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1 Introduction

Over the past decades, one has seen databases of ever increasing size and com-
plexity. While the increasing size is easy to measure in bytes, kilobytes or ter-
abytes, the increase in complexity is more difficult to quantify, however, it has
a very deep effect on the theory we use to reason about the data. While in
earlier days many researchers reasoned in terms of sets of similarly structured
and independent objects, today we are facing large networks of data where ev-
erything is connected directly or indirectly to everything else. Examples include
social networks, traffic networks, biological networks, administrative networks
and economic networks.

These developments have spurred a renewed interest in data storage and
knowledge extraction (answers to queries, patterns, models, ...). Three key un-
derlying challenges are the representation of the data and knowledge, managing
the computational cost of the problems which we need to solve and the statistical
challenge related to the complexity of the data.

In this contribution, I will survey these challenges from a data mining point of
view. I will argue that in order to address the current challenges it is valuable to
gain a better understanding of fundamental statistical and algorithmic properties
of large data networks and to integrate ideas from the many fields of research
that are concerned with such networks.

2 Knowledge Representation

More than 15 years ago, many datasets were transactional. They consisted of a
set of independent and separate transactions. Examples are a database of trans-
actions describing what an anonymous customer bought in a shop, a database
of molecules available to some chemical company, a set of responses to a survey,
a database of patient records of a medical doctor, etc.

However, in reality pieces of information are rarely independent. Even for the
classical example of transactions containing items bought together in a shop,
transactions are related because they featured the same customer, the same
shop staff member, the same calendar day, the same discount offer or other more
subtle relationships which may have let one transaction influence the behavior
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of a customer in another transaction. To the other extreme, in many current
big databases including social networks, economic networks, biological regula-
tory networks and traffic networks the relationships are considered the most
important part of the information. This shift in the complexity of data has two
major implications on the level of knowledge representation, in particular on
representing data and representing dependencies.

Representing Data. In the early nineties, one became aware that sets of vectors
(the so-called propositional or attribute-value representation) was not anymore
sufficient to represent datasets. The field of inductive logic programming (ILP)
[11] was the first to be successful in machine learning describing data with the
more powerful language of first order logic. In fact, first order logic is so powerful
that many problems including deduction are undecidable, and to mitigate the
computational intractability, several settings between the propositional one and
the first order logic one were explored [4]. After a while, a lot of researchers
shifted to graphs to represent data, as they hit a nice balance between expres-
sivity (being as powerful as relational databases or datalog) and computational
tractability (in the sense that most things are decidable and the computational
complexity of many tasks have been studied in the field of algorithmic graph
theory). While transactional graph mining is closely related to the learning from
interpretations setting in ILP, the learning from entailment setting was the first
one to see instances as elements of a large connected knowledgebase [3]. When
the graph mining community moved away from transactional datasets, this idea
of a global knowledgebase was revisited under the name of network analysis,
a term which is also used in the branch of statistical physics studying graphs
representing complex systems [10]. In this representation framework, networks
are graphs whose vertices represent objects (or parts thereof) and edges repre-
sent relations between them. Depending on what is most convenient, often for
theoretical purposes more simpler and abstract settings and for practical ap-
plications richer settings, one can use directed or undirected graphs, graphs or
hypergraphs, labeled or unlabeled graphs, but usually there are straightforward
transformations from the one type to the other type of graph (as illustrated e.g.
in [2]).

Representing Dependencies. A second implication of recognizing that instances
are part of a single large world is of a more statistical nature. Indeed, instances
sharing relations to the same objects in the world may not be independent
from a statistical point of view. For instance, friends may share interests, well
connected cities may share economic activity and interacting molecules may
participate in a shared biological process. In many statistical approaches it is
important to represent these dependencies, and the field of statistical relational
learning (SRL) [6] has investigated many ways to extend probabilistic models to
graph-structured databases. Such models represent explicitly dependence or in-
dependence relationships between variables using (hyper)edges, such that again
a graph is obtained. Most SRL approaches somehow assume that one can model
these statistical dependencies, or at least learn them in a reasonable way from
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data. This holds in a number of applications, to a large extent also the one
discussed below, but as Section 4 will argue sometimes things are more difficult.

A Case Study in Experimental Research. Experimental research in the field of
computational biology is a typical domain where the knowledge base integrating
domain knowledge, experimental setups and experimental results may get very
complex. Here, only a simplified illustration from the domain of protein mass
spectrometry [9] is provided.

Mass spectrometry is a technique to detect what molecules are present in a
sample (e.g. a blood sample), in the case of protein mass spectrometry one aims
at detecting the proteins in such sample. A typical experimental setup involve
a pipeline of several treatments (e.g. a typical sequence is digestion, chromatog-
raphy, ionization, fragmentation, detection). The way each step in such pipeline
transforms the sample depends on the characteristics on the instrument and its
parameter settings. Recently, there is a growing interest in modeling more pre-
cisely each of these transformations (see [5] for an illustration on the digest step).
The more accurate are such models, the more accurately one can reason about
what was in the sample at the beginning based on the output of the detection
step at the end of the pipeline.

In experimental biomedical research, one often uses mass spectrometry to
detect whether a particular protein is present in a sample or not. However,
the results of such experiments are not independent. Several proteins may be
part of a common pathway (chain of chemical reactions in the cell), and hence
detecting one protein may be correlated with detecting another protein. The
graph representing the interactions between proteins is called the regulatory
network. The closer the regulatory network relates two observed proteins, the
less statistical evidence it provides. The more unrelated the proteins are, the
more we can see them as independent evidence / indications of a particular
phenomenon of interest (e.g. a disease we want to diagnose). The better our
knowledge of this regulatory network is, the better we can assess how much
independent evidence a set of observations provide.

3 The Question of Computational Tractability

A second implication of the increasing complexity of available data is that many
tasks which were almost trivial for transactional databases get intractable for
networked data. One prototypical example is the problem of pattern matching.
The pattern matching operator which is most widely studied in the field of graph
mining is subgraph isomorphism. Unfortunately, it is an NP-complete problem
to decide whether a pattern is subgraph isomorphic to a database graph. For
transactional graph databases this was not very problematic as transactions are
usually limited in size. Moreover, for many specific applications, e.g., molecule
databases, optimized pattern mining solutions have been developed [7] exploiting
the structure of the database graphs. Unfortunately, large data networks don’t
have an easy to exploit structure and are at the same time orders of magnitude
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larger. The NP-hardness of the problem suggests that the increase in computa-
tional complexity caused by the increasing database sizes is not expected to be
compensated by the increasing computing power predicted by the law of Moore.

We therefore face the fundamental problem of making data analysis algorithms
scale well with the growing databases. Fortunately, a lot of useful inspiration is
provided by recently emerged research lines in theoretical computer science. In
particular, despite the fact that the work in theoretical computer science is not
necessarily intended for immediate applicability, we recently demonstrated that
the above mentioned pattern matching problem can be addressed to a large
extent by the use of fixed parameter tractable algorithms [8].

4 Towards a Statistical Framework

A third challenge raised by considering data in networks is of a statistical na-
ture. As explained above, a first step is to explicitly model the dependencies
between variables. However, one can argue that even when these dependencies
are modeled, the problem of learning a predictive model is still not completely
well defined, as we didn’t specify complete statistical assumptions.

To see this, let us first recall the most common statistical assumption. In
classical statistics, when learning a model on training data and then performing
predictions on unseen data, one usually makes the assumption that both the seen
and the unseen instances are drawn (independently) from a fixed (but unknown)
distribution. If one rolls a dice 1000 times and gets a 2 in 50 of these 1000 cases,
then when rolling the dice again, one expects that the result will be a 2 with
probability 0.05 because it concerns the same (clearly biased) dice. If the dice
would have been replaced by another one, there is no reason to have the same
belief.

A similar mechanism is needed for network statistics. However, it is unclear
what it means “to be drawn from the same distribution”. As an example, con-
sider the following fictitious world. Suppose that 90% of computer users use an
operating system called windows and like sunny weather over rainy weather,
while 10% of computer users use an operating system called linux and they are
nerds not caring about the weather because they are always inside. Designers of
operating systems randomly choose some delimiter to separate directory names
in paths. linux designers preferred forward slashes while the CEO of the com-
pany making windows preferred backslashes. Moreover, assume the CEO of the
company making the windows system likes sunny weather. Now, if we take a
random computer user, there is a 90% probability that he uses backslashes in
pathnames and it is equally probable he likes sunny weather. Now suppose that
a tiny change happens: the CEO of the company making windows is replaced
by a nerd not interested in the weather, and he prefers to use hash signs as
delimiter. Note that everything is still drawn from exactly the same distribu-
tion. Now, if we take a random user, will he like sunny weather and/or will he
use backslashes? The users using windows didn’t change, so they still like sunny
weather. However, they are forced now to use hash signs rather than backslashes.
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From this example we can see that in situations which are structurally iden-
tical from the point of view of data, the result can be quite different due to a
difference in the underlying process. In this specific case, we can’t distinguish
between variables which are functions of the features of individuals and vari-
ables which are functions of their connectivity. Of course, this problem would
not arise when there would be a large number of providers of operating sys-
tems. Unfortunately in the real world many networks have been shown to follow
a powerlaw distribution [1], implying there are often a few dominating “hubs”
with an exceptionally high connectivity.

Essential to any solution to this problem is to perform a more systematic
analysis of learning theory and to specify clearly under which assumptions some
prediction (generalization) effort is valid. For instance, in [12] we showed pre-
liminary results providing learning guarantees under the assumption that the
connectivity of the objects involved in an observation and the function mapping
the features of these objects on the target value are independent.

5 Conclusions

In this contribution, I argued that due to the increasing amount and more impor-
tantly the increasing complexity of data, in order to store, process and analyze
data we face challenges on the level of knowledge representation, computational
costs and statistical inference. Over the past few years, several ideas to address
these challenges have been developed, but several open problems remain.

Of particular interest is the statistical challenge. In the past, the majority of
efforts were directed at extending data mining algorithms towards graph-based
representations and making them computationally feasible. but less attention has
been payed to developing a consistent theory of statistics on graphs. It seems
plausible that integrating ideas from statistical relational learning theory and
random graph theory can further progress the field.
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