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Abstract In this work, we consider a static frictional contact problem between
a linearly elastic body and an obstacle, the so-called foundation. This contact is
described by a normal compliance condition of such a type that the penetration is
restricted with unilateral constraint. The friction is modeled with a nonmonotone
law. In order to approximate the contact conditions, we consider a regularized
problem wherein the contact is modeled by a standard normal compliance condition
without finite penetration. Next, we present a convergence result between the
solution of the regularized problem and the original problem. Finally, we provide a
numerical validation of this convergence result. To this end we introduce a discrete
scheme for the numerical approximation of the frictional contact problems.

1 Introduction

The aim of this paper is to study frictional contact problems in which the contact is
modeled with normal compliance of such a type that the penetration is restricted
with unilateral constraint. In a physical point of view, this penetration can be
assimilated to the flattening of the asperities on the contact interface. Furthermore,
the friction is modeled with a nonmonotone law in which the friction bound depends
on the tangential displacement, the penetration, and the size of the asperities.
The behavior of the material is modeled with a linear elastic constitutive law. In
the present paper we consider two frictional contact problems. The first problem
is characterized by normal compliance in which the penetration is restricted by
unilateral constraint and the second problem represents a regularization of the first
problem by considering penetrations without restriction.
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Our interest in this paper is to present the convergence of the solution of the
regularized problem with nonmonotone friction to the solution of the original
problem with normal compliance, finite penetration, and nonmonotone friction.
After, we provide numerical simulations which illustrate the mechanical behavior
of the contact model and the numerical validation of the convergence result.

The rest of the paper is structured as follows. In Sect. 2 we present the classical
formulation of the contact problems, the variational formulation of the problems,
the existence of the weak solution of the regularized problems, and the convergence
result. Finally, in Sect. 3 we present the numerical solution of the problems and
we provide some numerical simulations on an academic two-dimensional example
including a numerical validation of the convergence result.

2 Mechanical Problems and Variational Formulations

In this section we describe the model for the nonmonotone frictional contact with
normal compliance and finite penetration as well as a family of auxiliary models
used for its approximation. The physical setting is as follows. A linearly elastic body
occupies an open bounded connected set ˝ � R

d (d � 3 in applications) with a
Lipschitz boundary � that is partitioned into three disjoint parts � 1, � 2, and � 3

with �1, �2, and �3 being relatively open, and meas .�1/ > 0. The body is clamped
on �1 and thus the displacement field vanishes there. A volume force of density f0

acts in ˝ and a surface traction of density f2 acts on �2. The body is in frictional
contact with an obstacle on �3. We consider H D L2.˝/d D f u D .ui / j ui 2
L2.˝/ g, Q D f � D .�ij / j �ij D �j i 2 L2.˝/ g; H1 D f u D .ui / j ".u/ 2 Q g
et Q1 D f � 2 Q j Div � 2 H g.

The classical formulation of the frictional contact problem considered is the
following.

Problem. PM . Find a displacement field u W ˝ ! R
d and a stress field � W ˝ !

S
d such that

� D E ".u/ in ˝; (1)

Div � C f0 D 0 in ˝; (2)

u D 0 on �1; (3)

�� D f2 on �2; (4)

�� C p.u�/ � 0; u� � g � 0; .�� C p.u�//.u� � g/ D 0 on �3; (5)

j�� j � N.u�/�.ju� j/ if u� D 0;

��� D N.u�/�.ju� j/ u�ju� j if u� ¤ 0;
on �3: (6)
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Condition (5) was first introduced in [1] and it was used in various papers, see [2]
and the references therein where p is the compliance function. Condition (6) was
introduced in [3] and N.u�/�.ju� j/ represents the magnitude of the limiting friction
traction at which slip begins. In this case, the friction coefficient � depends on the
tangential displacement ju� j and the magnitude of the friction bound depends also
on the penetrations and the size of the asperities via the function N defined by

N.x; �/ D

8
ˆ̂
<

ˆ̂
:

0 for � � 0;

S
�

g.x/
for � 2 .0; g.x//;

S for � � g.x/:

(7)

In the above formula the value S � 0 is a given value. Next we define the
approximate problems corresponding to Problem PM . Let n 2 N.

Problem. Pn
M . Find a displacement field un W ˝ ! R

d and a stress field �n W ˝ !
S

d such that (1)–(4) and (6) hold for u D un and � D �n, and

��n
� 2

8
ˆ̂
<

ˆ̂
:

fp.un
�/g if un

� < g;

Œp.g/; p.g/ C nc2� if un
� D g;

fp.g/ C nc2 C nc3.un
� � g/g if un

� > g;

on �3: (8)

In (8) c2 and c3 are arbitrary nonnegative constants such that c2 C c3 > 0.
Proceeding in a standard way, we obtain the following variational formulations

of Problems PM and Pn
M . We consider V D fv 2 H1 j v D 0 on �1g, K D fv 2

V; v� � g.x/ on �3g, B W V ! V � tel que hBu; vi D .E ".u/; ".v//Q and f the
element of V 0 such that hf; vi D R

˝
f0 � v dx C R

�2
f2 � v d � .

Problem. PV . Find the displacement field u 2 K and the friction density �� 2
L2.�3/

d such that for all v 2 K we have

hBu � f; v � ui C
Z

�3

p.u�/.v� � u�/ d � �
Z

�3

�� � .v� � u� / d �; (9)

with � �� 2 N.u�/@j� .u� / a:e: on �3 (10)

where function j� W Rd ! R is defined by

j� .	/ D
Z j	j

0

�.t/ dt; (11)

then under some assumptions, see [3] we can prove that the conditions (6) are
equivalent to the subdifferential inclusion (10).

Problem. Pn
V . Find the displacement field un 2 V , friction density �n

� 2 L2.�3/
d

and normal stress �n
� 2 L2.�3/ such that for all v 2 V we have
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hBun � f; vi D
Z

�3

�n
� � v� C �n

� v� d �; (12)

with � �n
� 2 N.un

�/@j� .un
� / a:e: on �3;

and � �n
� 2 Np.un

�/ C @j n
� .un

�/ a:e: on �3:

Where j n
� .x; �/ D

(
0 if � � g.x/;

nc2� C nc3

2
.� � g.x//2 if � > g.x/;

and Np W �3 � R ! R such that Np.x; s/ D
(

p.s/ for s � g.x/

p.g.x// for s > g.x/:

Theorem 2.1. Under some assumptions, see [3], Problem Pn
V has a solution for

every n 2 N.

Theorem 2.2. Let .un; �n
� ; �n

� / be a solution of Problem Pn
V , then under some

assumptions, see [3], for a subsequence, we have un ! u weakly in V , �n
� ! ��

weakly in L2.�3IRd /, where .u; �� / is a solution of Problem PV .

3 Numerical Solution

The numerical strategy presented in this section is based on a sequence of convex
programming problems; more details can be found in [4]. We consider some
materials for the discretization step. Let ˝ a polyhedral domain, fT hg a regular
family of triangular finite element partitions of ˝. The space V is approximated by
the finite dimensional space V h � V of continuous and piecewise affine functions,
that is,

V h D f vh 2 ŒC.˝/�d W vhjT 2 ŒP1.T /�d 8 T 2 T h;

vh D 0 at the nodes on �1 g;

where P1.T / represents the space of polynomials of degree less or equal to one
in T . For the discretization of the normal contact terms, we consider the spaces
Xh

� D f vh
�j�3

W vh 2 V h g; Xh
� D f vh

� j�3
W vh 2 V h g equipped with their usual

norm. Let us consider the discrete spaces of piecewise constants Y h
� � L2.�3/ and

Y h
� � L2.�3/ related, respectively, to the discretization of the normal stress ��

and the friction density �� . We also introduce the function ' W Xh
� ! .�1; C1�

and the operator L W Xh
� ! Y h

� defined by

'.uh
�/ D

Z

�3

IR
�

.uh
� � g/ d�; 8 uh

� 2 Xh
� ;
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L W Xh
� ! Y h

� hLuh
�; vh

�iY h
� ;Xh

�
D

Z

�3

p.uh
�/vh

� d� 8 uh
�; vh

� 2 Xh
�

where IR
�

represents the indicator function of the set R� D .�1; 0�.
The normal compliance condition with finite penetration (5) leads to the

following discrete subdifferential inclusion

��h
� 2 @'.˘h

� uh
�/ C L˘h

� uh
� in Y h

� :

The friction condition (6) leads to the following discrete subdifferential inclusion

��h
� 2 N.j˘h

� uh
� j/�.j˘h

� uh
� j/@j˘h

� uh
� j in Y h

� ;

where ˘h
� W Xh

� ! Y h
� and ˘h

� W Xh
� ! Y h

� represent, respectively, the boundary
interpolation operators from Xh

� to Y h
� and from Xh

� to Y h
� (see [5]).

The numerical solution of the nonsmooth nonconvex variational problem PV is
based on the following iterative algorithm.

Let 
 > 0 and u.0/ be given:

Then; for k D 0; 1 : : : ;

Problem PVh
C
: Find a displacement field uh;.kC1/ 2 Vh;

a contact stress �h;.kC1/
� 2 Y h

� and a friction stress field �h;.kC1/
� 2 Y h

�

such that; for 8 vh 2 V h

hBuh;.kC1/ � f; vhi D
Z

�3

�h;.kC1/
� vh

� d � C
Z

�3

�h;.kC1/
� � vh

� d �

with � �h;.kC1/
� 2 @'.˘h

� uh;.kC1/
� / C L˘h

� uh;.kC1/ on �3

and � �h;.kC1/
� 2 N.j˘h

� uh;.k/
� j/�.j˘huh;.k/

� j/@j˘h
� uh;.kC1/

� j on �3

until kuh;.kC1/ � uh;.k/k � 
kuh;.k/k
and k�h;.kC1/ � �h;.k/kL2.�3/d � 
k�h;.k/kL2.�3/d

Here, k represents the index of the iterative procedure. In Problem PV h
C

the discrete

stress �h on the contact boundary �3 can be viewed as a Lagrange stress multiplier.
This numerical strategy leads to the solution of a nonsmooth convex problem
PV h

C
at each iteration k. For the numerical treatment of the nonsmooth convex

Problem PV h
C

we use the penalized method for the normal compliance contact term
combined with the augmented Lagrangean approach for the unilateral condition and
Coulomb friction law. For details concerning this numerical treatment see [3].
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Fig. 1 Initial configuration of the two-dimensional example

Numerical Example. We consider the physical setting depicted in Fig. 1. There,
˝ D .0; L1/ � .0; L2/ � R

2 with L1; L2 > 0 and

�1 D f0g � Œ0; L2�; �2 D .fL1g � Œ0; L2�/ [ .Œ0; L1� � fL2g/; �3 D Œ0; L1� � f0g:

The domain ˝ represents the cross section of a three-dimensional deformable body
subjected to the action of tractions in such a way that a plane stress hypothesis is
assumed. On the part �1 D f0g � Œ0; L2� the body is clamped and, therefore, the
displacement field vanishes there. Vertical tractions act on the part Œ0; L1� � fL2g
of the boundary and the part fL1g � Œ0; L2� is traction free. No body forces are
assumed to act on the body during the process. The body is in frictional contact
with an obstacle on the part �3 D Œ0; L1� � f0g of the boundary.

We model the material’s behavior with a constitutive law of the form (1) in which
elasticity tensor E satisfies

.E �/˛ˇ D E�

1 � �2
.�11 C �22/ı˛ˇ C E

1 C �
�˛ˇ; 1 � ˛; ˇ � 2;

where E is the Young modulus, � the Poisson ratio of the material, and ı˛ˇ denotes
the Kronecker symbol. The friction is modeled by a nonmonotone law (6) in
which the friction bound N.u�/�.ju� j/ depends on the depth of the penetration
u� and on the tangential displacement ju� j. For the simulations, the function N W
R ! R

C given in (7) is taken. Let us also consider the following friction coefficient
� W Rd ! R:

�.ju� j/ D .a � b/ � e�˛ju� j C b; (13)
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g=0.04mg=0m

Fig. 2 Deformed meshes and frictional contact forces for g D 0 m and g D 0:04 m

with a; b; ˛ > 0, a � b. For the computation below we use the following data:

L1 D 2m; L2 D 1m;

E D 1000N=m2; � D 0:3;

f0 D .0; 0/N=m2; f2 D
�

.0; 0/ N=m onf2g � Œ0; 1�;

.0; �300 t/ N=m onŒ0; 2� � f1g;
a D 1:5; b D 0:5; ˛ D 100; S D 1N; p.u/ D c1uC; c1 D 100;

stopping criterion W 
 D 10�6:

Our results are presented in Figs. 2, 3, and 4 and are described in what follows. First,
in Fig. 2, the deformed configuration as well as the frictional contact forces is plotted
both in the case g D 0 m and g D 0:04 m, which represent, respectively, the case
with a classical signorini unilateral contact and the case with normal compliance,
finite penetration, and unilateral constraint.

In Fig. 3 we present the convergence of solution of problem Pn
V h to the solution

of problem PV h . More precisely, we plot four deformed meshes and the associated
frictional contact forces at four steps of convergence, for n D 10; 100; 103; 104 .
One can see that for n D 10 all the contact nodes are in strong penetration contact,
whereas at n D 104 the contact nodes are into an admissible finite penetration, since
the complete flattening of the asperities of size g D 0:04 m was reached.

For the numerical convergence we denote by .uh
n; �h

n / and .uh; �h/ the discrete
solution of the contact problems Pn

V h and PV h , respectively. The numerical
estimations of the difference

kuh
n � uhkV C k�h

n � �hkQ;

for various values of the parameter n, are presented in Fig. 4. It results from here that
this difference converges to zero when n tends toward infinity, which represents a
numerical validation of the theoretical convergence result obtained in Theorem 2.2.
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n=100n=10

n=103 n=104

Fig. 3 Deformed meshes and frictional contact forces for n D 10, n D 100, n D 103, and
n D 104

1 10 100 1000 10000 1e+05 1e+06 1e+07 1e+08
n

1e-06

1e-05

0,0001

0,001

0,01

0,1

1

10

100

||u
nh  
- 

uh ||
V

Fig. 4 Numerical validation of the convergence result in Theorem 2.2
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