � R
from some key universe U to some range R of hash values is random variable
following some distribution over RU . We say that h is ε-minwise or has bias ε if
for every S � U and x � U �S,

Pr�h�x� � minh�S�
 � 1� ε

�S� � 1
(1)

Pr�h�x� � minh�S�
 � 1� ε

�S� � 1
(2)

From (1) and (2), we easily get for any A,B � U , that

Pr
h
�minh�A� � minh�B�
 � �1� ε� � �A	B�

�A�B� .

To implement ε-minwise hashing in Wegman and Carter’s [14] classic framework
of k-independent hash functions Θ�log 1

ε �-independence is both sufficient [15] and
necessary [16]. These results are for “worst-case” k-independent hash functions.
A much more time-efficient solution is based on simple tabulation hashing of
Zobrist [17]. In simple tabulation hashing, the hash value is computed by looking
up c � O�1� bitstrings in tables of size �U �1�c and XORing the results. This is
very fast with tables in cache. Pǎtraşcu and Thorup have shown [18] that simple
tabulation hashing, which is not even 4-independent, has bias ε � Õ�1��S�1�c�.
Unfortunately, this bias is useless for small sets S.

In this paper, we consider the twisted tabulation of Pǎtraşcu and Thorup
[19] which was invented to yield Chernoff-style concentration bounds, and high
probability amortized performance bounds for linear probing. It is almost as fast
as simple tabulation using the same number of lookups but an extra XOR and a
shift. We show that with twisted tabulation, the bias is ε � Õ�1��U �1�c�, which
is independent of the set size.

It should be noted, that Thorup [20] recently introduced a double tabulation
scheme yielding high independence in O�1� time, hence much faster than using an
2 This is the Iverson bracket notation, where �P � is 1 for a predicate P if P is true

and 0 otherwise.

136 S. Dahlgaard and M. Thorup

ω�1�-degree polynomial to get ω�1�-independence and o�1� bias. However, with
table size �U �1�c, the scheme ends up using at least 7c lookups [20, Theorem 1]
and 12 times more space, so we expect it to be at least an order of magnitude
slower than twisted tabulation3.

When using minwise for similarity estimation, to reduce variance, we typically
want to run q experiments with q independent hash functions h1, ..., hq, and
save the vector of �min h1�A�, ...,min hq�A�� as a sketch for the set A. We can
then estimate the Jaccard similarity as

�q
i�1�minhi�A� � minhi�B�
�q. While q

reduces variance, it does not reduce bias, so the bias has to be small for each hi.
This scheme is commonly referred to as k�minwise. Since minh1�A� is always
compared to minh1�B�, we say that the samples of the two sketches are aligned.
A standard alternative1, called bottom-q, is to just use a single hash function h,
and store the q smallest hash values as a set S�A�. Estimating the Jaccard-index
is then done as �S�A� 	 S�B� 	 {q smallest values of S�A� � S�B�}��q. It turns
out that a large q reduces both variance and bias [23]. However, the problem
with bottom-q sketches, is that the samples lose their alignment. In applications
of large-scale machine learning this alignment is needed in order to efficiently
construct a dot-product for use with a linear support vector machine (SVM) 4

such as LIBLINEAR [24] or Pegasos [25]. Using the alignment of k�minwise,
it was shown how to construct such a dot-product in [9] based on this scheme.
In such applications it is therefore important to have small bias ε. Finally, we
note that when q � 1, both schemes reduce to basic minwise hashing with the
fundamental goal of sampling a single random element from any set with only a
small bias, which is exactly the problem addressed in this paper.

2 Preliminaries

Let us briefly review tabulation-based hashing. For both simple and twisted
tabulation we are dealing with some universe U � �0, 1, . . . , u � 1� denoted
by �u
 and wish to hash keys from �u
 into some range R � �2r
. We view a
key x � �u
 as a vector of c � 1 characters from the alphabet Σ � �u1�c
,
i.e. x � �x0, . . . , xc�1� � Σc. We generally assume c to be a small constant
(e.g. 4).

2.1 Simple Tabulation

In simple tabulation hashing we initialize c tables h0, . . . , hc�1 : Σ � R with
independent random data. The hash h�x� is then computed as

h�x� � �
i��c�

hi�xi
 .

Here � denotes bit-wise XOR. This is a well-known scheme dating back to [17].
3 The whole area of tabulation hashing is about minimizing the number of lookups,

e.g., [21] saves a factor 2 in lookups over [22] for moderate independence.
4 See http://en.wikipedia.org/wiki/Support_vector_machine#Linear_SVM

http://en.wikipedia.org/wiki/Support_vector_machine#Linear_SVM

Approximately Minwise Independence with Twisted Tabulation 137

Simple Tabulation is known to be 3-independent, but it was shown in [18] to
have much more powerful properties than this would suggest. These properties
include fourth moment bounds, Chernoff bounds when distribution balls into
many bins and random graph properties necessary in cuckoo hashing. It was
also shown that simple tabulation is ε-minwise independent with ε � O

�
lg2 n
n1�c

�
.

We will need the following basic lemma regarding simple tabulation ([18,
Lemma 2.2]):

Lemma 1. Suppose we use simple tabulation to hash n � m1�ε keys into m
bins for some constant ε � 0. For any constant γ, all bins get less than d �
min���1� γ��ε�c, 2�1�γ	�ε} keys with probability � 1�m�γ.

Specifically this implies that if we hash n keys into m � nuε bins, then each bin
has O�1� elements with high probability. In this paper “with high probability”
(w.h.p.) means with probability 1� u�γ for any desired constant γ � 1.

2.2 Twisted Tabulation

Twisted tabulation hashing is another tabulation-based hash function introduced
in [19]. Twisted tabulation can be seen as two independent simple tabulation
functions hτ : Σc�1 � Σ and hS : Σc � R. If we view a key x as the head
head�x� � x0 and the tail tail�x� � �x1, . . . , xc�1�, we can define the hash value
of twisted tabulation as follows:

t�x� � hτ �tail�x��

h
0�x� �
c�1�
i�1

hSi �xi

h�x� � h
0�x� � hS0 �x0 � t�x�
 .

We refer to the value x0 � t�x� as the twisted head of the key x, and define the
twisted group of a character α to be Gα � �x � x0 � t�x� � α�. For the keys in
Gα, we refer to the XOR with hS0 �x0 � t�x�
 as the final (XOR)-shift, which is
common to all keys in Gα. We call h
0�x� the internal hashing.

Throughout the proofs we will rely on the independence between hτ and hS

to fix the hash function in a specific order, i.e. fixing the twisted groups first.
One powerful property of twisted tabulation is that the keys are distributed

nicely into the twisted groups. We will use the following lemma from the analysis
of twisted tabulation [19, Lemma 2.1]:

Lemma 2. Consider an arbitrary set S of keys and a constant parameter ε � 0.
W.h.p. over the random choice of the twister hash function, hτ , all twisted groups
have size O�1� �S��Σ1�ε�.

Twisted tabulation hashing also gives good concentration bounds in form
of Chernoff-like tail bounds, which is captured by the following lemma, [19,
Theorem 1.1].

138 S. Dahlgaard and M. Thorup

Lemma 3. Choose a random twisted tabulation hash function h : �u
 � �u
.
For each key x � �u
 in the universe, we have an arbitrary value function vx :
�u
 � �0, 1
 assigning a value Vx � vx�h�x�� � �0, 1
 to x for each possible hash
value. Let μx � Ey��u��vx�y�
 denote the expected value of vx�y� for uniformly
distributed y � �u
. For a fixed set of keys S � �u
, define V � �

x�S Vx and
μ � �

x�S μx. Let γ, c, and ε be constants. Then for any μ � Σ1�ε and δ � 0
we have:

Pr�V � �1� δ�μ
 �
�

eδ

�1� δ��1�δ	

�Ω�μ	

� 1�uγ (3)

Pr�V � �1� δ�μ
 �
�

e�δ

�1� δ��1�δ	

�Ω�μ	

� 1�uγ (4)

In practice, we can merge hτ and hS to a single simple tabulation function
hÆ : Σ � Σ �R, but with hÆ0 : Σ � R. This adds logΣ bits to each entry of
the tables hÆ1, . . . hÆc�1 (in practice we want these to be 32 or 64 bits anyway).
See the code in Figure 1 for an implementation of 32-bit keys in C.

INT32 TwistedTab32(INT32 x, INT64[4][256] H) {
INT32 i;
INT64 h=0;
INT8 c;
for (i=0;i<3;i++) {

c=x;
h^=H[i][c];
x = x>> 8;

} // at the end i=3
c=x^h; // extra xor with h
h^=H[i][c];
h>>=32; // extra shift of h
return ((INT32) h);

}

Fig. 1. C-code implementation of twisted tabulation for 32-bit keys assuming a point
H to randomly fille storage

3 Minwise for Twisted Tabulation

We will now show the following theorem:

Theorem 1. Twisted tabulation is O
�

log2 u
Σ

�
-minwise independent.

Recall from the definition of ε-minwise, that we are given an input set S of
�S� � n keys and a query key q � U �S. We will denote by Q the twisted group
of the query key q. Similarly to the analysis in [18] we assume that the output

Approximately Minwise Independence with Twisted Tabulation 139

range is �0, 1�. We pick � � γ log u and divide the output range into n�� bins.
Here γ is chosen such that the number of bins is a power of two and large enough
that the following two properties hold.

1. The minimum bin �0, ��n� is non-empty with probability 1 � 1�u2 by
Lemma 3. Here μ � O�log u� � Σ1�ε.

2. The bins are d-bounded for each twisted group (for some constant d) with
probability 1 � 1�u2 by Lemma 1. Meaning that for any twisted group G,
at most d keys land in each of the n�� bins after the internal hashing is
done. This holds because each twisted group has n�Σ1�ε elements w.h.p. by
Lemma 2.

Similar to [18], we assume that the hash values are binary fractions of infinite
precision so we can ignore collisions. The theorem holds even if we use just
lg�nΣ� bits for the representation: Let h̃ be the truncation of h to lg�nΣ� bits.
There is only a distinction when h̃�q� is minimal and there exists some x � S
such that h̃�x� � h̃�q�. Since the minimum bin is non-empty with probability
1� 1�u2 we can bound the probability of this from above by

Pr
�
h̃�q� � ��n� �x � S : h̃�x� � h̃�q�

�
� �

n
�
�
n � 1

nΣ

�
� 1�u2

using 2-independence to conclude that �h̃�q� � ��n� and �h̃�x� � h̃�q�� are
independent.

3.1 Upper Bound

To upper bound the probability that h�q� is smaller than minh�S� it suffices to
look at the case when q is in the minimum bin �0, ��n�, as we have

Pr�h�q� � min h�S�
 � Pr�minh�S� � ��n
 � Pr�h�q� � min�h�S� � ���n��

� 1�u2 � Pr�h�q� � min�h�S� � ���n��
 (5)

To bound (5) we will use the same notion of representatives as in [18]: If a
non-query twisted group Gα � Q has more than one element in some bin, we
pick one of these arbitrarily as the representative. Let R�Gα� denote the set of
representatives from Gα and let R denote the union of all such sets. We trivially
have that Pr�h�q� � minh�S�
 � Pr�h�q� � minh�R�
.

The proof relies on fixing the tables associated with the hash functions hτ
and hS in the following order:

1. Grouping into twisted groups is done by fixing hτ . Each group has O�1 �
n�Σ1�ε� elements by Lemma 2 w.h.p.

2. The internal hashing of all twisted groups is done by fixing the tables
hS1 , . . . , h

S
c�1. This determines the set of representatives R.

3. Having fixed the set R we do the final shifts of the twisted groups Gα by
fixing hS0 . We will show that the probability of q having the minimum hash
value after these shifts is at most 1���R� � 1�.
Since �R� is a random variable depending only on the internal hashing and
twisted groups, the entire probability is bounded by E�1���R� � 1�
.

140 S. Dahlgaard and M. Thorup

To see step 3 from above we let Rand�A� be a randomizing function that takes
each element in a set A and replaces it with an independent uniformly random
number in �0, 1�. We will argue that

Pr�h�q� � minh�R� � ���n�
 � Pr�h�q� � minRand�R�
 � 1���R� � 1� (6)

To prove (6) fix h�q� � p � ��n and consider some twisted group Gα. When
doing the final shift of the group we note that each representative x � R�Gα�
is shifted randomly, so Pr�h�x� � p
 � p. However, since the number of bins
is a power of two, and each representative in R�Gα� is shifted by the same
value, at most one element of R�Gα� can land in the minimum bin. This gives
Pr�min h�R�Gα�� � p
 � �R�Gα��p. For Rand�R�, a union bound gives that
Pr�minRand�R�Gα�� � p
 � �R�Gα��p, implying that

Pr�p � min�h�R�Gα�� � ���n��
 � Pr�p � min�Rand�R�Gα�� � ���n��

Because the shifts of different twisted groups are done independently we get

Pr�p � min�h�R� � ���n��
 �
	

Gα�Q

Pr�p � min�h�R�Gα�� � ���n��

�
	

Gα�Q

Pr�p � min�Rand�R�Gα�� � ���n��

� Pr�p � min�Rand�R� � ���n��

� Pr�p � minRand�R�

This holds for any value p � ��n, so it also holds for our random hash value
h�q�. Therefore

Pr�h�q� � min�h�R� � ���n��
 � Pr�h�q� � minRand�R�
 � 1���R� � 1�
This finishes the proof of (6).

All that remains is to bound the expected value E�1���R� � 1�
 and thus the
total probability when the internal hashing and twisted groups are random. We
will do this using a convexity argument, so we need the following constraints
on the random variable �R�: We trivially have 1 � �R� � n. We know that
the internal hashing is d-bounded with probability 1� 1�u2, which gives �R� �
�S �Q��d � n��2d�. To bound E��R�
 from below, consider the probability that
a key x is not a representative. For this to happen x must land in the query
group, or another element must land in the same twisted group and bin as x.
By 2-independence and a union bound the probability of this event is at most
1�Σ � �n � 1� � 1�Σ � ��n � O���Σ�. The expected number of representatives is
therefore

E��R�
 �

x�S

Pr�x � R

�

x�S

�1� Pr�x R
�

� n � �1�O���Σ�� .

Approximately Minwise Independence with Twisted Tabulation 141

To bound E�1���R� � 1�
 we introduce a random variable r which maximizes
E�1��r � 1�
 while satisfying the constraints of �R� noted above. By convexity of
1��r� 1� we get that E�1��r � 1�
 is maximized when r takes the most extreme
values. Hence r � 1 with probability 1�u2, r � n��2d� with the maximal proba-
bility p and r � n with probability �1� p� 1�u2�. This gives an expected value
of

E�r
 � 1�u2 � p � n��2d� � �1� p� 1�u2� � n .

Thus p � O���Σ� to respect the constraints. To bound E�1���R� � 1�
 we have

E�1���R� � 1�
 � E�1��r � 1�

� 1

2u2
� p

n��2d� � 1
� 1� p� 1�u2

n� 1

� O�p�
n� 1

� 1

n� 1
�O�1�u2�

� 1

n� 1
� �1�O���Σ�� . (7)

Combining (5), (6) and (7) we get

Pr�h�q� � minh�S�
 � Pr�h�q� � min�h�S� � ���n��
 �O�1�u2�
� Pr�h�q� � min�h�R� � ���n��
 �O�1�u2�
� E�1���R� � 1�
 �O�1�u2�

� 1

n� 1
�
�
1�O

�
log u

Σ

��
.

3.2 Lower Bound

We have two cases for the lower bound. When n � O�log u� we observe that
the probability of some twisted group having more than one element is bounded
from above by n2�Σ � O�log2 u�Σ� using 2-independence and a union bound.
Since the twisted groups hash independently of each other we have in this case
that all elements hash independently. The probability of q getting the smallest
hash value is thus at least 1��n� 1� � �1�O�log2 u�Σ��.

When n � ω�log u� we again look at the case when q lands in the minimum
bin �0, ��n�. We consider the query group Q separately and thus look at the
expression:

Pr�h�q� � minh�S�
 � Pr�h�q� � min�h�S� � ���n��

� Pr�h�q� � min�h�S �Q� � ���n��

� Pr�minh�Q� � h�q� � min�h�S �Q� � ���n��
 . (8)

Furthermore we will assume that all twisted groups have O�1�n�Σ1�ε� elements
at the cost of a factor �1� 1�u2� by Lemma 2. We will subtract this extra term

142 S. Dahlgaard and M. Thorup

later in (13). Since the twisted groups hash independently we have for a fixed
h�q� � p � ��n that

Pr�p � minh�S �Q�
 �
	

Gα�Q

Pr�p � min h�Gα�
 . (9)

We can bound this expression using [18, Lemma 5.1], which states that 1 �
pk � �1 � p��1�pk	k for pk � !

2 � 1 and p � �0, 1
. Consider a twisted group
Gα and some element x � Gα. We have Pr�h�x� � p
 � p and a union bound
gives us that Pr�p � minh�Gα�
 � 1 � p�Gα�. Since n � ω�log u� we have that
p�Gα� � ��n �O�1� n�Σ1�ε� � o�1�, so the conditions for the lemma hold. This
gives us

1� p�Gα� � �1� p��Gα��1�p
�Gα�	 (10)

Plugging this into (9) gives

Pr�p � minh�S �Q�
 �
	

Gα�Q

�1� p��Gα��1�p�Gα�	

�
	

Gα�Q

�1� p��Gα��1�p
2��Gα��1		

� �1� p�m,
with

m � n�O���n� �

Gα�Q

��Gα� � 1��Gα� .

To bound the entire probability we thus integrate from 0 to ��n:

Pr�h�q� � min�h�S �Q� � ���n��
 �
� ��n

0

Pr�p � min h�S �Q�
 dp

�
� ��n

0

�1� p�mdp

� 1� �1� ��n�m�1

m� 1

� 1��m� 1� � 1��nu� . (11)

Similar to the upper bound m only depends on the twisted groups and their
internal hashing, so the entire probability is bounded by E�1��m� 1�
� 1�nu �
1�E�m� 1
�1�nu. We note that the sum

�
Gα�Q��Gα��1��Gα� counts for each

key in a non-query group the number of other elements in its group, so

E

�

Gα�Q

��Gα� � 1��Gα�

� n2�Σ .

The expected value E�m� 1
 is therefore bounded by

E�m� 1
 � �n� 1� � �1�O���Σ�� . (12)

Approximately Minwise Independence with Twisted Tabulation 143

We can combine this with (11) and get a bound on the first part of (8). We
also need to subtract the probability that the keys don’t distribute nicely into
twisted groups. Doing this we get the following bound:

Pr�h�q� � min�h�S �Q� � ���n��
 � E�1��m� 1�
 � 1�nu� 1�u2
� 1�E�m� 1
 � 1�nu� 1�u2

� 1

�n� 1��1�O���Σ�� � 1�nu� 1�u2

� 1

n� 1
�
�
1�O

�
log u

Σ

��
(13)

To finish the bound on (8) we need to give an upper bound on

Pr�min h�Q� � h�q� � min h�S �Q� � h�q� � ��n
 . (14)

To do this we will again consider the set of representatives that we used in the
upper bound. We start by fixing the twisted groups. Just like in the upper bound
we have w.h.p. that �R� � n��2d�. We can therefore bound (14) by

1�u2 � Pr�minh�Q� � h�q� � minh�S �Q� � h�q� � ��n� �R� � n��2d�
 .

We fix h�q� � p for some p � ��n. Using 2-independence between the fixed query
value p and each element of Q we get Pr�min h�Q� � p
 � p�Q� and thus

Pr�min h�Q� � p� �R� � n��2d�
 � p�Q� . (15)

We wish to multiply this by

Pr�p � minh�S �Q� � min h�Q� � p� �R� � n��2d�
 .

For this we use the same approach as for (6). We know that when p � ��n we
have that Pr�p � minh�R�
 � Pr�p � minRand�R�
 � �1 � p��R�. This holds
regardless of the internal hashing so our restriction of �R� � n��2d� does not
change anything. We now get

Pr�p � min h�S �Q� � minh�Q� � p� �R� � n��2d�
 � �1� p�n��2d	 .

Multiplying together with (15) we get

Pr�minh�Q� � p � minh�S �Q� � �R� � n��2d�
 � p�Q��1� p�n��2d	
� p�Q�e�pn��2d	

144 S. Dahlgaard and M. Thorup

for a fixed p � ��n. To finish the bound we thus integrate from 0 to ��n and get
an upper bound on (14):

Pr�minh�Q� � h�q� � minh�S �Q� � h�q� � ��n

� 1�u2 � Pr�minh�Q� � h�q� � minh�S �Q� � h�q� � ��n� �R� � n��2d�

� 1�u2 �
� ��n

0

p�Q�e�pn��2d	 dp

� 1�u2 �O

�� d�n

0

p�Q� dp
�

� 1�u2 �O��Q��n2� .
We now note that �Q� is a random variable with expected value n�Σ, which gives
the final bound on (14) as

Pr�min h�Q� � h�q� � min h�S �Q� � h�q� � ��n
 � E
�
O��Q��n2��

� O�1�nΣ� . (16)

Combining (8), (13) and (16) gives the desired bound:

Pr�h�q� � minh�S�
 � Pr�h�q� � minh�S �Q� � h�q� � ��n

� Pr�minh�Q� � h�q� � minh�S �Q� � h�q� � ��n

� 1

n� 1
�
�
1�O

�
log u

Σ

��
�O

�
1

nΣ

�

� 1

n� 1
�
�
1�O

�
log u

Σ

��

References

1. Broder, A.Z.: On the resemblance and containment of documents. In: Proc. Com-
pression and Complexity of Sequences (SEQUENCES), pp. 21–29 (1997)

2. Broder, A.Z., Charikar, M., Frieze, A.M., Mitzenmacher, M.: Min-wise independent
permutations. Journal of Computer and System Sciences 60(3), 630–659 (2000); See
also STOC 1998

3. Broder, A.Z., Glassman, S.C., Manasse, M.S., Zweig, G.: Syntactic clustering of
the web. Computer Networks 29, 1157–1166 (1997)

4. Datar, M., Muthukrishnan, S.M.: Estimating rarity and similarity over data stream
windows. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461,
pp. 323–334. Springer, Heidelberg (2002)

5. Broder, A.: Identifying and filtering near-duplicate documents. In: Giancarlo, R.,
Sankoff, D. (eds.) CPM 2000. LNCS, vol. 1848, pp. 1–10. Springer, Heidelberg
(2000)

6. Manku, G.S., Jain, A., Sarma, A.D.: Detecting near-duplicates for web crawling.
In: Proc. 10th WWW, pp. 141–150 (2007)

7. Yang, H., Callan, J.P.: Near-duplicate detection by instance-level constrained clus-
tering. In: Proc. 29th SIGIR, pp. 421–428 (2006)

Approximately Minwise Independence with Twisted Tabulation 145

8. Henzinger, M.R.: Finding near-duplicate web pages: A large-scale evaluation of
algorithms. In: Proc. ACM SIGIR, pp. 284–291 (2006)

9. Li, P., Shrivastava, A., Moore, J.L., König, A.C.: Hashing algorithms for large-scale
learning. In: Advances in Neural Information Processing Systems, pp. 2672–2680
(2011)

10. Bachrach, Y., Herbrich, R., Porat, E.: Sketching algorithms for approximating rank
correlations in collaborative filtering systems. In: Karlgren, J., Tarhio, J., Hyyrö,
H. (eds.) SPIRE 2009. LNCS, vol. 5721, pp. 344–352. Springer, Heidelberg (2009)

11. Bachrach, Y., Porat, E., Rosenschein, J.S.: Sketching techniques for collaborative
filtering. In: Proc. 21st IJCAI, pp. 2016–2021 (2009)

12. Cohen, E., Datar, M., Fujiwara, S., Gionis, A., Indyk, P., Motwani, R., Ullman,
J.D., Yang, C.: Finding interesting associations without support pruning. IEEE
Trans. Knowl. Data Eng. 13(1), 64–78 (2001)

13. Schleimer, S., Wilkerson, D.S., Aiken, A.: Winnowing: Local algorithms for docu-
ment fingerprinting. In: Proc. SIGMOD, pp. 76–85 (2003)

14. Wegman, M.N., Carter, L.: New classes and applications of hash functions. Journal
of Computer and System Sciences 22(3), 265–279 (1981); See also FOCS 1979

15. Indyk, P.: A small approximately min-wise independent family of hash functions.
Journal of Algorithms 38(1), 84–90 (2001); See also SODA 1999

16. Pǎtraşcu, M., Thorup, M.: On the k-independence required by linear probing and
minwise independence. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf
der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 715–726.
Springer, Heidelberg (2010)

17. Zobrist, A.L.: A new hashing method with application for game playing. Technical
Report 88, Computer Sciences Department, University of Wisconsin, Madison,
Wisconsin (1970)

18. Pǎtraşcu, M., Thorup, M.: The power of simple tabulation-based hashing. Journal
of the ACM 59(3) (2012); Article 14 Announced at STOC 2011

19. Pǎtraşcu, M., Thorup, M.: Twisted tabulation hashing. In: Proc. 24th ACM/SIAM
Symposium on Discrete Algorithms (SODA), pp. 209–228 (2013)

20. Thorup, M.: Simple tabulation, fast expanders, double tabulation, and high inde-
pendence. In: FOCS, pp. 90–99 (2013)

21. Klassen, T.Q., Woelfel, P.: Independence of tabulation-based hash classes. In: Proc.
10th Latin American Theoretical Informatics (LATIN), pp. 506–517 (2012)

22. Thorup, M., Zhang, Y.: Tabulation-based 5-independent hashing with applica-
tions to linear probing and second moment estimation. SIAM Journal on Comput-
ing 41(2), 293–331 (2012); Announced at SODA 2004 and ALENEX 2010

23. Thorup, M.: Bottom-k and priority sampling, set similarity and subset sums with
minimal independence. In: Proc. 45th ACM Symposium on Theory of Computing,
STOC (2013)

24. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: LIBLINEAR: A library
for large linear classification. Journal of Machine Learning Research 9, 1871–1874
(2008)

25. Shalev-Shwartz, S., Singer, Y., Srebro, N.: Pegasos: Primal estimated sub-gradient
solver for svm. In: Proceedings of the 24th International Conference on Machine
Learning, ICML 2007, pp. 807–814 (2007)

Separability of Imprecise Points

Mark de Berg1, Ali D. Mehrabi1,�, and Farnaz Sheikhi2

1 Department of Mathematics and Computer Science,
TU Eindhoven, The Netherlands

2 Laboratory of Algorithms and Computational Geometry, Department of
Mathematics and Computer Science, Amirkabir University of Technology

Abstract. An imprecise point is a point p with an associated impreci-
sion region Ip indicating the set of possible locations of the point p. We
study separability problems for a set R of red imprecise points and a
set B of blue imprecise points in R

2, where the imprecision regions are
axis-aligned rectangles and each point p ∈ R ∪ B is drawn uniformly
at random from Ip. Our results include algorithms for finding certain
separators (separating R from B with probability 1), possible separators
(separating R from B with non-zero probability), most likely separators
(separating R from B with maximal probability), and maximal separa-
tors (maximizing the expected number of correctly classified points).

1 Introduction

Separability problems are a natural class of problems arising in the analysis of
categorical geometric data. In a separability problem one is given a set of n points
in Rd, each of which is categorized as either red or blue, and the goal is to decide
whether the red points can be separated from the blue points by a separator
from a given class of geometric objects. When the separator is a hyperplane the
problem can be solved by linear programming in O(n) time, as was observed by
Megiddo [17] already 30 years ago. Since then various classes of separators have
been studied, mostly for the 2-dimensional version of the problem. In particular,
the separability problem in the plane has been studied for separators in the form
of a circle [19], a strip and a wedge [12], and a convex [6] or simple polygon [8].
For the latter two problems the objective is not just to decide the existence
of a separator but to find a minimum-complexity separator. Inspired by the
reconstruction of buildings from lidar data, Van Kreveld et al. [13] recently
considered arbitrarily oriented rectangles as separators, and Sheikhi et al. [21]
studied arbitrarily oriented L-shapes.

Obviously it is not always possible to separate the given point sets by a
separator of the given type. Houle [10,11] therefore introduced weak separability,
where the goal is to maximize the number of correctly classified points. For
example, for linear separability the weak separability problem asks for a line �
that maximizes the sum of the number of red points to the right of � and the

� Supported by The Netherlands Organization for Scientific Research (NWO).

R Ravi and I.L. Gørtz (Eds.): SWAT 2014, LNCS 8503, pp. 146–157, 2014.
c© Springer International Publishing Switzerland 2014

Separability of Imprecise Points 147

number of blue points to the left of �. (A separator that correctly classifies all
points is then called a strong separator.) Weak separability has been studied for
separators in the form of a line [2,7,11] and a strip [3].

In data-analysis problems involving geometric data, the data is typically ob-
tained by gps, lidar, or some other imprecise measuring technology. Ideally,
one would like to take this into account when analyzing the data. Within the
computational-geometry literature, several imprecision models have been pro-
posed [4,14,18]. The most popular models associate to each data point p an im-
precision region Ip, which indicates the possible locations of p. Typical choices
for the imprecision regions are disks [20], axis-aligned rectangles or squares [14],
and horizontal segments [14]. Horizontal segments model the situation where
there is imprecision in only one of the coordinates, and rectangles or squares
model the situation where the coordinates come from independent measure-
ments. A point p with an associated imprecision region Ip is often called an
imprecise point. Löffler [14] and Löffler and Van Kreveld [15,16] study classical
computational-geometry problems on imprecise points. In most problems they
want to find certain “extremal” structures, such as the largest possible convex
hull. De Berg et al. [1] study the question whether a given structure is possible.

In this paper we study various separability problems for imprecise points in
the plane. We extend the region-based imprecision model to include probabilistic
aspects. More precisely, we assume each point p is drawn from its imprecision
region Ip according to some distribution. In the current paper, we consider the
uniform distribution. Given a set R of red points and a set B of blue points, and
a class of separators, we then wish to find

– a certain separator, which separates R from B with probability 1;
– a possible separator, which separates R from B with non-zero probability;1

– a most likely separator, which separates R from B with maximal probability;
– a maximal separator, which is a weak separator that maximizes the expected

number of correctly classified points.

Most of our results are for axis-aligned rectangles as imprecision regions. (We do
not require the rectangles to have the same size or aspect ratio.) Our results are
as follows. In Section 2 we observe that finding a certain separator can easily be
done in O(n) time, both for linear and rectangular separators. Finding possible
separators is fairly easy as well: a possible linear separator can be found in
O(n log n) time, while a possible rectangular separator can be found in O(n)
time. Most likely separators are harder. Here we study the 1-dimensional case,
which already turns out to be hard to solve since it requires finding the maximum
of a possibly high-degree polynomial. In Section 3 we present exact algorithms for
weak separability for linear separators (running in O(n2) time), for rectangular
separators (running in O(n3 logn)), and for rectangular separators when the
imprecision regions are horizontal segments (running in O(n2

√
n) time). We

also present fast (1− ε)-approximation algorithms.

1 A valid separator can have zero separation probability, when the separator touches
an imprecision-region boundary. Our algorithms can be adapted to this case.

148 M. de Berg, A.D. Mehrabi, and F. Sheikhi

2 Strong Separability

Let R be a set of red points and B be a set of blue points in the plane, with
n := |R| + |B|. Each point p ∈ R ∪ B has an associated imprecision region Ip,
which is an axis-aligned rectangle. In this section we give algorithms to find
strong separators, that is, separators that classify all points correctly.

Certain and Possible Separators. A line (or other shape) is a certain sep-
arator if and only if the interiors of all red imprecision regions lie entirely on
one side of it while the interiors of all blue imprecision regions lie entirely on
the other side. Hence, deciding whether R ∪ B admits a certain separator is
very easy: a line � is a certain separator if and only if the vertices of the red
and blue imprecision regions lie on opposite sides of �, and so we can decide the
existence of a certain separator by linear programming. Finding a rectangular
certain separator is also easy: if there is an axis-aligned rectangle with, say, all
red imprecision regions inside and all blue imprecision regions outside, then the
bounding box of the red imprecision regions is a certain separator.

Finding possible separators is only slightly more involved than finding certain
separators. First, consider linear separators. We wish to find a possible separa-
tor � (which we consider to be a directed line) that has the red points to its left
and the blue points to its right. Then � is a possible separator unless there is a
red imprecision region lying completely to the right of � or a blue imprecision
lying completely to the left. Thus, we proceed as follows.

Suppose we rotate the coordinate frame over an angle φ in counterclockwise
direction, for some 0 � φ < 2π. We call the axes in this rotated coordinate system
the xφ-axis and the yφ-axis. For a red imprecise point r ∈ R, let fr(φ) denote
the minimum xφ-coordinate of any point in Ir. Similarly, let gb(φ) denote the
maximum xφ-coordinate of any point in Ib. Now there is a possible separator that
makes an angle φ + π/2 with the positive x-axis if and only if maxr∈R fr(φ) <
minb∈B gb(φ). Hence, to find whether there exists an angle φ that admits a
possible separator we compute the upper envelope E+(F) of the set F := {fr :
r ∈ R} and the lower envelope E−(G) of the set G := {gb : b ∈ B}, and then
check whether there is an angle φ where E+(F) lies below E−(G). To compute
E+(F) (E−(G) can be handled similarly) we proceed as follows. Note that any
two functions fr and fr′ intersect at angles defined by a common outer tangent
of Ir and Ir′ . We now split the domain [0 : 2π) of φ into four sub-domains of
length π/2. Within each sub-domain the vertex of a rectangle Ir that determines
fr is fixed. Hence, within a sub-domain any two functions fr and fr′ intersect at
most once, namely at the angle determined by the line through the two relevant
vertices of Ir and Ir′ (if this angle lies in the sub-domain). Hence, E+(F) can
be computed in O(n logn) time [9]. The same is true for E−(G).

We conclude that deciding whether a possible linear separator exists (and, if
so, computing one) can be done in O(n log n) time.

We now turn our attention to possible axis-aligned rectangular separators that
have all red points inside and all blue points outside. Hence, we are looking for
a rectangle σ such that no red imprecision region Ir is completely outside σ and
no blue imprecision region is completely inside σ.

Separability of Imprecise Points 149

Consider all right edges of the red imprecision regions, and let �left be the
vertical line through the leftmost of these edges. Clearly, any possible separator
σ must have its left edge to the left of this line. Define �right as the vertical line
through the rightmost of the left edges of the red imprecision regions, �bot as the
lowest horizontal line through the top edges of the red imprecision regions, and
�top as the highest horizontal line through the bottom edges of the red impreci-
sion regions. There are now several cases, depending on the relative positions of
the lines �left and �right, and of �bot and �top.

If �left lies to the left of �right and �bot lies below �top, then any possible separa-
tor must contain the rectangular area A enclosed by these four lines. Moreover,
a possible separator exists if and only if no blue imprecision region is fully con-
tained in A. Hence, we can decide if a possible separator exists in O(n) time. The
other cases are even simpler, because in those cases a possible separator always
exists (assuming all blue imprecision regions have non-zero area). For instance,
suppose �left lies to the right of �right and �bot lies below �top. Then any vertical
segment in between �right and �left and connecting �bot to �top intersects all red
imprecision regions, which implies that a very thin rectangle containing such a
segment is a possible separator.

Theorem 1 summarizes the results on certain and possible separators.

Theorem 1. Let R ∪B be a bichromatic set of n imprecise points in the plane,
each with an imprecision region that is an axis-aligned rectangle. For linear sepa-
rators, we can decide in O(n) whether a certain separator exists for R∪B and in
O(n log n) time whether a possible separator exists. For axis-aligned rectangular
separators, both problems can be solved in O(n) time.

Most Likely Separators. Finding most likely separators is considerably harder
than finding possible separators. We study the 1-dimensional version of the prob-
lem, where the imprecision regions are intervals on the real line and a linear
separator is a point. Suppose we are interested in separators that have all blue
points to the left and all red points to the right.

For a point x ∈ R define F (x) := Pr[x is a separator]. For a blue point b
define lengthL(b, x) as the length of the part of Ib lying to the left of x, and for
a red point r define lengthR(r, x) as the length of the part of Ir lying to the
right of x. Obviously the probability that a blue point b lies to the correct side
of x is equal to fb(x) := lengthL(b, x)/length(Ib), and the probability that a red
point r lies to the correct side is fr(x) := lengthR(r, x)/length(Ir). Hence,

F (x) =
∏
b∈B

fb(x) ·
∏
r∈R

fr(x).

Let xmin be the rightmost left endpoint of a blue imprecision region, and let
xmax be the leftmost right endpoint of a red imprecision region. If xmin > xmax

then no separator exists and if xmin = xmax then this point is the only possible
separator, so assume xmin < xmax. Note that F (x) is non-zero exactly on the
interval [xmin, xmax], which we call the critical domain of F . The endpoints of
the imprecision regions inside the critical domain partition it into elementary

150 M. de Berg, A.D. Mehrabi, and F. Sheikhi

intervals. Over each such elementary interval, the function F (x) is a polynomial
whose degree is bounded by the number of imprecision regions containing that
elementary interval. We now prove that F (x) is unimodal over its critical domain.

Lemma 1. F (x) is unimodal over its critical domain.

Proof. We first prove that F (x) is unimodal in the interior of each elementary
interval I = [x1, x2], where we assume without loss of generality that x1 = 0.
For any blue point b with I ∩ Ib = ∅ we have fb(x) = 1 for x ∈ I. (We cannot
have fb(x) = 0 as I is part of the critical domain.) When I ⊆ Ib, we have
fb(x) = (Cb + x)/length(Ib) for a constant Cb (which is the length of the part
of Ib lying to the left of I). Similarly, for a red point r for which I ⊆ Ir we have
fr(x) = (C′

r − x)/length(Ir) for a constant C′
r (which is the length of the part

of Ir lying to the right of I). Note that we must have x � C′
r within I. Hence,

if B(I) and R(I) are the sets of blue and red points whose imprecision regions
cover I, then for x ∈ I

F (x) = C ·
∏

b∈B(I)

(Cb + x) ·
∏

r∈R(I)

(C′
r − x), (1)

where C = 1/(
∏

b∈B(I) length(Ib) ·
∏

r∈R(I) length(Ir)). Thus,

F ′(x) = C · F (x) ·

⎛⎝ ∑
b∈B(I)

1

Cb + x
−
∑

r∈R(I)

1

C′
r − x

⎞⎠ . (2)

Note that F (x) > 0 for x ∈ I, all terms 1/(Cb+x) and 1/(C′
r−x) are positive, the

sum
∑

b∈B(I) 1/(Cb +x) is strictly decreasing while the sum
∑

r∈R(I) 1/(C
′
r− x)

is strictly increasing, Hence, F ′(x) = 0 at most once inside I or F ′(x) = 0
everywhere inside I. (The latter occurs when B(I) ∪ R(I) = ∅, which happens
for at most one elementary interval.) Thus, F (x) is unimodal inside I.

To extend the analysis to the entire critical domain, we consider two consec-
utive elementary intervals I1 and I2. Let x

∗ be the right endpoint of I1 (which
is also the left endpoint of I2). Denote the left and right derivative at x∗ by
(F ′)−(x∗) and (F ′)+(x∗). We claim that (F ′)−(x∗) > (F ′)+(x∗). Observe that
B(I1) ⊇ B(I2). Indeed, a blue imprecision region cannot start at x∗ since then
F (x) = 0 for x ∈ I1. Similarly, R(I1) ⊆ R(I2). From Equation (2) we now see
that (F ′)−(x∗) > (F ′)+(x∗). Together with the unimodality inside each elemen-
tary interval, this means F (x) is unimodal over the entire critical domain. �
Lemma 1 allows us to perform a binary search over the critical domain to find
the elementary interval I∗ containing the most likely separator. At each step of
the binary search, we need to evaluate F (x) at a given x, which takes O(n) time.
Hence, I∗ can be found in O(n logn) time in total. Unfortunately, the most likely
separator X∗ is not necessarily one of the endpoints of I∗. Moreover, within I∗

the function F (x) is a polynomial of possibly very high degree. Hence, we may
have to resort to numerical methods to approximate its maximum.

Separability of Imprecise Points 151

Theorem 2. Let R ∪ B be a bichromatic set of n imprecise points on the real
line, each with an imprecision region that is an interval. Then we can locate in
O(n log n) time the elementary interval that contains the most likely separator.

3 Weak Separability

We now turn our attention to the case where we allow some of the points to be
misclassified. The goal is then to find a maximal separator, that is, a separator
that is expected to correctly classify the maximum number of points.

3.1 Weak Separability by a Line

For a line �, let �− denote the halfplane to the left of � and �+ the halfplane to
the right of �. We want to find a line � that maximizes G(�), which is defined
as the expected number of red points in �− plus the expected number of blue
points in �+. For a red point r we define g−r (�) to be the fraction of Ir lying to
the left of �, and for a blue point b we define g+b (�) to be the fraction of Ib to the
right of �. Hence, g−r (�) and g

+
b (�) give the probability that r and b are classified

correctly, respectively, so

G(�) =
∑
r∈R

g−r (�) +
∑
b∈B

g+b (�). (3)

To find the maximal separator, we dualize the corners of the imprecision regions,
giving us a set L of 4n lines in dual space. With a slight abuse of notation we
use G(p), for a point p in dual space, to denote the value G(�p) of the line �p
whose dual is p. Let GC denote the function G restricted to a cell C of the
arrangement A(L). For two neighboring cells C and C′ we can obtain GC′ from
GC by adding, subtracting or modifying one of the terms in (3). Hence, we can
compute a maximal separator by constructing the arrangement A(L) in O(n2)
time, traversing the dual graph of the arrangement while maintaining the func-
tion G, and computing the maximum value of G in each cell. We can improve the
storage requirements of the algorithm by not computing the entire arrangement
before we start the traversal, but by computing A(L) using topological sweep [5].
Besides the usual information we need to maintain for the sweep, we then also
maintain the function GC for each cell C immediately to the left of the sweep
line. This way the maximal separator can be found using only O(n) storage.

Theorem 3. Let B ∪R be a bichromatic set of n imprecise points in the plane,
each with an axis-parallel rectangular imprecision region. We can compute a
maximal line separator for B ∪R in O(n2) time and using O(n) storage.

3.2 Weak Separability by a Rectangle

We now turn our attention to the problem of finding an axis-aligned rectangu-
lar separator σ that maximizes the sum of the expected number of red points
inside σ and the expected number of blue points outside σ. This is equivalent to

152 M. de Berg, A.D. Mehrabi, and F. Sheikhi

maximizing G(σ) :=
∑

r∈R g
−
r (σ)+

∑
b∈B g

+
b (σ), where g

−
r (σ) and g

+
b (σ) denote

the fractions of Ir and Ib covered by the interior and exterior of σ, respectively.
We first observe that there must be a maximal separator all of whose edges

overlap at least partially with an edge of an imprecision region. Indeed, if we keep
three edges of a separator σ fixed, and move the fourth edge e, then G(σ) changes
linearly until we hit an edge of an imprecision region. Hence, there is a direction
into which we can move e—either growing or shrinking σ—such that G(σ) does
not decrease until we hit an edge. This observation implies that there are only
O(n4) candidates for the maximal separator. However, we can still compute a
maximal separator in O(n3 logn) time, as shown next.

Pick two vertical edges of imprecision regions. Let �left and �right be the vertical
lines containing these edges, with �left lying to the left of �right. We will compute
the maximal rectangular separator whose left and right edges are restricted to
be contained in �left and �right, respectively, by a divide-and-conquer algorithm.
Let y1, . . . , ym be the y-coordinates of the horizontal edges of the imprecision
regions that lie at least partially inside the strip defined by �left and �right. We
can assume these y-coordinates are sorted in increasing order. Let t := �m/2�,
and let �mid be the line y = yt. The idea is to compute the best separators above
and below �mid recursively, then compute the best separator intersecting �mid,
and then take the best of the three separators. Computing the best separator
intersecting �mid seems easy: We just compute the best separator whose bottom
edge is contained in �mid by scanning the possible y-coordinates for the top edge
in the order yt+1, . . . , ym, do the same for the best separator whose top edge
is contained in �mid (this time scanning downward over yt−1, . . . , y1) and take
the union of the two sub-rectangles found. However, in the recursive call we
may have to take into account those imprecision regions whose top and bottom
edges fall outside the y-range corresponding to the recursive call, and this is
problematic for the running time. Hence, we refine our algorithm as follows.

In a generic call we are given a rectangular area A bounded from the left by
�left, from the right by �right, from below by the line y = yi for some 1 � i < m
(initially i = 1), and from the top by the line y = yj, for some i < j � m (initially
j = m). We also have a sorted list of all y-coordinates yi, . . . , yj of the horizontal
edges of the imprecision regions that intersect A, with for each y-coordinate a
pointer to the imprecision region that generated it. Our goal is to compute the
best separator contained in A whose left and right edges are contained in �left
and �right, and whose bottom and top edges have y-coordinates chosen from the
list. To this end we also need some information to deal with the imprecision
regions that intersect A but do not have a horizontal edge intersecting A.

Consider such a red imprecision region Ir, and consider a separator σ(y) :=
[xleft, xright] × [yi, y], where xleft and xright are the x-coordinates of �left and
�right, respectively. Define fr(y) to be the fraction of Ir inside σ(y). Note that
fr(y) is a linear function. Also note that the fraction of Ir inside a separator
[xleft, xright]× [y′, y] is given by fr(y)− fr(y′). For a blue imprecision region Ib
we define fb(y) similarly, except this time we use the fraction of Ib outside σ(y).

Separability of Imprecise Points 153

The extra information we need in the recursive call with region A is the linear
function FA :=

∑
r∈R fr +

∑
b∈B fb.

It remains to describe how to handle the recursive call with rectangle A. We
split A into two rectangles A1 and A2 at y-coordinate yt, where t := �(i+j)/2� is
the median y-coordinate of the horizontal edges in A and A1 is the lower region.

Next we compute the functions FA1 and FA2 that we have to pass on to
the recursive calls for A1and A2. The function FA1 can be computed in linear
time as follows. We first determine all imprecision regions that have a horizontal
edge in A but not in A1. We compute the functions fr (resp. fb) for all such
red (resp. blue) imprecision regions. We add all these functions and then add
the function F , which represents the contributions of the imprecision regions
that already span A. For FA2 the computations are similar, except that we
should subtract F (yt), since F was defined for separators whose bottom edge
has y-coordinate yi while FA2 is defined for separators whose bottom edge has
y-coordinate yt. Thus both FA1 and FA2 can be computed in linear time.

We now do recursive calls on A1 with function FA1 and on A2 with function
FA2 , giving us two candidate separators. After the recursive calls, we have to
find the best separator that intersects y = yt. To this end, we first compute the
best separator σ∗

1 of the form [xleft, xright] × [y, yt] and the best separator σ∗
2

of the form [xleft, xright] × [yt, y]. Both can be computed by scanning edges of
the imprecision regions in order—for the former separator we scan downwards
from yt, for the latter we scan upwards from yt—and maintaining the expected
number of correctly classified points. While we scan, we use the function F to
account for the contribution of the imprecision regions without a horizontal edge
inside A. This way the scans can be implemented so that they run in linear time.
The best separator intersecting y = yt is now given by σ∗

1 ∪ σ∗
2 .

We conclude that we need O(n) time to handle A, plus the time needed for
the calls on A1 and A2, leading to a total time of O(n log n) to find the best
separator whose left and right edges are contained in the lines �left and �right.
The overall time for the algorithm is therefore O(n3 logn).

Theorem 4. Let B ∪R be a bichromatic set of n imprecise points in the plane,
each with an imprecision region that is an axis-aligned rectangle. We can compute
a maximal linear separator for B ∪R in O(n3 logn) time.

Horizontal Segments as Imprecision Regions.We can improve the running
time even further when the imprecision regions are horizontal unit-length seg-
ments rather than rectangles. As in the case of rectangular imprecision regions,
we only have to consider separators σ whose left and right edges pass through a
vertex of an imprecision region. We will first consider a special case of the prob-
lem, where the maximal rectangular separator is required to intersect a given
horizontal line. The solution to this problem will be used as a subroutine in a
divide-and-conquer algorithm for the general problem.

The restricted problem. Let �hor be a given horizontal line. We call a rectangular
separator that intersects �hor a restricted separator. Our goal is to compute a

154 M. de Berg, A.D. Mehrabi, and F. Sheikhi

restricted separator that maximizes the expected number of correctly classified
points. As mentioned above, we only have to consider separators whose left edge
passes through an endpoint of an imprecision region. Fix an endpoint v, and
let �vert denote the vertical line through v. We further restrict our separator by
requiring that its left edge is contained in �vert. We show how to compute such
a maximal separator for �vert in O(n

√
n) time, leading to an algorithm for the

restricted problem that runs in O(n2
√
n) time.

Let I1, . . . , Im be the parts of the imprecision regions in R ∪ B lying to the
right of �vert, numbered from top to bottom. (We assume for simplicity that
no two imprecision regions have the same y-coordinate.) Let yi denote the y-
coordinate of Ii. Let k be such that I1, . . . , Ik lie above �hor and Ik+1, . . . , Im
lie below �hor. For each 1 � i � k and x > 0, define σi(x) to be the rectangle
bounded from the left by �vert, bounded from below by �hor, bounded from above
by the line y = yi, and bounded from the right by the vertical line at distance x
from �vert. For k < i � m we define σi(x) similarly, except that now σi(x) is
bounded from above by �hor and from below by y = yi. Finally, let σ

∗(x) denote
the restricted separator whose left edge is contained in �vert and whose right edge
lies at distance x from �vert for which the expected number of correctly classified
points is maximized. Clearly σ∗(x) is obtained by combining the best rectangle
from the set {σi(x) : 1 � i � k} with the best rectangle from {σi(x) : k < i � m}.
Hence, G(σ∗(x)) = max1�i�k G(σi(x)) + maxk<i�mG(σi(x)).

To find the overall best rectangle,we need to find themaximumofG(σ∗(x)) over
all x > 0. (In fact, we know that we only have to consider x-values corresponding to
the vertical edges of the imprecision regions. However, our approach does not allow
us to restrict our attention to those values only.) Thus our strategy is to compute
the upper envelopes of the sets of functions Γ := {G(σi(x)) : 1 � i � k} and Γ :=
{G(σi(x)) : k < i � m}. Once we have the upper envelopes, we can add them in
linear time (in the sum of their complexities) to find the best restricted rectangular
separator with left edge at �vert. Next we describe how to compute E(Γ), the upper
envelope of Γ ; computing E(Γ) can done in a similar way.

To computeE(Γ)weuse adivide-and-conquer algorithm.DefineΓ ′ := {G(σi(x)) :
1 � i � t} and Γ ′′ := {G(σi(x)) : t < i � k}, where t := �k/2�. We will compute
E(Γ ′) and E(Γ ′′) separately and merge the resulting envelopes to get E(Γ). Next
we explain how to compute E(Γ ′) and E(Γ ′′).

Let S := {I1, . . . , Ik} denote the parts of the imprecision regions above �hor
and to the right of �vert, and define S′ := {I1, . . . , It} and S′′ := {It+1, . . . , Im}
to be the top half and bottom half of the set S of imprecision regions, respectively.
The function values G(σi(x)) for t < i � k only depend on S′′, as all imprecision
regions in S′ are above any rectangle σi(x) for t < i � k. Hence, we can compute
E(Γ ′′) recursively by only considering S′′. The function values G(σi(x)) for 1 �
i � t depend on both S′ and S′′. However, each such G(σi(x)) can be obtained
by computing G(σi(x)) with respect to S′ and then adding G(σt+1(x)) to take
S′′ into account. Hence, we recursively compute E(Γ ′) with respect to S′ and
then we add G(σt+1) to the computed envelope to obtain the true envelope. Note
that G(σt+1) can easily be computed in O(n) time.

Separability of Imprecise Points 155

As mentioned, after computing E(Γ ′) and E(Γ ′′) as just described, we merge
them to obtain E(Γ). Next we analyze |E(Γ)|, the complexity of E(Γ).

Lemma 2. |E(Γ)| = O(n
√
n)

Proof. We partition the part of the plane to the right of �v intoO(n) strips by draw-
ing vertical lines through the endpoints of the imprecision regions. Now consider a
functionG(σi(x)). Since the imprecision regions are unit-length segments, the con-
tribution of each red imprecision region Ir toG(σi(x)) is equal to the length of Ir
insideσi(x). Similarly, for a blue imprecision regionIb, the contribution is its length
outside σi(x). This implies that G(σi(x)), which is the sum of all contributions, is
linear within each strip. Moreover, the slope ofG(σi(x)) is equal to the number of
red imprecision regions inside the strip that are below yi minus the number of such
blue imprecision regions. Note that this implies that the slope of G(σi(x)) in adja-
cent strips differs by at most 1. (This assumes that all endpoints of the imprecision
regions have distinct x-coordinates. When this is not the case, we can introduce a
number of dummy strips of zero width at shared x-coordinates, and the argument
still goes through.) Using the above observation we can now bound the complexity
of the upper envelope E(Γ) using a charging scheme, as follows.

Number the strips from left to right, and consider the j-th strip. Let Ej be the
collection of edges of E(Γ) that lie in the j-th strip. We charge the

√
n rightmost

edges of Ej to the j-th strip, and we charge the remaining edges to the function
G(σi) contributing this edge. Obviously the total charge to the strips is O(n

√
n),

so it remains to bound the number of times any G(σi) can be charged. To bound
this number we observe that within a strip the upper envelope is a convex chain, so
the slopes of the edges on the envelope strictly increases from left to right. Since all
slopes are integers, this implies that the slope of any functionG(σi) that is charged
in the j-th strip is at least

√
n smaller than the slope of the function contributing

the rightmost edge of the envelope in the strip. Because the slope of any function
changes by atmost 1 from one strip to the next, this implies that it will take at least√
n/2 strips for G(σi) to overtake the function contributing the rightmost edge in

the j-th strip. Hence, G(σi) is chargedO(
√
n) times. �

Lemma 2 implies that the running time of our algorithm for the restricted prob-
lem satisfies T (n) = 2T (n/2) + O(n) + O(n

√
n), when we fix the left edge of

the rectangular separator to be contained in a vertical line �vert. This solves to
O(n
√
n). Since �vert can be chosen in O(n) ways, we get the following result.

Lemma 3. Let B ∪ R be a bichromatic set of n imprecise points in the plane,
each with an imprecision region that is a unit-length horizontal segment, and
let �hor be a horizontal line. Then in O(n2

√
n) time we can compute a maximal

linear separator for B ∪R that is restricted to intersect �hor.

The general problem. With the solution for the restricted problem at hand we
can easily obtain a divide-and-conquer algorithm for the general problem, where
the separator is not required to intersect a given line. To this end we partition
the plane into two half-planes by a horizontal line �hor, each containing half of
the segments (imprecision regions) from R∪B. We then recursively compute the

156 M. de Berg, A.D. Mehrabi, and F. Sheikhi

maximal rectangular separator lying below �hor, and the maximal rectangular
separator lying above �hor. Finally, we compute the maximal rectangular separa-
tor intersecting �hor—this can be done in O(n2

√
n) by Lemma 3—and we take

the best of the three separators computed. The total running time T (n) of our al-
gorithm satisfies T (n) = 2T (n/2)+O(n2

√
n), which solves to T (n) = O(n2

√
n).

Theorem 5. Let B ∪R be a bichromatic set of n imprecise points in the plane,
each with an imprecision region that is a unit-length horizontal segment. We can
compute a maximal linear separator for B ∪R in O(n2√n) time.

3.3 Approximate Weak Separability

Our exact algorithms to compute maximal separators have at least quadratic
running time both for linear and for rectangular separators. We now present
a simple near-linear (1 − ε)-approximation algorithm for computing maximal
separators. The approach works for linear as well as rectangular separators.

Define R to be a set of ranges corresponding to the type of separator we are
interested in: for the linear separability R is the set of all possible halfplanes,
for the rectangular separability problem R is the set of all possible rectangles
in the plane. First we replace each imprecision region I with a point set PI
such that, for any range in R, the fraction of points inside the range is a good
approximation of the fraction of the area of I that is covered by the range. More
precisely, for each imprecision region I, we compute a point set PI ⊂ I whose
geometric discrepancy with respect to R is at most δ1 := ε/8, that is, such that
for any range ρ ∈ R we have

∣∣ area(ρ ∩ I)/area(I) − |ρ ∩ PI |/|PI |
∣∣ � δ1. The

points in each set PI are assigned the same color as I.
Let PR :=

⋃
r∈R PIr and PB :=

⋃
b∈B PIb

. We reduce the size of PR by
computing a δ2-approximation AR of PR with respect to R, that is, a subset
AR ⊂ PR such that

∣∣ |ρ ∩ AR|/|AR| − |ρ ∩ PR|/|PR|
∣∣ � δ2 for any range ρ ∈ R,

where δ2 := ε/8. The size of PB is reduced similarly, obtaining a subset AB ⊂ PB .
Finally, we compute a separator σALG from the class we are interested in—

either lines or rectangles—that maximizes

|σ+
ALG ∩ AR|
|AR|

· |PR|+
|σ−

ALG ∩AB |
|AB |

· |PB|

where σ+
ALG and σ

−
ALG denote the parts of the plane that are to the left and right (for

lines) or inside and outside (for rectangles) our separator. This is done in a brute-
forcemanner, by checking all separators on thepoint setAR∪AB (ofwhich there are
O(|AR∪AB |2) for linear separators andO(|AR∪AB |4) for rectangular separators).
In full version of the paper we show that this gives the following theorem.

Theorem 6. LetB∪R be a bichromatic set of n imprecise points in the plane, each
with a rectangular imprecision region. We can compute a (1− ε)-approximation of
the maximal linear separator for B ∪ R in O(poly(1/ε)n) time. A (1 − ε)-
approximation of the maximal rectangular separator forB∪R can also be computed
in O(poly(1/ε)n) time.

Separability of Imprecise Points 157

References

1. de Berg, M., Mumford, E., Roeloffzen, M.: Finding structures on imprecise points.
In: 26th Europ. Workshop Comput. Geom., pp. 85–88 (2010)

2. Chan, T.M.: Low-dimensional linear programming with violations. SIAM J. Com-
put. 34, 879–893 (2005)

3. Cortés, C., Dı́az-Báñez, J.M., Pérez-Lantero, P., Seara, C., Urrutia, J., Ventura,
I.: Bichromatic separability with two boxes: A general approach. J. Alg. 64, 79–88
(2009)

4. Davoodi, M., Khanteimouri, P., Sheikhi, F., Mohades, A.: Data imprecision under
λ-geometry: Finding the largest axis-aligned bounding box. In: Abstracts 27th
Europ. Workshop Comput. Geom., pp. 135–138 (2011)

5. Edelsbrunner, H., Guibas, L.J.: Topologically sweeping an arrangement. J. Comput.
Syst. Sci. 38(1), 165–194 (1989)

6. Edelsbrunner, H., Preparata, F.P.: Minimum polygonal separation. Inf. Com-
put. 77, 218–232 (1988)

7. Everett, H., Robert, J.-M., van Kreveld, M.: An optimal algorithm for computing
(� K)-levels, with applications. Int. J. Comput. Geom. Appl. 60, 247–261 (1996)

8. Fekete, S.: On the complexity of min-link red-blue separation (1992) (manuscript)
9. Hershberger, J.: Finding the upper envelope of n line segments in O(n log n) time.

Inf. Proc. Lett. 33, 169–174 (1989)
10. Houle, M.F.: Weak separability of sets. PhD thesis, McGill Univeristy (1989)
11. Houle, M.F.: Algorithms for weak and wide separation of sets. Discr. Appl.

Math. 45, 139–159 (1993)
12. Hurtado, F., Noy, M., Ramos, P.A., Seara, C.: Separating objects in the plane by

wedges and strips. Discr. Appl. Math. 109, 109–138 (2001)
13. van Kreveld, M., van Lankveld, T., Veltkamp, R.: Identifying well-covered mini-

mal bounding rectangles in 2D point data. In: Abstracts 25th Europ. Workshop
Comput. Geom., pp. 277–280 (2009)

14. Löffler, M.: Data Imprecision in Computational Geometry. PhD thesis, Utrecht
University (2009)

15. Löffler, M., van Kreveld, M.: Largest and smallest convex hulls for imprecise points.
Algorithmica 56, 235–269 (2010)

16. Löffler, M., van Kreveld, M.: Largest bounding box, smallest diameter, and related
problems on imprecise points. Comput. Geom. Theory Appl. 43, 419–433 (2010)

17. Megiddo, N.: Linear-time algorithms for linear programming in R
3 and related

problems. SIAM J. Comput. 12, 759–776 (1983)
18. Myers, Y., Joskowicz, L.: Uncertain geometry with dependencies. In: Proc. 14th

ACM Symp. Solid Phys. Mod., pp. 159–164 (2010)
19. O’Rourke, J., Rao Kosaraju, S., Megiddo, N.: Computing circular separability.

Discr. Comput. Geom. 1, 105–113 (1986)
20. Salesin,D., Stolfi, J.,Guibas, L.J.: Epsilon geometry: building robust algorithms from

imprecise computations. In: Proc. 5th ACM Symp. Comput. Geom., pp. 208–217
(1989)

21. Sheikhi, F., de Berg, M., Mohades, A., Davoodi Monfared, M.: Finding monochro-
matic L-shapes in bichromatic point sets. In: Proc. 22nd Canadian Conf. Comput.
Geom., pp. 269–272 (2010); To appear in Comput. Geom. Theory Appl.

22. Seara, C.: On Geometric Separability. PhD thesis, Universidad Politécnica de
Catalunya (2002)

Line-Distortion, Bandwidth and Path-Length

of a Graph

Feodor F. Dragan1, Ekkehard Köhler2, and Arne Leitert1

1 Department of Computer Science, Kent State University, Kent, OH 44242, USA
{dragan,aleitert}@cs.kent.edu

2 Mathematisches Institut, Brandenburgische Technische Universität Cottbus,
D-03013 Cottbus, Germany

ekoehler@math.tu-cottbus.de

Abstract. We investigate the minimum line-distortion and the mini-
mum bandwidth problems on unweighted graphs and their relations with
the minimum length of a Robertson-Seymour’s path-decomposition. The
length of a path-decomposition of a graph is the largest diameter of a
bag in the decomposition. The path-length of a graph is the minimum
length over all its path-decompositions. In particular, we show: (i) if a
graph G can be embedded into the line with distortion k, then G admits a
Robertson-Seymour’s path-decomposition with bags of diameter at most
k in G; (ii) for every class of graphs with path-length bounded by a con-
stant, there exist an efficient constant-factor approximation algorithm for
the minimum line-distortion problem and an efficient constant-factor ap-
proximation algorithm for the minimum bandwidth problem; (iii) there
is an efficient 2-approximation algorithm for computing the path-length
of an arbitrary graph; (iv) AT-free graphs and some intersection families
of graphs have path-length at most 2; (v) for AT-free graphs, there exist
a linear time 8-approximation algorithm for the minimum line-distortion
problem and a linear time 4-approximation algorithm for the minimum
bandwidth problem.

1 Introduction and Previous Work

Computing a minimum distortion embedding of a given n-vertex graph G into
the line � was recently identified as a fundamental algorithmic problem with
important applications in various areas of computer science, like computer vision
[21], as well as in computational chemistry and biology (see [15]). It asks, for a
given graph G = (V,E), to find a mapping f of vertices V of G into points of
� with minimum number k such that dG(x, y) ≤ |f(x) − f(y)| ≤ kdG(x, y) for
every x, y ∈ V . The parameter k is called the minimum line-distortion of G and
denoted by ld(G). The embedding f is called non-contractive since dG(x, y) ≤
|f(x)− f(y)| for every x, y ∈ V .

In [3], Bǎdoiu et al. showed that this problem is hard to approximate
within a constant factor. They gave an exponential-time exact algorithm and a
polynomial-time O(n1/2)-approximation algorithm for arbitrary unweighted in-
put graphs, along with a polynomial-time O(n1/3)-approximation algorithm for

R Ravi and I.L. Gørtz (Eds.): SWAT 2014, LNCS 8503, pp. 158–169, 2014.
c© Springer International Publishing Switzerland 2014

Line-Distortion, Bandwidth and Path-Length of a Graph 159

unweighted trees. In another paper [2] Bǎdoiu et al. showed that the problem
is hard to approximate by a factor O(n1/12), even for weighted trees. They also
gave a better polynomial-time approximation algorithm for general weighted
graphs, along with a polynomial-time algorithm that approximates the mini-
mum line-distortion k embedding of a weighted tree by a factor polynomial in
k. Fast exponential-time exact algorithms for computing the line-distortion of a
graph were proposed in [8,9]. Fomin et al. in [9] showed that a minimum dis-
tortion embedding of an unweighted graph into the line can be found in time
5n+o(n). Fellows et al. in [8] gave an O(nk4(2k + 1)2k) time algorithm that
for an unweighted graph G and integer k either constructs an embedding of
G into the line with distortion at most k, or concludes that no such embed-
ding exists. They extended their approach also to weighted graphs obtaining an
O(nk4W (2k+1)2kW) time algorithm, where W is the largest edge weight. Thus,
the problem of minimum distortion embedding of a given n-vertex graph G into
the line � is Fixed Parameter Tractable. Recently, Heggernes et al. in [13,14]
initiated the study of minimum distortion embeddings into the line of specific
graph classes. In particular, they gave polynomial-time algorithms for the prob-
lem on bipartite permutation graphs and on threshold graphs [14]. Furthermore,
in [13], Heggernes et al. showed that the problem of computing a minimum dis-
tortion embedding of a given graph into the line remains NP-hard even when
the input graph is restricted to a bipartite, cobipartite, or split graph, imply-
ing that it is NP-hard also on chordal, cocomparability, and AT-free graphs.
They also gave polynomial-time constant-factor approximation algorithms for
split and cocomparability graphs.

Minimum distortion embedding into the line may appear to be closely re-
lated to the widely known and extensively studied graph parameter bandwidth,
denoted by bw(G). The only difference between the two parameters is that a
minimum distortion embedding has to be non-contractive, whereas there is no
such restriction for bandwidth. Formally, given an unweighted graph G = (V,E)
on n vertices, consider a 1-1 map f of the vertices V into integers in [1, n]; f
is called a layout of G. The bandwidth of layout f is defined as the maximum
stretch of any edge, i.e., bw(f) = maxuv∈E |f(u) − f(v)|. The bandwidth of a
graph is defined as the minimum possible bandwidth achievable by any 1-1 map
(layout) V → [1, n]. That is, bw(G) = minf :V →[1,n] bw(f).

It is known that bw(G) ≤ ld(G) for every connected graph G (see, e.g., [14]).
However, the bandwidth and the minimum line-distortion of a graph can be
very different. For example, it is common knowledge that a cycle of length n has
bandwidth 2, whereas its minimum line-distortion is exactly n − 1 [14]. Band-
width is known to be one of the hardest graph problems; it is NP-hard even for
very simple graphs like caterpillars of hair-length at most 3 [18], and it is hard to
approximate by a constant factor even for trees [1]. Polynomial-time algorithms
for the exact computation of bandwidth are known for very few graph classes,
including bipartite permutation graphs [12] and interval graphs (see, e.g., [17]
and papers cited therein). A constant-factor approximation algorithm is known
for AT-free graphs [16]. In [10] Golovach et al. showed also that the bandwidth

160 F.F. Dragan, E. Köhler, and A. Leitert

minimization problem is Fixed Parameter Tractable on AT-free graphs by pre-
senting an n2O(k log k) time algorithm. For general (unweighted) n-vertex graphs,
the minimum bandwidth can be approximated within a factor of O(log3.5 n) [7].
For n-vertex trees and chordal graphs, the minimum bandwidth can be approx-
imated within a factor of O(log2.5 n) [11].

Our main tool in this paper is Robertson-Seymour’s path-decomposition and
its length. A path-decomposition ([20]) of a graph G = (V,E) is a sequence of
subsets {Xi : i ∈ I} (I := {1, 2, . . . , q}) of vertices of G, called bags, with three
properties: (1)

⋃
i∈I Xi = V ; (2) For each edge uv ∈ E, there is a bag Xi such

that u, v ∈ Xi; (3) For every three indices i ≤ j ≤ k, Xi∩Xk ⊆ Xj (equivalently,
the subsets containing any particular vertex form a contiguous subsequence of the
whole sequence). We denote a path-decomposition {Xi : i ∈ I} of a graph G by
P(G). The width of a path-decomposition P(G) = {Xi : i ∈ I} is maxi∈I |Xi|−1.
The path-width of a graph G, denoted by pw(G), is the minimum width over all
path-decompositions P(G) of G [20]. The caterpillars are exactly the graphs
with path-width 1. Following [5] (where the notion of tree-length of a graph was
introduced), we define the length of a path-decomposition P(G) of a graph G to
be λ := maxi∈I maxu,v∈Xi dG(u, v) (i.e., each bag Xi has diameter at most λ in
G). The path-length of G, denoted by pl(G), is the minimum length over all path-
decompositions of G. Interval graphs are exactly the graphs with path-length 1;
it is known that G is an interval graph if and only if G has a path-decomposition
with each bag being a maximal clique of G. Following [6] (where the notion
of tree-breadth of a graph was introduced), we define the breadth of a path-
decomposition P(G) of a graph G to be the minimum integer r such that for
every i ∈ I there is a vertex vi ∈ V with Xi ⊆ DG(vi, r) (i.e., each bag Xi can
be covered by a disk DG(vi, r) of radius at most r in G). Note that vertex vi
does not need to belong to Xi. The path-breadth of G, denoted by pb(G), is the
minimum breadth over all path-decompositions of G. Evidently, for any graph
G with at least one edge, 1 ≤ pb(G) ≤ pl(G) ≤ 2pb(G) holds. Hence, if one
parameter is bounded by a constant for a graph G then the other parameter is
bounded for G as well.

Recently, Robertson-Seymour’s tree-decompositions with bags of bounded ra-
dius proved to be very useful in designing an efficient approximation algorithm
for the problem of minimum stretch embedding of an unweighted graph into
its spanning tree [6]. The decision version of the problem is the tree t-spanner
problem which asks, for a given graph G = (V,E) and an integer t, if a spanning
tree T exists such that dT (x, y) ≤ t dG(x, y) for every x, y ∈ V . It was shown
in [6] that: (a) if a graph G can be embedded to a spanning tree with stretch t,
then G admits a Robertson-Seymour’s tree-decomposition with bags of radius
at most �t/2� and diameter at most t in G (i.e., the tree-breadth tb(G) of G
is at most �t/2� and the tree-length tl(G) of G is at most t); (b) there is an
efficient algorithm which constructs for an n-vertex unweighted graph G with
tb(G) ≤ ρ a spanning tree with stretch at most 2ρ log2 n. As a consequence, an
efficient (log2 n)-approximation algorithm for the problem of minimum stretch
embedding of an unweighted graph into its spanning tree was obtained [6].

Line-Distortion, Bandwidth and Path-Length of a Graph 161

Contribution of This Paper: Motivated by [6], in this paper, we investi-
gate possible connections between the line-distortion and the path-length (path-
breadth) of a graph. We show that, for every graph G, pl(G) ≤ ld(G) and
pb(G) ≤ �ld(G)/2� hold. Furthermore, we demonstrate that for every class of
graphs with path-length bounded by a constant, there is an efficient constant-
factor approximation algorithm for the minimum line-distortion problem. As a
consequence, every graph G with ld(G) = c can be embedded in polynomial
time into the line with distortion at most O(c2) (reproducing a result from [3]).
Additionally, using the same technique, we show that, for every class of graphs
with path-length bounded by a constant, there is an efficient constant-factor ap-
proximation algorithm for the minimum bandwidth problem. We also investigate
(i) what particular graph classes have constant bounds on path-length and (ii)
how fast the path-length of an arbitrary graph can be computed or sharply esti-
mated. We present an efficient 2-approximation (3-approximation) algorithm for
computing the path-length (resp., the path-breadth) of a graph. We show that
AT-free graphs and some intersection families of graphs have small path-length
and path-breadth. In particular, the path-length of every AT-free graph is at
most 2. Using this and some additional structural properties, we give a linear
time 8-approximation algorithm for the minimum line-distortion problem and a
linear time 4-approximation algorithm for the minimum bandwidth problem for
AT-free graphs.

2 Preliminaries

All graphs occurring in this paper are connected, finite, unweighted, undirected,
loopless and without multiple edges. We call G = (V,E) an n-vertex m-edge
graph if |V | = n and |E| = m. In this paper we consider only graphs with
n > 1. A clique is a set of pairwise adjacent vertices of G. By G[S] we denote
a subgraph of G induced by vertices of S ⊆ V . For a vertex v of G, the sets
NG(v) = {w ∈ V : vw ∈ E} and NG[v] = NG(v) ∪ {v} are called the open
neighborhood and the closed neighborhood of v, respectively.

In a graph G the length of a path from a vertex v to a vertex u is the number
of edges in the path. The distance dG(u, v) between vertices u and v is the length
of a shortest path connecting u and v in G. The diameter in G of a set S ⊆ V
is maxx,y∈S dG(x, y) and its radius in G is minx∈V maxy∈S dG(x, y) (in some
papers they are called the weak diameter and the weak radius to indicate that
the distances are measured in G not in G[S]). The distance between a vertex v
and a set S of G is measured as dG(v, S) = minu∈S dG(v, u). The disk of G of
radius k centered at vertex v is the set of all vertices at distance at most k to v:
DG(v, k) = {w ∈ V : dG(v, w) ≤ k}.

The following result generalizes a characteristic property of the famous class
of AT-free graphs (see [4]). An independent set of three vertices such that each
pair is joined by a path that avoids the neighborhood of the third is called
an asteroidal triple. A graph G is an AT-free graph if it does not contain any
asteroidal triples [4]. Proofs of statements in this section are omitted.

162 F.F. Dragan, E. Köhler, and A. Leitert

Proposition 1. Let G be a graph with pl(G) ≤ λ. Then, for every three vertices
u, v, w of G there is one vertex, say v, such that the disk of radius λ centered at
v intercepts every path connecting u and w, i.e., the removal of disk DG(v, λ)
from G disconnects u and w.

We will also need the following property of graphs with pl(G) ≤ λ. A path P
of a graph G is called k-dominating path of G if every vertex v of G is at distance
at most k from a vertex of P , i.e., dG(v, P) ≤ k. A pair of vertices x, y of G is
called a k-dominating pair if every path between x and y is a k-dominating path
of G. It is known that every AT-free graph has a 1-dominating pair [4].

Corollary 1. Every graph G with pl(G) ≤ λ has a λ-dominating pair.

The following proposition further strengthens the connections between graphs
with small path-length and AT-free graphs. Recall that the k-power of a graph
G = (V,E) is a graph Gk = (V,E′) such that for every x, y ∈ V (x �= y), xy ∈ E′

if and only if dG(x, y) ≤ k.

Proposition 2. For a graph G with pl(G) ≤ λ, G2λ is an AT-free graph.

A subset of vertices of a graph is called connected if the subgraph induced by
those vertices is connected. We say that two connected sets S1, S2 of a graph G
see each other if they have a common vertex or there is an edge in G with one
end in S1 and the other end in S2. A family of connected subsets of G is called
a bramble if every two sets of the family see each other. We say that a bramble
F = {S1, . . . , Sh} of G is k-dominated by a vertex v of G if in every set Si of F
there is a vertex ui ∈ Si with dG(v, ui) ≤ k.

Proposition 3. For a graph G with pb(G) ≤ ρ, every bramble of G is ρ-
dominated by a vertex.

Corollary 2. Let G be a graph with pb(G) ≤ ρ, S be a subset of vertices of G
and r:S → N be a radius function defined on S such that the disks of the family
F = {DG(x, r(x)) : x ∈ S} pairwise intersect. Then the disks {DG(x, r(x) + ρ) :
x ∈ S} have a nonempty common intersection.

3 Bandwidth of Graphs with Bounded Path-Length

In this section we show that there is an efficient algorithm that for any graph
G with pl(G) = λ produces a layout f with bandwidth at most (4λ+ 2)bw(G).
Moreover, this statement is true even for all graphs with λ-dominating shortest
paths. Recall that a shortest path P of a graph G is a k-dominating shortest
path of G if every vertex v of G is at distance at most k from a vertex of P , i.e.,
dG(v, P) ≤ k. We will need the following auxiliary lemma.

Lemma 1 ([19]). For each vertex v ∈ V of an arbitrary graph G and each

positive integer r, |DG(v,r)|−1
2r ≤ bw(G).

Line-Distortion, Bandwidth and Path-Length of a Graph 163

The main result of this section is the following.

Proposition 4. Every graph G with a k-dominating shortest path has a layout
f with bandwidth at most (4k + 2)bw(G). If a k-dominating shortest path of G
is given in advance, then such a layout f can be found in linear time.

Proof. Let P = (x0, x1, . . . , xi, . . . , xj , . . . , xq) be a k-dominating shortest path
of G. Consider a Breadth-First-Search-tree TP of G started from path P , i.e.,
BFS(P)-tree of G. For each vertex xi of P , let Xi be the set of vertices of G that
are located in the branch of TP that is rooted at xi. We have xi ∈ Xi. Since P
k-dominates G, we have dG(v, xi) ≤ k for every i ∈ {1, . . . , q} and every v ∈ Xi.
Now create a layout f of G by placing vertices of Xi before all vertices of Xj , if
i < j, and by placing vertices within each Xi in an arbitrary order.

We claim that this layout f has bandwidth at most (4k + 2)bw(G). Consider
any edge uv of G and assume u ∈ Xi and v ∈ Xj (i ≤ j). For this edge uv we have

f(v)−f(u) ≤ |
⋃j

l=iXl|−1. We know also that dP (xi, xj) = j−i ≤ 2k+1, since P
is a shortest path of G and dP (xi, xj) = dG(xi, xj) ≤ dG(xi, u)+1+dG(xj , v) ≤
2k + 1. Consider vertex xc of P with c = i + �(j − i)/2�, i.e., a middle vertex
of subpath of P between xi and xj . Consider an arbitrary vertex w in Xl,
i ≤ l ≤ j. Since dG(xc, w) ≤ dG(xc, xl) + dG(xl, w), dG(xc, xl) ≤ �2k + 1�/2
and dG(xl, w) ≤ k, we get dG(xc, w) ≤ 2k+1. In other words, disk DG(xc, 2k+

1) contains all vertices of
⋃j

l=iXl. Applying Lemma 1 to |DG(xc, 2k + 1)| ≥
|
⋃j

l=iXl|, we conclude f(v) − f(u) ≤ |
⋃j

l=iXl| − 1 ≤ |DG(xc, 2k + 1)| − 1 ≤
2(2k + 1)bw(G) = (4k + 2)bw(G). ��

Corollary 3. For every n-vertex m-edge graph G, a layout with bandwidth at
most (4pl(G) + 2)bw(G) can be found in O(n2m) time.

Proof. For an n-vertex m-edge graph G, a k-dominating shortest path with
k ≤ pl(G) can be found in O(n2m) time as follows. Iterate over all vertex pairs
of G. For each pair pick a shortest path P connecting them and run BFS(P)
to find most distant vertex vP from P . Finally, report that path P for which
dG(vP , P) is minimum. By Corollary 1, this minimum is at most pl(G). ��

Thus, we have the following interesting conclusion.

Theorem 1. For every class of graphs with path-length bounded by a constant,
there is an efficient constant-factor approximation algorithm for the minimum
bandwidth problem.

In Section 6 we show that the path-length of every AT-free graph is at most
2. Using additional structural properties of AT-free graphs, we give for them
a linear time 4-approximation algorithm for the minimum bandwidth problem.
This result reproduces an approximation result from [16] with a better run-time.

4 Path-Length and Line-Distortion

In this section, we first show that the line-distortion of a graph gives an upper
bound on its path-length and then demonstrate that if the path-length of a

164 F.F. Dragan, E. Köhler, and A. Leitert

graph G is bounded by a constant then there is an efficient constant-factor
approximation algorithm for the minimum line-distortion problem on G.

Proposition 5. For an arbitrary graph G, pl(G) ≤ ld(G), pw(G) ≤ ld(G) and
pb(G) ≤ �ld(G)/2�.

Proof. It is known (see, e.g., [14]) that every connected graph G = (V,E) has a
minimum distortion embedding f into the line � (called a canonic embedding)
such that |f(x) − f(y)| = dG(x, y) for every two vertices of G that are placed
next to each other in � by f . Assume, in what follows, that f is such a canonic
embedding and let k := ld(G).

Consider the following path-decomposition of G created from f . For each
vertex v, form a bag Bv consisting of all vertices of G which are placed by f in
the interval [f(v), f(v)+k] of the line �. Order these bags with respect to the left
ends of the corresponding intervals. Evidently, for every vertex v ∈ V , v ∈ Bv,
i.e., each vertex belongs to a bag. More generally, a vertex u belongs to a bag
Bv if and only if f(v) ≤ f(u) ≤ f(v) + k. Since ld(G) = k, for every edge uv of
G, |f(u)− f(v)| ≤ k holds. Hence, both ends of edge uv belong either to bag Bu

(if f(u) < f(v)) or to bag Bv (if f(v) < f(u)). Consider now three bags Ba, Bb,
and Bc with f(a) < f(b) < f(c) and a vertex v of G that belongs to Ba and Bc.
We have f(a) < f(b) < f(c) ≤ f(v) ≤ f(a) + k < f(b) + k. Hence, necessarily, v
belongs to Bb as well.

It remains to show that each bag Bv, v ∈ V , has in G diameter at most
k, radius at most �k/2� and cardinality at most k + 1. Indeed, for any two
vertices x, y ∈ Bv, we have |f(x) − f(y)| ≤ k, i.e., dG(x, y) ≤ |f(x)− f(y)| ≤ k.
Furthermore, any interval [f(v), f(v) + k] (of length k) can have at most k + 1
vertices of G as the distance between any two vertices placed by f to this interval
is at least 1 (|f(x) − f(y)| ≥ dG(x, y) ≥ 1). Thus, |Bv| ≤ k + 1 for every v ∈ V .

Consider now the point pv := f(v) + �k/2� in the interval [f(v), f(v) + k]
of �. Assume, without loss of generality, that pv is between f(x) and f(y), the
images of two vertices x and y of G placed next to each other in � by f . Let
f(x) ≤ pv < f(y). Since f is a canonic embedding, there must exist in G a
vertex c on a shortest path between x and y such that dG(x, c) = pv − f(x) and
dG(c, y) = f(y)−pv = dG(x, y)−dG(x, c). We claim that for every vertex w ∈ Bv,
dG(c, w) ≤ �k/2� holds. Assume f(w) ≥ f(y) (the case when f(w) ≤ f(x) is
similar). Then, we have dG(c, w) ≤ dG(c, y) + dG(y, w) ≤ (f(y)− pv) + (f(w)−
f(y)) = f(w)− pv ≤ f(w)− f(v)− �k/2� ≤ k − �k/2� ≤ �k/2�. ��

It should be noted that the difference between the path-length and the line-
distortion of a graph can be very large. A complete graph Kn on n vertices
has path-length 1, whereas the line-distortion of Kn is n − 1. Note also that
the bandwidth and the path-length of a graph do not bound each other. The
bandwidth of Kn is n − 1 while its path-length is 1. On the other hand, the
path-length of cycle C2n is n while its bandwidth is 2.

Now we show that there is an efficient algorithm that for any graph G with
pl(G) = λ produces an embedding f of G into the line � with distortion at

Line-Distortion, Bandwidth and Path-Length of a Graph 165

most (12λ + 7)ld(G). Again, this statement is true even for all graphs with λ-
dominating shortest paths. We will need the following auxiliary lemma from [3].
We reformulate it slightly. Recall that a subset of vertices of a graph is called
connected if the subgraph induced by those vertices is connected.

Lemma 2 ([3]). Any connected subset S ⊆ V of a graph G = (V,E) can be
embedded into the line with distortion at most 2|S| − 1 in time O(|V |+ |E|). In
particular, there is a mapping f , computable in O(|V | + |E|) time, of vertices
from S into points of the line such that dG(x, y) ≤ |f(x) − f(y)| ≤ 2|S| − 1 for
every x, y ∈ S.

The main result of this section is the following.

Proposition 6. Every graph G with a k-dominating shortest path admits an
embedding f of G into the line with distortion at most (8k + 4)ld(G) + (2k)2 +
2k + 1. If a k-dominating shortest path of G is given in advance, then such an
embedding f can be found in linear time.

Proof. Like in the proof of Proposition 4, consider a k-dominating shortest path
P = (x0, x1, . . . , xi, . . . , xj , . . . , xq) of G and identify by BFS(P) the sets Xi,
i ∈ {1, . . . , q}. We had dG(v, xi) ≤ k for every i ∈ {1, . . . , q} and every v ∈ Xi.
It is clear also that each Xi is a connected subset of G. Similar to [3], we define
an embedding f of G into the line � by placing vertices of Xi before all vertices
of Xj , if i < j, and by placing vertices within each Xi in accordance with the
embedding mentioned in Lemma 2. Also, for each i ∈ {1, . . . , q − 1}, leave a
space of length 2k+ 1 between the interval of � spanning the vertices of Xi and
the interval spanning the vertices of Xi+1.

We claim that f is a (non-contractive) embedding with distortion at most
(8k+4)ld(G)+(2k)2+2k+1. It is sufficient to show that dG(x, y) ≤ |f(x)−f(y)|
for every two vertices of G that are placed next to each other in � by f and that
|f(v)− f(u)| ≤ (8k + 4)ld(G) + (2k)2 + 2k + 1 for every edge uv of G (see, e.g.,
[3,14]).

From Lemma 2, we know that dG(x, y) ≤ |f(x)− f(y)| ≤ 2|Xl| − 1 for every
x, y ∈ Xl and l ∈ {1, 2, . . . , q}. Additionally, for every x ∈ Xi and y ∈ Xi+1

(i ∈ {1, 2, . . . , q− 1}), we have dG(x, y) ≤ dG(x, xi)+ 1+ dG(y, xi+1) ≤ 2k+1 ≤
|f(y)−f(x)| (as a space of length 2k+1 is left between the interval of � spanning
the vertices of Xi and the interval spanning the vertices of Xi+1). Hence, f is
non-contractive.

Consider now an arbitrary edge uv of G and assume u ∈ Xi and v ∈ Xj

(i ≤ j). For this edge uv we have f(v) − f(u) ≤
∑j

l=i(2|Xl| − 1 + 2k + 1) −
2k − 1 ≤ 2|

⋃j
l=iXl| + 2k(j − i + 1) − 2k − 1 = 2|

⋃j
l=iXl| + 2k(j − i) − 1.

Recall that dP (xi, xj) = j − i ≤ 2k + 1, since P is a shortest path of G and
dP (xi, xj) = dG(xi, xj) ≤ dG(xi, u)+1+dG(xj , v) ≤ 2k+1. Hence, f(v)−f(u) ≤
2|
⋃j

l=iXl|+ 2k(2k + 1)− 1.

As in the proof of Proposition 4, |
⋃j

l=iXl| − 1 ≤ (4k+2)bw(G). As bw(G) ≤
ld(G) for every graphG (see, e.g., [14]), we get f(v)−f(u) ≤ 2|

⋃j
l=iXl|+2k(2k+

1)− 1 ≤ 2(4k+ 2)bw(G) + 2k(2k+ 1) + 1 ≤ (8k+ 4)ld(G) + 2k(2k+ 1) + 1. ��

166 F.F. Dragan, E. Köhler, and A. Leitert

Corollary 4. For every n-vertex m-edge graph G, an embedding into the line
with distortion at most (12pl(G) + 7)ld(G) can be found in O(n2m) time.

Proof. See the proof of Corollary 3 and note that, by Proposition 5, pl(G) ≤
ld(G). Hence, the distortion established in Proposition 6 becomes ≤ (8pl(G) +
4)ld(G) + 2(2pl(G) + 1)ld(G) + 1 ≤ (12pl(G) + 7)ld(G). ��

Thus, we have the following interesting conclusion.

Theorem 2. For every class of graphs with path-length bounded by a constant,
there is an efficient constant-factor approximation algorithm for the minimum
line-distortion problem.

Using inequality pl(G) ≤ ld(G) in Corollary 4 once more, we reproduce a
result of [3].

Corollary 5 ([3]). For every graph G with ld(G) = c, an embedding into the
line with distortion at most O(c2) can be found in polynomial time.

It should be noted that, since the difference between the path-length and the
line-distortion of a graph can be very large (close to n), the result in Corollary
4 seems to be stronger.

Theorem 1 and Theorem 2 stress the importance of investigations of (i) what
particular graph classes have constant bounds on path-length and of (ii) how fast
the path-length of an arbitrary graph can be computed or sharply estimated.

5 Constant-Factor Approximation of Path-Length

Let G = (V,E) be an arbitrary graph and s be its arbitrary vertex. A layering
L(s,G) of G with respect to a start vertex s is the decomposition of V into
the layers Li = {u ∈ V : dG(s, u) = i}, i = 0, 1, . . . , q. We can get a path-
decomposition of G by adding to each layer Li (i > 0) all vertices from layer
Li−1 that have a neighbor in Li. Let L

+
i := Li∪ (

⋃
v∈Li

(NG(v)∩Li−1)). Clearly,

the sequence {L+
1 , . . . , L

+
q } is a path-decomposition of G and can be constructed

in O(|E|) total time. We call this path-decomposition an extended layering of
G and denote it by L+(s,G). It turns out that this type of path-decomposition
has length at most twice as large as the path-length of the graph.

Theorem 3. For every graph G with pl(G) = λ there is a vertex s such that
the length of the extended layering L+(s,G) of G is at most 2λ. In particular, a
factor 2 approximation of the path-length of an arbitrary n-vertex graph can be
computed in O(n3) total time.

Proof. Consider a path-decomposition P(G) = {X1, . . . , Xp} of length pl(G) = λ
of G. Let s be an arbitrary vertex from X1. Consider the layering L(s,G) of G
with respect to s where Li = {u ∈ V : dG(s, u) = i} (i = 0, 1, . . . , q). Let x and
y be two arbitrary vertices from Li (i ∈ {1, . . . , q}) and x′ and y′ be arbitrary

Line-Distortion, Bandwidth and Path-Length of a Graph 167

vertices from Li−1 with xx′, yy′ ∈ E. We will show that max{dG(x, y), dG(x, y′),
dG(x

′, y)} ≤ 2λ. By induction on i, we may assume that dG(y
′, x′) ≤ 2λ as

x′, y′ ∈ Li−1.
If there is a bag in P(G) containing both vertices x and y, then dG(x, y) ≤ λ

and therefore dG(x, y
′) ≤ λ + 1 ≤ 2λ, dG(y, x

′) ≤ λ + 1 ≤ 2λ. Assume now
that all bags containing x are earlier in P(G) = {X1, X2, . . . , Xp} than the bags
containing y. Let B be a bag of P(G) containing both ends of edge xx′ (such
a bag necessarily exists by properties of path-decompositions). By the position
of this bag B in P(G) and the fact that s ∈ X1, any shortest path connecting
s with y must have a vertex in B. Let w be a vertex of B that is on a shortest
path of G connecting vertices s and y and containing edge yy′. Such a shortest
path must exist because of the structure of the layering L(s,G) that starts at s
and puts y′ and y in consecutive layers. We have max{dG(x,w), dG(x′, w)} ≤ λ.
If w = y′ then we are done; max{dG(x, y), dG(x, y′), dG(x′, y)} ≤ λ + 1 ≤ 2λ.
So, assume that w �= y′. Since dG(x, s) = dG(s, y) = i (by the layering) and
dG(x,w) ≤ λ, we must have dG(w, y

′) + 1 = dG(w, y) = dG(s, y) − dG(s, w) =
dG(s, x)−dG(s, w) ≤ dG(w, x) ≤ λ. Hence, dG(y, x) ≤ dG(y, w)+dG(w, x) ≤ 2λ,
dG(y, x

′) ≤ dG(y, w) + dG(w, x
′) ≤ 2λ and dG(y

′, x) ≤ dG(y
′, w) + dG(w, x) ≤

2λ− 1.
We conclude that the distance between any two vertices from L+

i is at most
2λ, that is, the length of tree decomposition L+(s,G) of G is at most 2λ. ��

Theorem 4. For every graph G with pb(G) = ρ there is a vertex s such that
the breadth of the extended layering L+(s,G) of G is at most 3ρ. In particular,
a factor 3 approximation of the path-breadth of an arbitrary n-vertex graph can
be computed in O(n3) total time.

Proof. Since pl(G) ≤ 2pb(G), by Theorem 3, there is a vertex s in G such that
the length of extended layering L+(s,G) = {L+

1 , . . . , L
+
q } of G is at most 4ρ.

Consider a bag L+
i of L+(s,G) and a family F = {DG(x, 2ρ) : x ∈ L+

i } of disks of
G. Since dG(u, v) ≤ 4ρ for every pair u, v ∈ L+

i , the disks of F pairwise intersect.
Hence, by Corollary 2, the disks {DG(x, 3ρ) : x ∈ L+

i } have a nonempty common
intersection. A vertex w from that common intersection has all vertices of L+

i

within distance at most 3ρ. That is, for each i ∈ {1, . . . , q} there is a vertex wi

with L+
i ⊆ DG(wi, 3ρ). ��

6 Approximation of Line-Distortions of AT-Free Graphs

The path-length of every AT-free graph is bounded by 2 (proof is omitted).

Proposition 7. If G is an AT-free graph, then pb(G) ≤ pl(G) ≤ 2.

The class of AT-free graphs contains a number of intersection families of
graphs, among them the permutation graphs, the trapezoid graphs and the
cocomparability graphs. Theorem 2 implies already that there is an efficient
constant-factor approximation algorithm for the minimum line-distortion prob-
lem on permutation graphs, trapezoid graphs, cocomparability graphs as well

168 F.F. Dragan, E. Köhler, and A. Leitert

as AT-free graphs. Recall that for arbitrary (unweighted) graphs the minimum
line-distortion problem is hard to approximate within a constant factor [3]. Fur-
thermore, the problem remains NP-hard even when the input graph is restricted
to a chordal, cocomparability, or AT-free graph [13]. Polynomial-time constant-
factor approximation algorithms were known only for split and cocomparability
graphs [13]. As far as we know, for AT-free graphs (the class which contains all
cocomparability graphs), no prior efficient approximation algorithm was known.

In this section, using additional structural properties of AT-free graphs we give
a better approximation algorithm for all AT-free graphs. It is an 8-approximation
algorithm and runs in linear time. The following nice structural result from [16]
will be very useful.

Lemma 3 ([16]). Let G = (V,E) be an AT-free graph. Then, there is a dom-
inating path π = (v0, . . . , vk) and a layering L = {L0, . . . , Lk} with Li = {u ∈
V : dG(u, v0) = i} such that for all u ∈ Li (i ≥ 1), uvi ∈ E or uvi−1 ∈ E.
Computing π and L can be done in linear time.

Theorem 5. There is a linear time algorithm to compute an 8-approximation
of the line-distortion of an AT-free graph.

Proof. Let G be an AT-free graph. We first compute a path π = (v0, . . . , vk) and
a layering L = {L0, . . . , Lk} as defined in Lemma 3. To define an embedding f
of G into the line, we partition every layer Li in three sets: {vi}, Xi = {x : x ∈
Li, vix ∈ E}, and X i = Li \ ({vi} ∪ Xi). Note that if x ∈ Xi, then vi−1x ∈ E.
Since each vertex in Xi is adjacent to vi and each vertex in X i is adjacent to
vi−1, for all x, y ∈ Xi, dG(x, y) ≤ 2, and for all x, y ∈ Xi, dG(x, y) ≤ 2. Also, for
all x ∈ Xi and y ∈ Xi, dG(x, y) ≤ 3. The embedding f places vertices of G into
the line in the following order: (v0, . . . , vi−1, Xi, Xi, vi, Xi+1, Xi+1, vi+1, . . . , vk).
Between every two vertices x, y placed next to each other in the line, to guarantee
non-contractiveness, f leaves a space of length dG(x, y) (which is either 1 or 2
or 3, where 3 occurs only when x ∈ Xi and y ∈ Xi for some i).

We will now show that f approximates the minimum line-distortion of G.
Since L is a BFS layering from v0, i.e., it represents the distances of vertices
from v0, there is no edge xy with x ∈ Li−1 and y ∈ Li+1. Also note that
DG(vi, 2) ⊇ Li ∪ Li+1 ∪ {vi−1}. By the definition of f , for all xy ∈ E with
x, y ∈ Li ∪ Li+1, |f(x) − f(y)| < |f(vi−1) − f(vi+1)|. Therefore, counting how
many vertices are placed by f between f(vi−1) and f(vi+1) and the distance in G
between vertices placed next to each other, we get |f(x)−f(y)| ≤ 2(|DG(vi, 2)|−
2)+2 = 2(|DG(vi, 2)|− 1). Using Lemma 1 and the fact that bw(G) ≤ ld(G), we
get |f(x)− f(y)| ≤ 8 ld(G) for all xy ∈ E. ��

It is easy to see that the order in which vertices of G placed by f into the line
gives also a layout of G with bandwidth at most 4bw(G). This reproduces an
approximation result from [16] (in fact, their algorithm had complexity O(m +
n logn) for an n-vertex m-edge graph, since it involved a known O(n logn) time
algorithm to find an optimal layout for a caterpillar tree).

Corollary 6 ([16]). There is a linear time algorithm to compute a 4-approxi-
mation of the minimum bandwidth of an AT-free graph.

Line-Distortion, Bandwidth and Path-Length of a Graph 169

References

1. Blache, G., Karpinski, M., Wirtgen, J.: On approximation intractability of the
bandwidth problem, Technical report TR98-014, University of Bonn (1997)

2. Bădoiu, M., Chuzhoy, J., Indyk, P., Sidiropoulos, A.: Low-distortion embeddings
of general metrics into the. In: STOC 2005, pp. 225–233. ACM (2005)

3. Bǎdoiu, M., Dhamdhere, K., Gupta, A., Rabinovich, Y., Raecke, H., Ravi, R.,
Sidiropoulos, A.: Approximation algorithms for low-distortion embeddings into
low-dimensional spaces. In: SODA 2005, pp. 119–128. ACM/SIAM (2005)

4. Corneil, D.G., Olariu, S., Stewart, L.: Asteroidal Triple-Free Graphs. SIAM Journal
on Discrete Mathematics 10, 399–430 (1997)

5. Dourisboure, Y., Gavoille, C.: Tree-decompositions with bags of small diameter.
Discr. Math. 307, 208–229 (2007)

6. Dragan, F.F., Köhler, E.: An Approximation Algorithm for the Tree t-Spanner
Problem on Unweighted Graphs via Generalized Chordal Graphs. In: Goldberg,
L.A., Jansen, K., Ravi, R., Rolim, J.D.P. (eds.) RANDOM 2011 and APPROX
2011. LNCS, vol. 6845, pp. 171–183. Springer, Heidelberg (2011)

7. Feige, U.: Approximating the bandwidth via volume respecting embedding. J. of
Computer and System Science 60, 510–539 (2000)

8. Fellows, M.R., Fomin, F.V., Lokshtanov, D., Losievskaja, E., Rosamond, F.A.,
Saurabh, S.: Distortion Is Fixed Parameter Tractable. In: Albers, S., Marchetti-
Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part
I. LNCS, vol. 5555, pp. 463–474. Springer, Heidelberg (2009)

9. Fomin, F.V., Lokshtanov, D., Saurabh, S.: An exact algorithm for minimum dis-
tortion embedding. Theor. Comput. Sci. 412, 3530–3536 (2011)

10. Golovach, P.A., Heggernes, P., Kratsch, D., Lokshtanov, D., Meister, D., Saurabh,
S.: Bandwidth on AT-free graphs. Theor. Comput. Sci. 412, 7001–7008 (2011)

11. Gupta, A.: Improved Bandwidth Approximation for Trees and Chordal Graphs. J.
Algorithms 40, 24–36 (2001)

12. Heggernes, P., Kratsch, D., Meister, D.: Bandwidth of bipartite permutation graphs
in polynomial time. Journal of Discrete Algorithms 7, 533–544 (2009)

13. Heggernes, P., Meister, D.: Hardness and approximation of minimum distortion
embeddings. Information Processing Letters 110, 312–316 (2010)

14. Heggernes, P., Meister, D., Proskurowski, A.: Computing minimum distortion em-
beddings into a path of bipartite permutation graphs and threshold graphs. The-
oretical Computer Science 412, 1275–1297 (2011)

15. Indyk, P., Matousek, J.: Low-distortion embeddings of finite metric spaces. In:
Handbook of Discrete and Computational Geometry, pp. 177–196. CRC (2004)

16. Kloks, T., Kratsch, D., Müller, H.: Approximating the Bandwidth for Asteroidal
Triple-Free Graphs. J. Algorithms 32, 41–57 (1999)

17. Kratsch, D., Stewart, L.: Approximating Bandwidth by Mixing Layouts of Interval
Graphs. SIAM J. Discrete Math. 15, 435–449 (2002)

18. Monien, B.: The Bandwidth-Minimization Problem for Caterpillars with Hair
Length 3 is NP-Complete. SIAM J. Alg. Disc. Meth. 7, 505–512 (1986)

19. Räcke, H.: http://ttic.uchicago.edu/~harry/teaching/pdf/lecture15.pdf
20. Robertson, N., Seymour, P.: Graph minors. I. Excluding a forest. Journal of Com-

binatorial Theory, Series B 35, 39–61 (1983)
21. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for

nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)

http://ttic.uchicago.edu/~harry/teaching/pdf/lecture15.pdf

Colorful Bin Packing

György Dósa1 and Leah Epstein2

1 Department of Mathematics, University of Pannonia, Veszprém, Hungary
2 Department of Mathematics, University of Haifa, Haifa, Israel

dosagy@almos.vein.hu, lea@math.haifa.ac.il

Abstract. We study a variant of online bin packing, called colorful bin
packing. In this problem, items that are presented one by one are to
be packed into bins of size 1. Each item i has a size si ∈ [0, 1] and a
color ci ∈ C, where C is a set of colors (that is not necessarily known
in advance). The total size of items packed into a bin cannot exceed its
size, thus an item i can always be packed into a new bin, but an item
cannot be packed into a non-empty bin if the previous item packed into
that bin has the same color, or if the occupied space in it is larger than
1− si. This problem generalizes standard online bin packing and online
black and white bin packing (where |C| = 2). We prove that colorful bin
packing is harder than black and white bin packing in the sense that an
online algorithm for zero size items that packs the input into the smallest
possible number of bins cannot exist for |C| ≥ 3, while it is known that
such an algorithm exists for |C| = 2. We show that natural generalizations
of classic algorithms for bin packing fail to work for the case |C| ≥ 3, and
moreover, algorithms that perform well for black and white bin packing
do not perform well either, already for the case |C| = 3. Our main results
are a new algorithm for colorful bin packing that we design and analyze,
whose absolute competitive ratio is 4, and a new lower bound of 2 on
the asymptotic competitive ratio of any algorithm, that is valid even for
black and white bin packing.

1 Introduction

Colorful bin packing is a packing problem where a sequence of colored items is
presented to the algorithm, and the goal is to partition (or pack) the items into
a minimal number of bins. The set of items is denoted by {1, 2, . . . , n}, where
0 ≤ si ≤ 1 is the size of item i, and ci ∈ C is its color. The items are to be packed
one by one (according to their order in the input sequence), such that the items
packed into each bin have a total size of at most 1, and any two items packed
consecutively into one bin have different colors. Since the input is viewed as a
sequence rather than a set, the natural scenario for this problem is an online
one; after an item has been packed, the next item is presented. In an online
environment, the algorithm packs an item without any knowledge regarding the
further items, and the set C (or even its cardinality) is not necessarily known to
the algorithm. The number of items, n, is typically unknown to the algorithm
as well. In the case that inputs are viewed as sequences and not as sets, online

R Ravi and I.L. Gørtz (Eds.): SWAT 2014, LNCS 8503, pp. 170–181, 2014.
c© Springer International Publishing Switzerland 2014

Colorful Bin Packing 171

algorithms are typically compared to optimal offline algorithms that must pack
the items exactly in the same order as they appear in the input.

Consider an input for colorful bin packing with N red items of size zero, fol-
lowed by N blue items of size zero. This input requires N bins, but reordering
the items reduces the required number of bins to 1. Thus, distinguishing reason-
able online algorithms from less successful ones cannot be done by comparison
to offline algorithms that are allowed to reorder the input. The offline algorithms
to which we compare our online algorithm are therefore not allowed to reorder
the input. Such an optimal offline algorithm is denoted by OPT (OPT denotes
a specific optimal offline algorithm, and we use OPT to denote also the number
of bins that it uses for a given input). The absolute competitive ratio of an algo-
rithm is the supremum ratio over all inputs between the number of bins that it
uses and the number of bins that OPT uses (for the same input). The asymptotic
competitive ratio is the limit of absolute competitive ratios RK when K tends
to infinity and RK takes into account only inputs for which OPT uses at least
K bins. Note that (by definition), for a given algorithm (for some online bin
packing problem), its asymptotic competitive ratio never exceeds its absolute
competitive ratio.

The special case of colorful bin packing, called black and white packing, was
introduced in [1]. In this variant there are just two colors, called black and white.
The motivation for black and white bin packing was in assignment to containers
of items so that any two items packed consecutively into one bin can be easily
distinguished later. An example for such items was articles that are printed on
either white paper or recycled paper, in which case bins simply contain piles
of paper, and packing articles printed on the two kinds of paper so that the
two kinds alternate allows to distinguish them easily. Colorful bin packing is the
generalization where there is a number of different kinds of printing paper (for
example, paper of distinct colors that is used for printing advertisement flyers),
and in order to distinguish between two items (two piles of flyers), they have to
have different colors of printing paper.

It was shown [1] that the natural generalizations of several well-known algo-
rithms fail to obtain finite competitive ratios. For example, Next Fit (NF) for
colorful bin packing (and for black and white bin packing) packs items into a
single active bin, and moves to a new active bin as soon as packing an item
into the active bin is impossible. For standard bin packing, a new active bin is
opened when there is no space for the new item in the previous active bin, but
for colorful bin packing a new bin will be opened either in this case, or when the
last item of the active bin and the new item have the same color. It was shown in
[1] that this algorithm fails to achieve a finite competitive ratio (already for two
colors). Harmonic algorithms [10], that partition items into sub-inputs according
to sizes and pack each sub-input independently of the other sub-inputs, were also
shown to have unbounded competitive ratios [1]. On the other hand, there are
some basic online bin packing algorithms that can be adapted successfully for
black and white bin packing. The generalizations of Any Fit (AF) algorithms,
that never use a new bin unless there is not other way to pack a new item, were

172 G. Dósa and L. Epstein

shown to have constant absolute competitive ratios. The generalized versions
of such algorithms for colorful bin packing open a new bin only if the current
item cannot be packed into an existing bin such that the color constraint is kept
and the total size of items packed into the bin will remain at most 1. Three
important special cases of AF are First Fit (FF), Best Fit (BF), and Worst Fit
(WF). These algorithms select the bin where a new item is packed (out of the
feasible options) to be the bin of minimum index, the a bin with the smallest
empty space, and a bin with the largest empty space, respectively. The difference
with classical bin packing is that the infeasible bins can be of two kinds, either
those that do not have sufficient empty space, and those where the last packed
item has the same color as the color of the new item. It was shown that all AF
algorithms have absolute and asymptotic competitive ratios of at least 3 and at
most 5 for black and white bin packing. Veselý [16] tightened the bound and
showed an upper bound of 3 on the absolute competitive ratio of AF algorithms.
The results of [1,16] in fact show that the absolute competitive ratio of WF is
2 + 1

d−1 , if all items have sizes in (0, 1d] (while FF and BF still have absolute
and asymptotic competitive ratios of exactly 3 even in this restricted case). The
positive results for AF algorithms are valid only for black and white packing but
not for colorful bin packing. In contrast to these last results, we will show that
AF algorithms do not have constant (absolute or asymptotic) competitive ratios
for colorful bin packing with |C| ≥ 3.

Colorful bin packing is also a generalization of standard bin packing (since
already black and white bin packing is such a generalization). For standard bin
packing, NF has an asymptotic and an absolute competitive ratio of 2 [8]. Any
Fit algorithms all have absolute competitive ratios of at most 2 [14,7,8,9,3] (some
of these algorithms have smaller absolute or asymptotic competitive ratios; for
example, in [3] it is shown that FF has an absolute competitive ratio of 1.7,
and an asymptotic bound of 1.7 was known for FF for many years [9]). There
are algorithms with smaller asymptotic competitive ratios, and the best possible
asymptotic competitive ratio is known to be in [1.5403, 1.58889] [15,13,2]. Other
variants of bin packing where the sequence of items must remain ordered even
for offline solutions include Packing with LIB (largest item in the bottom) con-
straints, where an item can be packed into a bin with sufficient space if it is no
larger than any item packed into this bin [11,6,12,5,4].

In our algorithms, we say that a bin B has color c if the last item that
was packed into B has this color. Obviously, a bin changes its color as items
are packed into it. For simplicity, we use names of colors as the elements of
C. Another algorithm for black and white bin packing presented in [1] is the
algorithm Pseudo. This algorithm keeps a list of pseudo-bins, each being a list
of (valid) bins. Each new item is assigned to a pseudo-bin and then to a bin of
this pseudo-bin. The color of a (non-empty) pseudo-bin is defined to be the color
of its last bin. An item is first assigned to a pseudo-bin of the opposite color (that
is, a white item to a black pseudo-bin and a black item to a white pseudo-bin),
opening a new pseudo-bin for the item if this assignment is impossible (there is
no pseudo-bin of the other color). A pseudo-bin is split into bins in an online

Colorful Bin Packing 173

fashion; a new item is packed into the last bin of the pseudo-bin where it was
assigned (note that this is always possible with respect to the color of the item),
and a new bin (for this pseudo-bin) is opened if the empty space in the current
last bin of the pseudo-bin is insufficient. In the case that there are multiple
pseudo-bins that are suitable for the new item (multiple pseudo-bins have the
opposite color), then in principle any one of them is chosen (that is, the analysis
holds for arbitrary tie-breaking), but the algorithm was defined such that such a
bin of minimum index is selected. A simple generalization of Pseudo for colorful
packing is to assign a new item to a pseudo-bin of a minimum index whose color
is different from the color of the new item. We show that this algorithm has
an unbounded (absolute and asymptotic) competitive ratio. We show, however,
that the tie-breaking rule can be modified, and a variant of this algorithm, called
Balanced-Pseudo (BaP), has an absolute (and asymptotic) competitive ratio
of 4. Roughly speaking, BaP tries to balance the colors of pseudo-bins; for a new
item it finds the most frequent color of pseudo-bins (excluding the pseudo-bins
having the same color as the new item), and assigns the new item to such a
pseudo-bin. Interestingly, this approach is much more successful.

Finally, we design two new lower bounds. We give a lower bound of 2 on the
asymptotic (and absolute) competitive ratio of any algorithm. This last lower
bound is valid already for |C| = 2 (i.e., for black and white bin packing) and
it significantly improves the previous lower bound of approximately 1.7213 [1].
We also consider zero size items. It was shown in [1] that Pseudo is an optimal
algorithm for zero size items (its absolute competitive ratio is 1). We show that
in contrast, if |C| ≥ 3, then the asymptotic competitive ratio of any algorithm
for such items is at least 3

2 . This implies that the two problems (colorful bin
packing and black and white bin packing) are different.

In Section 2 we demonstrate that the existing algorithms have poor perfor-
mance, we define algorithm BaP , analyze its competitive ratio for arbitrary
items and for zero size items, and show that the analysis is tight. Lower bounds
for arbitrary online algorithms are given in Section 3. Some proofs were omitted
due to space constraints and can be found in http://arxiv.org/abs/1404.3990.

2 Algorithms

We start this section with examples showing that the algorithms that had a good
performance for black and white bin packing (or their natural generalizations,
all defined in the introduction) have a poor performance for colorful packing.

Proposition 1. The algorithms FF, BF, WF, AF, and Pseudo have unbounded
asymptotic competitive ratios for colorful bin packing.

A New Algorithm.We define an algorithm calledBalanced-Pseudo (BaP).
The algorithm keeps a sequence of pseudo-bins denoted by P1, P2, . . ., where
each pseudo-bin is a sequence of bins. For pseudo-bin Pj , its sequence of bins is

denoted by Bj
1,B

j
2,. . . ,B

j
nj
. Let k denote the number of pseudo-bins (at a given

time). For any 1 ≤ j ≤ k, Cj denotes the color of the last item assigned to Pj

174 G. Dósa and L. Epstein

(this will be the color of the last item of Bj
nj
), and it is called the color of the

pseudo-bin Pj .
Algorithm BaP is similar to algorithm Pseudo [1], but it tries to balance

the number of pseudo-bins of different colors, and it prefers to assign an item
to a pseudo-bin of a color that occurs a maximum number of times (excluding
pseudo-bins having the same color as the new item). For a new item i, if all
pseudo-bins have the color ci, then a new pseudo-bin Pk+1 is opened, where it
consists of one bin Bk+1

1 . In this case, we let k = k + 1, nk = 1. Otherwise, for
any color g �= ci, let Ng be the number of pseudo-bins of color g. Let g′ be a
color for which Ng′ is maximal. Assign item i to a pseudo-bin Pj of color g′. If i
can be packed into Bj

nj
(with respect to the total size of items, as by definition

the color of Pj is g′ �= ci, so the color of i does not prevent its packing), then
add it to this bin (as its last item), and otherwise, let nj = nj + 1, and pack i
into Bj

nj
as its only item. For all cases, if i was assigned to pseudo-bin Pj , then

let Cj = ci (this is done no matter how j is chosen).

Analysis. The analysis separates the effect of sizes from the effect of colors. This
is possible since BaP (similarly to Pseudo) already has such a separation. The
number of pseudo-bins is independent of the sizes of items, while the partition
of a pseudo-bin into bins is independent of the colors. The algorithm that is
applied on every pseudo-bin is simply NF, and moreover, a new bin is used
when there is no space for the current item in the previous bin of the same
pseudo-bin. Every pair of consecutive bins of one pseudo-bin have items whose
total size exceeds 1, thus the resulting bins are occupied by a total size above
1
2 on average, possibly except for one bin of each pseudo-bin. We show that at
each time that a new pseudo-bin is opened, an optimal solution cannot have less
than half the number of bins, even if items have zero sizes. Informally, the reason
is that a new pseudo-bin is opened when all pseudo-bins have the color of the
new item. However, once the number of pseudo-bins of this color exceeds half
the number of pseudo-bins, BaP prefers to use such bins as much as possible
(in this case their number decreases), and an increase in their number can only
be caused by an input where there is a large number of items of the same color
arriving almost consecutively. Obviously, such inputs require large numbers of
bins in any solution.

We let LB0 =
∑n

i=1 si. Obviously, OPT ≥ LB0. Let 1 ≤ i ≤ j ≤ n. For any
color c that appears in the subsequence of consecutive j−i+1 items i, i+1, ..., j,
let C(i, j, c) be the number of times that it appears. Let

LB(i, j, c) = C(i, j, c)− (j − i+ 1− C(i, j, c)) = 2C(i, j, c)− j + i− 1 , (1)

LB(i, j) = maxc LB(i, j, c), and LB1 = maxi,j LB(i, j). For any non-empty
input we have LB1 ≥ 1 since LB(i, i, ci) = 1 for any i. Note that LB(i, j, c) is
positive only if the number of times that c appears in the subsequence i, . . . , j is
more than j−i+1

2 (i.e., more than half the items of this subsequence are of color
c), and thus for computing LB1 it is sufficient to consider for every subsequence
only a color c that appears a maximum number of times in this subsequence.
The following lemma generalizes a property proved in [1].

Colorful Bin Packing 175

Lemma 1. OPT ≥ LB1.

Consider the action of BaP , and let k be the index of the last pseudo-bin
(i.e., k is the final value of the variable k). For 1 ≤ m ≤ k, let LBm denote LB1

at the time that the first item is assigned to Pm. Let Ym be the (index of the)
first item that is assigned to Pm, and let Xm be its color (thus Y1 = 1 holds
by definition, i.e., the first item of the input is also the first item assigned to
the first pseudo-bin). For convenience, let Yk+1 = n + 1. Let phase m be the
subsequence of consecutive items Ym, . . . , Ym+1 − 1. In the lemmas below, when
we discuss properties holding during phase m, we mean that they hold starting
the time just after Ym is packed and ending right after Ym+1 − 1 is packed.

Theorem 1. For any 1 ≤ m ≤ k, there exists i ≤ Ym such that C(i, Ym, Xm) ≥
m+3
4 + Ym−i

2 .

Proof. We prove the claim by induction. For m = 1, Ym = 1, and C(1, 1, c1) = 1
as required. Form = 2, the items Y2 and Y2−1 have the same color X2 (as Y2−1
was assigned to P1 and Y2 is assigned to P2). Thus, we find C(Y2−1, Y2, X2) = 2.
Next, assume that the claim holds for some m ≥ 2. We will prove the claim for
m+ 1 by considering phase 2 ≤ m ≤ k − 1.

Lemma 2. If at some time in phase m (where 2 ≤ m ≤ k − 1) an item i
of a color that is not Xm+1 is assigned to a pseudo-bin of a color that is not
Xm+1 (the two last items that the pseudo-bin receives are of colors different
from Xm+1), then just before assigning i (the second item out of the two items
whose colors are not Xm+1) there are less than (m+1)/2 (that is, at most m/2)
pseudo-bins of color Xm+1.

Lemma 3. If during phase m there are always at least (m + 1)/2 pseudo-bins
of color Xm+1, then Xm = Xm+1. In this case, letting t be the number of items
of color Xm in phase m, phase m contains t− 1 items of other colors.

If the condition of Lemma 3 holds, then let i be such that C(i, Ym, Xm) ≥
m+3
4 + Ym−i

2 , and let t be the number of items of color Xm = Xm+1 in phase m.

We have C(i, Ym+1, Xm+1) ≥ m+3
4 + Ym−i

2 + t, and Ym+1 − Ym = 2t− 1. Thus,

C(i, Ym+1, Xm+1) ≥ m+3
4 + Ym−i

2 + Ym+1−Ym+1
2 > (m+1)+3

4 + Ym+1−i
2 as required.

Lemma 4. If there is a time in phase m that at most m/2 bins were of color
Xm+1, then there exists an index i such that Ym ≤ i ≤ Ym+1 − 1 where

C(i, Ym+1, Xm+1) ≥
m+ 4

4
+
Ym+1 − i

2
.

Proof. Consider the last time during phase m that there are at most m/2 bins
of color Xm+1, and let i be the first item right after this time. Since after item
Ym+1 − 1 arrives, all m pseudo-bins have color Xm+1 and m > m/2, the time
just after Ym+1 − 1 arrives does not satisfy the condition, so the last such time
must be earlier, i is well-defined, and i ≤ Ym+1 − 1. We have ci = Xm+1 as its

176 G. Dósa and L. Epstein

assignment to a pseudo-bin increased the number of pseudo-bins of this color.
Moreover, starting this time, there are at least (m + 1)/2 bins of color Xm+1

at all times until after the arrival of Ym+1 (by the choice of the time, and since
Ym+1 has the same color and causes the creation of a new pseudo-bin of this
color). If m is even, then just before i is packed, there are exactly m/2 pseudo-
bins of color Xm+1 and m/2 pseudo-bins of other colors, and after item Ym+1

is assigned, there are m + 1 pseudo-bins of color Xm+1. Moreover, while the
items i, . . . , Ym+1 − 1 are being assigned, every item whose color is not Xm+1 is
assigned to a pseudo-bin of color Xm+1, so every pseudo-bin receives alternating
colors (items of colorXm+1 alternate with other colors). Thus, if there are t items
whose colors are not Xm+1 among these items, there are t + m

2 items of color
Xm+1, and the total number of items is Ym+1− i = 2t+ m

2 . Including Ym+1, we

have C(i, Ym+1, Xm+1) = t+ m
2 +1 = m

2 +1+ Ym+1−i
2 − m

4 = (m+1)+3
4 + Ym+1−i

2
as required. If m is odd, then if there are t items whose colors are not Xm+1

among these items, there are t+ m+1
2 items of color Xm+1, and the total number

of items is Ym+1 − i = 2t+ m+1
2 . We have C(i, Ym+1, Xm+1) = t + m+1

2 + 1 =
m
2 + 3

2 + Ym+1−i
2 − m+1

4 > m+4
4 + Ym+1−i

2 as required. ��

This completes the proof of the theorem. ��

The next corollary follows from choosing j = Yk and i such that C(i, Yk, Xk)
≥ m+3

4 + Ym−i
2 , and using (1).

Corollary 1. We have LB1 ≥ LBk ≥ LB(i, Yk, Xk) ≥ k+1
2 .

Corollary 2. The absolute competitive ratio of BaP is at most 4 for arbitrary
items, and at most 2 for zero size items.

We can show that the analysis of BaP is tight.

Proposition 2. The asymptotic competitive ratio of BaP is at least 2 for zero
size items, and at least 4 for arbitrary items.

Proof. We will use the following parameters. Let N ≥ 2 be a large integer. Let
M = 4N+1, let a1 = 1, and for i > 1, let ai = (3ai−1 + 2)/4.

Lemma 5. We have 1 ≤ ai < 2, ai > ai−1 for all i, and limi→∞ ai = 2.
Moreover, ai = 2− (3/4)i−1 holds.

We start with an input of zero size items. In this input all items are white,
red, or blue. The input consists of the following N + 1 phases. In phase 0, M
white items arrive. In phase i (for 1 ≤ i ≤ N), ai ·M/2 red items arrive, and
then (1− ai/2)M blue items arrive. We find ai ·M/2 = (2− (3/4)i−1)4N+1/2 =
2(4N − 3i−1 · 4N−i+1), and (1 − ai/2)M = 2 · 4N − 2 · 4N + 2 · 3i−1 · 4N−i+1.
The numbers of red and blue items are even integers in (0,M), and their sum
is M . Phase i ends with the arrival of M white items. We have OPT = M .
Obviously, M bins are needed already for the first M white items. Each bin of
the optimal solution receives one white item in phase 0, and in each additional
phase it receives one red item or one blue item, and additionally one white item.

Colorful Bin Packing 177

Lemma 6. After i phases BaP has ai+1M pseudo-bins, all of which are white.

Proof. By induction. This holds for i = 0. Assume that it holds after phase
i−1. In phase i, first the red items are assigned to distinct pseudo-bins, and now
there are ai ·M/2 red pseudo-bins and ai ·M/2 white pseudo-bins. Now the blue
items are packed such that half of them join red pseudo-bins and half join white
pseudo-bins. The number of white pseudo-bins is now ai ·M/2−(1−ai/2)M/2 =
M/4(3ai − 2). The number of pseudo-bins that are either red or blue is now
ai ·M/2+ (1− ai/2)M/2 =M(ai +2)/4. Note that (ai + 2)/4 < 1 since ai < 2.
The M white items can join M/4(ai + 2) pseudo-bins that are either red or
blue, and the remaining M −M/4(ai+2) items cause the opening of new white
pseudo-bins. The total number of pseudo-bins now is ai ·M +(M −M(ai+2)/4)
and they are all white. The last number is equal to M(ai + 1 − ai/4 − 1/2) =
M(3ai + 2)/4 =M · ai+1. ��

We find that afterN+1 phases, the algorithm has (2−(3/4)N)·M pseudo-bins,
each consisting of one bin, which implies the lower bound.

In order to prove that the asymptotic competitive ratio is at least 4 for arbi-
trary item sizes, we start with presenting the input above to BaP . At this time,
all items are of three colors and have zero sizes, OPT = M , the algorithm has
2M − m pseudo-bins where m = (34)

NM . The input continues as follows (we
ensure that OPT =M will hold for the complete input). There are 2M −m− 1
items, all of different new colors (none of these colors is white or red or blue).
Moreover, we reserve the color black for later, and thus we require that none of
these colors is black. Each of these items has size 2ε (for some ε < 1/(8M)).
OPT will use one bin for items of size 2ε, while BaP will assign each item
to a different pseudo-bin. Now all the bins of BaP have different colors (one
pseudo-bin remains white). Next, M − 1 black items arrive, where each item has
size 1− ε. OPT adds them to its white bins, the algorithm assigns at most one
item to a white pseudo-bin, so at least M − 2 items are assigned to different
pseudo-bins whose color was not white, red, blue, or black (and the last item
assigned to this pseudo-bin had size 2ε). Thus, there are at least M − 1 black
pseudo-bins, and at least M − 2 of them consist of two bins each, as the total
size of items assigned to it is above 1. Next, there areM−2 items all of different
and new colors and sizes of 2ε. OPT packs them into the bin that already has
items of this size, while the algorithm adds them to its black pseudo-bins, and
at least M − 3 pseudo-bins now consist of three bins. The algorithm will have
at least 2M −m + (M − 2) + (M − 3) = 4M −m bins, while OPT = M . The
competitive ratio approaches 4 for a sufficiently large value of N .

Note that this example does not require any assumptions regarding the be-
havior of BaP in cases of ties. The example requires, however, a large number
of different colors. We provide a different example that is valid for a run of BaP
where ties between pseudo-bins of one color are broken in favor of smaller in-
dices, and C = {white, red, blue}. Once again, the input starts with the items of
zero size as above. Afterwards, there are three batches of items, consisting of M
blue items, M white items, and M blue items, respectively, of sizes that we will
define. Since the number of pseudo-bins is above M and all of them are white,

178 G. Dósa and L. Epstein

blue items must join white pseudo-bins, and white items must join blue pseudo-
bins. The three batches are packed into the first M pseudo-bins, where the jth
item of a batch is packed into the pseudo-bin of index j. For 1 ≤ t ≤M + 1, let
δt = ε/4t (thus we have δt+1 = δt/4). The size of the tth item in the first batch
(of blue items) is δt (t = 1, ...,M). The size of the tth item in the second batch
(of white items) is 1− 3δt+1 (t = 1, ...,M). The size of the tth item in the third
batch (of blue items) is δt (t = 1, ...,M). We have δt + (1 − 3 · δi+1) > 1 since
δt − 3 · δt+1 = δt/4. Therefore, each pseudo-bin t = 1, . . . ,M consists of three
bins.

We show that for this input OPT ≤M + 2. Given the packing into M white
bins, for t = 1, ...,M − 1 we group the items of sizes δt, 1 − 3 · δt, δt (of colors
blue, white, and blue, respectively) and pack them into M − 1 bins. A blue item
of size δM is added to the remaining bin, and the two items of sizes δM and
1− 3 · δM+1 are packed into new bins. ��

3 Lower Bounds

The (absolute or asymptotic) competitive ratio cannot decrease if the cardinality
of C grows. Thus, when we claim a negative result for |C| ≥ �, it is sufficient to
prove it for |C| = �. Thus, the lower bound for arbitrary items is proved for
|C| = 2, and the lower bound for zero size items is proved for |C| = 3.

3.1 An Asymptotic Lower Bound of 2

We will consider an algorithm, and construct an input consisting of black and
white items based on its behavior. The construction is carried out in phases,
where in each phase the algorithm has to pack a black item after a white item.
If they are packed together, it turns out that it would have been better to pack
this last black item separately, since another smaller black item arrives, and a
large white item that should have been combined with the first black item of
this phase. Since no other combination is possible, the algorithm has two new
bins instead of just one. If the algorithm uses a new bin for the first black item,
it turns out that the phase ends, and the algorithm used a new bin when this
was not necessary. The first situation is slightly better for the algorithm, and
a ratio of 2 will follow from that. The precise construction is presented in the
proof of the following theorem.

Theorem 2. The asymptotic competitive ratio of any algorithm for colorful bin
packing is at least 2.

Proof. Consider an online algorithm A. LetN > 3 be a large integer. Let ε = 1
N3 ,

and δi =
1

5i·N3 for 1 ≤ i ≤ N2. Let C = { black, white}. The list of items will
consist of white items called regular white items, each of size ε, white items called
huge white items, whose sizes are either of the form 1−2δi (for some 1 ≤ i ≤ N2)
or 1, black items called special black items, whose sizes are of the form 3δi, and
black items called regular black items whose sizes are of the form δi.

Colorful Bin Packing 179

The list is created as follows. An index i is used for the number of regular
white items that have arrived so far (each such item is followed by a regular
black item). An index j is used for the number of huge white items that have
arrived so far (each such item is preceded by a black item and followed by a
black item). The input stops when one of i = N2 and j = N happens (even if
the second event did not happen). Let i = 0 and j = 0.

1. If j = N , then stop. Else, if i = N2, then N − j huge white items of size 1
each arrive; stop.
2. Let i = i + 1; a regular white item arrives; a regular black item of size δi
arrives.
3. If the last black item is packed into a new bin, the phase ends. Go to step 1
to start a new phase.
4. Else, it must be the case that the last black item is packed into a bin where
the last item is white. Let j = j+1, a special black item of size 3δi arrives, then
a huge white item of size 1− 2δi arrives, and finally, a regular black item of size
δi arrives, and the phase ends. Go to step 1 to start a new phase.

Lemma 7. Any huge white item is strictly larger than 1− ε. Any black item is
strictly smaller than ε. The total size of a huge white item of phase i and a black
item of an earlier phase is above 1.

Lemma 8. N ≤ OPT ≤ N + 1.

Proof. There are N huge white items, each of size above 1
2 , thus, since a pair

of such items cannot be packed into a bin together even with a black item,
OPT ≥ N . We create a packing with N + 1 bins as follows. If there are huge
white items of size 1, each such item is packed into a separate bin. We show how
the remaining items can be packed into j bins (where j is the final value of the
variable j). Every remaining huge white item is packed in a bin with the last
regular black item that arrived before it, and the regular black item that arrived
after it. The total size of such three items of phase i is 1. This leaves a sequence
of items of alternating colors, where some of the black items are special. The
white items in the remaining input are regular, and the black item of phase i
has a size of either δi or 3δi. In this sequence, every item is no larger than ε, and
there are 2i ≤ 2N2 items (where i is the final value of this variable). Thus, the
total size of these items is below 1, and they are all packed into a single bin. ��

Lemma 9. The number of bins used by the algorithm up to a time when i = i′

is at least i′. The number of black bins at a time when j = j′ is at least 2j′ + 1.

For a fixed value of N , if the input was terminated since i = N2 but j < N ,
then the cost of the algorithm is at least N2+N−j ≥ N2+1. As OPT ≤ N+1,
we find a competitive above N − 1 > 2. If j = N , then the cost of the algorithm
is at least 2N + 1 (as this is a lower bound on the number of black bins), while
OPT ≤ N + 1, and we find a ratio of at least 2 − 1

N+1 . We found that for any
N > 3, there is an input where OPT ≥ N , and the competitive ratio for this
input is at least 2− 1

N+1 . This implies the claim. ��

180 G. Dósa and L. Epstein

3.2 A Lower Bound for Zero Size Items

It was shown in [1] that if all items have zero sizes, then the algorithm Pseudo
finds an optimal solution (that is, its absolute competitive ratio is 1). Our anal-
ysis of BaP implies that its absolute and asymptotic competitive ratios for zero
size items are equal to 2. Here, we show that there cannot be an online algo-
rithm for colorful bin packing with at least three colors and zero size items that
produces an optimal solution (a solution that uses the minimum number of bins).

Theorem 3. Any algorithm for zero size items with |C| ≥ 3 has an asymptotic
competitive ratio of at least 3

2 .

Proof. We will use C = {white, red, blue}. Recall that all items have zero sizes,
thus for every presented item we only specify its color. Let M ≥ 2 be a large
integer. We construct an input for which M ≤ OPT ≤M + 3. The input starts
with phase 0 that consists of M white items. Thus, OPT ≥ M . The remainder
of the input is presented in phases. In parallel to presenting the input, we will
create a packing π for the complete input. This packing will consist of M + 3
bins. The M items of phase 0 are packed in π intoM bins called regular bins. In
addition to the M regular bins of π, there will be a special bin of each color in
π (this bin is empty after phase 0). The regular bins of π (M bins in total), will
always be of one color (this color can be any of the three colors). Each phase i
will have a color G(i) associated with it. This is the color of the M regular bins
of π. The color associated with phase 0 is white.

Phase i is defined as follows. Let ci and c
′
i be the two colors that are not the

color associated with phase i − 1 (i.e., ci, ci′ ∈ C \ {G(i − 1)}, ci �= ci′ . There
are 2M items of alternating colors; the items of odd indices are of color ci, and
the items of even indices are of color c′i. Let Wi, Ri, and Bi, be the numbers of
white, red, and blue bins, that the algorithm has after the last 2M items have
arrived. Phase i ends with M items of the color for which the number of bins of
the algorithm is maximal after the 2M first items of phase i have been packed
by the algorithm (that is, letting X = max{Wi, Ri, Bi}, the last M items are
white if X = Wi, otherwise, if X = Ri, then they are red, and otherwise they
are blue). Let G(i) be the color of the last M items of phase i.

Let Ni be the number of bins of the algorithm after phase i. We have N0 =M .
In phase i ≥ 1 the algorithm obviously has at least Ni−1 bins after the first 2M

items of phase i have arrived, and there are at least Ni−1

3 bins of color G(i).
Therefore, after M items of color G(i) arrive, the algorithm has M additional

bins of color G(i), and there are at least Ni−1

3 +M bins of color G(i). We get

Ni ≥ Ni−1

3 +M . Thus, Ni ≥ M · 3i+1−1
2·3i . This holds for i = 0 as N0 = M , and

31−1
2·30 = 1, and using the recurrence, Ni+1 ≥ (3

i+1−1
2·3i)M/3 +M = (3

i+2−1
2·3i+1)M .

Due to symmetry, we describe the packing π for the case that the color as-
sociated with phase i − 1 is white, and the first 2M items of phase i alternate
between red and blue (starting with red). If the last M items of phase i are
blue or red, then the first 2M items are packed into the blue special bin (which
remains blue), and the last M items are packed into the M regular bins. If the

Colorful Bin Packing 181

last M items are white, each bin receives a red item and an blue item. Now all
regular bins are blue, and the last M white items can be packed into them. The
color associated with phase i is indeed G(i).

We find that the competitive ratio of the algorithm is at least M
M+3 ·

3i+1−1
2·3i .

Letting M and i grow without bound we find a lower bound of 3
2 on the asymp-

totic competitive ratio. ��

References

1. Balogh, J., Békési, J., Dósa, G., Epstein, L., Kellerer, H., Tuza, Z.: Online results
for black and white bin packing. Theory of Computing Systems (to appear)

2. Balogh, J., Békési, J., Galambos, G.: New lower bounds for certain classes of bin
packing algorithms. Theoretical Computer Science 440-441, 1–13 (2012)

3. Dósa, G., Sgall, J.: First fit bin packing: A tight analysis. In: Proc. of the 30th In-
ternational Symposium on Theoretical Aspects of Computer Science (STACS 2013),
pp. 538–549 (2013)

4. Dósa, G., Tuza, Z., Ye, D.: Bin packing with “largest in bottom” constraint: tighter
bounds and generalizations. Journal of Combinatorial Optimization 26(3), 416–436
(2013)

5. Epstein, L.: On online bin packing with LIB constraints. Naval Research Logis-
tics 56(8), 780–786 (2009)

6. Finlay, L., Manyem, P.: Online LIB problems: Heuristics for bin covering and lower
bounds for bin packing. RAIRO Operetions Research 39(3), 163–183 (2005)

7. Johnson, D.S.: Near-optimal bin packing algorithms. PhD thesis, MIT, Cambridge,
MA (1973)

8. Johnson, D.S.: Fast algorithms for bin packing. Journal of Computer and System
Sciences 8(3), 272–314 (1974)

9. Johnson, D.S., Demers, A., Ullman, J.D., Garey, M.R., Graham, R.L.: Worst-case
performance bounds for simple one-dimensional packing algorithms. SIAM Journal
on Computing 3, 256–278 (1974)

10. Lee, C.C., Lee, D.T.: A simple online bin packing algorithm. Journal of the
ACM 32(3), 562–572 (1985)

11. Manyem, P.: Bin packing and covering with longest items at the bottom: Online
version. The ANZIAM Journal 43(E), E186–E232 (2002)

12. Manyem, P., Salt, R.L., Visser, M.S.: Approximation lower bounds in online
LIB bin packing and covering. Journal of Automata, Languages and Combina-
torics 8(4), 663–674 (2003)

13. Seiden, S.S.: On the online bin packing problem. Journal of the ACM 49(5), 640–671
(2002)

14. Ullman, J.D.: The performance of a memory allocation algorithm. Technical Report
100, Princeton University, Princeton, NJ (1971)

15. van Vliet, A.: An improved lower bound for on-line bin packing algorithms. Infor-
mation Processing Letters 43(5), 277–284 (1992)

16. Veselý, P.: Competitiveness of fit algorithms for black and white packing.
Manuscript. presented in MATCOS 2013 (2013)

Algorithms Parameterized by Vertex Cover

and Modular Width, through Potential Maximal
Cliques�

Fedor V. Fomin1, Mathieu Liedloff2, Pedro Montealegre2, and Ioan Todinca2

1 Department of Informatics, University of Bergen, N-5020 Bergen, Norway
fomin@ii.uib.no

2 Univ. Orléans, INSA Centre Val de Loire, LIFO EA 4022, BP 6759, F-45067
Orléans Cedex 2, France

{mathieu.liedloff,ioan.todinca,pedro.montealegre}@univ-orleans.fr

Abstract. In this paper we give upper bounds on the number of mini-
mal separators and potential maximal cliques of graphs w.r.t. two graph
parameters, namely vertex cover (vc) and modular width (mw). We prove
that for any graph, the number of minimal separators is O∗(3vc) and
O∗(1.6181mw), the number of potential maximal cliques is O∗(4vc) and
O∗(1.7347mw), and these objects can be listed within the same running
times. (The O∗ notation suppresses polynomial factors in the size of the
input.) Combined with known results [3,12], we deduce that a large fam-
ily of problems, e.g., Treewidth, Minimum Fill-in, Longest Induced

Path, Feedback vertex set and many others, can be solved in time
O∗(4vc) or O∗(1.7347mw).

1 Introduction

The vertex cover of a graph G, denoted by vc(G), is the minimum number of
vertices that cover all edges of the graph. The modular width mw(G) can be
defined as the maximum degree of a prime node in the modular decomposition
of G (see [20] and Section 4 for definitions). The main results of this paper are
of combinatorial nature: we show that the number of minimal separators and
the number of potential maximal cliques of a graph (see Section 2 and also [3]
for definitions) are upper bounded by a function in each of these parameters.
More specifically, we prove the number of minimal separators is at most 3vc

and O∗(1.6181mw), and the number of potential maximal cliques is O∗(4vc) and
O∗(1.7347mw), and these objects can be listed within the same running time
bounds. Recall that the O∗ notation suppresses polynomial factors in the size
of the input, i.e., O∗(f(k)) should be read as f(k) · nO(1) where n is the num-
ber of vertices of the input graph. Minimal separators and potential maximal
cliques have been used for solving several classical optimization problems, e.g.,
Treewidth, Minimum Fill-In [10], Longest Induced Path, Feedback

� Supported by the European Research Council under the European Union’s Seventh
Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 267959.

R Ravi and I.L. Gørtz (Eds.): SWAT 2014, LNCS 8503, pp. 182–193, 2014.
c© Springer International Publishing Switzerland 2014

Algorithms Parameterized by Vertex Cover 183

Vertex Set or Independent Cycle Packing [12]. Pipelined with our com-
binatorial bounds, we obtain a series of algorithmic consequences in the area of
FPT algorithms parameterized by the vertex cover and the modular width of
the input graph. In particular, the problems mentioned above can be solved in
time O∗(4vc) and O∗(1.7347mw). These results are complementary in the sense
that graphs with small vertex cover are sparse, while graphs with small modular
width may be dense.

Vertex cover and modular width are strongly related to treewidth (tw) and
cliquewidth (cw) parameters, since for any graph G we have tw(G) ≤ vc(G)
and cw(G) ≤ mw(G)+ 2. The celebrated theorem of Courcelle [6] states that all
problems expressible in Counting Monadic Second Order Logic (CMSO2) can be
solved in time f(tw) ·n for some function f depending on the problem. A similar
result for cliquewidth [7] shows that all CMSO1 problems can be solved in time
f(cw) · n, if the clique-decomposition is also given as part of the input. (See
the full version [11] for definitions of different types of logic. Informally, CMSO2

allows logic formulae with quantifiers over vertices, edges, edge sets and vertex
sets, and counting modulo constants. The CMSO1 formulae are more restricted,
we are not allowed to quantify over edge sets.)

Typically function f is a tower of exponentials, and the height of the tower
depends on the formula. Moreover Frick and Grohe [15] proved that this depen-
dency on treewidth or cliquewidth cannot be significantly improved in general.
Lampis [18] shows that the running time for CMSO2 problems can be improved

22
O(vc) ·n when parametrized by vertex cover, but he also shows that this cannot

be improved to O∗(22
o(vc)

) (under the exponential time hypothesis). We are not
aware of similar improvements for parameter modular width, but we refer to [16]
for discussions on problems parameterized by modular width.

Most of our algorithmic applications concern a restricted, though still large
subset of CMSO2 problems, but we guarantee algorithms that are single expo-
nential in the vertex cover: O∗(4vc) and in the modular width: O∗(1.7347mw).
We point out that our result for modular width extends the result of [13,12],
who show a similar bound of O∗(1.7347n) for the number of potential maximal
cliques and for the running times for these problems, but parameterized by the
number of vertices of the input graph.

We use the following generic problem proposed by [12], that encompasses
many classical optimization problems. Fix an integer t ≥ 0 and a CMSO2 formula
ϕ. Consider the problem of finding, in the input graph G, an induced subgraph
G[F] together with a vertex subset X ⊆ F , such that the treewidth of G[F] is
at most t, the graph G[F] together with the vertex subset X satisfy formula ϕ,
and X is of maximum size under this conditions. This optimization problem is
called Max Induced Subgraph of tw ≤ t satisfiying ϕ:

Max |X |
subject to There is a set F ⊆ V such that X ⊆ F ;

The treewidth of G[F] is at most t;
(G[F], X) |= ϕ.

(1)

184 F.V. Fomin et al.

Note that our formula ϕ has a free variable corresponding to the vertex subset
X . For several examples, in formula ϕ the vertex set X is actually equal to F .
E.g., even when ϕ only states that X = F , for t = 0 we obtain the Maximum

Independent set problem, and for t = 1 we obtain the Maximum Induced

Forest. If t = 1 and ϕ states that X = F and G[F] is a path we obtain the
Longest Induced Path problem. Still under the assumption that X = F , we
can express the problem of finding the largest induced subgraph G[F] excluding
a fixed planar graphH as a minor, or the largest induced subgraph with no cycles
of length 0 mod l. ButX can correspond to other parameters, e.g. we can choose
the formula ϕ such that |X | is the number of connected components of G[F].
Based on this we can express problems like Independent Cycle Packing,
where the goal is to find an induced subgraph with a maximum number of
components, and such that each component induces a cycle.

The result of [12] states that problem Max Induced Subgraph of tw ≤ t
satisfiying ϕ can be solved in a running time of the type #pmc ·nt+4 · f(ϕ, t)
where #pmc is the number of potential maximal cliques of the graph, as-
suming that the set of all potential maximal cliques is also part of the in-
put. Thanks to our combinatorial bounds we deduce that the problem Max

Induced Subgraph of tw ≤ t satisfiying ϕ can be solved in time O(4vcnt+c)
and O(1.7347mwnt+c), for some small constant c.

There are several other graph parameters that can be computed in time
O∗(#pmc) if the input graph is given together with the set of its potential
maximal cliques. E.g.,Treewidth, Minimum Fill-in [10], their weighted ver-
sions [1,17] and several problems related to phylogeny [17], or Treelength [19].
Pipelined with our main combinatorial result, we deduce that all these problems
can be solved in time O∗(4vc) or O∗(1.7347mw). Recently Chapelle et al. [5]
provided an algorithm solving Treewidth and Pathwidth in O∗(3vc), but
those completely different techniques do not seem to work for Minimum Fill-

in or Treelength. The interested reader may also refer., e.g., to [8,9] for more
(layout) problems parameterized by vertex cover.

2 Minimal Separators and Potential Maximal Clique

Let G = (V,E) be an undirected, simple graph. We denote by n its number
of vertices and by m its number of edges. The neighborhood of a vertex v is
N(v) = {u ∈ V : {u, v} ∈ E}. We say that a vertex x sees a vertex subset S (or
vice-versa) if N(x) intersects S. For a vertex set S ⊆ V we denote by N(S) the
set
⋃

v∈S N(v) \S. We write N [S] (resp. N [x]) for N(S)∪S (resp. N(x)∪ {x}).
Also G[S] denotes the subgraph of G induced by S, and G − S is the graph
G[V \ S].

A connected component of graph G is the vertex set of a maximal induced
connected subgraph of G. Consider a vertex subset S of graph G. Given two
vertices u and v, we say that S is a u, v-separator if u and v are in different
connected components of G− S. Moreover, if S is inclusion-minimal among all
u, v-separators, we say that S is a minimal u, v-separator. A vertex subset S is

Algorithms Parameterized by Vertex Cover 185

called a minimal separator of G if S is a u, v-minimal separator for some pair of
vertices u and v.

Let C be a component of G−S. IfN(C) = S, we say that C is a full component
associated to S.

Proposition 1 (folklore). A vertex subset S of G is a minimal separator if
and only if G− S has at least two full components associated to S. Moreover, S
is a minimal x, y-separator if and only if x and y are in different full components
associated to S.

A graph H is chordal or triangulated if every cycle with four or more vertices
has a chord, i.e., an edge between two non-consecutive vertices of the cycle. A
triangulation of a graph G = (V,E) is a chordal graph H = (V,E′) such that
E ⊆ E′. Graph H is a minimal triangulation of G if for every edge set E′′ with
E ⊆ E′′ ⊂ E′, the graph F = (V,E′′) is not chordal.

A set of vertices Ω ⊆ V of a graph G is called a potential maximal clique if
there is a minimal triangulation H of G such that Ω is a maximal clique of H .

The following statement due to Bouchitté and Todinca [3] provides a char-
acterization of potential maximal cliques, and in particular allows to test in
polynomial time if a vertex subset Ω is a potential maximal clique of G:

Proposition 2 ([3]). Let Ω ⊆ V be a set of vertices of the graph G = (V,E) and
{C1, . . . , Cp} be the set of connected components of G − Ω. We denote S(Ω) =
{S1, S2, . . . , Sp}, where Si = N(Ci) for all i ∈ {1, . . . , p}. Then Ω is a potential
maximal clique of G if and only if

1. each Si ∈ S(Ω) is strictly contained in Ω;
2. the graph on the vertex set Ω obtained from G[Ω] by completing each Si ∈
S(Ω) into a clique is a complete graph.

Moreover, if Ω is a potential maximal clique, then S(Ω) is the set of minimal
separators of G contained in Ω.

Another way of stating the second condition is that for any pair of vertices
u, v ∈ Ω, if they are not adjacent in G then there is a component C of G − Ω
seeing both x and y.

To illustrate Proposition 2, consider, e.g., the cube graph depicted in Figure 2.
The set Ω1 = {a, e, g, c, h} is a potential maximal clique and the minimal sepa-
rators contained in Ω1 are {a, e, g, c} and {a, h, c}. Another potential maximal
clique of the cube graph is Ω2 = {a, c, f, h} containing the minimal separators
{a, c, f}, {a, c, h}, {a, f, h} and {c, f, h}.

Based on Propositions 1 and 2, one can easily deduce:

Corollary 1 (see e.g., [3]). There is an O(m) time algorithm testing if a
given vertex subset S is a minimal separator of G, and O(nm) time algorithm
testing if a given vertex subset Ω is a potential maximal clique of G.

We also need the following observation.

Proposition 3 ([3]). Let Ω be a potential maximal clique of G and let S ⊂ Ω
be a minimal separator. Then Ω \ S is contained in a unique component C of
G− S, and moreover C is a full component associated to S.

186 F.V. Fomin et al.

a b

d c

e f

h g
u v

...... ...

Fig. 1. Cube graph (left) and watermelon graph (right)

3 Relations to Vertex Cover

A vertex subsetW is a vertex cover of G if each edge has at least one endpoint in
W . Note that ifW is a vertex cover, that V \W induces an independent set in G,
i.e. G−W contains no edges. We denote by vc(G) the size of a minimum vertex
cover of G. The parameter vc(G) is called the vertex cover number or simply
(by a slight abuse of language) the vertex cover of G. There is a well-known
(folklore) branching algorithm computing the vertex cover of the input graph in
time O∗(2vc).

Let us show that any graph G has at most 3vc(G) minimal separators.

Lemma 1. Let G = (V,E) be a graph, W be a vertex cover and S ⊆ V be a
minimal separator of G. Consider a three-partition (D1, S,D2) of V such that
both D1 and D2 are formed by a union of components of G − S, and both D1

and D2 contain some full component associated to S. Denote DW
1 = D1 ∩W

and DW
2 = D2 ∩W .

Then S \W = {x ∈ V \W | N(x) intersects both DW
1 and DW

2 }.

Proof. Let C1 ⊆ D1 and C2 ⊆ D2 be two full components associated to S. Let
x ∈ S \W . Vertex x must have neighbors both in C1 and C2, hence both in D1

and D2. Since x �∈W andW is a vertex cover, we have N(x) ⊆W . Consequently
x has neighbors both in DW

1 and DW
2 .

Conversely, let x ∈ V \W s.t. N(x) intersects both DW
1 and DW

2 . We prove
that x ∈ S. By contradiction, assume that x �∈ S, thus x is in some component
C of G − S. Suppose w.l.o.g. that C ⊆ D1. Since N(x) ⊆ C ∪ N(C), we must
have N(x) ⊆ D1 ∪ S. Thus N(x) cannot intersect D2—a contradiction. ��

Theorem 1. Any graph G has at most 3vc(G) minimal separators. Moreover the
set of its minimal separators can be listed in O∗(3vc(G)) time.

Proof. Let W be a minimum size vertex cover of G. For each three-partition
(DW

1 , SW , DW
2) ofW , let S = SW ∪{x ∈ V \W | N(x) intersects DW

1 and DW
2 }.

According to Lemma 1, each minimal separator of G will be generated this way,
by an appropriate partition (DW

1 , SW , DW
2) of W . Thus the number of minimal

separators is at most 3vc(G), the number of three-partitions of W .

Algorithms Parameterized by Vertex Cover 187

These arguments can be easily turned into an enumeration algorithm, we
simply need to compute an optimum vertex cover (recall this can be done in
O∗(2(vc(G)) time) then test, for each set S generated from a three-partition, if S
is indeed a minimal separator. The latter takes O(m) time for each set S using
Corollary 1. ��

Observe that the bound of Theorem 1 is tight up to a constant factor. Indeed
consider the watermelon graphWk,3 formed by k disjoint paths of three vertices
plus two vertices u and v adjacent to the left, respectively right ends of the
paths (see Figure 2). Note that this graph has vertex cover k+2 (the minimum
vertex cover contains the middle of each path and vertices u and v) and it also
has 3k minimal u, v-separators, obtained by choosing arbitrarily one of the three
vertices on each of the k paths.

We now extend Theorem 1 to a similar result on potential maximal cliques.
Let us distinguish a particular family of potential maximal cliques, which have
active separators. They have a particular structure which makes them easier to
handle.

Definition 1 ([4]). Let Ω ⊆ V be a potential maximal clique of graph G =
(V,E), let {C1, . . . , Cp} be the set of connected components of G − Ω and let
Si = N(Ci), for 1 ≤ i ≤ p.

Consider now the graph G+ obtained from G by completing into a clique all
minimal separators Sj, 2 ≤ i ≤ p, such that Sj �⊆ S1.

We say that S1 is an active separator for Ω if Ω is not a clique in this graph
G+. A pair of vertices x, y ∈ Ω that are not adjacent in G+ is called an active
pair. Note that, by Proposition 2, we must have x, y ∈ S1.

The following statement characterizes potential maximal cliques with active
separators.

Proposition 4. Let Ω be a potential maximal clique having an active separator
S ⊂ Ω, with an active pair x, y ∈ S. Denote by C the unique component of
G − S containing Ω \ S. Then Ω \ S is a minimal x, y-separator in the graph
G[C ∪ {x, y}].

Again on the cube graph of Figure 2, for the potential maximal clique Ω1 =
{a, e, g, c, h}, both minimal separators are active. E.g., for the minimal separator
S = {a, e, g, c} the pair {e, g} is active. Not all potential maximal cliques have
active separators, as illustrated by the potential maximal clique Ω2 = {a, c, f, h}
of the same graph.

Let us first focus on potential maximal cliques having an active separator. We
give a result similar to Lemma 1, showing that such a potential maximal clique
can be determined by a certain partition of the vertex cover W of G.

Lemma 2. Let G = (V,E) be a graph and W be a vertex cover of G. Consider a
potential maximal clique Ω of G having an active separator S ⊆ Ω and an active
pair x, y ∈ S. Let C be the unique connected component of G − S intersecting
Ω and let DS be the union of all other connected components of G− S. Denote

188 F.V. Fomin et al.

by Dx the union of components of G − Ω contained in C, seeing x, by Dy the
union of components of G−Ω contained in C not seeing x.

Now let DW
S = DS ∩W , DW

x = Ds ∩W and DW
y = Dy ∩W .

Then one of the following holds:

1. There is a vertex t ∈ Ω such that Ω \ S = N(t) ∩ C.
2. There is a vertex t ∈ Ω such that Ω = N [t].
3. A vertex z �∈ W is in Ω if and only if

(a) z sees DW
S and DW

x ∪DW
y , or

(b) z does not see DW
S but is sees DW

x ∪ {x}, DW
y ∪ {y} and DW

x ∪DW
y .

Proof. Note that Dx, Dy, DS and Ω form a partition of the vertex set V .
We first prove that any vertex z �∈ W satisfying conditions 3a or 3b must be

in Ω.
Consider first the case 3a when z sees DW

S and DW
x ∪ DW

y . So z sees DS

and C; we can apply Lemma 1 to partition (DS , S, C) thus z ∈ S. Consider
now the case 3b when z sees DW

x ∪DW
y , Dx ∪ {x} and Dy ∪ {y} but not DW

S .
Again by Lemma 1 applied to partition (DS , S, C), vertex z cannot be in S.
Since z has a neighbor in Dx ∪Dy, we have z ∈ C. Let H = G[C ∪ {x, y}] and
T = Ω ∩ C (thus we also have T = Ω \ S). Recall that T is an x, y-minimal
separator in H by Proposition 4. By definition of set Dx, we have that Dx∪{x}
is exactly the component of H−T containing x. Note that Dy ∪{y} is the union
of the component of H − T containing y and of all other components of H − T
(that no not see x nor y). By applying Lemma 1 on graph H , with vertex cover
(W ∩ C) ∪ {x, y} and with partition (Dx ∪ {x}, T,Dy ∪ {y}) we deduce that
z ∈ T .

Conversely, let z ∈ Ω \W . We must prove that either z satisfies conditions 3a
or 3b, or we are in one of the first two cases of the Lemma. We distinguish
the cases z ∈ S and z ∈ T . When z ∈ S, by Lemma 1 applied to partition
(DS , S, C), z must see DS and C. If z sees some vertex in C \ Ω, we are done
because z sees DW

x ∪DW
y so we are in case 3a. Assume now that N(z)∩C ⊆ Ω,

we prove that actually N(z)∩C = T = Ω \S, so we are in case 1. Assume there
is u ∈ T \N(z). By Proposition 2, there must be a connected component D of
G−Ω such that z, u ∈ N(D). Since u ∈ C, this component D must be a subset
of C, so D ⊆ C \ Ω. Together with z ∈ N(D), this contradicts the assumption
N(z) ∩ C ⊆ Ω.

It remains to treat the case z ∈ T . Clearly z ∈ C cannot see DS because S
separates C from DS. We again take graphH , with vertex cover (W ∩C)∪{x, y},
and apply Lemma 1 with partition (Dx ∪ {x}, T,Dy ∪ {y}). We deduce that z
sees both DW

x ∪ {x} and DW
y ∪ {y}. Assume that z does not see DW

x ∪ DW
y .

So N(z) ∩ C \ Ω = ∅ thus N [z] ⊆ Ω. If Ω contains some vertex u �∈ N [z], no
component of G − Ω can see both z and u (because N(z) ⊆ Ω), contradicting
Proposition 2. We conclude that either z seesDW

x ∪DW
y (so satisfies condition 3b)

or Ω = N [z] (thus we are in the second case of the Lemma). ��

Theorem 2. Any graph G has O∗(4vc(G)) potential maximal cliques. Moreover
the set of its potential maximal cliques can be listed in O∗(4vc(G)) time.

Algorithms Parameterized by Vertex Cover 189

Proof. Let us first give the upper bound and the enumeration algorithm for
potential maximal cliques with active separators.

The number of potential maximal cliques with active separators satisfying the
second condition of Lemma 2 is at most n, and they can all be listed in polynomial
time by checking, for each vertex t, ifN [t] is a potential maximal clique.

For enumerating the potential maximal cliques with active separators satis-
fying the first condition of Lemma 2, we enumerate all minimal separators S
using Theorem 1, then for each t ∈ S and each of the at most n components C
of G − S we check if S ∪ (C ∩ N(t)) is a potential maximal clique. Recall that
testing if a vertex set is a potential maximal clique can be done in polynomial
time by Corollary 1. Thus the whole process takes O∗(3vc(G)) time, and this is
also an upper bound on the number of listed objects.

It remains to enumerate the potential maximal cliques with active separators
satisfying the third condition of Lemma 2. For this purpose, we “guess” the sets
DW

S DW
x , DW

y as in the Lemma and then we compute Ω. More formally, for

each four-partition (DW
S , DW

x , DW
y , ΩW) of W , we let ΩW be the set of vertices

z �∈ W satisfying conditions 3a or 3b of Lemma 2, and we test using Corollary 1

if Ω = ΩW ∪ ΩW is indeed a potential maximal clique. By Lemma 2, this
enumerates in O∗(4vc(G)) all potential maximal cliques of this type.

We have proven that G has O∗(4vc(G)) potential maximal cliques with active
separators and these objects can be listed within the same running time. Due to
space restrictions, the extension to all potential maximal cliques, including the
ones with no active separators, is given in the full version [11]. ��

4 Relations to Modular Width

A module of graph G = (V,E) is a set of vertices W such that, for any vertex
x ∈ V \W , either W ⊆ N(x) or W does not intersect N(x). For the reader
familiar with the modular decompositions of graphs, the modular width mw(G)
of a graph G is the maximum size of a prime node in the modular decomposition
tree. Equivalently, graph G is of modular width at most k if:

1. G has at most one vertex (the base case).
2. G is a disjoint union of graphs of modular width at most k.
3. G is a join of graphs of modular width at most k. I.e., G is obtained from a

family of disjoint graphs of modular width at most k by taking the disjoint
union and then adding all possible edges between these graphs.

4. The vertex set of G can be partitioned into p ≤ k modules V1, . . . , Vp such
that G[Vi] is of modular width at most k, for all i, 1 ≤ i ≤ p.

The modular width of a graph can be computed in linear time, using e.g. [20].
Moreover, this algorithm outputs the algebraic expression of G corresponding to
this grammar.

Let G = (V,E) be a graph with vertex set V = {v1, . . . , vk} and let Mi =
(Vi, Ei) be a family of pairwise disjoint graphs, for all i, 1 ≤ i ≤ k. Denote by
H the graph obtained from G by replacing each vertex vi by the moduleMi. I.e.,

190 F.V. Fomin et al.

H = (V1 ∪· · ·∪Vk, E1 ∪· · ·∪Ek ∪{ab | a ∈ Vi, b ∈ Vj s.t. vivj ∈ E}). We say that
graphH has been obtained fromG by expanding each vertex vi by the moduleMi.

A vertex subset W of H is an expansion of vertex subset WG of G if W =
∪vi∈WGVi. Given a vertex subset W of H , the contraction of W is {vi | Vi
intersects W}.
We prove in Lemma 3 (resp. Lemma 4) that each minimal separator (resp.

each potential maximal clique of H) actually corresponds to a minimal separator
(resp. potential maximal clique) of G or to a minimal separator (resp. potential
maximal clique) of one of the modules Mi. Due to space restrictions, the proofs
of these statements are given [11].

Lemma 3. Let S be a minimal separator of H. One of the following holds :

1. S is the expansion of a minimal separator SG of G.
2. There is i ∈ {1, . . . , k} such that S ∩ Vi is a minimal separator of Mi and

S \ Vi = NH(Vi).

Lemma 4. Let Ω be a potential maximal clique ofH. One of the following holds :

1. Ω is the expansion of a potential maximal clique ΩG of G.
2. There is some i ∈ {1, . . . , k} such that Ω ∩ Vi is a potential maximal clique

of Mi and Ω \ Vi = NH(Vi).

Lemma 3 (resp. Lemma 4) provide an injective mapping from the set of min-
imal separators (resp. the set of potential maximal cliques) of H to the union of
the sets of minimal separators (resp. of potential maximal cliques) of G and of
the graphs Mi. Therefore we have:

Corollary 2. The number of minimal separators (resp. of potential maximal
cliques) of graph H is at most the number of minimal separators (resp. of po-
tential maximal cliques) of G plus the number of minimal separators (resp. of
potential maximal cliques) of each Mi.

The following proposition bounds the number of minimal separators and po-
tential maximal cliques of arbitrary graphs with respect to n.

Proposition 5 ([13,14]). Every n-vertex graph has O(1.6181n) minimal sep-
arators and O(1.7347n) potential maximal cliques. Moreover, these objects can
be enumerated within the same running times.

We can now prove the main result of this section.

Theorem 3. For any graph G = (V,E), the number of its minimal separa-
tors is O(n · 1.6181mw(G)) and the number of its potential maximal cliques is
O(n · 1.7347mw(G)). Moreover, the minimal separators and the potential maxi-
mal cliques can be enumerated in O∗(1.6181mw(G)) and O∗(1.7347mw(G)) time
respectively.

Proof. Let k = mw(G). By definition of modular width, there is a decomposition
tree of graph G, each node corresponding to a leaf, a disjoint union, a join or

Algorithms Parameterized by Vertex Cover 191

a decomposition into at most k modules. The leaves of the decomposition tree
are disjoint graphs with a single vertex, thus these vertices form a partition of
V . There are at most n leaves and, since each internal node is of degree at least
two, there are O(n) nodes in the decomposition tree. For each node N , let G(N)
be the graph associated to the subtree rooted in N . We prove that G(N) has
O(n(N) · 1.6181k) minimal separators and O(n(N) · 1.7347k) potential maximal
cliques, where n(N) is the number of nodes of the subtree rooted in N . We
proceed by induction from bottom to top. The statement is clear for leaves.

Let N be an internal node N1, N2, . . . , Np be its sons in the tree. Graph
G(N) is the expansion of some graph G′(N) by replacing the i-th vertex with
module G(Ni). If N is a join node, then G′(N) is a clique. When N is a disjoint
union node, graph G′(N) is an independent set, and in the last case G′(N)
is a graph of at most k vertices. In all cases, by Proposition 5 graph G′(N)
has O(1.6181k) minimal separators. Thus G(N) has at most O(1.6181k) more
minimal separators than all its sons taken together, which completes our proof
for minimal separators.

Concerning potential maximal cliques, whenG′(N) is a clique it has exactly one
potential maximal clique, and when G′(N) is of size at most k is has O(1.7347k)
potential maximal cliques. We must be more careful in the case whenG′(N) is an
independent set (i.e.,N is a disjoint union node), since in this case it has p potential
maximal cliques, one for each vertex, and p can be as large as n. Consider a poten-
tial maximal cliqueΩ ofG(N) corresponding to an expansion of vertices ofG′(N)
(see Lemma 4). It follows that this potential maximal clique is exactly the vertex
set of some G(Ni), for a child Ni of N . By construction this vertex set is discon-
nected from the rest ofG(N), and by Proposition 2 the only possibility is that this
vertex set induces a clique in G(N). But in this case Ω is also a potential maximal
clique of G(Ni). This proves that, when N is of type disjoint union, G(N) has no
more potential maximal cliques than the sum of the numbers of potential maximal
cliques of all its sons. Hence the whole graphG has O(n · 1.7347k) potential max-
imal cliques. All arguments are constructive and can be turned into enumeration
algorithms for these objects. ��

5 Applications

The treewidth of graph G = (V,E), denoted tw(G), is the minimum number k
such that G has a triangulation H = (V,E′) of clique size at most k + 1. The
minimum fill in of G is the minimum size of F , over all (minimal) triangulations
H = (V,E∪F) of G. The treelength of G is the minimum k such that there exists
a minimal triangulation H , with the property that any two vertices adjacent in
H are at distance at most k in graph G.

Proposition 6. Let ΠG denote the set of potential maximal cliques of graph
G. The following problems are solvable in O∗(|ΠG|) time, when ΠG is given
in the input : (Weighted) Treewidth [10,2], (Weighted) Minimum Fill-

In [10,17], Treelength [19].

192 F.V. Fomin et al.

Recall the Max Induced Subgraph of tw ≤ t satisfiying ϕ problem
where, for a fixed integer t and a fixed CMSO2 formula ϕ, the goal is to find a
pair of vertex subsets X ⊆ F ⊆ V such that tw(G[F]) ≤ t, (G[F], X) models ϕ
and X is of maximum size.

Proposition 7 ([12]). For any fixed integer t > 0 and any fixed CMSO2 for-
mula ϕ, problem Max Induced Subgraph of tw ≤ t satisfiying ϕ is solvable
in O(|ΠG| · nt+4) time, when ΠG is given in the input.

Problem Max Induced Subgraph of tw ≤ t satisfiying ϕ generalizes
many classical problems, for example Maximum Induced Forest, Longest
Induced Path,Maximum Induced Matching, Independent Cycle Pack-

ing, k-in-a-Path, k-in-a-Tree,Maximum Induced Subgraph With a For-

bidden Planar Minor. More examples of particular cases are given in the full
version [11], see also [12]. From Theorems 2 and 3, we deduce:

Theorem 4. Problems Max Induced Subgraph of tw ≤ t satisfiying ϕ,
(Weighted) Treewidth, (Weighted) Minimum Fill-In and Treelength

can be solved in time O∗(4vc) and in time O∗(1.7347mw).

6 Conclusion

We have provided single exponential upper bounds for the number of minimal
separators and the number of potential maximal cliques of graphs, with respect
to parameters vertex cover and modular width.

A natural question is whether these results can be extended to other natural
graph parameters. We point out that for parameters like clique-width or maxi-
mum leaf spanning tree, one cannot obtain upper bounds of type O∗(f(k)) for
any function f . A counterexample is provided by the graph Wp,q, formed by p
disjoint paths of q vertices plus two vertices u and v seeing the left, respectively
right ends of the paths (similar to the watermelon graph of Figure 2). Indeed
this graph has a maximum leaf spanning tree with p leaves and a cliquewidth of
no more than 2p+ 1, but it has roughly (n/p)p minimal u, v-separators.

Finally, we point out that our bounds on the number of potential maximal
cliques w.r.t. vertex cover and to modular width do not seem to be tight. Any
improvement on these bounds, together with faster enumeration algorithms for
the potential maximal cliques, will immediately provide improved algorithms for
the problems mentioned in Section 5.

References

1. Bodlaender, H.L., Fomin, F.V.: Tree decompositions with small cost. Discrete Ap-
plied Mathematics 145(2), 143–154 (2005)

2. Bodlaender, H.L., Rotics, U.: Computing the treewidth and the minimum fill-in
with the modular decomposition. Algorithmica 36(4), 375–408 (2003)

Algorithms Parameterized by Vertex Cover 193

3. Bouchitté, V., Todinca, I.: Treewidth and minimum fill-in: Grouping the minimal
separators. SIAM J. Comput. 31(1), 212–232 (2001)

4. Bouchitté, V., Todinca, I.: Listing all potential maximal cliques of a graph. Theor.
Comput. Sci. 276(1-2), 17–32 (2002)

5. Chapelle, M., Liedloff, M., Todinca, I., Villanger, Y.: Treewidth and pathwidth pa-
rameterized by the vertex cover number. In: Dehne, F., Solis-Oba, R., Sack, J.-R.
(eds.) WADS 2013. LNCS, vol. 8037, pp. 232–243. Springer, Heidelberg (2013)

6. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of
finite graphs. Inf. Comput. 85(1), 12–75 (1990)

7. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization prob-
lems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150
(2000)

8. Cygan, M., Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: On cutwidth
parameterized by vertex cover. Algorithmica 68(4), 940–953 (2014)

9. Fellows, M.R., Lokshtanov, D., Misra, N., Rosamond, F.A., Saurabh, S.: Graph
layout problems parameterized by vertex cover. In: Hong, S.-H., Nagamochi,
H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 294–305. Springer,
Heidelberg (2008)

10. Fomin, F.V., Kratsch, D., Todinca, I., Villanger, Y.: Exact algorithms for treewidth
and minimum fill-in. SIAM J. Comput. 38(3), 1058–1079 (2008)

11. Fomin, F.V., Liedloff, M., Montealegre, P., Todinca, I.: Algorithms parameterized
by vertex cover and modular width, through potential maximal cliques (2014),
http://arxiv.org/abs/1404.3882

12. Fomin, F.V., Todinca, I., Villanger, Y.: Large induced subgraphs via trian-
gulations and cmso. In: Chekuri, C. (ed.) SODA, pp. 582–583. SIAM (2014),
http://arxiv.org/abs/1309.1559

13. Fomin, F.V., Villanger, Y.: Finding induced subgraphs via minimal triangulations.
In: Marion, J.Y., Schwentick, T. (eds.) STACS. LIPIcs, vol. 5, pp. 383–394. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2010)

14. Fomin, F.V., Villanger, Y.: Treewidth computation and extremal combinatorics.
Combinatorica 32(3), 289–308 (2012)

15. Frick, M., Grohe, M.: The complexity of first-order and monadic second-order logic
revisited. Ann. Pure Appl. Logic 130(1-3), 3–31 (2004)

16. Gajarský, J., Lampis, M., Ordyniak, S.: Parameterized algorithms for modular-
width. In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 163–176.
Springer, Heidelberg (2013)

17. Gysel, R.: Potential maximal clique algorithms for perfect phylogeny problems.
CoRR, abs/1303.3931 (2013)

18. Lampis, M.: Algorithmic meta-theorems for restrictions of treewidth. Algorith-
mica 64(1), 19–37 (2012)

19. Lokshtanov, D.: On the complexity of computing treelength. Discrete Applied
Mathematics 158(7), 820–827 (2010)

20. Tedder, M., Corneil, D.G., Habib, M., Paul, C.: Simpler linear-time modular de-
composition via recursive factorizing permutations. In: Aceto, L., Damg̊ard, I.,
Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP
2008, Part I. LNCS, vol. 5125, pp. 634–645. Springer, Heidelberg (2008)

http://arxiv.org/abs/1404.3882
http://arxiv.org/abs/1309.1559

Win-Win Kernelization for Degree Sequence

Completion Problems

Vincent Froese�, André Nichterlein, and Rolf Niedermeier

Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany
{vincent.froese,andre.nichterlein,rolf.niedermeier}@tu-berlin.de

Abstract. We study the kernelizability of a class of NP-hard graph
modification problems based on vertex degree properties. Our main pos-
itive results refer to NP-hard graph completion (that is, edge addition)
cases while we show that there is no hope to achieve analogous results
for the corresponding vertex or edge deletion versions. Our algorithms
are based on a method that transforms graph completion problems into
efficiently solvable number problems and exploits f -factor computations
for translating the results back into the graph setting. Indeed, our core
observation is that we encounter a win-win situation in the sense that ei-
ther the number of edge additions is small (and thus faster to find) or the
problem is polynomial-time solvable. This approach helps in answering
an open question by Mathieson and Szeider [JCSS 2012].

1 Introduction

In this work, we propose a general approach for achieving polynomial-size prob-
lem kernels for a class of graph completion problems where the goal graph has
to fulfill certain degree properties. Thus, we explore and enlarge results on prov-
ably effective polynomial-time preprocessing for these NP-hard graph problems.
To a large extent, the initial motivation for our work comes from studying the
NP-hard graph modification problem Degree Constraint Editing(S) for
non-empty subsets S ⊆ {v−, e+, e−} of editing operations (v−: “vertex dele-
tion”, e+: “edge addition”, e−: “edge deletion”) as introduced by Mathieson and
Szeider [22].1 The definition reads as follows.

Degree Constraint Editing(S) (DCE(S))
Input: An undirected graph G = (V,E), two integers k, r > 0, and

a “degree list function” τ : V → 2{0,...,r}.
Question: Is it possible to obtain a graph G′ = (V ′, E′) from G using

at most k editing operations of type(s) as specified by S such
that degG′(v) ∈ τ(v) for all v ∈ V ′?

� Supported by DFG, project DAMM (NI 369/13).
1 Mathieson and Szeider [22] originally introduced a weighted version of the problem,
where the vertices and edges can have positive integer weights incurring a cost for
each editing operation. Here, we focus on the unweighted version.

R Ravi and I.L. Gørtz (Eds.): SWAT 2014, LNCS 8503, pp. 194–205, 2014.
c© Springer International Publishing Switzerland 2014

Win-Win Kernelization for Degree Sequence Completion Problems 195

In our work, the set S always consists of a single editing operation. Our studies
focus on the two most natural parameters: the number k of editing operations
and the maximum allowed degree r. We will show that, although all three vari-
ants are NP-hard, DCE(e+) is amenable to a generic kernelization method we
propose. This method is based on dynamic programming solving a correspond-
ing number problem and f -factor computations. For DCE(e−) and DCE(v−),
however, we show that there is little hope to achieve analogous results.

Previous Work. There are basically two fundamental starting points for our work.
First, there is our previous theoretical work on degree anonymization in social
networks [15] motivated and strongly inspired by a preceding heuristic approach
due to Liu and Terzi [19]. Indeed, our previous work for degree anonymization
very recently inspired empirical work with encouraging experimental results [16].
A fundamental contribution of this work now is to systematically reveal what
the problem-specific parts (tailored towards degree anonymization) and what
the “general” parts of that approach are. In this way, we develop this approach
into a general method of significantly wider applicability for a large number of
graph completion problems based on degree properties. The second fundamental
starting point is Mathieson and Szeider’s work [22] on DCE(S). They showed
several parameterized preprocessing (also known as kernelization) results and left
open whether it is possible to reduce DCE(e+) in polynomial time to a problem
kernel of size polynomial in r—we will affirmatively answer this question. Finally,
Golovach [13] achieved a number of kernelization results for closely related graph
editing problems; his methods, however, significantly differ from ours.

From a more general perspective, all these considerations fall into the category
of “graph editing to fulfill degree constraints”, which recently received increased
interest in terms of parameterized complexity analysis [10, 13, 23].

Our Contributions. Answering an open question of Mathieson and Szeider [22],
we present an O(kr2)-vertex kernel for DCE(e+) which we then transfer into
an O(r5)-vertex kernel using a strategy rooted in previous work [15, 19]. A fur-
ther main contribution of our work in the spirit of meta kernelization [2] is
to clearly separate problem-specific from problem-independent aspects of this
strategy, thus making it accessible to a wider class of degree sequence comple-
tion problems. We observe that in case that the goal graph shall have “small”
maximum degree r, then the actual graph structure is in a sense negligible and
thus allows for a lot of freedom that can be algorithmically exploited. This paves
the way to a win-win situation of either having guaranteed a small number of
edge additions or the overall problem being solvable in polynomial-time anyway.

Besides our positive kernelization results, we exclude polynomial-size prob-
lem kernels for DCE(e−) and DCE(v−) subject to the assumption that NP �⊆
coNP/poly, thereby showing that the exponential-size kernel results by Math-
ieson and Szeider [22] are essentially tight. In other words, this demonstrates
that in our context edge completion is much more amenable to kernelization than
edge deletion or vertex deletion are. We also prove NP-hardness of DCE(v−) and
DCE(e+) for graphs of maximum degree three, implying that the maximum de-
gree is not a useful parameter for kernelization purposes. Last but not least,

196 V. Froese, A. Nichterlein, and R. Niedermeier

we develop a general preprocessing approach for Degree Sequence Comple-

tion problems which yields a search space size that is polynomially bounded
in the parameter. While this per se does not give polynomial kernels, we derive
fixed-parameter tractability with respect to the combined parameter maximum
degree and solution size. The usefulness of our method is illustrated by further
example degree sequence completion problems.

Notation. All graphs in this paper are undirected, loopless, and simple (that is,
without multiple edges). For a graph G = (V,E), we set n := |V | and m := |E|.
The degree of a vertex v ∈ V is denoted by degG(v), the maximum vertex degree
by ΔG, and the minimum vertex degree by δG. For a finite set U , we denote
with

(
U
2

)
the set of all size-two subsets of U . We denote by G := (V,

(
V
2

)
\ E)

the complement graph of G. For a vertex subset V ′ ⊆ V , the subgraph induced
by V ′ is denoted by G[V ′]. For an edge subset E′ ⊆

(
V
2

)
, V (E′) denotes the set

of all endpoints of edges in E′ and G[E′] := (V (E′), E′). For a set E′ of edges
with endpoints in a graph G, we denote by G + E′ := (V,E ∪ E′) the graph
that results by inserting all edges in E′ into G. Similarly, we define for a vertex
set V ′ ⊆ V , the graph G − V ′ := G[V \ V ′]. For each vertex v ∈ V , we denote
by NG(v) the open neighborhood of v in G and by NG[v] := NG(v) ∪ {v} the
closed neighborhood. We omit subscripts if the corresponding graph is clear from
the context. A vertex v ∈ V with deg(v) ∈ τ(v) is called satisfied (otherwise
unsatisfied). We denote by U ⊆ V the set of all unsatisfied vertices, formally
U := {v ∈ V | degG(v) /∈ τ(v)}.

Parameterized Complexity. This is a two-dimensional framework for studying
computational complexity [8, 11, 24]. One dimension of a parameterized problem
is the input size s, and the other one is the parameter (usually a positive integer).
A parameterized problem is called fixed-parameter tractable (fpt) with respect to
a parameter � if it can be solved in f(�)·sO(1) time, where f is a computable func-
tion only depending on �. This definition also extends to combined parameters.
Here, the parameter usually consists of a tuple of positive integers (�1, �2, . . .)
and a parameterized problem is called fpt with respect to (�1, �2, . . .) if it can be
solved in f(�1, �2, . . .) · sO(1) time.

A core tool in the development of fixed-parameter algorithms is polynomial-
time preprocessing by data reduction [1, 14, 20]. Here, the goal is to transform a
given problem instance I with parameter � in polynomial time into an equivalent
instance I ′ with parameter �′ ≤ � such that the size of I ′ is upper-bounded by
some function g only depending on �. If this is the case, we call I ′ a (problem)
kernel of size g(�). If g is a polynomial, then we speak of a polynomial kernel.
Usually, this is achieved by applying polynomial-time executable data reduction
rules. We call a data reduction rule R correct if the new instance I ′ that results
from applyingR to I is a yes-instance if and only if I is a yes-instance. The whole
process is called kernelization. It is well known that a parameterized problem is
fixed-parameter tractable if and only if it has a problem kernel.

Due to a lack of space several proofs are deferred to a full version.2

2 Available on arXiv:1404.5432.

Win-Win Kernelization for Degree Sequence Completion Problems 197

2 Degree Constraint Editing

Mathieson and Szeider [22] showed fixed-parameter tractability of DCE(S) for
all non-empty subsets S ⊆ {v−, e−, e+} with respect to the combined parame-
ter (k, r) and W[1]-hardness with respect to the single parameter k. The fixed-
parameter tractability is in a sense tight as Cornuéjols [7] proved that DCE(e−)
is NP-hard on planar graphs with maximum degree three and with r = 3 and
thus presumably not fixed-parameter tractable with respect to r. We complement
his result by showing that DCE(v−) is NP-hard on cubic (that is three-regular)
planar graphs, even if r = 0, and that DCE(e+) is NP-hard on graphs with
maximum degree three.

Theorem 1. DCE(v−) is NP-hard on cubic planar graphs, even if r = 0.

Proof (Sketch). We provide a polynomial-time many-one reduction from the
NP-hard Vertex Cover on cubic planar graphs [12]. Let (G = (V,E), h) be
a Vertex Cover instance with the cubic planar graph G. It is not hard to
see that (G, h) is a yes-instance of Vertex Cover if and only if (G, h, 0, τ)
with τ(v) = {0} for all v ∈ V is a yes-instance of DCE(v−). ��

Theorem 2. DCE(e+) is NP-hard on planar graphs with maximum degree three.

In contrast to DCE(e−) and DCE(v−), unless P = NP, DCE(e+) cannot be
NP-hard for constant values of r since we later show fixed-parameter tractability
for DCE(e+) with respect to the parameter r.

Excluding Polynomial Kernels. Mathieson and Szeider [22] gave exponential-size
problem kernels for DCE(v−) and DCE({v−, e−}) with respect to the combined
parameter (k, r). We prove that these results are tight in the sense that, under
standard complexity-theoretic assumptions, neither DCE(e−) nor DCE(v−) ad-
mits a polynomial-size problem kernel when parameterized by (k, r).

Theorem 3. DCE(e−) does not admit a polynomial-size problem kernel with
respect to (k, r) unless NP ⊆ coNP/poly.

Theorem 4. DCE(v−) does not admit a polynomial-size problem kernel with
respect to (k, r) unless NP ⊆ coNP/poly.

Having established these computational lower bounds, we now show that in
contrast to DCE(e−) and DCE(v−), DCE(e+) admits a polynomial kernel.

2.1 A Polynomial Kernel for DCE(e+) with Respect to (k, r)

In order to describe the kernelization, we need some further notation: For i ∈
{0, . . . , r}, a vertex v ∈ V is of type i if and only if deg(v) + i ∈ τ(v), that is, v
can be satisfied by adding i edges to it. The set of all vertices of type i is denoted
by Ti. Observe that a vertex can be of multiple types, implying that for i �= j the
vertex sets Ti and Tj are not necessarily disjoint. Furthermore, notice that the

198 V. Froese, A. Nichterlein, and R. Niedermeier

u

{1, 2}
v

{3}

w

{3}

x

{2}

safely remove {x}

u

{1, 2}
v

{2}

w

{2}

Fig. 1. An example for safely removing a vertex from a graph. The sets next to the
vertices denote the degree lists defined by τ . Observe that in both graphs u is of type
zero and of type one, v is of type zero, and w is of type one.

type-0 vertices are exactly the satisfied ones. We remark that there are instances
for DCE(e+) where we might have to add edges between two satisfied vertices
(though this may seem counter-intuitive): Consider, for example, a three-vertex
graph without any edges, the degree list function values are {2}, {0, 2}, {0, 2},
and k = 3. The two vertices with degree list {0, 2} are satisfied. However, the
only solution for this instance is to add all edges.

Now, we can describe our kernelization algorithm: The basic strategy is to
keep the unsatisfied vertices U and “enough” arbitrary vertices of each type
(from the satisfied vertices) and delete all other vertices. The idea behind the
correctness is that the vertices in a solution are somehow “interchangeable”. If
an unsatisfied vertex needs an edge to a satisfied vertex of type i, then it is not
important which satisfied type-i vertex is used. We only have to take care not
to “reuse” the satisfied vertices to avoid the creation of multiple edges.

Next, we specify what we mean by “enough” vertices: The “magic number” is
α := k(ΔG+2). This leads to the definition of α-type sets : An α-type set C ⊆ V
is a vertex subset containing all unsatisfied vertices U and min{α, |Ti\U |} type-i
vertices from Ti \U for each i ∈ {1, . . . , r}. We will soon show that for any fixed
α-type set C, deleting all vertices in V \ C results in an equivalent instance.
However, deleting a vertex changes the degrees of its neighbors. Thus, we also
have to adjust their degree lists. Formally, for a vertex subset V ′ ⊆ V , we
define τV ′ : (V \V ′)→ 2{0,...,r}, where for each u ∈ V \V ′, we set τV ′(u) := {d ∈
N | d + |NG(u) ∩ V ′| ∈ τ(u)}. Then, safely removing a vertex set V ′ ⊆ V from
the instance (G, k, r, τ) means to replace the instance with (G−V ′, k, r, τV ′), see
Figure 1 for an example. With these definitions we can provide our reduction
rules leading to a polynomial-size problem kernel.

Reduction Rule 1. Let (G = (V,E), k, r, τ) be an instance of DCE(e+) and
let C ⊆ V be an α-type set in G. Then, safely remove all vertices in V \ C.

Lemma 1. Reduction Rule 1 is correct and can be applied in linear time.

As each α-type set contains at most α satisfied vertices of each vertex type,
it follows that after one application of Reduction Rule 1 the graph contains at
most |C| = |U | + rα vertices. The number of unsatisfied vertices in an α-type
set can always be bounded by |U | ≤ 2k since we can increase the degrees of

Win-Win Kernelization for Degree Sequence Completion Problems 199

at most 2k vertices by adding k edges. If there are more unsatisfied vertices,
then we return a trivial no-instance. Thus, we end up with |C| ≤ 2k + rk(ΔG +
2). To obtain a polynomial-size problem kernel with respect to the combined
parameter (k, r), we need to bound ΔG. However, this can easily be achieved:
Since we only allow edge additions, for each vertex v ∈ V , we have deg(v) ≤
max τ(v) ≤ r. Formalized as a data reduction rule, this reads as follows:

Reduction Rule 2. Let (G = (V,E), k, r, τ) be an instance of DCE(e+). If G
contains more than 2k unsatisfied vertices or if there exists a vertex v ∈ V
with deg(v) > max τ(v), then return a trivial no-instance.

Having applied Reduction Rules 1 and 2 once, it holds that ΔG ≤ r and thus
the graph contains at most 2k+rk(r+2) vertices. Lemma 1 ensures that we can
apply Reduction Rule 1 in linear time. Note that linear time means O(m + |τ |)
time, where |τ | ≥ n denotes the encoding size of τ . Clearly, Reduction Rule 2
can be applied in linear time too. This leads to the following.

Theorem 5. DCE(e+) admits a problem kernel containing O(kr2) vertices com-
putable in O(m+ |τ |) time.

2.2 A Polynomial Kernel for DCE(e+) with Respect to r

In this subsection, we show how to extend the polynomial-size problem kernel
provided in Theorem 5 to a polynomial-size problem kernel for the single pa-
rameter r. To this end, among other things, we adapt some ideas of Hartung
et al. [15] to show how to bound k in a polynomial of r. The general strategy,
inspired by a heuristic of Liu and Terzi [19], will be as follows: First, remove
the graph structure and solve the problem on the degree sequence of the input
graph by using dynamic programming. The solution to this number problem will
indicate the demand for each vertex, that is, the number of added edges incident
to that vertex. Then, using a result of Katerinis and Tsikopoulos [17], we prove
that either k ≤ r(r + 1)2 or we can find a set of edges satisfying the specified
demands in polynomial time.

We start by formally defining the corresponding number problem and showing
its polynomial-time solvability.

Number Constraint Editing (NCE)

Input: A function φ : {1, . . . , n} → 2{0,...,r} and positive integers
d1, . . . , dn, k, r.

Question: Are there n positive integers d′1, . . . , d
′
n such that

∑n
i=1(d

′
i−

di) = k and for all i ∈ {1, . . . , n} it holds that d′i ≥ di
and d′i ∈ φ(i)?

Lemma 2. NCE is solvable in O(n · k · r) time.

Lemma 2 can be proved with a dynamic program that specifies the demand
for each vertex, that is, the number of added edges incident to each vertex. Given
these demands, the remaining problem is to decide whether there exists a set of

200 V. Froese, A. Nichterlein, and R. Niedermeier

edges that satisfy these demands and are not contained in the input graph G.
This problem is closely related to the polynomial-time solvable f -Factor prob-
lem [21], a special case of DCE(e−) where |τ(v)| = 1 for all v ∈ V ; it is formally
defined as follows:

f -Factor
Input: A graph G = (V,E) and a function f : V → N0.
Question: Is there an f -factor, that is, a subgraph G′ = (V,E′) of G

such that degG′(v) = f(v) for all v ∈ V ?

Observe that our problem of satisfying the demands of the vertices in G is
essentially the question whether there is an f -factor in the complement graph G
where the function f stores the demand of each vertex. Using a result of Katerinis
and Tsikopoulos [17], we can show the following lemma about the existence of
an f -factor:

Lemma 3. Let G = (V,E) be a graph with n vertices, δG ≥ n−r−1, r ≥ 1, and
let f : V → {1, . . . , r} be a function such that

∑
v∈V f(v) is even. If n ≥ (r+1)2,

then G has an f -factor.

We now have all ingredients to show that we can upper-bound k by r(r + 1)2

or solve the given instance of DCE(e+) in polynomial time. The main technical
statement towards this is the following.

Lemma 4. Let I := (G = (V,E), k, r, τ) be an instance of DCE(e+) with k ≥
r(r + 1)2 and V = {v1, . . . , vn}. If there exists a k′ ∈ {r(r + 1)2, . . . , k} such
that (deg(v1), . . . , deg(vn), 2k

′, r, φ) with φ(i) := τ(vi) is a yes-instance of NCE,
then I is a yes-instance of DCE(e+).

Proof. Assume that (deg(v1), . . . , deg(vn), 2k
′, r, φ) is a yes-instance of NCE.

Let d′1, . . . , d
′
n be integers such that d′i ∈ τ(vi),

∑n
i=1 d

′
i−deg(vi) = 2k′, and d′i ≥

di. Hence, we know that the degree constraints can numerically be satisfied,
giving rise to a new target degree d′i for each vertex vi. Let A := {vi ∈ V | d′i >
deg(vi)} denote the set of affected vertices containing all vertices which require
addition of some edges. It remains to show that the degree sequence of the
affected vertices can in fact be realized by adding k′ edges to G[A]. To this end, it
is sufficient to prove the existence of an f -factor in the complement graph G[A]
with f(vi) := d′i − deg(vi) ∈ {1, . . . , r} for all vi ∈ A since such an f -factor
contains exactly the k′ edges we want to add to G. Thus, it remains to check
that all conditions of Lemma 3 are indeed satisfied to conclude the existence
of the sought f -factor. First, note that δG[A] ≥ |A| − r − 1 since ΔG[A] ≤ r.

Moreover,
∑

vi∈A(d
′
i − deg(vi)) = 2k′ ≤ |A|r, and thus |A| ≥ 2k′/r ≥ 2(r + 1)2.

Finally,
∑

vi∈A f(vi) = 2k′ is even and thus Lemma 3 applies. ��

As NCE is polynomial-time solvable, Lemma 4 states a win-win situation: either
the solution is bounded in size or can be found in polynomial time. From this
and Theorem 5, we obtain the polynomial-size problem kernel.

Theorem 6. DCE(e+) admits a problem kernel containing O(r5) vertices com-
putable in O(k2 · r · n+m+ |τ |) time.

Win-Win Kernelization for Degree Sequence Completion Problems 201

3 A General Approach for Degree Sequence Completion

In the previous section, we dealt with the problem DCE(e+), where one only
has to locally satisfy the degree of each vertex. In this section, we show how
the presented ideas for DCE(e+) can also be used to solve more globally defined
problems where the degree sequence of the solution graph G′ has to fulfill a given
property. For example, consider the problem of adding a minimum number of
edges to obtain a regular graph, that is, a graph where all vertices have the same
degree. In this case the degree of a vertex in the solution is a priori not known
but depends on the degrees of the other vertices.

The degree sequence of a graph G with n vertices is an n-tuple containing
the vertex degrees. Then, for some tuple property Π , we consider the following
problem:

Π-Degree Sequence Completion (Π-DSC)

Input: A graph G = (V,E), an integer k ∈ N.

Question: Is there a set of edges E′ ⊆
(
V
2

)
\ E with |E′| ≤ k such that

the degree sequence of G+ E′ fulfills Π?

Note that Π-DSC is not a generalization of DCE(e+) since in DCE(e+) one can
require for two vertices u and v of the same degree that u gets two more incident
edges and v not. This cannot be expressed in Π-DSC. We remark that the
results stated in this section can be extended to hold for a generalized version
of Π-DSC where a “degree list function” τ is given as additional input and
the vertices in the solution graph G′ also have to satisfy τ , thus generalizing
DCE(e+). For simplicity, however, we stick to the easier problem definition as
stated above.

3.1 Fixed-Parameter Tractability of Π-DSC

In this subsection, we first generalize the ideas behind Theorem 5 to show
fixed-parameter tractability of Π-DSC with respect to the combined parame-
ter (k,ΔG). Then, we present an adjusted version of Lemma 4 and apply it
to show fixed-parameter tractability for Π-DSC with respect to the parame-
ter ΔG′ . Clearly, a prerequisite for both these results is that the following prob-
lem has to be fixed-parameter tractable with respect to the parameter ΔT :=
max{d1, . . . , dn}.

Π-Decision

Input: An integer tuple T = (d1, . . . , dn).
Question: Does T fulfill Π?

For the next result, we need some definitions. For 0 ≤ d ≤ ΔG, let DG(d) :=
{v ∈ V | degG(v) = d} be the block of degree d, that is, the set of all vertices
with degree d in G. A subset V ′ ⊆ V is an α-block set if V ′ contains for
every d ∈ {1, . . . , ΔG} exactly min{α, |DG(d)|} vertices. Recall that α = (ΔG +
2)k, see Section 2.1, and notice the similarity of α-block sets and α-type sets.
This similarity is not a coincidence for we use ideas of Reduction Rule 1 and
Lemma 1 to obtain the following lemma.

202 V. Froese, A. Nichterlein, and R. Niedermeier

Lemma 5. Let I := (G = (V,E), k) be a yes-instance of Π-DSC and let C ⊆ V
be an α-block set. Then, there exists a set of edges E′ ⊆

(
C
2

)
\ E with |E′| ≤ k

such that the degree sequence of G+ E′ fulfills Π.

In the context of DCE(S), we introduced the notion of safely removing a vertex
subset to obtain a problem kernel. On the contrary, in the context of Π-DSC, it
seems impossible to remove vertices in general without further knowledge about
the tuple property Π . Thus, Lemma 5 does not lead to a problem kernel but
only to a reduced search space for a solution, namely any α-block set. Clearly,
an α-block set C can be computed in polynomial time. Then, one can simply
try out all possibilities to add edges with endpoints in C and check whether in
one of the cases the degree sequence of the resulting graph satisfies Π . As |C| ≤
(ΔG + 2)kΔG, there are at most O(2((ΔG+2)kΔG)2) possible subsets of edges to
add. Overall, this leads to the following theorem.

Theorem 7. Let Π be some tuple property. If Π-Decision is fixed-parameter
tractable with respect to ΔT , then Π-DSC is fixed-parameter tractable with re-
spect to (k,ΔG).

Bounding the Solution Size k in ΔG′ . We now show how to extend the ideas of
Section 2.2 to the context of Π-DSC in order to bound the solution size k by
a polynomial in ΔG′ . The general procedure still is the one inspired by Liu and
Terzi [19]: Solve the number problem corresponding to Π-DSC on the degree
sequence of the input graph and then try to “realize” the solution. To this end,
we define the corresponding number problem as follows:

Π-Number Sequence Completion (Π-NSC)

Input: Positive integers d1, . . . , dn, k,Δ.
Question: Are there n nonnegative integers x1, . . . , xn with

∑n
i=1 xi =

k such that (d1+x1, . . . , dn+xn) fulfills Π and di+xi ≤ Δ?

With these problem definitions, we can now generalize Lemma 4.

Lemma 6. Let I := (G, k) be an instance of Π-DSC with V = {v1, . . . , vn}
and k ≥ ΔG′(ΔG′ + 1)2. If there exists a k′ ∈ {ΔG′(ΔG′ + 1)2, . . . , k} such that
the corresponding Π-NSC instance I ′ := (deg(v1), . . . , deg(vn), 2k

′, ΔG′) is a
yes-instance, then I is a yes-instance.

Let function g(|I|) denote the running time for solving the Π-NSC instance I.
Clearly, if there is a solution for an instance of Π-DSC, then there also exists
a solution for the corresponding Π-NSC instance. It follows that we can decide
whether there is a large solution for Π-DSC (with at least ΔG′(ΔG′ +1)2 edges)
in k · g(n log(n)) time. Hence, we arrive at the following win-win situation:

Corollary 1. Let I := (G, k) be an instance of Π-DSC. Then, either one can
decide in k · g(n log(n)) time that I is a yes-instance, or I is a yes-instance if
and only if (G,min{k,ΔG′(ΔG′ + 1)2}) is a yes-instance.

Win-Win Kernelization for Degree Sequence Completion Problems 203

Using Corollary 1, we can transfer fixed-parameter tractability of Π-NSC with
respect to Δ to fixed-parameter tractability of Π-DSC with respect to ΔG′ .
Notice that ΔG′ ≤ k+ΔG, that is, ΔG′ is a smaller and thus “stronger” param-
eter [18]. Also, showing Π-NSC to be fixed-parameter tractable with respect
to Δ is a significantly easier task than proving fixed-parameter tractability for
Π-DSC with respect to ΔG′ directly since the graph structure can be completely
ignored.

Theorem 8. If Π-NSC is fixed-parameter tractable with respect to Δ, then
Π-DSC is fixed-parameter tractable with respect to ΔG′ .

If Π-NSC can be solved in polynomial time, then Corollary 1 shows that we can
assume that k ≤ ΔG′(ΔG′ +1)2. Thus, as in the DCE(e+) setting (Theorem 6),
polynomial kernels with respect to (k,ΔG) transfer to the parameter ΔG′ , lead-
ing to the following.

Theorem 9. If Π-NSC is polynomial-time solvable and Π-DSC admits a poly-
nomial kernel with respect to (k,ΔG), then Π-DSC also admits a polynomial
kernel with respect to ΔG′ .

3.2 Applications

As our general approach is inspired by ideas of Hartung et al. [15], it is not surpris-
ing that it can be applied to “their” Degree Anonymity problem, where given
an undirected graph G = (V,E) and two positive integers k and s, one seeks an
edge set E′ over V of size at most s such that G′ := G+E′ is k-anonymous, that
is, for each vertex v ∈ V , there are at least k− 1 other vertices in G′ having the
same degree. The property Π of being k-anonymous clearly can be decided in
polynomial time for a given degree sequence, and thus, by Theorem 7, we imme-
diately get fixed-parameter tractability with respect to (s,ΔG). Theorem 9 then
basically yields the kernel results obtained by Hartung et al. [15]. There are more
general versions of Degree Anonymity as proposed by Chester et al. [6]. For
example, just a given subset of the vertices has to be anonymized or the vertices
can have labels. As in each of these generalizations one can decide in polynomial
time whether a given graph satisfies the particular anonymity requirement, The-
orem 7 applies also in these scenarios. However, checking in which of these more
general settings the conditions of Theorem 8 or Theorem 9 are fulfilled is future
work.

Besides the graph anonymization setting, one could think of further, more
general constraints on the degree sequence. For example, if pi(D) denotes how
often degree i appears in a degree sequenceD, then being k-anonymous translates
into pi(DG′) ≥ k for all degrees i occurring in the degree sequence DG′ of the
modified graph G′. Now, it is natural to consider not only a lower bound k ≤
pi(D), but also an upper bound pi(D) ≤ u or maybe even a set of allowed
frequencies pi(D) ∈ Fi ⊆ N. Constraints like this allow to express properties not
of individual degrees but of the whole distribution of the degrees in the resulting
sequence. For example, in order to have some “balancedness” one can require

204 V. Froese, A. Nichterlein, and R. Niedermeier

that each occurring degree occurs exactly � times for some � ∈ N [5]. To obtain
some sort of “robustness” it might be useful to ask for an h-index of �, that is,
in the solution graph there are at least � vertices with degree at least � [9].

Another range of problems which fit naturally into our framework involves
completion problems to a graph class that is completely characterized by degree
sequences. For example, a graph is a unigraph if it is determined by its degree
sequence up to isomorphism [4]. Given a degree sequence D = (d1, . . . , dn), one
can decide in linear time whether D defines a unigraph [3]. Thus, by Theorem 8,
we conclude fixed-parameter tractability for the unigraph completion problem
with respect to the parameter ΔG′ .

4 Conclusion

We proposed a method for deriving efficient preprocessing algorithms for de-
gree sequence completion problems. DCE(e+) served as our main illustrating
example. Roughly speaking, the core of the approach (as basically already used
in previous work [15, 19]) consists of extracting the degree sequence from the
input graph, efficiently solving a simpler number editing problem, and trans-
lating the obtained solution back into a solution for the graph problem using
f -factors. While previous work [15, 19] was specifically tailored towards an ap-
plication for graph anonymization, we generalized the approach by filtering out
problem-specific parts and “universal” parts. Thus, whenever one can solve these
problem-specific parts efficiently, we can automatically obtain efficient prepro-
cessing and fixed-parameter tractability results.

Our approach seems promising for future empirical investigations concerning
its practical usefulness, a very recent experimental work has been performed for
Degree Anonymity [16]. Another line of future research could be to study
polynomial-time approximation algorithms for the considered degree sequence
completion problems. Perhaps parts of our preprocessing approach might find
use here as well. A more specific open question concerning our work would be
how to deal with additional connectivity requirements for the generated graphs.

References

[1] Bodlaender, H.L.: Kernelization: New upper and lower bound techniques. In:
Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 17–37. Springer,
Heidelberg (2009)

[2] Bodlaender, H.L., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S., Thi-
likos, D.M.: (Meta) kernelization. In: Proc. 50th FOCS, pp. 629–638. IEEE (2009)

[3] Borri, A., Calamoneri, T., Petreschi, R.: Recognition of unigraphs through super-
position of graphs. J. Graph Algorithms Appl. 15(3), 323–343 (2011)

[4] Brandstädt, A., Le, V.B., Spinrad, J.P.: SIAM Monographs on Discrete Mathe-
matics and Applications, vol. 3. SIAM (1999)

[5] Chartrand, G., Lesniak, L., Mynhardt, C.M., Oellermann, O.R.: Degree uniform
graphs. Ann. N. Y. Acad. Sci. 555(1), 122–132 (1989)

Win-Win Kernelization for Degree Sequence Completion Problems 205

[6] Chester, S., Kapron, B., Srivastava, G., Venkatesh, S.: Complexity of social net-
work anonymization. Social Netw. Analys. Mining 3(2), 151–166 (2013)

[7] Cornuéjols, G.: General factors of graphs. J. Combin. Theory Ser. B 45(2), 185–198
(1988)

[8] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity.
Springer (2013)

[9] Eppstein, D., Spiro, E.S.: The h-index of a graph and its application to dynamic
subgraph statistics. J. Graph Algorithms Appl. 16(2), 543–567 (2012)

[10] Fellows, M.R., Guo, J., Moser, H., Niedermeier, R.: A generalization of Nemhauser
and Trotter’s local optimization theorem. J. Comput. System Sci. 77(6), 1141–1158
(2011)

[11] Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2006)
[12] Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory

of NP-Completeness. Freeman (1979)
[13] Golovach, P.A.: Editing to a connected graph of given degrees. CoRR,

abs/1308.1802 (2013)
[14] Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization.

SIGACT News 38(1), 31–45 (2007)
[15] Hartung, S., Nichterlein, A., Niedermeier, R., Suchý, O.: A refined complex-

ity analysis of degree anonymization on graphs. In: Fomin, F.V., Freivalds,
R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol. 7966,
pp. 594–606. Springer, Heidelberg (2013)

[16] Hartung, S., Hoffman, C., Nichterlein, A.: Improved upper and lower bound heuris-
tics for degree anonymization in social networks. CoRR, abs/1402.6239 (2014)

[17] Katerinis, P., Tsikopoulos, N.: Minimum degree and f -factors in graphs.
New Zealand J. Math. 29(1), 33–40 (2000)

[18] Komusiewicz, C., Niedermeier, R.: New races in parameterized algorithmics. In:
Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464,
pp. 19–30. Springer, Heidelberg (2012)

[19] Liu, K., Terzi, E.: Towards identity anonymization on graphs. In: ACM SIGMOD
Conference, SIGMOD 2008, pp. 93–106. ACM (2008)

[20] Lokshtanov, D., Misra, N., Saurabh, S.: Kernelization - preprocessing with a guar-
antee. In: Bodlaender, H.L., Downey, R., Fomin, F.V., Marx, D. (eds.) Fellows
Festschrift 2012. LNCS, vol. 7370, pp. 129–161. Springer, Heidelberg (2012)

[21] Lovász, L., Plummer, M.D.: Matching Theory. Annals of Discrete Mathematics,
vol. 29. North-Holland (1986)

[22] Mathieson, L., Szeider, S.: Editing graphs to satisfy degree constraints: A param-
eterized approach. J. Comput. System Sci. 78(1), 179–191 (2012)

[23] Moser, H., Thilikos, D.M.: Parameterized complexity of finding regular induced
subgraphs. J. Discrete Algorithms 7(2), 181–190 (2009)

[24] Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University
Press (2006)

On Matchings and b-Edge Dominating Sets:
A 2-Approximation Algorithm for the 3-Edge

Dominating Set Problem

Toshihiro Fujito�

Department of Computer Science and Engineering
Toyohashi University of Technology

Toyohashi 441-8580 Japan
fujito@cs.tut.ac.jp

Abstract. We consider a multiple domination version of the edge dominating
set problem, called the b-EDS problem, where an edge set D ⊆ E of minimum
cardinality is sought in a given graph G = (V, E) with a demand vector b ∈ Z

E

such that each edge e ∈ E is required to be dominated by b(e) edges of D. When a
solution D is not allowed to be a multi-set, it is called the simple b-EDS problem.
We present 2-approximation algorithms for the simple b-EDS problem for the
cases of maxe∈E b(e) = 2 and maxe∈E b(e) = 3. The best approximation guarantee
previously known for these problems is 8/3 due to Berger et al. [2] who showed
the same guarantee to hold even for the minimum cost case and for arbitrarily
large b. Our algorithms are designed based on an LP relaxation of the b-EDS
problem and locally optimal matchings, and the optimum of b-EDS is related to
either the size of such a matching or to the optimal LP value.

1 Introduction

In an undirected graph an edge is said to dominate itself and all the edges adjacent to
it, and a set of edges is an edge dominating set (abbreviated to eds) if the edges in it
collectively dominate all the edges in a graph. The edge dominating set problem (EDS)
asks to find an eds of minimum cardinality (cardinality case) or of minimum total cost
(cost case). It was shown by Yannakakis and Gavril that, although EDS has important
applications in areas such as telephone switching networking, it is NP-complete even
when graphs are planar or bipartite of maximum degree 3 [12]. The classes of graphs
for which its NP-completeness holds were later refined and extended by Horton and
Kilakos to planar bipartite graphs, line and total graphs, perfect claw-free graphs, and
planar cubic graphs [7], although EDS admits a PTAS (polynomial time approximation
scheme) for planar [1] or λ-precision unit disk graphs [8]. Meanwhile, some polyno-
mially solvable special cases have been also discovered for trees [9], claw-free chordal
graphs, locally connected claw-free graphs, the line graphs of total graphs, the line

� Supported in part by the Kayamori Foundation of Informational Science Advancement and a
Grant in Aid for Scientific Research of the Ministry of Education, Science, Sports and Culture
of Japan.

R Ravi and I.L. Gørtz (Eds.): SWAT 2014, LNCS 8503, pp. 206–216, 2014.
c© Springer International Publishing Switzerland 2014

On Matchings and b-Edge Dominating Sets 207

graphs of chordal graphs [7], bipartite permutation graphs, cotriangulated graphs [11],
and so on.

There are various variants of the basic EDS problem, and the most general one
among them was introduced by Berger et al. [2] in the form of the capacitated b-edge
dominating set problem (b, c)-EDS, where an instance consists of a graph G = (V, E),
a demand vector b ∈ Z

E
+ , a capacity vector c ∈ Z

E
+ and a cost vector w ∈ Q

E
+ . A set D

of edges in G is called a (b, c)-eds if each e ∈ E is adjacent to at least b(e) edges in D,
where we allow D to contain at most c(e) multiple copies of edge e. The problem asks
to find a minimum cost (b, c)-eds. The (b, c)-EDS problem generalizes the EDS prob-
lem in much the same way that the set multicover problem generalizes the set cover
problem. In the special case when all the capacities c are set to +∞, we call the result-
ing problem the uncapacitated b-EDS problem and its feasible solutions uncapacitated
b-eds’s, whereas it is called the simple b-EDS problem when c(e) = 1 for all e ∈ E. If
b(e)’s are set to a same value for all e ∈ E, it is called uniform (b, c)-EDS.

Let bmax denote maxe∈E be. We mainly focus on the simple b-EDS problem (i.e.,
(b, 1)-EDS), and b-EDS (or b-eds) in what follows usually means the simple one unless
otherwise stated explicitly. It should be noted, however, that this does not impose serious
restrictions in problem solving, as long as bmax is bounded by some constant, since
general (b, c)-EDS can be reduced to (b, 1)-EDS by introducing min{bmax, c(e)} − 1
many copies of e, each of them parallel to e with b = 0, for all the edges e ∈ E.

1.1 Previous Work

It was shown by Yannakakis and Gavril that the minimum EDS can be efficiently ap-
proximated to within a factor of 2 by computing any maximal matching [12]. They used
the theorem of Harary [6] to lower bound the cardinality of a minimum eds by that of a
smallest maximal matching. More recently, a 2.1-approximation algorithm first [4], and
then 2-approximation algorithms [5,10] have been successfully obtained for the cost
case of EDS problem via polyhedral approaches.

Among the approximation results obtained in [2] those relevant to ours are summa-
rized in the following list (note: their results hold even for the cost cases of (b, c)-EDS
problems):

– The (b, c)-EDS problem can be approximated within a factor of 8/3.
– The uniform and uncapacitated b-EDS problem can be approximated within a fac-

tor of 2.1 if b = 1 or a factor of 2 if b ≥ 2.
– The integrality gap of the LP relaxation they used for (b, c)-EDS, much more com-

plex one than ours with additional valid inequalities, is at most 8/3 and it is tight
even when b(e) ∈ {0, 1}, ∀e ∈ E.

A linear-time 2-approximation algorithm for uncapacitated b-EDS was obtained by
Berger and Parekh [3].

1.2 Our Work

One of the main subjects studied in the current paper is the approximate min-max re-
lationships between simple b-EDS and locally optimal matchings. A most well-known

208 T. Fujito

example of such is perhaps the one between the vertex cover number and the size of
a maximal matching. Let τ(G) denote the vertex cover number of G (i.e., the cardinal-
ity of any smallest vertex cover for G) and M be any maximal matching in G. Then,
|M| ≤ τ(G) ≤ 2 |M|.

Let us simplify matters in the following discussion by restricting ourselves to the
case of uniform and simple b-EDS, and let γb(G) denote the cardinality of any smallest
(b, 1)-eds for G = (V, E) where b(e) ≡ b, ∀e ∈ E. To introduce lower bounds on γb(G),
we start with the following integer program, the most natural IP formulation for simple
b-EDS:

min {x(E) | x(δ(e)) ≥ b(e) and xe ∈ {0, 1},∀e ∈ E} ,
where x(F) =

∑
e∈F xe for F ⊆ E, and δ(e) = {e}∪{e′ ∈ E | e′ is adjacent to e} for e ∈ E.

Replacing the integrality constraints by linear constraints 0 ≤ xe ≤ 1 would result in
the following LP:

min {x(E) | x(δ(e)) ≥ b(e) and 0 ≤ xe ≤ 1,∀e ∈ E} .
Relaxing the LP above further by dropping the upper bound constraint on each xe, we
obtain an LP and its dual in the following forms:

LP: (P) min zP(x) = x(E) LP: (D) max zD(y) =
∑

e∈E
b(e)ye

subject to: x(δ(e)) ≥ b(e), ∀e ∈ E subject to: y(δ(e)) ≤ 1, ∀e ∈ E

xe ≥ 0, ∀e ∈ E ye ≥ 0, ∀e ∈ E

Notice here that (P) coincides with the LP relaxation of uncapacitated b-EDS rather
than simple one.

For any matching M in G = (V, E), let yM ∈ R
E be a vector of dual variables such

that

yM
e =

⎧
⎪⎪⎨
⎪⎪⎩

1
2 if e ∈ M

0 otherwise

As δ(e) contains at most two edges of M for any e ∈ E, yM is always feasible for (D),
and its value zD(y) equals to b|M|/2. So, b|M|/2 can serve as a lower bound on γb(G)
for any matching M in G.

Following the way locally optimal solutions are often termed in the local search
optimization, we say that a matching M in G is k-opt if, for any matching N in G larger
than M, |M \ N| ≥ k (So, a maximal matching is 1-opt). As for upper bounds on γb(G),
|M1| provides itself as such a bound on γ1(G) for any 1-opt matching M1. It is also the
case, as will be shown later (Corollary 1), that γ2(G) ≤ 2 |M2| for any 2-opt matching
M2 in G. So it would be extremely pleasing if the following min-max relationships hold
for all b ∈ N:

b |Mb|
2
≤ γb(G) ≤ b |Mb| ,

where Mb is any b-opt matching in G. It is, however, too good to be true, and it will
be shown (in Section 4) that γb(G) cannot be bounded above by b |Mb| in general when
b ≥ 3.

On Matchings and b-Edge Dominating Sets 209

Nevertheless, γ3(G) can be related to a stronger bound as follows. Letting dual(G)
denote the optimal value of LP:(D) above for graph G, it will be seen (in Corollary 2)
that the following min-max relation to hold:

dual(G) ≤ γ3(G) ≤ 2 · dual(G)

for any G (recall that dual(G) is the optimal value of the LP relaxation for uncapacitated
b-EDS).

These upper bounds are obtained algorithmically; our algorithms, building solutions
upon b-opt matchings, approximate the (unweighted) simple b-EDS problems within
a factor of 2, where b is not assumed to be uniform, for bmax = 2 and for bmax = 3.
Unlike the polyhedral approaches explored in [2], ours is more graph theoretic and our
algorithms are purely combinatorial.

2 Preliminaries

In this paper only graphs with no loops are considered. For an edge set F ⊆ E, V[F]
denotes the set of vertices induced by the edges in F (i.e., the set of all the endver-
tices of the edges of F). For a vertex set S ⊆ V let δ(S) denote the set of edges in-
cident to a vertex in S . When S is an edge set, we let δ(S) = δ(∪e∈S e) where edge
e is a set of two vertices; then, δ(S) also denotes the set of edges dominated by S .
When S is a singleton set {s}, δ({s}) is abbreviated to δ(s). For a vertex set U ⊆ V ,
N(U) denotes the set of neighboring vertices of those in U (i.e., N(U) = {v ∈ V |
{u, v} ∈ E for some u ∈ U}), and N(u) means N({u}). The degree of a vertex u is de-
noted by d(u). When δ(S),N(U), and d(u) are considered only within a subgraph H of
G (or when restricted to within a vertex subset or edge subset T), they are denoted by
δH(S),NH(U), and dH(u) (or δT (S),NT (U), and dT (u)), respectively.

When an edge e is dominated by up to b(e) edges, it is said to be fully dominated.

3 A 2-Opt Algorithm for 2-EDS

Here a 2-approximation algorithm for the simple 2-EDS problem is presented. The
algorithm is quite simple: Compute a 2-opt matching M2 so that no augmenting path of
length 3 or shorter occurs. Then, for each matched edge e ∈ M2, if one of its endvertices
is a neighbor of an exposed vertex via edge e′, add e′ besides e itself to a solution set
while, if neither has, add any edge adjacent to e.

Divide the edge set E of an instance graph G according to demands into E1 and E2,
where Ei = {e ∈ E | b(e) = i}. Let Gi = (Vi, Ei) denote the subgraph of G induced
by Ei.

1. Compute a 2-opt matching M2 in G2 = (V2, E2); so no augmenting paths of length
3 or shorter occurs.

2. D2 ← M2.

Let X ⊆ V2 denote the set of vertices in G2 exposed by M2, and consider NG2 (u)
and NG2 (v) for each e = {u, v} ∈ M2. If both of them contain vertices exposed by M2,

210 T. Fujito

they must be same and unique, i.e., NG2 (u) ∩ X = NG2 (v) ∩ X = {x} for some x ∈ X;
otherwise, an augmenting path of length 3 having e in the middle is found. One edge
adjacent to e is added to D2, and which one to add is determined according to which of
NG2 (u) and NG2 (v) contains an exposed vertex.

3. For each e = {u, v} ∈ M2,
(a) if NG2 (u) contains an exposed vertex x ∈ X, then add edge {u, x} into D2,
(b) else if NG2 (v) contains an exposed vertex, then add any edge in δG(v) (other

than e) into D2,
(c) else add any edge in δG(e) (other than e) into D2.

Note: If it is only to dominate twice the edges in δG2 (u), we may choose any one of
them in Step 3(a). It could be the case, however, that both of NG2 (u) and NG2 (v) contain
the exposed vertex x as a unique exposed vertex in common, and it is then necessary to
choose {u, x} in this step to fully dominate {v, x}.

By this time all the edges in E2 are fully dominated. It remains only to dominate
those in E1 that are not yet dominated even once.

4. Set E′1 ← E1 \ δG(D2).
5. Compute a 1-opt matching M1 in G[E′1] and output D2 ∪ M1.

Theorem 1. The 2-opt algorithm given above is a 2-approximation algorithm for the
(b, 1)-EDS problem when bmax = 2.

Proof. Consider an edge e ∈ E2. It becomes fully dominated, if e ∈ M2, when an edge
adjacent to e is added to D2 in step 3. For e � M2, if both of its endvertices are matched
by M2, it is made dominated fully by M2 (in step 2). If e = {u, x} � M2 is incident to
an exposed vertex x, another unmatched edge incident to either u or x must be chosen
into D2 in step 3. Therefore, all the edges in E2 become fully dominated after step 3.
As not-yet-dominated edges in E1 are taken care of in step 5 when a maximal matching
M1 is entirely chosen into a solution, the algorithm computes a simple 2-eds for G.

The performance analysis of this algorithm is omitted here as it can be subsumed by
the one for the 3-opt algorithm for 3-EDS presented in Section 5. ��
In case when b(e) is uniformly equal to 2 in the above, G2 = G and |D2| ≤ 2|M2|. Thus,

Corollary 1. For any 2-opt matching M2 in G, γ2(G) ≤ 2 |M2|.

4 b-Opt Matchings and γb(G)

4.1 Case of 3-EDS

This subsection shows that the ratio of γb(G) to b |Mb| for a b-opt matching Mb in G can
be larger than 1 even for b = 3.

Let P4 = {ei,1ei,2ei,3ei,4 | 1 ≤ i ≤ k} be a collection of simple paths of length
4, starting and ending at the common vertices u1 and u2 respectively, and being mu-
tually vertex disjoint except at these two vertices. Construct a graph G by attaching

On Matchings and b-Edge Dominating Sets 211

two edges e0,1 and e0,2 at u1 and u2, respectively, but disjointly at the other endver-
tices of e0,1 and e0,2 from other vertices in G. Let M be a matching in G such that
M = {e0,1, e0,2, ei,3 | 1 ≤ i ≤ k}. Then, M is a maximum matching in G with |M| = k+2 as
there exists no augmenting path w.r.t. M. Meanwhile, γ3(G) = 4k since all the edges in
all the paths of P4 must be used to constitute a 3-eds for G, and hence, γ3(G)

3|M| =
4k

3(k+2) > 1
for k > 6 even if M is a maximum matching in G.

4.2 Case of b-EDS

This subsection shows that the ratio of γb(G) to b |Mb| for a b-opt matching Mb in G can
be arbitrarily large as b grows.

Let S i be a star graph centered at vertex si with b/2 edges, for 1 ≤ i ≤ b/2 (“small”
stars). Let Li also be a star graph centered at vertex li with (b/2)2 edges, for 1 ≤ i ≤ b/2
(“large” stars). Construct a bipartite graph G with all the center vertices in S i’s and Li’s
on one side, and a set U of (b/2)2 vertices on the other side, by attaching leaves of S i’s
and Li’s at the vertices in U. Each leaf of Li is attached to a distinct vertex of U for
1 ≤ i ≤ b/2. There are (b/2)2 leaves of S i’s in total, and they are also attached to the
vertices of U distinctively.

Observe now that d(si) = b/2, d(li) = (b/2)2 for 1 ≤ i ≤ b/2, d(u) = b/2 + 1 for
u ∈ U, and |δ(e)| = b/2 + b/2 = b for any edge e in δ(si). Therefore, any b-eds for
G = (V, E) must contain all of δ(e)’s for all e ∈ δ(si), covering all the edges of G, and
meaning that γb(G) = |E| = (b/2)2(b/2+1). On the other hand, there exist b/2+b/2 = b
vertices on the other side of U, and hence, |M| ≤ b for any matching M in G. It thus
follows that

γb(G)
b |M| ≥

(b/2)2(b/2 + 1)
b2

=
b + 2

8

even if M is a maximum matching in G.

5 A 3-Opt Algorithm for 3-EDS

Here a 2-approximation algorithm for the simple 3-EDS problem is presented. In the
beginning the algorithm dominates all the edges with demands of 3 using a 3-opt match-
ing M3. As was observed in the previous section, however, it is not good enough to
choose the M3-edges along with some edges adjacent to them. Moreover, as we treat
the case when edges with demands of 2 or less are allowed to coexist, a part of the
solution dominating those demand-3 edges may interfere with another part dominat-
ing those with smaller demands, and it makes the task of designing an algorithm more
complicated than otherwise.

Divide the edge set E of an instance graph G according to demands into E1, E2, and
E3, where Ei = {e ∈ E | b(e) = i}. Let Gi = (Vi, Ei) denote the subgraph of G induced
by Ei.

1. Compute a 3-opt matching M3 in G3 = (V3, E3); so no augmenting paths of length
5 or shorter occurs.

2. D3 ← M3.

212 T. Fujito

Note: At this point an edge in M3 is dominated once, and one in E3 \ M3 is also domi-
nated once if it is incident to an exposed vertex but otherwise, it is dominated twice by
D3 = M3.

We need to exercise special care in handling those edges incident to the vertices
exposed by M3, and a bipartite subgraph of G3 induced by those edges is constructed
for that purpose as follows; this will be the main body of algorithmic operations and
analysis provided later.

– Let X ⊆ V3 be the set of vertices in G3 exposed by M3. Notice that X is an in-
dependent set in G3 since M3 does not allow an augmenting path of length 1 to
exist.

– Let A ⊆ V3 be the set of neighboring vertices of X in G3, i.e., A = NG3 (X).
– Let B = (X ∪ A, EB) denote the bipartite subgraph graph of G3, consisting of the

vertex partition (X, A), and the set EB of E3-edges lying between them.
– Let M′ ⊆ M3 be the set of matched edges having an endvertex in A, i.e., M′ = {e ∈

M3 | e ∩ A � ∅}.
– Let Mc = {e ∈ M′ | e ⊆ A}. Then, each edge in M′ \ Mc has exactly one of its

endvertices in A; denote it by a(e) and the other endvertex of e by ā(e), for each
e ∈ M′ \ Mc.

– Divide M′ \Mc further, according to the G-degree of a(e), into Ms = {e ∈ M′ \Mc |
dG(a(e)) = 2}, and Md = {e ∈ M′ \ Mc | dG(a(e)) ≥ 3}.

– Accordingly divide A into Ac = {both endvertices of e | e ∈ Mc}, As = {a(e) | e ∈
Ms}, and Ad = {a(e) | e ∈ Md}, and EB into Ec = δB(Ac), Es = δB(As), and Ed =

δB(Ad).

Clearly, dB(a) ≥ 1 for all a ∈ A. Observe that dB(a(e)) = 1 for all a(e) ∈ As since
only two edges are incident to a(e) in G and they are {x, a(e)} for some x ∈ X and
{a(e), ā(e)} ∈ Ms where ā(e) � A. It is also the case that dB(a) = 1 for all a ∈ Ac:
Consider a pair of vertices, a1, a2, in Ac such that they are the endvertices of one edge
in Mc. Then, they must be adjacent to a unique and same vertex in X as otherwise, an
augmenting path of length 3 would result.

Consider the subgraph Bd = (Xd ∪ Ad, Ed) of B induced by Ed, where Xd = NB(Ad)
⊆ X.

3. Compute a maximal edge subset N of Ed in Bd such that |δB(x) ∩ N| ≤ 2 for each
x ∈ Xd and |δB(a) ∩ N| ≤ 1 at the same time for each a ∈ Ad.

4. Set D3 ← D3 ∪ Ec ∪ Es ∪ N.

At this point, every edge in Ec (and those in Mc) is fully dominated by Ec∪Mc ⊆ D3,
and there could be such edges also in Es ∪ Ed. Let Ẽs and Ẽd denote the subsets of
Es and Ed, respectively, consisting of edges (of Es and Ed) not-yet fully dominated by
M3 ∪ Ec ∪ Es ∪ N. As each edge in Es is dominated at least twice by M3 ∪ Es, if it is
adjacent to any other in Ec ∪ Es ∪ N, it must be fully dominated. Therefore, Ẽs forms a
matching in G, and no edge in Ẽs is adjacent to any in N ∪ Ec.

In the next two steps, all the edges in Es ∪ Ms will be made fully dominated.

On Matchings and b-Edge Dominating Sets 213

5. For e ∈ Ẽs, add one edge from E incident to the exposed endvertex of e occurring
in X, into D3; such an edge must exist as otherwise, e cannot be fully dominated.

6. For each e ∈ Ms, add any edge in δG(ā(e)) (such an edge must exist in δG(ā(e)) as,
otherwise, e cannot be fully dominated).

Suppose, for some a ∈ Ad, δB(a) ∩ N = ∅. Then, every edge in δB(a) must be fully
dominated by N ∪ Md; if e ∈ δB(a) is not, it can be added to N contradicting the
maximality of N. Therefore, every edge in Ẽd must be either in N or adjacent to an
N-edge, implying that it is dominated at least twice by N ∪ M3.

In the next two steps, the algorithm adds edges to D3 so that all the edges in Ed ∪Md

become fully dominated. Let MN ⊆ Md denote the set of Md-edges adjacent to an edge
in N.

7. For each e ∈ MN , if δB(a(e)) contains an edge in Ẽd, add one more edge from
δG(a(e)) \N into D3, which must exist as dG(a(e)) ≥ 3. If δB(a(e)) contains no edge
in Ẽd, add any edge in δG(ā(e)) if it exists (if it doesn’t, add instead any edge in
δG(a(e))), into D3.

8. For each e ∈ Md \ MN , add two edges into D3, one from δG(a(e)) and another from
δG(ā(e)) if it exists (if it doesn’t, add instead any edge in δG(a(e))).

We also need to take care of the edges in M3 \ M′ and those around them, and two
adjacent edges are added in a simple way for each of these matched edges.

9. For each e ∈ M3 \M′, add any edge in E incident to the endvertices of e, one each,
into D3; in case when either of them does not exist take two edges, instead of one,
from the other end of e.

Finally, all the remaining edges in E \ E3 are taken care of by simply running the
2-opt algorithm for 2-EDS on G after the demands are appropriately adjusted. Let E′i
denote the set of edges with demands of i adjusted right after step 9. Then, E′3 = ∅ and
E3 ⊆ E′0 since any edge in E3 has been fully dominated by now (Lemma 1). Moreover,
E′2 = E2 \ δE2 (D3), E′1 ⊆ (E1 \ δE1 (D3)) ∪ (E2 ∩ δE2 (D3)) and E′0 ⊆ (E1 ∩ δE1 (D3)) ∪
(E2 ∩ δE2 (D3)) ∪ E3.

10. Run the 2-opt algorithm for 2-EDS on G after setting b′(e) ← max{0, b(e) −
|δG(e) ∩ D3|} for e ∈ E, and compute a 2-eds D2 ∪ M1 for (G, b′).

11. Output D3 ∪ D2 ∪ M1.

Lemma 1. Every edge in E3 becomes fully dominated after step 9.

Proof. 1. Consider e ∈ M′ ∪ EB. Since M′ ∪ Ec ∪ Es ⊆ D3, e ∈ Mc ∪ Ec is fully
dominated whereas e ∈ Ms ∪ Es is at least twice dominated by the end of step 4,
and if not yet fully dominated, e is made so in steps 5 and 6. Any edge in Ed

becomes fully dominated by the end of step 7, while any edge in Md does by the
end of step 8.

2. Any edge e ∈ M3 \ M′ is made fully dominated in step 9.
3. Consider e ∈ E3 \ (M3∪EB). Both endvertices of e are matched by M3 ensuring that

e is twice dominated by M3. Observe now that for any matched vertex u ∈ V3 \ X,

214 T. Fujito

δG(u) contains only one edge in D3 (namely, the matched edge incident to u) only
if dG(u) = 1 or u = ā(e) for some e ∈ Md with an N-edge incident to a(e). For
any other matched vertex u ∈ V3 \ X, δG(u) \M3 contains at least one D3-edge, and
hence, if either endvertex of e is such a vertex, e is fully dominated.
The case that dG(u) = 1 at an endvertex of e is excluded since e is unmatched.
What remains is the case when u = ā(e1) and v = ā(e2) for e = {u, v} such that
both e1 and e2 are in Md and each of a(e1) and a(e2) has an N-edge incident to it.
Since no augmenting path of length 5 exists in G3, {e, e1, e2} together with those
two N-edges incident to a(e1) and a(e2) must form a blossom (of length 5). There
cannot exist another edge in EB incident to either a(e1) or a(e2) as it would imply
an augmenting path of length 5. So, each of a(e1) and a(e2) has only one incident
edge in B, and both of them are N-edges having a common exposed vertex at their
endvertices. It means, however, that those N-edges are fully dominated even before
step 7, and hence, δB(a(e)) contains no edge in Ẽd when step 7 is executed. There-
fore, an unmatched edge in δG(u) or δG(v) is added to D3 in step 7, ensuring e being
fully dominated. ��

Thus, the correctness of the algorithm above follows from this lemma and the cor-
rectness of the 2-opt algorithm for 2-EDS:

Theorem 2. The 3-opt algorithm for the (b, 1)-EDS problem given above computes a
feasible 3-eds for G when bmax = 3.

5.1 Performance Analysis of 3-opt Algorithm for 3-EDS

Recall the dual of our LP relaxation for b-EDS:

LP: (D) max zD(y) =
∑

e∈E
b(e)ye

subject to: y(δ(e)) ≤ 1, ∀e ∈ E

ye ≥ 0, ∀e ∈ E

Suppose M3 ⊆ E3 is a matching computed in step 1 of the 3-opt algorithm. Recall
that Ẽs ⊆ Es forms a matching in G, and no edge in Ẽs is adjacent to any in N ∪ Ec. Set
the value of ye for e ∈ E3 as follows:

ye =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2 if e ∈ M3 \ MN
1
4 if e ∈ N ∪ MN
1
6 if e ∈ Ẽs

0 otherwise

Let M2 and M1 denote the matchings computed, within the run of the 2-opt algorithm
for 2-EDS, in step 10 of the 3-opt algorithm. Recall E′i , the set of edges with demands
of i adjusted right after step 9. Note that M2 ⊆ E′2 = E2\δE2 (D3) and hence, M2 contains
edges with b(e) = 2 only, and no edge in M2 can be adjacent to any in D3. The set E′1
on the other hand may contain E2-edges e as b(e) could have been lowered to 1 if it is
dominated once by D3, and so may M1 ⊆ E′1 \ δG(D2).

On Matchings and b-Edge Dominating Sets 215

Set the value of ye for e ∈ E2 ∪ E1 as follows:

ye =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2 if e ∈ M2
1
2 if e ∈ M1 ∩ E1
1
4 if e ∈ M1 ∩ E2

0 otherwise

Lemma 2. The vector y ∈ R
E of dual variables with its values assigned as above is

feasible in LP:(D).

Proof. The dual feasibility of y follows easily if y(δG(u)) ≤ 1/2 for all u ∈ V . Although
this does not hold for all the vertices in G, we will check how large y(δG(u)) could be
depending on where u is located, and will consider the cases when it exceeds 1/2 in
what follows.

As stated above, V[D3] ∩ V[M2] = ∅ and V[D2] ∩ V[M1] = ∅, but V[D3] and V[M1]
are not necessarily disjoint. So, if u ∈ V[D2], y(δG(u)) = y(δD2(u)) = y(δM2(u)), and
hence, y(δG(u)) ≤ 1/2 in this case.

Suppose u ∈ V[D3] ∩ V[M1]. Then, the M1-edge e in δG(u) must come from E2

and it has to be dominated exactly once by D3. Consider now for which vertex u of
V[D3] we may have 1) exactly one edge of D3 is incident to u, 2) the edge in 1) carries
a positive dual, and 2) dG(u) ≥ 2. It can be verified that such u must be either ā(e)
for e ∈ MN , or the exposed endvertex of an N edge. In either case the positive dual
carried by a D3-edge is 1/4, while the one carried by an M1-edge is also 1/4; hence,
y(δG(u)) ≤ 1/4 + 1/4 = 1/2 in this case.

If u ∈ V[M1] \ V[D3], the M1-edge contained in δG(u) must come from E1, and
hence, y(δG(u)) = 1/2.

What remains is the case when u ∈ V[D3] \ V[M1]. As observed in passing within
the algorithm description, Ẽs forms a matching and no edge in it is adjacent to any in
N. It can be verified from such observations that δE3 (e) contains at most two edges with
positive dual values for any e ∈ D3, and those two are either one each from Ẽs and Ms,
one each from MN and N, or both from N. Among these y(δE3 (u)) = 1/2 + 1/6 > 1/2
in the first case only, and y(δE3 (u)) ≤ 1/2 in the remaining cases. In the first case,
however, dG(u) = 2 and there is no edges incident to u other than those two edges,
e1 ∈ Ẽs and e2 ∈ Ms. Moreover, letting u1 and u2 be the other endvertices of e1 and e2,
respectively, the algorithm adds an edge, with no positive dual, incident to each of
u1 and u2 into D3 resulting in dD3 (u1) = dD3 (u2) = 2. Hence, no more edge can be
added to either of u1 or u2 in step 10, and each of y(δG(e1)) and y(δG(e2)) remains no
larger than 1 in the end.

Therefore, we may conclude that y(δG(e)) ≤ 1 for all e ∈ E. ��

Lemma 3. For y ∈ R
E of dual variables with its values assigned as above, the 3-opt

algorithm computes an output of size no larger than twice the objective value of y in
LP:(D), i.e.,

|D3 ∪ D2 ∪ M1| ≤ 2zD(y) = 2
∑

e∈E
b(e)ye.

216 T. Fujito

Proof. The term in the objective function of LP:(D) corresponding to ye is b(e)ye. So if
at most 2b(e)ye edges are used per e in dominating all the edges, the claimed inequality
holds. For e ∈ M2 ∪ (M1 ∩ E1), ye is set to 1/2, and 2 edges per e ∈ M2 and 1 edge per
e ∈ M1 ∩ E1 are used. On the other hand, 1 edge per e ∈ M1 ∩ E2 is used with ye = 1/4,
and it suffices because 2b(e)ye = 2 · 2 · (1/4) = 1.

As for D3, 3 edges are used per e ∈ M3 where ye = 1/2 if e ∈ M3 \ MN but ye = 1/4
if e ∈ MN . For each e1 ∈ MN , however, there exists a mate e2 ∈ N of its own, carrying
ye2 = 1/4, and hence, together with e2, e1 can pay 1/2 that is sufficient for 3 edges.

Besides e and two edges adjacent to e per e ∈ M3, D3 uses one more edge per e′ ∈ Ẽs,
and it can be paid for by ye′ as 2b(e′)ye′ = 2 · 3 · (1/6) = 1. ��

It follows immediately from these preceding two lemmas that the 3-opt algorithm
computes a feasible eds of size no larger than twice the optimum:

Theorem 3. The 3-opt algorithm is a 2-approximation algorithm for the (b, 1)-EDS
problem when bmax = 3.

Corollary 2. γ3(G) ≤ 2 · dual(G).

References

1. Baker, B.S.: Approximation algorithms for NP-complete problems on planar graphs. J.
ACM 41, 153–180 (1994)

2. Berger, A., Fukunaga, T., Nagamochi, H., Parekh, O.: Approximability of the capacitated
b-edge dominating set problem. Theoret. Comput. Sci. 385(1-3), 202–213 (2007)

3. Berger, A., Parekh, O.: Linear time algorithms for generalized edge dominating set problems.
Algorithmica 50(2), 244–254 (2008)

4. Carr, R., Fujito, T., Konjevod, G., Parekh, O.: A 2 1
10 -approximation algorithm for a gener-

alization of the weighted edge-dominating set problem. Journal of Combinatorial Optimiza-
tion 5(3), 317–326 (2001)

5. Fujito, T., Nagamochi, H.: A 2-approximation algorithm for the minimum weight edge dom-
inating set problem. Discrete Appl. Math. 118, 199–207 (2002)

6. Harary, F.: Graph Theory. Addison-Wesley, Reading (1969)
7. Horton, J.D., Kilakos, K.: Minimum edge dominating sets. SIAM J. Discrete Math. 6(3),

375–387 (1993)
8. Hunt III, H.B., Marathe, M.V., Radhakrishnan, V., Ravi, S.S., Rosenkrantz, D.J., Stearns,

R.E.: A unified approach to approximation schemes for NP- and PSPACE-hard problems
for geometric graphs. In: van Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 424–435.
Springer, Heidelberg (1994)

9. Mitchell, S., Hedetniemi, S.: Edge domination in trees. In: Proc. 8th Southeastern Conf. on
Combinatorics, Graph Theory, and Computing, pp. 489–509 (1977)

10. Parekh, O.: Edge dominating and hypomatchable sets. In: Proc. 13th SODA, pp. 287–291
(2002)

11. Srinivasan, A., Madhukar, K., Nagavamsi, P., Pandu Rangan, C., Chang, M.-S.: Edge domi-
nation on bipartite permutation graphs and cotriangulated graphs. Inform. Process. Lett. 56,
165–171 (1995)

12. Yannakakis, M., Gavril, F.: Edge dominating sets in graphs. SIAM J. Appl. Math. 38(3),
364–372 (1980)

Covering Problems

in Edge- and Node-Weighted Graphs

Takuro Fukunaga�

National Institute of Informatics, Tokyo, Japan
JST, ERATO, Kawarabayashi Large Graph Project, Japan

takuro@nii.ac.jp

Abstract. This paper discusses the graph covering problem in which
a set of edges in an edge- and node-weighted graph is chosen to sat-
isfy some covering constraints while minimizing the sum of the weights.
In this problem, because of the large integrality gap of a natural lin-
ear programming (LP) relaxation, LP rounding algorithms based on the
relaxation yield poor performance. Here we propose a stronger LP relax-
ation for the graph covering problem. The proposed relaxation is applied
to designing primal-dual algorithms for two fundamental graph cover-
ing problems: the prize-collecting edge dominating set problem and the
multicut problem in trees. Our algorithms are an exact polynomial-time
algorithm for the former problem, and a 2-approximation algorithm for
the latter problem, respectively. These results match the currently known
best results for purely edge-weighted graphs.

1 Introduction

1.1 Motivation

Choosing a set of edges in a graph that optimizes some objective function under
constraints on the chosen edges constitutes a typical combinatorial optimization
problem and has been investigated in many varieties. For example, the spanning
tree problem seeks an acyclic edge set that spans all nodes in a graph, the edge
cover problem finds an edge set such that each node is incident to at least one
edge in the set, and the shortest path problem selects an edge set that connects
two specified nodes. All these problems seek to minimize the sum of the weights
assigned to edges.

This paper discusses several graph covering problems. Formally, the graph
covering problem is defined as follows in this paper. Given a graph G = (V,E)
and family E ⊆ 2E, find a subset F of E that satisfies F ∩ C �= ∅ for each
C ∈ E , while optimizing some function depending on F . As indicated above,
the popular approaches assume an edge weight function w : E → R+ is given,
where R+ denotes the set of non-negative real numbers, and seeks to minimize

� This work was partially supported by Japan Society for the Promotion of Science
(JSPS), Grants-in-Aid for Young Scientists (B) 25730008.

R Ravi and I.L. Gørtz (Eds.): SWAT 2014, LNCS 8503, pp. 217–228, 2014.
c© Springer International Publishing Switzerland 2014

218 T. Fukunaga

∑
e∈F w(e). On the other hand, we aspire to simultaneously minimize edge and

node weights. Formally, we let V (F) denote the set of end nodes of edges in
F . Given a graph G = (V,E) and weight function w : E ∪ V → R+, we seek a
subset F of E that minimizes

∑
e∈F w(e)+

∑
v∈V (F)w(v) under the constraints

on F . Hereafter, we denote
∑

e∈F w(e) and
∑

v∈V (F) w(v) by w(F) and w(V (F)),
respectively.

Most previous investigations of the graph covering problem have focused on
edge weights. By contrast, node weights have been largely neglected, except in
the problems of choosing node sets, such as the vertex cover and dominating
set problems. To our knowledge, when node weights have been considered in
graph covering problems for choosing edge sets, they have been restricted to the
Steiner tree problem or its generalizations, possibly because the inclusion of node
weights greatly complicates the problem. For example, the Steiner tree problem
in edge-weighted graphs can be approximated within a constant factor (the best
currently known approximation factor is 1.39 [5,15]). Conversely, the Steiner tree
problem in node-weighted graphs is known to extend the set cover problem (see
[19]), indicating that achieving an approximation factor of o(log |V |) is NP-hard.
The literature is reviewed in Section 2. As revealed later, the inclusion of node
weights generalizes the set cover problem in numerous fundamental problems.

However, from another perspective, node weights can introduce rich struc-
ture into the above problems. In fact, node weights provide useful optimization
problems. The objective function counts the weight of a node only once, even if
the node is shared by multiple edges. Hence, the objective function defined from
node weights includes a certain subadditivity, which cannot be captured by edge
weights.

The aim of the present paper is to give algorithms for fundamental graph cov-
ering problems in edge- and node-weighted graphs. In solving the problems, we
adopt a basic linear programming (LP) technique. Algorithms for combinatorial
optimization problems are typically designed using LP relaxations. However,
in problems with node-weighted graphs, the integrality gap of natural relax-
ations may be excessively large. Therefore, we propose tighter LP relaxations
that preclude unnecessary integrality gaps. We then discuss upper bounds on
the integrality gap of these relaxations in two fundamental graph covering prob-
lems: the edge dominating set (EDS) problem and multicut problem in trees.
We prove upper bounds by designing primal-dual algorithms for both problems.
The approximation factors of our proposed algorithms match the current best
approximations in purely edge-weighted graphs.

1.2 Problem Definitions

The EDS problem covers edges by choosing adjacent edges in undirected graphs.
For any edge e, let δ(e) denote the set of edges that share end nodes with e,
including e itself. We say that an edge e dominates another edge f if f ∈ δ(e),
and a set F of edges dominates an edge f if F contains an edge that dominates
f . Given an undirected graph G = (V,E), a set of edges is called an EDS if it
dominates each edge in E. The EDS problem seeks to minimize the weight of

Covering Problems in Edge- and Node-Weighted Graphs 219

the EDS. In other words, the EDS problem is the graph covering problem with
E = {δ(e) : e ∈ E}.

The multicut problem specifies an undirected graph G = (V,E) and demand
pairs (s1, t1), . . . , (sk, tk) ∈ V × V . A multicut is an edge set C whose removal
fromG disconnects the nodes in each demand pair. This problem seeks a multicut
of minimum weight. Let Pi denote the set of paths connecting si and ti. The
multicut problem is equivalent to the graph covering problem with E =

⋃k
i=1 Pi.

Our proposed algorithms for solving these problems assume that the given
graphG is a tree. In fact, our algorithms are applicable to the prize-collecting ver-
sions of these problems, which additionally specifies a penalty function π : E →
R+. In this scenario, an edge set F is a feasible solution even if F ∩ C = ∅
for some C ∈ E , but imposes a penalty π(C). The objective is to minimize the
sum of w(F), w(V (F)), and the penalty

∑
C∈E:F∩C=∅ π(C). The prize-collecting

versions of the EDS and multicut problems are referred to as the prize-collecting
EDS problem and the prize-collecting multicut problem, respectively.

1.3 Our Results

Thus far, the EDS problem has been applied only to edge-weighted graphs.
The vertex cover problem can be reduced to the EDS problem while preserv-
ing the approximation factors [6]. The vertex cover problem is solvable by a
2-approximation algorithm, which is widely regarded as the best possible ap-
proximation. Indeed, assuming the unique game conjecture, Khot and Regev [18]
proved that the vertex cover problem cannot be approximated within a factor
better than 2. Fujito and Nagamochi [10] showed that a 2-approximation al-
gorithm is admitted by the EDS problem, which matches the approximation
hardness known for the vertex cover problem. In the Appendix, we show that
the EDS problem in bipartite graphs generalizes the set cover problem if assigned
node weights and generalizes the non-metric facility location problem if assigned
edge and node weights. This implies that including node weights increases diffi-
culty of the problem even in bipartite graphs.

On the other hand, Kamiyama [17] proved that the prize-collecting EDS prob-
lem in an edge-weighted graph admits an exact polynomial-time algorithm if the
graph is a tree. As one of our main results, we show that this idea is extendible
to problems in edge- and node-weighted trees.

Theorem 1. The prize-collecting EDS problem admits a polynomial-time exact
algorithm for edge- and node-weighted trees.

The proof of Theorem 1 will be sketched in Section 4. We can also show that
the prize-collecting EDS problem in general edge- and node-weighted graphs
admits an O(log |V |)-approximation, which matches the approximation hardness
on the set cover problem and the non-metric facility location problem.

The multicut problem is hard even in edge-weighted graphs; the best reported
approximation factor is O(log k) [13]. The multicut problem is known to be both
NP-hard and MAX SNP-hard [9], and admits no constant factor approximation

220 T. Fukunaga

algorithm under the unique game conjecture [7]. However, Garg, Vazirani, and
Yannakakis [14] developed a 2-approximation algorithm for the multicut prob-
lem with edge-weighted trees. They also mentioned that, although the graphs
are restricted to trees, the structure of the problem is sufficiently rich. They
showed that the tree multicut problem includes the set cover problem with
tree-representable set systems. They also showed that the vertex cover prob-
lem in general graphs is simply reducible to the multicut problem in star graphs,
while preserving the approximation factor. This implies that the 2-approximation
seems to be tight for the multicut problem in trees. As a second main result,
we extended this 2-approximation to edge- and node-weighted trees, as stated
in the following theorem.

Theorem 2. The prize-collecting multicut problem admits a 2-approximation
algorithm for edge- and node-weighted trees.

Both algorithms claimed in Theorems 1 and 2 are primal-dual algorithms,
that use the LP relaxations we propose. These algorithms fall into the same
frameworks as those proposed in [14,17] for edge-weighted graphs. However,
they need several new ideas to achieve the claimed performance because our
LP relaxations are much more complicated than those used in [14,17].

The remainder of this paper is organized as follows. After surveying related
work in Section 2, we define our LP relaxation for the prize-collecting graph
covering problem in Section 3. In Sections 4, we sketch the proof of Theorem 1
that uses our proposed LP relaxation. The paper concludes with Section 5. We
omit the proof of Theorem 2, and discussion on the prize-collecting EDS problem
in general graphs with edge- and node-weights, for which we recommend referring
to the full version [12] of the current paper.

2 Related Work

As mentioned in Section 1, the graph covering problem in node-weighted graphs
has thus far been applied to the Steiner tree problem and its generalizations.
Klein and Ravi [19] proposed an O(log |V |)-approximation algorithm for the
Steiner tree problem with node weights. Nutov [23,24] extended this algorithm
to the survivable network design problem with higher connectivity requirements.
An O(log |V |)-approximation algorithm for the prize-collecting Steiner tree prob-
lem with node weights was provided by Moss and Rabani [21]; however, as
noted by Könemann, Sadeghian, and Sanità [20], the proof of this algorithm
contains a technical error. This error was corrected in [20]. Bateni, Hajiaghayi,
and Liaghat [1] proposed an O(log |V |)-approximation algorithm for the prize-
collecting Steiner forest problem and applied it to the budgeted Steiner tree
problem. Chekuri, Ene, and Vakilian [8] gave an O(k2 log |V |)-approximation
algorithm for the prize-collecting survivable network design problem with edge-
connectivity requirements of maximum value k. Later, they improved their ap-
proximation factor to O(k log |V |), and also extended it to node-connectivity
requirements (see [28]). Naor, Panigrahi, and Singh [22] established an online

Covering Problems in Edge- and Node-Weighted Graphs 221

algorithm for the Steiner tree problem with node weights which was extended
to the Steiner forest problem by Hajiaghayi, Liaghat, and Panigrahi [16]. The
survivable network design problem with node weights has also been extended to
a problem called the network activation problem [26,25,11].

The prize-collecting EDS problem generalizes the {0, 1}-EDSproblem, in which
given demand edges require being dominated by a solution edge set. The {0, 1}-
EDS problem in general edge-weighted graphs admits a 8/3-approximation,which
was proven by Berger et al. [2]. This 8/3-approximationwas extended to the prize-
collecting EDS problem by Parekh [27]. Berger and Parekh [3] designed an exact
algorithm for the {0, 1}-EDS problem in edge-weighted trees, but their result con-
tains an error [4]. Since the prize-collecting EDS problem embodies the {0, 1}-EDS
problem, the latter problem could be alternatively solved by an algorithm devel-
oped for the prize-collecting EDS problem in edge-weighted trees, proposed by
Kamiyama [17].

3 LP Relaxations

This section discusses LP relaxations for the prize-collecting graph covering prob-
lem in edge and node-weighted graphs.

In a natural integer programming (IP) formulation of the graph covering prob-
lem, each edge e is associated with a variable x(e) ∈ {0, 1}, and each node v is
associated with a variable x(v) ∈ {0, 1}. x(e) = 1 denotes that e is selected as
part of the solution set, while x(v) = 1 indicates the selection of an edge incident
to v. In the prize-collecting version, each demand set C ∈ E is also associated
with a variable z(C) ∈ {0, 1}, where z(C) = 1 indicates that the covering con-
straint corresponding to C is not satisfied. For F ⊆ E, we let δF (v) denote the
set of edges incident to v in F . The subscript may be removed when F = E. An
IP of the prize-collecting graph covering problem is then formulated as follows.

minimize
∑
e∈E

w(e)x(e) +
∑
v∈V

w(v)x(v) +
∑
C∈E

π(C)z(C)

subject to
∑
e∈C

x(e) ≥ 1− z(C) for C ∈ E ,

x(v) ≥ x(e) for v ∈ V, e ∈ δ(v),
x(e) ≥ 0 for e ∈ E,
x(v) ≥ 0 for v ∈ V,
z(C) ≥ 0 for C ∈ E .

In the above formulation, the first constraints specify the covering constraints,
while the second constraints indicate that if the solution contains an edge e
incident to v, then x(v) = 1. In the graph covering problem (without penalties),
z is fixed at 0.

To obtain an LP relaxation, we relax the definitions of x and z in the above
IP to x ∈ R

E∪V
+ and z ∈ R

C
+. However, this relaxation may introduce a large

222 T. Fukunaga

integrality gap into the graph covering problem with node-weighted graphs, as
shown in the following example. Suppose that E comprises a single edge set
C, and each edge in C is incident to a node v. Let the weights of all edges and
nodes other than v be 0. In this scenario, the optimal value of the graph covering
problem is w(v). On the other hand, the LP relaxation admits a feasible solution
x such that x(v) = 1/|C| and x(e) = 1/|C| for each edge e ∈ C. The weight
of this solution is w(v)/|C|, and the integrality gap of the relaxation for this
instance is |C|. This phenomenon occurs even in the EDS problem and multicut
problem in trees.

The above poor example can be excluded if the second constraints in the
relaxation are replaced by x(v) ≥

∑
e∈δ(v) x(e) for v ∈ V . However, the LP

obtained by this modification does not relax the graph covering problem if the
optimal solutions contain high-degree nodes. Thus, we introduce a new variable
y(C, e) for each pair of C ∈ E and e ∈ C, and replace the second constraints
by x(v) ≥

∑
e∈δ(v) y(C, e), where v ∈ V and C ∈ E . y(C, e) = 1 indicates that

e is chosen to satisfy the covering constraint of C, and y(C, e) = 0 implies the
opposite. Roughly speaking, y(C, ·) represents a minimal fractional solution for
covering a single demand set C. If a single covering constraint is imposed, the
degree of each node is at most one in any minimal integral solution. Then the
graph covering problem is relaxed by the LP even after modification. Summing
up, we formulate our LP relaxation for an instance I = (G, E , w, π) of the prize-
collecting graph covering problem as follows.

P (I) =

minimize
∑
e∈E

w(e)x(e) +
∑
v∈V

w(v)x(v) +
∑
C∈E

π(C)z(C)

subject to
∑
e∈C

y(C, e) ≥ 1− z(C) for C ∈ E ,

x(v) ≥
∑

e∈δC(v)

y(C, e) for v ∈ V,C ∈ E ,

x(e) ≥ y(C, e) for C ∈ E , e ∈ C,
x(e) ≥ 0 for e ∈ E,
x(v) ≥ 0 for v ∈ V,
y(C, e) ≥ 0 for C ∈ E , e ∈ C,
z(C) ≥ 0 for C ∈ E .

Theorem 3. Let I be an instance of the prize-collecting graph covering problem
in edge- and node-weighted graphs. P (I) is at most the optimal value of I.

Proof. Let F be an optimal solution of I. We define a solution (x, y, z) of P (I)
from F . For each C ∈ E , we set z(C) to 0 if F ∩ C �= ∅, and 1 otherwise. If
F ∩ C �= ∅, we choose an arbitrary edge e ∈ F ∩ C, and let y(C, e) = 1. For the
remaining edges e′, we assign y(C, e′) = 0. In this way, the values of variables in
y are defined for each C ∈ E . x(e) is set to 1 if e ∈ F , and 0 otherwise. x(v) is

Covering Problems in Edge- and Node-Weighted Graphs 223

set to 1 if F contains an edge incident to v, and 0 otherwise. (x, y, z) is feasible,
and its objective value in P (I) is the optimal value of I. ��

In some graph covering problems, E is not explicitly given, and |E| is not
bounded by a polynomial on the input size of the problem. In such cases, the
above LP may not be solved in polynomial time because it cannot be written
compactly. However, in this scenario, we may define a tighter LP than the natu-
ral relaxation if we can find E1, . . . , Et ⊆ E such that ∪t

i=1Ei = E , t is bounded by
a polynomial of input size, and the degree of each node is small in any minimal
edge set covering all demand sets in Ei for each i ∈ {1, . . . , t}. Applying these
conditions, the present author obtained a new approximation algorithm for solv-
ing a problem generalizing some prize-collecting graph covering problems [11].

4 Prize-Collecting EDS Problem in Trees

In this section, we prove Theorem 1. We regard the input graph G as a rooted
tree, with an arbitrary node r selected as the root. The depth of a node v is the
number of edges on the path between r and v. When v lies on the path between
r and another node u, we say that v is an ancestor of u and u is a descendant
of v. If the depth of node v is the maximum among all ancestors of u, then v
is defined as the parent of u. If v is the parent of u, then u is a child of v. The
upper and lower end nodes of an edge e are denoted by ue and le, respectively.
We say that an edge e is an ancestor of a node v and v is a descendant of e when
le = v or le is an ancestor of v. Similarly, an edge e is a descendant of a node v
and v is an ancestor of e if v = ue or v is an ancestor of ue. An edge e is defined
as an ancestor of another edge f if e is an ancestor of uf .

Recall that E = {δ(e) : e ∈ E} in the EDS problem. Let I = (G,w, π) be an
instance of the prize-collecting EDS problem. We denote

⋃
e∈δ(v) δ(e) by δ′(v)

for each v ∈ V . Then the dual of P (I) is formulated as follows.

D(I) =

maximize
∑
e∈E

ξ(e)

subject to
∑

e∈δ(e′)

ν(e′, e) ≤ w(e′) for e′ ∈ E, (1)

∑
e∈δ′(v)

μ(v, e) ≤ w(v) for v ∈ V, (2)

ξ(e) ≤ μ(u, e) + μ(v, e) + ν(e′, e) for e ∈ E, e′ = uv ∈ δ(e), (3)

ξ(e) ≤ π(e) for e ∈ E, (4)

ξ(e) ≥ 0 for e ∈ E,
ν(e′, e) ≥ 0 for e′ ∈ E, e ∈ δ(e′),
μ(v, e) ≥ 0 for v ∈ V, e ∈ δ′(v).

224 T. Fukunaga

s

u0

u1

v1

uk

V1 Vk

h1

eke1

e0

Fig. 1. Edges and nodes in Case B

For an edge set F ⊆ E, let F̃ denote {e ∈ E : δF (e) = ∅}, and let π(F̃) denote∑
e∈F̃ π(e). For the instance I, our algorithm yields a solution F ⊆ E and a

feasible solution (ξ, ν, μ) to D(I), both satisfying

w(F) + w(V (F)) + π(F̃) ≤
∑
e∈E

ξ(e). (5)

Since the right-hand side of (5) is at most P (I), F is an optimal solution of I. We
note that the dual solution (ξ, ν, μ) is required only for proving the optimality
of the solution and need not be computed.

The algorithm operates by induction on the number of nodes of depth ex-
ceeding one. In the base case, all nodes are of depth one, indicating that G is a
star centered at r. The alternative case is divided into two sub-cases: Case A,
in which a leaf edge e of maximum depth satisfies π(e) > 0; and Case B, which
contains no such leaf edge. In this paper, we discuss only Case B due to the
space limination.

Case B

In this case, π(e) = 0 holds for all leaf edges e of maximum depth. Let s be
the grandparent of a leaf node of maximum depth. Also, let u1, . . . , uk be the
children of s, and ei be the edge joining s and ui for i ∈ [k]. In the following
discussion, we assume that s has a parent, and that each node ui has at least
one child. This discussion is easily modified to cases in which s has no parent
or some node ui has no child. We denote the parent of s by u0, and the edge
between u0 and s by e0. For each i ∈ [k], let Vi be the set of children of ui, and
Hi be the set of edges joining ui to its child nodes in Vi. Also define hi = uivi as
an edge that attains minuiv∈Hi(w(uiv)+w(v)). The relationships between these
nodes and edges are illustrated in Fig. 1.

Now define θ1 = minki=0(w(ei) + w(ui) + w(s)), θ2 =
∑k

i=1 min{w(ui) +
w(vi) + w(hi), π(ei)}, and let θ = min{θ1, θ2}. We denote the index i ∈ [k] of
an edge ei that attains θ1 = w(ei) + w(ui) + w(s) by i∗, and specify K = {i ∈
[k] : w(ui) + w(vi) + w(hi) ≤ π(ei)}. For a real number ψ, we let (ψ)+ denote
max{0, ψ}.

Covering Problems in Edge- and Node-Weighted Graphs 225

We define I ′ = (G′, w′, π′) as follows. If θ1 ≥ θ2, then G
′ is the tree obtained by

removing all edges in
⋃

i∈[k]Hi and all nodes in
⋃

i∈[k] Vi from G, and π′ : E′ →
R+ is defined such that

π′(e) =

{
0 if e ∈ {e1, . . . , ek},
π(e) otherwise

for e ∈ E′. In this case, w′ : V ′ ∪ E′ → R+ is defined by

w′(v) =

⎧⎪⎨⎪⎩
(w(s)− θ)+ if v = s,

w(ui)− (θ − w(s) − w(ei))+ if v = ui, i ∈ [k]∗

w(v) otherwise

for v ∈ V ′, and

w′(e) =

{
(w(ei)− (θ − w(s))+)+ if e = ei, i ∈ [k]∗,

w(e) otherwise,

for e ∈ E′. If θ1 < θ2, then e1, . . . , ek, and their descendants are removed from
G to obtain G′, and π′ is defined by

π′(e) =

{
0 if e = e0,

π(e) otherwise.

Moreover, w′ for E′ and V ′ is defined as in the case θ1 ≥ θ2, disregarding the
weights of edges and nodes removed from G′.

Since G′ has fewer nodes of depth exceeding one than G, the algorithm in-
ductively finds a solution F ′ to I ′, and a feasible solution (ξ′, ν′, μ′) to D(I ′)
satisfying (5). F is constructed from F ′ as follows.

F =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
F ′ ∪ {e0} if δF ′(u0) �= ∅, θ > w(s) + w(e0),

F ′ if δF ′(u0) = ∅ or θ ≤ w(s) + w(e0), δF ′(s) �= ∅,
F ′ ∪ {hi : i ∈ K} if δF ′(u0) = ∅ or θ ≤ w(s) + w(e0), δF ′(s)=∅, θ1 ≥ θ2,

F ′ ∪ {ei∗} if δF ′(u0) = ∅ or θ ≤ w(s) + w(e0), δF ′(s)=∅, θ1 < θ2.

We define ξ(e1), . . . , ξ(ek) such that ξ(ei) ≤ min{w(ui) + w(vi) + w(hi), π(ei)}
for i ∈ [k] and

∑k
i=1 ξ(ei) = θ, which is possible because

∑k
i=1 min{w(ui) +

w(vi) + w(hi), π(ei)} = θ2 ≥ θ. We also define ξ(e) = 0 for each e ∈
⋃k

i=1Hi.
The other variables in ξ are set to their values in ξ′. The following lemma states
that this ξ can form a feasible solution to D(I).

Lemma 1. Suppose that ξ(e1), . . . , ξ(ek) satisfy ξ(ei) ≤ min{w(ui) + w(vi) +

w(hi), π(ei)} for each i ∈ [k] and
∑k

i=1 ξ(ei) = θ. Further, suppose that ξ(e) = 0

holds for each e ∈
⋃k

i=1Hi, and the other variables in ξ are set to their values
in ξ′. Then there exist ν and μ such that (ξ, ν, μ) is feasible to D(I).

226 T. Fukunaga

Proof. For i ∈ [k] and v ∈ Vi, we define μ(v, ei) and ν(uiv, ei) such that μ(v, ei)+
ν(uiv, ei) = min{w(vi) + w(hi), ξ(ei)}. This may be achieved without violating
the constraints, because w(v)+w(uiv) ≥ w(vi)+w(hi). We also define ν(uiv, ei)
as (ξ(ei) − w(ui) − w(hi))+. These variables satisfy (1) for uiv, (2) for v and
ui, and (3) for (ei, uiv). ν(ej , ei) for i ∈ [k] and j ∈ [k]∗, and μ(v, ei) for i ∈ [k]
and v ∈ {s} ∪ {uj : j ∈ [k]∗, j �= i} are set to 0. The other variables in ν and
μ are set to their values in ν′ and μ′. To advance the proof, we introduce an
algorithm that increases ν(ej , ei) for i ∈ [k] and j ∈ [k]∗, and μ(v, ei) for i ∈ [k]
and v ∈ {s, u0, . . . , uk}. At the completion of the algorithm, (ξ, ν, μ) is a feasible
solution to D(I).

The algorithm performs k iterations, and the i-th iteration increases the vari-
ables to satisfy (3) for each pair of ei and ej , where j ∈ [k]∗. The algorithm
retains a set Var of variables to be increased. We introduce a notion of time:
Over one unit of time, the algorithm simultaneously increases all variables in
Var by one. The time consumed by the i-th iteration is ξ(ei).

At the beginning of the i-th iteration, Var is initialized to {μ(uj, ei) : j ∈ [k]∗}.
The algorithm updates Var during the i-th iteration as follows.

– At time (ξ(ei)−w(vi)−w(hi))+, μ(ui, ei) is added to Var if Var �= {μ(s, ei)};
– If (2) becomes tight for uj under the increase of μ(uj, ei) ∈ Var, then μ(uj , ei)

is replaced by ν(ej , ei) for each j ∈ [k]∗;
– If (1) becomes tight for ej under the increase of ν(ej , ei) ∈ Var with some
j ∈ [k]∗, then Var is reset to {μ(s, ei)}.

We note that the time spent between two consecutive updates may be zero.
Var always contains a variable that appears in the right-hand side of (3) for

(ei, ej) with j ∈ [k]∗ \ {i}, and for (ei, ei) after time (ξ(ei) − w(vi) − w(hi))+.
The algorithm updates Var so that (1) and (2) hold for all variables except s.
Hence, to show that (ξ, ν, μ) is a feasible solution to D(I), it suffices to show
that (2) for s does not become tight before the algorithm is completed.

We complete the proof by contradiction. Suppose that (2) for s tightens at
time τ < ξ(ei) in the i-th iteration. Since Var = {μ(s, ei)} at this moment,
there exists j ∈ [k]∗ such that (1) for ej and (2) for uj are tight. The variables
in the left-hand sides of (1) for ej and (2) for uj and s are not simultaneously
increased. Nor are these variables increased over time (ξ(ej)− w(vj)− w(hj))+
in the j-th iteration, and μ(uj , ej) is initialized to (ξ(ej) − w(vj) − w(hj))+.

From this argument, it follows that w(s) + w(uj) + w(ej) <
∑k

i′=1 ξ(ei′) ≤ θ.
However, this result is contradicted by the definition of θ, which implies that
θ ≤ θ1 ≤ w(s) + w(uj) + w(ej). Thus, the claim is proven. ��

Lemma 2. F and ξ satisfy (5).

Proof. For each i ∈ [k], either ei �∈ E′ holds, or ξ′(ei) = 0 holds (because

π′(ei) = 0). Hence,
∑

e∈E ξ(e) =
∑k

i=1 ξ(ei) +
∑

e∈E′ ξ′(e) = θ +
∑

e∈E′ ξ′(e).
Therefore, it suffices to prove that

∑
e∈F w(e) ≤ θ +

∑
e∈F ′ w′(e).

Without loss of generality, we can assume |δF ′(e0)| ≤ 1 (if false, we can remove
edges ei, i ∈ [k]∗ from F ′ until |δF ′(e0)| = 1). In the sequel, we discuss only the

Covering Problems in Edge- and Node-Weighted Graphs 227

case of δF ′(u0) �= ∅ and θ > w(s) + w(e0). In the alternative case, the claim
immediately follows from the definitions of F and w′. δF ′(u0) �= ∅ implies that
w′(u0) is counted in the objective value of F ′. Moreover, w′(s) = w′(e0) = 0
follows from θ > w(s) +w(e0). Thus, the objective values increase from F ′ to F
by w(u0)− w′(u0) + w(e0) + w(s), which equals θ. ��

5 Conclusion

In this paper, we emphasized a large integrality gap when the natural LP re-
laxation is applied to the graph covering problem that minimizes node weights.
We then formulated an alternative LP relaxation for graph covering problems in
edge- and node-weighted graphs that is stronger than the natural relaxation. This
relaxation was incorporated into an exact algorithm for the prize-collecting EDS
problem in trees, and a 2-approximation algorithm for the multicut problem in
trees. The approximation guarantees for these algorithms match the previously
known best results for purely edge-weighted graphs. In many other graph cov-
ering problems, the integrality gap in the proposed relaxation would increase if
node weights were introduced, because the problems in node-weighted graphs
admit stronger hardness results. Nonetheless, the proposed relaxation is a po-
tentially useful tool for designing heuristics or using IP solvers to solve the above
problems.

References

1. Bateni, M., Hajiaghayi, M., Liaghat, V.: Improved approximation algorithms
for (budgeted) node-weighted Steiner problems. In: Fomin, F.V., Freivalds, R.,
Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part I. LNCS, vol. 7965, pp. 81–92.
Springer, Heidelberg (2013)

2. Berger, A., Fukunaga, T., Nagamochi, H., Parekh, O.: Approximability of the ca-
pacitated b-edge dominating set problem. Theoretical Computer Science 385(1-3),
202–213 (2007)

3. Berger, A., Parekh, O.: Linear time algorithms for generalized edge dominating set
problems. Algorithmica 50(2), 244–254 (2008)

4. Berger, A., Parekh, O.: Erratum to: Linear time algorithms for generalized edge
dominating set problems. Algorithmica 62(1-2), 633–634 (2012)

5. Byrka, J., Grandoni, F., Rothvoß, T., Sanità, L.: Steiner tree approximation via
iterative randomized rounding. Journal of the ACM 60(1), 6 (2013)

6. Carr, R.D., Fujito, T., Konjevod, G., Parekh, O.: A 2 1
10
-approximation algorithm

for a generalization of the weighted edge-dominating set problem. Journal of Com-
binatorial Optimization 5(3), 317–326 (2001)

7. Chawla, S., Krauthgamer, R., Kumar, R., Rabani, Y., Sivakumar, D.: On the hard-
ness of approximating multicut and sparsest-cut. Computational Complexity 15(2),
94–114 (2006)

8. Chekuri, C., Ene, A., Vakilian, A.: Prize-collecting survivable network design in
node-weighted graphs. In: Gupta, A., Jansen, K., Rolim, J., Servedio, R. (eds.)
APPROX/RANDOM 2012. LNCS, vol. 7408, pp. 98–109. Springer, Heidelberg
(2012)

228 T. Fukunaga

9. Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.:
The complexity of multiterminal cuts. SIAM Journal on Computing 23(4), 864–894
(1994)

10. Fujito, T., Nagamochi, H.: A 2-approximation algorithm for the minimum weight
edge dominating set problem. Discrete Applied Mathematics 118(3), 199–207
(2002)

11. Fukunaga, T.: Spider covers for prize-collecting network activation problem. CoRR
abs/1310.5422 (2013)

12. Fukunaga, T.: Covering problems in edge- and node-weighted graphs. CoRR
abs/1404.4123 (2014)

13. Garg, N., Vazirani, V.V., Yannakakis, M.: Approximate max-flow min-(multi)cut
theorems and their applications. SIAM Journal on Computing 25(2), 235–251
(1996)

14. Garg, N., Vazirani, V.V., Yannakakis, M.: Primal-dual approximation algorithms
for integral flow and multicut in trees. Algorithmica 18(1), 3–20 (1997)

15. Goemans, M.X., Olver, N., Rothvoß, T., Zenklusen, R.: Matroids and integrality
gaps for hypergraphic steiner tree relaxations. In: STOC, pp. 1161–1176 (2012)

16. Hajiaghayi, M., Liaghat, V., Panigrahi, D.: Online node-weighted Steiner forest
and extensions via disk paintings. In: FOCS, pp. 558–567 (2013)

17. Kamiyama, N.: The prize-collecting edge dominating set problem in trees. In:
Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 465–476. Springer,
Heidelberg (2010)

18. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2 − ε.
Journal of Computer and System Sciences 74(3), 335–349 (2008)

19. Klein, P.N., Ravi, R.: A nearly best-possible approximation algorithm for node-
weighted Steiner trees. Journal of Algorithms 19(1), 104–115 (1995)

20. Könemann, J., Sadeghabad, S.S., Sanità, L.: An LMP O(log n)-approximation al-
gorithm for node weighted prize collecting Steiner tree. In: FOCS, pp. 568–577
(2013)

21. Moss, A., Rabani, Y.: Approximation algorithms for constrained node weighted
Steiner tree problems. SIAM Journal on Computing 37(2), 460–481 (2007)

22. Naor, J., Panigrahi, D., Singh, M.: Online node-weighted Steiner tree and related
problems. In: FOCS, pp. 210–219 (2011)

23. Nutov, Z.: Approximating Steiner networks with node-weights. SIAM Journal on
Computing 39(7), 3001–3022 (2010)

24. Nutov, Z.: Approximating minimum-cost connectivity problems via uncrossable
bifamilies. ACM Transactions on Algorithms 9(1), 1 (2012)

25. Nutov, Z.: Survivable network activation problems. In: Fernández-Baca, D. (ed.)
LATIN 2012. LNCS, vol. 7256, pp. 594–605. Springer, Heidelberg (2012)

26. Panigrahi, D.: Survivable network design problems in wireless networks. In: SODA,
pp. 1014–1027 (2011)

27. Parekh, O.: Approximation algorithms for partially covering with edges. Theoret-
ical Computer Science 400(1-3), 159–168 (2008)

28. Vakilian, A.: Node-weighted prize-collecting survivable network design problems.
Master’s thesis, University of Illinois at Urbana-Champaign (2013)

Colored Range Searching in Linear Space

Roberto Grossi1,� and Søren Vind2,��

1 Università di Pisa, Dipartimento di Informatica
grossi@di.unipi.it

2 Technical University of Denmark, DTU Compute
sovi@dtu.dk

Abstract. In colored range searching, we are given a set of n colored
points in d ≥ 2 dimensions to store, and want to support orthogonal
range queries taking colors into account. In the colored range counting
problem, a query must report the number of distinct colors found in
the query range, while an answer to the colored range reporting problem
must report the distinct colors in the query range.

We give the first linear space data structure for both problems in
two dimensions (d = 2) with o(n) worst case query time. We also give the
first data structure obtaining almost-linear space usage and o(n) worst
case query time for points in d > 2 dimensions. Finally, we present the
first dynamic solution to both counting and reporting with o(n) query
time for d ≥ 2 and d ≥ 3 dimensions, respectively.

1 Introduction

In standard range searching a set of points must be stored to support queries
for any given orthogonal d-dimensional query box Q (see [3] for an overview).
Two of the classic problems are standard range reporting, asking for the points
in Q, and standard range counting, asking for the number of points in Q.
In 1993, Janardan and Lopez [10] introduced one natural generalisation of stan-
dard range searching, requiring each point to have a color. This variation is
known as colored range searching1. The two most studied colored problems are
colored range reporting, where a query answer must list the distinct colors in Q,
and colored range counting, where the number of distinct colors in Q must be
reported.

As shown in Tables 1–2, there has been a renewed interest for these problems
due to their applications. For example, in database analysis and information
retrieval the d-dimensional points represent entities and the colors are classes (or
categories) of entities. Due to the large amount of entities, statistics about their
classes is the way modern data processing is performed. A colored range query
works in this scenario and reports some statistical analysis for the classes using

� Partially supported by Italian MIUR PRIN project AMANDA.
�� Supported by a grant from the Danish National Advanced Technology Foundation.

Research carried out while the author was visiting Università di Pisa.
1 Also known in the literature as categorical or generalized range searching.

R Ravi and I.L. Gørtz (Eds.): SWAT 2014, LNCS 8503, pp. 229–240, 2014.
c© Springer International Publishing Switzerland 2014

230 R. Grossi and S. Vind

Table 1. Known and new solutions to colored range counting, ordered according to de-
creasing space use in each dimension group. Dyn. column shows if solution is dynamic.

Dim. Query Time Space Usage Dyn. Ref.

d = 1 O(lg n/ lg lgn) O(n) × [9]

O(lg2 n) O(n2 lg2 n) [7]
O(lg2 n) O(n2 lg2 n) [11]

d = 2 O(X lg7 n) O((n/X)2 lg6 n+ n lg4 n) [11]

O
(
(σ
lg n

+ n
lgc n

)(lg lgc n)2+ε
)

O(n) New

O(lg2(d−1) n) O(nd lg2(d−1) n) [11]
d > 2 O(X lgd−1 n) O((n/X)2d + n lgd−1 n) [11]

O
(
(σ
lgn

+ n
lgc n

)(lg lgc n)d−1 lg lg lgc n
)

O
(
n(lg lgc n)d−1

)
New

d ≥ 2 O
(
(σ
lgn

+ n
lgc n

)(lg lgc n)d
)

O
(
n(lg lgc n)d−1

) × New

the range on the entities as a filtering method: “which kinds of university degrees
do European workers with age between 30 and 40 years and salary between
30,000 and 50,000 euros have?”. Here the university degrees are the colors and
the filter is specified by the range of workers that are European with the given
age and salary. The large amount of entities involved in such applications calls
for nearly linear space data structures, which is the focus of this paper.

Curiously, counting is considered harder than reporting among the colored
range queries as it is not a decomposable problem: knowing the number of colors
in two halves of Q does not give the query answer. This is opposed to reporting
where the query answer can be obtained by merging the list of colors in two
halves of Q and removing duplicates. For the standard problems, both types of
queries are decomposable and solutions to counting are generally most efficient.

In the following, we denote the set of d-dimensional points by P and let
n = |P |. The set of distinct colors is Σ and σ = |Σ| ≤ n, with k ≤ σ being the
number of colors in the output. We use the notation lga b = (lg b)a and adopt
the RAM with word size w = Θ(lg n) bits, and the size of a data structure is
the number of occupied words.

Observe that for both colored problems, the trivial solution takes linear time
and space, storing the points and looking through all of them to answer the
query. Another standard solution is to store one data structure for all points of
each color that supports standard range emptiness queries (“is there any point
inside Q?”). In two dimensions, this approach can answer queries in O(σ lgn)
time and linear space using a range emptiness data structure by Nekrich [17].
However, since σ = n in the worst case, this does not guarantee a query time
better than trivial. Due to the extensive history and the number of problems
considered, we will present our results before reviewing existing work.

Colored Range Searching in Linear Space 231

Table 2. Known and new solutions to colored range reporting, ordered according to de-
creasing space use in each dimension group. Dyn. column shows if solution is dynamic.

Dim. Query Time Space Usage Dyn. Ref.

d = 1 O(1 + k) O(n) × [20]

O(lg n+ k) O(n lgn) [23]
d = 2 O(lg2 n+ k lg n) O(n lgn) × [4, 7]

O
(
(σ
lgn

+ n
lgc n

)(lg lgc n)2+ε + k
)

O(n) New

d ≥ 2 O
(
(σ
lgn

+ n
lgc n

)(lg lgc n)d + k
)

O
(
n(lg lgc n)d−1

) × New

d = 3 O(lg2 n+ k) O(n lg4 n) [7]
d > 3 O(lg n+ k) O(n1+ε) [8,12]

d ≥ 3 O
(
(σ
lgn

+ n
lgc n

)(lg lgc n)d−1 lg lg lgc n+ k
)

O
(
n(lg lgc n)d−1

)
New

1.1 Our Results

We observe (see Section 1.2) that there are no known solutions to any of the
colored problems in two dimensions that uses O(n) words of space and answer
queries in o(n) worst case time. Furthermore, for colored range reporting there
are no known solutions in d > 3 dimensions using o(n1+ε) words of space and an-
swering queries in o(n) worst case time. For colored range counting, no solutions
with o(n polylg n) words of space and o(n) worst case time exist.

We present the first data structures for colored range searching achieving
these bounds, improving almost logarithmically over previously known solutions
in the worst case (see Section 1.2 and Tables 1–2). Specifically, we obtain

– o(n) query time and O(n) space in two dimensions,
– o(n) query time and o(n polylgn) space for counting in d ≥ 2 dimensions,
– o(n) query time and o(n1+ε) space for reporting in d > 3 dimensions,
– o(n) query time supporting O(polylg n) updates in d ≥ 2 and d ≥ 3 dimen-

sions for counting and reporting, respectively.

We note that while our bounds have an exponential dimensionality depen-
dency (as most previous results), it only applies to lg lg n factors in the bounds.
Our solutions can be easily implemented and parallelized, so they are well-suited
for the distributed processing of large scale data sets. Our main results can be
summarised in the following theorems, noting that c > 1 is an arbitrarily chosen
integer, and σ ≤ n is the number of distinct colors.

Theorem 1. There is a linear space data structure for two-dimensional colored
range counting and reporting storing n points, each assigned one of σ colors. The
data structure answers queries in time O((σ/ lg n + n/ lgc n)(lg lgc n)2+ε), with
reporting requiring an additive term O(k).

Theorem 2. There is a O(n(lg lgc n)d−1) space data structure storing
n d-dimensional colored points each assigned one of σ colors. Each

232 R. Grossi and S. Vind

colored range counting and reporting query takes time O((σ/ lg n +
n/ lgc n)(lg lgc n)d−1 lg lg lgc n). Reporting requires an additive O(k) time.

To obtain these results, we partition points into groups depending on their
color. Each group stores all the points for at most lg n specific colors. Because
the colors are partitioned across the groups, we can obtain the final result to
a query by merging query results for each group (and we have thus obtained a
decomposition of the problem along the color dimension). A similar approach
was previously used in [11].

In order to reduce the space usage of our data structure, we partition the
points in each group into a number of buckets of at most lgc n points each.
The number of buckets is O(σ/ lg n+ n/ lgc n), with the first term counting all
underfull buckets and the second counting all full buckets. Each bucket stores
m ≤ lgc n points colored with f ≤ lg n different colors. To avoid counting a color
several times across different buckets, we use a solution to the d-dimensional
colored range reporting problem in each bucket for which answers to queries are
given as bitstrings. Answers to the queries in buckets can be merged efficiently
using bitwise operations on words. We finally use an o(n) space lookup table to
obtain the count or list of colors present in the merged answer.

The solution to d-dimensional colored range reporting for each bucket is ob-
tained by building a d-dimensional range tree for the m points, which uses a new
linear space and O(lg lgm) time solution to restricted one-dimensional colored
range reporting as the last auxiliary data structure. In total, each bucket requires
O(m lgd−1m) space and O(lgd−1m lg lgm) query time. In two dimensions, we
reduce the space to linear by only storing representative rectangles in the range
tree covering O(lgm) points each. Using the linear space range reporting data
structure by Nekrich [17], we enumerate and check the underlying points for
each of the O(lgm) range tree leaves intersecting the query range, costing us a
small penalty of O(lgε n) per point. We thus obtain a query time of O(lg2+εm)
for two-dimensional buckets in linear space.

Using classic results on dynamisation of range trees, we can dynamise the data
structure with a little additional cost in query time. Previously, there was no
known dynamic data structures with o(n) query time for colored range counting
in d ≥ 2 dimensions and colored range reporting in d ≥ 3 dimensions. Conse-
quently, this is the first such dynamic data structure.

Theorem 3. There is a dynamic O(n(lg lgc n)d−1) space data structure storing
n d-dimensional colored points each assigned one of σ colors. The data struc-
ture answers colored range counting and reporting queries in time O((σ/ lg n +
n/ lgc n)(lg lgc n)d). Reporting requires an additive O(k) time and updates are
supported in O((lg lgc n)d) amortised time.

Finally, if paying a little extra space, we can get a solution to the problem
where the query time is bounded by the number of distinct colors instead of the
number of points. This is simply done by not splitting color groups into buckets,
giving the following result.

Colored Range Searching in Linear Space 233

Corollary 1. There is a O(n lgd−1 n) space data structure for n d-dimensional
colored points each assigned one of σ colors. The data structure answers col-
ored range counting and reporting queries in time O(σ lgd−2 n lg lg n). Reporting
requires a additive O(k) time.

In two dimensions this is a logarithmic improvement over the solution where
a range emptiness data structure is stored for each color at the expense of a lg n
factor additional space. The above approach can be combined with the range
emptiness data structure by Nekrich [17] to obtain an output-sensitive result
where a penalty is paid per color reported:

Corollary 2. There is aO(n lg n) space data structure storing n two-dimensional
colored points each assigned one of σ colors. The data structure answers colored
range counting and reporting queries in time O(σ + k lg n lg lg n).

1.2 Previous Results

Colored range counting. Colored range counting is challenging, with a large gap
in the known bounds compared to standard range counting, especially in two
or more dimensions. For example, a classic range tree solves two-dimensional
standard range counting in logarithmic time and O(n lg n) space, but no poly-
logarithmic time solutions in o(n2) space are known for colored range counting.

Larsen and van Walderveen [7, 14] showed that colored range counting in
one dimension is equivalent to two-dimensional standard range counting. Thus,
the optimal O(lg n/ lg lg n) upper bound for two-dimensional standard range
counting by JáJá et al. [9] which matches a lower bound by Patrascu [22] is also
optimal for one-dimensional colored range counting.

In two dimensions, Gupta et al. [7] show a solution using O(n2 lg2 n) space
that answers queries in O(lg2 n) time. They obtain their result by storing n copies
of a data structure which is capable of answering three-sided queries. The same
bound was matched by Kaplan et al. [11] with a completely different approach in
which they reduce the problem to standard orthogonal range counting in higher
dimensions. Kaplan et al. also present a tradeoff solution with O(X lg7 n) query
time and O((n

X)2 lg6 n+n lg4 n) space for 1 ≤ X ≤ n. Observe that the minimal

space use for the tradeoff solution is O(n lg4 n).
In d > 2 dimensions, the only known non-trivial solutions are by Kaplan

et al. [11]. One of their solutions answers queries in O(lg2(d−1) n) time and

O(nd lg2(d−1) n) space, and they also show a number of tradeoffs, the best one
having O(X lgd−1 n) query time and using O((n

X)2d + n lgd−1 n) space for 1 ≤
X ≤ n. In this case, the minimal space required by the tradeoff is O(n lgd−1 n).

Kaplan et al. [11] showed that answering n two dimensional colored range
counting queries in O(np/2) time (including all preprocessing time) yields an
O(np) time algorithm for multiplying two n × n matrices. For p < 2.373, this
would improve the best known upper bound for matrix multiplication [25]. Thus,
solving two dimensional colored range counting in polylogarithmic time per query
and O(n polylg n) space would be a major breakthrough. This suggest that even
in two dimensions, no polylogarithmic time solution may exist.

234 R. Grossi and S. Vind

Colored range reporting. The colored range reporting problem is relatively well-
studied [4, 6–8, 10, 12, 13, 16, 18–20, 23], with output-sensitive solutions almost
matching the time and space bounds obtained for standard range reporting in one
and two dimensions. In particular, Nekrich and Vitter recently gave a dynamic
solution to one dimensional colored range reporting with optimal query time
O(1 + k) and linear space [20], while Gagie et al. earlier presented a succinct
solution with query time logarithmic in the length of the query interval [6].

In two dimensions, Shi and JáJá obtain a bound of O(lg n + k) time and
O(n lg n) space [23] by querying an efficient static data structure for three-
sided queries, storing each point O(lg n) times. Solutions for the dynamic two-
dimensional case were developed in [4, 7], answering queries with a logarithmic
penalty per answer. If the points are located on an N × N grid, Agarwal et al.
[1] present a solution with query time O(lg lgN + k) and space use O(n lg2N).
Gupta et al. achieve a static data structure using O(n lg4 n) space and answer-
ing queries in O(lg2 n+ k) [7] in the three-dimensional case. To the best of our
knowledge, the only known non-trivial data structures for d > 3 dimensions are
by van Kreveld and Gupta et al., answering queries in O(lg n + k) time and
using O(n1+ε) space [8, 12]. Other recent work on the problem include external
memory model solutions when the points lie on a grid [13, 18, 19].

2 Colored Range Searching in Almost-Linear Space

We present here the basic approach that is modified to obtain our theorems. We
first show how to partition the points into O(σ/ lg n + n/ lgc n) buckets each
storing m = O(lgc n) points of f = O(lg n) distinct colors, for which the results
can be easily combined. We then show how to answer queries in each bucket in
time O(lgd−1m lg lgm) and space O(m lgd−1m), thus obtaining Theorem 2.

2.1 Color Grouping and Bucketing

We partition the points of P into a number of groups Pi, where i = 1, . . . , σ
lgn ,

depending on their color. Each group stores all points having f = lg n distinct
colors (except for the last group which may store points with less distinct colors).
For each group Pi we store an ordered color list Li of the f colors in the group.
That is, a group may contain O(n) points but the points have at most f distinct
colors. Since colors are partitioned among groups, we can clearly answer a colored
query by summing or merging the results to the same query in each group.

Each group is further partitioned into a number of buckets containing m =
lgc n points each (except for the last bucket, which may contain fewer points).
Since the buckets partition the points and there cannot be more than one bucket
with fewer than lgc n points in each group, the total number of buckets is
O(σ/ lg n + n/ lgc n). See Figure 1 for an example of the grouping and buck-
eting.

We require that each bucket in a group Pi supports answering restricted col-
ored range reporting queries with an f -bit long bitstring, where the jth bit

Colored Range Searching in Linear Space 235

L1 = 1, 4, 5, 6 L2 = 2, 3, 8, 10 Li = 13, 15, 23…
P1 P2 Pi

Fig. 1. Grouping and bucketing of some point set with f = 4. The white boxes are the
groups and the grey boxes below each group are buckets each storing O(lgc n) points.

indicates if color Li[j] is present in the query area Q in that bucket. Clearly, we
can obtain the whole answer for Q and Pi by using bitwise OR operations to
merge answers to the restricted colored range reporting query Q for all buckets
in Pi. We call the resulting bitstring Fi,Q, which indicates the colors present in
the query range Q across the entire group Pi.

Finally, we store a lookup table T of size O(
√
n lg n) = o(n) for all possible

bitstrings of length f
2 . For each bitstring, the table stores the number of 1s

present in the bitstring and the indices where the 1s are present. Using two
table lookups in T with the two halves of Fi,Q, we can obtain both the number
of colors present in Pi for Q, and their indices into Li in O(1) time per index.

Summarising, we can merge answers to the restricted colored range reporting
queries in O(1) time per bucket and obtain the full query results for each group
Pi. Using a constant number of table lookups per group, we can count the number
of colors present in Q. There is O(1) additional cost per reported color.

2.2 Restricted Colored Range Reporting for Buckets

Each bucket in a group Pi stores up to m = lgc n points colored with up to
f = lgn distinct colors, and must support restricted colored range reporting
queries, reporting the colors in query range Q using an f -bit long bitstring.
A simple solution is to use a classic d-dimensional range tree R, augmented
with an f -bit long bitstring for each node on the last level of R (using the Li

ordering of the f colors). The colors within the range can thus be reported
by taking the bitwise OR of all the bitstrings stored at the O(lgdm) summary
nodes of R spanning the range in the last level. This solution takes total time
O(f

w lgdm) = O(lgdm) and space O(m lgd−1m f
w) = O(m lgd−1m), and it can

be constructed in time O(m lgd−1m) by building the node bitstrings from the
leaves and up (recall that w = Θ(lg n) is the word size).

The above solution is enough to obtain some of our results, but we can im-
prove it by replacing the last level in R with a new data structure for restricted
one-dimensional colored range reporting over integers that answer queries in time
O(lg lgm) and linear space. A query may perform O(lgd−1m) one-dimensional
queries on the last level of the range tree, so the query time is reduced to
O(lgd−1m lg lgm) per bucket. The new data structure used at the last level
is given in the next section.

236 R. Grossi and S. Vind

Observe that though the points are not from a bounded universe, we can
remap a query in a bucket to a bounded universe of size m in time O(lgm) and
linear space per dimension. We do so for the final dimension, noting that we only
need to do it once for all O(lgd−1m) queries in the final dimension.

1D Restricted Colored Range Reporting on Integers. Given O(m) points
in one dimension from a universe of size m, each colored with one of f = lg n
distinct colors, we now show how to report the colors contained in a query range
in O(lg lgm) time and linear space, encoded as an f -bit long bitstring. First,
partition the points into j = O(m/ lgm) intervals spanning Θ(lgm) consecutive
points each. Each interval is stored as a balanced binary search tree of height
O(lg lgm), with each node storing a f -bit long bitstring indicating the colors
that are present in its subtree. Clearly, storing all these trees take linear space.

We call the first point stored in each interval a representative and store a
predecessor data structure containing all of the O(m/ lgm) representatives of the
intervals. Also, each representative stores O(lgm) f -bit long bitstrings, which
are summaries of the colors kept in the 1, 2, . . . , 2lg j neighboring intervals. We
store these bitstrings both towards the left and the right from the representative,
in total linear space.

A query [a, b] is answered as follows. We decompose the query into two parts,
first finding the answer for all intervals fully contained in [a, b], and then finding
the answer for the two intervals that only intersect [a, b]. The first part is done by
finding the two outermost representatives inside the interval (called a′, b′, where
a ≤ a′ ≤ b′ ≤ b) by using predecessor queries with a and b on the representa-
tives. Since we store summaries for all power-of-2 neighboring intervals of the
representatives, there are two bitstrings stored with a′ and b′ which summarises
the colors in all fully contained intervals.

To find the answer for the two intervals that contain a or b, we find O(lg lgm)
nodes of the balanced binary tree for the interval and take the bitwise OR of the
bitstrings stored at those nodes in O(lg lgm) total time. Using one of the classic
predecessor data structures [5, 15, 24] for the representatives, we thus obtain a
query time of O(lg lgm) and linear space.

3 2D Colored Range Searching in Linear Space

To obtain linear space in two dimensions and the proof of Theorem 1, we use
the same grouping and bucketing approach as in Section 2. For each group Pi′ ,
we only change the solution of each bucket Bi in Pi′ , recalling that Bi contains
up to m = lgc n points with f = lg n distinct colors, so as to use linear space
instead of O(m lgm) words of space.

We store a linear space 2D standard range reporting data structure Ai by
Nekrich [17] for all points in the bucket Bi. As shown in [17], Ai supports or-
thogonal standard range reporting queries in O(lgm+r lgεm) time and updates
in O(lg3+εm) time, where r is the reported number of points and ε > 0.

Colored Range Searching in Linear Space 237

We also store a simple 2D range tree Ri augmented with f -bit long bitstrings
on the last level as previously described in Section 2.2, but instead of storing
points in Ri, we reduce its space usage by only storing areas covering O(lgm)
points of Bi each. This can be done by first building Ri taking O(m lgm) space
and time, and then cutting off subtrees at nodes at maximal height (called
cutpoint nodes) such that at most c′ lgm points are covered by each cutpoint
node, for a given constant c′ > 0. In this way, each cutpoint node is implicitly
associated with O(lgm) points, which can be succinctly represented with O(1)
words as they all belong to a distinct 2D range. Note that the parent of a cutpoint
node has Ω(lgm) descending points, hence there are O(m/ lgm) cutpoint nodes.

A query is answered by finding O(lg2m) summary nodes in Ri that span
the entire query range Q. Combining bitstrings as described in Section 2.2, the
colors for all fully contained ranges that are not stored in the leaves can thus be
found. Consider now one such leaf � covering an area intersecting Q: since the
O(lgm) points spanned by � may not be all contained in Q, we must check those
points individually. Recall that the points associated with � are those spanning
a certain range Q′, so they can be succinctly represented by Q′. To actually
retrieve them, we issue a query Q′ to Ai, check which ones belong to Q′∩Q, and
build a bitstring for the colors in Q′ ∩Q. We finally merge the bitstrings for all
summary nodes and intersecting leaves in constant time per bitstring to obtain
the final result.

The time spent answering a query is O(lg2m) to find all bitstrings in non-
leaf nodes of Ri and to combine all the bitstrings. The time spent finding the
bitstring in leaves is O(lg1+εm) per intersecting leaf as we use Nekrich’s data
structure Ai with r = O(lgm). Observe that only two leaves spanning a range of
O(lgm) points may be visited in each of the O(lgm) second level data structures
visited, so the time spent in all leaves is O(lg2+εm), which is also the total time.
Finally, since we reduced the size of the range tree by a factor Θ(lgm), the total
space usage is linear. This concludes the proof of Theorem 1.

4 Dynamic Data Structures

We now prove Theorem 3 by discussing how to support operations insert(p, c)
and delete(p), inserting and deleting a point p with color c, respectively. Note
that the color c may be previously unused. We still use parameters f and m to
denote the number of colors in groups and points in buckets, respectively. We
first give bounds on how to update a bucket, and then show how to support
updates in the color grouping and point bucketing.

4.1 Updating a Bucket

Updating a bucket with a point corresponds to updating a d-dimensional range
tree using known techniques in dynamic data structures. Partial rebuilding [2,21]
requires amortised time O(lgdm), including updating the bitstrings in the par-
tially rebuilt trees and in each node of the last level trees (which takes constant

238 R. Grossi and S. Vind

time). Specifically, the bitstrings for the O(lgd−1m) trees on the last level where
a point was updated may need to have the bitstrings fixed on the path to the
root on that level. This takes time O(lgm) per tree, giving a total amortised
update time of O(lgdm).

4.2 Updating Color Grouping and Point Bucketing

When supporting insert(p, c), we first need to find the group to which c belongs.
If the color is new and there is a group Pi with less than f colors, we must update
the color list Li. Otherwise, we can create a new group Pi for the new color. In
the group Pi, we must find a bucket to put p in. If possible, we put p in a bucket
with less than m points, or otherwise we create a new bucket for p. Keeping
track of sizes of groups and buckets can be done using priority queues in time
O(lg lg n). Note that we never split groups or buckets on insertions.

As for supporting delete(p), we risk making both groups and buckets un-
derfull, thus requiring a merge of either. A bucket is underfull when it contains
less than m/2 points. We allow at most one underfull bucket in a group. If there
are two underfull buckets in a group, we merge them in time O(m lgdm). Since
merging buckets can only happen after Ω(m) deletions, the amortized time for
a deletion in this case is O(lgdm). A group is underfull if it contains less than
f/2 colors and, as for buckets, if there are any two underfull groups Pi, Pj , we
merge them. When merging Pi, Pj into a new group Pr, we concatenate their
color lists Li, Lj into Lr, removing the colors that are no more present while
keeping the relative ordering of the surviving colors from Li, Lj. In this way,
a group merge does not require us to merge the underlying buckets, as points
are partitioned arbitrarily into the buckets. However, a drawback arises: as the
color list Lr for the merged group is different from the color lists Li, Lj used
for answering bucket queries, this may introduce errors in bucket query answers.
Recall that an answer to a bucket query is an f -bit long bitstring which marks
with 1s the colors in Li that are in the range Q. So we have a bitstring for Li,
and one for Lj , for the buckets previously belonging to Pi, Pj , but we should
instead output a bitstring for Lr in time proportional to the number of buckets
in Pr. We handle this situation efficiently as discussed in Section 4.3.

4.3 Fixing Bucket Answers during a Query

As mentioned in Section 4.2, we do not change the buckets when two or more
groups are merged into Pr. Consider the f -bit long bitstring bi that is the answer
for one merged group, say P ′

i , relative to its color list, say Li. However, after the
merge, only a sublist L′

i ⊆ Li of colors survives as a portion of the color list Lr

for Pr. We show how to use Li and L
′
i to contribute to the f -bit long bitstring

a that is the answer to query Q for the color list Lr in Pr . The time constraint
is that we can spend time proportional to the number, say g, of buckets in Pr.

We need some additional information. For each merged group P ′
i , we create

an f -bit long bitstring vi with bit j set to 1 if and only if color Li[j] survives in
Lr (i.e. some point in Pr has color Li[j]). We call vi the possible answer bitstring

Colored Range Searching in Linear Space 239

and let oi be the number of 1s in vi: in other words, L′
i is the sublist built from

Li by choosing the colors Li[j] such that vi[j] = 1, and oi = |L′
i|.

Consider now the current group Pr that is the outcome of h ≤ f old merged
groups, say P ′

1, P
′
2, . . . , P

′
h in the order of the concatenation of their color lists,

namely, Lr = L′
1 · L′

2 · · ·L′
h. Since the number of buckets in Pr is g ≥ h, we can

spend O(g) time to obtain the f -bit long bitstrings b1, b2, . . . , bh, which are the
answers for the old merged groups P ′

1, P
′
2, . . . , P

′
h, and combine them to obtain

the answer a for Pr.
Here is how. The idea is that the bits in a from position 1+

∑i−1
l=1 ol to

∑i
l=1 ol

are reserved for the colors in L′
i, using 1 to indicate which color in L′

i is in the
query Q and 0 which is not. Let us call b′i this oi-bit long bitstring. Recall that
we have bi, which is the f -bit long bitstring that is the answer for P ′

i and refers
to Li, and also vi, the possible answer bitstring as mentioned before.

To obtain b′i from bi, vi and oi in constant time, we would like to employ a
lookup table S[b, v] for all possible f -bitstrings b and v, precomputing all the
outcomes (in the same fashion as the Four Russians trick). However, the size
of S would be 2f × 2f × f bits, which is too much (remember f = lg n). We
therefore build S for all possible (f/3)-bitstrings b and v, so that S uses o(n)
words of memory. This table is periodically rebuilt when n doubles or becomes
one fourth, following a standard rebuilding rule. We therefore compute b′i from
bi, vi by dividing each of them in three parts, looking up S three times for each
part, and combining the resulting three short bitstrings, still in O(1) total time.

Once we have found b′1, b
′
2, . . . , b

′
h in O(h) time as shown above, we can easily

concatenate them with bitwise shifts and ORs, in O(h) time, so as to produce
the wanted answer a = b′1 · b′2 · · · b′h as a f -bit long bitstring for Pr and its color
list Lr. Recall that Pr consists of h buckets where h ≤ g ≤ f . Indeed, if it were
h > f , there would be some groups with no colors. Since Ω(f) deletions must
happen before two groups are merged, we can clean and remove the groups that
have no more colors, i.e, with oi = 0, and maintain the invariant that h ≤ g ≤ f .

5 Open Problems

There are a lot of loose ends in colored range searching that deserve to be
investigated, and we will shortly outline a few of them. The hardness reduction
by Kaplan et al. [11] gives hope that colored range counting can be proven hard,
and we have indeed assumed that this is the case here. If taking instead an
upper bound approach as this paper, improved time bounds obtainable in little
space, or with some restriction on the number of colors, would be very interesting
motivated by the large scale applications of the problem.

References

1. Agarwal, P.K., Govindarajan, S., Muthukrishnan, S.M.: Range searching in cate-
gorical data: Colored range searching on grid. In: Möhring, R.H., Raman, R. (eds.)
ESA 2002. LNCS, vol. 2461, pp. 17–28. Springer, Heidelberg (2002)

240 R. Grossi and S. Vind

2. Andersson, A.: General balanced trees. J. Algorithms 30(1), 1–18 (1999)
3. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geome-

try: Algorithms and Applications, 3rd edn. (2008)
4. Bozanis, P., Kitsios, N., Makris, C., Tsakalidis, A.K.: New upper bounds for gen-

eralized intersection searching problems. In: Fülöp, Z. (ed.) ICALP 1995. LNCS,
vol. 944, pp. 464–474. Springer, Heidelberg (1995)

5. van Emde Boas, P., Kaas, R., Zijlstra, E.: Design and implementation of an efficient
priority queue. Theory Comput. Syst. 10(1), 99–127 (1976)

6. Gagie, T., Kärkkäinen, J., Navarro, G., Puglisi, S.J.: Colored range queries and
document retrieval. TCS (2012)

7. Gupta, P., Janardan, R., Smid, M.: Further Results on Generalized Intersection
Searching Problems: Counting, Reporting, and Dynamization. J. Algorithms 19(2),
282–317 (1995)

8. Gupta, P., Janardan, R., Smid, M.: A technique for adding range restrictions to
generalized searching problems. Inform. Process. Lett. 64(5), 263–269 (1997)

9. JáJá, J., Mortensen, C.W., Shi, Q.: Space-efficient and fast algorithms for multidi-
mensional dominance reporting and counting. In: Fleischer, R., Trippen, G. (eds.)
ISAAC 2004. LNCS, vol. 3341, pp. 558–568. Springer, Heidelberg (2004)

10. Janardan, R., Lopez, M.: Generalized intersection searching problems.
IJCGA 3(01), 39–69 (1993)

11. Kaplan, H., Rubin, N., Sharir, M., Verbin, E.: Counting colors in boxes. In: Proc.
18th SODA. pp. 785–794 (2007)

12. van Kreveld, M.: New results on data structures in computational geometry. PhD
thesis, Department of Computer Science, University of Utrecht, Netherlands (1992)

13. Larsen, K.G., Pagh, R.: I/O-efficient data structures for colored range and prefix
reporting. In: Proc. 23rd SODA. pp. 583–592 (2012)

14. Larsen, K.G., van Walderveen, F.: Near-Optimal Range Reporting Structures for
Categorical Data. In: Proc. 24th SODA. pp. 265–276 (2013)

15. Mehlhorn, K., Näher, S.: Bounded ordered dictionaries in O(lg lgN) time and O(n)
space. Inform. Process. Lett. 35(4), 183–189 (1990)

16. Mortensen, C.W.: Generalized static orthogonal range searching in less space. Tech.
rep., TR-2003-22, The IT University of Copenhagen (2003)

17. Nekrich, Y.: Orthogonal Range Searching in Linear and Almost-linear Space. Com-
put. Geom. Theory Appl. 42(4), 342–351 (2009)

18. Nekrich, Y.: Space-efficient range reporting for categorical data. In: Proc. 31st
PODS. pp. 113–120 (2012)

19. Nekrich, Y.: Efficient range searching for categorical and plain data. ACM
TODS 39(1), 9 (2014)

20. Nekrich, Y., Vitter, J.S.: Optimal color range reporting in one dimension. In:
Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 743–754.
Springer, Heidelberg (2013)

21. Overmars, M.H.: Design of Dynamic Data Structures (1987)
22. Patrascu, M.: Lower bounds for 2-dimensional range counting. In: Proc. 39th

STOC, pp. 40–46 (2007)
23. Shi, Q., JáJá, J.: Optimal and near-optimal algorithms for generalized intersection

reporting on pointer machines. Inform. Process. Lett. 95(3), 382–388 (2005)
24. Willard, D.: Log-logarithmic worst-case range queries are possible in space Θ(N).

Inform. Process. Lett. 17(2), 81–84 (1983)
25. Williams, V.V.: Multiplying matrices faster than Coppersmith-Winograd. In: Proc.

44th STOC. pp. 887–898 (2012)

Fast Dynamic Graph Algorithms

for Parameterized Problems

Yoichi Iwata and Keigo Oka

Department of Computer Science
Graduate School of Information Science and Technology

The University of Tokyo
{y.iwata,ogiekako}@is.s.u-tokyo.ac.jp

Abstract. Fully dynamic graph is a data structure that (1) supports
edge insertions and deletions and (2) answers problem specific queries.
The time complexity of (1) and (2) are referred to as the update time
and the query time respectively. There are many researches on dynamic
graphs whose update time and query time are o(|G|), that is, sublinear
in the graph size. However, almost all such researches are for problems
in P. In this paper, we investigate dynamic graphs for NP-hard problems
exploiting the notion of fixed parameter tractability (FPT).

We give dynamic graphs for Vertex Cover and Cluster Vertex Dele-
tion parameterized by the solution size k. These dynamic graphs achieve
almost the best possible update time O(poly(k) log n) and the query
time O(f(poly(k), k)), where f(n, k) is the time complexity of any static
graph algorithm for the problems. We obtain these results by dynamically
maintaining an approximate solution which can be used to construct a
small problem kernel. Exploiting the dynamic graph for Cluster Vertex
Deletion, as a corollary, we obtain a quasilinear-time (polynomial) kernel-
ization algorithm for Cluster Vertex Deletion. Until now, only quadratic
time kernelization algorithms are known for this problem.

1 Introduction

1.1 Background

Parameterized Algorithms. Assuming P �= NP, there are no polynomial-time
algorithms solving NP-hard problems. On the other hand, some problems are
efficiently solvable when a certain parameter, e.g. the size of a solution, is small.
Fixed parameter tractability is one of the ways to capture such a phenomenon.

A problem is in the class fixed parameter tractable (FPT) with respect to a
parameter k if there is an algorithm that solves any problem instance of size n
with parameter k in O(ndf(k)) time (FPT time), where d is a constant and f
is some computable function.

Dynamic Graphs. (Fully) dynamic graph is a data structure that supports
edge insertions, edge deletions, and answers certain problem specific queries.

R Ravi and I.L. Gørtz (Eds.): SWAT 2014, LNCS 8503, pp. 241–252, 2014.
c© Springer International Publishing Switzerland 2014

242 Y. Iwata and K. Oka

Table 1. The time complexities of the dynamic graphs in this paper. d is the degree
bound, and n is the number of the vertices. The parameter for Chromatic Number is
cvd number (the size of a minimum cluster vertex deletion), and parameters for the
other problems are its solution size.

Problem Update Time Query Time Section

Vertex Cover O(k2) fV C(k
2, k) 3

Cluster Vertex Deletion O(k8 + k2 log n) fCV D(k5, k) 4

Cluster Vertex Deletion O(8kk6) O(1) [14]

Chromatic Number O(22
k

log n) O(1) [14]

Feedback Vertex Set O(7.66kk3 + 2kk3d3 log n) O(1) [14]

There are a lot of theoretical research on dynamic graphs for problems that be-
long to P, such as Connectivity [10,11,24,27,8,15], k-Connectivity [11,8], Minimum
Spanning Forest [11,8], Bipartiteness [11,8], Planarity Testing [13,8,16], All-pairs
Shortest Path [25,4,26,22,20] and Directed Connectivity [3,18,19,21,23], and races
for faster algorithms are going on.

On the contrary there have been few research on dynamic graphs related to
FPT algorithms. To the best of our knowledge, a dynamic data structure for
counting subgraphs in sparse graphs proposed by Zdeněk Dvǒŕak and Vojtěch
Tůma [7] and a dynamic data structure for tree-depth decomposition proposed
by Zdeněk Dvořák, Martin Kupec and Vojtěch Tůma [6] are only such dynamic
graphs. Both data structures support insertions and deletions of edges, and com-
pute the solution of the problems in time depending only on k, where k is the
parameter of the problem. For a fixed property expressed in monadic second-
order logic, the dynamic graph in [6] also can answer whether the current graph
has the property. For both algorithms, hidden constants are (huge) exponential
in k. In particular, update time of both algorithms become super-linear in graph
size n even if k is very small, say O(log logn).

1.2 Our Contribution

In this paper, we investigate dynamic data structures for basic graph problems in
FPT. Table 1 shows the problems we deal with and the time complexities of the
algorithms. In Section 3 and 4, we present fully dynamic graphs for Vertex Cover
and Cluster Vertex Deletion, respectively. Both dynamic data structures support
additions and deletions of edges, and can answer the solution of the problem
in time depending only on the solution size k. Due to the space limitation, the
details of the latter three results are omitted. Please see the full version which
will appear soon [14].

For the dynamic graph for Vertex Cover, the time complexity of an edge ad-
dition or deletion is O(k2) and the one of a query is fV C(k

2, k) where fV C(n, k)
is the time complexity of any static algorithm for Vertex Cover on a graph of
size n.

For the dynamic graph for Cluster Vertex Deletion, the time complexity of an
update is O(k8 logn) and the one of a query is fCVD(k5, k) where fCVD(n, k) is

Fast Dynamic Graph Algorithms for Parameterized Problems 243

the time complexity of any static algorithm for Cluster Vertex Deletion on a graph
of size n. The extra logn factor arises because we use persistent data structures
to represent some vertex sets. This enables us to copy a set in constant time.

Note that the time complexity of an update is poly(k)polylog(n) for both
algorithms, instead of an exponential function in k. As for the time complexity
of a query, its exponential term in k is no more than any static algorithms.

Let us briefly explain how the algorithms work. Throughout the algorithm,
we keep an approximate solution. When the graph is updated, we efficiently
construct a poly(k) size kernel by exploiting the approximate solution, and then
compute a new approximate solution on this kernel. Here, we compute not an ex-
act solution but an approximate solution to achieve the update time polynomial
in k. To answer a query, we apply a static exact algorithm to the kernel.

To see goodness of these algorithms, consider the situation such that a query
is applied for every r updates. A trivial algorithm answers a query by running a
static algorithm. Let the time complexity of the static algorithm be O(f(n, k)).
In this situation, to deal with consecutive r updates and one query, our algorithm
takes O(rpoly(k)polylog(n)+f(poly(k), k)) time, and the trivial algorithm takes
O(f(n, k)) time. For example, let f(n, k) = ck + kn be the time complexity of
the static algorithm. (The time complexity of the current best FPT algorithm
for Vertex Cover is O(1.2738k + kn) [2].) Then if r =

√
n and ck =

√
n, the time

complexity for the dynamic graph algorithm is
√
npolylog(n) = o(n), sublinear

in n. That is, our algorithm works well even if the number of queries is fewer than
the number of updates. This is an advantage of the polynomial-time update. If
r = 1, our algorithm is faster than the trivial algorithm whenever ck < n. Even if
ck is the dominant term, our algorithm is never slower than the trivial algorithm.

Let us consider the relation between our results and the result by Dvořák,
Kupec and Tůma [6]. The size of a solution of Vertex Cover is called vertex cover
number, and the size of a solution of Cluster Vertex Deletion is called cluster
vertex deletion number (cvd number). It is easy to show that tree-depth can be
arbitrarily large even if cvd number is fixed and vice versa. Thus our result for
Cluster Vertex Deletion is not included in their result. On the other hand, tree-
depth is bounded by vertex cover number + 1. Thus their result indicates that
Vertex Cover can be dynamically computed in O(1) time if vertex cover number is
a constant. However, if it is not a constant, say O(log logn), the time complexity
of their algorithm becomes no longer sublinear in n. The time complexity of our
algorithm for Vertex Cover is further moderate as noted above.

As an application of the dynamic graph for Cluster Vertex Deletion, we can
obtain a quasilinear-time kernelization algorithm for Cluster Vertex Deletion. To
compute a problem kernel of a graph G = (V,E), starting from an empty graph,
we iteratively add the edges one by one while updating an approximate solu-
tion. Finally, we compute a kernel from the approximate solution. As shown in
Section 4, the size of the problem kernel is O(k5) and the time for an update is
O(k8 log |V |). Thus, we obtain a polynomial kernel in O(k8|E| log |V |) time.

Protti, Silva and Szwarcfiter [17] proposed a linear-time kernelization algo-
rithm for Cluster Editing applying modular decomposition techniques. On the

244 Y. Iwata and K. Oka

other hand, to the best of our knowledge, for Cluster Vertex Deletion, only
quadratic time kernelization algorithms [12] are known (until now). Though
Cluster Vertex Deletion and Cluster Editing are similar problems, it seems that
their techniques cannot be directly applied to obtain a linear-time kernelization
algorithm for Cluster Vertex Deletion.

2 Notations

Let G = (V,E) be a simple undirected graph with vertices V and edges E.
We consider that each edge in E is a set of vertices of size two. Let |G| de-
note the size of the graph |V | + |E|. The neighborhood NG(v) of a vertex v is
{u ∈ V | {u, v} ∈ E}, and the neighborhood NG(S) of a vertex set S ⊆ V is⋃

v∈S NG(v) \ S. The closed neighborhood NG[v] of a vertex v is NG(v) ∪ {v},
and the closed neighborhood NG[S] of a vertex set S ⊆ V is NG(S) ∪ S. We
denote the degree of a vertex v by dG(v). We omit the subscript if the graph is
apparent from the context. The induced subgraph G[S] of a vertex set S is the
graph (S, {e ∈ E | e ⊆ S}).

By default, we use k(G) or k to denote the parameter value of the cur-
rent graph G. When an algorithm updates a graph G to G′, we use k =
max{k(G), k(G′)} as a parameter. Note that, k(G) and k(G′) are not greatly
different in most problems. In particular, it is easy to prove that for all problems
we deal with in this paper, k(G′) is at most k(G) + 1.

3 Dynamic Graph for Vertex Cover

Let G = (V,E) be a graph. Vertex Cover is the problem of finding a minimum
set of vertices that covers all edges. Let k = k(G) be the size of a minimum
vertex cover of G. The current known FPT algorithm solving Vertex Cover whose
exponential function in k is smallest is by Chen, Kanj and Xia [2], and its running
time is O(|G|k + 1.2738k). Let us now state the main result of this section.

Theorem 1. There is a data structure representing a graph G which supports
the following three operations.

1. Answers the solution for Vertex Cover of the current graph G.
2. Add an edge to G.
3. Remove an edge from G.

Let k be the size of a minimum vertex cover of G. Then the time complexity
of an edge addition or removal is O(k2), and of a query is O(f(k2, k)), where
f(|G|, k) is the time complexity of any static algorithm for Vertex Cover on a
graph of size |G|.

Note that the update time is polynomial in k, and the exponential term in k of
the query time is same to the one of the static algorithm.

Our dynamic data structure is simply represented as a pair of the graph
G = (V,E) itself and a 2-approximate solution X ⊆ V for Vertex Cover of G,

Fast Dynamic Graph Algorithms for Parameterized Problems 245

Algorithm 1. compute a 2-approximate solution

1: X0 := ∅
2: V ′ := ∅
3: for all x in X do
4: if d(x) > |X| then X0 := X0 ∪ {x}
5: else V ′ := V ′ ∪N [x]

6: V ′ := V ′ \X0

7: Y := 2-approximate solution for Vertex Cover of G[V ′].
8: X ′ := X0 ∪ Y

that is, we maintain a vertex set X such that X is a vertex cover of G and
|X | ≤ 2k(G).

For both query and update, we compute a problem kernel. To do this, we
exploit the fact that we already know rather small vertex cover X . When an
edge {u, v} is added to G, we add u to X making X a vertex cover and use
Algorithm 1 to compute a new 2-approximate solution X ′ of G. When an edge
is removed from G, we also use Algorithm 1 to compute a new 2-approximate
solution.

Lemma 1. Algorithm 1 computes a 2-approximate solution X ′ in O(k2) time,
where k = k(G).

Proof. Let X∗ be a minimum vertex cover of the updated graph. We have |X∗| ≤
|X |. If x /∈ X∗ for some vertex x ∈ X0, N(x) must be contained in X∗. Thus
it holds that |X∗| ≥ |N(x)| = d(x) > |X |, which is a contradiction. Therefore,
it holds that X0 ⊆ X∗. At line 7 of Algorithm 1, V ′ equals to N [X \X0] \X0.
Thus we have:

(1) X∗ \X0 is a vertex cover of G[V ′] because X0 ∩ V ′ = ∅ and X∗ is a vertex
cover of G, and

(2) any vertex cover of G[V ′] together with X0 covers all edges in G because all
edges not in G[V ′] are covered by X0.

Putting (1) and (2) together, we can prove that X∗ \X0 is a minimum vertex
cover of G[V ′].

Since Y is a 2-approximate solution on G[V ′] andX∗\X0 is a minimum vertex
cover of G[V ′], we have |Y | ≤ 2|X∗ \ X0|. From (2), X ′ = X0 ∪ Y is a vertex
cover of G. Thus X ′ is a 2-approximate solution because |X ′| = |X0| + |Y | ≤
|X0|+ 2|X∗ \X0| ≤ 2|X∗|.

The size of X is at most 2k + 1, and thus the size of V ′ at line 7 is O(k2).
Moreover, the number of edges in G[V ′] is O(k2) because for each edge in G[V ′],
at least one endpoint lies on X \X0 and the degree of any vertex x in X \X0 is
at most |X |. A 2-approximate solution can be computed in linear time using a
simple greedy algorithm [9]. Thus the total time complexity is O(k2). ��

To answer a query, we use almost the same algorithm as Algorithm 1, but
compute an exact solution at line 7 instead of an approximate solution. The

246 Y. Iwata and K. Oka

validity of the algorithm can be proved by almost the same argument. The
bottleneck part is to compute an exact vertex cover of the graph G[V ′]. Since
the size of the solution is at most k, we can obtain the solution in O(f(k2, k))
time where f(|G|, k(G)) is the time complexity of any algorithm solving Vertex
Cover for a graph G. For example, using the algorithm in [2], we can compute
the solution in O(k3 + 1.2738k) time. We have finished the proof of Theorem 1.

4 Dynamic Graph for Cluster Vertex Deletion

4.1 Problem Definition and Time Complexity

A graph is called cluster graph if every its connected component is a clique, or
equivalently, it contains no induced path with three vertices (P3). Each maximal
clique in a cluster graph is called a cluster. Given a graph, a subset of its vertices
is called a cluster vertex deletion if its removal makes the graph a cluster graph.
Cluster Vertex Deletion is the problem to find a minimum cluster vertex deletion.
We call the size of a minimum cluster vertex deletion as a cluster vertex deletion
number or a cvd number in short.

There is a trivial algorithm to find a 3-approximate solution for Cluster Vertex
Deletion with time complexity O(|E||V |) [12]. The algorithm greedily finds P3

and adds all the vertices on the path to the solution until we obtain a cluster
graph. According to [12], it is still open whether it is possible to improve the
trivial algorithm or not.

Let us now state the main result of this section.

Theorem 2. There is a data structure representing a graph G which supports
the following three operations.

1. Answers the solution for Cluster Vertex Deletion of the current graph G.
2. Add an edge to G.
3. Remove an edge from G.

Let k be the cvd number of G. Then the time complexity of an edge addition or
removal is O(k8 + k2 log |V |), and of a query is O(f(k5, k)), where f(|G|, k) is
the time complexity of any static algorithm for Cluster Vertex Deletion on a graph
of size |G|.

As the static algorithm, we can use an O(2kk9 + |V ||E|)-time algorithm by
Hüffner, Komusiewicz, Moser, and Niedermeier [12] or an O(1.9102k|G|)-time
algorithm by Boral, Cygan, Kociumaka, and Pilipczuk [1].

4.2 Data Structure

We dynamically maintain the variables listed in Table 2. We always keep a 3-
approximate solution X . Each cluster in G[V \X] is assigned a distinct cluster
label. For each cluster label l, Cl is the set of vertices on the cluster having
the label l. We keep the vertex set Cl by using a persistent data structure that

Fast Dynamic Graph Algorithms for Parameterized Problems 247

Table 2. Variables maintained in the algorithm

X 3-approximate solution

Cl for each cluster label l the vertices in the cluster labeled l

lu for each u ∈ V \X label of the cluster that u belongs to

Lx for each x ∈ X {lu | u ∈ N(x) \X}
P+
x,l for each x ∈ X and l ∈ Lx Cl ∩N(x)

P−
x,l for each x ∈ X and l ∈ Lx Cl \N(x)

Fig. 1. An example of a graph and a 3-approximate solution

supports an update in O(log |Cl|) time. One of such data structures is a persistent
red-black tree developed by Driscoll, Sarnak, Sleator and Tarjan [5]. The reason
why the persistent data structure is employed is that it enables us to copy the
set in constant time. For each u ∈ V \X , lu is a label of the cluster u belongs to.
For a vertex x and a cluster, we say that x is incident to the cluster if at least one
vertex in the cluster is incident to x. For each x ∈ X , Lx = {lu | u ∈ N(x) \X}
is the labels of the clusters that x is incident to. For each x ∈ X and l ∈ Lx,
P+
x,l = Cl ∩ N(x) is the set of the neighbors of x in Cl and P−

x,l = Cl \ N(x)
is the set of the non-neighbors of x in Cl. Note that all variables are uniquely
determined when G, X and the labels for all clusters are fixed.

For example, look at the graph depicted in Fig. 1. X = {x, y} is a 3-
approximate solution, and C1 and C2 are clusters. Here, the set of cluster labels
is {1, 2}, la = lb = lc = ld = 1 and le = lf = 2. Lx = {1} and Ly = {1, 2}.
P+
x,1 = {a, c}, P−

x,1 = {b, d}, P+
y,1 = {c}, P−

y,1 = {a, b, d}, P+
y,2 = {e, f} and

P−
y,2 = {}.

4.3 Algorithm

Update Let us explain how to update the data structure when an edge is added
or removed. Before describing the whole algorithm, let us explain subroutines
used in the algorithm. Algorithm 2 is used to add a vertex u in V \X to X , and
Algorithm 3 is to remove a vertex y from X under the condition that X \ {y}

248 Y. Iwata and K. Oka

Algorithm 2. add u ∈ V \X to X

1: l := lu
2: remove u from Cl

3: for all any x ∈ X such that l ∈ Lx do
4: if {x, u} ∈ E then
5: remove u from P+

x,l

6: If P+
x,l becomes empty, remove l from Lx

7: else
8: remove u from P−

x,l

9: add u to X
10: if Cl is still not empty then
11: Lu := {l}
12: copy Cl into P+

u,l

13: P−
u,l := ∅

14: else
15: Lu := ∅

is still a cluster vertex deletion. Given a cluster vertex deletion X , Algorithm 4
computes a 3-approximate solution X ′.

Lemma 2. Algorithm 2 adds a vertex u to X and updates the data structure
correctly in O(|X | logn) time.

Lemma 3. If G[V \ (X \ {y})] is a cluster graph, Algorithm 3 removes a vertex
y from X and updates the data structure correctly in O(|X | log n) time.

Due to the space limitation, the proofs of these two Lemmas are omitted. Please
see the full version [14].

Lemma 4. Algorithm 4 computes a 3-approximate solution in O(|X |8) time.

In order to prove Lemma 4, let us prove Lemma 5 and 6.

Lemma 5. Let V ′ and X0 be the sets computed by Algorithm 4. If S ⊆ V ′ is a
cluster vertex deletion of G[V ′] such that |S| ≤ |X \X0|, then S∪X0 is a cluster
vertex deletion of G.

Proof. Assume that S is not a cluster vertex deletion of G[V \X0]. This implies
that there is an induced P3 in G[(V \X0)\S]. Let x, y be vertices in X \X0 and
u, v be vertices in V \ (X ∪ S). There are four possible types of induced paths:
(1) xuy, (2) xyu, (3) xuv, and (4) uxv. We will rule out all these cases by a case
analysis (see Fig. 2).

(1) Let A = {w ∈ V ′ ∩ Clu | xw ∈ E ∧ yw /∈ E}, B = {w ∈ V ′ ∩ Clu |
xw /∈ E ∧ yw ∈ E} and C = {w ∈ V ′ ∩ Clu | xw ∈ E ∧ yw ∈ E}. By
the construction of V ′, |A| + |C| ≥ |X | + 1 and |B| + |C| ≥ |X | + 1. Thus
min{|A|, |B|} ≥ |X |− |C|+1. Since x, y /∈ S and {x, y} /∈ E, S must contain
C ∪B or C ∪ A. Thus |S| ≥ |X |+ 1, which is a contradiction.

Fast Dynamic Graph Algorithms for Parameterized Problems 249

Algorithm 3. remove y ∈ X from X assuming G[V \ (X \ {y})] is a cluster
graph

1: remove y from X
2: if Ly = ∅ then
3: ly := new label
4: Cly := {y}
5: else
6: |Ly | must be one. Let ly be the unique element in Ly .
7: add y to Cly

8: l := ly
9: for all x ∈ X such that l ∈ Lx do
10: if {x, y} ∈ E then add y to P+

x,l

11: else add y to P−
x,l

12: for all x ∈ X such that y ∈ N(x) and l /∈ Lx do
13: add l to Lx

14: P+
x,l := {y}

15: copy Cl into P−
x,l and remove y from P−

x,l

Algorithm 4. compute a new 3-approximate solution X ′

1: V ′ := ∅
2: X0 := ∅
3: for all x ∈ X do
4: if |Lx| > |X|+ 1 then
5: add x to X0

6: else
7: add x to V ′

8: for all l ∈ Lx do
9: take min(|P+

x,l|, |X|+ 1) vertices from P+
x,l, and add them to V ′

10: take min(|P−
x,l|, |X|+ 1) vertices from P−

x,l, and add them to V ′

11: Y := 3-approximate cluster vertex deletion of G[V ′]
12: if |Y | > |X \X0| then X ′ := X
13: else X ′ := X0 ∪ Y

(2) Let A = {w ∈ V ′ ∩ Clu | xw /∈ E ∧ yw /∈ E}, B = {w ∈ V ′ ∩ Clu |
xw ∈ E ∧ yw ∈ E} and C = {w ∈ V ′ ∩ Clu | xw /∈ E ∧ yw ∈ E}. By
the construction of V ′, |A| + |C| ≥ |X | + 1 and |B| + |C| ≥ |X | + 1. Thus
min{|A|, |B|} ≥ |X |− |C|+1. Since x, y /∈ S and {x, y} ∈ E, S must contain
C ∪B or C ∪ A. Thus |S| ≥ |X |+ 1, which is a contradiction.

(3) Since |S| ≤ |X |, there is a vertex u′ ∈ (V ′ ∩ Clu) \ S such that {x, u′} ∈ E
and a vertex v′ ∈ (V ′∩Clu)\S such that {x, v′} /∈ E. However it contradicts
the fact that G[V ′ \ S] contains no induced P3.

(4) Since |S| ≤ |X |, there is a vertex u′ ∈ (V ′ ∩ Clu) \ S such that {x, u′} ∈ E
and a vertex v′ ∈ (V ′∩Clv)\S such that {x, v′} ∈ E. However it contradicts
the fact that G[V ′ \ S] contains no induced P3. ��

250 Y. Iwata and K. Oka

Fig. 2. Case analysis in the proof of Lemma 5. A dotted line denotes there is no edge(s)

Lemma 6. Let V ′ and X0 be the sets computed by Algorithm 4. For any cluster
vertex deletion T of G such that |T | ≤ |X |, the following hold:

1. T contains X0,
2. T ∩ V ′ is a cluster vertex deletion of G[V ′].

Proof. First, let us prove that T contains X0. Assume there exists x ∈ X0 \ T .
Since |Lx|, the number of adjacent clusters of x, is more than |X |+1, in order to
avoid induced P3, T must contain at least |Lx| − 1 > |X | vertices from adjacent
clusters. It contradicts the fact that |T | ≤ |X |. Thus, T contains X0, and so
T \X0 is a cluster vertex deletion of G[V \X0].

Since G[V \ T] is a cluster graph, its induced subgraph G[V ′ \ T] is also a
cluster graph. Thus T ∩ V ′ is a cluster vertex deletion of G[V ′]. ��

Proof (of Lemma 4). Let X∗ be a minimum cluster vertex deletion. Since X
is a cluster vertex deletion, we have |X∗| ≤ |X |. By Lemma 6, it holds that
X0 ⊆ X∗, and X∗ \X0 is a cluster vertex deletion of G[V ′]. X∗ \X0 is actually
a minimum cluster vertex deletion of G[V ′], because otherwise there is a cluster
vertex deletion S of G[V ′] such that |S| < |X∗ \ X0| ≤ |X \ X0|, but then by
Lemma 5, S ∪X0 becomes a cluster vertex deletion of G of size less than |X∗|,
which is a contradiction.

If the size of the set Y computed at line 11 is larger than |X \ X0|, the set
X remains a 3-approximate solution. Otherwise, from Lemma 5, Y ∪ X0 is a
cluster vertex deletion of G. Since Y is a 3-approximate solution and X∗ \X0 is
a minimum cluster vertex deletion of G[V ′], we have

|Y ∪X0| ≤ 3|X∗ \X0|+ |X0| ≤ 3|X∗|. (1)

Thus, X ′ = Y ∪X0 is a 3-approximate solution on G.
The claimed time complexity is obtained as follows. The size of V ′ at line 11

is at most 2|X |(|X |+1)2 = O(|X |3). The number of edges in the graph G[V ′] is
maximized when G[V ′ \X] is composed of |X |+1 cliques with size |X |(|X |+1).
Thus the number of edges is at most |X |2(|X | + 1)3 = O(|X |5). Thus, a 3-
approximate solution can be computed in O(|X |8) time using the trivial algo-
rithm described in Section 4.1, and thus the claimed time complexity holds. ��

Fast Dynamic Graph Algorithms for Parameterized Problems 251

Now we are ready to describe how to update the data structure when an edge is
modified. To add (remove) an edge {u, v} to (from) a graph G, before modifying
G, we add u and v toX one by one using Algorithm 2 unless the vertex is already
in X . After the operation, we add (remove) the edge {u, v} ⊆ X to (from) G.
Note that this operation does not affect any variables in our data structure. Now
X is a cluster vertex deletion but may no longer be a 3-approximate solution.
Then we compute a new 3-approximate solution X ′ using Algorithm 4.

Finally we replace X by X ′ as follows. Let R be X \ X ′ and R′ be X ′ \X .
We begin with adding every vertex in R′ to X one by one using Algorithm 2.
Then we remove every vertex in R from X one by one using Algorithm 3, and
finish the replacement. During the process, X is always a cluster vertex deletion
of the graph, and thus the assumption of Algorithm 3 is satisfied.

Let k be the maximum of the cvd numbers before and after the edge mod-
ification. During the above process, the size of X is increased to at most 6k.
Algorithm 4 is called only once, and Algorithm 2 and 3 are called O(k) times.
Thus together with Lemma 2, 3 and 4, the update time is O(k8 + k2 log n).

Query Let us explain how to answer a query. To compute a minimum clus-
ter vertex deletion X ′, we use almost the same algorithm as Algorithm 4, but
compute an exact solution Y at line 11 instead of an approximate solution. The
validity of the algorithm can be proved by almost the same argument. The bot-
tleneck of the algorithm is to compute a minimum cluster vertex deletion of
the graph G[V ′]. Since the number of edges in G[V ′] is O(k5) as noted in the
proof of Lemma 4, using an O(f(|G|, k))-time static algorithm for Cluster Vertex
Deletion, we can obtain the solution in O(f(k5, k)) time. For example, using the
algorithm in [2], we can compute the solution in O(1.9102kk5) time.

Acknowledgement. Yoichi Iwata is supported by Grant-in-Aid for JSPS Fel-
lows (256487). Keigo Oka is supported by JST, ERATO, Kawarabayashi Large
Graph Project.

References

1. Boral, A., Cygan, M., Kociumaka, T., Pilipczuk, M.: Fast branching algorithm for
cluster vertex deletion. CoRR, abs/1306.3877 (2013)

2. Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theor.
Comput. Sci. 411(40-42), 3736–3756 (2010)

3. Demetrescu, C., Italiano, G.F.: Fully dynamic transitive closure: Breaking through
the o(n2) barrier. In: FOCS, pp. 381–389 (2000)

4. Demetrescu, C., Italiano, G.F.: A new approach to dynamic all pairs shortest paths.
In: STOC, pp. 159–166 (2003)

5. Driscoll, J.R., Sarnak, N., Sleator, D.D., Tarjan, R.E.: Making data structures
persistent. J. Comput. Syst. Sci. 38(1), 86–124 (1989)

6. Dvorak, Z., Kupec, M., Tuma, V.: Dynamic data structure for tree-depth decom-
position. CoRR, abs/1307.2863 (2013)

252 Y. Iwata and K. Oka

7. Dvořák, Z., Tůma, V.: A dynamic data structure for counting subgraphs in sparse
graphs. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013. LNCS,
vol. 8037, pp. 304–315. Springer, Heidelberg (2013)

8. Eppstein, D., Galil, Z., Italiano, G.F., Nissenzweig, A.: Sparsification-a technique for
speeding up dynamic graph algorithms (extended abstract). In: FOCS, pp. 60–69
(1992)

9. Gary, M.R., Johnson, D.S.: Computers and intractability: A guide to the theory
of np-completeness (1979)

10. Henzinger, M.R., King, V.: Randomized dynamic graph algorithms with polyloga-
rithmic time per operation. In: STOC, pp. 519–527 (1995)

11. Holm, J., de Lichtenberg, K., Thorup, M.: Poly-logarithmic deterministic fully-
dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and bicon-
nectivity. J. ACM 48(4), 723–760 (2001)

12. Hüffner, F., Komusiewicz, C., Moser, H., Niedermeier, R.: Fixed-parameter algo-
rithms for cluster vertex deletion. Theory Comput. Syst. 47(1), 196–217 (2010)

13. Italiano, G.F., Poutré, J.A.L., Rauch, M.H.: Fully dynamic planarity testing in
planar embedded graphs (extended abstract). In: Lengauer, T. (ed.) ESA 1993.
LNCS, vol. 726, pp. 212–223. Springer, Heidelberg (1993)

14. Iwata, Y., Oka, K.: Fast dynamic graph algorithms for parameterized problems
(2014) (manuscript)

15. Patrascu, M., Demaine, E.D.: Lower bounds for dynamic connectivity. In: STOC,
pp. 546–553 (2004)

16. Poutré, J.A.L.: Alpha-algorithms for incremental planarity testing (preliminary
version). In: STOC, pp. 706–715 (1994)

17. Protti, F., da Silva, M.D., Szwarcfiter, J.L.: Applying modular decomposition to
parameterized cluster editing problems. Theory Comput. Syst. 44(1):91–104 (2009)

18. Roditty, L.: A faster and simpler fully dynamic transitive closure. In: SODA,
pp. 404–412 (2003)

19. Roditty, L., Zwick, U.: Improved dynamic reachability algorithms for directed
graphs. In: FOCS, pp. 679– (2002)

20. Roditty, L., Zwick, U.: Dynamic approximate all-pairs shortest paths in undirected
graphs. In: FOCS, pp. 499–508 (2004)

21. Roditty, L., Zwick, U.: A fully dynamic reachability algorithm for directed graphs
with an almost linear update time. In: STOC, pp. 184–191 (2004)

22. Roditty, L., Zwick, U.: On dynamic shortest paths problems. In: Albers, S., Radzik,
T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 580–591. Springer, Heidelberg (2004)

23. Sankowski, P.: Dynamic transitive closure via dynamic matrix inverse (extended
abstract). In: FOCS, pp. 509–517 (2004)

24. Thorup, M.: Near-optimal fully-dynamic graph connectivity. In: STOC, pp. 343–350
(2000)

25. Thorup, M.: Fully-dynamic all-pairs shortest paths: Faster and allowing nega-
tive cycles. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111,
pp. 384–396. Springer, Heidelberg (2004)

26. Thorup, M.: Worst-case update times for fully-dynamic all-pairs shortest paths.
In: STOC, pp. 112–119 (2005)

27. Wulff-Nilsen, C.: Faster deterministic fully-dynamic graph connectivity. In: SODA,
pp. 1757–1769 (2013)

Extending Partial Representations

of Proper and Unit Interval Graphs�

Pavel Klav́ık1, Jan Kratochv́ıl2, Yota Otachi3, Ignaz Rutter4,2,
Toshiki Saitoh5, Maria Saumell6, and Tomáš Vyskočil2

1 Computer Science Institute, Faculty of Mathematics and Physics,
Charles University in Prague, Czech Republic

klavik@iuuk.mff.cuni.cz
2 Department of Applied Mathematics, Faculty of Mathematics and Physics,

Charles University in Prague, Czech Republic
{honza,whisky}@kam.mff.cuni.cz
3 School of Information Science,

Japan Advanced Institute of Science and Technology, Japan
otachi@jaist.ac.jp

4 Institute of Theoretical Informatics, Faculty of Informatics,
Karlsruhe Institute of Technology (KIT), Germany

rutter@kit.edu
5 Graduate School of Engineering, Kobe University, Kobe, Japan

saitoh@eedept.kobe-u.ac.jp
6 Department of Mathematics, University of West Bohemia,

Plzeň, Czech Republic
saumell@kma.zcu.cz

Abstract. The recently introduced problem of extending partial inter-
val representations asks, for an interval graph with some intervals pre-
drawn by the input, whether the partial representation can be extended
to a representation of the entire graph. In this paper, we give a linear-time
algorithm for extending proper interval representations and an almost
quadratic-time algorithm for extending unit interval representations.

We also introduce the more general problem of bounded representa-
tions of unit interval graphs, where the input constrains the positions
of intervals by lower and upper bounds. We show that this problem is
NP-complete for disconnected input graphs and give a polynomial-time
algorithm for a special class of instances, where the ordering of the con-
nected components of the input graph along the real line is fixed. This
includes the case of partial representation extension.

The hardness result sharply contrasts the recent polynomial-time algo-
rithm for bounded representations of proper interval graphs [Balko et al.
ISAAC’13]. So unless P = NP, proper and unit interval representations
have very different structure. This explains why partial representation
extension problems for these different types of representations require
substantially different techniques.

� For the full version of this paper, see arXiv:1207.6960.

R Ravi and I.L. Gørtz (Eds.): SWAT 2014, LNCS 8503, pp. 253–264, 2014.
c© Springer International Publishing Switzerland 2014

254 P. Klav́ık et al.

1 Introduction

Geometric intersection graphs, and in particular intersection graphs of objects in
the plane, have gained a lot of interest for their practical motivations, algorithmic
applications, and interesting theoretical properties. Undoubtedly the oldest and
the most studied among them are interval graphs (INT), i.e., intersection graphs
of intervals on the real line. They were introduced by Hájos [13] in the 1950’s
and the first polynomial-time recognition algorithm appeared already in the
early 1960’s [12]. Several linear-time algorithms are known, see [4,9].

Only recently, the following natural generalization of the recognition problem
has been considered [18]. The input of the partial representation extension prob-
lem consists of a graph and a part of the representation and it asks whether it
is possible to extend this partial representation to a representation of the en-
tire graph. Klav́ık et al. [18] give a quadratic-time algorithm for interval graphs
and a cubic-time algorithm for proper interval graphs. (For interval graphs the
problem can be solved in linear time [3,17].) There are also polynomial-time al-
gorithms for function and permutation graphs [15] as well as for circle graphs [6].
Chordal graph representations (intersection graphs of subtrees in a tree) [16] and
intersection representations of planar graphs [5] are mostly hard to extend. For
related simultaneous representation problems see [3,14].

In this paper, we extend the line of research on partial representation extension
problems of proper interval graphs and unit interval graphs. Although it is well
known that these graph classes are identical [20], the representation extension
problems differ substantially. This is due to the fact that for proper interval
graphs, in whose representations no interval is a proper subset of another interval,
the extension problem is essentially topological and can be treated in a purely
combinatorial manner. On the other hand, unit interval representations, where
all intervals have length one, are inherently geometric, and the corresponding
algorithms have to take geometric constraints into account.

It has been observed in other contexts that geometric problems are some-
times more difficult than the corresponding topological problems. For example,
the partial drawing extension of planar graphs is linear-time solvable [1] for topo-
logical drawing but NP-hard for straight-line drawings [19]. Together with the
result of Balko et al. [2] our results show that a generalization of partial represen-
tation extension exhibits this behavior already in 1-dimensional geometry. The
bounded representation problem is polynomial-time solvable for proper interval
graphs [2] and NP-complete for unit interval graphs.

Intersection Representations and Interval Graphs. For a graph G, an
intersection representation R is a collection of sets {Ru : u ∈ V (G)} such that
Ru ∩ Rv �= ∅ if and only if uv ∈ E(G); so the edges of G are encoded by
intersections of the sets. In an interval representation each Ru is a closed interval
of the real line. A graph is an interval graph if it has an interval representation.
We denote the corresponding class of graphs by INT.

We consider two subclasses of interval representations. An interval represen-
tation is proper if no interval is a proper subset of another interval (meaning
Ru ⊆ Rv implies Ru = Rv). An interval representation is unit if the length of

Extending Partial Representations of Proper and Unit Interval Graphs 255

a b c

(b)
a

b

c

R′

PROPER INT = UNIT INT

PROPER INT R UNIT INT R
(a)

f

Fig. 1. (a) Relation of the representations and graph classes studied in this paper. The
denoted mapping f assigns to a representation the corresponding intersection graph.
Roberts’ Theorem [20] states that f restricted to unit interval representations is surjec-
tive. (b) A partial representation that is extendable as a proper interval representation,
but not extendable as a unit interval representation.

each interval is 1. The classes of graphs admitting proper and unit interval rep-
resentations are called proper interval graphs (PROPER INT) and unit interval
graphs (UNIT INT), respectively. Note that every unit interval representation
is also a proper interval representation, and hence UNIT INT ⊆ PROPER INT.
It is a well-known fact that indeed equality holds (Roberts’ Theorem [20]); see
Fig. 1a for an illustration of the relation between the graph classes and their
representations studied in this paper.

In an interval representation R = {Rv : v ∈ V (G)}, we denote the left
and right endpoint of the interval Rv by �v and rv, respectively. For numbered
vertices v1, . . . , vn, we denote these endpoints by �i and ri. Note that several
intervals may share an endpoint in a representation. When working with multiple
representations, we denote the other one by R′ with intervals R′

v = [�′v, r
′
v].

Partial Representation Extension and Bounded Representations. The
recognition problem of a class C asks whether an input graph belongs to C, i.e.,
whether it admits a specific type of representation. We study two generalizations
of this problem: The partial representation extension problem, introduced in [18],
and a new problem called the bounded representation problem.

A partial representation R′ of G is a representation of an induced subgraph
G′ of G. A vertex in V (G′) is called pre-drawn. A representation R extends R′

if Ru = R′
u for each u ∈ V (G′).

Problem: RepExt(C) (Partial Representation Extension of C)
Input: Graph G with partial representation R′.

Output: Does G have a representation R that extends R′?

Even though PROPER INT = UNIT INT, the problems RepExt(PROPER INT)
and RepExt(UNIT INT) behave very differently; see Fig. 1b for an example.

Observe that RepExt(UNIT INT) completely prescribes the representation
of the pre-drawn vertices and leaves the representation of the remaining vertices
unrestricted. Thus the problem where the position of the interval for each ver-
tex vi is restricted by upper and lower bounds lbound(vi) and ubound(vi) is a
strict generalization. A representation R is called a bounded representation if
lbound(vi) ≤ �i ≤ ubound(vi) for each vertex vi.

256 P. Klav́ık et al.

Problem: BoundRep (Bounded Representation of UNIT INT)
Input: Graph G, rational numbers lbound(vi), ubound(vi) for vi ∈ V (G).

Output: Does G have a bounded unit interval representation?

The bounded representation problem can be considered also for interval
graphs and proper interval graphs, where the left and right endpoints of the
intervals can be restricted individually. A recent paper of Balko et al. [2] proves
that this problem is polynomially solvable for these classes. Note that for unit
intervals, it suffices to restrict the left endpoint since ri = �i + 1.

Contribution and Outline. In this paper we present five results. The first
is a simple linear-time algorithm for RepExt(PROPER INT), improving over a
previous O(nm)-time algorithm [18]; it is based on known characterizations.

Theorem 1. RepExt(PROPER INT) can be solved in time O(n+m).

Second, we give a reduction from the strongly NP-complete problem 3-

Partition to show that BoundRep is NP-complete for disconnected graphs.
The main idea is that prescribed intervals partition the real line into gaps of
fixed width. Integers are encoded in connected components whose unit interval
representations require a certain width. By suitably choosing the lower and up-
per bounds, we enforce that the connected components have to be placed inside
the gaps such that they do not overlap.

Theorem 2. BoundRep is NP-complete.

Third, in Section 3, we give a relatively simple quadratic-time algorithm for
the special case of BoundRep where the order of the connected components
along the real line is fixed. We formulate this problem as a sequence of linear
programs (LPs), and we show that each LP reduces to a shortest-path problem,
which we solve with the Bellmann-Ford algorithm [7, Chapter 24.4].

The running time is O(n2r + nD(r)), where r is the total encoding length
of the bounds in the input, and D(r) is the time required for multiplying or
dividing two numbers whose binary representation has length r. This is due to
the fact that the numbers specifying the upper and lower bounds for the intervals
can be quite close to each other, requiring that the corresponding rationals have
an encoding that is super-polynomial in n. Clearly, two binary numbers whose
representations have length r can be added in O(r) time, explaining the term
of O(n2r) in the running time. However, using Bellmann-Ford for solving the
LP requires also the comparison of rational numbers. To be able to do this
efficiently, we convert the rational numbers to a common denominator. Hence,
the multiplication cost D(r) enters the running time. The best known algorithm
achieves D(r) = O(r log r2log∗ r) [11].

Fourth, in Section 4, we show how to reduce the dependency on r to obtain
a running time of O(n2 + nD(r)), which may be beneficial for instances with
bounds that have a long encoding.

Theorem 3. BoundRep with a prescribed ordering � of the connected com-
ponents can be solved in time O(n2 + nD(r)), where r is the size of the input
describing bound constraints.

Extending Partial Representations of Proper and Unit Interval Graphs 257

Our algorithm performs O(n2) combinatorial iterations, each taking time O(1).
The additional time O(nD(r)) is used for arithmetic operations with the bounds.

Finally, we note that every instance of RepExt(UNIT INT) is an instance
of BoundRep. In Section 5, we show how to derive for these special instances
a suitable ordering � of the connected components, resulting in an efficient
algorithm for RepExt(UNIT INT).

Theorem 4. RepExt(UNIT INT) can be solved in time O(n2 + nD(r)), where
r is the size of the input describing positions of pre-drawn intervals.

All the algorithms described in this paper are also able to certify the ex-
tendibility by constructing the required representations. Many proofs and details
are omitted and placed in the full version.

2 Preliminaries and Proper Interval Graphs

As usual, we reserve n for the number of vertices and m for the number of edges
of the graph G. We denote the set of vertices by V (G) and the set of edges by
E(G). For a vertex v, we define N [v] = {x : vx ∈ E(G)} ∪ {v}. We assume that
G contains no two vertices u and v such that N [u] = N [v]. In the full version
of the paper, we show that our algorithms can be modified to handle also the
occurrence of such indistinguishable vertices.

Unique Ordering. In each proper interval representation, intervals are uniquely
ordered from left to right. This ordering < is the order of the left endpoints and
at the same time the order of the right endpoints. Deng et al. [10] proved:

Lemma 5 (Deng et al.). For a connected proper/unit interval graph, the left-
to-right ordering < is uniquely determined up to reordering groups of indistin-
guishable vertices and complete reversal.

Such an ordering can be computed in linear time [8]. In particular, if there are
no indistinguishable vertices, the ordering < is uniquely determined up to rever-
sal. On the other hand, a partial representation R′ induces a partial order <R′

of the vertices of the input graph. It essentially remains to check whether the
ordering < or its reversal extends the ordering <R′

. This leads to a characteriza-
tion of the extendible instances of RepExt(PROPER INT) and the linear-time
algorithm of Theorem 1; for details, see full version.

Representations in ε-Grids. For a value ε = 1
K , where K is an integer, the

ε-grid is the set of points {kε : k ∈ Z}. For a given instance of BoundRep, we
ask which value of ε ensures that we can construct a representation having all
endpoints on the ε-grid.

For the standard unit interval graph representation problem a grid of size 1
n

is sufficient [8]. In the case of BoundRep, consider all values lbound(vi) and
ubound(vi) distinct from −∞,+∞, and express them as irreducible fractions
p1

q1
, p2

q2
, · · · , pb

qb
. Using lcm(·) to denote the least common multiple, we define:

ε′ :=
1

lcm(q1, q2, . . . , qb)
, and ε :=

ε′

n
. (1)

258 P. Klav́ık et al.

LS
ε′-grid

RS
ε-grid

Fig. 2. In the first step, we shift intervals to the left to the ε′-grid. The left shifts of
v1, . . . , v5 are (0, 0, 1

2
ε′, 1

3
ε′, 0). In the second step, we shift to the right in the refined

ε-grid. Right shifts have the same relative order as left shifts: (0, 0, 2ε, ε, 0).

We show that an ε-grid is sufficient to construct the bounded representation:

Lemma 6. If there exists a valid representation R′ for an input of the problem
BoundRep, there exists a valid representation R in which all intervals have
endpoints on the ε-grid, where ε is defined by equation (1).

Proof (Sketch). We construct an ε-grid representation R from R′ in two steps.
First, we shift intervals to the left, and then we shift intervals slightly back to
the right. The shifting process is shown in Fig. 2.

The left-shift moves each interval to the left to the closest ε′-grid point. By
this, intersections are not removed but new intersections might be introduced
(but only in the form of touching pairs of intervals). The right-shift fixes these
touching pairs. It is a mapping, RS : {v1, . . . , vn} → {0, ε, 2ε, . . . , (n − 1)ε},
having the right-shift property: For all pairs (vi, vj) with ri = �j, RS(vi) ≥ RS(vj)
if and only if vivj ∈ E. This mapping can be constructed from the reversal of
the left-shift. It is easy to see that the constructed representation is correct and
satisfies the bounds. ��

3 LP Algorithm for BoundRep with Prescribed Order

We describe how to solve BoundRep in polynomial time for a prescribed or-
dering � of the components using linear programming. According to Lemma 5,
the vertices of each component of G can be ordered in at most two different
ways. We cannot arbitrarily choose one of the orderings, since neighboring com-
ponents restrict each other’s space. In the algorithm, we process components
C1 � C2 � · · · � Cc from left to right. For each component Ct, we calculate the
ordering < and its reversal using the algorithm of Corneil et al. [8].

We have two orderings < for Ct, and we solve one linear program for each
of them. Let v1 < v2 < · · · < vk be one of these orderings. We denote the
right-most endpoint of a representation of a component Ct by Et. Additionally,
we define E0 = −∞. Also, we modify all lower bounds by putting lbound(vi) =
max

{
lbound(vi), Et−1 + ε

}
for every interval vi, which forces the representation

of Ct to be on the right of the previously constructed representation of Ct−1.
The linear program has variables �1, . . . , �k, and we minimize the value of Et.
Let ε be defined as in (1). We solve:

Extending Partial Representations of Proper and Unit Interval Graphs 259

Minimize: Et := �k + 1,

subject to: �i ≤ �i+1, ∀i = 1, . . . , k − 1, (2)

�i ≥ lbound(vi), ∀i = 1, . . . , k, (3)

�i ≤ ubound(vi), ∀i = 1, . . . , k, (4)

�i ≥ �j − 1, ∀vivj ∈ E, vi < vj , (5)

�i + ε ≤ �j − 1, ∀vivj /∈ E, vi < vj . (6)

We solve the same linear program for the other ordering of the vertices of Ct.
If none of the two programs is feasible, we report that no bounded representation
exists. If at least one of them is feasible, we take the solution minimizing Et.

Proposition 7. The BoundRep problem with prescribed ordering � of con-
nected components can be solved in polynomial time.

This linear program can easily be transformed into a system of difference
constraints, which can be solved in time O(k2r+kD(r)) by computing minimum-
weight shortest paths in a directed graph using the Bellman-Ford algorithm [7,
Chapter 24.4]. The result of the next section improves the time complexity for
BoundRep to O(k2 + kD(r)).

4 Shifting Algorithm for BoundRep with Fixed Ordering

The goal of this section is to prove Theorem 3. We solve the linear program
described in Section 3 by a combinatorial algorithm based on shifting of intervals.

Suppose that we ignore upper bound constraints (4) for a second and we
want to find any solution satisfying the remaining constraints of the program.
It is easy to construct such a solution, since we can construct any unit interval
representation using [8], and then shift this representation enough to the right.
The shifting algorithm modifies this initial representation by a series of shifts,
and thus constructs an optimal solution of the linear program.

4.1 Structural Properties of Unit Interval Representations

We assume that the unit interval graph is connected. Also, we assume that one
left-to-right ordering < of the intervals is prescribed. Let Rep denote the set of
all ε-grid representations in the ordering < satisfying the lower bounds. As we
already discussed, this set is non-empty.

There is a natural partial ordering of these representations: For R,R′ ∈ Rep,
we say that R ≤ R′ if and only if �i ≤ �′i for every interval vi ∈ V (G).

Semilattice Structure. The poset (Rep,≤) is a (meet)-semilattice:

Lemma 8. Every non-empty S ⊆ Rep has an infimum inf(S).

260 P. Klav́ık et al.

The infimum R has �i = min{�′i : R′ ∈ S} for every vi ∈ V (G). We prove in the
full version that R is the infimum and belongs to Rep.

We call the infimum inf(Rep) the left-most representation. Clearly, if this rep-
resentation satisfies the upper bound constraints, then it is an optimal solution
of the linear program. On the other hand, one can easily prove that there exists a
representation R′ satisfying both lower and upper bound constraints if and only
if the left-most representation satisfies the upper bound constraints. Therefore,
we can solve the linear program by constructing the left-most representation.

Left-Shifting of Intervals. Suppose that we construct some initial ε-grid rep-
resentation that is not the left-most representation. We want to transform this
initial representation in Rep into the left-most representation by applying the
following simple operation called left-shifting. The left-shifting operation shifts
one interval of the representation by ε to the left such that this shift maintains
the correctness of the representation. The main result of this subsection is the
following proposition whose proof is in the full version.

Proposition 9. For ε = 1
K and K ≥ n

2 , an ε-grid representation R ∈ Rep is
the left-most representation if and only if it is not possible to shift any single
interval to the left by ε while maintaining correctness of the representation.

An interval vi is called fixed if it is in the left-most position and cannot be
ever shifted more to the left, i.e., �i = min{�′i : R′ ∈ Rep}. For example, it is
fixed if �i = lbound(vi). A representation is the left-most representation if and
only if every interval is fixed.

An interval vi, having �i ≥ lbound(vi) + ε, can be shifted to the left by ε
if it does not make the representation incorrect, and the incorrectness can be
obtained in two ways. First, there could be some interval vj such that vj < vi,
vivj /∈ E(G), and �j +1+ε = �i; we call vj a left obstruction of vi. Second, there
could be some interval vj such that vi < vj , vivj ∈ E(G), and �i + 1 = �j (so vi
and vj are touching); then we call vj a right obstruction of vi. In both cases, we
first need to move vj before moving vi.

Since N [u] �= N [v] for each u and v, �u �= �v in every representation. Therefore
each vertex has at most one obstruction of each type, and these obstructions are
always the same: If vi has a left obstruction, it is the first non-neighbor of vi on
the left. If vi has a right obstruction, it is the right-most neighbor of vi.

Position Cycle. For each interval in some ε-grid representation with ε = 1
K ,

we can write its position in the form �i = αi + βiε, where αi ∈ Z, βi ∈ ZK .
We can depict ZK = {0, . . . ,K − 1} as a cycle with K vertices where the value
decreases clockwise. The value βi assigns to each interval vi one vertex of the
cycle. Together with placed vi’s, we call this the position cycle.

The position cycle allows us to visualize and work with left-shifting very in-
tuitively. When an interval vi is shifted by ε to the left, βi is cyclically decreased
by one, so it is moving clockwise along the cycle. If vj is the left obstruction of
vi, then βj = βi− 1; if vj is the right obstruction of vi, then βi = βj . So in both
cases βj has to be very close to βi. For an illustration, see Fig. 3.

Extending Partial Representations of Proper and Unit Interval Graphs 261

−

β1
β2

β3
β4

β5

β6

− −

β1
β2

β3
β4

β5

β6

−

Fig. 3. Examples of position cycles. In the cycle on the left, we can shift β2 in clockwise
direction towards β6, which gives a new representation whose position cycle is depicted
on the right. We note that after left-shifting, v6 is not necessarily an obstruction of v2.

4.2 The Shifting Algorithm

The shifting algorithm we describe here solves the linear program of Section 3
in time O(k2 + kD(r)), where k is the number of vertices of the component and
r is the size of the input describing bounds of the component. The left-to-right
order < of the vertices is given.

Overview. The algorithm works in three basic steps:

(1) Construct an initial ε-grid representation (in the ordering <) having �i ≥
lbound(vi) for all intervals, using the algorithm of Corneil et al. [8].

(2) Shift intervals to the left while maintaining correctness of the representation
until the left-most representation is constructed, using Proposition 9.

(3) Check whether the left-most representation satisfies the upper bounds. If
so, this representation satisfies all bound constraints and solves the linear
program of Section 3. Otherwise, no representation satisfying all bound con-
straints exists, and thus the linear program has no solution.

Input Size. Since ε can be very small, we do not operate with precise positions
on the ε-grid. Instead, we position the intervals on a larger Δ-grid, Δ = 1

n2 , and
shift them there. Only when some interval becomes fixed, its precise position
on the ε-grid is calculated. This allows to reduce the time complexity from
O(k2D(r)) to O(k2 + kD(r)). Technical details are in the full version.

Left-Shifting. We deal separately with fixed and unfixed intervals. Unfixed
intervals are on the Δ-grid and fixed intervals have precise positions calculated
on the ε-grid. We place only unfixed intervals on the position cycle (for the
Δ-grid).

We shift unfixed intervals by using gaps in the position cycle: When we shift
interval vi from �i to �′i, we decrease βi to β� + 1, where β� is the first βj we
encounter when we move clockwise from βi. We also check whether this shift is
valid with respect to fixed intervals and the lower bound constraint. The interval
vi can become fixed in two ways: Either �′i ≤ lbound(vi) or there is some fixed
obstruction vj to which vi is shifted (for a left obstruction �′i ≤ �j + 1 + ε,
for a right obstruction �′i ≤ �j − 1). All this can be checked in O(1) time. If
vi becomes fixed, it is removed from the position cycle and its position on the
ε-grid is calculated.

262 P. Klav́ık et al.

−

β1

β4

β5 β2

β3
−

β1β4

β5 β2

β3
−

β1β4β5

β2

β3
−

β1β4β5

β3
−

β1β4β5β3

Fig. 4. The position cycle during the first phase, changing from left to right. The first
phase clusters the βi’s by moving β4, β5, β2 and β3 towards β1. When v2 is shifted, v2
becomes fixed and β2 disappears from the position cycle.

Initial Representation. We start with an initial Δ-grid representation satis-
fying all lower bounds such that �i ≤ lbound(vi)+Δ for at least one interval vi.
Then every other interval can be shifted in total by distance at most O(k) from
the initial position, since the component is connected.

To obtain the initial representation, we use the algorithm in [8], which places
the intervals in such a way that βi’s are positioned equidistantly in the position
cycle; refer to the left-most position cycle in Fig. 4.

Shifting Phases. The shifting of unfixed intervals proceeds in two phases:

– The first phase creates one big gap by clustering all βi’s in one part of the
cycle. To do so, we shift intervals in the order given by the position cycle. Of
course, some intervals might become fixed and disappear from the position
cycle. We obtain one big gap of size at least n(n− 1). Again, refer to Fig. 4.

– In the second phase, we use this big gap to shift intervals one by one, which
also moves the cluster along the position cycle. Again, if some interval be-
comes fixed, it is removed from the position cycle. The second phase finishes
when each interval becomes fixed and the left-most representation is con-
structed. For an example, see Fig. 5.

Putting Everything Together. We are ready to prove that BoundRep with
a prescribed ordering � can be solved in time O(n2 + nD(r)):

Proof (Theorem 3, sketch). We process the components C1 � · · · � Cc from left
to right, and for each component we solve two LPs using the shifting algorithm
described above. To solve the LPs, we construct the left-most representation.

−

β1β4β5β3

−

β4β5β3
β1

−

β5β3
β1

· · · −

Fig. 5. The position cycle during the second phase, changing from left to right. We
shift βi’s across the big gap till all βi’s disappear.

Extending Partial Representations of Proper and Unit Interval Graphs 263

By Proposition 9 the algorithm stops when each interval is fixed, and it indeed
constructs the left-most representation. As already argued, for this representa-
tion it is sufficient to check the upper bounds.

Concerning complexity, each interval is shifted by distance at most k. The first
phase performs O(k) shifts. In the second phase, each interval is shifted by at
least n−1

n unless it becomes fixed. So in total, the second phase performs O(k2)
shifts. Each shift can be implemented in time O(1) unless the interval becomes
fixed. We need additional time O(kD(r)) for precomputation and to compute
exact positions on the ε-grid every time an interval becomes fixed. Thus the
total time per component is O(k2 + kD(r)) and we get O(n2 + nD(r)) for the
entire graph. ��

5 Extending Unit Interval Representations

We show that RepExt(UNIT INT) is a particular instance of BoundRep where
the ordering� of the components is known, i.e., it can be solved using Theorem 3.

Unlike the recognition problem, RepExt cannot generally be solved inde-
pendently for connected components. A connected component C of G is called
located if it contains at least one pre-drawn interval, and unlocated otherwise.

Let R be any interval representation. For each component C,
⋃

u∈C Ru is a
connected segment of the real line and for different components we get disjoint
segments. These segments are ordered from left to right, giving a linear ordering
� of the components.

Proof (Theorem 4). The graph G contains located and unlocated components.
Unlocated components can be placed far to the right and we can deal with them
using a standard recognition algorithm.

Concerning located components C1, . . . , Cc, they have to be ordered from left
to right according to the left-to-right ordering of the pre-drawn intervals (oth-
erwise the problem has no solution). This gives the required ordering �. We
straightforwardly construct the instance of BoundRep with this � as follows.
For each pre-drawn interval vi at position �i, we put lbound(vi) = ubound(vi) =
�i. For the rest of intervals, we set no bounds. Clearly, this instance of Bound-

Rep is equivalent to the original RepExt(UNIT INT) problem. ��

Open Problem. Our main open question is whether there exists an algorithm
for RepExt(UNIT INT) with running time o(n2 + nD(r)).

Acknowledgments. The first, second and sixth authors are supported by ESF
Eurogiga project GraDR as GAČR GIG/11/E023, the first author also by GAČR
14-14179S and the first two authors by Charles University as GAUK 196213.
The fourth author is supported by a fellowship within the Postdoc-Program of
the German Academic Exchange Service (DAAD), the sixth author by projects
NEXLIZ - CZ.1.07/2.3.00/30.0038, which is co-financed by the European Social
Fund and the state budget of the Czech Republic, and ESF EuroGIGA project
ComPoSe as F.R.S.-FNRS - EUROGIGA NR 13604.

264 P. Klav́ık et al.

References

1. Angelini, P., Di Battista, G., Frati, F., Jeĺınek, V., Kratochv́ıl, J., Patrignani, M.,
Rutter, I.: Testing planarity of partially embedded graphs. In: SODA 2010: Proc.
21st Annu. ACM-SIAM Sympos. Discr. Alg., pp. 202–221 (2010)

2. Balko, M., Klav́ık, P., Otachi, Y.: Bounded representations of interval and proper
interval graphs. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) Algorithms and Com-
putation. LNCS, vol. 8283, pp. 535–546. Springer, Heidelberg (2013)

3. Bläsius, T., Rutter, I.: Simultaneous PQ-ordering with applications to constrained
embedding problems. In: SODA 2013: Proc. 24th Annu. ACM-SIAM Sympos.
Discr. Alg., pp. 1030–1043 (2013)

4. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs,
and planarity using PQ-tree algorithms. J. Comput. System Sci. 13, 335–379 (1976)

5. Chaplick, S., Dorbec, P., Kratochv́ıl, J., Montassier, M., Stacho, J.: Contact rep-
resentations of planar graph: Rebuilding is hard. In: WG 2014 (to appear, 2014)

6. Chaplick, S., Fulek, R., Klav́ık, P.: Extending partial representations of circle
graphs. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 131–142.
Springer, Heidelberg (2013)

7. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. The MIT Press (2009)

8. Corneil, D.G., Kim, H., Natarajan, S., Olariu, S., Sprague, A.P.: Simple linear time
recognition of unit interval graphs. Inform. Process. Lett. 55(2), 99–104 (1995)

9. Corneil, D.G., Olariu, S., Stewart, L.: The LBFS structure and recognition of
interval graphs. SIAM J. Discrete Math. 23(4), 1905–1953 (2009)

10. Deng, X., Hell, P., Huang, J.: Linear-time representation algorithms for proper
circular-arc graphs and proper interval graphs. SIAM J. Comput. 25(2), 390–403
(1996)

11. Fürer, M.: Faster integer multiplication. SIAM J. Comput. 39(3), 979–1005 (2009)
12. Gilmore, P.C., Hoffman, A.J.: A characterization of comparability graphs and of

interval graphs. Can. J. Math. 16, 539–548 (1964)
13. Hajós, G.: Über eine Art von Graphen. Internationale Mathematische

Nachrichten 11, 65 (1957)
14. Jampani, K., Lubiw, A.: The simultaneous representation problem for chordal,

comparability and permutation graphs. J. Graph Algorithms Appl. 16(2), 283–315
(2012)

15. Klav́ık, P., Kratochv́ıl, J., Krawczyk, T., Walczak, B.: Extending partial represen-
tations of function graphs and permutation graphs. In: Epstein, L., Ferragina, P.
(eds.) ESA 2012. LNCS, vol. 7501, pp. 671–682. Springer, Heidelberg (2012)

16. Klav́ık, P., Kratochv́ıl, J., Otachi, Y., Saitoh, T.: Extending partial representations
of subclasses of chordal graphs. In: Chao, K.-M., Hsu, T.-S., Lee, D.-T. (eds.)
ISAAC 2012. LNCS, vol. 7676, pp. 444–454. Springer, Heidelberg (2012)

17. Klav́ık, P., Kratochv́ıl, J., Otachi, Y., Saitoh, T., Vyskočil, T.: Linear-time algo-
rithm for partial representation extension of interval graphs (2012) (in preparation)

18. Klav́ık, P., Kratochv́ıl, J., Vyskočil, T.: Extending partial representations of inter-
val graphs. In: Ogihara, M., Tarui, J. (eds.) TAMC 2011. LNCS, vol. 6648, pp.
276–285. Springer, Heidelberg (2011)

19. Patrignani, M.: On extending a partial straight-line drawing. Int. J. Found. Com-
put. Sci. 17(5), 1061–1070 (2006)

20. Roberts, F.S.: Indifference graphs. In: Harary, F. (ed.) Proof Techniques in Graph
Theory, pp. 139–146. Academic Press (1969)

Minimum Tree Supports for Hypergraphs
and Low-Concurrency Euler Diagrams

Boris Klemz, Tamara Mchedlidze, and Martin Nöllenburg

Institute of Theoretical Informatics, Karlsruhe Institute of Technology (KIT), Germany

Abstract. In this paper we present an O(n2(m+log n))-time algorithm for com-
puting a minimum-weight tree support (if one exists) of a hypergraph H = (V, S)
with n vertices and m hyperedges. This improves the previously best known al-
gorithm with running time O(n4m2). A support of H is a graph G on V such
that each hyperedge in S induces a connected subgraph in G. If G is a tree, it
is called a tree support and it is a minimum tree support if its edge weight is
minimum for a given edge weight function. Tree supports of hypergraphs have
several applications, from social network analysis and network design problems
to the visualization of hypergraphs and Euler diagrams. We show in particular
how a minimum-weight tree support can be used to generate an area-proportional
Euler diagram that satisfies typical well-formedness conditions and additionally
minimizes the number of concurrent curves of the set boundaries in the Euler
diagram.

1 Introduction

A hypergraph H = (V, S) is a generalization of a graph that consists of a set of ver-
tices V and a set of hyperedges S, which are arbitrary non-empty subsets of V (in
contrast to graph edges, which are defined as pairs of vertices). Thus S is a subset
of the power set P(V) = 2V . A graph G = (V,E) is called a support of a hyper-
graphH = (V, S) on the same vertex set if every hyperedge s ∈ S induces a connected
subgraph in G.

Sparse support graphs are interesting from the perspective of network design as they
represent realizations of hypergraphs as graphs, in which the vertices of each hyperedge
induce a connected component. Korach and Stern [16] introduced the problem of find-
ing a minimum(-weight) tree support (MTS) for a given hypergraphH = (V, S) and a
given edge-weight function w :

(
V
2

)
→ R for the support graph. Here, an MTS is a sup-

port T = (V,E) that is a tree with minimum total edge weight
∑

e∈E w(e). Not every
hypergraph has a tree support, but the decision problem can be solved in linear time by
testing whether its dual hypergraph is acyclic [14]. If a hypergraph has a tree support,
it is called a tree-hypergraph. Korach and Stern [16] gave an algorithm to compute an
MTS in O(|V |4|S|2) time (if it exists). They later presented another polynomial-time
algorithm for a restricted variation, in which they ask for a tree support of minimum
weight such that each subtree induced by a hyperedge is a star [17].

Hypergraphs and hypergraph supports are not as frequently used and studied as
graphs themselves, but they still have many real-world applications. For example, in so-
cial network analysis, minimum tree supports are used to compute maximum-likelihood

R Ravi and I.L. Gørtz (Eds.): SWAT 2014, LNCS 8503, pp. 265–276, 2014.
c© Springer International Publishing Switzerland 2014

266 B. Klemz, T. Mchedlidze, and M. Nöllenburg

social networks that serve as models to explain a collection of observed disease out-
breaks that are modeled as hyperedges of the infected persons [1, 2]. In topic-based
peer-to-peer publish/subscribe systems [7, 13] the input is a set of users V and a set
of topics S, where each topic t ∈ S is a subset of users (i.e., a hyperedge) interested
in the topic. The task is to design an overlay network G on V (called minimum topic-
connected overlay) with the minimum number of edges so that each topic forms a con-
nected subgraph in G thus enabling private communication within each topic. If the
underlying hypergraph H = (V, S) admits a tree support then this minimum overlay
network will be a tree; if establishing edges in G is linked with a cost, the task is again
to find an MTS. The unweighted problem is also known as subset interconnection de-
sign, which generally asks for a support graph with the minimum number of edges, i.e.,
not necessarily a tree. It has applications in the design of reconfigurable networks, e.g.,
vacuum systems, in which valves correspond to edges in the support and their number
needs to be minimized [6, 10, 11].

Of particular interest for hypergraph visualizations are planar supports. Johnson and
Pollak [14] showed that a hypergraph is vertex-planar if and only if it has a planar sup-
port. A vertex-planar hypergraph has a representation of the vertices as faces in a planar
subdivision such that for each hyperedge the union of the faces corresponding to the ver-
tices incident to that hyperedge is a connected region. Simple and compact subdivision
drawings [15] are an interesting restriction of vertex-planar hypergraph representations
that puts additional constraint on the geometry of hyperedge representations. Johnson
and Pollak [14] proved, however, that deciding the existence of a planar support is NP-
complete; Buchin et al. [4, 5] extended the NP-completeness to testing the existence
of a 2-outerplanar support. On the other hand, it can be decided in polynomial time,
whether a hypergraph has a path-, cycle-, tree-, or cactus-support [3, 14, 16].

Contributions. In this paper we study minimum tree supports from a perspective that
was initially motivated by generating (area-proportional) Euler diagrams with low con-
currency of set contours. Euler diagrams are set visualizations and thus closely related
to hypergraph visualizations. Section 2 describes the background of Euler diagrams, de-
fines our algorithmic problem in that context, and sketches a solution approach based
on minimum tree supports. In Section 3 we introduce some necessary definitions and
notations, before we present our main technical contribution in Section 4. Our result is
initially tailored for the problem to generate low-concurrency Euler diagrams. Hence
we first transform an abstract Euler diagram description D into a so-called labeled hy-
pergraph H(D) and then present an algorithm that computes an MTS for H(D) in
O(n2m) time, where n is the number of vertices and m is the number of hyperedges.
The algorithm itself is a simple modification of Kruskal’s algorithm for incrementally
constructing minimum spanning trees, but its correctness proof relies on several crucial
properties of tree supports and the special order in which the algorithm adds edges to
the growing tree support. Finally, in Section 5 we generalize our result and show that
every hypergraph can easily be translated into an equivalent labeled hypergraph. Then
we can apply our algorithm for labeled hypergraphs to compute minimum tree supports
for arbitrary hypergraphs that admit a tree support. This improves the result of Korach
and Stern [16], who gave an algorithm with running time O(n4m2), to an algorithm
with time complexityO(n2(m+ logn)).

Minimum Tree Supports for Hypergraphs 267

a
b

d

abc bc

abcd
ad bd

a
b

d

c

a
b

d

abc

bc
abcd

ad bd

a b

d

abc

bcabcd

ad
bd

(a) (b) (c)

Fig. 1. (a) Euler diagram realizing AEDD D = ({a, b, c, d}, {a, b, d, ad, bd, bc, abc, abcd}), (b)
tree support T for H(D), (c) area-proportional Euler diagram based on T

2 Euler Diagrams

An Euler diagram D is a visualization of a set system as a collection of simple closed
curves, whose interiors represent the sets, see Fig. 1(a) for an example. The arrangement
of curves forms a subdivision of the plane and each face is called a (concrete) zone of
the Euler diagram. We define an abstract Euler diagram description (AEDD) as a pair
D = (L,Z), where L is a set of labels (each representing one set in a set system) and
Z ⊆ P(L) is a set of label subsets that we call zones (each representing a non-empty
intersection of a particular set of labels). We say that an Euler diagram D realizes an
AEDD D if there is a bijection ϕ between L and the set of curves in D, as well as
between Z and the set of concrete zones of D such that for each zone z ∈ Z the
concrete zone ϕ(z) is in the interior of curve ϕ(l) for each l ∈ z and exterior to ϕ(l′)
for each l′ ∈ L \ z. AEDDs are closely related to hypergraphs since we can interpret
each zone as a vertex and each label l as a hyperedge containing all zones that carry the
label l. Similarly, an Euler diagram that realizes a given AEDD is a subdivision drawing
of its corresponding hypergraph.

Euler diagrams must adhere to certain well-formedness conditions [8,12] that control
the visual appearance of the diagrams, e.g., a zone with a certain set of labels L′ may
exist if and only if there exists an element that is contained in all sets corresponding to
L′ and that is not contained in any other set. Moreover, every zone must be uniquely
labeled, i.e., there cannot be two distinct zones that lie in the interior of exactly the
same set of curves. Other common well-formedness criteria require convex zones, dis-
allow triple points, i.e., points that lie in the intersection of three or more curves, or
disallow concurrent curves that run partially in parallel, i.e., connected intersections of
two distinct curves c and c′ that contain more than just one point. There is a number
of algorithms and complexity results for generating Euler diagrams with certain well-
formedness properties [8,12,18]. Since one can easily come up with AEDDs that require
concurrencies (see the example in Fig. 1), it is an interesting problem to generally allow
concurrencies, but minimize their total number in the diagram.

Another interesting variation of Euler diagrams are area-proportional Euler dia-
grams. Given an AEDD D = (L,Z) together with a weight function A : Z → R+

on the zones, the task is to find an area-proportional Euler diagram that realizes D such
that the area of each concrete zone with label set z ∈ Z is A(z). Some algorithms are

268 B. Klemz, T. Mchedlidze, and M. Nöllenburg

known for generating area-proportional Euler diagrams [9, 19], but they work heuristi-
cally or apply to very restricted inputs only.

Algorithm for tree-based area-proportional Euler diagrams. We now sketch an algo-
rithm that generates for a given AEDD and a tree support of its induced hypergraph
an area-proportional Euler diagram with convex zones. If the tree support is an MTS
with respect to a specific weight function measuring internal concurrencies between
neighboring zones, then the Euler diagram realizes this minimum number of internal
concurrencies.

LetD = (L,Z) be an AEDD. We define the labeled hypergraphH(D) = (Z, S(L))
as the hypergraph that contains a vertex for each zone of D and a hyperedge for each
label of D. Each vertex z ∈ Z is associated with the set of labels of its underlying
zone. In the following we use the abbreviated notation z = abc for z = {a, b, c}
that simply concatenates all labels in the zone. For each label l ∈ L we create the
hyperedge s(l) = {z ∈ Z | l ∈ z}, which defines the hyperedge set S(L) = {s(l) |
l ∈ L}. In Section 4 we describe an algorithm that computes a minimum tree support
T for a labeled hypergraph H(D) and an arbitrary edge weight function w :

(
V
2

)
→

R (assuming that H(D) admits a tree support). For our purposes we define w as the
concurrency function of the AEDD D, i.e., we set w(z, z′) = |(z ∪ z′) \ (z ∩ z′)|. This
function counts the number of concurrent curves that run between zones z and z′ if they
will be selected as neighboring faces in the Euler diagram.

Now let’s assume that we are given an AEDD D = (L,Z) and an MTS T for its
labeled hypergraph H(D) provided with the concurrency function. We construct an
area-proportional Euler diagram as follows (see Fig. 1). Let r be an arbitrary root of T
and create a convex polygon of area A(r), e.g., a triangle. Let z1, . . . , zt be the children
of r and choose one edge σ of the root polygon. We create disjoint subsegments of σ
and disjoint wedges based on these subsegments, each of which is reserved for the zones
in the t subtrees of r. For each zi we create a trapezoid of area A(zi) at the base of the
i-th wedge. Then we recurse using the respective sides opposite to σ as the new base
edges in the construction. It is clear that this produces convex, area-proportional faces.
Since T is a support, the union of the zones of each label is connected. Moreover, since
we used the concurrency function to minimize the weight of T , we have minimized the
total number of concurrencies of curves running between adjacent zones.

3 Preliminaries

Let D = (L,Z) be an abstract Euler diagram description, where |L| = λ. Recall that
the labeled hypergraph for D is denoted by H(D) = (Z, S(L)). If L′ ⊆ L is a subset
of labels, we denote the corresponding hyperedge in H(D) as S(L′) = {s(�) | � ∈ L′}.

In order to construct a tree support for a hypergraph we define the so-called skeleton
G = (Z,E) of H(D) = (Z, S(L)), which is defined as a complete weighted graph
on vertex set Z , where each edge e = {u, v} ∈ E is associated with the cardinality
c(e) = |u ∩ v|. Each tree support for H(D) is a spanning subtree of the skeleton
G. Since λ is the number of distinct labels in L, the maximum cardinality of an edge
of G is λ − 1. We denote by Ei the set of all edges of G with cardinality i and we

Minimum Tree Supports for Hypergraphs 269

abcd bcd cde

ef
fa

{s(c), s(d)} {s(e)} {s(f)}

{s(a)}

Fig. 2. A path P in G with positive cardinality and a sequence of hyperedge sets
{s(c), s(d)}, {s(e)}, {s(f)}, {s(a)} defined by P . This sequence forms a cycle on vertices abcd,
cde, ef , and fa.

set E≥i =
⋃λ−1

j=i Ej . For a path P in G we define the cardinality of P as the smallest
cardinality of its edges. For a tree T we denote by p(u, v, T) the unique path connecting
vertices u and v in T .

Recall that we want to compute an MTS with respect to some edge weight function
w :
(
Z
2

)
→ R, e.g., the concurrency function defined in Section 2. We use w as an edge

weight function of the skeleton G.
For a hypergraphH = (V, S) we say that an edge {u, v} of its skeletonG supports a

hyperedge s ∈ S, if both u, v ∈ s. An edge {u, v} supports a set of hyperedges S′ ⊆ S
if it supports all the hyperedges of S′. Let T be a spanning tree of G and P be a path in
T . Path P is called supporting if for each hyperedge s ∈ S, the set s∩P is either empty
or contains a set of consecutive vertices of P . Otherwise, P is called non-supporting. A
non-supporting path of T is minimal if each sub-path of P is supporting. By recalling
the definition of a tree support, we observe that a spanning tree T of G is a tree support
for H(D) if and only if each path of T is supporting. From this fact and the definition
of the cardinality of a path in G we derive the following.

Property 1. Let e = {u, v} be an edge in G and let T be a tree support for H(D).
Any edge of the path p(u, v, T) supports the set S(u ∩ v), i.e., the path p(u, v, T) has
cardinality at least c(e).

Let S1, . . . , Sk ⊆ S(L) be a sequence of hyperedge sets and let z1, . . . , zk ∈ Z be
a sequence of vertices of H(D) such that zi ∈ s, ∀s ∈ Si ∪ Si+1, i = 1, . . . , k − 1
and zk ∈ s, ∀s ∈ Sk ∪ S1. Then we say that the sequence S1, . . . , Sk forms a cycle
on vertices z1, . . . , zk. In Fig. 2 the hyperedge sets {s(c), s(d)}, {s(e)}, {s(f)}, {s(a)}
form a cycle on vertices abcd, cde, ef, fa.

A path P in G with non-zero cardinality defines a sequence of hyperedge sets as
follows (see Fig. 2). Two consecutive vertices of P belong to at least one common
hyperedge, since the cardinality of the edge is greater than zero. Include into S1 those
hyperedges that contain the longest initial part of P . Remove all edges of P that are in
S1 and continue recursively. Notice that if the end-vertices of P belong to a common
hyperedge, which does not contain at least one internal vertex of P , then there exists a
non-trivial sequence of hyperedge sets that forms a cycle on a certain subset of vertices
of P .

270 B. Klemz, T. Mchedlidze, and M. Nöllenburg

The following lemma states a property of a path in a tree support that contains a
cycle of hyperedge sets.

Lemma 1. Let H = (V, S) be a tree-hypergraph such that the sequence of hyperedge
sets S1, . . . , Sk ⊆ S forms a cycle on vertices v1, . . . , vk ∈ V . Let T = (V,E) be a
tree support for H . Then, for any two distinct vertices vi, vj , 1 ≤ i, j ≤ k, every edge
of the path p(vi, vj , T) supports at least two of the hyperedge sets S1, . . . , Sk.

Proof. Let t be an index i ≤ t < j of a vertex in the cycle. By the definition of a
cycle formed by the sequence of hyperedge sets, vt ∈ s, ∀s ∈ St ∪ St+1 and vt+1 ∈ s,
∀s ∈ St+1 ∪St+2. Therefore, both end-vertices of the subpath p(vt, vt+1, T) belong to
each s ∈ St+1, and therefore each edge of p(vt, vt+1, T) supports St+1. (Note that all
index computations are performed modulo k.)

Since T is a tree, the removal of any edge of p(vt, vt+1, T) from T produces two
subtrees T1 = (V1, E1) and T2 = (V2, E2), such that V1 ∩ V2 = ∅ and the cycle
vertices vi, . . . , vt ∈ V1 and vt+1, . . . , vj ∈ V2. Let a ≥ j or a < i be the index such
that va ∈ V2 and va+1 ∈ V1. The cycle among hyperedge sets S1, . . . , Sk implies that
va, va+1 ∈ s for every hyperedge s ∈ Sa+1. Since T is a tree support, every edge of the
path p(va, va+1, T) supports Sa+1. Thus, every edge of p(vt, vt+1, T) supports Sa+1.
We conclude the proof by observing that indices a + 1 and t + 1 are distinct, since
vt+1 ∈ V2 and va+1 ∈ V1. �

The following lemmata are used as tools in the following section.

Lemma 2. Let G = (V,E) be a connected graph, let T = (V,E0 ∪E1 ∪ · · · ∪Et) be
a spanning-tree of G with Ei ∩ Ej = ∅ for every 0 ≤ i �= j ≤ t and let the subgraph
Tk = (Vk, Ek), 1 ≤ k ≤ t, of T induced by Ek be connected. For any forest consisting
of trees T ′

1 = (V1, E
′
1), . . . , T

′
t = (Vt, E

′
t) the graph T ′ = (V,E0 ∪E′

1 ∪ · · · ∪E′
t) is a

spanning-tree of G.

Proof. We show that after substitution of the edges of T1 by the edges of T ′
1, the result-

ing graph T̃ = (V,E0 ∪ E′
1 ∪ E2 · · · ∪ Et) is a spanning tree of G. The result then

follows by applying this procedure to the remaining T2, . . . , Tt. It is trivial to see that T̃
is a spanning connected subgraph of G. Assume for the sake of contradiction that T̃ is
not a tree, i.e., it contains a cycle. If we substitute the maximal paths of this cycle that
belong to T ′

1 by paths in T1, we obtain a (not necessarily simple) cycle in T , which is a
contradiction. �
Lemma 3. Any tree support of H(D) contains the edge set Eλ−1 as a subset.

Proof. Notice that the statement is trivially true if Eλ−1 is empty. So we assume that
Eλ−1 �= ∅. An edge belongs to Eλ−1 if it connects a vertex z ∈ Z , containing all labels
of L, and a vertex z′ ∈ Z , containing |L| − 1 labels. Notice that no path between z
and z′ inG can be supporting, except for the edge {z, z′} itself. Therefore, edge {z, z′}
must be in any tree support. �

4 Minimum Tree Supports for Labeled Hypergraphs

In this section we present the Algorithm MINIMUM TREE SUPPORT (MTS) that takes
as an input a labeled hypergraph H(D) = (Z, S(L)) for the AEDD D = (L,Z), as

Minimum Tree Supports for Hypergraphs 271

Algorithm 1. MINIMUM TREE SUPPORT (MTS)
Input: labeled hypergraph H(D) = (Z, S(L)) for AEDD D = (L,Z),
edge weight function w : E → R for E =

(
Z
2

)
Output: minimum tree support T for H(D) or infeasibility notification

1 if H(D) has no tree support then return infeasible partition E into sets Ei,
i = 0, . . . , |L| − 1, of edges with equal cardinality i

2 F ← ∅
3 for i ← |L| − 1 to 0 do
4 foreach edge e = {u, v} ∈ Ei in non-decreasing order of weights do
5 if u and v belong to different connected components of F then
6 F ← F ∪ {e}

7 return F

well as the weight function w : E → R for the skeleton G = (V,E) of H(D), and
produces a minimum tree support T for H(D). The algorithm grows an initially empty
forest F = ∅ and implements |L| hierarchy steps. Recall that Ei ⊆ E are all edges of
G with cardinality i. During step i = |L| − 1, . . . , 0, the algorithm adds to F a subset
of the edges of Ei, which we denote by Fi. Recall that E≥i =

⋃λ−1
j=i Ej . Analogously

to this notation, we set F≥i =
⋃λ−1

j=i Fj . Thus F≥i are the edges added to F in the steps
|L| − 1 down to i. Observe that the check at line 5 ensures that F≥i, i = |L| − 1, . . . , 0
is a forest. Recalling the definition of the cardinality of a path, we derive the following:

Property 2. Any two vertices u, v ∈ Z that are connected by a path of cardinality at
least k in G, are connected by a path in F≥k .

In the following we first prove that if H(D) is a tree-hypergraph then the output of
the Algorithm MTS is a tree support for H(D) (Lemma 4) and then prove that it is
actually a minimum tree support (Lemma 5). We conclude the correctness and analyze
the running time of Algorithm MTS in Theorem 1.

Lemma 4. IfH(D) is a tree-hypergraph, then Algorithm MTS computes a tree support
of H(D).

Proof. By induction on i = λ − 1, . . . , 1, we show that there exists a tree support T≥i

forH(D) that extends the forestF≥i. Observe that the base case follows from Lemma 3.
As an induction hypothesis we assume that there exists a tree support T≥i+1 for H(D)
that extends the forest F≥i+1. Let T≥i ≡ (T≥i+1 \ E≥i) ∪ F≥i. In order to show that
T≥i is a tree support for H(D) we prove that: (a) T≥i is a spanning tree of G, (b) T≥i

is a support for H(D).

(a) Consider a connected componentC of T≥i+1∩E≥i. By Property 2, any two vertices
of C are also connected in the forest F≥i. Let C′ be a connected component of F≥i,
and e = {u, v} ∈ C′. By Property 1, u and v are connected in T≥i+1 (which
is a tree support) by a path of cardinality at least c(e) and therefore by a path in
T≥i+1∩E≥i. Thus, connected components of T≥i+1∩E≥i and F≥i have the same

272 B. Klemz, T. Mchedlidze, and M. Nöllenburg

vertex sets. Therefore, by Lemma 2, we have that (T≥i+1\E≥i)∪F≥i, and therefore
T≥i, is a spanning tree of G.

(b) Recall that T≥i ≡ (T≥i+1 \ E≥i) ∪ F≥i. Let FC
≥i denote a connected component

of F≥i and let GC denote the subgraph of G induced by the vertices of FC
≥i. We

observe that, in order to show that T≥i is a tree support for H(D), it is enough
to show that FC

≥i is a tree support for the hypergraph induced by GC . Assume for
the sake of contradiction that FC

≥i is not a tree support for the hypergraph induced
by GC . Then, there exists a minimal non-supporting path p(u, v, FC

≥i). Therefore,
there exists a hyperedge s that contains u and v, but does not contain any internal
vertex of p(u, v, FC

≥i). Let S1, . . . , Sk be a sequence of hyperedge sets defined by
path p(u, v, FC

≥i) such that S1, . . . , Sk together with a hyperedge set S′ containing
s define a cycle. Notice that |Sj | ≥ i, ∀j, 1 ≤ j ≤ k, since these sets are formed
by the path p(u, v, FC

≥i). Also observe that there is no index j, 1 ≤ j ≤ k such that
S′ ⊆ Sj , since s ∈ S′, and s �∈ Sj .
Recall from the proof of statement (a), that the connected components of T≥i+1 ∩
E≥i and F≥i have the same vertex sets. Thus, there exists a path p(u, v, T≥i+1 ∩
E≥i). Since T≥i+1 is a tree support, and the sequence S′, S1, . . . , Sk of hyperedge
sets in G forms a cycle, we infer by Lemma 1, that each edge e of p(u, v, T≥i+1 ∩
E≥i) supports at least two of these hyperedge sets, one of which is S′. Let Sj ,
1 ≤ j ≤ k be the second hyperedge set supported by e. Recall that S′ �⊆ Sj ,
therefore |S′ ∪ Sj| > |Sj |. Thus, c(e) ≥ |S′ ∪ Sj | > |Sj | ≥ i, i.e. c(e) ≥ i + 1,
for each e ∈ p(u, v, T≥i+1 ∩ E≥i), implying that e ∈ F≥i+1. By recalling that
T≥i+1 extends F≥i+1 and that p(u, v, FC

≥i) is a path in F≥i, which contains F≥i+1,
we conclude that p(u, v, FC

≥i) = p(u, v, T≥i+1 ∩E≥i). Thus T≥i+1 also contains a
non-supporting path p(u, v, T≥i+1∩E≥i), which is a contradiction to the induction
hypothesis that T≥i+1 is a tree support. �

Lemma 5. If H(D) is a tree-hypergraph and w an edge-weight function for the skele-
ton, then the tree support computed by Algorithm MTS is a minimum tree support.

Proof. The proof is again by induction over the hierarchy steps of Algorithm MTS. We
show that after each hierarchy step i there is a minimum tree support that extends the
forest F≥i. It is easy to see that this is true after the first hierarchy step λ−1 as we know
that Fλ−1 = Eλ−1 and that any tree support of H(D) contains Eλ−1 by Lemma 3.

So let i < λ− 1 and assume by induction that there is a minimum tree support Ti+1

that extends F≥i+1. Hierarchy step i considers the edge set Ei of edges with cardinal-
ity i. IfEi = ∅ or no edges are added in step i, we have F≥i = F≥i+1 and the statement
holds immediately. So let Ei �= ∅ and Fi �= ∅. We show that after each edge addition
in the current hierarchy step there is a minimum tree support that extends the current
forest F assuming that this was true before the edge was added. Let e = {u, v} be the
next edge to be added by the algorithm and let T̂ be a minimum tree support extending
the forest F , where e �∈ F . If e ∈ T̂ there is nothing to show, so assume e �∈ T̂ .

Then T̂ ∪{e} contains a cycle K̂. We further know from Lemma 4 that the final treeT ,
computed by Algorithm MTS, extendsF ∪{e} and is a tree support. We show that there
is an edge ê ∈ K̂ \T , for which there is a cycleK in T ∪ {ê} that contains both e and ê.
Firstly, the set K̂\T is not empty since otherwiseT would contain a cycle. Assume that no

Minimum Tree Supports for Hypergraphs 273

edge in K̂ \ T has the desired property. Let ({u, v}, {v1, v2}, {v2, v3}, . . . , {vk−1, vk})
be the edge sequence of K̂, where v = v1 and u = vk, and let 1 ≤ f1 < · · · < fl ≤ k
be the indices of all edges efj = {vfj , vfj+1} ∈ K̂ \ T (1 ≤ j ≤ l). If we replace each
such edge efj by the path p(vfj , vfj+1, T) we obtain a (not necessarily simple) cycle
in T , which is a contradiction to T being a tree.

So let K be a cycle in T ∪ {ê} that contains the edges e = {u, v} and ê = {û, v̂}.
Since T is a tree support, all edges of the path p(û, v̂, T) = K \ {ê} must support the
hyperedge set S(û ∩ v̂). In particular, edge e supports S(û ∩ v̂). Analogously, T̂ is a
tree support and thus all edges of the path p(u, v, T̂) = K̂ \ {e}, including the edge ê,
support the hyperedge set S(u ∩ v). It follows that u ∩ v = û ∩ v̂ and thus all edges
of K̂ support S(û ∩ v̂).

We define the tree T̂e = (T̂ \{ê})∪{e} that replaces ê by e and claim that it is also a
tree support ofH(D). For any two vertices x, y ∈ Z with ê ∈ p(x, y, T̂) the hyperedge
set that has to be supported by every edge of p(x, y, T̂) is S(x ∩ y) ⊆ S(û ∩ v̂). Since
the edges of path p(x, y, T̂e) are contained in p(x, y, T̂)∪K̂ , they also support S(x∩y).
Thus we have showed that there is a tree support, namely T̂e, that extends F ∪ {e}.

It remains to show that T̂e is a minimum tree support. We first observe that both
edges e and ê have the same cardinality c(e) = c(ê) = i and thus e, ê ∈ Ei are both
considered in hierarchy step i of the algorithm. Our algorithm, however, considers e
before ê, which means that w(e) ≤ w(ê). Since T̂ is a minimum tree support by the
induction hypothesis and w(T̂e) ≤ w(T̂), we obtain that T̂e is also a minimum tree
support. This is true for every edge addition in hierarchy step i, so in particular for F =
F≥i after the last edge addition in this hierarchy step. But this already concludes the
inductive argument for the whole hierarchy step and shows together with Lemma 4 that
the result T = F≥0 of algorithm MTS is indeed a minimum tree support of H(D). ... �
Theorem 1. Given a labeled hypergraphH(D) with n vertices and m hyperedges for
an AEDD D Algorithm MTS computes in O(n2m) time a minimum tree support T or
reports that no tree support exists.

Proof. Algorithm MTS starts by checking whether H(D) has a tree support using the
feasibility check proposed by Johnson and Pollak [14]. If the test fails the algorithm
reports this result; otherwiseH(D) is a tree-hypergraph and thus we know by Lemma 5
that the resulting tree T is a minimum tree support. This proves the correctness.

The feasibility test of Johnson and Pollak [14] in line 1 of the algorithm is based on
testing whether the dual hypergraphH(D)∗ ofH(D) is acyclic. The dual hypergraph of
H(D) can be constructed in O(nm) time and has a vertex for each hyperedge ofH(D)
and a hyperedge for each vertex of H(D), which contains all hyperedges incident to
that vertex. The acyclicity of H(D)∗ can be tested in O(nm) time [20].

The next step in line 1 of the algorithm is to partition the edge set E into subsets
based on the edge cardinalities. For each edge {u, v} ∈ E computing the cardinality of
the intersection u ∩ v takes O(m) time, since each vertex consists of at most m labels.
Since we have O(n2) edges this takes O(n2m) time in total.

Finally, in lines 2–7 we run a modified version of Kruskal’s algorithm to compute a
minimum spanning tree. Unlike the original algorithm, we do not sort the whole edge
set E by non-decreasing weights, but rather perform |L| hierarchy steps, in which we
consider the edges of each subset Ei in the edge partition separately in non-decreasing

274 B. Klemz, T. Mchedlidze, and M. Nöllenburg

weight order. This modification, however, does not affect the running time and thus the
last part of Algorithm MTS takes O(|E| log |Z|) time, just as computing a minimum
spanning tree by Kruskal’s algorithm. The set E is of size O(n2) and vertices in Z are
subsets of the label set L, i.e., log |Z| is of size O(m). Thus the total running time of
Algorithm MTS is O(n2m). �

5 Minimum Tree Supports for Hypergraphs

Labeled hypergraphs, in particular for abstract Euler diagram descriptions as considered
in the previous section, seem to be of limited interest at first sight. So it is a natural
question to ask for a minimum tree support of a general tree-hypergraph H = (V, S).
As discussed in Section 1, Korach and Stern [16] showed that this problem can be solved
efficiently in O(n4m2) time, where n = |V | and m = |S|.

In this section we generalize Theorem 1 to arbitrary hypergraphs, and thus improve
the best known running time from O(n4m2) to O(n2(m+ logn)). The tool to achieve
this is to define a mapping that transforms an arbitrary hypergraph to an equivalent
labeled hypergraph so that we can apply Algorithm MTS.

Theorem 2. Given a hypergraph H with n vertices and m hyperedges and an edge
weight function w :

(
V
2

)
→ R we can compute in O(n2(m + logn)) time a minimum

tree support T of H or report that no tree support exists.

Proof. An important difference between an arbitrary hypergraph H and the labeled
hypergraph H(D) for an AEDD D is that H(D) contains at most one zone for each
possible subset of labels, whereas H may contain any number of vertices that have
exactly the same hyperedge incidences. This forces us to slightly modify Algorithm
MTS and its analysis.

Let H = (V, S) be a hypergraph. We start by describing the mapping μ, which
mapsH to an equivalent labeled hypergraph. We define the label setLS = {l1, . . . , lm},
which contains one unique label li = l(si) for each hyperedge si ∈ S. Each vertex v ∈
V is mapped to an indexed label set (v, μ(v)) = (v, {l(si) | v ∈ si}), where μ(v)
contains the labels of all hyperedges containing v. We explicitly allow that two distinct
vertices v �= v′ are mapped to the same label set μ(v) = μ(v′), but their indexed label
sets (v, μ(v)) and (v′, μ(v′)) are distinguishable. Similarly, we map each hyperedge s ∈
S to a set of indexed label sets μ(s) = {(v, μ(v)) | v ∈ s}. We use the notation μ(V)
to denote the set {(v, μ(v)) | v ∈ V } and μ(S) to denote the set {μ(s) | s ∈ S}.
This defines a labeled hypergraph μ(H) = (μ(V), μ(S)), which is isomorphic to the
labeled hypergraph of the AEDD D = (LS , μ(V)) if no two vertices in V are incident
to exactly the same hyperedges. We further define a new edge weight function μ(w)
as μ(w)((u, μ(u)), (v, μ(v))) = w(u, v).

Since our construction simply replaces each vertex of H by an indexed label set
indicating its incident hyperedges it is obvious that each tree support of H is in one-to-
one correspondence to a tree support of μ(H), in particular an MTS of μ(H) is also an
MTS of H . Thus we can apply Algorithm MTS to the labeled hypergraph μ(H) and
obtain a minimum tree support T for H .

Minimum Tree Supports for Hypergraphs 275

We need to pay attention to one minor issue in the correctness proof of the algorithm.
In Section 4 the base case of the inductive proofs started with edges of cardinality
m − 1. Now we might have edges of cardinality m, namely if multiple vertices are
contained in every hyperedge in S. If we run Algorithm MTS with an extra hierarchy
step for the cardinality-m edges it computes a minimum spanning tree of the vertex
set μ(Vm) = {(v, μ(v)) ∈ μ(V) | μ(v) = S}. Using the fact shown by Korach
and Stern [16] that every element of the hyperedge intersection closure of H (which
contains S and all intersections of subsets of S) induces a connected subtree in every
tree support of H , we know that every minimum tree support of μ(H) must contain a
minimum spanning tree of μ(Vm). This serves as the new base case of the induction;
the remainder of the correctness proofs in Section 4 continues to hold.

For the running time analysis we again need to pay attention to a small detail related
to vertices with the same label set. Lines 2–7 of Algorithm MTS are a modification
of Kruskal’s algorithm and thus need O(n2 logn) time on a complete graph with n
vertices. But since we may have more than one vertex with the same label set it is no
longer true in general that logn ∈ O(m). Thus the modification of Algorithm MTS
takes O(n2(m+ logn)) time to compute the MTS T for μ(H).

Finally, it remains to argue that μ(H) can be computed in the same time bound. For
creating μ(V) and μ(S) we simply scan all hyperedges in S and append their labels
to the contained vertices. This can be done in O(nm) time since each hyperedge con-
tains O(n) vertices. Hyperedges in μ(S) are not explicitly represented as sets of label
sets, but rather as sets of pointers to the vertices in μ(V). �

6 Conclusion

We have studied the problem of computing minimum tree supports for hypergraphs and
we have seen that our algorithm for the special case of labeled hypergraphs induced
by abstract Euler diagram descriptions easily generalizes to arbitrary hypergraphs. We
improved the previously best known running time for computing minimum tree sup-
ports [16] fromO(n4m2) toO(n2(m+logn)). Moreover, we described an application
of minimum tree supports for generating area-proportional Euler diagrams with convex
zones and minimum internal concurrencies for abstract Euler diagram descriptions with
a labeled tree-hypergraph.

Other types of sparse supports like outerplanar supports give rise to interesting open
questions. For example, the complexity of deciding whether a given hypergraph has an
outerplanar support is open [5]. On the practical side, it is interesting to study algorithms
for generating well-formed Euler diagrams based on outerplanar supports or other larger
classes of supports.

References

1. Angluin, D., Aspnes, J., Reyzin, L.: Inferring social networks from outbreaks. In: Hutter, M.,
Stephan, F., Vovk, V., Zeugmann, T. (eds.) Algorithmic Learning Theory. LNCS, vol. 6331,
pp. 104–118. Springer, Heidelberg (2010)

276 B. Klemz, T. Mchedlidze, and M. Nöllenburg

2. Angluin, D., Aspnes, J., Reyzin, L.: Network construction with subgraph connectivity con-
straints. J. Comb. Optim. (2013)

3. Brandes, U., Cornelsen, S., Pampel, B., Sallaberry, A.: Blocks of hypergraphs applied to hy-
pergraphs and outerplanarity. In: Iliopoulos, C.S., Smyth, W.F. (eds.) IWOCA 2010. LNCS,
vol. 6460, pp. 201–211. Springer, Heidelberg (2011)

4. Buchin, K., van Kreveld, M., Meijer, H., Speckmann, B., Verbeek, K.: On planar supports
for hypergraphs. Technical Report UU-CS-2009-035, Utrecht University (2009)

5. Buchin, K., van Kreveld, M., Meijer, H., Speckmann, B., Verbeek, K.: On planar supports for
hypergraphs. In: Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 345–356.
Springer, Heidelberg (2010)

6. Chen, J., Komusiewicz, C., Niedermeier, R., Sorge, M., Suchý, O., Weller, M.: Effective and ef-
ficient data reduction for the subset interconnection design problem. In: Cai, L., Cheng, S.-W.,
Lam, T.-W. (eds.) Algorithms and Computation. LNCS, vol. 8283, pp. 361–371. Springer,
Heidelberg (2013)

7. Chockler, G., Melamed, R., Tock, Y., Vitenberg, R.: Constructing scalable overlays for pub-
sub with many topics. In: Principles of Distributed Computing (PODC 2007), pp. 109–118
(2007)

8. Chow, S.: Generating and Drawing Area-Proportional Euler and Venn Diagrams. PhD thesis,
University of Victoria (2007)

9. Chow, S., Ruskey, F.: Drawing area-proportional Venn and Euler diagrams. In: Liotta, G.
(ed.) GD 2003. LNCS, vol. 2912, pp. 466–477. Springer, Heidelberg (2004)

10. Du, D.-Z., Kelley, D.F.: On complexity of subset interconnection designs. J. Global Optim. 6,
193–205 (1995)

11. Fan, H., Hundt, C., Wu, Y.-L., Ernst, J.: Algorithms and implementation for interconnection
graph problem. In: Yang, B., Du, D.-Z., Wang, C.A. (eds.) COCOA 2008. LNCS, vol. 5165,
pp. 201–210. Springer, Heidelberg (2008)

12. Flower, J., Fish, A., Howse, J.: Euler diagram generation. J. Visual Languages and Comput-
ing 19(6), 675–694 (2008)

13. Hosoda, J., Hromkovič, J., Izumi, T., Ono, H., Steinová, M., Wada, K.: On the approximabil-
ity and hardness of minimum topic connected overlay and its special instances. Theoretical
Computer Science 429, 144–154 (2012)

14. Johnson, D.S., Pollak, H.O.: Hypergraph planarity and the complexity of drawing Venn dia-
grams. J. Graph Theory 11(3), 309–325 (1987)

15. Kaufmann, M., van Kreveld, M., Speckmann, B.: Subdivision drawings of hypergraphs.
In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 396–407. Springer,
Heidelberg (2009)

16. Korach, E., Stern, M.: The clustering matroid and the optimal clustering tree. Mathematical
Programming 98(1-3), 385–414 (2003)

17. Korach, E., Stern, M.: The complete optimal stars-clustering-tree problem. Discrete Applied
Mathematics 156, 444–450 (2008)

18. Rodgers, P.J., Zhang, L., Fish, A.: General Euler diagram generation. In: Stapleton, G.,
Howse, J., Lee, J. (eds.) Diagrams 2008. LNCS (LNAI), vol. 5223, pp. 13–27. Springer,
Heidelberg (2008)

19. Stapleton, G., Rodgers, P., Howse, J.: A general method for drawing area-proportional Euler
diagrams. J. Visual Languages and Computing 22(6), 426–442 (2011)

20. Tarjan, R.E., Yannakakis, M.: Simple linear-time algorithms to test chordality of graphs,
test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM J. Com-
put. 13(3), 566–579 (1984)

Additive Spanners: A Simple Construction

Mathias Bæk Tejs KnudsenÆ

University of Copenhagen

Abstract. We consider additive spanners of unweighted undirected
graphs. Let G be a graph and H a subgraph of G. The most naïve
way to construct an additive k-spanner of G is the following: As long
as H is not an additive k-spanner repeat: Find a pair �u, v� � H that
violates the spanner-condition and a shortest path from u to v in G. Add
the edges of this path to H .

We show that, with a very simple initial graph H , this naïve method
gives additive 6- and 2-spanners of sizes matching the best known upper
bounds. For additive 2-spanners we start with H � � and end with
O�n3�2� edges in the spanner. For additive 6-spanners we start with H
containing �n1�3� arbitrary edges incident to each node and end with a
spanner of size O�n4�3�.

1 Introduction

Additive spanners are subgraphs that preserve the distances in the graph up
to an additive positive constant. Given an unweighted undirected graph G, a
subgraph H is an additive k-spanner if for every pair of nodes u, v it is true that

dG�u, v� � dH�u, v� � dG�u, v� � k

In this paper we only consider purely additive spanners, which are k-spanners
where k � O�1�. Throughout this paper every graph will be unweighted and
undirected.

Many people have considered a variant of this problem, namely multiplicative
spanners and even mixes between additive and multiplicative spanners [1,2,3].
The problem of finding a k-spanner of smallest size has received a lot of atten-
tion. Most notably, given a graph with n nodes Dor et al. [4] prove that it has a
2-spanner of size O�n3�2�, Baswana et al. [5] prove that it has a 6-spanner of size
O�n4�3�, and Chechik [6] proves that it has a 4-spanner of size O�n7�5 log1�5 n�.
Woodrufff [7] shows that for every constant k there exist graphs with n nodes
such that every �2k � 1�-spanner must have at least Ω�n1�1�k� edges. This im-
plies that the construction of 2-spanners are optimal. Whether there exists an
algorithm for constructing O�1�-spanners with O�n1�ε� edges for some ε � 1�3
is unknown and is an important open problem.
Æ Research partly supported by Thorup’s Advanced Grant from the Danish Council

for Independent Research under the Sapere Aude research carrier programme and by
the FNU project AlgoDisc - Discrete Mathematics, Algorithms, and Data Structrues.

R Ravi and I.L. Gørtz (Eds.): SWAT 2014, LNCS 8503, pp. 277–281, 2014.
c© Springer International Publishing Switzerland 2014

278 M.B. Tejs Knudsen

Let G be a graph andH a subgraph of G. Consider the following algorithm: As
long as there exists a pair of nodes u, v such that dH�u, v� 	 dG�u, v�� k, find a
shortest path from u to v in G and add the edges on the path to H . This process
will be referred to as k-spanner-completion. After k-spanner-completion, H
will be a k-spanner of G. Thus, given a graph G, a general way to construct a
k-spanner for G is the following: Firstly, find a simple subgraph of G. Secondly
use k-spanner-completion on this subgraph. The main contribution of this paper
is:

Theorem 1. Let G be a graph with n nodes and H the subgraph containing
all nodes but no edges of G. For each node add

�
n1�3

�
edges adjacent to that

node to H (or, if the degree is less, add all edges incident to that node). After
6-spanner-completion H will have at most O�n4�3� edges.

It is well-known that a graph with n nodes has a 6-spanner of size O�n4�3�
[5]. The techniques employed in our proof of correctness are similar to those
in [5]. The creation of the initial graph H corresponds to the clustering in [5]
and the 6-spanner-completion corresponds to their path-buying algorithm. For
completeness we show that the same method gives a 2-spanner of size O�n3�2�.
This fact is already known due to [4] and is matched by a lower bound from [7].

Theorem 2. Let G be a graph with n nodes and H the subgraph where all edges
are removed. Upon 2-spanner-completion H has at most O�n3�2� edges.

2 Creating a 6-Spanner

The algorithm for creating a 6-spanner was described in the abstract and the
introduction.

For a given graph G, a 6-spanner of G can be created by strating with some
subgraph H of G and applying 6-spanner-completion to H . Theorem 1 states
that for a suitable starting choice of H we get a spanner of size O�n4�3�. The
purpose of this section is to show that the 6-spanner created has no more than
O�n4�3� edges. This will imply that the construction (in terms of the size of the
6-spanner) matches the best known upper bound [5].

Proof (of Theorem 1). Inserting (at most)
�
n1�3

�
edges per node will only add

n
�
n1�3

�
� O�n4�3� edges to H . Therefore it is only necessary to prove that

6-spanner-completion adds no more than O�n4�3� edges.
Let v�H� and c�H� be defined by:

v�H� �
�

u,v�V �G�

max
0, dG�u, v� � dH�u, v� � 5� , c�H� � #E�H�

Say that a shortest path, p, from u to v is added to H , and let H0 be the
subgraph before the edges are added. Let the path consist of the nodes:

u � w0, w1, . . . , wr � v, r � N

Additive Spanners: A Simple Construction 279

Let u� � wi be the node wi with the smallest i such that degH0
�wi�

�
n1�3

�
.

Likewise let v� � wj be the node wj the largest j such that degH0
�wj�

�
n1�3

�
.

Remember that if degH0
�wi� �

�
n1�3

�
then all the edges adjacent to wi are

already in H0. This implies that dH0 �u
�, v�� 	 dG�u

�, v�� � 6 since dH0�u, v� 	
dG�u, v� � 6.

Say that t new edges are added to H . Then there must be at least t nodes on
p with degree 	 n1�3. Since every node can be adjacent to no more than 3 nodes
on p (since it is a shortest path) there must be Ω�n1�3t� nodes adjacent to p in
H . Let z and w be neighbours to u� and v� in H respectively and let r be any
node adjacent to p in H . Let s be a node on p such that r and s are adjacent in
H . See Figure 1 for an illustration.

u u' s v' v

z r w

Fig. 1. The dashed line denotes the shortest path from u to v. The solid lines denote
edges.

By the triangle inequality we see that:

dH�z, r� � dH�r, w� � dG�u
�, v�� � 4

But on the other hand:

dH0�z, r� � dH0�r, w�
 dH0�z, w�
 dH0�u
�, v�� � 2 	 dG�u

�, v�� � 4

Combining these two inequalities we obtain dH0�z, r� 	 dH�z, r� or dH0�r, w� 	
dH�r, w�. And from the triangle inequality dG�z, r��5 	 dH �z, r� and dG�r, w��
5 	 dH�r, w�. Since u� and v� have at least n1�3 neighbours and there are Ω�n1�3t�
nodes in H adjacent to p, the definition of v�H� implies that:

v�H� � v�H0�
 Ω�t�n1�3�2�

And since c�H� � c�H0� � t:

v�H� � v�H0�

c�H� � c�H0�

 Ω�n2�3�

Since v�H� � O�n2� this implies that c�H� increases with no more than
O�n2�n2�3� � O�n4�3� in total when all shortest paths are inserted. Hence
c�H� � O�n4�3� when the 6-spanner-completion is finished which yields the
conclusion. ��

280 M.B. Tejs Knudsen

3 Creating a 2-Spanner

For completeness we show that 2-spanner-completion gives spanners with O�n3�2�
edges. This matches the upper bound from [4] and the lower bound from [7].

Proof (of Theorem 2). Let G be a graph with n nodes. Whenever H is a spanner
of G, define v�H� and c�H� as:

v�H� �
�

u,v�V �G�

max
0, dG�u, v� � dH�u, v� � 3� , c�H� �
�

v�V �G�

�degH�v��
2

It is easy to see that 0 � v�H� � 3n2 and by Cauchy-Schwartz’s inequality�
c�H� � n
 2#E�H�. The goal will be to prove that when the algorithm termi-

nates c�H� � O�n2�, since this implies that #E�H� � O�n3�2�. This is done by
proving that in each step of the algorithm c�H��12v�H� will not increase. Since
v�H� � O�n2� this means that c�H� � O�n2� which ends the proof. Therefore it
is sufficient to check that c�H� � 12v�H� never increases.

Consider a step where new edges are added to H on a shortest path from u to
v of length t. Let H0 be the subgraph before the edges are added. Assume that
u, v violates the 2-spanner condition in H0, i.e. dH0�u, v� 	 dG�u, v�� 2. Let the
shortest path consist of the nodes:

u � w0, w1, . . . , wt�1, wt � v

It is obvious that:

c�H� � c�H0� �
t�

i	0

�degH�wi��
2 � �degH�wi� � 2�2 � 4

t�

i	0

degH�wi�

Every node cannot be adjacent to more than 3 nodes on the shortest path, since
otherwise it would not be a shortest path. Using this insight we can bound the
number of nodes which in H are adjacent to or on the shortest path from below
by:

1

3

t�

i	0

degH�wi�

Now let z be a node in H adjacent or on to the shortest path. Obviously:

dH �u, z� � dH�z, v� � dG�u, v� � 2

Furthermore dH0�u, z� � dH0�z, v� 	 dG�u, v� � 2 since otherwise there would
exist a path from u to v in H0 of length � dG�u, v� � 2. Hence:

dH�u, z� � dH �z, v� � dH0�u, z� � dH0�z, v�

Now let z be a node on the shortest path which is adjacent to wi in H (every
node on the path will also be adjacent in H to such a node). Then by the triangle
inequality:

dH�u, z� � dH�u,wi� � dH�wi, z� � dG�u,wi� � 1

� dG�u, z� � dG�z, wi� � 1 � dG�u, z� � 2

Additive Spanners: A Simple Construction 281

And likewise dH�z, v� � dG�z, v� � 2. Combining these two observations yields:
�

w�V

max
0, dG�z, w� � dH�z, w� � 3� �
�

w�V

max
0, dG�z, w� � dH0�z, w� � 3�

Since this holds for every node in H adjacent to or on the shortest path this
means that:

v�H� � v�H0�

1

3

t�

i	0

degH�wi�

Combining this with the bound on c�H� � c�H0� gives:

�c�H� � 12v�H�� � �c�H0� � 12v�H0�� � 0

which finishes the proof. ��

References

1. Pettie, S.: Low distortion spanners. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki,
A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 78–89. Springer, Heidelberg (2007)

2. Elkin, M., Peleg, D.: �1 � ε, β�-spanner constructions for general graphs. SIAM
Journal on Computing 33(3), 608–631 (2004); See also STOC 2001

3. Thorup, M., Zwick, U.: Spanners and emulators with sublinear distance errors. In:
Proc. 17th ACM/SIAM Symposium on Discrete Algorithms (SODA), pp. 802–809
(2006)

4. Dor, D., Halperin, S., Zwick, U.: All-pairs almost shortest paths. SIAM Journal on
Computing 29(5), 1740–1759 (2000); See also FOCS 1996

5. Baswana, S., Kavitha, T., Mehlhorn, K., Pettie, S.: New constructions of �α, β�-
spanners and purely additive spanners. In: Proc. 16th ACM/SIAM Symposium on
Discrete Algorithms (SODA), pp. 672–681 (2005)

6. Chechik, S.: New additive spanners. In: Proc. 24th ACM/SIAM Symposium on
Discrete Algorithms (SODA), pp. 498–512 (2013)

7. Woodruff, D.P.: Lower bounds for additive spanners, emulators, and more. In: Proc.
47th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 389–398
(2006)

Assigning Channels
via the Meet-in-the-Middle Approach�

Łukasz Kowalik and Arkadiusz Socała

University of Warsaw, Poland

Abstract. We study the complexity of the Channel Assignment prob-
lem. By applying the meet-in-the-middle approach we get an algorithm
for the �-bounded Channel Assignment (when the edge weights are
bounded by �) running in time O∗((2

√
�+ 1)n). This is the first algo-

rithm which breaks the (O(�))n barrier. We extend this algorithm to the
counting variant, at the cost of slightly higher polynomial factor.

A major open problem asks whether Channel Assignment admits
a O(cn)-time algorithm, for a constant c independent of �. We consider a
similar question for Generalized T -Coloring, a CSP problem that
generalizes Channel Assignment. We show that Generalized T -
Coloring does not admit a 22

o(
√

n)
poly(r)-time algorithm, where r is

the size of the instance.

1 Introduction

In the Channel Assignment problem, we are given a symmetric weight func-
tion w : V 2 → N (we assume that 0 ∈ N). The elements of V will be called
vertices (as w induces a graph on the vertex set V with edges corresponding to
positive values of w). We say that w is �-bounded when for every x, y ∈ V we have
w(x, y) ≤ �. An assignment c : V → {1, . . . , s} is called proper when for each pair
of vertices x, y we have |c(x)−c(y)| ≥ w(x, y). The number s is called the span of
c. The goal is to find a proper assignment of minimum span. Note that the special
case when w is 1-bounded corresponds to the classical graph coloring problem. It
is therefore natural to associate the instance of the channel assignment problem
with an edge-weighted graph G = (V,E) where E = {uv : w(u, v) > 0} with
edge weights wE : E → N such that wE(xy) = w(x, y) for every xy ∈ E (in
what follows we abuse the notation slightly and use the same letter w for both
the function defined on V 2 and E). The minimum span is called also the span
of (G,w) and denoted by span(G,w).

It is interesting to realize the place Channel Assignment in a kind of hi-
erarchy of constraint satisfaction problems. We have already seen that it is a
generalization of the classical graph coloring. It is also a special case of the
constraint satisfaction problem (CSP). In CSP, we are given a vertex set V , a
constraint set C and a number of colors d. Each constraint is a set of pairs of the
� Research supported by National Science Centre of Poland, grant number UMO-

2013/09/B/ST6/03136.

R Ravi and I.L. Gørtz (Eds.): SWAT 2014, LNCS 8503, pp. 282–293, 2014.
c© Springer International Publishing Switzerland 2014

Assigning Channels via the Meet-in-the-Middle Approach 283

form (v, t) where v ∈ V and t ∈ {1, . . . , d}. An assignment c : V → {1, . . . , d}
is proper if every constraint A ∈ C is satisfied, i.e. there exists (v, t) ∈ A such
that c(v) �= t. The goal is to determine whether there is a proper assignment.
Note that Channel Assignment corresponds to CSP where d = s and every
edge uv of weight w(uv) in the instance of Channel Assignment corresponds
to the set of constraints of the form {(u, t1), (v, t2)} where |t1 − t2| < w(uv).

Since graph coloring is solvable in time O∗(2n) [1] it is natural to ask whether
Channel Assignment is solvable in time O∗(cn), for some constant c. Un-
fortunately, the answer is unknown at the moment and the best algorithm
known so far runs in O∗(n!) time (see McDiarmid [10]). However, there has
been some progress on the �-bounded variant. McDiarmid [10] came up with
an O∗((2� + 1)n)-time algorithm which has been next improved by Kral [9] to
O∗((�+2)n) and to O∗((�+1)n) by Cygan and Kowalik [2]. These are all dynamic
programming (and hence exponential space) algorithms, and the last one applies
the fast zeta transform to get a minor speed-up. Interestingly, all these works
show also algorithms which count all proper assignments of span at most s within
the same running time (up to polynomial factors) as the decision algorithm.

It is a major open problem (see [9,2,6]) to find such a O(cn)-time algorithm
for c independent of � or prove that it does not exist under a reasonable complex-
ity assumption. A complexity assumption commonly used in such cases is the
Exponential Time Hypothesis (ETH), introduced by Impagliazzo and Paturi [7].
It states that 3-CNF-SAT cannot be computed in time 2o(n), where n is the
number of variables in the input formula. The open problem mentioned above
becomes even more interesting when we realize that under ETH, CSP does not
have a O∗(cn)-time algorithm for a constant c independent of d, as proved by
Traxler [11].

Our Results. Our main result is a new O∗((2
√
�+ 1)n)-time algorithm for the

�-bounded Channel Assignment problem. Note that this is the first algorithm
which breaks the (O(�))n barrier. Our algorithm follows the meet-in-the-middle
approach (see e.g. Horowitz and Sahni [5]) and is surprisingly simple, so we hope
it can become a yet another clean illustration of this beautiful technique. We
show also its (more technical) counting version, which runs within the same time
(up to a polynomial factor).

Although we were not able to show that the unrestricted Channel Assign-

ment does not admit a O(cn)-time for a constant c under, say ETH, we were
able to shed some more light at this issue. Let us consider some more prob-
lems in the CSP hierarchy. In the T -Coloring, introduced by Hale [4], we are
given a graph G = (V,E), a set T ⊆ N, and a number s ∈ N. An assignment
c : V → {1, . . . , s} is proper when for every edge uv ∈ E we have |c(u)−c(v)| �∈ T .
As usual, the goal is to determine whether there exists a proper assignment. Like
Channel Assignment, T -Coloring is a special case of CSP and generalizes
graph coloring, but it is incomparable with Channel Assignment. However,
Fiala, Král’ and Škrekovski introduced which is a common generalization of ver-
tex list-coloring (a variant of the classical graph coloring where each vertex has
a list, i.e., a set of allowed colors), Channel Assignment and T -Coloring.

284 Ł. Kowalik and A. Socała

The instance of the Generalized List T -coloring is a triple (G,Λ, t, s) where
G = (V,E) is a graph, Λ : V → 2N, t : E → 2N and s ∈ N, where N denotes
the set of all nonnegative integers. An assignment c : V → {1, . . . , s} is proper
when for every v ∈ V we have c(v) ∈ Λ(v), and for every edge uv ∈ E we
have |c(u) − c(v)| �∈ t(uv). As usual, the goal is to determine whether there
exists a proper assignment. Similarly as in the case of Channel Assignment,
we say that the instance of Generalized List T -coloring is �-bounded if
max

⋃
e∈E t(e) ≤ �. Very recently, the Generalized List T -coloring was

considered by Junosza-Szaniawski and Rzążewski [8]. They show Generalized

List T -coloring can be solved in O∗((� + 2)n) time, which matches the time
complexity of the algorithm of Cygan and Kowalik [2] for Channel Assign-

ment (note that an �-bounded instance of Channel Assignment can be seen
as an (� − 1)-bounded instance of Generalized List T -coloring). In this
work we show that most likely one cannot hope for am O∗(cn)-time algorithm
for Generalized List T -coloring. We even consider a special case of Gener-

alized List T -coloring, i.e. the non-list version where every vertex is allowed
to have any color, so the instance is just a triple (G, t, s). We call it Gener-

alized T -Coloring. We show that, under ETH, Generalized T -Coloring

does not admit a 22
o(

√
n)
poly(r)-time algorithm, where r is the size of the in-

stance (including all the bits needed to represent the sets t(e) for all e ∈ E).
Note that this rules out an O(n!) algorithm as well.

Organization of the Paper. In Section 2 we describe an O∗((� + 2)n)-time
dynamic programming algorithm for �-bounded Channel Assignment. It is
then used as a subroutine in the O∗((2

√
�+ 1)n)-time algorithm described in

Section 3. Due to space limitations, its extension to counting proper assignments
of given span is deferred to a journal version. In section 4 we discuss hardness
of Generalized T -Coloring under ETH. Due to space limitations, proofs of
claims marked by � are deferred to a journal version.

Notation. Throughout the paper n denotes the number of the vertices of the
graph under consideration. For an integer k, by [k] we denote the set {1, 2, . . . , k}.
Finally, & is the disjoint sum of sets i.e. the standard sum of sets ∪ but with an
additional assumption that the sets are disjoint.

2 Yet Another O∗((�+ 2)n)-Time Dynamic Programming

In this section we provide a O∗((�+2)n)-time dynamic programming algorithm
for Channel Assignment. It uses a different approach than e.g. the algorithm
of Kral, and will be used as a subroutine in our faster algorithm.

For a subset X ⊆ V and a function f : X → [�+ 1] let AX,f be the set of all
proper assignments c : X → N of the graph G[X] subject to the condition that
for every x ∈ X we have c(x) ≥ f(x).

For every subset X ⊆ V and f : X → [�+1] we compute the value of T [X, f]
which is equal to the minimum span of an assignment from AX,f . Clearly, the
minimum span of (G,w) equals to T [V, f1] where f1 is the constant function
which assigns 1 to every vertex.

Assigning Channels via the Meet-in-the-Middle Approach 285

The values of T [X, f] are computed by dynamic programming as follows. First
we initialize T [∅, e[�+1]] = 0 (where e[�+1] is the only function f : ∅ → [� + 1]).
Next, we iterate over all non-empty subsets of V in the order of nondecreasing
cardinality. In order to determine the value of T [X, f] we use the recurrence
relation formulated in the following lemma.

Informally, it uses the observation that there is a minimum-span assignment
c such that the vertex v ∈ X with minimum color c(v) is left-shifted, i.e. c(v) =
f(v). Hence we can check all possibilities for v and then the colors of all the
other vertices from X have lower bounds in range {f(v), . . . , f(v)+�}, so we can
translate the range back down to {1, . . . , �+1} and use the previously computed
values of T [X \ {v}, ·].

Lemma 2.1. For a subset X ⊆ V , a function f : X → [� + 1] and a vertex v
define the function fv : X \ {v} → [�+ 1] given by the formula

fv(x) = 1 +max{w(v, x), f(x) − f(v)} for every x ∈ X \ {v}.

Then,
T [X, f] = min

v∈X
(f(v) + T [X \ {v}, fv]− 1), (1)

Proof. Fix v ∈ X . Denote AX,f,v = {c ∈ AX,f : c(v) = f(v) = minx∈X f(x)}.
Then, for every assignment c ∈ AX,f,v, for every x ∈ X \ {v} we have c(x) ≥
f(v) + max{w(v, x), f(x) − f(v)}. Hence, the minimum span of an assignment
from AX,f,v is equal to f(v) + T [X \ {v}, fv]− 1. It suffices to show that there
is an assignment c∗ ∈ AX,f of minimum span such that c∗(v) ∈ AX,f,v for some
v ∈ X . Consider an arbitrary assignment c∗ ∈ AX,f of minimum span. Let
x ∈ X be the vertex of minimum color, i.e. c∗(x) is minimum. If c∗(x) = f(x)
we are done. Otherwise consider a new assignment c∗∗ which is the same as c∗
everywhere except for x and c∗∗(x) = f(x); then c∗∗ is proper since c∗(x) is
minimal and clearly c∗∗ ∈ AX,f . The span of c∗∗ is not greater than the span of
c∗ (actually they are the same since c∗ has minimal span), so the claim follows.

��

The size of the array T is
∑n

i=0

(
n
i

)
(� + 1)i = (� + 2)n. Computing a single

value based on previously computed values for smaller sets takes O(n2) time,
hence the total computation takes O((�+2)nn2) time. As described, it gives the
minimum span only, but we can retrieve the corresponding assignment within
the same running time using standard techniques.

3 The Meet-in-the-Middle Speed-Up

In this section we present our main result, an algorithm for �-bounded Channel

Assignment that applies the meet-in-the-middle technique. Roughly, the idea
is to find partial solutions for all possible halves of the vertex set and then merge
the partial solutions efficiently to solve the full instance.

For the clarity of the presentation we assume n is even (otherwise we just
add a dummy isolated vertex). Before we describe the algorithm let us introduce

286 Ł. Kowalik and A. Socała

some notation. For a set X ⊆ V , by X we denote V \X . Moreover, for a function
f : X → [�+ 1] we define function f : X → [�+ 1] such that for every v ∈ X,

f(v) = 1 +max({1 + w(uv) − f(u) : uv ∈ E, u ∈ X} ∪ {0}).

The values T [X, f] are defined as in Section 2. Our algorithm is based on the
following observation.

Lemma 3.1. The span of (G,w) is equal to

min(T [X, f] + T [X, f]− 1),

where the minimum is over all pairs (X, f) where X ∈
(

V
n/2

)
and f : X → [�+1].

Proof. Let c∗ : V → N be a proper assignment of minimum span s. Order
the vertices of V = {v1, . . . , vn} so that for every i = 1, . . . , n − 1 we have
c∗(vi) ≤ c∗(vi+1). Consider the subset X = {v1, . . . , vn/2}. Let s1 = c∗(vn/2).
Define f : X → [� + 1] such that f(x) = 1 + min{s1 − c∗(x), �} for every
x ∈ X . From the definition of T we have T [X, f] ≤ s1 (because the assignment
x '→ 1 + s1 − c∗(x) belongs to AX,f and has span s1). Moreover, note that for
every v ∈ X it holds that

c∗(v) ≥ max({c∗(u) + w(uv) : uv ∈ E, u ∈ X} ∪ {s1})
= max({s1 + w(uv) − f(u) + 1 : uv ∈ E, u ∈ X} ∪ {s1})
= s1 − 1 + f(v).

It follows that s = maxv∈X c∗(v) ≥ s1 − 1 + T [X, f] ≥ T [X, f] + T [X, f]− 1.
Finally we show that s > T [X, f] + T [X, f]− 1 contradicts the optimality of

c∗. Let c1 ∈ AX,f be an assignment of span T [X, f] and let c2 ∈ AX,f be an
assignment of span T [X, f]. Consider the following assignment c : V → N.

c(x) =

{
1 + T [X, f]− c1(x) for x ∈ X
T [X, f] + c2(x)− 1 for x ∈ X

One can check that from the definition of f it follows that c is a proper as-
signment. Moreover, the span of c is equal to T [X, f] + T [X, f] − 1. Hence, if
s > T [X, f] + T [X, f]− 1 then c∗ is not optimal, a contradiction. ��

From Lemma 3.1 we immediately obtain the following algorithm for comput-
ing the span of (G,w):

1. Compute the values of T [X, f] for all X ∈
(

V
≤n/2

)
and f : X → [�+ 1] using

the algorithm from Section 2.
2. Find the span of (G,w) using the formula from Lemma 3.1.

Note that Step 1 takes time proportional to
∑n/2

i=0

(
n
i

)
(� + 1)in2 = O(2n(� +

1)n/2n2). The size of array T is clearly O(2n(� + 1)n/2). In Step 2 we compute

Assigning Channels via the Meet-in-the-Middle Approach 287

a minimum of
(

n
n/2

)
(�+ 1)n/2 = O(2n(�+ 1)n/2) values. Hence the total time is

O(2n(� + 1)n/2n2). As described, the above algorithm gives the minimum span
only, but we can retrieve the corresponding assignment within the same running
time using standard techniques. We have just proved the following theorem.

Theorem 3.2. For every �-bounded weight function the channel assignment
problem can be solved in O(2n(� + 1)n/2n2) time.

4 Hardness of Generalized T -Coloring

In this section we give a lower bounds for the time complexity of Generalized

T -Coloring, under ETH. To this end we present a reduction from SetCover.
The instance of the decision version of SetCover consists of a family of sets
S = {S1, . . . , Sm} and a number k. The set U =

⋃
S is called the universe and

we denote n = |U |. The goal is to decide whether there is a subfamily C ⊆ S of
size at most k such that

⋃
C = U (then we say the instance is positive).

In the following lemma we reduce Set Cover to the decision version of
Generalized T -Coloring, where for a given instance (G,w) and a number s
we ask whether there is a proper assignment of span at most s (then we say the
instance is positive). We say that an instance (S, k) of SetCover is equivalent
to an instance (G,w, k) of Generalized T -Coloring when (S, k) is positive
iff (G,w, k) is positive. For every edge e of G, every pair (e, d) for d ∈ t(e) is
called a constraint.

Lemma 4.1. Let (S, k) be an instance of SetCover with m sets and universe
of size n and let A ∈ [1,m] and B ∈ [1, n] be two reals. Then we can gener-
ate in polynomial time an equivalent instance of Generalized T -Coloring

which has O
(
n
B + m

A ·max{1, logA}
)
vertices, O∗ (2A ·mB

)
constraints and is

O
(
2A ·mB

)
-bounded.

Proof. For convenience we assume that A and B are natural numbers, since
otherwise we round A and B down and the whole construction and its analysis
is the same, up to some details.

In the proof we consider coloring of the vertices as placing the vertices on a
number line in such a way that every vertex is placed in the coordinate equal to
its color.

Let S = {S1, . . . , Sm}. We are going to construct a complex instance (G =
(V,E), t, s) of Generalized T -Coloring. We describe it step-by-step and show
some of its properties.

We begin by putting vertices vL and vR in V and t(vLvR) = {0, . . . , s − 2},
i.e. in every proper assignment vL has color 1 and vR has color s, or the other
way around; w.l.o.g. we assume the first possibility. We specify s later.

In what follows, whenever we put a new vertex v in V , we will specify the set
A(v) of its allowed colors. Formally, this corresponds to putting t(vLv) = {d ∈
{0, . . . , s− 1} : d+ 1 �∈ A(v)}.

288 Ł. Kowalik and A. Socała

Colors

2A

⌈
m
A

⌉

∅

Fig. 1. The set choice module

Colors

2AmB

⌈
n
B

⌉

2A 2A 2A 2A

Fig. 2. The witness module. (The grey
areas are the gaps between the mB po-
tentially allowed positions.)

Our instance will consist of three separate modules (the set choice module,
the witness module and the parsimonious module). By separate we mean they
have disjoint sets of vertices VS , VU and VP and moreover they have disjoint
sets of allowed colors, i.e. for i, j ∈ {S,U, P}, when x ∈ Vi and y ∈ Vj for i �= j
then A(x) ∩ A(y) = ∅. However the modules will interfere with each other by
forbidding some distances between pairs of vertices from two different modules.

The Set Choice Module. The first module represents the sets in S. For every
i = 1, . . . ,

⌈
m
A

⌉
the set VS contains a vertex si. Vertex si represents the A sets

Si = {S(i−1)·A+1, S(i−2)·A+2, . . . , Si·A}

(and the last vertex s�m/A� represents S�m/A� = S(�m/A�−1)A+1, . . . , Sm). We
also put A(si) = {1, . . . , 2A} for every si ∈ VS . The intuition is that the color
c ∈ [2A] of a vertex si corresponds to a subset Si(c) ⊆ Si, i.e. the choice of sets
from Si to the solution of SetCover.

The Witness Module. Let denote the elements of the universe as e1, e2, . . . , en.
For every i = 1, . . . ,

⌈
n
B

⌉
the set VU contains a vertex ui. Vertex ui represents

the B elements
Ui = {e(i−1)·B+1, e(i−2)·B+2, . . . , ei·B}

(and the last vertex u�n/B� represents U�n/B� = e(�n/B�−1)B+1, . . . , en).
This time vertices VU do not need to have the same sets of allowed colors, but

for every u ∈ VU we have A(u) ⊆ {1 + i · 2A : i = 1, . . . ,mB}. Note that every
vertex has at most mB allowed colors and there are gaps of length 2A− 1 where
no vertex is going to be assigned.

We say that a sequence (Sw1 , . . . , SwB) ∈ SB is a witness for a vertex ui ∈ VU
when

Ui ⊆
B⋃

j=1

Swj .

For every i = 1, . . . ,mB color 1 + i · 2A corresponds to the i-th sequence in the
set SB (say, in the lexicographic order of indices); we denote this sequence by

Assigning Channels via the Meet-in-the-Middle Approach 289

2A

⌈
m
A

⌉

Colors

2AmB

⌈
n
B

⌉
si

u

Fig. 3. The interaction between a vertex si in the set choice module and a vertex u
in the witness module. All the drawn arcs are forbidden distances between si and u.
Note that for every possible color 1 + j · 2A of u the subset of [2A] excluded by the
forbidden distances in t(usi) is exactly Fi,j .

Wi. Then, for every u ∈ VU ,

A(u) = {1 + i · 2A : Wi is a witness for u, i = 1, . . . ,mB}.

The intuition should be clear: color of a vertex ui ∈ VU in a proper assignment
represents the choice of at most B sets in the solution of SetCover which cover
Ui.

The Interaction between the Set Choice Module and the Witness
Module. As we have seen, every assignment c of colors to the vertices deter-
mines a choice of a subfamily S(c) ⊆ S, where S(c) =

⋃�m/A�
i=1 Si(c(i)). Similarly,

c determines a choice of a subfamily S′(c) ⊆ S, where S′(c) =
⋃

u∈VU
Wc(u). It

should be clear that we want to force that in every proper assignment S′(c) ⊆
S(c). To this end we introduce edges between the two modules.

For i = 1, . . . ,
⌈
m
A

⌉
and j = 1, . . . ,mB define the following set of forbidden

colors
Fi,j = {c ∈ [2A] : Wj ∩ Si �⊆ Si(c)}.

The intuition is the following: If a proper assignment colors a vertex ui ∈ VU
with color 1+j·2A (i.e. it assigns the witness Wj to the set Ui) then it cannot color
the vertex si with colors from Fi,j (i.e. choose this subsets of Si corresponding
to these colors), for otherwise S′(c) �⊆ S(c).
Claim 1. Consider any proper assignment c : V → [s]. If for every i = 1, . . . ,

⌈
m
A

⌉
we have c(si) �∈

⋃
u∈VU

Fi,c(u), then S′(c) ⊆ S(c).
Proof of the Claim: Consider a set St ∈ Wc(u) for an arbitrary u ∈ VU . Then
St ∈ Si for some i. From the assumption, c(si) �∈ Fi,c(u), so Wc(u) ∩ Si ⊆ Si(c).
Hence, St ∈ S(c), as required.

Hence we would like to add some forbidden distances to our instance to make
the assumption of Clam 1 hold. To this end, for every u ∈ VU and every si ∈ VS
we put

t(usi) =
mB⋃
j=1

{1 + j · 2A − f : f ∈ Fi,j}.

290 Ł. Kowalik and A. Socała

2A 2k

Colors

⌈
m
A

⌉

Fig. 4. The parsimonious module

In other words, for every possible color 1 + j · 2A of u we forbid all distances
between u and si that would result in coloring si with Fi,j . Then indeed the
assumption from Claim 1 holds.
Claim 2. For any proper assignment c : V → [s] we have S′(c) ⊆ S(c).
Proof of the Claim: We need to verify the assumption in Claim 1. Assume for the
contradiction that for some i and some u ∈ VU we have c(si) ∈ Fi,c(u). Recall
that in a proper assignment c(u) = 1 + j · 2A for some j = 1, . . . ,mB. Then
|c(u)− c(si)| = 1 + j · 2A − c(si) ∈ t(usi), a contradiction.
Claim 3. For any proper assignment c : V → [s] we have S(c) covers the universe.
Proof of the Claim: This is an immediate corollary from Claim 2 and the fact
that every vertex u ∈ VU is colored with a color from A(u).
Claim 4. For every cover C ⊆ S of the universe, there is a proper assignment
c : V → [s] such that S(c) = C.
Proof of the Claim: We color vL and vR with 1 and s, and every vertex si
with the color from [2A] corresponding to the subset Si ∩ C of Si. For every
set Ui for every e ∈ Ui we pick a set Se ∈ C that contains e and we build a
witness W from the sets Se. We color ui with the color 1 + j · 2A, where j is
the number of W in the lexicographic order of all witnesses. It remains to check
that the resulting assignment c is proper. The only nontrivial issue is whether
for every u ∈ VU and si ∈ VS we have |c(u) − c(si)| �∈ t(usi). It is clear that
|c(u) − c(si)| �∈ {c(u) − f : f ∈ Fi,j}, where j is such that c(u) = 1 + j · 2A.
However, for every j′ �= j the set {1 + j′ · 2A − f : f ∈ Fi,j′} is disjoint from
2A (this is where we make use of the ‘gaps’ of length 2A − 1).

Bounding the Number of Sets Chosen to the Solution. The last thing we
need in a proper assignment c is to keep the number of the sets in S(c) bounded
by k. To this end we use the parsimonious module with the vertex set VP .

The third parsimonious module consists of
⌈
m
A

⌉
consecutive submodules and

an additional free space of length 2k (meaning that for every v ∈ VP the set of
allowed colors A(v) contains this free space. Between those submodules and the
additional free space we put a gap of length 2A, where no vertex can be assigned.
The intuition is that in a proper assignment c the i-th submodule represents the
number of sets from Si chosen to the solution, i.e. |Si(ci)|.

More precisely, VP =
⊎�m/A�

i=1 Vi, where Vi is a set of 1 + �logA� vertices
representing numbers 20, 21, . . . , 2�logA�. Let For a vertex x ∈ VP let r(x) denote

Assigning Channels via the Meet-in-the-Middle Approach 291

the number represented by x. For every two vertices x, y ∈ VP we define

t(xy) = {0, . . . , r(x) + r(y)− 1}.

It follows that we can interpret those vertices as disjoint disks with radii equal to
the represented numbers (see Fig. 4). Let q = (1+mB)2A, i.e. q is the number of
colors used by the first two modules. For every i, we define i-th slot as the set of
colors {q+1+(i− 1) ·4A, . . . , q+ i ·4A}. Note that the length of each slot is 4A.
Define also the free space as Q = {q+ �m/A� ·4A+2A+1, . . . , q+ �m/A� ·4A+
2A+2k}. Each vertex x ∈ Vi is either in i-th slot or in the free space Q. However,
x has exactly one allowed color in the i-th slot chosen so that we can put all
the disks in the i-th slot and they will be disjoint. Let j be such that r(x) = 2j .
Then we denote the allowed color by ax = q + (i− 1) · 4A+

∑
r<j 2 · 2r + 2j . In

precise terms, A(x) = {ax} ∪Q.

Colors

2A

⌈
m
A

⌉

∅

Fig. 5. The interaction between the set choice module and one of the submodules
of the parsimonious module. Note that colors in [2A] are ordered according to the
cardinality of the chosen collection of sets (0, 1, 1, 1, 2, 2, 2, 3).

Vertices of the i-th submodule have some edges to the vertex si of the set
choice module. As we mentioned, for a proper assignment c the i-th submodule
is going to be a counter representing the number of sets in Si(c); in fact the
vertex representing 2j corresponds to the j-th bit of the counter. So if r(x) = 2j

for x ∈ Vi, then t(six) contains all distances d such that ax − d is a color b
from 2A such that the j-th bit of |Si(b)| is 1. Hence, in a proper assignment c,
if the j-th bit of the number of sets in Si(c) is 1 then x is thrown away from
the i-th slot and it is colored by a color from the free space Q. However, the
|Q| = 2k so the sum of the radii of the disks thrown out from its slots is at most
k. It follows that the total number of the chosen sets is also at most k. Also,
if there is a cover C ⊆ S of the universe such that |C| ≤ k, then for every i, if
|C ∩ Si| has 1 on the j-th bit we put the vertex of Vi representing 2j in Q. It
is clear that since |C| ≤ k we have enough space for them in Q. Moreover, we
do not violate any edge between these vertices and VS because of the gap 2A

inside the parsimonious module. Together with Claim 4 it implies that (S, k) is
a YES-instance of SetCover iff (G, t, s) is a YES-instance of Generalized

T -Coloring, provided that s is sufficiently large to provide disjoint intervals of

292 Ł. Kowalik and A. Socała

colors for all the modules. From the construction we infer that it is sufficient to
put s = 2A + 2A ·mB + 4A ·

⌈
m
A

⌉
+ 2A + 2k.

Calculating the Parameters. Note that s = O(2AmB) and in particular our
instance is O(2AmB)-bounded. Moreover, |V | =

⌈
n
B

⌉
+
⌈
m
A

⌉
+
⌈
m
A

⌉
·(1 + �logA�)+

2 = O
(
n
B + m

A · (1 + logA)
)
= O

(
n
B + m

A ·max {1, logA}
)
. Finally, the total

number of constraints is bounded by O∗((n
B + m

A ·max {1, logA})2 · (2A ·mB)) =
O∗ (2A ·mB

)
, i.e., the number of pairs of the vertices times the maximum for-

bidden distance s− 1. It ends the proof. ��

Corollary 4.2. Let (G, k) be an instance of Dominating Set where G is a
graph on n vertices and k ∈ N. Then, for any real number A ∈ [1, n] we can
generate in polynomial time an instance of Generalized T -Coloring with
O
(
n
A ·max{1, logA}

)
vertices and with O∗ ((2n)A) constraints and such that all

the numbers in the instance have O (A ·max {1, logn}) bits.

Proof. The instance of Dominating Set with n vertices can be transformed
to an equivalent instance of Set Cover with n sets and also n elements of
the universe in a standard way (the sets are exactly the neighborhoods of the
vertices). The number k stays the same. Therefore we can use the Lemma 4.1
with A = B and m = n. ��

Theorem 4.3. If there exists an algorithm solving Generalized T -Coloring

in one of the following time complexities:

(i) 22
o(

√
n)
poly(r),

(ii) (�) 2
n·o

(
log l

(log log l)2

)
poly(r),

where n is the number of vertices in the input graph and r is the bit size of the
input, then there exists an algorithm solving Dominating Set in time 2o(n).

Proof. (i). Let us assume that we have an algorithm solving Generalized T -

Coloring in time 22
f(n)

poly(r) where f is some function such that f(n) =
o (
√
n) . We can assume without loss of generality that f is positive and nonde-

creasing. Let C be a constant such that Corollary 4.2 will give us always at most
C· nA ·max {1, logA} vertices. Let α be a positive nondecreasing function such that
α(n) ≤

√
n

f(Cn) and α(n) = ω(1). Such a function always exists because
√
n

f(Cn) =

1√
C
·

√
Cn

f(Cn) = ω(1). For every instance of Dominating Set with n vertices we
can take A = n

α(log2 n) logn
and use Corollary 4.2 to obtain an instance of Gen-

eralized T -Coloring with O
(
n
A logA

)
= O

(
α
(
log2 n

)
log2 n

)
vertices and

O∗ ((2n)A) = O∗ (2A+A logn
)
= O∗

(
2
O

(
n

α(log2 n)

))
= O∗ (2o(n)) = 2o(n) con-

straints. Moreover the numbers in the instance have polynomial size, so the size
of the whole instance is 2o(n). Thus this instance can be built in poly

(
n, 2o(n)

)
=

2o(n) time. Then we can solve this instance in 22
f(C· n

A
log A)

poly
(
2o(n)

)
time. But

Assigning Channels via the Meet-in-the-Middle Approach 293

f
(
C · n

A logA
)

≤ f
(
C · α

(
log2 n

)
log2 n

)
≤

√
α(log2 n) log2 n

α(α(log2 n) log2 n)
=

logn·
√

α(log2 n)

α(α(log2 n) log2 n)
= logn·

√
α(log2 n)

α(log2 n)
· α(log2 n)
α(α(log2 n) log2 n)

≤ logn√
α(log2 n)

= o (logn).

So the time of the whole procedure is 2o(n) + 22
o(log n)

poly
(
2o(n)

)
= 2o(n). ��

Corollary 4.4. There is no algorithm solving an n-vertex instance of Gener-

alized T -Coloring with bit size r in any of the listed time complexities

– 22
o(

√
n)
poly(r),

– 2
n·o

(
log l

log2 log l

)
poly(r),

unless the Exponential Time Hypothesis fails.

Proof. Under the ETH assumption there is no algorithm solving Dominating

Set in time 2o(n) where n is a number of the vertices (See [3]). Therefore the
claim follows immediately from Theorem 4.3. ��

Regarding the first claim the theorem above, recall that there is a
2O(n log l)poly(r)-time algorithm for Generalized T -Coloring, see [8].

References

1. Björklund, A., Husfeldt, T., Koivisto, M.: Set partitioning via inclusion-exclusion.
SIAM J. Comput. 39(2), 546–563 (2009)

2. Cygan, M., Kowalik, L.: Channel assignment via fast zeta transform. Inf. Process.
Lett. 111(15), 727–730 (2011)

3. Fomin, F.V., Kratsch, D., Woeginger, G.J.: Exact (exponential) algorithms for the
dominating set problem. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG
2004. LNCS, vol. 3353, pp. 245–256. Springer, Heidelberg (2004)

4. Hale, W.: Frequency assignment: Theory and applications. Proceedings of the
IEEE 68(12), 1497–1514 (1980)

5. Horowitz, E., Sahni, S.: Computing partitions with applications to the knapsack
problem. J. ACM 21(2), 277–292 (1974)

6. Husfeldt, T., Paturi, R., Sorkin, G.B., Williams, R.: Exponential Algorithms: Al-
gorithms and Complexity Beyond Polynomial Time (Dagstuhl Seminar 13331).
Dagstuhl Reports 3(8), 40–72 (2013)

7. Impagliazzo, R., Paturi, R.: On the complexity of k-sat. J. Comput. Syst. Sci. 62(2),
367–375 (2001)

8. Junosza-Szaniawski, K., Rzążewski, P.: An exact algorithm for the generalized list
T-coloring problem. CoRR, abs/1311.0603 (2013)

9. Král, D.: An exact algorithm for the channel assignment problem. Discrete Applied
Mathematics 145(2), 326–331 (2005)

10. McDiarmid, C.J.H.: On the span in channel assignment problems: bounds, com-
puting and counting. Discrete Mathematics 266(1-3), 387–397 (2003)

11. Traxler, P.: The time complexity of constraint satisfaction. In: Grohe, M., Nieder-
meier, R. (eds.) IWPEC 2008. LNCS, vol. 5018, pp. 190–201. Springer, Heidelberg
(2008)

Consistent Subset Sampling�

Konstantin Kutzkov and Rasmus Pagh

IT University of Copenhagen, Denmark

Abstract. Consistent sampling is a technique for specifying, in small
space, a subset S of a potentially large universe U such that the elements
in S satisfy a suitably chosen sampling condition. Given a subset I ⊆ U
it should be possible to quickly compute I ∩ S, i.e., the elements in I
satisfying the sampling condition. Consistent sampling has important
applications in similarity estimation, and estimation of the number of
distinct items in a data stream.

In this paper we generalize consistent sampling to the setting where
we are interested in sampling size-k subsets occurring in some set in a
collection of sets of bounded size b, where k is a small integer. This can be
done by applying standard consistent sampling to the k-subsets of each
set, but that approach requires time Θ(bk). Using a carefully designed
hash function, for a given sampling probability p ∈ (0, 1], we show how to
improve the time complexity to Θ(b�k/2� log log b + pbk) in expectation,
while maintaining strong concentration bounds for the sample. The space
usage of our method is Θ(b�k/4�).

We demonstrate the utility of our technique by applying it to several
well-studied data mining problems. We show how to efficiently estimate
the number of frequent k-itemsets in a stream of transactions and the
number of bipartite cliques in a graph given as incidence stream. Fur-
ther, building upon a recent work by Campagna et al., we show that
our approach can be applied to frequent itemset mining in a parallel or
distributed setting. We also present applications in graph stream mining.

1 Introduction

Consistent sampling is an important technique for constructing randomized
sketches (or “summaries”) of large data sets. The basic idea is to decide whether
to sample an element x depending on whether a certain sampling condition
is satisfied. Usually, consistent sampling is implemented using suitably defined
hash functions and x is sampled if its hash value h(x) is below some threshold.
If x is encountered several times, it is therefore either never sampled or always
sampled. The set of items to sample is described by the definition of the hash
function, which is typically small.

Consistent sampling comes in two basic variations: In one variation (some-
times referred to as subsampling) there is a fixed sampling probability p ∈ (0, 1),

� This work is supported by the Danish National Research Foundation under the
Sapere Aude program.

R Ravi and I.L. Gørtz (Eds.): SWAT 2014, LNCS 8503, pp. 294–305, 2014.
c© Springer International Publishing Switzerland 2014

Consistent Subset Sampling 295

and elements in a set must be sampled with this probability. In the alternative
model the sample size is fixed, and the sampling probability must be scaled to
achieve the desired sample size.

Depending on the strength of the hash function used, the sample will exhibit
many of the properties of a random sample (see e.g. [5,18]). One of the most fa-
mous applications of consistent sampling [6] is estimating the Jaccard similarity
of two sets by the similarity of consistent samples, using the same hash function.
Another well-known application is reducing the number of distinct items consid-
ered to Θ(1/ε2) in order to make an (1± ε)-approximation of the total number
of distinct items (see [21] for the state-of-the-art result).

In this paper we consider consistent sampling of certain implicitly defined sets.
That is, we sample from a set much larger than the size of the explicitly given
database. Our main focus is on streams of sets, where we want to sample subsets
of the sets in the stream.

We demonstrate the usability of our technique by designing new algorithms for
several well-studied counting problems in the streaming setting. We present the
first nontrivial algorithm for the problem of estimating the number of frequent k-
itemsets with rigorously understood complexity and error guarantee and also give
a new algorithm for counting bipartite cliques in a graph given as an incidence
stream. Also, using a technique presented in [9], we show that our approach can
be easily parallelized and applied to frequent itemset mining algorithms based
on hashing [10,11].

2 Preliminaries

Notation. Let C = T1, .., Tm be a collection of m subsets of a ground set I,
Tj ⊆ I, where I = {1, . . . , n} is a set of elements. The sets Tj each contain
at most b elements, i.e., |Tj| ≤ b, and in the following are called b-sets. Let
further S ⊆ I be a given subset. If |S| = k we call S a k-subset. We assume
that the b-sets are explicitly given as input while a k-subset can be any subset
of I of cardinality k. In particular, a b-set with b elements contains

(
b
k

)
distinct

k-subsets for k ≤ b. The frequency of a given k-subset is the number of b-sets
containing it.

In order to simplify the presentation, we assume a lexicographic order on
the elements in I and a unique representation of subsets as ordered vectors of
elements. However, we will continue to use standard set operators to express
computations on these vectors. In our algorithm we will consider only lexico-
graphically ordered k-subsets. For two subsets I1, I2 we write I1 < I2 iff i1 < i2
∀i1 ∈ I1, i2 ∈ I2.

The set of k-subsets of I is written as Ik and similarly, for a given b-set Tj ,
we write T k

j for the family of k-subsets occurring in Tj . A family of k-subsets

S ⊂ Ik is called a consistent sample for a given sampling condition P if for
each b-set Ti the set S ∩ T k

i is sampled, i.e., all elements satisfying the sampling
condition P that occur in Ti are sampled. The sampling condition P will be
defined later.

296 K. Kutzkov and R. Pagh

Let [q] denote the set {0, . . . , q − 1} for q ∈ N. A hash function h : E → [q]
is t-wise independent iff Pr[h(e1) = c1 ∧ h(e2) = c2 ∧ · · · ∧ h(et) = ct] = q−t

for distinct elements ei ∈ E , 1 ≤ i ≤ t, and ci ∈ [q]. We denote by p = 1/q
the sampling probability we use in our algorithm. Throughout the paper we will
often exchange p and 1/q.

We assume the standard computation model and further we assume that one
element of I can be written in one machine word.

Example. In order to simplify further reading let us consider a concrete data
mining problem. Let T be a stream of m transactions T1, T2, . . . , Tm each of size
b. Each such transaction is a subset of the ground set of items I. We consider
the problem of finding the set of frequent k-itemsets, i.e., subsets of k items
occurring in at least t transactions for a user-defined t ≤ m. As a concrete
example consider a supermarket. The set of items are all offered goods and
transactions are customers baskets. Frequent 2-itemsets will provide knowledge
about goods that are frequently bought together.

The problem can be phrased in terms of the above described abstraction by
associating transactions with b-sets and k-itemsets with k-subsets. Assume we
want to sample 2-itemsets. A consistent sample can be described as follows: for
a hash function h : I → [q] we define S to be the set of all 2-subsets (i, j) such
that h(i) + h(j) = 0 mod q. In each b-set we can then generate all

(
b
2

)
2-subsets

and check which of them satisfy the so defined sampling condition. For a suitably
defined hash function, one can show that resulting sample is “random enough”
and can provide important information about the data, for example, we can use
it to estimate the number of 2-itemsets occurring above a certain number of
times.

3 Our Contribution

3.1 Time-Space Trade-Offs Revisited

Streaming algorithms have traditionally been mainly concerned with space us-
age. An algorithm with a superior space usage, for example polylogarithmic, has
been considered superior to an algorithm using more space but less computation
time. We would like to challenge this view, especially for time complexities that
are in the polynomial (rather than polylogarithmic) range. The purpose of a
scalable algorithm is to allow the largest possible problem sizes to be handled
(in terms of relevant problem parameters). A streaming algorithm may fail either
because the processing time is too high, or because it uses more space than what
is available. Typically, streaming algorithms should work in space that is small
enough to fit in fast cache memory, but there is no real advantage to using only
10% of the cache. Looking at high-end processors over the last 20 years, see for ex-
ample http://en.wikipedia.org/wiki/Comparison_of_Intel_Processors,
reveals that the largest system cache capacity and the number of instructions per
second have developed rather similarly (with the doubling time for space being

http://en.wikipedia.org/wiki/Comparison_of_Intel_Processors

Consistent Subset Sampling 297

about 25% larger than the doubling time for number of instructions). Assum-
ing that this trend continues, a future processor with x times more processing
power will have about x0.8 times larger cache. So informally, whenever we have
S = o(T 0.8) for an algorithm using time T and space S the space will not be the
asymptotic bottleneck.

3.2 Main Result

In this paper we consider consistent sampling of certain implicitly defined sets,
focusing on size-k subsets in a collection of b-sets. The sampling is consistent in
the sense that each occurrence of a k-subset satisfying the sampling condition is
recorded in the sample.

Theorem 1. For each integer k ≥ 2 there is an algorithm computing a con-
sistent, pairwise independent sample of k-subsets from a given b-set in expected
time O(b�k/2� log log b+pbk) and space O(b�k/4�) for a given sampling probability
p, such that 1/p = O(bk) and p can be described in one word. An element of the
sample is specified in O(k) words.

Note that for the space complexity we do not consider the size of the computed
sample. We will do this when presenting concrete applications of our approach.

For low sampling rates our method, which is based on hash collisions among
k/2-subsets, is a quadratic improvement in running time compared to the näıve
method that iterates through all k-subsets in a given b-set. In addition, we obtain
a quadratic improvement in space usage compared to the direct application of
the hashing idea. Storing a single 2k-wise independent hash function suffices to
specify a sample, where every pair of k-subsets are sampled independently.

An important consequence of our consistent sampling algorithm is that it can
be applied to b-sets revealed one at a time, thus it is well-suited for streaming
problems.

4 Our Approach

4.1 Intuition

A näıve consistent sampling approach works as follows: Define a pairwise inde-
pendent hash function h : Ik → [q], for a given b-set T generate all

(
b
k

)
k-subsets

Ik ∈ T k and sample a subset Ik iff h(Ik) = 0. Clearly, to decide which Ik are
sampled the running time is O(bk) and the space is O(b) since the space needed
for the description of the hash function for reasonably small sampling proba-
bility p is negligible. A natural question is whether a better time complexity is
possible.

Our idea is instead of explicitly considering all k-subsets occurring in a given
b-set, to hash all elements to a value in [q], q = �1/p� for a given sampling
probability p. We show that the sampling of k-subsets is pairwise independent
and for many concrete applications this is sufficient to consider the resulting
sample “random enough”.

298 K. Kutzkov and R. Pagh

The construction of the hash function is at the heart of our algorithm and
allows us to exploit several tricks in order to improve the running time. Let us
for simplicity assume k is even. Then we sample a given k-subset if the sum
(mod q) of the hash values of its first k/2 elements equals the sum of the hash
values of its last k/2 elements modulo q. The simple idea is to sort all k/2-subsets
according to hash value and then look for collisions. Using a technique similar to
the one of Schroeppel and Shamir for the knapsack problem [23], we show how
by a clever use of priority queues one can design an algorithm with much better
time complexity than the näıve method and quadratic improvement in the space
complexity of the sorting approach.

4.2 The Hash Function

Now we explain how we sample a given k-subset. Let h : I → [q] be a 2k-
wise independent hash function, k ≥ 2. It is well-known, see for example [12],
that such a function can be described in O(k) words for a reasonable sampling
probability, i.e., a sampling probability that can be described in one machine
word.

We take a k-subset (a1, . . . , a�k/2�, a�k/2�+1, . . . , ak) in the sample iff (h(a1)+
· · ·+h(a�k/2�)) mod q = (h(a�k/2�+1)+· · ·+h(ak)) mod q. Note that we have as-
sumed a unique representation of subsets as sorted vectors and thus the sampling
condition is uniquely defined.

For a given k-subset I = (ai, ai+1 . . . , . . . , ai+k−1), i ∈ I, we denote by
h(ai, ai+1 . . . , . . . , ai+k−1)) the value (h(a1) + h(ai+1) + · · ·+ h(ai+k−1)) mod q.
We define the random variable XI to indicate whether a given k-subset I =
(a1, . . . , ak) will be considered for sampling:

XI =

{
1, if h(a1 . . . a�k/2�) = h(a�k/2�+1 . . . ak),

0, otherwise

The following lemmas allow us to assume that from our sample we can obtain
a reliable estimate with high probability:

Lemma 1. Let I be a t-subset with t ≤ k. Then for a given r ∈ [q], Pr[h(I) =
r] = 1/q.

Proof. Since h is 2k-wise independent and uniform each of the t ≤ k distinct
elements is hashed to a value between 0 and q − 1 uniformly and independently
from the remaining t− 1 elements. Thus, the sum (mod q) of the hash values of
I’s t elements is equal with probability 1/q to r. ��
Lemma 2. For a given k-subset I, Pr[XI = 1] = 1/q.

Proof. Let I = Il∪Ir with |Il| = �k/2� and |Ir| = �k/2�. The hash value of each
subset is uniquely defined, h is 2k-wise independent, and together with the result
of Lemma 1 we have Pr[h(Il) = h(Ir) = r] = 1/q2 for a particular r ∈ [q]. Thus,

we have Pr[h(Il) = h(Ir) = 0 ∨ · · · ∨ h(Il) = h(Ir) = q − 1] =
∑q−1

i=0 Pr[h(Il) =
h(Ir) = i] = 1/q. ��

Consistent Subset Sampling 299

Lemma 3. Let I1 and I2 be two distinct k-subsets. Then the random variables
XI1 and XI2 are independent.

Proof. We show that Pr[XI1 = 1 ∧XI2 = 1] = Pr[XI1 = 1]Pr[XI2 = 1] = 1/q2

for arbitrarily chosen k-subsets I1, I2. This will imply pairwise independence on
the events that two given k-subsets are sampled since for a given k-subset I,
Pr[XI = 1] = 1/q as shown in Lemma 1.

Let I1 = I1l ∪ I1r and I2 = I2l ∪ I2r with |Iil| = �k/2� and |Iir | = �k/2�.
Let us assume without loss of generality that h(I1l) = r1 and h(I2l) = r2 for
some ri ∈ [q]. As shown in the previous lemmas for fixed r1 and r2, Pr[h(I1r) =
r1] = Pr[h(I2r) = r2] = 1/q. Since h is 2k-wise independent, all elements in
I1l ∪ I1r ∪ I2l ∪ I2r are hashed independently of each other. Thus, it is easy to
see that the event we hash I2r to r2 is independent from the event that we have
hashed I1r to r1, thus the statement follows. ��

The above lemmas imply that our sampling will be uniform and pairwise
independent.

4.3 The Algorithm

A pseudocode description of our algorithm is given in Figure 1. We explain
how the algorithm works with a simple example. Assume we want to sample
8-subsets from a b-set (a1, . . . , ab) with b > 8. We want to find all 8-subsets
(a1, . . . , a8) for which it holds h(a1, . . . , a4) = h(a5, . . . , a8). As discussed, we
assume a lexicographic order on the elements in I and we further assume b-
sets are sorted according to this total order. The assumption can be removed by
preprocessing and sorting the input. Since I is discrete, one can assume that each
b-set can be sorted by the Han-Thorup algorithm in O(b

√
log log b) expected time

and space O(b) [16] (for the general case of sampling k-subsets even for k = 2
this will not dominate the complexity claimed in Theorem 1). In the following
we assume the elements in each b-set are sorted. Recall we have assumed a total
order on subsets, and all subsets we consider are sorted according to this total
order. We will also consider only sorted subsets for sampling.

We simulate a sorting algorithm in order to find all 4-subsets with equal hash
values. Let the set of 2-subsets be H . First, in ConsistentSubsetSampling we
generate all

(
b
2

)
2-subsets and sort them according to their hash value in a circu-

lar list L guaranteeing access in expected constant time. We also build a priority
queue P containing

(
b
2

)
4-subsets as follows: For each 2-subset (ai, aj) ∈ H we

find the 2-subset (ak, a�) ∈ L such that h(ai, aj, ak, a�) is minimized and keep
track of the position of (ak, a�) in L. Then we successively output all 4-subsets
sorted according to their hash value from the priority queue by calling Output-

Next. For a given collection of 4-subsets with the same hash value we generate
all valid 8-subsets, i.e., we find all combinations yielding lexicographically or-
dered 8-subsets. Note that the “head” 2-subsets from H are never changed while
we only update the “tail” 2-subsets with new 2-subsets from L. During the
process we also check whether all elements in the newly created 4-subsets are
different.

300 K. Kutzkov and R. Pagh

ConsistentSubsetSampling

Input: b-set T ⊂ I, a 2k-wise independent h : I → [q]
Let H = T k/4 be the k/4-subsets occurring in T .
Sort all k/4-subsets from H in a circular list L according to hash value.
Build a priority queue P with k/2-subsets I = IH ∪ IL according to hash value, for
IH ∈ H , IL ∈ L.
for i ∈ [q] do

T
k/2
i = OutputNext(P,L, i)

Generate all k-subsets from T
k/2
i satisfying the sampling condition (and con-

sisting of k different elements).

OutputNext

Input: a circular list L, a priority queue P of k/2-subsets I = (IH ∪ IL) compared by
hash value h(I), i ∈ N

while there is k/2-subset with a hash value i do
Output the next k/2-subset I = (IH ∪ IL) from P .
if cnt(IH) < L.length then

Replace I by IH ∪ I ′L in P where I ′L is the k/4-subset following IL in L.
Update the hash value of IH ∪ I ′L and restore the PQ invariant.
cnt(IH)++.

else
Remove I = (IH ∪ IL) from P and restore the PQ invariant.

Fig. 1. A high-level pseudocode description of the algorithm. For simplicity we assume
that k is a multiple of 4. The letter H stands for “head”, these are the k/4-subsets that
will constitute the first half of k/2-subsets in P . We will always update the second half
with a k/4-subset from L.

In OutputNext we simulate a heapsort-like algorithm for 4-subsets. We do
not keep explicitly all 4-subsets in P but at most

(
b
2

)
4-subsets at a time. Once we

output a given 4-subset (ai, aj , ak, a�) from P , we replace it with (ai, aj , a
′
k, a

′
�)

where (a′k, a
′
�) is the 2-subset in L following (ak, a�). We also keep track whether

we have not already traversed L for each 2-subset in H . If this is the case, we
remove the 4-subset (ai, aj , ak, a�) from P and the number of recorder entries in
P is decreased by 1. At the end we update P and maintain the priority queue
invariant.

In the following lemmas we will prove the correctness of the algorithm for
general k and will analyze its running time. This will yield our main Theorem 1.

Lemma 4. For k ≥ 4 with k mod 4 = 0 Consistent Subset Sampling out-
puts the k/2-subsets from a given b-set in sorted order according to their hash
value in expected time O(bk/2 log log b) and space O(bk/4).

Proof. Let T be the given b-subset and S = I1, . . . , I(b
k/2)

be the k/2-subsets

occurring in T sorted according to hash value. For correctness we first show
that the following invariant holds: After the j smallest k/2-subsets have been
output from P , P contains the (j + 1)th smallest k/2-subset in S, ties resolved

Consistent Subset Sampling 301

arbitrarily. For j = 1 the statement holds by construction. Assume now that it
holds for some j ≥ 1 and we output the jth smallest k/2-subset I = IH ∪ IL
for k/4-subsets IH and IL. We then replace it by I ′ = IH ∪ I ′L where I ′L is the
k/4-subset in L following IL, or, if L has been already traversed, remove I from
P . If P contains the (j + 1)th smallest k/2-subset, then the invariant holds.
Otherwise, we show that it must be that the (j + 1)th smallest k/2-subset is I ′.
Since L is sorted and we traverse it in increasing order, the k/2-subsets IH ∪ IL
with a fixed head IH that remain to be considered have all a bigger hash value
than I. The same reasoning applies to all other k/2-subsets in P , and since no
of them is the (j + 1)-th smallest k/2-subset, the only possibility is that indeed
I ′ is the (j + 1)-th smallest k/2-subset.

In Lwe need to explicitly storeO(bk/4) subsets. Clearly, we can assume that we
access the elements in L in constant time. The time and space complexity depend
on how we implement the priority queue P . We observe that for a hash function
range in bO(1) the keys on which we compare the 2-subsets are from a universe of
size bO(1).Thus,we can implementP as a y-fast trie [24] inO(bk/4) space supporting
updates in O(log log b) time. This yields the claimed bounds. ��

Note however, that the number of k/2-subsets with the same hash value might
be ω(bk/4). We next guarantee that the worst case space usage is O(bk/4).

Lemma 5. For a given r ∈ [q], k mod 4 = 0, and sampling probability p ∈ (0, 1],
we generate all k-subsets from a set of k/2-subsets with a hash value r that satisfy
the sampling condition in expected time O(p2bk) and space O(bk/4).

Proof. We use the following implicit representation of k/2-subsets with the same
hash value. For a given k/4-subset IP the k/4-subsets IL in L occurring in k/2-
subsets IP ∪ IL with the same hash value are contained in a subsequence of L.
Therefore, instead of explicitly storing all k/2-subsets, for each k/4-subset IP we
store two indices i and j indicating that h(IP ∪L[k]) = r for i ≤ k ≤ j. Clearly,
this guarantees a space usage of O(bk/4).

We expect pbk/2 k/2-subsets to have hash value r, thus the number of k-
subsets that will satisfy the sampling condition is O(p2bk). ��

The above lemmas prove Theorem 1 for the case k mod 4 = 0. One generalizes
to arbitrary k ≥ 4 in the following way:

For even k with k mod 4 = 2, meaning that k/2 is odd, it is easy to see
that we need a circular list with all �k/4�-subsets but the priority queue will
contain

(
b

�k/4�
)
pairs of k/2-subsets (which are concatenations of �k/4�-subsets

and �k/4�-subsets). For odd k we want to sample all k-subsets for which the
sum of the hash values of the first �k/2� elements equals the sum of the hash
values of the last �k/2� elements. We can run two copies of OutputNext in
parallel, one will output the �k/2�-subsets with hash value r and the other one
the �k/2�-subsets with hash value r for all r ∈ [q]. Then we can generate all k-
subsets satisfying the sampling condition as outlined in Lemma 5 with the only
difference that we will combine �k/2�-subsets with �k/2�-subsets output by each
copy of OutputNext. Clearly, the space complexity is bounded by O(b�k/4�)

302 K. Kutzkov and R. Pagh

and the expected running time is O(b�k/2� + pbk). This completes the proof of
Theorem 1.

A Time-Space Trade-Off. A better space complexity can be achieved by
increasing the running time. The following theorem generalizes our result.

Theorem 2. For any k ≥ 2 and � ≤ k/2 we can compute a consistent, pairwise
independent sample of k-subsets from a given b-set in expected time
O(b�k/2+�� log log b) + pbk) and space O(b�(k−2�)/4� + b) for a given sampling
probability p, such that 1/p = O(bk) and p can be described in one word.

Proof. We need space O(b) to store the b-set. Assume that we iterate over 2�-
subsets (a1, . . . , a2�), without storing them and their hash values. We assume
that we have fixed � elements among the first �k/2� elements, and � elements
among the last �k/2� ones. We compute the value h� = (h(a1) + · · · + h(a�) −
h(a�k/2�+1)− · · · − h(a�k/2�+�)) mod q. We now want to determine all (k − 2�)-
subsets for which the sum of the hash values of the first �k/2�−� elements equals
the sum of the hash values of the last �k/2� − � elements minus the value h�.
Essentially, we can sort (k−2�)-subsets according to their hash value in the same
way as before and the only difference is that we subtract h� from the hash value
of the last �k/2�−� elements. Thus, we can use two priority queues, where in the
second one we have subtracted h� from the hash value of each (�k/2�−�)-subset,
output the minima and look up for collisions. Disregarding the space for storing
the b-set, the outlined modification requires time O(b�k/2+�� log log b) and space
O(b�(k−2�)/4�) to process a given b-set. ��

Discussion. Let us consider the scalability of our approach to larger values
of b, assuming that the time is not dominated by iterating through the sample.
If we are given a processor that is x times more powerful, this will allow us to
increase the value of b by a factor x1/�k/2�. This will work because the space
usage of our approach will only rise by a factor

√
x, and, as already discussed,

we expect a factor x0.8 more space to be available. An algorithm using space
b�k/2� would likely be space-bounded rather than time-bounded, and thus only
be able to increase b by a factor of x0.8/�k/2�. At the other end of the spectrum
an algorithm using time xk and constant space would only be able to increase b
by a factor x1/k.

5 Applications of Consistent Subset Sampling

In this section we discuss several algorithmic applications of Consistent Subset
Sampling for well-studied data mining problems. The reader is referred to the
full version of the paper1 for more details.

A fundamental problem in data mining is the problem of frequent itemsets
mining in transactional data streams. For example, transactions correspond to

1 http://arxiv.org/pdf/1404.4693.pdf

http://arxiv.org/pdf/1404.4693.pdf

Consistent Subset Sampling 303

market baskets and we want to detects sets of goods that are frequently bought
together, see [15] for an overview. A low frequency threshold may lead to an
explosion of the number of frequent itemsets, therefore a good prediction of their
number is needed [14]. Known approaches for the problem are all based on some
heuristics [2,19] and the worst case running time is exponential. By associating
transactions with b-sets, Consistent Subset Sampling naturally applies to the
problem. As a result, we obtain the first algorithm with rigorously understood
complexity and approximation guarantees. The next theorem is our main result:

Theorem 3. Let T be a stream of m transactions of size at most b over a
set of n items and f and z be the number of frequent and different k-itemsets,
k ≥ 2, in T , respectively. For any α, ε, δ > 0 there exists a randomized algorithm

running in expected time O(mb�k/2� log log b+ logm log δ−1

αε2) and space O(b�k/4� +
logm log δ−1

αε2) in one pass over T returning a value f̃ such that

– if f/z ≥ α, then f̃ is an (ε, δ)-approximation of f .
– otherwise, if f/z < α, then f̃ ≤ (1 + ε)f with probability at least 1− δ.

Extending a recent technique by Campagna and the authors [9], we show how
to use Consistent Subset Sampling to parallelize frequent items mining algorithm
like [10,11] when applied to transactional data streams. Here, instead of estimat-
ing the number of frequent itemsets, we show how to distribute the computation
such that we achieve good load balancing among different processors.

A second application is in the area of graph mining where a graph is provided
as a stream of edges. The problem of estimating the number of fixed-size sub-
graphs in incidence list streams, i.e., a stream of edges where all edges incident
to a vertex are provided one after another, has become very popular in the last
decade [3,4,7,8,20,20]. By associating b-sets with the set of a vertex neighbors, we
design new algorithms for the estimation of the number of k-cliques in incidence
list streams for bounded degree graphs. Also, we present the first algorithm for
the estimation of the number of (i+, j)-bipartite cliques, i.e., bipartite cliques
with j vertices on the right-hand side and at least i vertices on the left hand
side. We argue that this is a problem with important real-life applications and
show that a straightforward applications of Consistent Subset Sampling yields
the following result:

Theorem 4. Let G = (V,E) be a graph with n vertices, m edges and bounded
degree Δ revealed as a stream of incidence lists. Let further Ki+,j be the number
of (i+, j)-bicliques in G and Aj the number of j-adjacencies in G for i ≥ 1, j ≥ 2.
For any γ, ε, δ ∈ (0, 1] there exits a randomized algorithm running in expected

time O(nΔ�j/2� log logΔ+ logn log δ−1

γε2) and space O(Δ�j/4� + logn log δ−1

γε2) in one

pass over the graph returning a value K̃i+,j such that

– if Ki+,j/Aj ≥ γ, K̃i+,j is an (ε, δ)-approximation of Ki+,j.

– otherwise, if Ki+,j/Aj < γ, K̃i+,j ≤ (1 + ε)Ki+,j with probability at least
1− δ.

304 K. Kutzkov and R. Pagh

6 Conclusions

Finally, we make a few remarks about possible improvements in the running time
of our consistent sampling technique. As one can see, the algorithmic core of our
approach is closely related to the d-SUM problem where one is given an array of
n integers and the question is to find d integers that sum up to 0. The best known
randomized algorithm for 3-SUM runs in time O(n2(log logn)2/ log2 n)[1], thus
it is difficult to hope to design an algorithm enumerating all 3-subsets satisfying
the sampling condition much faster than in O(b2) steps. Moreover, Pǎtraşcu and
Williams [22] showed that solving d-SUM in time no(d) would imply an algorithm
for the 3-SAT problem running in time O(2o(n)) contradicting the exponential
time hypothesis [17]. It is even an open problem whether one can solve d-SUM
in time O(n�d/2�−α) for d ≥ 3 and some constant α > 0 [25].

In a recent work Dinur et al. [13] presented a new “dissection” technique
for achieving a better time-space trade-off for the computational complexity
of various problems. Using the approach from [13], we can slightly improve the
results from Theorem 2. However, the details are beyond the scope of the present
paper.

References

1. Baran, I., Demaine, E.D., Pǎtraşcu, M.: Subquadratic Algorithms for 3SUM. Al-
gorithmica 50(4), 584–596 (2008)

2. Boley, M., Grosskreutz, H.: A Randomized Approach for Approximating the Num-
ber of Frequent Sets. In: ICDM 2008, pp. 43–52 (2008)

3. Becchetti, L., Boldi, P., Castillo, C., Gionis, A.: Efficient semi-streaming algorithms
for local triangle counting in massive graphs. In: KDD 2008, pp. 16–24 (2008)

4. Bordino, I., Donato, D., Gionis, A., Leonardi, S.: Mining Large Networks with
Subgraph Counting. In: ICDM 2008, pp. 737–742 (2008)

5. Broder, A.Z., Charikar, M., Frieze, A.M., Mitzenmacher, M.: Min-Wise Indepen-
dent Permutations. J. Comput. Syst. Sci. 60(3), 630–659 (2000)

6. Broder, A.Z., Glassman, S.C., Manasse, M.S., Zweig, G.: Syntactic Clustering of
the Web. Computer Networks 29(8-13), 1157–1166 (1997)

7. Buriol, L.S., Frahling, G., Leonardi, S., Marchetti-Spaccamela, A., Sohler, C.:
Counting triangles in data streams. In: PODS 2006, pp. 253–262 (2006)

8. Buriol, L.S., Frahling, G., Leonardi, S., Sohler, C.: Estimating Clustering Indexes
in Data Streams. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS,
vol. 4698, pp. 618–632. Springer, Heidelberg (2007)

9. Campagna, A., Kutzkov, K., Pagh, R.: On Parallelizing Matrix Multiplication by
the Column-Row Method. In: ALENEX 2013, pp. 122–132 (2013)

10. Charikar, M., Chen, K., Farach-Colton, M.: Finding frequent items in data streams.
Theor. Comput. Sci. 312(1), 3–15 (2004)

11. Cormode, G., Muthukrishnan, S.: An improved data stream summary: The count-
min sketch and its applications. J. Algorithms 55(1), 58–75 (2005)

12. Dietzfelbinger, M., Gil, J., Matias, Y., Pippenger, N.: Polynomial Hash Func-
tions Are Reliable (Extended Abstract). In: Kuich, W. (ed.) ICALP 1992. LNCS,
vol. 623, pp. 235–246. Springer, Heidelberg (1992)

Consistent Subset Sampling 305

13. Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Efficient Dissection of Compos-
ite Problems, with Applications to Cryptanalysis, Knapsacks, and Combinatorial
Search Problems. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 719–740. Springer, Heidelberg (2012)

14. Geerts, F., Goethals, B., Van den Bussche, J.: Tight upper bounds on the number
of candidate patterns. ACM Trans. Database Syst. 30(2), 333–363 (2005)

15. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann
(2000)

16. Han, Y., Thorup, M.: Integer Sorting in O(n
√
log log n) Expected Time and Linear

Space. In: FOCS 2002, pp. 135–144 (2002)
17. Impagliazzo, R., Paturi, R., Zane, F.: Which Problems Have Strongly Exponential

Complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)
18. Indyk, P.: A Small Approximately Min-Wise Independent Family of Hash Func-

tions. J. Algorithms 38(1), 84–90 (2001)
19. Jin, R., McCallen, S., Breitbart, Y., Fuhry, D., Wang, D.: Estimating the number

of frequent itemsets in a large database. In: EDBT, pp. 505–516 (2009)
20. Kane, D.M., Mehlhorn, K., Sauerwald, T., Sun, H.: Counting Arbitrary Subgraphs

in Data Streams. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.)
ICALP 2012, Part II. LNCS, vol. 7392, pp. 598–609. Springer, Heidelberg (2012)

21. Kane, D.M., Nelson, J., Woodruff, D.P.: An optimal algorithm for the distinct
elements problem. In: PODS 2010, pp. 41–52 (2010)

22. Pǎtraşcu, M., Williams, R.: On the Possibility of Faster SAT Algorithms. In: SODA
2010, pp. 1065–1075 (2010)

23. Schroeppel, R., Shamir, A.: A T = O(2n/2), S = O(2n/4) Algorithm for Certain
NP-Complete Problems. SIAM J. Comput. 10(3), 456–464 (1981)

24. Willard, D.E.: Log-Logarithmic Worst-Case Range Queries are Possible in Space
Θ(N). Inf. Process. Lett. 17(2), 81–84 (1983)

25. Woeginger, G.J.: Space and Time Complexity of Exact Algorithms: Some Open
Problems (Invited Talk). In: Downey, R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC
2004. LNCS, vol. 3162, pp. 281–290. Springer, Heidelberg (2004)

Triangle Counting in Dynamic Graph Streams�

Konstantin Kutzkov and Rasmus Pagh

IT University of Copenhagen, Denmark

Abstract. Estimating the number of triangles in graph streams using
a limited amount of memory has become a popular topic in the last
decade. Different variations of the problem have been studied, depend-
ing on whether the graph edges are provided in an arbitrary order or as
incidence lists. However, with a few exceptions, the algorithms have con-
sidered insert-only streams. We present a new algorithm estimating the
number of triangles in dynamic graph streams where edges can be both
inserted and deleted. We show that our algorithm achieves better time
and space complexity than previous solutions for various graph classes,
for example sparse graphs with a relatively small number of triangles.
Also, for graphs with constant transitivity coefficient, a common situa-
tion in real graphs, this is the first algorithm achieving constant process-
ing time per edge. The result is achieved by a novel approach combining
sampling of vertex triples and sparsification of the input graph.

1 Introduction

Many relationships between real life objects can be abstractly represented as
graphs. The discovery of certain structural properties in a graph, which ab-
stractly describes a given real-life problem, can often provide important insights
into the nature of the original problem. The number of triangles, and the closely
related clustering and transitivity coefficients, have proved to be an important
measure used in applications ranging from social network analysis and spam de-
tection to motif detection in protein interaction networks. We refer to [23] for a
detailed discussion on the applications of triangle counting.

The best known algorithm for triangle counting in the RAM model runs in

time O(m
2ω

ω+1) [4] where ω is the matrix multiplication exponent, the best known
bound is ω = 2.3727 [24]. However, this algorithm is mainly of theoretical impor-
tance since exact fast matrix multiplication algorithms do not admit an efficient
implementation for input matrices of reasonable size.

The last decade has witnessed a rapid growth of available data. This has led
to a shift in attitudes in algorithmic research and solutions storing the whole
input in main memory are not any more considered a feasible choice for many
real-life problems. Classical algorithms have been adjusted in order to cope with
the new requirements and many new techniques have been developed [17].

� This work is supported by the Danish National Research Foundation under the
Sapere Aude program.

R Ravi and I.L. Gørtz (Eds.): SWAT 2014, LNCS 8503, pp. 306–318, 2014.
c© Springer International Publishing Switzerland 2014

Triangle Counting in Dynamic Graph Streams 307

Approximate Triangle Counting in Streamed Graphs. For many appli-
cations one is satisfied with a good approximation of the number of triangles
instead of their exact number, thus researchers have designed randomized ap-
proximation algorithms returning with high probability a precise estimate using
only small amount of main memory. Two models of streamed graphs have been
considered. In the incidence list stream model the edges incident to each vertex
arrive consecutively and in the adjacency stream model edges arrive in arbitrary
order. Also, it has been distinguished between algorithms using only a single pass
over the input, and algorithms assuming that the input graph can be persistently
stored on a secondary device and multiple passes are allowed. The one-pass al-
gorithms with the best known space complexity and constant processing time
per edge, both in the incidence list stream and adjacency stream model, are due
to Buriol et al. [8], and when several passes are allowed – by Kolountzakis et
al. [14]. For an overview of results and developed techniques we refer to [23].

Dynamic graph streams have a wider range of applications. Consider for
example a social network like Facebook where one is allowed to befriend and
“unfriend” other members, or join and leave groups of interest. Estimating the
number of triangles in a network is a main building block in algorithms for
the detection of emerging communities [7], and thus it is required that triangle
counting algorithms can also handle edge deletions. The problem of designing
triangle counting algorithms for dynamic streams matching the space and time
complexity of algorithms for insert-only streams has been presented as an open
question in the 2006 IITK Workshop on Algorithms for Data Streams [15]. The
best known algorithms for insert-only streams work by sampling a non-empty
subgraph on three vertices from the stream (e.g. an edge (u, v) and a vertex w).
Then one checks whether the arriving edges will complete the sampled subgraph
to a triangle (we look for (u,w) and (v, w)). The approach does not work for dy-
namic streams because an edge in the sampled subgraph might be deleted later.
Proposed solutions [1,16] have explored different ideas. These approaches, how-
ever, only partially resolve the open problem from [15] because of high processing
time per edge update, see Section 3 for more details.

Our Contribution. In this work we propose a method to adjust sampling to
work in dynamic streams and show that for graphs with constant transitivity
coefficient, a ubiquitous assumption for real-life graphs, we can achieve constant
processing time per edge. At a very high level, the main technical contribution
of the present work can be summarized as follows.

For dynamic graph streams sampling-based approaches fail because we don’t
know how many of the sampled subgraphs will survive after edges have been
deleted. On the other hand, graph sparsification approaches [19,22,23] can handle
edge deletions but the theoretical guarantees on the complexity of the algorithms
depend on specific properties of the underlying graph, e.g., the maximum number
of triangles an edge is part of. The main contribution in the present work is a
novel technique for sampling 2-paths after the stream has been processed. It is
based on the combination of standard 2-path sampling with graph sparsification.
The main technical challenge is to show that sampling at random a 2-path in

308 K. Kutzkov and R. Pagh

a sparsified graph is (almost) equivalent to sampling at random a 2-path in the
original graph. In the course of the analysis, we also obtain combinatorial results
about general graphs that might be of independent interest.

2 Preliminaries

Notation. A simple undirected graph without loops is denoted as G = (V,E)
with V = {1, 2, . . . , n} being a set of vertices and E a set of edges. The edges are
provided as a stream of insertions and deletions in arbitrary order. We assume the
strict turnstile model where each edge can be deleted only after being inserted.
We assume that n is known in advance1 and that the number of edges cannot
exceed m. For an edge connecting the vertices u and v we write (u, v) and u
and v are the endpoints of the edge (u, v). Vertex u is neighbor of v and vice
versa and N(u) is the set of u’s neighbors. We say that edge (u, v) is isolated
if |N(u)| = |N(v)| = 1. We consider only edges (u, v) with u < v. A 2-path
centered at v, (u, v, w), consists of the edges (u, v) and (v, w). A k-clique in
G is a subgraph of G on k vertices v1, . . . , vk such that (vi, vj) ∈ E for all
1 ≤ i < j ≤ k. A 3-clique on u, v, w is called a triangle on u, v, w, and is denoted
as 〈u, v, w〉. We denote by P2(v) the number of 2-paths centered at a vertex
v, and P2(G) =

∑
v∈V P2(v) and T3(G) the number of 2-paths and number of

triangles in G, respectively. We will omit G when clear from the context.
We say that two 2-paths are independent if they have at most one common

vertex. The transitivity coefficient of G is

α(G) =
3T3∑

v∈V

(
dv

2

) =
3T3
P2

,

i.e., the ratio of 2-paths in G contained in a triangle to all 2-paths in G. When
clear from the context, we will omit G.

Hashing. A family F of functions from U to a finite set S is k-wise independent
if for a function f : U → S chosen uniformly at random from F it holds

Pr[f(u1) = c1 ∧ f(u2) = c2 ∧ · · · ∧ f(uk) = ck] = 1/sk

for s = |S|, distinct ui ∈ U and any ci ∈ S and k ∈ N. We will call a function cho-
sen uniformly at random from a k-wise independent family k-wise independent
function and a function f : U → S fully random if f is |U |-wise independent.
We will say that a function f : U → S behaves like a fully random function if
for any set of input from U , with high probability f has the same probability
distribution as a fully random function.

We will say that an algorithm returns an (ε, δ)-approximation of some quantity
q if it returns a value q̃ such that (1 − ε)q ≤ q̃ ≤ (1 + ε)q with probability at
least 1− δ for every 0 < ε, δ < 1.

1 Our results hold when the n vertices come from some arbitrary universe U and are
known in advance. We omit this generalization due to lack of space.

Triangle Counting in Dynamic Graph Streams 309

3 The New Approach

The following theorem is our main result.

Theorem 1. Let G = (V,E) be a graph given as a stream of edge insertions
and deletions with no isolated edges and vertices, V = {1, 2, . . . , n} and |E| ≤
m. Let P2, T3 and α be the number of 2-paths, number of triangles and the
transitivity coefficient of G, respectively. Let ε, δ ∈ (0, 1) be user defined and
b = max(n, P2/n). Assuming fully random hash functions, there exists a one-pass
algorithm running in expected space O(m√

bε3α
log 1

δ) and O(
1

ε2α log 1
δ) processing

time per edge. After processing the stream, an (ε, δ)-approximation of T3 can be

computed in expected time O(log n
ε2α log 1

δ) and worst case time O(log
2 n

ε2α log 1
δ) with

high probability.

(For simplicity, we assume that there are no isolated edges in G. More gener-
ally, the result holds by replacing n with nC , where nC is the number of vertices
in connected components with at least two edges. We recall again that we assume
m and n can be described in O(1) words.)

Table 1. Overview of time and space bounds. It holds b = max(n, P2/n).

Space Update time

Ahn et al.[1] O(mn
ε2T3

1 log 1
δ
) O(n log n)

Manjunath et al. [16] O(m3

ε2T2
3
log 1

δ
) O(m3

ε2T2
3
log 1

δ
)

This work O(m√
bε3α

log 1
δ
) O(1

ε2α
log 1

δ
)

Table 2. Comparison of the theoretical guarantees for the per edge processing time
for varying z

n log n m3/T 2
3

z < 1/2 T3 = ω(C2/(n2z log n)) T3 = o(Cn2−z)

1/2 < z < 1 T3 = ω(C2/(n log n)) T3 = o(Cn3−3z)

z > 1 T3 = ω(C2/(n log n)) T3 = o(C)

Before presenting the algorithm, let us compare the above to the bounds
in [1,16]. The algorithm in [1] estimates T3 by applying �0 sampling [11] to
non-empty subgraphs on 3 vertices. There are O(mn) such subgraphs, thus
O(mn

ε2T3
log 1

δ) samples are needed for an (ε, δ)-approximation. However, each edge
insertion or deletion results in the update of n − 2 non-empty subgraphs on 3
vertices. Using the �0 sampling algorithm from [12], this results in processing
time of O(n logn) per edge. The algorithm by Manjunath et al. [16] estimates
the number of triangles (and more generally of cycles of fixed length) in streamed
graphs by computing complex valued sketches of the stream. Each of them yields

an unbiased estimator of T3. The average of O(
m3

ε2T 2
3
log 1

δ) estimators is an (ε, δ)-

approximation of T3. However, each new edge insertion or deletion has to update

all estimators, resulting in update time of O(m3

ε2T 2
3
log 1

δ). The algorithm was gen-

eralized to counting arbitrary subgraphs of fixed size in [13].

310 K. Kutzkov and R. Pagh

The time and space bounds are summarized in Table 1. Comparing our space
complexity to the bounds in [1,16], we see that for several graph classes our algo-
rithm is more time and space efficient. (We ignore ε and δ and logarithmic factors
in n for the space complexity.) For d-regular graphs the processing time per edge
is better than O(n logn) for T3 = ω(d2/ logn), and better than O(m3/T 3

2) for
T3 = o(n2d). Our space bound is better than O(mn/T3) when d = o(n1/4), and
better than O(m3/T 2

3) for T3 = o(max(n3/2, nd)). Most real-life graphs exhibit
a skewed degree distribution adhering to some form of power law, see for exam-
ple [2]. Assume vertices are sorted according to their degree in decreasing order
such that the ith vertex has degree C/iz for some C ≤ n, and constant z > 0,
i.e., we have Zipfian distribution with parameter z. It holds

∑n
i=1 i

−z = O(n1−z)
for z < 1 and

∑n
i=1 i

−z = O(1) for z > 1. Table 2 summarizes for which values
of T3 our algorithm achieves faster processing time than [1,16], and Table 3 – for
which values of C our algorithm is more space-efficient than [1], and for which
values of T3 – more space-efficient than [16].

However, the above values are for arbitrary graphs adhering to a certain de-
gree distribution. We consider the main advantage of the new algorithm to be
that it achieves constant processing time per edge for graphs with constant tran-
sitivity coefficient. This is a common assumption for real-life networks, see for
instance [3,8]. Note that fast update is essential for real life applications. Con-
sider for example the Facebook graph. In May 2011, for less than eight years
existence, there were about 69 billion friendship links [6]. This means an average
of above 300 new links per second, without counting deletions and peak hours.

In the full version of the paper 2 we compare the theoretical guarantees for
several real life graphs. While such a comparison is far from being a rigorous
experimental evaluation, it clearly indicates that the processing time per edge
in [1,16] is prohibitively large and the assumption that the transitivity coefficient
is constant is justified. Also, for graphs with a relatively small number of triangles
our algorithm is much more space-efficient.

Table 3. Comparison of the theoretical guarantees for the space usage for varying z

mn/T3 m3/T 2
3

z < 1/2 C = o(n1/4+z) T3 = o(max(n3/2, Cn1−z))

1/2 < z < 1 C = o(n3/4) T3 = o(n5/2−2z)

z > 1 C = o(n3/4) T3 = o(n1/2)

3.1 The Main Idea

The main idea behind our algorithm is to design of a new sampling technique for
dynamic graph streams. It exploits a combination of the algorithms by Buriol
et al. [8] for the incidence stream model, and the Doulion algorithm [22] and its
improvement [19]. Let us briefly describe the approaches.

2 http://arxiv.org/pdf/1404.4696.pdf

http://arxiv.org/pdf/1404.4696.pdf

Triangle Counting in Dynamic Graph Streams 311

The Buriol et al. Algorithm for Incidence List Streams. Assume we
know the total number of 2-paths in G. One chooses at random one of them, say
(u, v, w), and checks whether the edge (u,w) appears later in the stream. For
a triangle 〈u, v, w〉 the three 2-paths (u, v, w), (w, u, v), (v, w, u) appear in the
incidence list stream, thus the probability that we sample a triangle is exactly α.
One chooses independently at random K 2-paths and using standard techniques
shows that for K = O(1

ε2α log 1
δ) we compute an (ε, δ)-approximation of α(G).

One can get rid of the assumption that the number of 2-paths is known in
advance by running O(log n) copies of the algorithm in parallel, each guessing
the right value. The reader is referred to the original work for more details.
For incidence streams, the number of 2-paths in G can be computed exactly by
updating a single counter, thus T̃3 = α̃P2 is an (ε, δ)-approximation of T3.

Doulion and Monochromatic Sampling. The Doulion algorithm [22] is a
simple and intuitive sparsification approach. Each edge is sampled independently
with probability p and added to a sparsified graph GS . We expect pm edges to be
sampled and a triangle survives in GS with probability p3, thus multiplying the
number of triangles in GS by 1/p3 we obtain an estimate of T3. The algorithm
was improved in [19] by using monochromatic sampling. Instead of throwing a
biased coin for each edge, we uniformly at random color each vertex with one
of 1/p colors. Then we keep an edge in the sparsified graph iff its endpoints
have the same color. A triangle survives in GS with probability p2. It is shown
that for a fully random coloring the variance of the estimator is better than in
Doulion. However, in both algorithms it depends on the maximum number of
triangles an edge is part of, and one might need constant sampling probability
in order to obtain an (ε, δ)-approximation on T3. The algorithm can be applied
to dynamic streams because one counts the number of triangles in the sparsified
graph after all edges have been processed. However, it can be expensive to obtain
an estimate since the exact number of triangles in GS is required.

Combining the above Approaches. The basic idea behind the new algorithm
is to use the estimator of Buriol et al. for the incidence stream model: (i) estimate
the transitivity coefficient α(G) by choosing a sufficiently large number of 2-paths
at random and check which of them are part of a triangle, and (ii) estimate
the number of 2-paths P2 in the graph. We first observe that estimating P2 in
dynamic graph streams can be reduced to second moment estimation of streams
of items in the turnstile model, see e.g. [21]. For (i), we will estimate α(G) by
adjusting the monochromatic sampling approach. Its main advantage compared
to the sampling of edges separately is that if we have sampled the 2-path (u, v, w),
then we must also have sampled the edge (u,w), if existent. So, the idea is to use
monochromatic sampling and then in the sparsified graph to pick up at random
a 2-path and check whether it is part of a triangle. Instead of random coloring
of the vertices, we will use a suitably defined hash function and we will choose
a sampling probability guaranteeing that for a graph with no isolated edges
(or rather a small number of isolated edges) the sparsified graph will contain a
sufficiently big number of 2-paths. A 2-path in the sparsified graph picked up

312 K. Kutzkov and R. Pagh

at random, will then be used to estimate α(G). Thus, unlike in [8], we sample
after the stream has been processed and this allows to handle edge deletions.
The main technical obstacles are to analyze the required sampling probability p
and to show that this sampling approach indeed provides an unbiased estimator
of α(G). We will obtain bounds on p and show that even if the estimator might
be biased, the bias can be made arbitrarily small and one can still achieve an
(ε, δ)-approximation of α(G). Also, we present an implementation for storing a
sparsified graph GS such that each edge is added or deleted in constant time
and a random 2-path in GS , if existent, can be picked up without explicitly
considering all 2-paths in GS .

3.2 The Algorithm

Pseudocode description of the algorithm is given in Figure 1. We assume that
the graph is given as a stream S of pairs ((u, v), $), where (u, v) ∈ E and $
∈ {+,−} with the obvious meaning that the edge (u, v) is inserted or deleted
from G. In EstimateNumberOfTwoPaths each incoming pair ((u, v), $) is
treated as the insertion, respectively deletion, of two items u and v, and these
update a second moment estimator SME, working as a blackbox algorithm.
We refer to the proof of Lemma 1 for more details. In SparsifyGraph we
assume access to a fully random coloring hash function f : V → C. Each edge
(u, v) is inserted/deleted to/from a sparsified graph GS iff f(u) = f(v). At
the end GS consists of all monochromatic edges that have not been deleted. In
EstimateNumberOfTriangles we run in parallel the algorithm estimating P2

and K copies of SampleRandom2Path. For each Gi
S , 1 ≤ i ≤ K, with at least

s pairwise independent 2-paths we choose at random a 2-path and check whether
it is a triangle. (Note that we require the existence of s pairwise independent 2-
paths but we choose a 2-path at random from all 2-paths in GS .) The ratio of
triangles to all sampled 2-paths and the estimate of P2 are then used to estimate
T3. In the next section we obtain bounds on the user defined parameters C,K
and s. In Lemma 6 we present en efficient implementation of GS that guarantees
constant time updates and allows the sampling of a random 2-path in expected
time O(log n) and worst case time O(log2 n) with high probability.

3.3 Theoretical Analysis

We will prove the main result in several lemmas. Due to lack of space, proofs
which are not essential for the understanding of the main ideas can be found in
the full version of the paper. The next lemma provides an estimate of P2 using
an estimator for the second frequency moment of data streams [21].

Lemma 1. Let G be a graph with no isolated edges given as a stream of
edge insertions and deletions. There exists an algorithm returning an (ε, δ)-
approximation of the number of 2-paths in G in one pass over the stream of
edges which needs O(1

ε2 log
1
δ) space and O(log 1

δ) processing time per edge.

Triangle Counting in Dynamic Graph Streams 313

EstimateNumberOfTwoPaths

Input: stream of edge deletions and insertions S , algorithm SME estimating the
second moment items streams

1. m = 0
2. for each ((u, v), $) in S do
3. if $= + then
4. m = m+ 1
5. SME.update(u, 1), SME.update(v, 1)
6. else
7. m = m− 1
8. SME.update(u,−1), SME.update(v,−1)
9. return SME.estimate/2−m

SparsifyGraph

Input: stream of edge deletions and insertions S , coloring function f : V → C

1. GS = ∅
2. for each ((u, v), $) ∈ S do
3. if f(u) = f(v) then
4. if $= + then
5. GS = GS ∪ (u, v).
6. else
7. GS = GS\(u, v).
8. Return GS .

SampleRandom2Path

Input: sparsified graph GS

1. choose at random a 2-path (u, v, w) in GS

2. if the vertices {u, v, w} form a triangle then
3. return 1
4. else
5. return 0

EstimateNumberOfTriangles

Input: streamed graph S , set of K independent fully random coloring functions F ,
algorithm SME estimating the second moment of streams of items, threshold s

1. run in parallel EstimateNumberOfTwoPaths(S , SME) and let P̃2 be the re-
turned estimate

2. run in parallel K copies of SparsifyGraph(S, fi), fi ∈ F
3. � = 0
4. for each Gi

S with at least s pairwise independent 2-paths do
5. X+ = SampleRandom2Path(Gi

S)
6. �+ = 1
7. α̃ = X/�

8. return α̃P̃2
3

Fig. 1. Estimating the number of 2-paths in G, the transitivity coefficient and the
number of triangles

314 K. Kutzkov and R. Pagh

The next two lemmas will show a lower bound on the number of pairwise
independent 2-paths in a graph without isolated edges. The results are needed in
order to obtain bounds on the required sampling probability. First we show that
a graph without isolated edges contains a linear number of pairwise independent
2-paths.

Lemma 2. Let G = (V,E) be a graph over n vertices without isolated edges.
Then there exist at least Ω(n) pairwise independent 2-paths.

The next result gives a lower bound on the number of pairwise independent
2-paths in terms of the total number of 2-paths. For denser graphs it implies the
existence of ω(n) pairwise independent 2-paths.

Lemma 3. Let the number of 2-paths in a graph G = (V,E) be P2. There exist
Ω(P2/n) pairwise independent 2-paths.

Next we obtain bounds on the sampling probability such that there are suf-
ficiently many pairwise independent 2-paths in GS . As we show later, this is
needed to guarantee that SampleRandom2Path will return an almost unbi-
ased estimator of the transitivity coefficient. The events for two 2-paths being
monochromatic are independent, thus the next lemma follows from Lemma 2
and Chebyshev’s inequality. Note that we still don’t need the coloring function
f to be fully random.

Lemma 4. Let f be 6-wise independent and p ≥ 5
√
3

ε
√
b
for b = max(n, P2/n) and

ε ∈ (0, 1]. Then with probability at least 3/4 SparsifyGraph returns GS such
that there are at least 18/ε2 pairwise independent 2-paths in GS.

Lemma 5. Assume we run EstimateNumberOfTriangles with s = 18/ε2

and let X be the value returned by SampleRandom2Path. Then (1 − ε)α ≤
E[X] ≤ (1 + ε)α.

Proof. We analyze how much differs the probability between 2-paths to be se-
lected by SampleRandom2Path. Consider a given 2-path (u, v, w). It will be
sampled if the following three events occur:

1. (u, v, w) is monochromatic, i.e., it is in the sparsified graph GS .
2. There are i ≥ 18/ε2 pairwise independent 2-paths in GS .
3. (u, v, w) is selected by SampleRandom2Path.

The first event occurs with probability p2. Since f is fully random, the condition
that (u, v, w) is monochromatic does not alter the probability for any 2-path
independent from (u, v, w) to be also monochromatic. The probability to be in
GS changes only for 2-paths containing two vertices from {u, v, w}, which in
turn changes the number of 2-paths in GS and thus probability for (u, v, w) to
be picked up by SampleRandom2Path. In the following we denote by pGS the
probability that a given 2-path is monochromatic and there are at least 18/ε2

pairwise independent 2-paths in GS , note that pGS is equal for all 2-paths.

Triangle Counting in Dynamic Graph Streams 315

Consider a fixed coloring to V \{u, v, w}. We analyze the difference in the
number of monochromatic 2-paths depending whether f(u) = f(v) = f(w) or
not. There are two types of 2-paths that can become monochromatic condition-
ing on f(u) = f(v) = f(w): either (i) 2-paths with two endpoints in {u, v, w}
centered at some {u, v, w}, or (ii) 2-paths with two vertices in {u, v, w} centerer
at a vertex x /∈ {u, v, w}. For the first case assume w.l.o.g. there is a 2-path

(u, v, w) ∈ GS centered at v and let d
f(v)
v = |{z ∈ N(v)\{u,w} : f(z) = f(v)}|,

i.e., d
f(v)
v is the number of v’s neighbors different from u and w, having the same

color as v. Thus, the number of monochromatic 2-paths centered at v varies

by 2d
f(v)
v conditioning on the assumption that f(u) = f(v) = f(w). The same

reasoning applies also to the 2-paths centered at u and w. For the second case
consider the vertices u and v. Conditioning on f(u) = f(w), we additionally add
to GS 2-paths (u, xi, w) for which f(xi) = f(u) = f(w) and xi ∈ N(u) ∩N(w).

The number of such 2-paths is at most min(d
f(u)
u , d

f(w)
w). The same reasoning

applies to any pair of vertices from {u, v, w}. Therefore, depending on whether
f(u) = f(v) = f(w) or not, the number of monochromatic 2-paths centered at
a vertex from {u, v, w} varies between

∑
y∈{u,v,w}

(
d
f(y)
y

2

)
and

∑
y∈{u,v,w}

(
d
f(y)
y

2

)
+ 3df(y)y .

Set k = 18/ε2. Consider now two different, but not necessarily independent,
2-paths (u1, v1, w1), (u2, v2, w2) ∈ G. We analyze the probability for each of
them to be selected by SampleRandom2Path. Let C be a partial coloring to
V \{uj, vj , wj}, j = 1, 2. If C is completed to a coloring of all vertices such that
both (u1, v1, w1) and (u2, v2, w2) are monochromatic, then clearly they are picked
up with the same probability. Assume that with probability pi, i− 1 2-paths are
colored monochromatic by C and consider extensions of C that make exactly one
of (u1, v1, w1) and (u2, v2, w2) monochromatic. Under the assumption there are
i ≥ k 2-paths in GS and following the above discussion about the number of
2-paths with at least two vertices from {uj, vj , wj}, we see that the number of

monochromatic 2-paths can vary between i and i+ 3
√
2i. Thus, the probability

for (u1, v1, w1) and (u2, v2, w2) to be sampled varies between

pGS

∑
i≥k

pi
i

and pGS

∑
i≥k

pi

i+ 3
√
2i
.

We assume GS contains at least k 2-paths, thus
∑

i≥k pi = 1 and there exists

r ≥ k, r ∈ R such that
∑

i≥k pii
−1 = 1/r. Thus we bound∑

i≥k

pi

i+ 3
√
2i

=
∑
i≥k

pi

i(1 + 3
√
2/i)

≥ 1

1 + 3
√
2/k

∑
i≥k

pi
i
=

1

r(1 + 3
√
2/k)

.

Since the function f is fully random, each coloring is equally probable. The
above reasoning applies to any pair of 2-paths in G, thus for any 2-path the

316 K. Kutzkov and R. Pagh

probability to be sampled varies between

pGS

r
and

pGS

(1 +
√
18/k)r

=
pGS

(1 + ε)r
.

Assume first the extreme case that 2-paths which are not part of a triangle
are sampled with probability 1

r and 2-paths part of a triangle with probability
1

(1+ε)r . We have X =
∑

(u,v,w)∈P2
I(u,v,w), where I(u,v,w) is an indicator random

variable denoting whether (u, v, w) is part of a triangle. Thus

E[X] ≥ pGS3T3
(1 + ε)r

r

pGSP2
=

α

1 + ε
≥ (1− ε)α.

On the other extreme, assuming that we select 2-paths part of triangles with
probability 1

r and 2-paths not part of a triangle with probability 1
r(1+ε) , using

similar reasoning we obtain E[X] ≤ (1 + ε)α. ��

Applying a variation of rejection sampling, in the next lemma we show how to
store a sparsified graph GS such that we efficiently sample a 2-path uniformly
at random and GS is updated in constant time.

Lemma 6. Let GS = (V,ES) be a sparsified graph over m′ monochromatic
edges. There exists an implementation of GS in space O(m′) such that an edge
can be inserted to or deleted from GS in constant time with high probability. A
random 2-path, if existent, can be selected from GS in expected time O(log n)
and O(log2 n) time with high probability.

Now we have all components in order to prove the main result.

Proof. (of Theorem 1).
Assume EstimateNumberOfTriangles runs K copies in parallel of Spar-

sifyGraph with p = 5
√
3

ε
√
b
for b = max(n, P2/n). By Lemma 4 with probability

3/4 we have a sparsified graph with at least s = 18/ε2 pairwise independent
2-paths. Thus, we expect to obtain from 3K/4 of them an indicator random
variable. A standard application of Chernoff’s inequality yields that with prob-
ability O(2−K/36) we will have � ≥ K/2 indicator random variables Xi denot-
ing whether the sampled 2-path is part of a triangle. By Lemma 5 we have
(1 − ε)α ≤ E[Xi] ≤ (1 + ε)α and as an estimate of α we return

∑�
i=1Xi/�.

Observe that (1+ ε/3)2 ≤ 1+ ε, respectively (1− ε/3)2 ≥ 1− ε. From the above
discussion and applying Chernoff’s inequality and the union bound, we see that
for K = 36

ε2α log 2
δ , we obtain an (ε, δ/2)-approximation of α.

By Lemma 1 we can compute an (ε, δ/2)-approximation of the number of
2-paths in space O(1

ε2 log
1
δ) and O(log

1
δ) per edge processing time. It is trivial

to show that this implies an (3ε, δ)-approximation of the number of triangles
for ε < 1/3. Clearly, one can rescale ε in the above, i.e. ε = ε/3, such that
EstimateNumberOfTriangles returns an (ε, δ)-approximation.

By Lemma 6, each sparsified graph with m′ edges uses space O(m′) and each
update takes constant time with high probability, thus we obtain that each edge

Triangle Counting in Dynamic Graph Streams 317

is processed with high probability in time O(K). Each monochromatic edge and
its color can be represented in O(log n) bits.

By Lemma 6, in expected time O(log n) and worst case time O(log2 n) with
high probability we sample uniformly at random a 2-path from each GS with at
least 18/ε2 pairwise independent 2-paths. ��

References

1. Ahn, K.J., Guha, S., McGregor, A.: Graph sketches: sparsification, spanners, and
subgraphs. In: PODS 2012, pp. 5–14 (2012)

2. Aiello, W., Chung, F.R.K., Lu, L.: A random graph model for massive graphs. In:
STOC 2000, pp. 171–180 (2000)

3. Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Rev. Mod.
Phys. 74, 47–97 (2002)

4. Alon, N., Yuster, R., Zwick, U.: Finding and Counting Given Length Cycles. Al-
gorithmica 17(3), 209–223 (1997)

5. Arbitman, Y., Naor, M., Segev, G.: Backyard Cuckoo Hashing: Constant Worst-
Case Operations with a Succinct Representation. In: FOCS 2010, pp. 787–796
(2010)

6. Backstrom, L., Boldi, P., Rosa, M., Ugander, J., Vigna, S.: Four degrees of sepa-
ration. In: WebSci 2012, pp. 33–42 (2012)

7. Berry, J.W., Hendrickson, B., LaViolette, R., Phillips, C.A.: Tolerating the Com-
munity Detection Resolution Limit with Edge Weighting. Phys. Rev. E 83(5)

8. Buriol, L.S., Frahling, G., Leonardi, S., Marchetti-Spaccamela, A., Sohler, C.:
Counting triangles in data streams. In: PODS 2006, pp. 253–262 (2006)

9. Carter, L., Wegman, M.N.: Universal Classes of Hash Functions. J. Comput. Syst.
Sci. 18(2), 143–154 (1979)

10. Dietzfelbinger, M.: Design Strategies for Minimal Perfect Hash Functions. In:
Hromkovič, J., Královič, R., Nunkesser, M., Widmayer, P. (eds.) SAGA 2007.
LNCS, vol. 4665, pp. 2–17. Springer, Heidelberg (2007)

11. Frahling, G., Indyk, P., Sohler, C.: Sampling in dynamic data streams and appli-
cations. In: Symposium on Computational Geometry 2005, pp. 142–149 (2005)

12. Jowhari, H., Saglam, M., Tardos, G.: Tight bounds for Lp samplers, finding dupli-
cates in streams, and related problems. In: PODS 2011, pp. 49–58 (2011)

13. Kane, D.M., Mehlhorn, K., Sauerwald, T., Sun, H.: Counting Arbitrary Subgraphs
in Data Streams. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.)
ICALP 2012, Part II. LNCS, vol. 7392, pp. 598–609. Springer, Heidelberg (2012)

14. Kolountzakis, M.N., Miller, G.L., Peng, R., Tsourakakis, C.E.: Efficient Triangle
Counting in Large Graphs via Degree-based Vertex Partitioning. Internet Mathe-
matics 8(1-2), 161–185 (2012)

15. Leonardi, S.: List of Open Problems in Sublinear Algorithms: Problem 11,
http://sublinear.info/11

16. Manjunath, M., Mehlhorn, K., Panagiotou, K., Sun, H.: Approximate Counting of
Cycles in Streams. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS,
vol. 6942, pp. 677–688. Springer, Heidelberg (2011)

17. Muthukrishnan, S.: Data Streams: Algorithms and Applications. Foundations and
Trends in Theoretical Computer Science 1(2) (2005)

18. Pagh, A., Pagh, R.: Uniform Hashing in Constant Time and Optimal Space. SIAM
J. Comput. 38(1), 85–96 (2008)

http://sublinear.info/11

318 K. Kutzkov and R. Pagh

19. Pagh, R., Tsourakakis, C.E.: Colorful triangle counting and a MapReduce imple-
mentation. Inf. Process. Lett. 112(7), 277–281 (2012)

20. Pǎtraşcu, M., Thorup, M.: The Power of Simple Tabulation Hashing. J. ACM 59(3),
14 (2012)

21. Thorup, M., Zhang, Y.: Tabulation based 4-universal hashing with applications to
second moment estimation. In: SODA 2004, pp. 615–624 (2004)

22. Tsourakakis, C.E., Kang, U., Miller, G.L., Faloutsos, C.: DOULION: Counting
triangles in massive graphs with a coin. In: KDD 2009, pp. 837–846 (2009)

23. Tsourakakis, C.E., Kolountzakis, M.N., Miller, G.L.: Triangle Sparsifiers. J. of
Graph Algorithms and Appl. 15(6), 703–726 (2011)

24. Vassilevska Williams, V.: Multiplying matrices faster than Coppersmith-Winograd.
In: STOC 2012, pp. 887–898 (2012)

Linear Time LexDFS on Cocomparability

Graphs�

Ekkehard Köhler1 and Lalla Mouatadid2

1 Brandenburg University of Technology, 03044 Cottbus, Germany
ekoehler@math.tu-cottbus.de

2 University of Toronto, Toronto ON M5S 2J7, Canada
lalla@cs.toronto.edu

Abstract. Lexicographic depth first search (LexDFS) is a graph search
protocol which has already proved to be a powerful tool on cocomparabil-
ity graphs. Cocomparability graphs have been well studied by investigat-
ing their complements (comparability graphs) and their corresponding
posets. Recently however LexDFS has led to a number of elegant poly-
nomial and near linear time algorithms on cocomparability graphs when
used as a preprocessing step [2,3,11]. The nonlinear runtime of some of
these results is a consequence of complexity of this preprocessing step. We
present the first linear time algorithm to compute a LexDFS cocompa-
rability ordering, therefore answering a problem raised in [2] and helping
achieve the first linear time algorithms for the minimum path cover prob-
lem, and thus the Hamilton path problem, the maximum independent
set problem and the minimum clique cover for this graph family.

Keywords: lexicographic depth first search, cocomparability graphs,
graph searching, posets, hamiltonian path.

1 Introduction

Graph searching is a very useful and widely used tool that gave rise to a num-
ber of efficient and easily implementable algorithms. Lexicographic breadth first
search (LexBFS) for instance, is a well known graph search protocol which has
led to elegant algorithms on various graph families, as illustrated in [1,7]. Re-
cently another graph search protocol, lexicographic depth first search (LexDFS),
was introduced and has already proved to be a powerful tool on cocomparabil-
ity graphs [2,3,11]. Indeed, since LexDFS was introduced [4], many problems,
such as computing a maximum cardinality independent set, a minimum clique
cover or a minimum path cover, now have near-linear time solutions for cocom-
parability graphs. These successful approaches share a strategy: They start with
creating a so-called cocomparability ordering of the graph and preprocess it with
a LexDFS sweep and then basically extend, or slightly modify, the linear time al-
gorithms that work for interval graphs (a subfamily of cocomparability graphs).

� This is an extended abstract. The full version is available in [13].

R Ravi and I.L. Gørtz (Eds.): SWAT 2014, LNCS 8503, pp. 319–330, 2014.
c© Springer International Publishing Switzerland 2014

320 E. Köhler and L. Mouatadid

The nonlinear runtime of the algorithms on cocomparability graphs is is forced
by the nonlinearity of LexDFS.

In this paper, we present the first linear time algorithm to compute a LexDFS
cocomparability ordering. Therefore, as immediate corollaries, we now have the
first linear time algorithm to compute a minimum path cover, and thus a Hamil-
ton path if one exists, and the first linear time algorithm to compute a maximum
independent set and a minimum clique cover for cocomparability graphs. We
will also show how to specifically compute a LexDFS+ ordering in linear time.
LexDFS+ is a variant of LexDFS that is needed in [2,3,11].

Cocomparability graphs are a family of perfect graphs whose complements,
comparability graphs, admit a transitive orientation of the edges. That is, for ev-
ery three vertices x, y, z, if the edges xy, yz are oriented x→ y → z then xz ∈ E
and x → z. Cocomparability graphs and partially ordered sets, or posets, are
closely related. In Section 2, we explain this relationship and how algorithms
on cocomparability graphs immediately translate into algorithms on posets. Co-
comparability graphs have been well studied by investigating their complements
(comparability graphs) and their corresponding posets [6]. Recently however,
there has been a growing motivation to exploit the structure of cocomparability
graphs in order to design algorithms that do not require the computation of the
complement or the poset. For this approach the use of LexDFS has proven to be
quite sucessful [2,3,11].

A key point in our algorithm for computing a LexDFS ordering is a partition
refinement approach of the layers of a corresponding poset of the cocompara-
bility graph, without computing the poset itself. This refinement is in situ and
performed backwards, as opposed to the well known forward partition refinement
used to compute a LexBFS ordering [7]. We discuss the technique of partition
refinement in more details in Section 2. The paper is organized as follows: Sec-
tion 2 gives the necessary background and relevant definitions. In Section 3,
we present the LexDFS algorithm, and in 4 we prove its correctness and show
how to compute in linear time a LexDFS+ ordering. In Section 5 we present
our concluding remarks. Due to a lack of space, we omit some proofs and the
implementation details, and refer the reader to [13] for the full version of the
paper.

2 Background

We assume the reader to be familiar with basic graph notation. All the graphs
considered in this paper are finite, simple, and undirected, unless explicitly stated
otherwise. For a vertex v, N(v) = {u|uv ∈ E}; and we say v is simplicial if N(v)
is a clique. An ordering σ of V is a bijection σ: [1...n]→ V . Given an ordering
σ = v1, v2, ..., vn, we write vi ≺σ vj if vi appears before vj in σ, i.e., i < j;
and N+(vi) = {vj |vivj ∈ E and i < j}; we denote by σ− = vn, vn−1, ..., v2, v1
the reverse ordering of σ. Given a cocomparability graph G(V,E), an ordering
σ is a cocomparability ordering (or an umbrella free ordering) of G if for any
triple a ≺σ b ≺σ c where ac ∈ E, we either have ab ∈ E or bc ∈ E, or both

Linear Time LexDFS on Cocomparability Graphs 321

[9]. If neither ab and bc are edges, we say that the umbrella ac flies over b.
Note that the cocomparability ordering is just the equivalent to transitivity in
the complement. In [10], McConnell and Spinrad presented an algorithm that
computes a cocomparability ordering in O(m + n) time, where m = |E| and
n = |V |.

A poset P (V,≺) is an irreflexive, antisymmetric and transitive relation on
the set V. We say that two elements a, b ∈ V are comparable if a ≺ b or
b ≺ a, otherwise they are incomparable. A linear extension L of P is a total
ordering of V which respects the order imposed by ≺. As already mentioned,
posets and cocomparability graphs are closely related. In fact, if G(V,E) is a
comparability graph, then G together with a transitive orientation of E can
equivalently be represented by a poset P (V,≺) where uv ∈ E if and only if u
and v are comparable in P . This implies that σ, a cocomparability ordering of
G is a linear extension of P . Notice that for every poset P (V,≺), there exists a
unique comparability graph G(V,E), and thus a unique cocomparability graph.
Conversely, every transitive orientation of a comparability graph, and thus every
cocomparability ordering in the complement, is a linear extension of a poset P .

A graph search is a mechanism for visiting vertices of a given graph in a
certain manner. We say that two or more vertices are tied if at a given step
of the graph search, these vertices are all eligible to be visited next. In 2008,
Corneil and Krueger [4] introduced LexDFS, a graph search that extends depth
first search by assigning lexicographic labels to the vertices in order to break ties.
Algorithm 1 is the generic LexDFS algorithm, as presented in [4] and the ordering
σ = a, b, c, d, e is a LexDFS ordering starting at vertex a for the cocomparability
graph in Fig. 1. LexDFS admits the following vertex ordering characterization,
known as the 4 Point Condition:

Theorem 1. [4] σ is a LexDFS ordering of a graph G(V,E) if and only if for
every triple a ≺σ b ≺σ c where ac ∈ E, ab /∈ E, there must exists a vertex d such
that a ≺σ d ≺σ b and db ∈ E, dc /∈ E.

LexDFS+ is the LexDFS variant with the additional ‘rightmost’ tie breaking
rule. That is, given a vertex ordering σ of G, the ordering τ = LexDFS+(σ) is
a LexDFS of G where ties between eligible vertices are broken by choosing the
rightmost vertex in σ. Therefore, by definition, LexDFS+ always starts by the
rightmost vertex in σ. For an example, look at the graph in Fig. 1. If we compute
τ =LexDFS+(σ), for this example, we have to start with vertex e, i.e. τ(1) = e;
obviously, τ(2) = c. For τ(3) in a regular LexDFS a, b and d are tied. However,
for LexDFS+(σ), τ(3) = d, since d is rightmost in σ among a, b, and d. It was
shown in [2] that if G(V,E) is a cocomparability graph, and σ a cocomparability
ordering of G, then the LexDFS ordering τ = LexDFS+(σ) is also a cocompa-
rability ordering of G. It is easy to see that if σ is a LexDFS cocomparability
ordering, then for any triple a ≺σ b ≺σ c where c is a nonsimplicial vertex and
ab /∈ E, ac, bc ∈ E, there exists a vertex d such that a ≺σ d ≺σ b and ad, db ∈ E
and dc /∈ E [2]. Indeed the edge ad destroys the umbrella ac over d.

As was already pointed out in the introduction, the key idea of our algorithm
to determine a LexDFS of a cocomparability graph is the backward in situ

322 E. Köhler and L. Mouatadid

a b c d e

Fig. 1. G(V, E) a cocomparability graph

Algorithm 1. LexDFS

Input: a graph G(V,E) and a start vertex s
Output: a LexDFS ordering σ of V
1: assign the label ε to all vertices
2: label(s) ← {0}
3: for i ← 1 to n do
4: pick an unnumbered vertex v with lexicographically largest label
5: σ(i) ← v � v is assigned the number i
6: foreach unnumbered vertex w adjacent to v do
7: prepend i to label(w)
8: end for
9: end for

partition refinement of the layers of a corresponding poset, without computing
the poset itself. Given a set S, we call P = (P1, P2, ..., Pk) a partition of S if for

all Pi, Pj , i �= j, Pi ∩Pj = ∅ and
⋃k

i=1 Pi = S. Given a set T ⊆ S, we say that T
refines P when every partition class Pi ∈ P is replaced with subpartition classes
Ai = Pi ∩T and Bi = Pi\Ai. This technique, known as partition refinement has
led to a simple and elegant implementation of LexBFS in linear time [7]. The
LexBFS partition refinement algorithm is as follows: Initially P = (V); select a
start vertex s where N(s) refines P by placing A = V ∩N(s) before B = V \A.
The vertex whose neighbourhood is used to refine the partition classes is called
a pivot. Pick the next pivot v amongst vertices in A; and use N(v) for refining
A then B and maintaining the order of the partition classes created so far:
(A ∩N(v), A\N(v), B ∩N(v), B\N(v)) in this order. This process is repeated
until all partition classes have been refined.

This refinement can be seen as a forward refinement in the sense that pivots
are selected left to right, i.e., from the A’s sets then the B’s set, and the re-
finement is in situ, meaning the Ai’s always precede the Bi’s. In other words,
pivots do not reorder the already created subpartitions of P . That is , if N(u)
was used to refine P to A = P ∩ N(u) and B = P\A, and v is the next pivot
then N(v) is used to refine A first to A ∩N(v) followed by A\N(v), next N(v)
refines B to B ∩ N(v) followed by B\N(v), and the subpartitions of A always
precede the subpartitions of B. This in situ refinement results in a linear time
implementation for LexBFS. Also for LexDFS, one can define a partition refine-
ment scheme, but this partition refinement is not in situ and can be seen as
a backward refinement in the sense that pivots are selected right to left. Con-
sider a pivot v; due to the depth first search character of LexDFS, v has to
pull all its neighbours to the front, i.e., A ∩ N(v) followed by B ∩ N(v) both

Linear Time LexDFS on Cocomparability Graphs 323

precede A\N(v) followed by B\N(v). This sorting of the partition classes is an
obstacle to a linear time implementation for LexDFS. In fact, to the best of our
knowledge, there is no linear time implementation of LexDFS. The best known
algorithm takes O(min(n2, n +m log logn)) time and uses the above explained
non in situ partition refinement together with van Emde Boas trees [12].

3 The Algorithm

Before presenting our algorithm in detail we first give an overview. Let G(V,E)
be a cocomparability graph. We first compute a cocomparability ordering σ using
the algorithm in [10]. Then, we assign a label, denoted #(v), to each vertex v
in σ. We use these labels to compute, for every vertex v, the length of a largest
chain succeeding v in the corresponding poset of the complement of G. Roughly
speaking, we then partition V by iteratively placing vertices with smallest label
into the same partition set. In a comparability graph one could finds these sets
by iteratively removing the set of maximal elements of the poset. Since we work
on the complement, this has to be done using only edges of the cocomparability
graph, i.e. non-edges of the comparability graph. Once all the vertices have their
initial labeling, we iteratively create a partition P of V wherein each step i, the
partition class Pi consists of the vertices of minimum label value. When a vertex
v is added to a partition class Pi, we say that v has been visited.

Since σ is a cocomparability ordering, and thus a linear extension of a poset,
the P1 vertices are exactly the elements in the linear extension with no upper
cover. Therefore they are just the maximal elements of the partial order defined
by σ in G. Similarly, when all the P1 have been visited, i.e., ‘removed’, P2 is just
the set of maximal elements in the partial order of G\P1, and so on. Creating
the partition classes is indeed equivalent to removing the maximal elements of
a poset corresponding to G one layer at a time.

The final step of the algorithm is the partition refinement where we refine each
partition class one at a time in a specific manner. In particular, each partition
class Pi is assigned a set Si of pivots that will be used to refine Pi only. The
set Si is implemented as a stack, and the order in which the pivots are pushed
onto Si is crucial. When v is taken from Si to be the next pivot, N(v) performs
an in situ refinement on Pi. We use τi to denote the final (refined) ordering of
Pi. When all partition classes have been refined, we concatenate all the τi’s in
order, i.e., τ = τ1 · τ2 · ... · τp where · denotes concatenation, and use τ to denote
the final ordering. Our main theorem is the following:

Theorem 2. Let G(V,E) be a cocomparability graph, τ is a LexDFS cocompa-
rability ordering that can be computed in O(m+ n).

3.1 Vertex Labelling

Let G(V,E) be an undirected cocomparability graph, and let σ = v1 ≺σ v2 ≺σ

... ≺σ vn be a cocomparability ordering of G returned by the algorithm in [10];
we use σ = ccorder(G) to denote such an algorithm. For every vertex v ∈ V ,

324 E. Köhler and L. Mouatadid

we assign a label #(v) initialized to the number of nonneighbours of v to its
right in σ: #(v) = |{u|uv /∈ E and v ≺σ u}|. Given such a labelling of the
vertices, we create a partition of V denoted by P =

⋃p
i=1 Pi in the following

manner: Initially all vertices are marked unvisited, P1 is the set of vertices with
the smallest # label value. Now all vertices in P1 are marked to be visited. For
all unvisited vertices u and for all v ∈ P1, such that uv ∈ E, #(u) is incremented
by 1. To create P2, again select the set of unvisited vertices of smallest # value.
These vertices in P2 are marked to be visited and for each such v ∈ P2 and
unvisited u adjacent to v, #(u) is incremented by 1. We increment i and repeat
this operation of creating a partition class of the vertices with the smallest label
until all vertices belong to a partition class.

Algorithm 2. PartitionClasses

Input: a cocomparability graph G(V,E)
Output: partition P of V with p partition classes, and p
1: σ ← ccorder(G(V,E)) � As computed in [10]
2: S ← ∅
3: for i ← n downto 1 do
4: #(vi) ← (n− i) − |S ∩N(vi)| � Initial labelling #(v)
5: S ← S ∪ {vi}
6: end for
7: U ← V � U the set of unvisited vertices
8: i ← 1
9: while U not empty do
10: Pi ← {v|#(v) = min(#(U))} � Creating Partition Classes
11: U ← U\Pi

12: for v ∈ Pi do
13: for u ∈ U and uv ∈ E do
14: #(u) ← #(u) + 1
15: end for
16: end for
17: i ← i+ 1
18: end while
19: p ← i− 1
20: return P ← (P1, P2, ..., Pp) and p

Algorithm 2 is a formal description of the algorithm which takes a cocompa-
rability graph G(V,E) as input and returns the partition P = (P1, P2, ..., Pp).
Let π = P1 · P2 · ... · Pp be the order of V resulting from Algorithm 2 such
that ∀x ∈ Pi, y ∈ Pj>i, we have x ≺π y. The order inside each Pi is ar-
bitrary. Consider the graph in Fig. 2 with a valid cocomparability vertex or-
dering. The numbers below the vertices are their labels as computed by Al-
gorithm 2. PartitionClasses(G(V,E)) would produce the following partition:
P = {P1 = {h, k}, P2 = {j}, P3 = {g, i}, P4 = {d, e, f}, P5 = {a, b, c}}.

Linear Time LexDFS on Cocomparability Graphs 325

a

b

c

d

e f

g i

h j

k
: 7 7 7 4 5 3 3 0 2 1 0

σ : a b c d e f g h i j k

Fig. 2. G(V,E), a cocomparability order σ of V, and the initial labelling # of V

3.2 Partition Refinement

Once all the partition classes are computed, we reorder the adjacency list of
each v according to π in O(m + n) time [13], then construct a new ordering of
V by refining P . Our refinement is slightly different than the generic partition
refinement algorithm presented in [8] and briefly explained in Section 2.

Algorithm 3. Refine

Input: a partition class P ordered by π and its corresponding ordered list of pivots S
Output: refinement τ of P
1: Q1 ← P , k ← 1
2: while S not empty do
3: j ← 1
4: v ← S.pop � S is implemented as a stack
5: for i ← 1 to k do
6: if |Qi ∩N(v)| = 0 or |Qi ∩N(v)| = |Qi| then
7: Q′

j ← Qi

8: j ← j + 1
9: else
10: Q′

j ← Qi ∩N(v)
11: Q′

j+1 ← Qi\N(v)
12: j ← j + 2
13: end if
14: end for
15: k ← j − 1
16: for i ← 1 to k do � Rename the new partitions for the next pivot
17: Qi ← Q′

i

18: end for
19: end while
20: return τ ← Q1 ·Q2 · ... ·Qk �

x ∈ Qi, y ∈ Qj>i =⇒ x ≺τ y and x, y ∈ Qi =⇒ x ≺τ y iff x ≺π y

In the remainder of the paper, we will use #∗(vi) to refer to the initial value of
vi’s label, i.e., the number of nonneighbours of v to its right in σ; and #k(vi) to
denote the label value of vi when Pk is being created, i.e., at iteration k. Given
the partition P = (P1, P2, ..., Pp) returned by Algorithm 2, we associate a set Si

to each Pi, where Si is a set of pivots that will be used to refine Pi. We say that
a partition class Pi is processed when it has been refined. We use τi to denote
the final ordering of Pi after it has been refined, i.e. τi = Refine(Pi, Si). If a

326 E. Köhler and L. Mouatadid

partition class Pi has an empty pivot set Si, then for τi the (arbitrary) ordering
of Pi in π is used.

Algorithm 4. UpdatePivots

Input: a newly refined partition class Pj and its index j
Output: updated pivot lists for the upcoming partition classes, i.e. for Pi, i > j
1: for v ∈ Pj do � in the τj order
2: if v has neighbours in Pi>j then
3: Si.push(v) � Update the pivot list of Pi

4: end if
5: end for

The sets Si are implemented as stacks and are created as follows: S1 = ∅ and
P1 is considered processed. For all Pi>1, we scan τ1 from left to right and for
each v ∈ τ1 and every u ∈ Pi>1 where uv ∈ E, we push v in Si. In general,
every time a partition class Pj<i is refined, i.e., τj has been produced, we scan
τj from left to right, and for every v ∈ τj with neighbours in Pi>j , we push v
into Si. To refine Pi, we pop elements of Si one at a time, and for each v ∈ Si,
v is the pivot that refines Pi by reordering Pi into the subpartitions Pi ∩N(v)
followed by Pi\N(v). The next pivot out of Si performs an in situ refinement of
the current subpartitions of Pi.

Let u1j , u
2
j , ..., u

k
j be the left to right ordering of the vertices inside τj . We

mentioned in Section 1 that not only this refinement is in situ, but also backwards.
Backwards in two ways: First, the pivots of τj have a higher priority, i.e. a
stronger pull, than the pivots of τk<j , and second the pivots are pushed down
the stack Si in τ1 · τ2 · ... · τi−1 order (left to right) and thus are popped in
reverse order. Therefore we maintain the priority of the pivots in the backward
order: (τ1 · τ2 · ... · τi−1)

−, but also the priority of the pivots inside each τj<i in
the backward order τj . That is for any two vertices uaj , u

b
j ∈ τj where a < b,

if uaj and ubj are both pivots for Pi, then ubj refines Pi first before ua<b
j . Note

that this is very similar to standard partition refinement with the difference
that in standard partition refinement, Pi is first refined by τ1 then τ2, τ3 and so
on. Here we start refining with the last vertex in τi−1, then τi−2, and so on up
to τ1. This opposite refinement shows the key difference between LexDFS and
LexBFS. Whereas in a LexBFS order the earliest neighbours have the strongest
pull and the latest neighbours the weakest, in a LexDFS the last vertices are
more influencial then the earlier visited ones. Algorithm 3, Refine, takes Pi and
Si as input, and returns the new ordering τi of Pi. Algorithm 4, UpdatePivots,
takes τj as input, the refined ordering of Pj , and updates the stacks Si for
all unprocessed partition classes Pi>j . Let τ denote the final ordering of all
the refined partition classes, i.e., τ = τ1 · τ2 · ... · τp. Refining the partition
P = {P1 = {h, k}, P2 = {j}, P3 = {g, i}, P4 = {d, e, f}, P5 = {a, b, c}} of the
graph in Fig. 2, we ge the ordering τ = h, k, j, i, g, f, d, e, b, c, a.

Linear Time LexDFS on Cocomparability Graphs 327

3.3 The Complete Algorithm

We are now ready to present the complete algorithm CCLexDFS.

Algorithm 5. CCLexDFS

Input: a cocomparability graph G(V,E)
Output: a LexDFS order τ of G that is also a cocomparability order of G
1: τ ← ∅
2: (P , p) ← PartitionClasses(G) � Compute the partition classes
3: S1, ..., Sp ← ∅
4: for i ← 1 to p do
5: τi ← Refine(Pi, Si) � Refine the partition classes
6: UpdateP ivots(τi, i) � Update the pivot sets
7: τ ← τ · τi
8: end for
9: return τ

4 Correctness of the Algorithm

We denote the set of partition classes P1 to Pi−1 by Pi = (P1, P2, ..., Pi−1).

Lemma 1. For any u, v such that u ≺σ v and uv /∈ E: #∗(u) > #∗(v) and at
any step i, #i(u) > #i(v).

Proof. Since u ≺σ v and uv /∈ E, any vertex w with v ≺σ w,wv /∈ E im-
plies wu /∈ E otherwise uw flies over v contradicting σ being a cocomparabil-
ity ordering. Thus w contributes equally to #∗(u) and #∗(v). Moreover, since
u ≺σ v, uv /∈ E, v also contributes to #∗(u). Therefore #∗(u) > #∗(v).

Suppose at a step i,#i(u) < #i(v) then a vertex z ∈ Pj<i ∈ Pi must have
closed the gap in #∗(u) > #∗(v) by contributing to #j(v) but not to #j(u). Let
z ∈ Pj<i be such a vertex, we are only interested in the case when zv ∈ E and
zu /∈ E, since adding z to Pj ∈ Pi would have incremented #j(v), making it
closer to #j(u). Notice that u ≺σ z, otherwise zv flies over u which contradicts
σ being a cocomparability ordering . Therefore z contributes one to #∗(u), thus
not reducing the gap between u and v’s labels and #i(u) > #i(v). ��

Lemma 2. For 1 ≤ i ≤ p, Pi is the set of maximal elements in the poset
P\
⋃i−1

j=1 Pj.

Lemma 3. Every partition class Pi ∈ P returned by Algorithm 1 is a clique.

Lemma 4. (The Flipping Lemma): Let σ be a cocomparability order, and τ the
corresponding ordering created from σ and returned by Algorithm 5. For every
uv /∈ E, u ≺σ v ⇐⇒ v ≺τ u.

Proof. As we are assigning vertices to their partition classes, let u and v be the
left most pair of vertices in τ to satisfy uv /∈ E and u ≺σ v and u ≺τ v. By
Lemma 1, #∗(u) > #∗(v), and by Lemma 3, u and v belong to two different

328 E. Köhler and L. Mouatadid

partition classes; Pi and Pj>i respectively since u ≺τ v. Therefore when Pi was
created #i(u) < #i(v), which contradicts Lemma 1. Therefore v ≺τ u.

For sufficiency, using the contraposition we know that (u ≺τ v ⇒ v ≺σ u) if
and only if (u ≺σ v ⇒ v ≺τ u). Thereby completing the proof. ��

Corollary 1. τ is a cocomparability order of G.

Proof. As in [2], if τ is not a cocomparability order as witnessed by x ≺τ y ≺τ z
and xz ∈ E, xy, yz /∈ E, then by the Flipping Lemma we have y ≺σ x and
z ≺σ y, which implies that the umbrella zx flies over y in σ, contradicting the
fact that σ is a cocomparability order. ��

We refer the reader to [13] for the proofs of Lemma 2 and 3, as well as the
implementation details. We are now ready to prove Theorem 2. Namely, that
the ordering τ produced by Algorithm 5 is a LexDFS cocomparability order of
G.

Proof (of Theorem 2). By Corollary 1, we know that τ is a cocomparability order
of G. Suppose it is not a LexDFS order. Therefore for some triple a, b, c with
a ≺τ b ≺τ c, ac ∈ E and ab /∈ E, there doesn’t exist a vertex d as required by
the 4 Point Condition (Theorem 1). Since τ is a cocomparability order, bc ∈ E
to destroy the umbrella ac over b.

Suppose b and c belong to the same partition class Pi. Since ab /∈ E and
a ≺τ b, a ∈ Pj<i. Since ac ∈ E, a is a pivot with respect to Pi and thus b and c
could not have been in the same subclass since a would have pulled c before b.
Since b ≺τ c, a pivot u that pulled b in front of c must exist, i.e. ub ∈ E, uc /∈ E.
Pick u to be the rightmost pivot to b to satisfy this configuration. Notice that
a ≺τ u. Otherwise, since the refinement is backwards, a would have refined
Pi before u thus pulling c in front of b. Therefore a ≺τ u. This means that u
plays the role of d with respect to LexDFS, a contradiction to our assumption;
therefore b and c must be in different partition classes.

Since b ≺τ c, b ∈ Pi and c ∈ Pj>i, when Pi was created #i(b) < #i(c).
We investigate how this gap could have occurred given ac, bc ∈ E and ab /∈ E.
Without loss of generality, let a, b, c be the left most triple in τ that does not
satisfy the 4 Point Condition, and consider the vertices that have contributed to
#i(b) and #i(c). Let u be one of these vertices. Thus u increased #i(b),#i(c)
either by being a non adjacent right neighbour of b or c in the initial ordering σ
(Algorithm 2, line 6) or u changed #(b),#(c) when u was assigned to a partition
class (Algorithm 2, lines 12-16).

If u is contained in a set of Pi, then u ≺τ b ≺τ c. Consider all the possible
adjacencies between u, b and c. If ub ∈ E and uc /∈ E, then either a ≺τ u in
which case u plays the role of d as required by LexDFS; or u ≺τ a in which case
u increments #j(b) at iteration j when u was assigned to Pj<i, a set in Pi, and
u also contributes to #∗(c) by the Flipping Lemma. Thus u contributes equally
to the labels of b and c. If ub, uc ∈ E then u increments both b’s and c’s labels
when it is assigned to a partition class; and if ub, uc /∈ E, then by the Flipping
Lemma, u contributes to both #∗(b) and #∗(c). But in all three cases u does

Linear Time LexDFS on Cocomparability Graphs 329

not reduce the gap between b and c’s labels. Therefore ub /∈ E, uc ∈ E. However
by the Flipping Lemma b ≺σ u, and thus u contributes to #∗(b) since ub /∈ E,
but also u increments c’s label since u ∈ Pi and uc ∈ E; again not reducing the
gap. Therefore u must be in V \Pi.

If u is not in a set of Pi, then u has not been assigned to a partition class yet.
Since u is responsible for the gap #i(b) < #i(c), u created this gap when b and
c were assigned their initial labels #∗(b) and #∗(c). For u to create such a gap,
u must contribute to c’s initial label #∗(c) and not contribute to #∗(b). In other
words, uc /∈ E and c ≺σ u. Therefore by the Flipping Lemma, u ≺τ c. Moreover,
for u to not contribute to #∗(b), we either have ub ∈ E or ub /∈ E but u ≺σ b.
Notice that this latter case is impossible, since u ≺σ b⇒ b ≺τ u (by the Flipping
Lemma); but also u ≺τ c causing bc to fly over u in τ and contradicting Corollary
1. Thus ub ∈ E, uc /∈ E and c ≺σ u. Since u is not in a set of Pi, b ≺τ u, otherwise
u plays the role of d with respect to LexDFS. Moreover, au ∈ E since τ is a
cocomparability order; and the triple a, b, u must satisfy the LexDFS ordering
otherwise we contradict the choice of a, b, c as u ≺τ c. Therefore there must exist
a vertex w such that a ≺τ w ≺τ b, wb ∈ E,wu /∈ E; this forces the edge aw in
order to avoid the umbrella au over w. If wc /∈ E, then w plays the role of d as
required by LexDFS for the triple a, b, c, and if wc ∈ E, then the umbrella wc
flies over u, contradicting τ being a cocomparability order. Therefore there must
always exists a vertex that satisfies the LexDFS ordering for #i(b) < #i(c) to
hold; and thus τ is a LexDFS cocomparability order of G. ��
Corollary 2. Prior to the partition refinement step, if the vertices inside each
partition class were ordered according to σ−, then the resulting τ is aLexDFS+(σ).

See [13] for the proof.

5 Conclusion and Open Problems

We have presented the first linear time algorithm to determine a LexDFS cocom-
parability order, therefore answering a question raised in [2], and also overcoming
the bottleneck in the near linear time algorithms in [2,3]. It is still an open ques-
tion whether there exists a linear time implementation for LexDFS on arbitrary
graphs. Our implementation exploits the poset structure of the cocomparabil-
ity graph. In fact, computing the partition classes is equivalent to computing
the layers of the corresponding poset. It is fairly straightforward to see that if
G(V,E) is a comparability graph, a LexDFS(G) cocomparability ordering can
also be computed in time linear in the size of G. The details to extend the algo-
rithm to compute such an ordering will be provided in the journal paper. Clearly
this leads to the obvious question of whether this algorithm can also be modified
to compute a LexDFS ordering of a comparability graph.

Looking at the power of LexDFS on cocomparability, and how it has led to
simple and elegant algorithms on this graph family when LexBFS has failed,
simply by extending the existing algorithms on interval graphs; it is natural to
ask whether there are other problems that can be solved using a similar approach:
First a LexDFS preprocessing, then extending the algorithm for interval graphs.

330 E. Köhler and L. Mouatadid

Moreover with this algorithm in hand now, preprocessing is ‘easy’, which raises
the question of possible multisweep LexDFS algorithms. Multisweeps algorithms
perform a constant number of sweeps (i.e., graph searches) where each sweep
generally reveals more structural properties about the graph. LexDFS has not
been used in a multisweep manner yet, we raise the question of whether a second
LexDFS sweep reveals more structure that was not seen through the previous
sweep. If so, are there problems that can benefit from this structure?

Stepping away from cocomparability graphs but still looking at structured
graph families, it is natural to ask whether LexDFS can be implemented in linear
time for other restricted graph families, such as asteroidal triple free graphs, a
graph family that contains cocomparability graphs. But also whether there are
other applications to LexDFS in other graph classes. Graph searches have been
exploited on various graph families, it is necessary to explore the possible insights
LexDFS has to offer, in contrast with these other graph searches.

Acknowledgments. The authors thank Derek Corneil for his helpful sugges-
tions and valuable comments.

References

1. Brandstädt, A., Dragan, F.F., Nicolai, F.: LexBFS-orderings and powers of chordal
graphs. Discrete Mathematics 171(1), 27–42 (1997)

2. Corneil, D.G., Dalton, B., Habib, M.: LDFS-based certifying algorithm for the
minimum path cover problem on cocomparability graphs. SIAM Journal on Com-
puting 42(3), 792–807 (2013)

3. Corneil, D.G., Dusart, J., Habib, M., Köhler, E.: On the power of graph searching
for cocomparability graphs (in preparation)

4. Corneil, D.G., Krueger, R.M.: A unified view of graph searching. SIAM Journal on
Discrete Mathematics 22(4), 1259–1276 (2008)

5. Corneil, D.G., Olariu, S., Stewart, L.: The LBFS structure and recognition of
interval graphs. SIAM Journal on Discrete Mathematics 23(4), 1905–1953 (2009)

6. Golumbic, M.C.: Algorithmic graph theory and perfect graphs, vol. 57. Elsevier
(2004)

7. Habib, M., McConnell, R.M., Paul, C., Viennot, L.: LexBFS and partition re-
finement, with applications to transitive orientation and consecutive ones testing.
Theoretical Computer Science 234 (2000)

8. Habib, M., Paul, C., Viennot, L.: Partition refinement techniques: An interest-
ing algorithmic tool kit. International Journal of Foundations of Computer Sci-
ence 10(02), 147–170 (1999)

9. Kratsch, D., Stewart, L.: Domination on cocomparability graphs. SIAM Journal
on Discrete Mathematics 6(3), 400–417 (1993)

10. McConnell, R.M., Spinrad, J.P.: Modular decomposition and transitive orientation.
Discrete Mathematics 201(1), 189–241 (1999)

11. Mertzios, G.B., Corneil, D.G.: A simple polynomial algorithm for the longest path
problem on cocomparability graphs. SIAM Journal on Discrete Mathematics 26(3),
940–963 (2012)

12. Spinrad, J.P.: Efficient implementation of lexicographic depth first search
(submitted)

13. Köhler, E., Mouatadid, L.: Linear time lexdfs on cocomparability graphs. available
on arXiv at http://arxiv.org/pdf/1404.5996v1.pdf

http://arxiv.org/pdf/1404.5996v1.pdf

Quantum Algorithms for Matrix Products

over Semirings

François Le Gall1 and Harumichi Nishimura2

1 Graduate School of Information Science and Technology,
The University of Tokyo, Japan

2 Graduate School of Information Science, Nagoya University, Japan

Abstract. In this paper we construct quantum algorithms for matrix
products over several algebraic structures called semirings, including the
(max,min)-matrix product, the distance matrix product and the Boolean
matrix product. In particular, we obtain the following results.
– We construct a quantum algorithm computing the product of two

n × n matrices over the (max,min) semiring with time complexity
O(n2.473). In comparison, the best known classical algorithm for the
same problem has complexity O(n2.687). As an application, we ob-
tain a O(n2.473)-time quantum algorithm for computing the all-pairs
bottleneck paths of a graph with n vertices, while classically the best
upper bound for this task is O(n2.687).

– We construct a quantum algorithm computing the � most signifi-
cant bits of each entry of the distance product of two n × n ma-
trices in time O(20.64
n2.46). In comparison, prior to the present
work, the best known classical algorithm for the same problem had
complexity O(2
n2.69). Our techniques lead to further improvements
for classical algorithms as well, reducing the classical complexity to
O(20.96
n2.69), which gives a sublinear dependency on 2
.

The above two algorithms are the first quantum algorithms that perform
better than the Õ(n5/2)-time straightforward quantum algorithm based
on quantum search for matrix multiplication over these semirings. We
also consider the Boolean semiring, and construct a quantum algorithm
computing the product of two n× n Boolean matrices that outperforms
the best known classical algorithms for sparse matrices.

1 Introduction

Background. Matrix multiplication over semirings has a multitude of appli-
cations in computer science, and in particular in the area of graph algorithms
(e.g., [5,18,19,20,21,23]). One example is Boolean matrix multiplication, related
for instance to the computation of the transitive closure of a graph, where the
product of two n×n Boolean matrices A and B is defined as the n×n Boolean
matrix C = A ·B such that C[i, j] = 1 if and only if there exists a k ∈ {1, . . . , n}
such that A[i, k] = B[k, j] = 1.

More generally, given a set R ⊆ Z ∪ {−∞,∞} and two binary operations
⊕ : R × R → R and , : R × R → R, the structure (R,⊕,,) is a semiring if it

R Ravi and I.L. Gørtz (Eds.): SWAT 2014, LNCS 8503, pp. 331–343, 2014.
c© Springer International Publishing Switzerland 2014

332 F. Le Gall and H. Nishimura

behaves like a ring except that there is no requirement on the existence of an
inverse with respect to the operation⊕. Given two n×nmatricesA and B overR,
the matrix product over (R,⊕,,) is the n × n matrix C defined as C[i, j] =⊕n

k=1 (A[i, k],B[k, j]) for any (i, j) ∈ {1, . . . , n} × {1, . . . , n}. The Boolean
matrix product is simply the matrix product over the semiring ({0, 1},∨,∧). The
(max,min)-product and the distance product, which both have applications to
a multitude of tasks in graph theory such as constructing fast algorithms for all-
pairs paths problems (see, e.g., [19]), are the matrix products over the semiring
(Z ∪ {−∞,∞},max,min) and the semiring (Z ∪ {∞},min,+), respectively.

Whenever the operation ⊕ is such that a term as
⊕n

k=1 xk can be computed

in Õ(
√
n) time using quantum techniques (e.g., for ⊕ = ∨ using Grover’s algo-

rithm [8] or for ⊕ = min and ⊕ = max using quantum algorithms for minimum
finding [7]) and each operation , can be implemented in polylog(n) time, the
product of two n × n matrices over the semiring (R,⊕,,) can be computed in
time Õ(n5/2) on a quantum computer.1 This is true for instance for the Boolean
matrix product, and for both the (max,min) and distance matrix products.

A fundamental question is whether we can do better than those Õ(n5/2)-
time straightforward quantum algorithms. For the Boolean matrix product, the
answer is affirmative since it can be computed classically in time Õ(nω), where
ω < 2.373 is the exponent of square matrix multiplication over a field. However,
Boolean matrix product appears to be an exception, and for most semirings it
is not known if matrix multiplication can be done in Õ(nω)-time. For instance,
the best known classical algorithm for the (max,min)-product, by Duan and
Pettie [5], has time complexity Õ(n(3+ω)/2) = O(n2.687) while, for the distance
product, no truly subcubic classical algorithm is even known.

Our Results. We construct in this paper the first quantum algorithms with
exponent strictly smaller than 5/2 for matrix multiplication over several semir-
ings.

We first obtain (in Section 4.1) the following result for multiplication over the
(max,min) semiring.

Theorem 1. There exists a quantum algorithm that computes, with high prob-
ability, the (max,min)-product of two n× n matrices in time O(n2.473).

In comparison, the best known classical algorithm for the (max,min)-product, by
Duan and Pettie [5], has time complexity Õ(n(3+ω)/2) = O(n2.687), as mentioned
above. The (max,min)-product has mainly been studied in the field in fuzzy
logic [6] under the name composition of relations and in the context of computing
the all-pairs bottleneck paths of a graph (i.e., computing, for all pairs (s, t) of
vertices in a graph, the maximum flow that can be routed between s and t). More
precisely, it is well known (see, e.g., [5,18,21]) that if the (max,min)-product of
two n× n matrices can be computed in time T (n), then the all-pairs bottleneck
paths of a graph with n vertices can be computed in time Õ(T (n)). As an
application of Theorem 1, we thus obtain a O(n2.473)-time quantum algorithm

1 In this paper the notation Õ(·) suppresses the no(1) factors.

Quantum Algorithms for Matrix Products over Semirings 333

computing the all-pairs bottleneck paths of a graph of n vertices, while classically
the best upper bound for this task is O(n2.687), again from [5].

In order to prove Theorem 1, we construct a quantum algorithm that com-
putes the product of two n× n matrices over the existence dominance semiring
(defined in Section 2) in time Õ(n(5+ω)/3) ≤ O(n2.458). The dominance prod-
uct has applications in computational geometry [17] and graph algorithms [20]
and, in comparison, the best known classical algorithm for this product [23] has
complexity O(n2.684). Computing efficiently the existence dominance product is,
nevertheless, not enough for our purpose. We introduce (in Section 3) a new gen-
eralization of it that we call the generalized existence dominance product, and
construct both quantum and classical algorithms that compute this product.

We also show (in Section 4.2) how these results for the generalized exis-
tence dominance product can be used to construct classical and quantum al-
gorithms computing the � most significant bits of each entry of the distance
product of two n×n matrices. In the quantum setting, we obtain time complex-
ity Õ

(
20.640�n(5+ω)/3

)
≤ O(20.640�n2.458). In comparison, prior to the present

work, the best known classical algorithm for the same problem by Vassilevska
and Williams [20] had time complexity Õ

(
2�n(3+ω)/2

)
≤ O(2�n2.687), with a

slight improvement on the exponent of n obtained later by Yuster [23]. We ob-
tain an improvement for this classical time complexity as well, reducing it to
Õ
(
20.960�n(3+ω)/2

)
, which gives a sublinear dependency on 2�.

These results are, to the best of our knowledge, the first quantum algorithms
for matrix multiplication over semirings other than the Boolean semiring im-
proving over the straightforward Õ(n5/2)-time quantum algorithm, and the first
nontrivial quantum algorithms offering a speedup with respect to the best clas-
sical algorithms for matrix multiplication when no assumptions are made on
the sparsity of the matrices involved (sparse matrix multiplication is discussed
below). This shows that, while quantum algorithms may not be able to out-
perform the classical Õ(nω)-time algorithm for matrix multiplication of (dense)
matrices over a ring, they can offer a speedup for matrix multiplication over
other algebraic structures.

We finally investigate under which conditions quantum algorithms faster than
the best known classical algorithms can be constructed for Boolean matrix mul-
tiplication. This question has been recently studied extensively in the output-
sensitive scenario [3,10,12,13], for which quantum algorithms multiplying two
n × n Boolean matrices with query complexity Õ(n

√
λ) and time complexity

Õ(n
√
λ + λ

√
n) were constructed, where λ denotes the number of non-zero en-

tries in the output matrix. In this work, we focus on the case where the input
matrices are sparse (but not necessarily the output matrix), and obtain the
following result.

Theorem 2 (simplified version). Let A and B be two n×n Boolean matrices
each containing at most m non-zero entries. There exists a quantum algorithm
that computes, with high probability, the Boolean matrix product A · B and has
time complexity

334 F. Le Gall and H. Nishimura

⎧⎨⎩
Õ(n2) if m ≤ n1.151,

Õ
(
m0.517n1.406

)
if n1.151 ≤ m ≤ nω−1/2,

Õ(nω) if nω−1/2 ≤ m ≤ n2.

In comparison, the best known classical algorithm, by Yuster and Zwick [24],
has complexity Õ(n2) if m ≤ n1.151, Õ(m0.697n1.199) if n1.151 ≤ m ≤ n(1+ω)/2,
and Õ(nω) if n(1+ω)/2 ≤ m ≤ n2. Our algorithm performs better when n1.151 <
m < nω−1/2. For instance, if m = O(n(1+ω)/2) = O(n1.686...), then our algorithm
has complexity O(n2.277), while the algorithm in [24] has complexity Õ(nω). The
complete statement of Theorem 2, and its proof, are given in the full version of
the present paper [15].

Our main quantum tool is rather standard: quantum enumeration, a variant
of Grover’s search algorithm. We use this technique in various ways to improve
the combinatorial steps in several classical approaches [1,5,21,24] that are based
on a combination of algebraic steps (computing some matrix products over a
field) and combinatorial steps. Moreover, the speedup obtained by quantum
enumeration enables us to depart from these original approaches and optimize
the combinatorial and algebraic steps in different ways, for instance relying on
rectangular matrix multiplication instead of square matrix multiplication. On
the other hand, several subtle but crucial issues appear when trying to apply
quantum enumeration, such as how to store and access information computed
during the preprocessing steps, which induces complications and requires the
introduction of new algorithmic ideas. We end up with algorithms fairly remote
from these original approaches, where most steps are tailored for the use of
quantum enumeration.

2 Preliminaries

Rectangular Matrix Multiplication over Fields. For any k1, k2, k3 > 0, let
ω(k1, k2, k3) represent the minimal value τ such that, over a field, the product
of an nk1 × nk2 matrix by an nk2 × nk3 matrix can be computed with Õ(nτ)
arithmetic operations. The value ω(1, 1, 1) is denoted by ω, and the current best
upper bound on ω is ω < 2.373, see [14,22]. Other important quantities are the
value α = sup{k |ω(1, k, 1) = 2} and the value β = (ω− 2)/(1−α). The current
best lower bound on α is α > 0.302, see [11]. The following facts are known, and
will be used in this paper. We refer to [4,9] for details.

Fact 1. ω(1, k, 1) = 2 for k ≤ α and ω(1, k, 1) ≤ 2 + β(k − α) for α ≤ k ≤ 1.

Fact 2. The following relations hold for any values k1, k2, k3 > 0: (i) for any
k > 0, ω(kk1, kk2, kk3) = kω(k1, k2, k3); (ii) ω(kπ(1), kπ(2), kπ(3)) = ω(k1, k2, k3)
for any permutation π over {1, 2, 3}; (iii) ω(k1, k2, 1 + k3) ≤ ω(k1, k2, 1) + k3;
(iv) ω(k1, k2, k3) ≥ max{k1 + k2, k1 + k3, k2 + k3}.

Matrix Products over Semirings. We define below two matrix products
over semirings considered in Sections 3 and 4, respectively, additionally to the

Quantum Algorithms for Matrix Products over Semirings 335

Boolean product, the (max,min)-product and the distance product defined in
the introduction. These products were also used in [5,20,21].

Definition 1. Let A be an n× n matrix with entries in Z ∪ {∞} and B be an
n× n matrix with entries in Z ∪ {−∞}. The existence dominance product of A
and B, denoted A∗B, is the n×n Boolean matrix C such that C[i, j] = 1 if and
only if there exists some k ∈ {1, . . . , n} such that A[i, k] ≤ B[k, j]. The product
A � B is the n × n matrix C such that C[i, j] = −∞ if A[i, k] > B[k, j] for all
k ∈ {1, . . . , n}, and C[i, j] = maxk{A[i, k] | A[i, k] ≤ B[k, j]} otherwise.

It is easy to check, as mentioned for instance in [5,21], that computing the
(max,min)-product reduces to computing the product �. Indeed if C denotes the
(max,min)-product of two matrices A and B, then for any (i, j) ∈ {1, . . . , n} ×
{1, . . . , n} we can write C[i, j] = max

{
(A�B)[i, j], (BT

�AT)[j, i]
}
, where AT

and BT denote the transposes of A and B, respectively. Matrix products over
the semirings (min,max), (min,≤) and (max,≥) studied, for instance, in [19],
similarly reduce to computing the product �.

Quantum Algorithms for Matrix Multiplication. We assume that a quan-
tum algorithm can access any entry of the input matrix in a random access
way, similarly to the standard model used in [3,10,12,13] for Boolean matrix
multiplication.

We will use variants of Grover’s search algorithm, as described for instance
in [2], to find elements satisfying some conditions inside a search space of size N .
Concretely, suppose that a Boolean function f : {1, . . . , N} → {0, 1} is given
and that we want to find a solution, i.e., an element x ∈ {1, . . . , n} such that
f(x) = 1. Consider the quantum search procedure (called safe Grover search
in [16]) obtained by repeating Grover’s standard search a logarithmic number
of times, and checking if a solution has been found. This quantum procedure
outputs one solution with probability at least 1− 1/poly(N) if a solution exists,
and always rejects if no solution exists. Its time complexity is Õ(

√
N/max(1, t))),

where t denotes the number of solutions, if the function f can be evaluated in
Õ(1) time. By repeating this procedure and striking out solutions as soon as they
are found, one can find all the solutions with probability at least 1− 1/poly(N)
using Õ

(√
N/t +

√
N/(t− 1) + · · · +

√
N/1

)
= Õ(

√
N(t+ 1)) computational

steps. We call this procedure quantum enumeration.

3 Existence Dominance Matrix Multiplication

In this section we present a quantum algorithm that computes the existence
dominance product of two matrices A and B. The underlying idea of our algo-
rithm is similar to the idea in the best classical algorithm for the same problem
by Duan and Pettie [5]: use a search step to find some of the entries of A ∗ B,
and rely on classical algebraic algorithms to find the other entries. We naturally
use quantum search to implement the first part, and perform careful modifica-
tions of their approach to improve the complexity in the quantum setting, taking

336 F. Le Gall and H. Nishimura

advantage of the features of quantum enumeration. There are two notable differ-
ences: The first one is that the algebraic part of our quantum algorithms uses
rectangular matrix multiplication, while [5] uses square matrix multiplication.
The second and crucial difference is that, for applications in later sections, we
give a quantum algorithm that can handle a new (and more general) version of
the existence dominance product, defined on set of matrices, which we call the
generalized existence dominance product and define below.

Definition 2. Let u, v be two positive integers, and S be the set S = {1, . . . , u}×
{1, . . . , v}. Let ≺ be the lexicographic order over S ∪ {(0, 0)} (i.e., (i, j) ≺ (i′, j′)
if and only if i < i′ or (i = i′ and j < j′)). Consider u matrices A(1), . . . , A(u),
each of size n× n with entries in Z ∪ {∞}, and v matrices B(1), . . . , B(v), each
of size n× n with entries in Z∪ {−∞}. For each (i, j) ∈ {1, . . . , n}× {1, . . . , n}
define the set Sij ⊆ S ∪ {(0, 0)} as follows:

Sij = {(x, y) ∈ S |A(x) ∗B(y)[i, j] = 1} ∪ {(0, 0)}.

The generalized existence dominance product of these matrices is the n×n matrix
C with entries in S ∪ {(0, 0)} defined as follows: for all (i, j) ∈ {1, . . . , n} ×
{1, . . . , n} the entry C[i, j] is the maximum element in Sij , where the maximum
refers to the lexicographic order.

Note that the case u = v = 1 corresponds to the standard existence dominance
product, since C[i, j] = (1, 1) if A(1) ∗B(1)[i, j] = 1 and C[i, j] = (0, 0) if A(1) ∗
B(1)[i, j] = 0.

Proposition 1. Let A(1), . . . , A(u) be u matrices of size n × n with entries in
Z ∪ {∞}, and B(1), . . . , B(v) be v matrices of size n × n with entries in Z ∪
{−∞}. Let m1 ∈ {1, . . . , n2u} denote the total number of finite entries in the
matrices A(1), . . . , A(u), and m2 ∈ {1, . . . , n2v} denote the total number of finite
entries in the matrices B(1), . . . , B(v). For any parameter t ∈ {1, . . . ,m1}, there
exists a quantum algorithm that computes, with high probability, their generalized
existence dominance product in time

Õ

(√
m1m2n

t
+

√
m1m2uv

tn
+ nω(1+logn u,1+logn t,1+logn v)

)
.

Proof. Let t ∈ {1, . . . ,m1} be a parameter to be chosen later. Let L be the list
of all finite entries in A(1), . . . , A(u) sorted in increasing order. Decompose L into
t successive parts L1, . . . , Lt, each containing at most �m1/t� entries. For each

x ∈ {1, . . . , u} and each r ∈ {1, . . . , t} we construct two n×n matrices A
(x)
r , Ā

(x)
r

as follows: for all (i, j) ∈ {1, . . . , n} × {1, . . . , n},

A(x)
r [i, j] =

{
A(x)[i, j] if A(x)[i, j] ∈ Lr,
∞ otherwise,

Ā(x)
r [i, j] =

{
1 if A(x)[i, j] ∈ Lr,
0 otherwise.

Quantum Algorithms for Matrix Products over Semirings 337

Similarly, for each y ∈ {1, . . . , v} and each r ∈ {1, . . . , t} we construct two n×n
matrices B

(y)
r , B̄

(y)
r as follows: for all (i, j) ∈ {1, . . . , n} × {1, . . . , n},

B(y)
r [i, j] =

{
B(y)[i, j] if minLr ≤ B(y)[i, j] < maxLr,
−∞ otherwise,

B̄(y)
r [i, j] =

{
1 if B(y)[i, j] ≥ maxLr,
0 otherwise.

The cost of this (classical) preprocessing step is O(n2t(u+ v)) time.
It is easy to see that, for each x ∈ {1, . . . , u} and y ∈ {1, . . . , v}, the following

equality holds (where the operators + and
∑

refer to the entry-wise OR):

A(x) ∗B(y) =

t∑
r=1

(
Ā(x)

r · B̄(y)
r

)
+

t∑
r=1

(
A(x)

r ∗B(y)
r

)
. (1)

Indeed, the second term compares entries that are in a same part Lr, while
the first term takes into consideration entries in distinct parts. Define two n ×
n matrices C1 and C2 with entries in S ∪ {(0, 0)} as follows: for all (i, j) ∈
{1, . . . , n} × {1, . . . , n},

C1[i, j] =max

{
{(0, 0)} ∪ {(x, y) ∈ S |

t∑
r=1

Ā(x)
r · B̄(y)

r [i, j] = 1}
}
, (2)

C2[i, j] =max

{
{(0, 0)} ∪ {(x, y) ∈ S |

t∑
r=1

A(x)
r ∗B(y)

r [i, j] = 1}
}
. (3)

From Equation (1), the generalized existence dominance product C satisfies
C[i, j] = max{C1[i, j], C2[i, j]} for all (i, j) ∈ {1, . . . , n}×{1, . . . , n}. The matrix
C can then be computed in time O(n2) from C1 and C2.

The matrix C1 can clearly be computed in time O(n2uv) if all the terms∑
r Ā

(x)
r · B̄(y)

r are known. We can obtain all these uv terms by computing the
following Boolean product of an nu × nt matrix by an nt × nv matrix (both
matrices can be constructed in time Õ(n2t(u+ v))).⎡⎢⎢⎣

Ā
(1)
1 · · · Ā(1)

t
...

...

Ā
(u)
1 · · · Ā(u)

t

⎤⎥⎥⎦ ·
⎡⎢⎢⎣
B̄

(1)
1 · · · · · · B̄(v)

1
...

...

B̄
(1)
t · · · · · · B̄(v)

t

⎤⎥⎥⎦
The cost of this matrix multiplication is Õ

(
nω(1+logn u,1+logn t,1+logn v)

)
. From

item (iv) of Fact 2, we conclude that the matrix C1 can be computed in time

Õ
(
n2uv + n2t(u+ v) + nω(1+logn u,1+logn t,1+logn v)

)
= Õ

(
nω(1+logn u,1+logn t,1+logn v)

)
.

338 F. Le Gall and H. Nishimura

We now explain how to compute the matrix C2. Intuitively, the main diffi-
culty is that Equation (3) cannot be used directly since we do not know how to
compute the dominance product ∗ efficiently. Lemma 1 below shows that it is
possible to replace this dominance product by a Boolean product if we replace

the matrices A
(x)
r and B

(y)
r by some Boolean matrices Â

(x)
r and B̂

(y)
r (compare

Equation (3) with Equation (4) below). This lemma further shows that the latter
matrices can be computed efficiently by a quantum algorithm (based on quan-
tum search). Actually, for technical reasons we additionally need to replace the
term {(0, 0)} in Equation (3) by the term {D[i, j]} in Equation (4), where D is a
matrix that can also be computed efficiently using a quantum algorithm. While
this lemma is the main technical part of the proof of this proposition, due to
space constraints its proof is omitted (we refer to [15] for all details).

Lemma 1. There exists a quantum algorithm that, with high probability, outputs

– tu Boolean matrices Â
(x)
r , each of size n × 2n, for all x ∈ {1, . . . , u} and

r ∈ {1, . . . , t},
– tv Boolean matrices B̂

(y)
r , each of size 2n × n, for all y ∈ {1, . . . , v} and

r ∈ {1, . . . , t},
– a matrix D of size n × n with entries in S ∪ {(0, 0)} = ({1, . . . , u} ×
{1, . . . , v}) ∪ {(0, 0)},

such that

C2[i, j] = max

{
{D[i, j]} ∪ {(x, y) ∈ S |

t∑
r=1

Â(x)
r · B̂(y)

r [i, j] = 1}
}

(4)

for all (i, j) ∈ {1, . . . , n} × {1, . . . , n}. The time complexity of this quantum
algorithm is

Õ

(
n2t(u + v) +

√
m1m2n

t
+

√
m1m2uv

tn

)
.

After applying the quantum algorithm of Lemma 1, we can obtain the matrix

C2, similarly to the computation of C1, if we know all the terms
∑

r Â
(x)
r · B̂(y)

r .
we obtain all these uv terms by computing the following Boolean product of an
nu× nt matrix by an nt× nv matrix.⎡⎢⎢⎣

Â
(1)
1 · · · Â(1)

t
...

...

Â
(u)
1 · · · Â(u)

t

⎤⎥⎥⎦ ·
⎡⎢⎢⎣
B̂

(1)
1 · · · · · · B̂(v)

1
...

...

B̂
(1)
t · · · · · · B̂(v)

t

⎤⎥⎥⎦
The cost of this matrix multiplication is Õ

(
nω(1+logn u,1+logn t,1+logn v)

)
. The

total cost of computing the matrix C2 is thus

Õ

(
n2t(u+ v) +

√
m1m2n

t
+

√
m1m2uv

tn
+ nω(1+logn u,1+logn t,1+logn v)

)
,

which is the desired bound since the term n2t(u+v) is negligible here by item (iv)
of Fact 2. ��

Quantum Algorithms for Matrix Products over Semirings 339

We can also give a classical version of the algorithm of Proposition 1, as stated
in the following proposition (see [15] for a proof).

Proposition 2. There exists a classical algorithm that computes the generalized
existence dominance product in time Õ

(
m1m2

tn + nω(1+logn u,1+logn t,1+logn v)
)
,

for any parameter t ∈ {1, . . . ,m1}.

We now consider the case u = v = 1 corresponding to the standard existence
dominance product. By optimizing the choice of the parameter t in Proposition 1,
we obtain the following theorem.

Theorem 3. Let A be an n × n matrix with entries in Z ∪ {∞} containing at
most m1 non-(∞) entries, and B be an n× n matrix with entries in Z ∪ {−∞}
containing at most m2 non-(−∞) entries. There exists a quantum algorithm
that computes, with high probability, the existence dominance product of A and
B in time Õ(

√
m1m2n1−μ), where μ is the solution of the equation μ+2ω(1, 1+

μ, 1) = 1 + logn(m1m2). In particular, this time complexity is upper bounded by
Õ
(
(m1m2)

1/3n(ω+1)/3
)
.

Proof. The complexity of the algorithm of Proposition 1 is minimized for t = nμ,
where μ is the solution of the equation μ + 2ω(1, 1 + μ, 1) = 1 + logn(m1m2).
We can use items (ii) and (iii) of Fact 2 to obtain the upper bound ω(1, 1 +
μ, 1) ≤ ω + μ, and optimize the complexity of the algorithm by taking t =⌈
(m1m2)

1/3n(1−2ω)/3
⌉
, which gives the upper bound claimed in the second part

of the theorem. ��

In the case of completely dense input matrices (i.e., m1 ≈ n2 and m2 ≈ n2),
the second part of Theorem 3 shows that the complexity of the algorithm is
Õ(n(5+ω)/3) ≤ O(n2.458).

4 Applications: (max,min)-Product, Distance Product

4.1 Quantum Algorithm for the (max,min)-Product

In this subsection we present a quantum algorithm for the matrix product �,
which immediately gives a quantum algorithm with the same complexity for the
(max,min)-product as explained in Section 2, and then gives Theorem 1. Our
algorithm first exploits the methodology by Vassilevska et al. [21] to reduce the
computation of the product � to the computation of several sparse dominance
products. The main technical difficulty to overcome is that, unlike in the classi-
cal case, computing all the sparse dominance products successively becomes too
costly (i.e., the cost exceeds the complexity of all the other parts of the quantum
algorithm). Instead, we show that it is sufficient to obtain a small fraction of
the entries in each dominance product and that this task reduces to the compu-
tation of a generalized existence dominance product, and then use the quantum
techniques of Proposition 1 to obtain precisely only those entries.

340 F. Le Gall and H. Nishimura

Theorem 4. There exists a quantum algorithm that computes, for any two n×n
matrices A and B with entries respectively in Z∪{∞} and Z∪{−∞}, the product
A � B with high probability in time Õ(n(5−γ)/2), where γ is the solution of the
equation γ+2ω(1+γ, 1+γ, 1) = 5. In particular, this complexity is upper bounded
by O(n2.473).

Proof. Let g ∈ {1, . . . , n} be a parameter to be chosen later. For each i ∈
{1, . . . , n}, we sort the entries in the i-th row of A in increasing order and
divide the list into s = �n/g� successive parts Ri

1, . . . , R
i
s with at most g entries

in each part. For each r ∈ {1, . . . , s}, define the n × n matrix Ar as follows:
Ar[i, j] = A[i, j] if A[i, j] ∈ Ri

r and Ar[i, j] = ∞ otherwise. The cost of this
(classical) preprocessing is O(n2s) time.

We describe below the quantum algorithm that computes C = A�B.

Step 1. For each (i, j) ∈ {1, . . . , n} × {1, . . . , n}, we compute the largest r ∈
{1, . . . , s} such that (Ar ∗B)[i, j] = 1, if such an r exists. This is done by using
the quantum algorithm of Proposition 1 with u = s, v = 1, A(r) = Ar for each
r ∈ {1, . . . , s} and B(1) = B. Note that m1 ≤ s × (ng) = O(n2) and m2 ≤ n2.
The complexity of this step is thus

Õ

(
n5/2

√
t

+ nω(1+logn s,1+logn t,1)

)
for any parameter t ∈ {1, . . . , n2}. We want to minimize this expression. Let us
write t = nγ and g = nδ. For a fixed δ, the first term is a decreasing function
of γ, while the second term is an increasing function of γ. The expression is thus
minimized for the value of γ solution of the equation

ω(2− δ, 1 + γ, 1) = (5 − γ)/2, (5)

in which case the expression becomes Õ(n(5−γ)/2).

Step 2. Note that at Step 1 we also obtain all (i, j) ∈ {1, . . . , n} × {1, . . . , n}
such that no r satisfying (Ar ∗ B)[i, j] = 1 exists. For all those (i, j), we set
C[i, j] = −∞. For all other (i, j), we will denote by rij the value found at Step
1. We now know that

C[i, j] = max
k: A[i,k]∈Ri

rij

{Arij [i, k] | Arij [i, k] ≤ B[k, j]},

and C[i, j] can be computed in time Õ(
√
g) using the quantum algorithm for

maximum finding [7], since |Ri
rij | ≤ g. The complexity of Step 2 is thus Õ(n2√g).

This algorithm computes, with high probability, all the entries of C = A�B.
Its complexity is

Õ
(
n2s+ n(5−γ)/2 + n2√g

)
= Õ

(
n(5−γ)/2 + n2+δ/2

)
,

Quantum Algorithms for Matrix Products over Semirings 341

since the term n2s = n3−δ is negligible with respect to n(5−γ)/2 = nω(2−δ,1+γ,1)

by item (iv) of Fact 2. This expression is minimized for δ and γ satisfying δ+γ =
1. Injecting this constraint into Equation (5), we find that the optimal value of γ
is the solution of the equation γ + 2ω(1 + γ, 1 + γ, 1) = 5, as claimed. Using
items (i) and (ii) of Fact 2 and Fact 1, we obtain

5 = γ + 2(1 + γ)ω

(
1, 1,

1

1 + γ

)
≤ γ + 2(1 + γ)

(
2 + β

(
1

1 + γ
− α
))

= (4 + 2β − 2αβ) + (5− 2αβ)γ

and then γ ≥ 1+2αβ−2β
5−2αβ . The complexity is thus Õ

(
n(12−6αβ+β)/(5−2αβ)

)
≤

O(n2.473). ��

4.2 Quantum Algorithm for the Distance Product

In this subsection we present a quantum algorithm that computes the most
significant bits of the distance product of two matrices, as defined below.

Let A and B be two n×n matrices with entries in Z∪{∞}. LetW be a power
of two such that the value of each finite entry of their distance product C is upper
bounded by W . For instance, one can take the smallest power of two larger than
maxi,j{A[i, j]}+maxi,j{B[i, j]}, where the maxima are over the finite entries of
the matrices. Each non-negative finite entry of C can then be expressed using

log2(W) bits: the entry C[i, j] can be expressed as C[i, j] =
∑log2(W)

k=1 C[i, j]k
W
2k

for bits C[i, j]1, . . . , C[i, j]log2(W). For any � ∈ {1, . . . , log2(W)}, we say that an
algorithm computes the � most significant bits of each entry if, for all (i, j) ∈
{1, . . . , n}×{1, . . . , n} such that C[i, j] is finite and non-negative, the algorithm
outputs all the bits C[i, j]1, C[i, j]2, · · · , C[i, j]�. Vassilevska and Williams [20]
have studied this problem, and shown how to reduce the computation of the �
most significant bits to the computation of O(2�) existence dominance matrix
products of n × n matrices. By combining this with the Õ(n(3+ω)/2)-time algo-
rithm for dominance product from [17], they obtained a classical algorithm that
computes the � most significant bits of each entry of the distance product of A
and B in time Õ

(
2�n(3+ω)/2

)
≤ Õ

(
2�n2.687

)
.

Here is the main result of this subsection, whose proof is given in [15], ob-
tained by reducing the computation of the � most significant bits to computing
a generalized existence dominance product.

Theorem 5. There exists a quantum algorithm that computes, for any two n×n
matrices A and B with entries in Z∪{∞}, the � most significant bits of each entry
of the distance product of A and B in time Õ

(
20.640�n(5+ω)/3

)
≤ O(20.640�n2.458)

with high probability.

Similarly, we can obtain a better classical algorithm as shown in the following
theorem. We refer to [15] for details.

342 F. Le Gall and H. Nishimura

Theorem 6. There exists a classical algorithm that computes, for any two n×n
matrices A and B with entries in Z∪{∞}, the � most significant bits of each entry
of the distance product of A and B in time Õ

(
20.960�n(3+ω)/2

)
≤ O(20.960�n2.687).

References

1. Amossen, R.R., Pagh, R.: Faster join-projects and sparse matrix multiplications.
In: Proceedings of ICDT, pp. 121–126 (2009)

2. Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching.
Fortschritte der Physik 46(4-5), 493–505 (1998)

3. Buhrman, H., Špalek, R.: Quantum verification of matrix products. In: Proceedings
of SODA, pp. 880–889 (2006)

4. Bürgisser, P., Clausen, M., Shokrollahi, M.A.: Algebraic complexity theory.
Springer (1997)

5. Duan, R., Pettie, S.: Fast algorithms for (max, min)-matrix multiplication and
bottleneck shortest paths. In: Proceedings of SODA, pp. 384–391 (2009)

6. Dubois, D., Prade, H.: Fuzzy sets and systems: Theory and applications. Academic
Press (1980)

7. Dürr, C., Høyer, P.: A quantum algorithm for finding the minimum. arXiv:quant-
ph/9607014 (1996)

8. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of STOC, pp. 212–219 (1996)

9. Huang, X., Pan, V.Y.: Fast rectangular matrix multiplication and applications.
Journal of Complexity 14(2), 257–299 (1998)

10. Jeffery, S., Kothari, R., Magniez, F.: Improving quantum query complexity of
Boolean matrix multiplication using graph collision. In: Czumaj, A., Mehlhorn,
K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part I. LNCS, vol. 7391, pp.
522–532. Springer, Heidelberg (2012)

11. Le Gall, F.: Faster algorithms for rectangular matrix multiplication. In: Proceed-
ings of FOCS, pp. 514–523 (2012)

12. Le Gall, F.: Improved output-sensitive quantum algorithms for Boolean matrix
multiplication. In: Proceedings of SODA, pp. 1464–1476 (2012)

13. Le Gall, F.: A time-efficient output-sensitive quantum algorithm for Boolean matrix
multiplication. In: Chao, K.-M., Hsu, T.-S., Lee, D.-T. (eds.) ISAAC 2012. LNCS,
vol. 7676, pp. 639–648. Springer, Heidelberg (2012)

14. Le Gall, F.: Powers of tensors and fast matrix multiplication. In: Proceedings of
ISSAC (to appear, 2014)

15. Le Gall, F., Nishimura, H.: Quantum algorithms for matrix products over semirings.
Full version of the present paper, available as arXiv:1310.3898

16. Magniez, F., Santha, M., Szegedy, M.: Quantum algorithms for the triangle prob-
lem. SIAM Journal on Computing 37(2), 413–424 (2007)

17. Matoušek, J.: Computing dominances in En. Information Processing Letters 38(5),
277–278 (1991)

18. Shapira, A., Yuster, R., Zwick, U.: All-pairs bottleneck paths in vertex weighted
graphs. In: Proceedings of SODA, pp. 978–985 (2007)

19. Vassilevska, V.: Efficient Algorithms for Path Problems in Weighted Graphs. PhD
thesis, Carnegie Mellon University (2008)

20. Vassilevska, V., Williams, R.: Finding a maximum weight triangle in n3−δ time,
with applications. In: Proceedings of STOC, pp. 225–231 (2006)

Quantum Algorithms for Matrix Products over Semirings 343

21. Vassilevska, V., Williams, R., Yuster, R.: All pairs bottleneck paths and max-min
matrix products in truly subcubic time. Theory of Computing 5(1), 173–189 (2009)

22. Vassilevska Williams, V.: Multiplying matrices faster than Coppersmith-Winograd.
In: Proceedings of STOC, pp. 887–898 (2012)

23. Yuster, R.: Efficient algorithms on sets of permutations, dominance, and real-
weighted APSP. In: Proceedings of SODA, pp. 950–957 (2009)

24. Yuster, R., Zwick, U.: Fast sparse matrix multiplication. ACM Transactions on
Algorithms 1(1), 2–13 (2005)

Ranked Document Selection�

J. Ian Munro1, Gonzalo Navarro2, Rahul Shah3, and Sharma V. Thankachan1

1 Cheriton School of CS, Univ. Waterloo, Canada
{imunro,thanks}@uwaterloo.ca
2 Dept. of CS, Univ. Chile, Chile

gnavarro@dcc.uchile.cl
3 School of EECS, Louisiana State Univ., USA

rahul@csc.lsu.edu

Abstract. Let D be a collection of string documents of n characters in
total. The top-k document retrieval problem is to preprocess D into a
data structure that, given a query (P, k), can return the k documents
of D most relevant to pattern P . The relevance of a document d for a
pattern P is given by a predefined ranking function w(P, d). Linear space
and optimal query time solutions already exist for this problem.

In this paper we consider a novel problem, document selection queries,
which aim to report the kth document most relevant to P (instead
of reporting all top-k documents). We present a data structure using
O(n logε n) space, for any constant ε > 0, answering selection queries
in time O(log k/ log log n), and a linear-space data structure answering
queries in time O(log k), given the locus node of P in a (generalized)
suffix tree of D. We also prove that it is unlikely that a succinct-space
solution for this problem exists with poly-logarithmic query time.

1 Introduction and Related Work

Document retrieval is a special branch of pattern matching related to information
retrieval and web searching. In this problem, the data consists of a collection of
text documents, and the queries refer to documents rather than text positions
[12]. In this paper we focus on arguably the most important of those problems,
called top-k document retrieval : Given D = {d1, d2, d3, ..., dD}, of total length
n =

∑D
i=1 |di|, preprocess it into a data structure that, given a pattern P and a

threshold k, retrieves the k documents from D that are more most relevant to P ,
in decreasing order of relevance. The relevance of a document d with respect to P
is captured using any function w(P, d) of the starting positions of the occurrences
of P in d. A popular example of relevance is the term frequency metric, that is,
the number of occurrences of P in d. This a well studied problem, and the best
known linear space data structure can answer queries in optimal time O(k) [17],
once the locus node of P in a generalized suffix tree of D is found.

� Funded in part by NSERC of Canada and the Canada Research Chairs program,
Fondecyt Grant 1-140796, Chile, and NSF Grants CCF–1017623, CCF–1218904.

R Ravi and I.L. Gørtz (Eds.): SWAT 2014, LNCS 8503, pp. 344–356, 2014.
c© Springer International Publishing Switzerland 2014

Ranked Document Selection 345

In this paper we study a new related problem called document selection, where
we must return the kth document of D most relevant to P , that is, the kth
element returned by a top-k query (breaking ties arbitrarily).

We present three results, depending on the amount of space used: (1) We give
a data structure that uses O(n logε n) space, for any constant ε > 0, and answers
queries in time O(log k/ log logn). (2) We give a linear-space data structure that
answers queries in O(log k) time. (3) We prove that it is highly unlikely that the
problem can be solved in less than linear space within poly-logarithmic time, via
a reduction from the position restricted substring searching problem [9,5].

Document selection is useful for various advanced queries. When a user browses
ranked results of a query and asks for the next set of results, we need to report
the top-k2 documents that are not top-k1. Instead of computing a top-k2 query
in time O(k2), which is nonoptimal if k2 − k1 = o(k2), our results allow solving
this query in O((k2 − k1) log k2) time and linear space. Another possible query
is to count the number K of documents d with w(P, d) ≥ τ , given P and τ .
This can be answered via doubling search using document selection queries, in
time O(log2K), assuming w(P, d) can be computed in constant time given the
locus of P . Similarly, we can count or list the documents d with w(P, d) ∈ [τ1, τ2].
Such queries are important in bioinformatics, for example for motif mining or for
avoiding sequences where P is “over-expressed”, and for data mining in general,
for example to estimate the distribution of relevance scores of certain patterns.

Related Work. The notion of relevance-based string retrieval was introduced by
Muthukrishnan [11], who proposed and solved various problem but not top-k
document retrieval. The first data structure for this problem, under the term
frequency measure and using O(n log n) words of space, was given by Hon et
al. [4]. Later, Hon et al. [7] introduced a linear space structure (O(n) words),
that works for general weight functions as described earlier, with query time
O(p + k log k). This was improved to O(p + k) [13], and finally to the optimal
O(k) [17], all using linear space. Those times are in addition to the time for
finding the locus node of P , locus(P), in the generalized suffix tree of D, GST.

The problem has also been studied in scenarios where less than linear space
(i.e., o(n logn) bits) can be used. For example, it is possible to solve the problem
efficiently using n log σ + o(n log σ) bits [14,18], where σ is the alphabet size of
the text (thus n logσ bits are used to represent the text itself). The results are
mostly tailored to the term frequency measure of relevance, and achieve times
of the form O(k polylogn). See [12,3,6] for more details.

2 The Top-k Framework

This section briefly describes the linear-space framework of Hon et al. [7] for
top-k queries. The generalized suffix tree (GST) of a document collection D =
{d1, d2, d3, . . . , dD} is the combined compact trie of all the non-empty suffixes of
all the documents [19]. The total number of leaves in GST is same as the total
length n of all the documents. For each node j in GST, prefix(j) is the string

346 J.I. Munro et al.

obtained by concatenating the edge labels on the path from the root to node j.
The highest node v satisfying that P is a prefix of prefix(v) is called the locus
of P and denoted locus(P) = v.

Let �i represent the ith leftmost leaf node in GST. We say that a node is
marked with a document d if it is either a leaf node whose corresponding suffix
belongs to d, or it is the lowest common ancestor (LCA) of two such leaves. This
implies that the number of nodes marked with document d is exactly equal to the
number of nodes in the suffix tree of d (at most 2|d|). A node can be marked with
multiple documents. For each node j and each of its marking documents d, define
a link to be a quadruple (origin = j, target, doc = d, weight = w(prefix(j), d)),
where target is the lowest proper ancestor of node j marked with d (a dummy
parent of the root node is added, marked with all the documents). Since the
number of links with document doc = d is at most 2|d|, the total number of links

is ≤
∑D

i=1 2|di| ≤ 2n. The following is a crucial observation by Hon et al. [7].

Lemma 1. For each document d that contains a pattern P , there is a unique
link with origin in the subtree of locus(P), a proper ancestor of locus(P) as its
target, and weight w(P, d).

We say that a link is stabbed by a node j if its origin is in the subtree of j (j
itself included) and its target is a proper ancestor of j. Therefore, the problem
of finding the kth most relevant document for P can be reduced to finding the
kth highest weighted link stabbed by locus(P).

3 Super-Linear Space Structure

In this section we start by introducing a basic data structure that uses O(n log n)
words and answers queries in O(log n) time. Then we enhance it to a structure
that uses O(n log1+ε n) words, for any constant ε > 0, and O(log n/ log logn)
time. The basic structure will be used in Section 4 to achieve linear space within
the same time, whereas the enhanced one will be reduced to O(n logε n) words. In
Section 5 we show how how the linear-space structure can be improved to answer
queries in time O(log k) and the enhanced structure in time O(log k/ log logn),
thus reaching our final results.

3.1 The Basic Structure

We prove the following result.

Lemma 2. Given the GST of a text collection of total length n, we can build
an O(n logn)-word structure that, given locus(P) and k, answers the document
selection query in time O(log n).

Let N represent the set of nodes in GST and S represent the set of links
(origin, target, doc, weight) in GST, as described in Section 2. Next we construct
a balanced binary tree T of |S| leaves, so that the ith highest weighted link (ties

Ranked Document Selection 347

broken arbitrarily) is associated with the ith leftmost leaf of T . Notice that
n ≤ |S| ≤ 2n. We use S(x) to denote the set of links associated with the leaves
in the subtree of node x ∈ T . Further, let N(x) denote the set of nodes in GST
that are (i) either the origin or the target of a link in S(x), or (ii) the LCA of
two such nodes. Clearly |N(x)| = Θ(|S(x)|) = Θ(n/2depth(x)), where depth(x) is
the number of ancestors of x (depth of root is 0).

With every node x ∈ T , we associate a tree structure GST(x). GST(x) is the
subtree of GST obtained by retaining only the nodes in N(x), so that node v
is the parent of node w in GST(x) iff v is the lowest proper ancestor of w in
GST that also belongs to N(x). The number of nodes and edges in GST(x) is
Θ(n/2depth(x)).

Notice that the same node w ∈ GST may appear in several GST(·)’s. With
each node w ∈ GST(x) we associate the following information:

– stab.countx(w): The number of links in S(x) that are stabbed by w.
– left.ptrx(w): Let xL be the left child of x (in T). Let wL be the highest node

in the subtree of w (in GST(x)) that appears also in GST(xL) (wL can be w
itself). Then left.ptrx(w) is a pointer from w ∈ GST(x) to wL ∈ GST(xL). If
there exists no such node wL, then left.ptrx(w) is null.

– right.ptrx(w): Analogous to left.ptrx(w), now considering xR, the right child
of x ∈ T , and wR being the highest node in the subtree of w ∈ GST(x) that
appears also in GST(xR).

Note that the space needed for maintaining GST(x) and the associated in-
formation is O(n/2depth(x)) words. Added over all the nodes x ∈ T , the total
space occupancy of all GST(·)’s is O(n log n) words. Finally, the following result
is crucial for our data structure (the case of wR and xR is analogous).

Lemma 3. Both w and wL stab the same subset of links of S(xL).

Proof. Otherwise, the target of a link in S(xL) stabbing wL but not w would be
higher than wL, below w, and belong to GST(xL), contradicting the definition
of wL. The same happens with the source of a link stabbing w but not wL. ��

3.2 Query Algorithm for Document Selection

Assume locus(P) is given. Notice that the tree GST(root) associated with the
root of T is the same GST of the collection. Therefore, stab.countroot(locus(P))
gives the number of documents containing P . If the count is less than k, there
is no kth document to select. Otherwise, let L∗ be the kth highest weighted link
stabbed by locus(P). Our query algorithm traverses T top-down, starting from
root and ending at the leaf node associated with link L∗. Then it reports the
document d∗ corresponding to L∗.

In our query algorithm, we use x to denote a node in T , w to denote a node
in GST(x) and K to denote an integer ≤ k. First we initialize x to the root
of T , w to locus(P) and K to k. This establishes the invariant that we have
to return the Kth highest weighted link in S(x) stabbed by w. Let xL and xR

348 J.I. Munro et al.

be the left and right children of x. Then we obtain the nodes wL ∈ GST(xL)
and wR ∈ GST(xR) pointed by left.ptrx(w) and right.ptrx(w), respectively. The
following values are then computed in constant time.

– c = stab.countx(w), the number of links in S(x) stabbed by w.
– cL = stab.countxL(wL), the number of links in S(xL) stabbed by w (or wL).
– cR = stab.countxR(wR), the number of links in S(xR) stabbed by w (or wR).

Notice that c = cL + cR. If cL ≥ K then, by Lemma 3, the Kth link below
S(x) (or S(xL)) stabbed by w ∈ GST(x) is the same as theKth link below S(xL)
stabbed by wL ∈ GST(xL). Therefore, we maintain the invariant if we continue
the traversal in the subtree of x ← xL with GST(xL) node w ← wL. On the
other hand, if cL < K, then by Lemma 3 the Kth link stabbed by w below S(x)
is same as the (K − cL)th link below S(xR) stabbed by wR ∈ GST(xR). In this
case, we maintain the invariant if we continue the traversal in the subtree of
x← xR with GST(xR) node w ← wR and with K ← K − cL. We terminate the
algorithm when x is a leaf, thus K = 1 and x represents L∗. As the height of T
is O(log n) and the time spent at each node is constant, the total query time is
O(log n) and Lemma 2 is proved.

3.3 An Enhanced Structure

We now prove the following result, which will hold in the RAM model of com-
putation, with a computer word of w = Ω(logn) bits.

Lemma 4. Given the GST of a text collection of total length n and any constant
0 < ε ≤ 1, we can build an O(n log1+ε n)-word structure that, given locus(P)
and k, answers the document selection query in time O(log n/ log logn).

In order to speed up the structure of Lemma 2, we will choose a step s =
ε log log n and build the GST(x) structures only for nodes x ∈ T whose depth is a
multiple of s. Each node w ∈ GST(x) for the selected nodes x will store sufficient
information for the query algorithm to jump directly to the corresponding node
x′ at depth depth(x′) = depth(x) + s, instead of just to xL or xR.

Given x, x′ ∈ T as above (x′ in the subtree of x) and w ∈ GST(x), we define
wx′ as the highest node in the subtree of w that appears also in GST(x′). Let us
call x1, x2, . . . , x2s the nodes at depth depth(x) + s that descend from x (or the
leaves below x, if they have depth less than depth(x) + s), ordered left to right
in T (i.e., from highest to lowest weights in S(xi)).

Associated to each node w ∈ GST(x), we store 2s pointers ptrx(w)[i] = wxi .

We also store the 2s cumulative values accx(w)[i] =
∑i

j=1 stab.countxj (wxj);
note that accx(w)[2

s] = stab.countx(w). We will store those accx(w) values
in a fusion tree [1], which takes O(2s) = O(logε n) words of space and solves
predecessor queries in accx(w) in constant time. The space is the same used by
array ptrx(w), which added over all the GST(·)’s is O(n log1+ε n) words (even if
only one level out of s in T stores GST(·) structures).

Ranked Document Selection 349

Queries now proceed as in Section 3.2, but now we use the fusion tree to
determine, given w ∈ GST(x), which is the node xi ∈ T that contains the Kth
link below S(x) stabbed by w. Therefore we can move directly from x to xi
and from w ∈ GST(x) to wi ∈ GST(xi), where wi = ptrx(w)[i]. We also update
K ← K−accx(w)[i−1] (assume accx(w)[0] = 0). Thus we complete the query in
O((log n)/s) = O(log n/(ε log logn)) constant-time steps and Lemma 4 is proved.

4 Linear Space Structure

In this section we build on the basic structure of Lemma 2 in order to achieve
linear space and logarithmic query time. At the end, we reduce the space of the
enhanced structure to O(n logε n). The results hold under the RAM model.

Lemma 5. Given the GST of a text collection of total length n, we can build an
O(n)-word structure that, given locus(P) and k, answers the document selection
query in time O(log n).

To achieve linear space, we replace some of our data structures by succinct
ones. We will measure the space in bits, aiming at using O(n log n) bits overall.
The binary tree T can be maintained in O(n log n) bits, where each internal node
x stores an O(log n)-bit pointer to the corresponding tree GST(x) and each leaf
stores the document identifier corresponding to the associated link. The global
GST can also be maintained in O(n log n) bits. Therefore, the space-consuming
component are the GST(·)’s and their associated information.

Using well-known succinct data structures [16], the GST(x) tree topologies can
be represented in O(1) bits per node (i.e., O(n logn) bits overall) with constant-
time support of all the basic navigational operations required in our algorithm.
We refer to any node w ∈ GST(x) by its pre-order rank, that is, node j means
the node with pre-order rank j. The pre-order rank of the root node of any
GST(x) is 1. Next we show how to encode the remaining information associated
with each node in GST(x) using O(1) bits per node.

4.1 Encoding stab.countx(j)

We note that stab.countx(j) is exactly equal to the number of links of S(x) as-
sociated with GST(x) that originate in the subtree of j minus the number of
links in S(x) that target any node in the subtree of j (j belongs to its sub-
tree). We encode this information in two bit vectors: Bx = 10α110α210α3 . . .
and B′

x = 10β110β210β3 . . ., where αj (resp., βj) is the number of links of S(x)
originating from (resp., targeting at) node j in GST(x). We augment Bx and B′

x

with structures supporting constant-time rank/select queries [10]. Notice that∑
αj =

∑
βj = O(|S(x)|) = O(|GST(x)|). Therefore, both Bx and B′

x can be
represented in O(1) bits per node.

Now we can compute stab.countx(j) for any j in O(1) time as follows: find the
rightmost leaf node j′ in the subtree of j in O(1) time using the succinct tree
representation of GST(x) [16]. Then the number no of links originating from the

350 J.I. Munro et al.

subtree of j is equal to the number of 0-bits between the jth and (j′+1)th 1-bit
in Bx (because j and j′ are preorder numbers). Similarly, the number nt of links
targeted at any node in the subtree of j is equal to the number of 0-bits between
the jth and (j′ +1)th 1-bits in B′

x. Using rank/select operations on Bx and B′
x,

no and nt are computed in O(1) time and stab.countx(j) is given by no − nt.

4.2 Encoding left.ptrx(j) and right.ptrx(j)

We show how to encode left.ptrx(·) for all nodes in GST(x); right.ptrx(j) is sym-
metric. The idea is to maintain a bit vector LP such that LP [j] = 1 iff there
exists a node jL ∈ GST(xL) such that both j ∈ GST(x) and jL ∈ GST(xL)
represent the same node in GST. We add constant-time rank/select data struc-
tures [10] on LP . Since the length of LP is equal to the number of nodes in
GST(x), its space occupancy is O(1) bits per node.

Now, for any given node j ∈ GST(x), the node jL ∈ GST(xL) to which
left.ptrx(j) points is the (unique) highest descendant of j that is marked in LP ,
thus it can be identified by (1) finding the position j∗ of the leftmost 1-bit in
LP [j . . .]; (2) checking if node j∗ is in the subtree of node j in GST(x); (3) if
so, then jL ∈ GST(xL) is equal to the number of 1’s in LP [1...j∗], otherwise, jL
is null. All these operations require constant time, either using the succinct tree
operations or the rank/select data structures. This works because all the nodes
in GST(xL) appear in GST(x), in the same order (pre-order).

In summary, the space requirement of our encoding scheme is O(1) bits per
node in any GST(x), thus adding to O(n log n) bits. The query algorithm, as well
as its time complexity, remain the same. This completes the proof of Lemma 5.

4.3 Reducing Space of the Enhanced Structure

The space of the enhanced structure of Section 3.3 can be similarly reduced to
O(n logε n) words, obtaining the following result.

Lemma 6. Given the GST of a text collection of total length n and a constant
ε > 0, we can build an O(n logε n)-word structure that, given locus(P) and k,
answers the document selection query in time O(log n/ log log n).

For this sake, recalling the definition of x1, . . . , x2s of Section 3.3, we will
maintain bit vectors LPi for i = 1 to 2s, so that LPi[j] = 1 iff there exists a
node ji ∈ GST(xi) such that both j ∈ GST(x) and ji ∈ GST(xi) represent the
same node in GST. Then each array entry ptrx(j)[i] is computed using LPi as in
Section 4.2. The total space used by all the LPi bit vectors is O(2

s) = O(logε n)
bits per node, adding up to O(n log1+ε n) bits in total.

To compute accx(j)[i], we store bitmaps Bx,1, . . . , Bx,2s and B′
x,1, . . . , B

′
x,2s ,

analogous to B and B′ of Section 4.1. In this case, Bx,i = 10α
i
110α

i
210α

i
3 . . ., so

that αi
j =

∑i
r=1 s(r), where s(r) is the number of links of S(xr) originating from

node ptrx(j)[i] ∈ GST(xr), and B
′
x,i = 10β

i
110β

i
210β

i
3 . . ., so that βi

j =
∑i

r=1 t(r),
where t(r) is the number of links of S(xr) targeting at node ptrx(j)[i] ∈ GST(xr).

Ranked Document Selection 351

Then, it holds accx(j)[i] = αi
j − βi

j , which is computed in constant time using

rank/select operations. Since it holds αi
j ≤ αj and βi

j ≤ βj for all i values, the

total space of these 2s = logε n bitmaps adds up to O(n log1+ε n) bits.
To carry out predecessor searches on the virtual vector accx(j), we use suc-

cinct SB-trees [2, Lemma 3.3]. Given constant-time access to any accx(j)[i], this
structure provides predecessor searches in O(1 + log(2s)/ log logn) = O(1) time
and use O(2s log logn) = O(logε n) bits per node (by adjusting ε). Thus the total
space is O(n log1+ε n) bits as well. This concludes the proof of Lemma 6.

5 Achieving O(log k) Query Time and Better

In this section we first build on the linear-space data structure of Lemma 5 in
order to improve its query time to O(log k). At the end, we show that the result
extends to our superlinear-space data structure of Lemma 6, improving its query
time to O(log k/ log logn). Thus we start by proving the following theorem.

Theorem 1. A collection D of documents can be preprocessed into a linear-
space data structure that can answer any document selection query (P, k) in
time O(log k), given the locus of pattern P in the generalized suffix tree of D.

Notice that the query time O(log n) in Lemma 5 can be written as O(log k) for
k >

√
n. Therefore, we turn our attention to the case where k ≤

√
n. First, we

derive a space-efficient structure DS(δ), which can answer document selection
queries faster, but only for values of k below a predefined parameter δ ≤

√
n.

More precisely, structure DS(δ) will satisfy the following properties:

Lemma 7. The structure DS(δ) uses O(n(log δ + log log n)) bits of space and
can answer document selection queries in time O(log δ + log log n), for k ≤ δ ≤√
n.

To obtain the result in Theorem 1, we maintain structures DS(δi) with δi =

�n1/2i� for i = 1, 2, 3, . . . , r, where δr+1 ≤
√
logn < δr (therefore r < log logn).

The total space needed is O(n
∑r

i=1(log δi + log logn)) = O(n log n) bits (O(n)
words). When k comes as a query, if k > δr+1, we first find h, where δh+1 <
k ≤ δh and obtain the answer using DS(δh). The resulting time is O(log δh +
log logn) = O(log k). The case where k < δr+1 is handled separately using other
structures in O(1) time (Section 5.2). We now describe the details of DS(δ).

5.1 Structure DS(δ)

The first step is to identify certain nodes in GST as marked nodes and prime
nodes, based on a parameter g = �δ logn� called the grouping factor. Every gth
leftmost leaf is marked, and the LCA of every two consecutive marked leaves
is also marked. Therefore, the number of marked nodes is Θ(n/g). Nodes with
their parent marked are prime. A prime node with at least one marked node in
its subtree is a type-1 prime node, otherwise it is a type-2 prime node. Notice

352 J.I. Munro et al.

that the highest marked node in the subtree of any node is unique, if it exists.
Therefore, except the root node, every marked node j∗ can be associated with
a unique type-1 prime node j′, which is the first prime node on the path from
j∗ to the root. Notice that a node can be both prime and marked.

Let j′ be a prime node and j∗ be the highest marked node in its subtree (j∗

exists only if j′ is of type-1, and it can be that j′ = j∗). We use G(j′\j∗) to
represent the subtree of GST rooted at j′ after removing the subtree of j∗ (j∗ is
not removed). With a slight abuse of notation, we use G(j′\j∗) to represent the
set of nodes within G(j′\j∗) as well. A crucial result [17] is that, for any prime
node j′, the number of nodes in G(j′\j∗) is O(g).

We define prime.parent(j) of any node j in GST as the first prime node j′

on the path from j to the root. Note that j ∈ G(j′\j∗), otherwise j would be a
(strict) descendant of j∗ and its corresponding j′ would be below j∗.

It is not hard to determine j′ = prime.parent(j) in constant time and O(n)
bits, by sampling the prime nodes in a succinct tree representation and looking
for the lowest sampled ancestor of j [15, Lemma 4.4].

The structure DS(δ) is a collection of substructures STR(j′) associated with
every prime node j′ in GST. If the input node locus(P) ∈ G(j′\j∗) and k ≤ δ,
we obtain the answer using STR(j′) in O(log g) = O(log δ + log logn) time.
Based on the type of j′, we have two cases; we describe the simpler one first.

STR(j′) Associated with a Type-2 Prime Node j′: The structure can be
constructed as follows: take G(j′), the subtree rooted at node j′, and replace the
pre-order rank of each node j by (j−j′+1). Also associate a dummy parent node
to the root. Then, among the links defined over GST (Section 2), choose those
that originate from the subtree of j′ and: (1) Assign a new value to its origin and
target, which is its original value minus j′ plus 1. The target of some links can
be negative; replace those by 0. (2) Replace the weight by a rank-space reduced
value in [1, O|G(j′)|]. Notice that the number of links chosen is O(|G(j′)|). (3)
Let d be its document identifier. Instead of writing d explicitly in �logD� bits,
use a pointer to one leaf node in G(j′), using �log |G(j′)|� bits, where the suffix
corresponding to that leaf belongs to document d.

In summary, we have a tree of (|G(j′)| + 1) nodes and O(|G(j′)|) links as-
sociated with it. The information (origin, target, document, weight) associated
with each link is encoded in O(log |G(j′)|) bits. Then STR(j′) is the struc-
ture described in Lemma 5 over these nodes and links. The space required is
O(|G(j′)| log |G(j′)|) = O(|G(j′)| log g) bits. We maintain structures STR(j′)
for all type-2 prime nodes j′ in total O(n log g) bits, since a node can be in the
subtree of at most one type-2 prime node.

STR(j′) Associated with a Type-1 Prime Node j′: We first identify the
candidate set C(j′) of O(g) links, such that for any k ≤ δ, the kth link stabbed
by any node j ∈ G(j′\j∗) belongs to C(j′). Clearly we can ignore the links that
do not originate from the subtree of j′. The links that do can be categorized into
the following types [17]: near-links are stabbed by j∗, but not by j′; far-links

Ranked Document Selection 353

are stabbed by both j∗ and j′; small-links are targeted at a node in the subtree
of j∗; and fringe-links are the others.

We include all near-links and fringe-links into C(j′), which are O(g) in num-
ber [17, Lemma 8]. All small-links can be ignored as none of them is stabbed
by any node in G(j′\j∗). Notice that if any node in G(j′\j∗) stabs a far-link, it
indeed stabs all far-links. Therefore, it is sufficient to insert the top-δ far-links
into C(j′). Thus, we have O(g) links in C(j′) overall.

Now we perform a rank-space reduction of pre-order rank of nodes in G(j′\j∗)
as well as of the information associated with the links in C(j′), as follows:

– The target of those links targeting at any proper ancestor of j′ is changed to
a dummy parent node of j′. Similarly, the origin of all those links originating
in the subtree of j∗ is changed to node j∗.

– The pre-order rank of all those nodes in G(j′\j∗), and the corresponding
origin and target values of links in C(j′), are changed to a rank-space reduced
value in [0, |G(j′\j∗)|]. Notice that the new pre-order rank of j′ is 1 and
that of its dummy parent node is 0. We remark that this mapping (and
remapping) can be stored separately in O(|G(j′\j∗)| log |G(j′\j∗)|) bits.

– The weights of the links are also replaced by rank-space reduced values.
– Let L be a near- or fringe-link in C(j′) with d its corresponding document.

Then there must be at least one leaf � in G(j′\j∗) where the suffix corre-
sponding to � belongs to d. Therefore, instead of representing d, we maintain
a pointer to �, which takes only O(log g) bits. This trick will not work for
far-links, as the existence of such a leaf node is not guaranteed. Therefore,
we spend logD bits for each far-link, which is still affordable because there
are only O(δ) = O(g/ logn) far-links.

In summary, we have a tree of (|G(j′\j∗)|+ 1) = O(g) nodes with O(g) links
associated with it. Then STR(j′) is the structure described in Lemma 5 over
these nodes and links. The space required is O(g log g) bits. As the number of
type-1 prime nodes is O(n/g), the total space to maintain STR(j′) for all type-2
primes nodes j′ is O(n log g) bits.

Query Answering: Given node j = locus(P), we find j′ = prime.parent(j).
Then we map node j to the corresponding node in STR(j′) and obtain the
answer by querying STR(j′), in O(log g) = O(log δ+log logn) time. The answer
may come in the form of a node in STR(j′), which is mapped back to GST in
order to obtain the associated document. This completes the proof of Lemma 7.

5.2 Structure for k ≤ δr+1

First, identify the marked and prime nodes in GST with g = δr+1 logn. At ev-
ery prime node j′, we explicitly maintain the candidate set C(j′). This takes
O(n)-word space. Then for any k ≤ δr+1, the kth link stabbed by node j can
be encoded as a pointer to the corresponding entry in C(prime.parent(j′)) us-
ing �log |C(prime.parent(j′))|� = O(log g) = O(log log n) bits. Therefore, the

354 J.I. Munro et al.

answers for all k ∈ [1, δr+1] for all nodes in GST can be maintained in addi-
tional O(n · δr+1 log logn) = o(n logn) bits of space. Now the kth link (and
its document) stabbed by any query node locus(P) can be obtained from
C(prime.parent(locus(P))) in O(1) time.

5.3 Speeding Up the Enhanced Structure

The same construction used above can be used to speed up our superlinear-
space structure of Lemma 6, simply by using it instead of the linear-space one of
Lemma 5 to implement the structures STR(j′). The space of the formO(n logε n)
words, or O(n log1+ε n) bits, will become O(g log g logε n) inside the structures
STR(j′), because we will maintain the sampling step s = ε log logn depend-
ing on n, not on g, and use the succinct SB-trees with parameter n, not g.
As a result, the total space per value of δ will be O(n log g logε n) bits, and
added over all the values of δ we will have O(n logε n

∑r
i=1(log δi + log logn)) =

O(n log1+ε n) bits, or O(n logε n) words. The time, on the other hand, will be
O(1 + log δ/(ε log logn)) on DS(δ), which becomes O(1 + log k/(ε log logn)) in
terms of k. We have proved our final result for the superlinear structure.

Theorem 2. A collection D of documents of total length n can be preprocessed
into a data structure using O(n logε n) words of space, for any constant ε > 0,
which can answer document selection queries (P, k) in time O(1+log k/ log logn),
given the locus of pattern P in the generalized suffix tree of D.

6 Hardness of an Efficient Succinct Solution

One could expect to obtain an index using O(n log σ) bits of space, proportional
to the n log σ bits needed to store D, as achieved for the top-k document retrieval
problem. We show, however, that this is very unlikely unless a significant break-
through in the current state of the art of computational geometry is obtained.

Theorem 3. If there exists a data structure using O(n log σ+D polylogn) bits
with query time O(|P | polylogn) for document selection (σ being the alpha-
bet size), then there exists a linear-space data structure that can answer three-
dimensional range reporting queries in poly-logarithmic time per reported point.

Proof. We reduce from the position restricted substring searching (PRSS) prob-
lem, which is defined as follows: Index a given a text T [1, n] over an alphabet set
[1, σ], such that whenever a pattern P (of length p) and a range [x, y] comes as
a query, all those occx,y occurrences of P in T [x . . . y] can be reported efficiently.
Many indexes offering different space and query time trade-offs exist [9,8].

Hon et al. [5] proved that answering PRSS queries in polylog time and succinct
space is at least as hard as performing 3-dimensional orthogonal range reporting
in polylog time and linear space. They also showed that if the query pattern
is longer than α = �log2+ε n� for some predefined constant ε > 0, an efficient
succinct space index can be designed. Therefore, the harder case arises when

Ranked Document Selection 355

p < α. We now show how to answer PRSS queries with p < α via document
selection queries on the following set: D = {d1, d2, d3, ..., d�n/α�}, where di =
T [1+ (i− 1)α...(i+1)α] and |di| = 2α, except possibly for d�n/α�−1 and d�n/α�.
The score function w(P, di) is i if P appears at least once in di and 0 otherwise.
Notice that an occurrence of any pattern of length at most α overlaps with at
least one and at most two documents in D. Therefore, the previously defined
PRSS query on T can be answered via multiple document selection queries on D
as follows: first report all those documents di with w(P, di) ∈ [�x/α�, �y/α+2�].
Then, within all those reported documents, look for other occurrences of P via
an exhaustive scanning. If the time for document selection queries is polylog in
the total length of all documents in D (which is at most 2n), then the time for
PRSS query is also bounded by O((p + occx,y)polylogn). Therefore, answering
document selection queries in polylog time and succinct space is at least as hard
as answering PRSS queries in polylog time and succinct space. ��

References

1. Fredman, M., Willard, D.: Surpassing the information theoretic barrier with fusion
trees. J. Comp. Sys. Sci. 47, 424–436 (1993)

2. Grossi, R., Orlandi, A., Raman, R., Rao, S.S.: More haste, less waste: Lowering
the redundancy in fully indexable dictionaries. In: STACS, pp. 517–528 (2009)

3. Hon,W.-K.,Patil,M., Shah,R.,Thankachan,S.V.,Vitter, J.S.: Indexes fordocument
retrieval with relevance. In: Brodnik, A., López-Ortiz, A., Raman,V., Viola, A. (eds.)
Ianfest-66. LNCS, vol. 8066, pp. 351–362. Springer, Heidelberg (2013)

4. Hon, W.-K., Patil, M., Shah, R., Wu, S.-B.: Efficient index for retrieving top-k
most frequent documents. J. Discr. Alg. 8(4), 402–417 (2010)

5. Hon, W.-K., Shah, R., Thankachan, S.V., Vitter, J.S.: On position restricted sub-
string searching in succinct space. J. Discr. Alg. 17, 109–114 (2012)

6. Hon, W.-K., Shah, R., Thankachan, S.V., Vitter, J.S.: Space-efficient framework
for top-k string retrieval. J. of the ACM (to appear, 2014)

7. Hon, W.-K., Shah, R., Vitter, J.S.: Space-efficient framework for top-k string re-
trieval problems. In: FOCS, pp. 713–722 (2009)

8. Lewenstein, M.: Orthogonal range searching for text indexing. In: Brodnik, A.,
López-Ortiz, A., Raman, V., Viola, A. (eds.) Ianfest-66. LNCS, vol. 8066,
pp. 267–302. Springer, Heidelberg (2013)

9. Mäkinen, V., Navarro, G.: Position-restricted substring searching. In: Correa, J.R.,
Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 703–714. Springer,
Heidelberg (2006)

10. Munro, I.: Tables. In: FSTTCS, pp. 37–42 (1996)
11. Muthukrishnan, S.: Efficient algorithms for document retrieval problems. In:

SODA, pp. 657–666 (2002)
12. Navarro, G.: Spaces, trees and colors: The algorithmic landscape of document re-

trieval on sequences. ACM Computing Surveys 46(4), article 52 (2014)
13. Navarro, G., Nekrich, Y.: Top-k document retrieval in optimal time and linear

space. In: SODA, pp. 1066–1077 (2012)
14. Navarro, G., Thankachan, S.V.: Faster top-k document retrieval in optimal space.

In: Kurland, O., Lewenstein, M., Porat, E. (eds.) SPIRE 2013. LNCS, vol. 8214,
pp. 255–262. Springer, Heidelberg (2013)

356 J.I. Munro et al.

15. Russo, L., Navarro, G., Oliveira, A.: Fully-compressed suffix trees. ACM Trans.
Alg. 7(4), art. 53 (2011)

16. Sadakane, K., Navarro, G.: Fully-functional succinct trees. In: SODA, pp. 134–149
(2010)

17. Shah, R., Sheng, C., Thankachan, S.V., Vitter, J.S.: Top-k document retrieval in
external memory. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS,
vol. 8125, pp. 803–814. Springer, Heidelberg (2013)

18. Tsur, D.: Top-k document retrieval in optimal space. Inf. Process. Lett. 113(12),
440–443 (2013)

19. Weiner, P.: Linear pattern matching algorithms. In: SWAT (FOCS), pp. 1–11
(1973)

Approximation Algorithms for Hitting

Triangle-Free Sets of Line Segments�

Anup Joshi and N.S. Narayanaswamy

Department of Computer Science and Engineering,
Indian Institute of Technology Madras, India

{anup,swamy}@cse.iitm.ac.in

Abstract. We present polynomial time constant factor approximations
on NP-Complete special instances of the Guarding a Set of Segments(GSS)
problem. The input to the GSS problem consists of a set of line segments,
and the goal is to find a minimum size hitting set of the given set of line
segments. We consider the underlying planar graph on the set of inter-
section points as vertices and the edge set as pairs of vertices which are
adjacent on a line segment. Our results are for the subclass of instances
of GSS for which the underlying planar graph has girth at least 4. On
this class of instances, we show that an optimum solution to the natural
hitting set LP can be rounded to yield a 3-factor approximation to the
optimum hitting set. The GSS problem remains NP-Complete on the
sub-class of such instances. The main technique, that we believe could
be quite general, is to round the hitting set LP optimum for special
hypergraphs that we identify.

Keywords: Art gallery problem, line segments, hitting sets, approxi-
mation algorithm.

1 Introduction

In this paper we consider the Guarding a Set of Segments problem which has
been investigated by Brimkov et al in [5,6,7].

Guarding a Set of Segments (GSS)
Input A set of line segments L = {l1, l2, . . . , lm} in the 2-dimensional

plane. Further, each line segment is maximal in the given set of
line segments, in the sense that the union of two distinct line
segments is not a line segment.

Output A smallest set of points P referred to as the cover, such that for
every line segment lj ∈ L, lj ∩ P is non-empty.

GSS is a geometric instance of the corner-stone Set Cover and Hitting Set prob-
lems. In Set Cover we are given a set system (U ;S = {Si|1 ≤ i ≤ n, Si ⊆ U}),
� This work was supported by the Indo-Max Planck Centre for Computer Science
Programme in the area of Algebraic and Parameterized Complexity and by the
Half-Time Research Assistantship provided by The Ministry of Human Resource
Development, Government of India.

R Ravi and I.L. Gørtz (Eds.): SWAT 2014, LNCS 8503, pp. 357–367, 2014.
c© Springer International Publishing Switzerland 2014

358 A. Joshi and N.S. Narayanaswamy

and we have to find a sub-collection S ′ ⊆ S of minimum size such that ∪S∈S′S =
U . It is known to be NP-Complete [14], and Feige [10] showed a threshold of
(1−ε) lnn below which Set Cover cannot be approximated unless NP has quasi-
polynomial time algorithms. Indeed GSS is a geometric instance of a disarmingly
attractive version of Set Cover with Intersection 1(SC1) – SC instances in which
any pair of sets have an intersection of at most one element. SC1 was shown to
be inapproximable within a o(logn)-factor unless NP ⊆ ZTIME(nO(log logn))
by Kumar et al. [15]. To see that a GSS instance L can be cast as an instance
of SC1: Let I be the set in which each point is an end point of a line segment in
L or an intersection point of two line segments in L. Now, for every line li ∈ L
define a set Si = {p ∈ I|p ∈ li}, and let S = {S1, S2, ..., Sn} and the universe
U = ∪n

i=1Si. (U,S) is a SC1 formulation as any two sets will intersect on at
most one element and there is a bijective correspondence between the solutions
of the GSS and the SC1 instance. Line Cover is yet another geometric instance
of SC1. In Line Cover the input is a set of lines in the plane, and the question
is to find a minimum number of points so that every line passes through atleast
one of the points. Megiddo and Tamir showed that Line Cover is NP-hard [17]
and it was observed by Kumar et al. that Line Cover is Max-SNP Hard [15].
GSS can also be seen as a generalization of planar vertex cover owing to the fact
that each planar graph has a planar embedding in which each edge is a line seg-
ment and no two adjacent edges form a longer line segment. Planar vertex cover
has a Polynomial Time Approximation Scheme (PTAS) by the famous Baker’s
technique [2] which uses the k-outerplanarity of the given planar graph, and its
connection to the treewidth. This proximity in many ways to planar vertex cover
can be seen as an important motivation to understand the approximability of
GSS.

GSS can also be viewed as an Art Gallery Problem with visibility only between
points that are on the same given line segment. One can think of GSS as the
problem of guarding the corridors (which are the line segments) of an Art Gallery
using as few guards/cameras as possible. GSS was shown to be NP-Complete
by Brimkov et al. in [6], and they also give a deterministic algorithm to find
an optimum solution when the segments together form a tree-like structure. In
[7] Brimkov et al. have studied the approximability of the greedy heuristic for
GSS, and construct a family of instances in which the solution returned by the
greedy approach is at least a log2(n) factor away from the optimum. This is a
tight study of the greedy heuristic. In [5] Brimkov presents a constant-factor
approximation algorithm for special instances of GSS (not known to be hard).
Art Gallery Problems are very well studied and we point to the papers and books
referred to by Brimkov et al. [6].

GSS is also a special instance of the extensively studied geometric hitting
set problems. In a hitting set problem the input is a range space R = (P ,D)
consisting of a set P and a set D of subsets of P called the ranges. A hitting set
is a subset of P that has a non-empty intersection with every set in D. Clearly,
as discussed above SC, SC1, Line Cover, and GSS are all special instances of this
problem. Another geometric instance is when P is a set of points in the plane,

Approximation Algorithms for Hitting Triangle-Free Sets of Line Segments 359

and D is a set of convex polygons containing points of P . For this and many
other geometric range spaces the hitting set problem is NP-hard. Recently [18]
show PTASes for geometric hitting set on special geometric range spaces using
a local search method. The approximation of geometric hitting sets is closely
connected to the ε-net problem as discovered by Brönnimann and Goodrich [8].
Given a range space (P ,D), |P| = n, an S ⊆ P is an ε-net if for all D ∈ D such
that |D| ≥ εn, D ∩ S �= φ. In the weighted version, sometimes, each point in
P is considered to have a positive weight so that the total weight of points in
P is 1. The weight of each range is the sum of the weights of the elements in
it. A weighted ε-net is a subset of P that intersects all ranges of weight more
than ε. Brönnimann and Goodrich [8] proved that a c-factor approximation to
the minimum hitting set can be computed in polynomial time if an ε-net of
size c

ε for the weighted ε-net problem can be obtained. Closely related to this
is result by Long [16] who showed that the natural hitting set LP relaxation
for geometric instances has an integrality gap of K if and only if there is an
ε-net of size K

ε . This connection between ε-nets and hitting sets yield constant
factor approximations for some geometric range spaces like the case in which the
ranges are half-spaces in R3 [19]. Haussler and Welzl [13] show that for range
spaces of VC-dimension d, there exists an ε-net of size O(dε log(

d
ε)). Note that

GSS instances have VC dimension 2, apart from other geometric hitting spaces
[18]. Indeed for many years [1] it was conjectured that in all natural geometric
scenarios of VC-dimension d there always exists an ε-net of size O(dε). Alon [1]
disproved this conjecture by constructing for each C >> 0, a range space of
VC-dimension 2 for which the smallest possible size of an ε-net is larger than C

ε .
The range space (P ,D) is such that P is a set of points on the plane, and D is a
set of line segments containing points from P . The range spaces deceptively look
like instances of the GSS problem, and this forms the second motivation in this
paper which is to understand the possibility of ε-nets for GSS that are linear
in 1

ε .

Our Work.We first observe that the range spaces constructed by Alon in [1] are
not GSS instances. Therefore the possibility of constant factor approximations
for GSS by rounding the natural hitting set LP are not ruled out by the super
linear lower bound on the size of ε-nets proved by Alon. The way we prove it is by
considering the natural underlying graph given an instance consisting of points
and line segments as the ranges. The natural graph is obtained by viewing the
instance as a planar graph, and we observe that in the range space constructed
by Alon [1], all the points have high degree (more than 5) in the natural graph.
On the other hand, the vertices in the natural graph associated with a GSS
instance are all the points of intersection. Since we know that any planar graph
has vertices of degree at most 5, it follows that the natural graph associated
with a GSS instance must have vertices of degree at most 5. It then follows that
Alon’s instance of points and lines are not GSS instances. This is presented in
Section 3.2.

We attempt to exploit the presence of low degree vertices in the natural graph
associated with GSS instances. For this, we consider the hitting set problem in

360 A. Joshi and N.S. Narayanaswamy

a subclass of hypergraphs for which there is an integer d ≥ 0, and a vertex
ordering σ = v1, v2, ..., vn, such that in the hypergraph induced on the vertices
vi, vi+1, ..., vn(for i = 1...n−1) the degree of vi is at most d. On such hypergraphs,
we present a way of rounding an optimum solution to the natural hitting set LP
to obtain a d-approximation for Hitting Set. These results are in Section 2. We
find this result of rounding the hitting set LP based on the above mentioned
ordering interesting, and is in the spirit of getting good approximations when
the hypergraphs satisfy some special structure (like bounded VC-dimension, see
Brönnimann and Goodrich [8]). In particular, the degree based vertex ordering
that we have hit upon seems to be new and useful at least in some geometric
settings.

We then use the structure of the underlying graph of a GSS instance to obtain
an upper bound on the minimum degree of the underlying graph. In particular,
we use the well known result that planar graphs of girth at least 4 have a vertex of
degree at most 3. These observations give us an ordering of the vertices associated
with a GSS instance such that for each 1 ≤ i ≤ n − 1, the instance induced
on vertices vi, vi+1, ..., vn is a GSS instance and the degree of vi in the GSS
instance (viewed as a graph) is at most 3 or 2. This yields a 3-approximation
to the hitting set on GSS instances for which the underlying graph has girth
at least 4. This is nice because it gives a hope that further structure of girth 3
instances can be handled differently to obtain a constant factor approximation
algorithm for the GSS itself. The other way of viewing this result is that if GSS
does not have constant factor approximations, then the underlying graph of the
hard instances must have girth 3. It must be noted that GSS on the subclass of
instances for which the underlying graph has girth at least 4 is NP-complete, as
the problem is at least as hard as vertex cover in planar triangle free graphs [12].
While our approach gives a constant factor approximation algorithm for GSS
instances which have girth at least 4, we believe that on such instances there is
a PTAS. Finally, it is known that outerplanar graphs have a vertex of degree at
most 2. Consequently, our approach yields a 2-factor approximation algorithm
for GSS instances whose underlying graph is outerplanar, and we do not know
the complexity of GSS on the class of such instances. On such instances, we
believe that it must be polynomial time solvable by setting up an appropriate
dynamic program. These results are in Section 3.

2 Rounding the Hitting Set LP Using a Degree Based
Vertex Ordering

Let H = (V,E) be a hypergraph. For a subset V ′ ⊆ V , let H(V ′) denote the
hypergraph (V ′, E′) where E′ = {e∩V ′|e ∈ E}.H(V ′) is the induced hypergraph
of H on V ′. The number of hyperedges containing a vertex is referred to as the
degree of the vertex. Let σ = v1, v2, ..., vn be an ordering of V such that for each
1 ≤ i ≤ n, in the hypergraph induced on the set {vi, vi+1, ..., vn}, vi has degree
at most d. Through out this section we assume that the algorithm processes
H = (V,E) along with the vertex order σ for the integer value d ≥ 0. With the

Approximation Algorithms for Hitting Triangle-Free Sets of Line Segments 361

hypergraph H = (V,E) we use the standard Hitting Set LP relaxation in our
algorithm as given in LP1.

(LP1)

minimize
∑

v∈V (H)

xv

subject to
∑
v∈e

xv ≥ 1, ∀e ∈ E(H)

xv ≥ 0 , ∀v ∈ V (H)
The dual of LP1 is given below, the variable ye is the dual variable corresponding
to the hyperedge e.

(LP2)

maximize
∑

e∈E(H)

ye

subject to
∑
v∈e

ye ≤ 1, ∀v ∈ V (H)

ye ≥ 0 , ∀e ∈ E(H)
Algorithm 1 takes as input a hypergraphH = (V,E). It starts by ordering of the
set of vertices V (H) given by σ = v1, v2, ..., vn such that for each 1 ≤ i ≤ n, the
degree of vi is at most d in the hypergraph induced on {vi, . . . , vn}. It outputs
a hitting set V ′ ⊆ V of the set of hyperedges E(H). The algorithm iterates
over the set of vertices according to the ordering σ. We use the values to the
variables xv given by an optimum solution to LP1. We then use a primal-dual
like approach to generate an assignment to the dual variables ye in LP2. We say
primal-dual like approach because we do not have to maintain dual feasibility.

Theorem 1. Let H = (V,E) be an instance of hitting set and let σ = v1, . . . , vn
be an ordering of vertices such that for each 1 ≤ i ≤ n, degree of vi in the hyper-
graph induced on the set {vi, vi+1, . . . , vn} is at most d. The set V ′ is returned
by Algorithm 1 in polynomial time and is a d-approximation to the minimum
hitting set of H.

Proof. Algorithm 1 terminates in polynomial time as, each vertex is considered
exactly once according to the ordering σ, and the steps performed for each vertex
involve only updating the color of some edge and increasing the value of at most
d-dual variables incident on the vertex. When the algorithm terminates, all the
edges are blue, that is they are hit by V ′ and therefore V ′ is a hitting set of the

edges in H = (V,E). Further, for each e ∈ E(H),
∑
v∈e

x∗v ≥ 1, and for each vertex

v the value of the dual variable of every red edge incident on it is increased by
x∗v. Due to these two observations, it follows that each e ∈ E(H) will be colored
blue in some iteration. This guarantees that V ′ is a hitting set. Now, we argue

that |V ′| ≤ d
∑
v∈V

x∗v. When a vertex v is considered according to the order σ,

x∗v is added to at most d dual variables, therefore,
∑

e∈E(H)

ye is increased by at

362 A. Joshi and N.S. Narayanaswamy

Algorithm 1. d-Approximation Algorithm for Hitting Set on Hypergraph H =
(V,E)

Let σ = v1, . . . , vn, i = 1.
Let x∗ = (x∗v | v ∈ V) denote the LP optimum for LP1
For all e ∈ E, let ye = 0 and let V ′ = φ
Each e is colored red.
{/* red colored edges are not hit by V ′ */}
while some edge is red in E(H) do
Let v = σ(i)
{/*The i-vertex in the ordering σ */}
if v is the only vertex in some red edge e then
Let ye = ye + xv {/* Invariant: ye ≥ 1 */}
V ′′ = {v}

else
For each red edge e ∈ E(H) and v ∈ e, Let ye = ye + xv

V ′′ = {v ∈ V (H) |
∑

v∈e,e red

ye ≥ 1}

end if
while V ′′ �= φ do
Let v′ ∈ V ′′ {/* v′ is in some red edge */}
V ′ = V ′ ∪ {v′}
For each red edge e and v′ ∈ e, change color of e to blue.
{/* blue colored edges are hit by V ′ */}
Remove each v ∈ V ′′ such that

∑
v∈e,e red

ye < 1

end while
i = i+ 1

end while
return V ′

most dx∗v. At the end of the algorithm,
∑

e∈E(H)

ye ≤ d
∑
v∈V

x∗v. Further, whenever

a vertex v′ is added to V ′, it satisfies that property that
∑

v′∈e,e is red

ye ≥ 1. Note

here that summation is over edges for which v′ is the first vertex (according to
σ) to hit them. Therefore, the addition of v to the hitting set V ′ can be charged
to these edges that are hit for the first time by v′. Formally, the edges of H can
be partitioned into |V ′| classes, one corresponding to each v′ ∈ V , referred to as

Ev′ . Further, for each v′ ∈ V ′,
∑

e∈Ev′

ye ≥ 1. This shows that |V ′| ≤
∑

e∈E(H)

ye.

Therefore, |V ′| ≤ d
∑
v∈V

x∗v, and this shows that |V ′| is a d-approximation to the

minimum hitting set of H . ��

Approximation Algorithms for Hitting Triangle-Free Sets of Line Segments 363

It is also important to note that we can get a dual feasible solution with the same
bound on |V ′|, and we do not do it as it is unnecessary to maintain this additional
property. Finally, as we end this section, we believe that this rounding technique
is of independent interest towards rounding fractional solutions to LP1. The
upcoming section definitely supports this belief, as we use the rounding approach
in this section to find a constant factor approximation to the optimum hitting
set for special classes of line segments.

3 Guarding Special Sets of Segments

We now use a variant of Algorithm 1 to hit a given set of line segments using
points of intersection. Given a GSS instance, that is a collection of line segments
L = {li|1 ≤ i ≤ n}, the set of intersection points among the segments can
be found in polynomial time, see for example [4], [9], and [3]. The range space
corresponding to a L is as follows: U is the set of all intersection points of pairs
of line segments in L, and S = {Sl | l ∈ L, Sl ⊆ U}, where for each line segment
l ∈ L, Sl = {v | v ∈ l}. ClearlyH = (U,S) is a hypergraph. The underlying graph
for a GSS instance is G = (V,E) such that V = U and an edge (u, v) ∈ E(G) iff
u and v are points adjacent on a line segment. We use standard graph theoretic
concepts such as vertex degree, open neighborhood of a vertex, girth, planar and
outerplanar graphs as they occur in the book by West [20].

3.1 Exploiting Girth 4 in the Underlying Graph

When the underlying graph of a GSS instance has girth at least 4, we show,
that there is a vertex ordering σ = v1, v2, ..., vn such that for each 1 ≤ i ≤ n,
the degree of vi is at most 3 in the graph induced on {vi, vi+1, . . . , vn}. We call
such instances of GSS as Triangle-Free GSS. As discussed in the introduction
the hitting set problem on Triangle-Free GSS instances is NP-hard. We observe
that the underlying graph of girth 4, corresponding to a GSS instance, has at
most 2n− 4 edges, where n is the number of points of intersection. This follows
from the well-known result in graph theory [20]:

Lemma 1. Let G be a simple planar graph with n ≥ 3 vertices, and girth g ≥ 4.
Then the number of edges in G is at most 2n− 4.

Lemma 2. Let G be the underlying graph with n vertices and m ≤ 2n−4 edges.
There exists an ordering of vertices σ = v1, . . . , vn such that for each 1 ≤ i ≤ n,
the degree of vi in the graph induced on the set {vi, vi+1, . . . , vn} is at most 3.

Proof. Since the number of edges is at most 2n − 4, we know that there is a
vertex of degree at most 3. Let this vertex be v1. We now show how to construct
a GSS instance after removing v1 such that the number of edges in the associated
underlying graph is at most 2(n− 1)− 4. If degree of v1 is exactly 3, in L there
are two possibilities: v1 is the end point of all the 3 line segments containing
v1; v1 is the end point of one line segment and is not an end point on exactly

364 A. Joshi and N.S. Narayanaswamy

one another line segments (forming T-like patterns). If degree of v1 is 2, then
v1 is the end point of 2 line segments. In the cases when v1 is the end point of
all the line segments in which it is present, consider the GSS instance obtained
by removing v1 and shortening all the line segments containing v1. Clearly, the
result is a GSS instance, and the number of edges in the underlying graph is at
most 2(n − 1) − 4. In the case when v1 is the end point of one line segment l1
and is not the end point of a line segment l2, consider the GSS instance obtained
by shortening l1 by removing the part of the line segments between v1 and the
next intersection point on l1. In this GSS instance, v1 is not a vertex as it is not
a point of intersection. Therefore, the underlying graph has n− 1 vertices, and
at most 2(n − 1) − 4 edges. Therefore, the lemma follows by induction on the
number of points of intersection. ��

It is important to note that Lemma 2 holds for all underlying graphs that have
at most 2n − 4 edges, and this is guaranteed for the case when the underlying
graph has girth 4. We now present a 3-approximation for hitting set of on GSS
instances for which the underlying graph has at most 2n−4 edges. This algorithm
uses Algorithm 1 along with one additional step.

Algorithm 2. Hitting set for a GSS instance L with at most 2n− 4 edges

Solve LP1 for H = (U,S)
Let x∗ = (x∗v|v ∈ U) be the LP optimum.
For each xv ≥ 1

2 , Let V
′ = V ′ ∪ {v}.

Remove each e ∈ S such that V ′ ∩ e �= φ.
Invoke Algorithm 1 on H = (U,S). Let U be returned set.
{/*Algorithm 1 will set-up σ as in Lemma 2*/}
return U ∪ V ′

Theorem 2. Let L be a GSS instance with n points of intersection and for
which the underlying graph has at most 2n− 4 edges. Algorithm 2 on L gives a
hitting set whose size is at most 3 times the optimum hitting set for L.

Proof. The set output by the algorithm is indeed a hitting set, as each hyperedge

is either hit by V ′ hit or by U . We now observe that |V ′∪U | ≤
∑
v∈V ′

2x∗v+
∑
u∈U

3x∗u.

Clearly, |V ′| ≤
∑
v∈V ′

2x∗v, since each x∗v ≥ 1
2 . To see that |U | ≤

∑
u∈U

3x∗u, we first

observe that Algorithm 1 uses a vertex ordering σ = v1, . . . , vn such that for
each vi, its degree in the graph induced on {vi, . . . , vn} is at most 3. The degree
of a vertex v in the underlying graph, when it is non-zero, also accounts for
the number of red hyperedges with more than one element incident on the v in
Algorithm 1. The number of red hyperedges which contain v as the only element
is at most 1, because x∗v <

1
2 . To see this, if there were two red hyperedges e

and e′ containing exactly v, then the values to the two dual variables ye and ye′

Approximation Algorithms for Hitting Triangle-Free Sets of Line Segments 365

would have been more than 1
2 . Consequently, the dual inequality corresponding

to v would have evaluated at least 1, and v would have already been chosen into
the hitting set. This contradicts the premise that e and e′ are red. Therefore,
the number of red hyperedges which contain v as the only element is at most 1.
The bound on |U | now follows from Lemma 1. Hence the theorem. ��

Corollary 1. Let L be a triangle free GSS instance with n points of intersection.
Algorithm 2 on L gives a hitting set whose size is at most 3 times the optimum
hitting set for L.

Proof. By Lemma 1, it follows that the GSS instance has at most 2n− 4 edges.
From Theorem 2 it follows that the hitting set output by Algorithm 2 is a 3
approximation to the optimum hitting set. ��

3.2 Why GSS Escapes Alon’s ε-Net Lower Bound?

It is well known that LP1 has a factor K-integrality gap if and only if the range
space has an ε-net of size K

ε . Alon [1] showed the construction of a set of points
and a set of line segments such that any ε-net is of size Ω(1ε). We show here
that the instances output by Alon’s construction [1] are not instances of GSS.
To show this we review the salient features of Alon’s construction here.

Theorem 3 ([1]). For every (large) positive constant C there exist n and ε > 0
and a set X of n points in the plane, so that the smallest possible size of an ε-net
for lines for X is larger than C

ε .

One of the main concepts used in the proof of the above theorem is a combina-
torial line which is defined as follows:

Definition 1 (Combinatorial Line). Let k ≥ 2 be an integer and [k]d denote
the set of d-dimensional vectors with coordinates in [k], where [k] denotes the set
{1, 2, . . . , k}. A combinatorial line is a subset L ⊂ [k]d such that there is:

1. a set of coordinates I ⊂ [d] = {1, . . . , d}
2. values ki ∈ [k] for all i ∈ I

and L = {l1, l2, . . . , lk} where lj = {(x1, . . . , xd) : xi = ki for all i ∈ I and xi =
j for all i ∈ [d] \ I}

Thus a combinatorial line is a set of k d-dimensional vectors all having some fixed
values in the coordinates in I, where the j-th vector has the value j in all other
coordinates. This picture helps us in a counting argument that follows. Another
result used by Alon’s construction relies on the existence of combinatorial lines
based on parameters k and d which is guaranteed by the Furstenberg-Katznelson
Theorem as follows:

Theorem 4 ([11]). For any fixed integer k and any fixed δ > 0 there exists an
integer d0 = d0(k, δ) so that for any d ≥ d0, any set Y of at least δkd members
of [k]d contains a combinatorial line.

366 A. Joshi and N.S. Narayanaswamy

The lower bound in [1] is based on the following argument: For a large positive
constantC, fix an integer k > 2C, and select d0 = d0(k, 1/2) as given by Theorem
4. Let n = kd and ε = k

kd . Let v1, . . . , vd be vectors in the plane satisfying
the condition of Lemma 2.2 in [1]. Let X = {m1v1 + m2v2 + . . . + mdvd :
1 ≤ mi ≤ k, for all i}. The ranges are the line segments obtained for each
combinatorial line L in [k]d. The choice of the v1, . . . , vd guarantees that from
each combinatorial line L, the set of k points {m1v1 + m2v2 + . . . + mdvd :
(m1,m2, . . . ,md) ∈ L} lies on a geometric line segment containing exactly k-
points of X .

Observation 1. For each k ≥ 2, d ≥ 3, each point in X is present in at least d
lines and at most 2d − 1 lines among the lines output by the above construction.
Consequently, the points and lines output by Alon’s construction do not form an
instance of GSS.

Proof. We present a lower bound on the number of combinatorial lines containing
a vector. It is easy to see that the lower bound is d itself, since for k = 2,
every coordinate of a vector from X can be inverted once giving us d distinct
combinatorial lines. The upper bound is 2d−1. For the chosen value of d ≥ 3 and
k ≥ 2, the upper bound is 7 which is also tight. We demonstrate this observation
by choosing values k = 2 and d = 3. In this case we have a set of 3-dimensional
vectors with coordinates in {1, 2, 3}. Fixing the vector (1, 1, 1) we see that the
number of distinct combinatorial lines containing the vector are 7. Similarly,
every other vector will be contained in 7 different combinatorial lines, implying
that the points on the plane corresponding to these vectors have 7 (geometric)
line segments passing through them. Since the underlying graph of these line
segments is a planar graph, we know that there are points of intersection of degree
at most 5 in the underlying graph. Such points are in at most 5 geometric line
segments. However, all the given points in Alon’s construction are present in 7
geometric line segments. Therefore, the instances output by Alon’s construction
[1] are not instances of GSS. Hence the claim. ��

This observation shows that the ε-net lower bound for points and lines con-
structed by Alon does not directly apply to the GSS instances. So, either a dif-
ferent technique is necessary to prove the ε-net lower bound for GSS instances or
there is a constant factor approximation for the hitting set on GSS instances. If
the former is the case, then the lower bound can only be shown by GSS instances
for which the underlying graph has girth 3.

Acknowledgements. We would like to thank G. Ramakrishna for many helpful
discussions and comments during the many versions of the algorithms in this
paper. We would also like thank the referees for their comments that have greatly
helped in improving the presentation of the paper.

Approximation Algorithms for Hitting Triangle-Free Sets of Line Segments 367

References

1. Alon, N.: A non-linear lower bound for planar epsilon-nets. In: 2010 51st An-
nual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 341–346
(2010)

2. Baker, B.S.: Approximation algorithms for np-complete problems on planar graphs.
J. ACM 41(1), 153–180 (1994)

3. Balaban, I.J.: An optimal algorithm for finding segments intersections. In: Pro-
ceedings of the Eleventh Annual Symposium on Computational Geometry, SCG
1995, pp. 211–219. ACM, New York (1995)

4. Bentley, J., Ottmann, T.: Algorithms for reporting and counting geometric inter-
sections. IEEE Transactions on Computers C-28(9), 643–647 (1979)

5. Brimkov, V.E.: Approximability issues of guarding a set of segments. Int. J. Com-
put. Math. 90(8), 1653–1667 (2013)

6. Brimkov, V.E., Leach, A., Mastroianni, M., Wu, J.: Guarding a set of line segments
in the plane. Theoretical Computer Science 412(15), 1313–1324 (2011)

7. Brimkov, V.E., Leach, A., Wu, J., Mastroianni, M.: Approximation algorithms for a
geometric set cover problem. Discrete Applied Mathematics 160, 1039–1052 (2011)

8. Brönnimann, H., Goodrich, M.: Almost optimal set covers in finite vc-dimension.
Discrete and Computational Geometry 14(1), 463–479 (1995)

9. Chazelle, B.: Reporting and counting segment intersections. Journal of Computer
and System Sciences 32, 156–182 (1986)

10. Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45(4), 634–652
(1998)

11. Furstenberg, H., Katznelson, Y.: A density version of the hales-jewett theorem.
Journal d’Analyse Mathématique 57(1), 64–119 (1991)

12. Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified np-complete prob-
lems. In: Proceedings of the Sixth Annual ACM Symposium on Theory of Com-
puting, STOC 1974, pp. 47–63. ACM, New York (1974)

13. Haussler, D., Welzl, E.: Epsilon-nets and simplex range queries. In: Proceed-
ings of the Second Annual Symposium on Computational Geometry, SCG 1986,
pp. 61–71. ACM, New York (1986)

14. Karp, R.M.: Reducibility Among Combinatorial Problems. In: Miller, R.E.,
Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum
Press (1972)

15. Kumar, V.S.A., Arya, S., Ramesh, H.: Hardness of set cover with intersection 1.
In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853,
pp. 624–635. Springer, Heidelberg (2000)

16. Long, P.M.: Using the pseudo-dimension to analyze approximation algorithms for
integer programming. In: Proceedings of the 7th International Workshop on Algo-
rithms and Data Structures, WADS 2001, pp. 26–37. Springer, London (2001)

17. Megiddo, N., Tamir, A.: On the complexity of locating linear facilities in the plane.
Operations Research Letters 1(5), 194–197 (1982)

18. Mustafa, N.H., Ray, S.: Improved results on geometric hitting set problems. Dis-
crete & Computational Geometry 44(4), 883–895 (2010)

19. Pyrga, E., Ray, S.: New existence proofs for ε-nets. In: Proceedings of the Twenty-
fourth Annual Symposium on Computational Geometry, SCG 2008, pp. 199–207.
ACM, New York (2008)

20. West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice Hall (September 2000)

Reduction Techniques for Graph Isomorphism
in the Context of Width Parameters

Yota Otachi1 and Pascal Schweitzer2

1 Japan Advanced Institute of Science and Technology
School of Information Science, Japan

otachi@jaist.ac.jp
2 RWTH Aachen University, Aachen, Germany

schweitzer@informatik.rwth-aachen.de

Abstract We study the parameterized complexity of the graph iso-
morphism problem when parameterized by width parameters related to
tree decompositions. We apply the following technique to obtain fixed-
parameter tractability for such parameters. We first compute an iso-
morphism invariant set of potential bags for a decomposition and then
apply a restricted version of the Weisfeiler-Lehman algorithm to solve
isomorphism. With this we show fixed-parameter tractability for several
parameters and provide a unified explanation for various isomorphism
results concerned with parameters related to tree decompositions.

As a possibly first step towards intractability results for parameterized
graph isomorphism we develop an fpt Turing-reduction from strong tree
width to the a priori unrelated parameter maximum degree.

1 Introduction

The graph isomorphism problem is the algorithmic task to decide whether two
given graphs are isomorphic, i.e., whether there exists a bijection from the ver-
tices of one graph to the vertices of the other graph preserving adjacency and
non-adjacency. The problem is situated in the complexity class NP. However,
despite extensive research on this problem, the complexity remains unknown. It
is neither known whether the problem is polynomial-time solvable nor whether
it is NP-hard.

In this paper, we are interested in the parameterized complexity of the iso-
morphism problem. For other aspects related to the isomorphism problem we
refer the reader to other sources (e.g., [18], [23], [26]).

In the parameterized context, for a graph parameter k, such as the maximum
degree of the input graphs, we ask for an algorithm that solves isomorphism
of graphs with parameter at most k. In this context, we are interested in the
existence of algorithms with a running time ofO(f(k)nc) for some constant c ∈ N

in contrast to algorithms with a running time of O(nf(k)). Running times of the
former type are called fpt time and the algorithms are said to be fixed-parameter
tractable algorithms.

R Ravi and I.L. Gørtz (Eds.): SWAT 2014, LNCS 8503, pp. 368–379, 2014.
c© Springer International Publishing Switzerland 2014

Reduction Techniques for Graph Isomorphism in the Context 369

Related Work. There are various results that show that isomorphism is fixed-
parameter tractable with respect to some parameter. Such results exist for the
parameters color multiplicity [14] (also known for hypergraphs [1]), eigenvalue
multiplicity [10], rooted distance width [28], feedback vertex set number [19],
bounded permutation distance [24], tree-depth [6] and connected path distance
width [21]. For chordal graphs, tractability results are known for the parameters
clique number [17], [20] and the size of simplicial components [27]. Yet, for many
parameters, such as maximum degree, tree width1 and genus, it is not known
whether there exist fixed-parameter tractable algorithms solving isomorphism
(see [19]). However, no non-tractability results are known. One of the obsta-
cles to understanding the parameterized complexity of graph isomorphism is
the uncertainty whether the standard reduction techniques, like showing W[1]-
hardness, can be applied (see the discussions in [19] and [28]).

Our Results. We study the parameterized complexity of isomorphism with re-
spect to various parameters related to strong tree decompositions. We first de-
velop a method to obtain fixed-parameter tractable algorithms for parameter-
ized graph isomorphism problems. The underlying technique of many approaches
showing such results is to first find a restricted isomorphism invariant family of
sets, potential bags, which capture a tree decompositions and to then use these
to perform an isomorphism test that uses some form of dynamic programming.
It turns out that it is possible to prove that this technique is applicable in gen-
eral. To prove this general statement, we develop a restricted version of the
Weisfeiler-Lehman color refinement algorithm and prove that it successfully de-
cides isomorphism whenever an invariant family of potential bags capturing tree
decompositions is available for the input graphs. The algorithm neither computes
a decomposition nor does it require a decomposition to be given.

Using the technique, we show tractability of graph isomorphism for the pa-
rameters root-connected tree distance width and connected strong tree width.
We also provide families of examples showing that neither of the two graph
parameters mentioned can be bounded by a function of the other. The two
tractability results extend results in [13], [21], and [28] also concerned with re-
stricted forms of strong tree decompositions, and answers a question from [28].
Furthermore, with the technique, it is for example also possible to show that
graph isomorphism parameterized by the maximum of the length of a longest
geodesic cycle and strong tree width or by the maximum of the chordality and
degree is fixed-parameter tractable.

In general, our technique provides a unified explanation for the various re-
sults [6,13,17,19,20,21,27,28] all showing that certain restrictions on tree decom-
positions lead to efficient algorithms for the isomorphism problem. Indeed, all
of these approaches can be interpreted as determining some restricted family of
potential bags capturing a tree decomposition and then performing some form
of dynamic programming to check for isomorphism, that can also be performed
1 We remark that after the submission of this paper, Daniel Lokshtanov, Marcin

Pilipczuk, Michał Pilipczuk, and Saket Saurabh have published a preprint show-
ing that graph isomorphism is fixed-parameter tractable with respect to tree width.

370 Y. Otachi and P. Schweitzer

by the restricted Weisfeiler-Lehman algorithm. In each of the references above,
the dynamic programming is a substantial part of the argumentation, which can
now be replaced by the general theorem.

Finally, we show how the technique can be applied to obtain parameterized
isomorphism algorithms by exploiting knowledge on the set of potential maximal
cliques, of which we already know that it can always be computed in polynomial
time in the number of potential maximal cliques.

Our technique also provides a proof of the fact that for graphs of bounded
tree width a sufficiently high-dimensional Weisfeiler-Lehman algorithm can be
used to determine isomorphism. This fact was first proven by Grohe and Mariño
using logic [16] (see also [15]) and provides to date the fastest running time for
isomorphism of bounded tree width graphs. Our proof provides a direct argument
for this fact, which does not involve logic. We remark that in his book, Toda [26]
also gives a dynamic programming algorithm matching the running time of the
algorithm of Grohe and Mariño.

In this paper, we also take a first step towards developing means for some
form of intractability result. Specifically, for the isomorphism problem we con-
struct an fpt Turing reduction from strong tree width to the a priori unrelated
parameter maximum degree. The existence of this reduction in particular im-
plies that if graph isomorphism is fixed-parameter tractable when parameter-
ized by degree then it is also fixed-parameter tractable when parameterized by
strong tree width. However, a possibly better interpretation of this result is that
isomorphism parameterized by degree is hard, being at least as intractable as
isomorphism parameterized by strong tree width.

To obtain the reduction, we reduce the problem to biconnected components,
a technique frequently used for isomorphism algorithms concerned with planar
graphs (see [8]). However, we require an extended form of such a reduction allow-
ing us to work with graphs equipped with an equivalence relation and equipped
with a coloring of the linear orders of the equivalence classes.

Throughout this proceedings version, most proofs have been omitted. For
these the reader is referred to [22].

2 Preliminaries

In this paper all graphs are finite, simple, undirected graphs. A biconnected
component (also called a block) is a maximal connected subgraph not containing
a cut-vertex. In particular, the connected graph on 2 vertices is biconnected.

A strong tree decomposition of a graph G = (V,E) is a pair ({Xi | i ∈ I}, T =
(I, F)) where {Xi | i ∈ I} is a partition of the vertex set V into so-called bags Xi

and T = (I, F) is a tree such that the following holds: for all edges {u, v} ∈ E,
either there is i ∈ I with u, v ∈ Xi, or there are two adjacent tree vertices
i, i′ ∈ I such that u ∈ Xi and v ∈ Xi′ . A connected strong tree decomposition is
a strong tree decomposition for which each bagXi induces a connected subgraph.
The width of a strong tree decomposition is the maximum size of a bag of the
decomposition.

Reduction Techniques for Graph Isomorphism in the Context 371

A strong tree decomposition ({Xi | i ∈ I}, T = (I, F)) with a distinguished
root r ∈ I is a tree distance decomposition if each v ∈ Xi with i �= r has a
neighbor u ∈ Xj where j is the parent of i in T rooted at r. A tree distance
decomposition with root r is a root-connected tree distance decomposition if Xr

induces a connected subgraph.
Here, we slightly diverge from the terminology used in [21] to highlight the

fact that only the root set must induce a connected graph, and thereby avoid
confusion with the term connected strong tree decomposition.

For a class of decompositions C, the C width of a graph G is the minimal width
over all C decompositions of G. We thus obtain the graph parameters strong
tree width, denoted stw(G), connected strong tree width, denoted cstw(G), tree
distance width, denoted tdw(G) and root-connected tree distance width, denoted
rctdw(G). The notion of strong tree width was introduced by Seese [25] and is
also known as tree-partition width [9]. In the context of graph isomorphism, tree
distance decompositions were first considered in [28].

For a graph G, there may be several tree distance decompositions with the
same root set S. However, there is a unique minimal decomposition (i.e., the
partition into bags is at least as fine as any other partition into bags obtained
from a tree distance decomposition) with root set S. Given S, this minimal
decomposition can be computed in linear time.

Theorem 1 ([28, Theorem 2.1]). Given a graph G and a set S, one can
compute in O(m) time the unique tree distance decomposition with root set S.

We denote the width of this decomposition by tdwS(G). Note that if G is not
connected, it may be the case that there is no tree distance decomposition with
root set S. To facilitate our proofs and simplify algorithms, we define tdwS(G)
to be infinite in this case.

For a graph G with distinct non-adjacent vertices s and t an s-t-separator is
a set of vertices S such that s and t are in different components of G − S. An
s-t separator is minimal if no proper subset of S is an s-t-separator.

An fpt Turing reduction (see [11]) of a parameterized problem P1 with param-
eter k1 to a parameterized problem P2 with parameter k2 is a Turing reduction
from P1 to P2 with fpt running time for which the parameter k2 of all oracle
calls to the problem P2 is bounded by a computable function in terms of k1. In
other words, a Turing reduction is an fpt-algorithm solving the parameterized
problem P1 with the help of an oracle that solves problem P2 such that there
exists a computable function g such that for all oracle queries y ∈ P2 posed on an
input x with parameter k1 it holds that the parameter k2 of y is at most g(k1).

Suppose we assign to every graph G a subset of the vertices V(G) ⊆ V (G). We
say this assignment is isomorphism invariant if for every isomorphism π : G1 →
G2 we have V(G2) = π(V(G1)). This definition extends to assignments of tuples
or sets of vertex sets and also to colored graphs.

372 Y. Otachi and P. Schweitzer

3 Tree Decompositions and the Weisfeiler-Lehman
Algorithm

In the graph isomorphism literature, for various graph classes, results are known
showing that the Weisfeiler-Lehman algorithm yields polynomial time isomor-
phism algorithms (see [15]). In this section we describe a restricted version of
the Weisfeiler-Lehman algorithm and show that it can be used to obtain fixed-
parameter tractability results. Intuitively, the k-dimensional Weisfeiler-Lehman
algorithm repeatedly recolors k-tuples of vertices by assigning them a color that
depends on the multiset of previous colors of adjacent k-tuples, where tuples
are adjacent if they differ by at most one entry. Our restricted version of the
algorithm performs this recoloring operation only on a restricted set of k-tuples.
For more information on the standard Weisfeiler-Lehman algorithm we refer the
reader to existing literature (see [2] and [23] for more pointers).

For k ≥ 2 we now define the restricted k-dimensional Weisfeiler-Lehman color
refinement. We say a family of sets V has width k if the largest set in V has
size k. Let G be a graph and V be a family of sets of vertices of G of width at
most k′. Let V+ be the set of k-tuples (v1, . . . , vk) (with entries not necessarily
distinct) for which {v1, . . . , vk′} is in V . For every k-tuple (v1, . . . , vk) in V+ we
define wlk0 [V , G](v1, . . . , vk) as the isomorphism type of the subgraph induced
by the ordered tuple (v1, . . . , vk). If the graph is colored then the isomorphism
type has to take the coloring into account. More precisely, the coloring wlk0
is a coloring that satisfies wlk0 [V , G](v1, . . . , vk) = wlk0 [V , G](v′1, . . . , v′k) if and
only if we can map vi to v′i and obtain an isomorphism of the colored graphs
induced by {v1, . . . , vk} and {v′1, . . . , v′k}. If (v1, . . . , vk) /∈ V+ then we define
wlk0 [V , G](v1, . . . , vk) to be the empty set ∅.

Iteratively for i ≥ 0, we define wlki+1[V , G](v1, . . . , vk) to be the empty set ∅
if (v1, . . . , vk) /∈ V+ and to be

(
wlki [V , G](v1, . . . , vk),Mk

i

)
otherwise, whereMk

i

is the multiset given by

Mk
i :=

{{
(wlki [V , G](x, v2, . . . , vk),wlki [V , G](v1, x, v3, . . . , vk), . . . ,

wlki [V , G](v1, . . . , vk−1, x)) | x ∈ V (G)
}}
.

The process partitions the ordered k-tuples into classes according to their color.
Since in each iteration the color of the previous iteration is encoded in the new
color, k-tuples which are assigned different colors will continue to have differ-
ent colors in all subsequent iterations. Therefore the refinement process stabi-
lizes. We define wlk∞[V , G](v1, v2, . . . , vk) as wlki [V , G](v1, v2, . . . , vk) where i is
the least positive integer such that the induced partition in step i is equiva-
lent to the induced partition in step i + 1. Abusing notation, we may drop the
specifications [V , G] whenever they are apparent from the context.

Lemma 1. For a graph G and a family V of sets of vertices of G of width k′,
the stable partition of the restricted (k′+c)-dimensional Weisfeiler-Lehman color
refinement can be computed in time O

(
(k′ + c)2 · |V+|n · log(|V+|)

)
.

Reduction Techniques for Graph Isomorphism in the Context 373

Being a restriction implies that the known examples that cannot be solved
by the Weisfeiler-Lehman algorithm [7] can also not be solved by the restricted
version. However, we will now prove that the restricted Weisfeiler-Lehman al-
gorithm decides isomorphism of graphs whenever the set V(G) captures a tree
decomposition. To facilitate the proof and to make it more easily applicable in
the future, we prove the theorem for tree decompositions, instead of proving it
just for strong tree decompositions.

Recall that a tree decomposition is a pair ({Xi | i ∈ I}, T = (I, F)) for
which

⋃
i∈I Xi = V (G) and T = (I, F) is a tree such that every vertex is

contained in some bag, for adjacent vertices there is a bag containing both of
them, and for every vertex v the set of bags containing v induces a connected
subtree of T .

Given a graph G we say that a family of sets V(G) captures a tree decomposi-
tion T of G if every bag is in V(G). If G is equipped with an equivalence relation
and possibly a tuple-coloring, we additionally require that every equivalence class
is contained in a bag of T . We say that a tree decomposition is semi-smooth if
the intersection of adjacent bags has size at most one smaller that the size of the
larger bag (for the decomposition to be smooth one also requires that all bags
have the same size, see [3]).

Theorem 2. Suppose we are given an algorithm computing for every graph G
in a graph class C an isomorphism invariant family of vertex sets V(G) of width
at most k′ such that V(G) captures a semi-smooth tree decomposition of G.
Then we can decide isomorphism of graphs in C with the (k′ + 3)-dimensional
Weisfeiler-Lehman algorithm restricted to V(G).

The previous theorem requires V(G) to capture a semi-smooth tree decompo-
sition. However, we can extend the theorem to tree decompositions and strong
tree decompositions by using the alternative set V ′ = {B1∪B2 | B1, B2 ∈ V(G)}.
This can be seen by the following two observations.

If V is isomorphism invariant and captures a tree decomposition of G, then V ′

is isomorphism invariant and captures a semi-smooth tree decomposition. This
follows from the construction that produces a smooth tree decomposition from
a tree decomposition given in [3].

Suppose B is the set of bags of a strong tree decomposition. Then there is a
semi-smooth tree decomposition B′ such that for every bag B of B′ there are
bags B1 and B2 in B such that B ⊆ B1∪B2. This can be seen with the standard
way of constructing a tree decomposition from a strong tree decomposition by
inserting for each edge between two bags B1 and B2 a path of bags transform-
ing B1 to B2 by replacing successively one vertex after the other. We conclude,
if V captures a strong tree decomposition then V ′ captures a semi-smooth tree
decomposition. This also shows that by setting V to be the set of all k-tuples of
vertices, every graph of tree width at most k has a smooth tree decomposition
captured by V ′ and shows that the a sufficiently high-dimensional Weisfeiler-
Lehman algorithm solves graph isomorphism of graphs of bounded tree width,
as mentioned in the introduction.

374 Y. Otachi and P. Schweitzer

Corollary 1. For a parameter k′, given an fpt-algorithm that computes for
every graph G in a graph class C an isomorphism invariant family of vertex
sets V(G) of width at most k′ such that V(G) captures a tree decomposition
(or a strong tree decomposition), isomorphism of graphs in C is fixed parameter
tractable in k′.

We remark that if we were interested in actual running times, in the tree
width case it is possible to avoid the increase in width from V to V ′ yielding
better running time bounds.

4 Tree Distance Decompositions with Connected Root
Bags

As a first application we show that graph isomorphism parameterized by root
connected tree distance width is fixed parameter tractable. We say two vertices v1
and v2 in a graph are k-connected, if there are k internally vertex disjoint paths
from v1 to v2. We denote this by v1≡k v2. The task of checking whether two
vertices are k-connected is also known as the Menger Problem and can be solved
in polynomial time via a reduction to the maximum flow problem.

Lemma 2. Let G be a graph containing vertices v1 and v2. If v1≡2k v2, then in
every strong tree decomposition of width at most k the vertices v1 and v2 are in
the same bag.

A similar result for tree decompositions, stipulating the existence of a bag
that contains both v1 and v2 in tree decompositions of width at most k when-
ever v1≡k+1 v2, can be found in [4]. The previous lemma restricts the possible
bags in a decomposition and leads to an efficient algorithm for isomorphism
parameterized by root-connected tree distance width.

Theorem 3. The isomorphism problem parameterized by root-connected tree
distance width can be solved in fpt time.

We remark that our algorithm for the theorem does not necessarily compute a
connected root set. In fact the number of connected root sets that yield distance
decompositions of smallest width cannot be bounded by an fpt function, and
they in particular cannot be enumerated in fpt time.

It is also possible to show that the root-connected tree distance width of a
graph cannot be bounded in terms of the rooted tree distance width (i.e., only
one vertex in the root).

Note that, in contrast to this, when we consider only path distance decom-
positions, the root-connected path distance width of a graph is bounded by a
function of the rooted path distance width as shown in [21].

Reduction Techniques for Graph Isomorphism in the Context 375

5 A Reduction from Strong Tree Width to Maximum
Degree

To define a reduction from isomorphism parameterized by strong tree width to
isomorphism parameterized by maximum degree, we first reduce the problem
to biconnected graphs relative to an equivalence relation and a suitable type of
coloring compatible with the equivalence relation.

Let R be an equivalence relation on the vertices of a graph G. We define the
quotient graph of G with respect to R as the graph whose vertex set consists
of the equivalence classes and in which two equivalence classes E1 and E2 are
adjacent if there exists vertices v1 ∈ E1 and v2 ∈ E2 such that v1 and v2 are
adjacent. We define the biconnected components of G relative to R as the sets of
vertices that comprise biconnected components of the quotient graph, i.e., pre-
images of biconnected components under the projection to the quotient graph. A
tuple-coloring is a map that assigns a color to every linear ordering of vertices in
an equivalence class. When concerned with isomorphism of tuple-colored graphs
equipped with an equivalence relation, we demand that isomorphisms preserve
equivalence classes and the tuple-coloring, that is, an isomorphism must map an
equivalence class to an equivalence class and colored ordered tuples to ordered
tuples of the same color.

We define the biconnected component tree (also called block-cut tree) of a
graphG with respect to R as the following bipartite graph: the vertices of the one
partition class are those equivalence classes that form cut-vertices in the quotient
graph. The vertices of the other partition class are the biconnected components
of G relative to R. In the tree, there is an edge between an equivalence class
and a biconnected component if the corresponding cut-vertex is contained in the
corresponding biconnected component in the quotient graph.

The quotient graph can be constructed in time linear in the number of edges of
a graph. Since the biconnected components of the quotient graph can then also be
computed in polynomial time, the biconnected components and the component
tree with respect to R can be computed in polynomial time.

Lemma 3. The isomorphism problem of graphs with an equivalence relation on
the vertices Turing-reduces to isomorphism of tuple-colored biconnected compo-
nents of the input graphs relative to the equivalence relation. The running time
is bounded by a polynomial in n and k!, where n is the size of the input graphs
and k is the size of the largest equivalence class.

From the theorem we obtain as corollary that to decide isomorphism of graphs
in a hereditary graph class, i.e., a class closed under taking induced subgraphs, it
suffices to be able to decide isomorphism of biconnected vertex-colored graphs.

Corollary 2. The graph isomorphism problem of vertex-colored graphs in a
hereditary graph class C polynomial-time Turing-reduces to the isomorphism
problem of biconnected vertex-colored graphs in C.

For general graph isomorphism, for every integer k, it is possible to reduce the
isomorphism problem to isomorphism of k-connected graphs by simply adding

376 Y. Otachi and P. Schweitzer

universal vertices adjacent to all other vertices. However, for hereditary graph
classes, under application of this technique or similar gadget constructions, the
graphs may not necessarily remain within the class. In fact, if there is reduction
to 3-connected graphs analogous to Corollary 2, then graph isomorphism would
be polynomial-time solvable in general. This can be seen by considering the
isomorphism-complete class of bipartite graphs in which in one bipartition class
every vertex has degree at most 2. This class does not contain any 3-connected
graphs that have components with more than 2 vertices.

We will now employ the relation ≡2k defined in Section 4. However, this
relation is not necessarily an equivalence relation. Let ≡+

2k be the transitive
closure of the relation ≡2k. It turns out that graphs that are biconnected relative
to ≡+

2k have bounded degree.

Lemma 4. For k ≥ 2, if a graph G with stw(G) ≤ k is biconnected relative
to ≡+

2k then G has a maximum degree of at most 2k2(k − 1) + k − 1.

Lemma 5. The isomorphism problem of tuple-colored graphs of degree at most d
with an equivalence relation on the vertices with no equivalence class having
more than k elements reduces to isomorphism of uncolored graphs of degree at
most O(d+ k!). The running time is polynomial in n and k!, where n is the size
of the input graphs.

For the lemma, it is essential that equivalence classes do not intersect. By
coloring partially overlapping sets, it is possible to encode hypergraphs, and
thus to encode graphs, even with sets of size at most 2.

Together, the lemmas of this section can be used to assemble a reduction from
strong tree width to maximum degree.

Theorem 4. There is an fpt Turing-reduction from isomorphism parameterized
by strong tree width to isomorphism parameterized by maximum degree.

Proof. We first compute ≡2k and the transitive closure ≡+
2k which can be done in

polynomial time. If the largest equivalence class has size greater than k we reject
the input as infeasible containing a graph of strong tree width larger than k. We
then reduce via Lemma 3 to biconnected graphs relative to ≡+

2k. By Lemma 4
the biconnected components have bounded degree. By Lemma 5 we can then
reduce the isomorphism problem of the tuple-colored biconnected components
to isomorphism of graphs of bounded degree. ��

6 Applications to fpt Isomorphism Results

In this section we combine the two results from the previous sections to obtain
further fpt isomorphism algorithms.

Theorem 5. Graph isomorphism parameterized by connected strong tree width
can be solved in fpt time.

Reduction Techniques for Graph Isomorphism in the Context 377

Proof. By Theorem 4 the problem reduces to isomorphism of the tuple-colored
biconnected components. Let G be a graph of connected strong tree width at
most k of bounded degree. To apply Corollary 1 we first describe a set of potential
bags capturing a strong tree decomposition of G computable in fpt time and
having an fpt size bound. For this consider the family V(G) of sets of size at
most k that project to a connected subgraph in the quotient graph relative
to ≡+

2k. Since the degree of G is bounded, the number of such sets is bounded
by an fpt number. The theorem now follows from Corollary 1. ��

We have shown fixed-parameter tractability for isomorphism with respect to
the parameters connected strong tree width and root-connected tree distance
width. In turns out that these parameters are unrelated, i.e., that neither of
these parameters can be bounded by a function of the other.

As further examples of applications of our technique we can obtain fixed-
parameter tractability results of other parameters as follows. A geodesic cycle in
a graph G is a cycle C such that the distance between every two vertices in C
is the same as the distance in G. The chordality of a graph is the length of the
longest induced cycles.

Theorem 6. Graph isomorphism when parameterized by the maximum of the
length of a geodesic cycle and strong tree width can be solved in fpt time.

Corollary 3. Graph isomorphism when parameterized by the maximum of the
chordality and degree can be solved in fpt time.

Further applications of the theorems can be obtained by considering the set
of potential maximal cliques. A potential maximal clique of a graph G is a set
of vertices that is a bag in some minimal tree-decomposition of G. The set of
potential maximal cliques can be computed in polynomial time in the size of
the set itself [5]. Moreover, this set is isomorphism invariant and the subset of
potential maximal cliques of size k captures a tree decomposition of G of minimal
width. We can thus apply Corollary 1 to the potential maximal cliques.

Theorem 7. If for a parameterized graph class there is an fpt bound on the
number of potential maximal bags then isomorphism is fixed parameter tractable
in the maximum of the parameter and the tree width.

Equivalently, in the theorem it suffices to have a bound on the number of
minimal s-t-separators, since by a theorem of Bouchitté and Todinca [5] the
number of potential maximal cliques is polynomially bounded the number of
minimal s-t-separators.

Using results from [12] we can apply the theorem to various graph classes.
Indeed, it is known that the number of minimal s-t-separators is polynomially
bounded for weakly chordal, polygonal circle, circular-arc and d-trapezoid graphs
(see [12, Section 5]). So for all these classes, isomorphism is fixed parameter
tractable when parameterized by tree width. Moreover, for weakly chordal graphs
and circular-arc graphs the tree width of H-minor free graphs is bounded by a
function of the number of vertices in H (see also [12, Section 5]), so isomorphism

378 Y. Otachi and P. Schweitzer

of H-minor free weakly chordal graphs and H-minor free circular-arc graphs is
fixed parameter tractable when parameterized by the size of H .

7 Conclusion

In this paper we show that, in order to perform isomorphism tests, it suffices
to compute an invariant set of potential bags that is comprehensive enough
to express a tree decomposition. Indeed, by applying the restricted Weisfeiler-
Lehman, we do not need to worry about how to perform the isomorphism test,
nor how to compute a decomposition.

For various other results this means that their isomorphism testing part can
be replaced by the general theorem and only the part analyzing the graph class
remains. For example in [20] and [17] it is shown that for chordal graphs of
bounded clique number a tree model can be computed in cubic time. This tree
model is unique up to the ordering of children and gives rise to an invariant
family of sets of vertices capturing a tree-decomposition.

In [6] it is shown that for graphs of tree-depth at most k the number of vertices
that can be chosen as the root in a tree-depth decomposition is bounded by a
function of k, recursively applying this gives rise to invariant family of sets of
vertices capturing a tree-decomposition.

Furthermore we demonstrated how the theorems can be used in conjunction
with the set of potential maximal cliques. The advantage here is that it is known
in general that this set can be efficiently computed.

However, our technique can also be applied to tree decompositions, where
the long question whether graph isomorphism is fixed parameter tractable when
parameterized by tree width remains.

On the other hand, our parameterized reduction to bounded degree is only
valid for strong tree width, and whether such a reduction exists for tree width
remains open. Finally, as mentioned in the introduction, no non-tractability
results are known in this context, and parameterized reduction could be a method
to establish hardness criteria.

References
1. Arvind, V., Das, B., Köbler, J., Toda, S.: Colored hypergraph isomorphism is fixed

parameter tractable. In: FSTTCS, pp. 327–337 (2010)
2. Berkholz, C., Bonsma, P., Grohe, M.: Tight lower and upper bounds for the com-

plexity of canonical colour refinement. In: Bodlaender, H.L., Italiano, G.F. (eds.)
ESA 2013. LNCS, vol. 8125, pp. 145–156. Springer, Heidelberg (2013)

3. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)

4. Bodlaender, H.L.: Necessary edges in k-chordalisations of graphs. J. Comb. Op-
tim. 7(3), 283–290 (2003)

5. Bouchitté, V., Todinca, I.: Listing all potential maximal cliques of a graph. Theor.
Comput. Sci. 276(1-2), 17–32 (2002)

6. Bouland, A., Dawar, A., Kopczyński, E.: On tractable parameterizations of graph
isomorphism. In: Thilikos, D.M., Woeginger, G.J. (eds.) IPEC 2012. LNCS,
vol. 7535, pp. 218–230. Springer, Heidelberg (2012)

Reduction Techniques for Graph Isomorphism in the Context 379

7. Cai, J.-Y., Fürer, M., Immerman, N.: An optimal lower bound on the number of
variables for graph identification. Combinatorica 12(4), 389–410 (1992)

8. Datta, S., Limaye, N., Nimbhorkar, P., Thierauf, T., Wagner, F.: Planar graph
isomorphism is in log-space. In: IEEE Conference on Computational Complexity,
pp. 203–214 (2009)

9. Ding, G., Oporowski, B.: On tree-partitions of graphs. Discrete Math. 149(1-3),
45–58 (1996)

10. Evdokimov, S., Ponomarenko, I.N.: Isomorphism of coloured graphs with slowly
increasing multiplicity of jordan blocks. Combinatorica 19(3), 321–333 (1999)

11. Flum, J., Grohe, M.: Parameterized Complexity Theory (Texts in Theoretical Com-
puter Science). An EATCS Series. Springer, London (2006)

12. Fomin, F.V., Todinca, I., Villanger, Y.: Large induced subgraphs via triangulations
and cmso. In: SODA, pp. 582–583 (2014)

13. Fuhlbrück, F.: Fixed-parameter tractability of the graph isomorphism and canon-
ization problems. Diploma thesis, Humboldt-Universität zu Berlin (2013)

14. Furst, M.L., Hopcroft, J.E., Luks, E.M.: Polynomial-time algorithms for permuta-
tion groups. In: FOCS, pp. 36–41 (1980)

15. Grohe, M.: Fixed-point definability and polynomial time on graphs with excluded
minors. In: LICS, pp. 179–188 (2010)

16. Grohe, M.: Definability and descriptive complexity on databases of bounded tree-
width. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 70–82.
Springer, Heidelberg (1998)

17. Klawe, M., Corneil, D., Proskurowski, A.: Isomorphism testing in hookup classes.
SIAM Journal on Algebraic Discrete Methods 3(2), 260–274 (1982)

18. Köbler, J., Schöning, U., Torán, J.: The graph isomorphism problem: Its structural
complexity. Birkhäuser Verlag, Basel (1993)

19. Kratsch, S., Schweitzer, P.: Isomorphism for graphs of bounded feedback vertex set
number. In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 81–92. Springer,
Heidelberg (2010)

20. Nagoya, T.: Counting graph isomorphisms among chordal graphs with restricted
clique number. In: Eades, P., Takaoka, T. (eds.) ISAAC 2001. LNCS, vol. 2223,
pp. 136–147. Springer, Heidelberg (2001)

21. Otachi, Y.: Isomorphism for graphs of bounded connected-path-distance-width.
In: Chao, K.-M., Hsu, T.-S., Lee, D.-T. (eds.) ISAAC 2012. LNCS, vol. 7676,
pp. 455–464. Springer, Heidelberg (2012)

22. Otachi, Y., Schweitzer, P.: full version of the paper. arXiv:1403.7238 [cs.DM] (2014)
23. Schweitzer, P.: Problems of unknown complexity: graph isomorphism and Ramsey

theoretic numbers. Phd thesis, Universität des Saarlandes, Saarbrücken, Germany
(July 2009)

24. Schweitzer, P.: Isomorphism of (mis)labeled graphs. In:Demetrescu, C., Halldórsson,
M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 370–381. Springer, Heidelberg (2011)

25. Seese, D.: Tree-partite graphs and the complexity of algorithms. In: Budach,
L. (ed.) Fundamentals of Computation Theory, FCT 1985. LNCS, vol. 199,
pp. 412–421. Springer, Heidelberg (1985)

26. Toda, S.: Gurafu Doukeisei Hantei Mondai (The Graph Isomorphism Decision
Problem). Nihon University, Tokyo, Japan (2001) (in Japanese)

27. Toda, S.: Computing automorphism groups of chordal graphs whose simplicial
components are of small size. IEICE Transactions 89-D(8), 2388–2401 (2006)

28. Yamazaki, K., Bodlaender, H.L., de Fluiter, B., Thilikos, D.M.: Isomorphism for
graphs of bounded distance width. Algorithmica 24(2), 105–127 (1999)

Approximate Counting of Matchings

in (3, 3)-Hypergraphs�

Andrzej Dudek1,��, Marek Karpinski2,� � �, Andrzej Ruciński3,†,
and Edyta Szymańska3,‡

1 Western Michigan University, Kalamazoo, MI, USA
andrzej.dudek@wmich.edu

2 Department of Computer Science, University of Bonn, Germany
marek@cs.uni-bonn.de

3 Faculty of Mathematics and Computer Science, Adam Mickiewicz University,
Poznań, Poland

{rucinski,edka}@amu.edu.pl

Abstract. We design a fully polynomial time approximation scheme
(FPTAS) for counting the number of matchings (packings) in arbitrary
3-uniform hypergraphs of maximum degree three, referred to as (3, 3)-
hypergraphs. It is the first polynomial time approximation scheme for
that problem, which includes also, as a special case, the 3D Matching
counting problem for 3-partite (3, 3)-hypergraphs. The proof technique
of this paper uses the general correlation decay technique and a new
combinatorial analysis of the underlying structures of the intersection
graphs. The proof method could be also of independent interest.

1 Introduction

The computational status of approximate counting of matchings in hypergraphs
has been open for some time now, contrary to the existence of polynomial time
approximation schemes for graphs. The matching (packing) counting problems
in hypergraphs occur naturally in the higher dimensional free energy problems,
like in the monomer-trimer systems discussed, e.g, by Heilmann [9]. The corre-
sponding optimization versions of hypergraph matching problem relate also to
various allocations problems.

This paper aims at shedding some light on the approximation complexity of
that problem in 3-uniform hypergraphs of maximum vertex degree three (called

� Part of research of the 3rd and 4th authors done at Emory University, Atlanta and
another part during their visits to the Institut Mittag-Leffler (Djursholm, Sweden).

�� Research supported by Simons Foundation Grant #244712 and by a grant from the
Faculty Research and Creative Activities Award (FRACAA), Western Michigan
University.

� � � Research supported by DFG grants and the Hausdorff grant EXC59-1.
† Research supported by the Polish NSC grant N201 604 940 and the NSF grant
DMS-1102086.

‡ Research supported by the Polish NSC grant N206 565 740.

R Ravi and I.L. Gørtz (Eds.): SWAT 2014, LNCS 8503, pp. 380–391, 2014.
c© Springer International Publishing Switzerland 2014

Approximate Counting of Matchings in (3, 3)-Hypergraphs 381

(3, 3)-hypergraphs or (3, 3)-graphs for short). This class of hypergraphs includes
also so-called 3D hypergraphs, that is, (3,3)-graphs that are 3-partite. In [11],
based on a generalization of the canonical path method of Jerrum and Sinclair
[10], we established a fully polynomial time randomized approximation scheme
(FPRAS) for counting matchings in the classes of k-uniform hypergraphs without
structures called 3-combs. However, the status of the problem in arbitrary (3, 3)-
graphs was left wide open among with other general problems for 3-, 4- and 5-
uniform hypergraphs (for k ≥ 6 it is known to be hard, see Sec. 2). In particular,
the existence of an FPRAS for counting matchings in (3, 3)-graphs was unknown.

In this paper we design the first fully polynomial time approximation scheme
(FPTAS) for arbitrary (3, 3)-graphs. The method of solution depends on the
general correlation decay technique and some new structural analysis of under-
lying intersections graphs based on an extension of the classical claw-freeness
notion. The proof method used in the analysis of our algorithm could be also of
independent interest.

The paper is organized as follows. Section 2 contains some basic notions and
preparatory discussions. In Sec. 3 we formulate our main results and provide
the proofs. Finally, Sec. 4 is devoted to the summary and an outlook for future
research.

2 Preliminaries

A hypergraph H = (V,E) is a finite set of vertices V together with a family E
of distinct, nonempty subsets of vertices called edges. In this paper we consider
k-uniform hypergraphs (called further k-graphs) in which, for a fixed k ≥ 2, each
edge is of size k. A matching in a hypergraph is a set (possibly empty) of disjoint
edges.

Counting matchings is a #P-complete problem already for graphs (k = 2) as
proved by Valiant [16]. In view of this hardness barrier, researchers turned to
approximate counting, which initially has been accomplished via probabilistic
techniques.

Given a function C and a random variable Y (defined on some probabil-
ity space), and given two real numbers ε, δ > 0, we say that Y is an (ε, δ)-
approximation of C if the probability P (|Y (x) − C(x)| ≥ εC(x)) ≤ δ. A fully
polynomial randomized approximation scheme (FPRAS) for a function f on
{0, 1}∗ is a randomized algorithm which, for every triple (ε, δ, x), with ε > 0, δ >
0, and x ∈ {0, 1}∗, returns an (ε, δ)-approximation Y of f(x) and runs in time
polynomial in 1/ε, log(1/δ), and |x|.

In this paper we investigate the problem of counting the number of matchings
in hypergraphs and try to determine the status of this problem for k-graphs with
bounded degrees.

Let degH(v) be the degree of vertex v in a hypergraph H , that is, the number
of edges of H containing v. We denote by Δ(H) the maximum of degH(v) over
all v in H . We call a k-graph H a (k, r)-graph if Δ(H) ≤ r. Let #M(k, r) be
the problem of counting the number of matchings in (k, r)-graphs.

382 A. Dudek et al.

Our inspiration comes from new results (both positive and negative) that
emerged for approximate counting of the number of independent sets in graphs
with bounded degree and shed some light on the problem #M(k, r).

Let #IS(d) [#IS(≤ d)] be the problem of counting the number of all indepen-
dent sets in d-regular graphs [graphs of maximum degree bounded by d, that is,
(2, d)-graphs]. Luby and Vigoda [13] established an FPRAS for #IS(≤ 4). This
was complemented later by the approximation hardness results for the higher
degree instances by Dyer, Frieze and Jerrum [6]. The subsequent progress has
coincided with the revival of a deterministic technique – the spatial correlation
decay method – based on early papers of Dobrushin [5] and Kelly [12]. It resulted
in constructing deterministic approximation schemes for counting independent
sets in several classes of graphs with degree (and other) restrictions, as well as
for counting matchings in graphs of bounded degree.

Definition 1. A fully polynomial time approximation scheme (FPTAS) for a
function f on {0, 1}∗ is a deterministic algorithm which for every pair (ε, x) with
ε > 0, and x ∈ {0, 1}∗, returns a number y(x) such that

|y(x)− f(x)| ≤ εf(x),

and runs in time polynomial in 1/ε, and |x|.

In 2007 Weitz [17] found an FPTAS for #IS(≤ 5), while, more recently, Sly
[14] and Sly and Sun [15] complemented Weitz’s result by proving the approxi-
mation hardness for #IS(6), that is, proving that unless NP=RP, there exists no
FPRAS (and thus, no FPTAS) for #IS(6). By applying two reductions: from
#IS(6) to #M(6, 2) (taking the dual hypergraph of a 6-regular graph), and
from #M(k, 2) to #IS(k) (taking the intersection graph of a (k, 2)-graph) for
k = 3, 4, 5, we conclude that

(i) (unless NP=RP) there exists no FPRAS for #M(6, 2);
(ii) there is an FPTAS for #M(k, 2) with k ∈ {3, 4, 5}.

Note that the first reduction results, in fact, in a linear (6, 2)-graph, so the
class of hypergraphs in question is even narrower. (A hypergraph is called linear
when no two edges share more than one vertex.) On the other hand, by the same
kind of reduction it follows from a result of Greenhill [8] that exact counting of
matchings is #P-complete already in the class of linear (3, 2)-graphs.

Facts (i) and (ii) above imply that the only interesting cases for the positive
results are those for (k, r)-graphs with k = 3, 4, 5 and r ≥ 3, and thus, the
smallest one among them is that of (3, 3)-graphs. Our main result establishes an
FPTAS for counting the number of matchings in this class of hypergraphs.

3 Main Result and the Proof

The following theorem is the main result of this paper.

Approximate Counting of Matchings in (3, 3)-Hypergraphs 383

Theorem 2. The algorithm CountMatchings given in Section 3.2 provides an
FPTAS for #M(3, 3) and runs in time O

(
n2(n/ε)log50/49 144

)
.

The intersection graph of a hypergraph H is the graph G = L(H) with vertex
set V (G) = E(H) and edge setE(G) consisting of all intersecting pairs of edges of
H . When H is a graph, the intersection graph L(H) is called the line graph of H .
Graphs which are line graphs of some graphs are characterized by 9 forbidden
induced subgraphs [3], one of which is the claw, an induced copy of K1,3. There
is no similar characterization for intersection graphs of k-graphs. Still, it is easy
to observe that for any k-graph H , its intersection graph L(H) does not contain
an induced copy of K1,k+1. We shall call such graphs (k + 1)-claw-free.

Our proof of Thm. 2 begins with an obvious observation that counting the
number of matchings in a hypergraph H is equivalent to counting the number of
independent sets in the intersection graph G = L(H). More precisely, let ZM (H)
be the number of matchings in a hypergraph H and, for a graph G, let ZI(G)
be the number of independent sets in G. (Note that both quantities count the
empty set.) Then ZM (H) = ZI(L(H)).

To approximately count the number of independent sets in a graph G =
L(H) for a (3, 3)-graph H , we apply some of the ideas from [2] (the preliminary
version of this paper appeared in [1]) and [7]. In [2] two new instances of FPTAS
were constructed, both based on the spatial correlation decay method. First, for
#M(2, r) with any given r. Then, still in [2], the authors refined their approach
to yield an FPTAS for counting independent sets in claw-free graphs of bounded
clique number which contain so called simplicial cliques. The last restriction has
been removed by an ingenious observation in [7].

Papers [2,7] inspired us to seek adequate methods for (3, 3)-graphs. Indeed,
for every (3, 3)-graph H its intersection graph G = L(H) is 4-claw-free and
has Δ(G) ≤ 6. This turned out to be the right approach, as we deduced our
Thm. 2 from a technical lemma (Lem. 3 below) which constructs an FPTAS
for the number of independent sets in K1,4-free graphs G with Δ(G) ≤ 6 and
an additional property stemming from their being intersection graphs of (3, 3)-
graphs.

3.1 Proof of Theorem 2 – Sketch and Preliminaries

We deduce Thm. 2 from a technical lemma. The assumptions of this lemma
reflect some properties of the intersection graphs of (3, 3)-graphs.

Lemma 3. There exists an FPTAS for the problem of counting independent
sets in every 4-claw-free graph with maximum degree at most 6 and such that
the neighborhood of every vertex of degree d ≥ 5 induces a subgraph with at most
6− d isolated vertices.

Proof (of Thm. 2). Given a (3, 3)-graph H , consider its intersection graph G.
Then G is 4-claw-free, has maximum degree at most 6 and every vertex neigh-
borhood of size d ≥ 5 must span in G a matching of size �d/2�. This means that
Lem. 3 applies to G and there is an FPTAS for counting independent sets of G
which is the same as counting matchings in H . ��

384 A. Dudek et al.

It remains to prove Lem. 3. We begin with underlining some properties of
4-claw-free graphs which are relevant for our method. First, we introduce the
notion of a simplicial 2-clique which is a generalization of a simplicial clique
introduced in [4] and utilized in [2]. Throughout we assume notation A \ B for
set differences and, for A ⊂ V (G), we write G − A for the graph operation of
deleting from G all vertices belonging to A. In other words, G−A = G[V (G)\A].
Also, for any graph G, we use δ(G) to denote its minimum vertex degree and
α(G) for the size of the largest independent set in G.

Definition 4. A set K ⊆ V (G) is a 2-clique if α(G[K]) ≤ 2. A 2-clique is
simplicial if for every v ∈ K, NG(v) \K is a 2-clique in G−K.

For us a crucial property of simplicial 2-cliques is that if G is a connected
graph containing a nonempty simplicial 2-clique K then it is easy to find another
simplicial 2-clique in the induced subgraph G−K, and consequently, the whole
vertex set of G can be partitioned into blocks which are simplicial 2-cliques in
suitable nested sequence of induced subgraphs of G (see Claim 8).

However, in the proof of Lem. 3 we shall use a special class of 2-cliques.

Definition 5. A 2-clique K in a graph G is called a block if |K| ≤ 4 and
δ(G[K]) ≥ 1 whenever |K| = 4. A block K is simplicial if for every v ∈ K the
set NG(v) \K is a block in G−K.

Next, we state a trivial but useful observation which follows straight from the
above definition. (We consider the empty set as a block too.)

Fact 6. If K is a (simplicial) block in G then for every V ′ ⊆ V (G) the set
K ∩ V ′ is a (simplicial) block in the induced subgraph G[V ′] of G.

Let a graph G satisfy the assumptions of Lem. 3. The next claim provides a
vital, “self-reproducing” property of blocks in G.

Claim 7. If K is a simplicial block in G, then for every v ∈ K the set NG(v)\K
is a simplicial block in G−K.

Proof. Set Kv := NG(v) \K for convenience. By definition of K, Kv is a block.
It remains to show that Kv is simplicial. Let u ∈ Kv and let Ku = NG(u)\ (K ∪
NG(v)). Suppose there is an independent set I in G[Ku] of size |I| = 3. Then
u, v and the vertices of I would form an induced K1,4 in G with u in the center.
As this is a contradiction, we conclude that Ku is a 2-clique.

To show that Ku is indeed a block, note first that, by the assumptions that
Δ(G) ≤ 6, we have |Ku| ≤ 5. However, if |Ku| = 5 then v would be an isolated
vertex in G[NG(u)] – a contradiction with the assumption on the structure of
the neighborhoods in G. For the same reason, if |Ku| = 4 then regardless of
the degree of u in G (which might be 5 or 6) there can be no isolated vertex in
G[Ku]. ��

Our next claim asserts that once there is a nonempty block in G, one can find
a suitable partition of V (G) into sets which are blocks in a nested sequence of
induced subgraphs of G defined by deleting these sets one after another.

Approximate Counting of Matchings in (3, 3)-Hypergraphs 385

Claim 8. Let K be a nonempty simplicial block in G. If, in addition, G is
connected then there exists a partition V (G) = K1 ∪ · · · ∪Km such that K1 = K
and for every i = 2, . . . ,m, Ki is a nonempty, simplicial block in Gi := G −⋃i−1

j=1Kj.

Proof. Suppose we have already constructed disjoint sets K1∪· · ·∪Ks, for some
s ≥ 1, such that K1 = K, for every i = 2, . . . , s, Ki is a nonempty, simplicial
block in Gi := G −

⋃i−1
j=1Kj , and that Rs := V (G) \

⋃s
i=1Ks �= ∅. Since G is

connected, there is an edge between a vertex in Rs and a vertex v ∈ Ki for some
1 ≤ i ≤ s. Since Ki is a simplicial block in Gi, by Fact 6, it is also simplicial in
its subgraph Gi[V

′], where V ′ = Ki∪Rs, that is the subgraph of Gi obtained by
deleting all vertices of Ki+1 ∪ · · · ∪Ks−1. Now apply Claim 7 to Gi[V

′], Ki, and
v, to conclude that NG(v)∩Rs is a simplicial block in Gs+1 := G−

⋃s
i=1Ki. ��

Let K1,K2, . . . ,Km be as in Claim 8. Then,

ZI(G) =
ZI(G1)

ZI(G2)
· ZI(G2)

ZI(G3)
· . . . · ZI(Gi)

ZI(Gi+1)
· . . . · ZI(Gm)

ZI(Gm+1)
, (1)

where Gm+1 = ∅ and ZI(Gm+1) = 1. Observe that for each i, Gi+1 = Gi −Ki

and the reciprocal of each quotient in (1) is precisely the probability

PGi(Ki ∩ I = ∅) = ZI(Gi −Ki)

ZI(Gi)
, (2)

where I is an independent set of Gi chosen uniformly at random. In view of
this, the main step in building an FPTAS for ZI(G) will be to approximate the
probability PG(Ki ∩ I = ∅) within 1± ε

n (see Sec. 3.2 and Algorithm 2 therein).
But what if G is disconnected or does not contain a simplicial block to start

with? First, if G =
⋃c

i=1Gi consists of c connected components G1, . . . , Gc, then,
clearly

ZI(G) =

c∏
i=1

ZI(Gi) (3)

and the problem reduces to that for connected graphs.
As for the second obstacle, Fadnavis [7] proposed a very clever observation to

cope with it. Let G be a connected graph satisfying the assumptions of Lem. 3
and let v ∈ V (G) be such that G − v is connected. By considering the fate of
vertex v, we obtain the recurrence

ZI(G) = ZI(G− v) + ZI(G
v), (4)

where Gv = G − NG[v] and NG[v] = NG(v) ∪ {v}. Let Gv =
⋃c

i=1G
v
i be the

partition of Gv into its connected components. For each i let ui ∈ NG(v) be
such that NG(ui) ∩ V (Gv

i) �= ∅. Owing to the connectedness of G − v, a vertex
ui must exist. Set Ki = NG(ui) ∩ V (Gv

i).

Claim 9. The set Ki is a simplicial block in Gv
i .

386 A. Dudek et al.

Proof. The proof is quite similar to that of Claim 7. We first prove that Ki is a
block. Suppose there is an independent set I in G[Ki] of size |I| = 3. Then ui, v
and the vertices of I would form an induced K1,4 in G with ui in the center.
As this is a contradiction, we conclude that Ki is a 2-clique. To prove that Ki

is, in fact, a block, notice that there is no edge between v and Ki. Thus, we
cannot have |Ki| = 5 because then v would be an isolated vertex in G[N(ui)] –
a contradiction with the assumption on G. If, however, |Ki| = 4 then v is the
(only) isolated vertex in G[N(ui)] and, consequently, δ(G[Ki]) ≥ 1.

It remains to show that the block Ki is simplicial, that is, for every w ∈ Ki,
the set NGv

i
(w)\Ki is a block in Gv

i −Ki. This, however, can be proved mutatis
mutandis as in the proof of Claim 7. ��

For the first term of recurrence (4) we apply (4) recursively. In view of Claim
9, to the second term of recurrence (4) one can apply formula (3) and then each
term ZI(G

v
i) can be approximated based on (1) and (2).

3.2 The Remainder of the Proof of Lemma 3

Hence, it remains to approximate PG(K∩I = ∅) = ZI(G−K)
ZI (G) within 1± ε

n , where

K is a simplicial block in G. We set Nv := NG(v) and formulate the following
recurrence relation by considering how an independent set may intersect K:

ZI(G) = ZI(G−K)+
∑
v∈K

ZI(G− (Nv ∪K))+
1

2

∑
uv/∈G[K]

ZI(G− (Nu ∪Nv ∪K))

or equivalently, after dividing sidewise by ZI(G−K),

ZI(G)

ZI(G−K)
= 1 +

∑
v∈K

ZI(G− (Nv ∪K))

ZI(G−K)
+

1

2

∑
uv/∈G[K]

ZI(G− (Nu ∪Nv ∪K))

ZI(G−K)
.

Here and throughout the inner summation ranges over all ordered pairs of
distinct vertices ofK such that {u, v} /∈ G[K]. At this point, in view of symmetry,
it seems redundant to consider ordered pairs (and consequently have the factor
of 1

2 in front of the sum), but we break the symmetry right now as we further
observe that

ZI(G− (Nu ∪Nv ∪K))

ZI(G−K)
=
ZI(G− (Nu ∪Nv ∪K))

ZI(G− (Nv ∪K))
· ZI(G− (Nv ∪K))

ZI(G−K)
.

By Claim 7, Nv \ K is a simplicial block in G − K. We need to show that,
similarly, Nu \ (Nv ∪K) is a simplicial block in G− (Nv ∪K).

Claim 10. Let K be a simplicial block in G and let u, v ∈ K be such that u �= v
and uv /∈ G[K]. Further, let H := G− (NG(v)∪K). Then NH(u) is a simplicial
block in H.

Approximate Counting of Matchings in (3, 3)-Hypergraphs 387

Proof. By Claim 7, the set NG(u)\K is a simplicial block in G−K. Apply Fact
6 to NG(u) \K and G−K with V ′ = V (H). ��

Let

ΠG(K) := P(K ∩ I = ∅) = ZI(G−K)

ZI(G)
,

where I is a random independent set of G. Finally, setting Kv := Nv \ K and
Kuv := Nu \ (Nv ∪K), and rewriting G− (Nv ∪K) = G−K −Kv, we get the
recurrence for the probabilities:

Π−1
G (K) = 1 +

∑
v∈K

ΠG−K(Kv)

⎛⎝1 +
1

2

∑
uv/∈G[K]

ΠG−K−Kv(Kuv)

⎞⎠ .

This recurrence, in principle, allows one to compute ΠG(K) exactly, but only
in an exponential number of steps. Instead, we will approximate it by a function
ΦG(K, t), also defined recursively, which “mimics” ΠG(K) but has a built-in
time counter t.

Definition 11. For every graph G, every simplicial block K in G and an integer
t ∈ Z+, the function ΦG(K, t) is defined recursively as follows: ΦG(K, 0) =
ΦG(K, 1) = 1 as well as ΦG(∅, t) = 1, while for t ≥ 2 and K �= ∅

Φ−1
G (K, t) = 1 +

∑
v∈K

ΦG−K(Kv, t− 1)

⎛⎝1 +
1

2

∑
uv/∈G[K]

ΦG−K−Kv(Kuv, t− 2)

⎞⎠ .

Now we are ready to state the algorithm CountMatchings for computing
ZM (H) for any connected (3, 3)-graph H and its subroutine CountIS for com-
puting ZI(G) in a subgraph of G = L(H) containing a simplicial block K.

Algorithm 1. CountMatchings(H, t)

1: G := L(H).
2: ZM := 1, F := G.
3: while F �= ∅ do
4: Pick v ∈ V (F) s.t. F − v is connected.
5: F v := F −NF [v]
6: If F v = ∅ then ZM = ZM + 1 and go to Line 3.
7: F v =

⋃c
i=1 F

v
i , where F v

i are connected components of F v.
8: for i := 1 to c do
9: Find Ki as in Claim 9
10: end for
11: ZM := ZM +

∏c
i=1CountIS(F

v
i ,Ki, t)

12: F := F − v
13: end while
14: Return ZM

388 A. Dudek et al.

Algorithm 2. CountIS(G,K, t)

1: Let V (G) =
⋃m

i=1 Ki be a partition of V (G) as in Claim 8 with K1 = K.
2: ZI := 1, F := G
3: for i = 1 to m do
4: ZI := ZI

ΦF (Ki,t)

5: F := F −Ki

6: end for
7: Return ZI

We will show that already for t = Θ(log n), when Φ can be easily computed
in polynomial time, the two functions become close to each other.

Note that both quantities, ΠG(K) and ΦG(K, t), fall into the interval [19 , 1].
The lower bound is due to the fact that a block has at most 4 vertices and each
of them has degree at most 2 in Gc, so that the total number of terms in the
denominator is at most nine, five of them do not exceed 1, while eight of them
do not exceed 1

2 . Our goal is to approximate ΠG(K) by ΦG(K, t), for a suitably
chosen t, within the multiplicative factor of 1 ± ε/n. In view of the above lower
bound, it suffices to show that |ΠG(K)− ΦG(K, t)| ≤ ε

9n .
To achieve this goal, we will use the correlation decay technique which boils

down to establishing a recursive bound on the above difference (cf. [2]). The
success of this method depends on the right choice of a pair of functions g and
h, with g : [0, 1]→ -, such that they are inverses of each other, that is, g ◦h ≡ 1.
Then we define a function fK of |K|+ 2e(Gc[K]) variables, one for each vertex
and each (ordered) non-edge of G[K], as follows. Let z = (z1, . . . , z|K|, zuv : uv /∈
G[K]) be a vector of variables of that function. For ease of notation, we denote
the set of all indices of the coordinates of function fK by J , that is, we set
J := K ∪ {(u, v) : {u, v} /∈ G[K]}. Then

fK(z) := f(z) = g

⎛⎜⎝
⎧⎨⎩1 +

∑
v∈K

h(zv)

⎛⎝1 +
1

2

∑
uv/∈G[K]

h(zuv)

⎞⎠⎫⎬⎭
−1
⎞⎟⎠ . (5)

To understand the reason for this set-up, put x := g(ΠG(K)), xv :=
g(ΠG−K(Kv)), xuv := g(ΠG−K−Kv(Kuv)), and, correspondingly,

y := g(ΦG(K, t)) yv := g(ΦG−K(Kv, t− 1)) yuv := g(ΦG−K−Kv(Kuv, t− 2)).

Then, f(x) = x and f(y) = y, and so the difference we are after can be expressed
as |x − y| = |f(x) − f(y)|. Thus, we are in position to apply the Mean Value
Theorem to f and conclude that there exists α ∈ [0, 1] such that, setting zα =
αx+ (1− α)y,

|f(x) − f(y)| = |∇f(zα)(x− y)| ≤ |∇f(zα)| ×max
κ∈J

|xκ − yκ|.

It remains to bound maxz |∇f(z)| from above, uniformly by a constant γ < 1.
Then, after iterating at most t but at least t/2 times, we will arrive at a triple

Approximate Counting of Matchings in (3, 3)-Hypergraphs 389

(G′,K ′, t′), where G′ is an induced subgraph of G, K ′ is a block in G′, and
t′ ∈ {0, 1}. At this point, setting μg := |g(1)|+ |maxs g(s))|, we will obtain the
ultimate bound

|x− y| ≤ γt/2 × |g(ΠG′(K ′))− g(1)| ≤ γt/2 × μg ≤
ε

9n
,

for t ≥ 2 log((9μgn)/ε)/ log(1/γ). (6)

In [2], to estimate |∇f(z)| for a similar function f , the authors chose g(s) =
log s and h(s) = es. This choice, however, does not work for us. Instead, we set
g(s) = s1/4 and h(s) = s4. Then, μg = 2 and

|∇f(z)| ≤
∑
κ∈J

∣∣∣∣∣∂f(z)∂zκ

∣∣∣∣∣ =
∑
v∈K

{
z3v +

1
2

∑
uv/∈G[K]

(z3vz
4
uv + z4vz

3
uv)

}
{
1 +

∑
v∈K

z4v

(
1 + 1

2

∑
uv/∈G[K]

z4uv

)}5/4
.

Observe that fK depends only on the isomorphism type of G[K], a graph on
up to 4 vertices, with no independent set of size 3, and with no isolated vertex
when |K| = 4. Let us call all these graphs block graphs. One block graph is given
in Figure 1 below.

z24

z1

z4

z2

z3

z14 z23

z13

Fig. 1. The essential block graph

In a sense we just need to consider this one block graph. Indeed, the comple-
ment of every block graph is contained in the complement of the block graph in
Figure 1. Hence, it suffices to maximize |∇f(z)| just for this graph. Our compu-
tational task is, therefore, to bound from above

390 A. Dudek et al.

F (z) = ‖∇(z)‖1 =
1

4

(
1 + z41 + z42 + z43 + z44+

1

2

(
z414

(
z41 + z44

)
+ z413

(
z41 + z43

)
+ z423

(
z42 + z43

)
+ z424

(
z42 + z44

)))−5/4

×
(
2z31

(
2 + z414 + z413

)
+ 2z32

(
2 + z423 + z424

)
+ 2z33

(
2 + z413 + z423

)
+ 2z34

(
2 + z414 + z424

)
+

2z314
(
z41 + z44

)
+ 2z313

(
z41 + z43

)
+ 2z323

(
z42 + z43

)
+ 2z324

(
z42 + z44

))
.

One can show (using, e.g., Mathematica) that F (z) < 0.971 for 0 ≤ zi ≤ 1
and 0 ≤ zij ≤ 1. Thus, we have (6) with μg = 2 and, say, γ = 0.98 = 49

50 .
Summarizing, the running time of computing ΦG(K, t) in Step 4 of Algorithm 2
is 12t since there at most 12 expressions to compute in each step of the recurrence
relation (see Def. 11). Also, CountIS takes at most |V (F v

i)|12t steps and hence,
Line 11 of CountMatchings takes n12t steps and is invoked at most n times.
Consequently, with t = 2�log((18n)/ε)/ log(50/49)� we get the running time of
our algorithm of order O

(
n2(n/ε)log50/49 144

)
.

Remark 12. With basically the same proof we can construct an FPTAS for
calculating the partition function ZM (H,λ) =

∑
M λ|M|, where the sum runs

over all matchings in H , for any constant λ ∈ (0, 1.077]. The λ factor will appear

in front of each summation in (5), which one can neutralize by setting h(s) = s4

λ

and g(s) = (λs)1/4.

4 Summary, Discussion, and Further Research

The main result of this paper (Thm. 2) establishes an FPTAS for the problem
#M(3, 3) of counting the number of matchings in a (3, 3)-graph. A reformulation
of Thm. 2 in terms of graphs yields an FPTAS for the problem of counting inde-
pendent sets in every graph which is the intersection graph of a (3, 3)-graph. As
mentioned earlier, every intersection graph of a (3, 3)-graph is 4-claw-free. More-
over, its maximum degree is at most six. We wonder if there exists an FPTAS for
the problem of counting independent sets in every 4-claw-free graph with maxi-
mum degree at most 6. Lemma 3 falls short of proving that. The missing part is
due to our inability to repeat the above estimates for 2-cliques of size five.

In an earlier paper [11] three of the authors have found an FPRAS for the
number of matchings in k-graphs without 3-combs. As their intersection graphs
are claw-free, it follows from the above mentioned result on independent sets in
[2,7] that there is also an FPTAS for the number of matchings in (k, r)-graphs
without 3-combs, for any fixed r. In view of this conclusion and Thm. 2, we raise
the question if for all k ≤ 5 and r there is an FPTAS (or at least FPRAS) for the
problem #M(k, r). The first open instance is that of (3, 4)-graphs. For k = 4, 5,
to avoid recurrences of depth k − 1 ≥ 3, as an intermediate step, one could first
consider the restriction of the class of (k, r)-graphs to those without a 4-comb,

Approximate Counting of Matchings in (3, 3)-Hypergraphs 391

that is, to those whose intersection graphs are 4-claw-free. Here, the first open
instance is that of (4, 3)-graphs without 4-combs. In general, it would be also
very interesting to elucidate the status of the problem for arbitrary k-graphs for
k = 3, 4 and 5, or for some generic subclasses of them.

Acknowledgements. We thank Martin Dyer and Mark Jerrum for stimulat-
ing discussions on the subject of this paper and the referees for their valuable
comments.

References

1. Bayati, M., Gamarnik, D., Katz, D., Nair, C., Tetali, P.: Simple deterministic approx-
imation algorithms for countingmatchings. In: STOC2007—Proceedings of the 39th
Annual ACM Symposium on Theory of Computing, pp. 122–127. ACM (2007)

2. Bayati, M., Gamarnik, D., Katz, D., Nair, C., Tetali, P.: Simple deterministic
approximation algorithms for counting matchings (2008),
http://people.math.gatech.edu/~tetali/PUBLIS/BGKNT_final.pdf

3. Beineke, L.W.: Characterizations of derived graphs. J. Combin. Theory 9, 129–135
(1970)

4. Chudnovsky, M., Seymour, P.: The roots of the independence polynomial of a
clawfree graph. J. Combin. Theory Ser. B 97(3), 350–357 (2007)

5. Dobrushin, R.: Prescribing a system of random variables by conditional distribu-
tions. Theor. Probab. Appl. 15, 458–486 (1970)

6. Dyer, M., Frieze, A., Jerrum, M.: On counting independent sets in sparse graphs.
SIAM J. Comput. 31(5), 1527–1541 (2002)

7. Fadnavis, S.: Approximating independence polynomials of claw-free graphs (2012),
http://www.math.harvard.edu/~sukhada/IndependencePolynomial.pdf

8. Greenhill, C.: The complexity of counting colourings and independent sets in sparse
graphs and hypergraphs. Comput. Complexity 9(1), 52–72 (2000)

9. Heilmann, O.: Existence of phase transitions in certain lattice gases with repulsive
potential. Lett. Al Nuovo Cimento Series 2 3(3), 95–98 (1972)

10. Jerrum, M., Sinclair, A.: Approximating the permanent. SIAM J. Comput. 18(6),
1149–1178 (1989)

11. Karpiński, M., Ruciński, A., Szymańska, E.: Approximate counting of matchings
in sparse uniform hypergraphs. In: 2013 Proceedings of the Workshop on Analytic
Algorithmics and Combinatorics (ANALCO), pp. 72–79. SIAM (2013)

12. Kelly, F.P.: Stochastic models of computer communication systems. J. Roy. Statist.
Soc. Ser. B 47(3), 379–395, 415–428 (1985)

13. Luby, M., Vigoda, E.: Fast convergence of the Glauber dynamics for sampling
independent sets. Random Structures Algorithms 15(3-4), 229–241 (1999)

14. Sly, A.: Computational transition at the uniqueness threshold. In: 2010 IEEE 51st
Annual Symposium on Foundations of Computer Science FOCS 2010, pp. 287–296
(2010)

15. Sly, A., Sun, N.: The computational hardness of counting in two-spin models on
d-regular graphs. In: FOCS, pp. 361–369 (2012),
http://arxiv.org/abs/1203.2602

16. Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM J.
Comput. 8(3), 410–421 (1979)

17. Weitz, D.: Counting independent sets up to the tree threshold. In: STOC 2006:
Proceedings of the 38th Annual ACM Symposium on Theory of Computing,
pp. 140–149. ACM (2006)

http://people.math.gatech.edu/~tetali/PUBLIS/BGKNT_final.pdf
http://www.math.harvard.edu/~sukhada/IndependencePolynomial.pdf
http://arxiv.org/abs/1203.2602

Author Index

Afshani, Peyman 1
Albers, Susanne 13

Belazzougui, Djamal 26
Bennett, Huck 38
Bhattacharya, Sayan 50
Biedl, Therese 62
Bilò, Vittorio 74
Bonsma, Paul 86
Bose, Prosenjit 98
Brodal, Gerth Stølting 26, 110
Brown, Trevor 122

Chalermsook, Parinya 50

Dahlgaard, Søren 134
de Berg, Mark 146
De Carufel, Jean-Lou 98
Dósa, György 170
Dragan, Feodor F. 158
Dudek, Andrzej 380
Durocher, Stephane 98

Epstein, Leah 170

Flammini, Michele 74
Fomin, Fedor V. 182
Froese, Vincent 194
Fujito, Toshihiro 206
Fukunaga, Takuro 217

Green Larsen, Kasper 110
Grossi, Roberto 229

Hellwig, Matthias 13

Iwata, Yoichi 241

Joshi, Anup 357

Kamiński, Marcin 86
Karpinski, Marek 380
Klav́ık, Pavel 253
Klemz, Boris 265
Knudsen, Mathias Bæk Tejs 277

Köhler, Ekkehard 158, 319
Kowalik, �Lukasz 282
Kratochv́ıl, Jan 253
Kutzkov, Konstantin 294, 306

Le Gall, François 331
Leitert, Arne 158
Liedloff, Mathieu 182

Mchedlidze, Tamara 265
Mehlhorn, Kurt 50
Mehrabi, Ali D. 146
Monaco, Gianpiero 74
Montealegre, Pedro 182
Mouatadid, Lalla 319
Munro, J. Ian 344

Narayanaswamy, N.S. 357
Navarro, Gonzalo 344
Neumann, Adrian 50
Nichterlein, André 194
Niedermeier, Rolf 194
Nielsen, Jesper Sindahl 26
Nishimura, Harumichi 331
Nöllenburg, Martin 265

Oka, Keigo 241
Otachi, Yota 253, 368

Pagh, Rasmus 294, 306

Ruciński, Andrzej 380
Rutter, Ignaz 253

Saitoh, Toshiki 253
Saumell, Maria 253
Schweitzer, Pascal 368
Shah, Rahul 344
Sheikhi, Farnaz 146
Sitchinava, Nodari 1
Soca�la, Arkadiusz 282
Szymańska, Edyta 380

Taslakian, Perouz 98
Thankachan, Sharma V. 344
Thorup, Mikkel 134
Todinca, Ioan 182

394 Author Index

Vind, Søren 229

Vyskočil, Tomáš 253

Wrochna, Marcin 86

Yap, Chee 38

	Preface
	Organization
	The Power of Iterated Rounding
	Orientations and Decompositions of Graphs
	Fast and Powerful Hashing using Tabulation
	Table of Contents
	I/O-Efficient Range Minima Queries
	1 Introduction
	2 Lower Bound In Both Models
	3 Solution in the External Memory Model
	4 Solution in the Cache-Oblivious Model
	5 Additional Improvements
	6 Conclusions
	References

	Online Makespan Minimization with Parallel
Schedules

	1 Introduction
	2 Reducing MPS to MPSopt

	3 A(1+ε)-Competitive Algorithm for MPSopt

	4 A(4/3 + ε)-Competitive Algorithm for MPSopt

	5 Algorithms for MPS

	6 Lower Bounds
	References

	Expected Linear Time Sorting for Word Size
Ω(log2 n log log n)

	1 Introduction
	2 Algorithm
	3 Tools
	4 Algorithm – RAM Details
	5 Packed Sorting

	6 General Sorting
	References

	Amortized Analysis of Smooth Quadtrees in All
Dimensions

	1 Introduction
	1.1 The Smooth Quadtree Model
	1.2 Our Results
	1.3 Related Work
	1.4 Other Results
	1.5 Neighbor Pointers without Smoothing

	2 Analysis of Forcing Chains
	2.1 Basic Terminology
	2.2 Forcing Chains
	2.3 Analysis of 2-Link Chains
	2.4 Monotonicity in Smooth Subdivisions

	3 Amortized Bounds for Smooth Splits
	3.1 Potential of Subdivision Tree
	3.2 Lower Bound on Smooth Split Complexity

	4 Conclusion
	References

	New Approximability Results for the Robust
k-Median Problem

	1 Introduction
	2 Preliminaries
	3 Hardness of Robust k-Median on Uniform Metrics
	3.1 Integrality Gap
	3.2 Reduction from r-Hypergraph Label Cover to Minimum Congestion Set Packing
	3.3 Analysis

	4 Hardness of Robust k-Median on Line Metrics
	5 Conclusion and Future Work
	References

	Trees and Co-trees with Bounded Degrees
in Planar 3-connected Graphs

	1 Introduction
	2 Background
	2.1 Edge Directions
	2.2 Edge Labels

	3 Barnette’s Theorem via the Canonical Ordering
	4 OnGr¨unbaum’s Conjecture
	4.1 Putting It All Together

	5 Conclusion
	References

	Approximating the Revenue Maximization
Problem with Sharp Demands

	1 Introduction
	2 Model and Preliminaries
	3 A Pricing Scheme for Monotone Allocation Vectors
	4 Results for Generic Instances
	4.1 Inapproximability Result
	4.2 The Approximation Algorithm

	5 Results for Proper Instances
	5.1 Computing an h-Prefix of I of Maximum Revenue

	5.2 The Approximation Algorithm

	References

	Reconfiguring Independent Sets in Claw-Free
Graphs

	1 Introduction
	2 Preliminaries
	3 The Equivalence of Sliding and Jumping
	4 Nonmaximum Independent Sets
	5 Resolving Cycles
	6 Summary of the Algorithm
	7 Discussion
	References

	Competitive Online Routing on Delaunay
Triangulations

	1 Introduction
	2 Routing on Delaunay Triangulations of Points in General Position
	2.1 (4π
√
3) ≈ 21.766-Competitive Online Routing

	2.2 17.982-Competitive Online Routing
	2.3 (π(5π + 4)/4) ≈ 15.479-Competitive Online Routing

	3 (11+3
√
2)/2 ≈ 7.621-Competitive Online Routing for
Points in Convex Position

	References

	Optimal Planar Orthogonal Skyline Counting
Queries

	1 Introduction
	2 Lower Bound
	3 Skyline Counting Data Structure
	References

	B-slack Trees: Space Efficient B-Trees
	1 Introduction
	2 Related Work
	3 B-slack trees
	3.1 Relaxed B-slack trees
	3.2 Updates to Relaxed B-slack trees
	3.3 Rebalancing Steps

	4 Analysis
	5 Conclusion
	References

	Approximately Minwise Independence with Twisted Tabulation

	1 Introduction
	2 Preliminaries
	2.1 Simple Tabulation
	2.2 Twisted Tabulation

	3 Minwise for Twisted Tabulation
	3.1 Upper Bound
	3.2 Lower Bound

	References

	Separability of Imprecise Points
	1 Introduction
	2 Strong Separability
	3 Weak Separability
	3.1 Weak Separability by a Line
	3.2 Weak Separability by a Rectangle
	3.3 Approximate Weak Separability

	References

	Line-Distortion, Bandwidth and Path-Length
of a Graph

	1 Introduction and Previous Work
	2 Preliminaries
	3 Bandwidth of Graphs with Bounded Path-Length
	4 Path-Length and Line-Distortion
	5 Constant-Factor Approximation of Path-Length
	6 Approximation of Line-Distortions of AT-Free Graphs
	References

	Colorful Bin Packing
	1 Introduction
	2 Algorithms
	3 Lower Bounds
	3.1 An Asymptotic Lower Bound of 2
	3.2 A Lower Bound for Zero Size Items

	References

	Algorithms Parameterized by Vertex Cover
and Modular Width, through Potential Maximal
Cliques

	1 Introduction
	2 Minimal Separators and Potential Maximal Clique
	3 Relations to Vertex Cover
	4 Relations to Modular Width
	5 Applications
	6 Conclusion
	References

	Win-Win Kernelization for Degree Sequence
Completion Problems

	1 Introduction
	2 Degree Constraint Editing
	2.1 A Polynomial Kernel for DCE(e+) with Respect to (k, r)

	2.2 A Polynomial Kernel for DCE(e+) with Respect to r

	3 A General Approach for Degree Sequence Completion
	3.1 Fixed-Parameter Tractability of Π-DSC

	3.2 Applications

	4 Conclusion
	References

	On Matchings and b-Edge Dominating Sets:A 2-Approximation Algorithm for the 3-Edge Dominating Set Problem

	1 Introduction
	1.1 Previous Work

	1.2 Our Work

	2 Preliminaries
	3 A 2-Opt Algorithm for 2-EDS
	4 b-Opt Matchings and γb(G)
	4.1 Case of 3-EDS
	4.2 Case of b-EDS

	5 A 3-Opt Algorithm for 3-EDS
	5.1 Performance Analysis of 3-opt Algorithm for 3-EDS

	References

	Covering Problems
in Edge- and Node-Weighted Graphs

	1 Introduction
	1.1 Motivation
	1.2 Problem Definitions
	1.3 Our Results

	2 Related Work
	3 LP Relaxations
	4 Prize-Collecting EDS Problem in Trees
	5 Conclusion
	References

	Colored Range Searching in Linear Space
	1 Introduction
	1.1 Our Results
	1.2 Previous Results

	2 Colored Range Searching in Almost-Linear Space
	2.1 Color Grouping and Bucketing
	2.2 Restricted Colored Range Reporting for Buckets

	3 2D Colored Range Searching in Linear Space
	4 Dynamic Data Structures
	4.1 Updating a Bucket
	4.2 Updating Color Grouping and Point Bucketing
	4.3 Fixing Bucket Answers during a Query

	5 Open Problems

	References

	Fast Dynamic Graph Algorithms
for Parameterized Problems

	1 Introduction
	1.1 Background
	1.2 Our Contribution

	2 Notations
	3 Dynamic Graph for Vertex Cover

	4 Dynamic Graph for Cluster Vertex Deletion

	4.1 Problem Definition and Time Complexity
	4.2 Data Structure
	4.3 Algorithm

	References

	Extending Partial Representations
of Proper and Unit Interval Graphs

	1 Introduction
	2 Preliminaries and Proper Interval Graphs
	3 LP Algorithm for BoundRep with Prescribed Order
	4 Shifting Algorithm for BoundRep with Fixed Ordering
	4.1 Structural Properties of Unit Interval Representations
	4.2 The Shifting Algorithm

	5 Extending Unit Interval Representations
	References

	Minimum Tree Supports for Hypergraphs and Low-Concurrency Euler Diagrams

	1 Introduction
	2 Euler Diagrams
	3 Preliminaries
	4 Minimum Tree Supports for Labeled Hypergraphs
	5 Minimum Tree Supports for Hypergraphs
	6 Conclusion
	References

	Additive Spanners: A Simple Construction
	1 Introduction
	2 Creating a 6-Spanner
	3 Creating a 2-Spanner
	References

	Assigning Channels via the Meet-in-the-Middle Approach
	1 Introduction
	2 Yet AnotherO∗((+2)n)-Time Dynamic
Programming
	3 The Meet-in-the-Middle Speed-Up
	4 Hardness of Generalized T-Coloring

	References

	Consistent Subset Sampling
	1 Introduction
	2 Preliminaries
	3 Our Contribution
	3.1 Time-Space Trade-Offs Revisited
	3.2 Main Result

	4 Our Approach
	4.1 Intuition
	4.2 The Hash Function
	4.3 The Algorithm

	5 Applications of Consistent Subset Sampling
	6 Conclusions
	References

	Triangle Counting in Dynamic Graph Streams
	1 Introduction
	2 Preliminaries
	3 The New Approach
	3.1 The Main Idea
	3.2 The Algorithm
	3.3 Theoretical Analysis

	References

	Linear Time LexDFS on Cocomparability
Graphs

	1 Introduction
	2 Background
	3 The Algorithm
	3.1 Vertex Labelling
	3.2 Partition Refinement
	3.3 The Complete Algorithm

	4 Correctness of the Algorithm
	5 Conclusion and Open Problems
	References

	Quantum Algorithms for Matrix Products
over Semirings

	1 Introduction
	2 Preliminaries
	3 Existence Dominance Matrix Multiplication
	4 Applications: (max, min)-Product, Distance Product
	4.1 Quantum Algorithm for the (max,min)-Product
	4.2 Quantum Algorithm for the Distance Product

	References

	Ranked Document Selection
	1 Introduction and Related Work
	2 The Top-k Framework

	3 Super-Linear Space Structure
	3.1 The Basic Structure
	3.2 Query Algorithm for Document Selection
	3.3 An Enhanced Structure

	4 Linear Space Structure
	4.1 Encoding stab.countx(j)

	4.2 Encoding left.ptrx(j) and right.ptrx(j)

	4.3 Reducing Space of the Enhanced Structure

	5 Achieving O(log k) Query Time and Better

	5.1 Structure DS(δ)

	5.2 Structure for k ≤ δr+1

	5.3 Speeding Up the Enhanced Structure

	6 Hardness of an Efficient Succinct Solution
	References

	Approximation Algorithms for Hitting
Triangle-Free Sets of Line Segments

	1 Introduction
	2 Rounding the Hitting Set LP Using a Degree Based Vertex Ordering
	3 Guarding Special Sets of Segments
	3.1 Exploiting Girth 4 in the Underlying Graph
	3.2 Why GSS Escapes Alon’s 	-Net Lower Bound?

	References

	Reduction Techniques for Graph Isomorphism in the Context of Width Parameters
	1 Introduction
	2 Preliminaries
	3 Tree Decompositions and the Weisfeiler-Lehman Algorithm
	4 Tree Distance Decompositions with Connected Root Bags
	5 A Reduction from Strong Tree Width to Maximum Degree
	6 Applications to fpt Isomorphism Results
	7 Conclusion
	References

	Approximate Counting of Matchings
in (3, 3)-Hypergraphs

	1 Introduction
	2 Preliminaries
	3 Main Result and the Proof
	3.1 Proof of Theorem 2 – Sketch and Preliminaries
	3.2 The Remainder of the Proof of Lemma 3

	4 Summary, Discussion, and Further Research
	References

	Author Index

