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Abstract In this paper, we study global optimal solutions of minimizing a non-
convex quadratic function subject to a sphere constraint. The main challenge is
to solve the problem when it has multiple global solutions on the boundary of
the sphere, which is called hard case. By canonical duality theory, a concave
maximization problem is formulated, which is one-dimensional and without duality
gaps to the primal problem. Then sufficient and necessary conditions are provided to
identify whether the problem is in the hard case or not. A perturbation method and
associated algorithms are proposed to solve hard-case problems. Theoretical results
and methods are verified by numerical examples.
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1 Introduction

In mathematical programming, the problem of minimizing a nonconvex quadratic
function over a sphere constraint is known as the trust region subproblem, which
arises in trust region methods [1, 2]. Here, we formulate it as

.P/ minfP.x/ D xT Qx � 2f T x j x 2 Xag (1)

where the given matrix Q 2 R
n�n is assumed to be symmetric, f 2 R

n is a given
vector, and the feasible region is defined as

Xa D fx 2 R
n j kxk � rg ; (2)
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in which r is a positive real number and kxk D kxk2 represents `2 norm in R
n. In

literatures, two types of similar problems are also discussed: one considers a general
quadratic constraint, i.e. the convexity is removed [3, 4]; the other one is equipped
with a two-sided (lower and upper bound) quadratic constraint [5, 6].

It is proved that the problem (P) possesses hidden convexity, i.e. it is actually
equivalent to a convex optimization problem [5]. Thus, if the vector Nx is a solution
of (P), there exists a Lagrange multiplier N� such that besides the KKT conditions

.Q C N�I/ Nx D f ; k Nxk � r; N� � 0; N�.k Nxk � r/ D 0; (3)

we also have [7]

Q C N�I � 0; (4)

which demonstrates the hidden convexity. If we let �1 be the smallest eigenvalue of
the matrix Q, from conditions (3) and (4), it is true that N� � maxf0; ��1g. If the
problem (P) has no solution on the boundary of Xa, then Q must be positive definite
and kQ�1f k < r , which leads to N� D 0. While if (P) has a solution on the bound-
ary of Xa and .QC N�I/ � 0, we have k.QC N�I/�1f k D r . In this case, the multi-
plier N� can be easily found. However, if the solution Nx is located on the boundary of
Xa and det.Q C N�I/ D 0, this situation is the so-called hard case (see [8]), which
leads to numerical difficulties [9–13]. As pointed in [9,12–14], the hard case always
implies that f is perpendicular to the subspace generated by all the eigenvectors
corresponding to �1. We will show by Theorem 3 in this paper that this condition
is only a necessary condition for the hard case. Many methods have been proposed
for solving this spherical constrained quadratic minimization problem, especially
focusing on the hard case. They include Newton type methods [8, 15], methods
recasting the problem in terms of a parameterized eigenvalue problem [12, 13],
methods sequential searching Krylov subspaces [14,16], semidefinite programming
methods [9, 11], and the D.C. (difference of convex functions) method [17].

The canonical duality theory was developed from Gao and Strang’s original
work [18] for solving the nonconvex/nonsmooth variational problems. It is a
powerful methodological theory which has been used successfully for solving a
large class of difficult problems (nonconvex, nonsmooth or discrete) in global
optimization (see [19, 20]) within a unified framework. This theory is mainly
comprised of (1) a canonical dual transformation, which can be used to reformulate
nonconvex/discrete problems from different systems as a unified canonical dual
problem without duality gaps; (2) a complementary-dual principle, which provides
a unified analytical solution form in terms of the canonical dual variable; and (3) a
triality theory, which can be used to identify both global and local extrema.

The goal of this paper is to apply the canonical dual approach to find global
solutions for the problem (P), especially when it is in the hard case. We first show
in the next section that the canonical dual problem is canonically (i.e., perfectly)
dual to .P/ in the sense that both problems have the same set of KKT solutions.
Then sufficient and necessary conditions are provided for identifying global optimal
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solutions. In Sect. 3, a perturbation method is proposed for problems in the hard
case. Numerical results are presented in Sect. 4. The paper is ended with some
conclusion remarks.

2 Canonical Dual Problem

Let Sa D f� 2 R j � � 0; detG .�/ ¤ 0 g, where G .�/ D Q C �I . The canonical
dual function P d W Sa ! R is defined by

P d .�/ D �f T G .�/�1f � r2�; (5)

and the stationary canonical dual problem [21] is defined by

stafP d .�/ j � 2 Sag: (6)

Theorem 1 (Analytical Solution and Complementary-Dual Principle [20, 22]).
The problem (6) is canonically dual to the problem (P) in the sense that if N� 2 Sa

is a critical point of P d .�/, then Nx D G a. N�/�1f is a KKT point of the primal
problem (P), and we have P. Nx/ D P d . N�/.

Here, we focus the discussion on global optimal solutions and define the
canonical dual problem to .P/ as the following maximization problem:

.Pd / maxfP d .�/ j � 2 SC
a g; (7)

where SC
a D f� 2 Sa j G .�/ � 0g.

Theorem 2 (Global Optimality Condition [20, 22]). If N� 2 SC
a is a critical

point of P d .�/, then N� is a global maximal solution of the problem (Pd ) and
Nx D G . N�/�1f is a global minimal solution of the primal problem (P), i.e.
P. Nx/ D minx2Xa P.x/ D max

�2SC
a

P d .�/ D P d . N�/.

According to the triality theorem [22, 23], the global optimality condition is
called canonical min–max duality. Similar results are also discussed by Corollary
5.3 in [6] and Theorem 1 in [11].

By the symmetry of the matrix Q, there exist diagonal matrix ƒ and orthogonal
matrix U such that Q D UƒU T . The diagonal entities of ƒ are the eigenvalues of
the matrix Q and are arranged in nondecreasing order, �1 D � � � D �k < �kC1 �
� � � � �n: The columns of U are corresponding eigenvectors. Let Of D U T f .

Theorem 3 (Existence Conditions [24]). Suppose that for any given symmetric
matrix Q 2 R

n�n and vector f 2 R
n, �i and Ofi are defined as above. The canonical

dual problem .Pd / has a unique solution N� 2 .��1; C1/ if and only if either
Pk

iD1
Of 2
i ¤ 0 or

Pn
iDkC1

Of 2
i

.�i ��1/2 > r2. If �1 � 0, Nx D G . N�/�1f is a unique
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global solution of the problem (P). Moreover, given that (Pd ) has no solutions in
.��1; C1/, the problem .P/ has exactly two global solutions if the multiplicity of
�1 is k D 1 and infinite number of solutions if k > 1.

Generally speaking, the case that the canonical dual problem .Pd / has no critical
point in SC

a does not imply that the problem .P/ is in the hard case. For example,
if �1 > 0, i.e. the matrix Q is positive definite, .Pd / may have no critical point in
SC

a D Œ0; C1/. But, the matrix G is not singular and therefore, the problem is not
in the hard case. If �1 � 0, the hard case of .P/ is equivalent to that .Pd / has no
critical point in SC

a D .��1; C1/. In this case, P d .��1/ D supfP d .�/j � 2 SC
a g.

The theorem can also be stated equivalently as: If �1 � 0, the nonconvex problem

.P/ is in the hard case if and only if
Pk

iD1
Of 2
i D 0 and

Pn
iDkC1

Of 2
i

.�i ��1/2 � r2.
The first condition indicates that a problem could be in the hard case only when
the coefficient f is perpendicular to the subspace generated by eigenvectors of the
smallest eigenvalue. The second one adds that if the norm of f is relative small,
comparing to the radius r and differences between the smallest eigenvalue and all
other eigenvalues, the hard case would happen.

3 Perturbation Methods

In order to reinforce the existence conditions, a perturbation
Pk

iD1 ˛iU i to f with
parameters ˛ D f˛i gk

iD1 ¤ 0 is introduced. Let p D f C Pk
iD1 ˛iU i and Op D

U T p. The perturbed problem is

.P˛/ minfP˛.x/ D xT Qx � 2pT x j x 2 Xag: (8)

It is true that the existence condition,
Pk

iD1 Op2
i ¤ 0, holds for the perturbed problem.

Theorem 4. [24] Suppose that �1 � 0, there is no critical point of P d .�/ in SC
a ,

and Nx� is the optimal solution of the problem (P˛). Then, there is a global solution
of the problem (P), denoted as Nx, which is on the boundary of Xa and, for any " > 0,
if the parameter ˛ satisfies

k˛k2 � .�2 � �1/2

 

r2 �
nX

iDkC1

Of 2
i

.�i � �1/2

!

.1=
p

2.1 � cos."=r// � 1/�2; (9)

we have k Nx� � Nxk � ".

Actually, if the perturbation parameter ˛ is properly chosen, each solution of
the problem (P) can be approximated. When the multiplicity of �1 is equal to
one, as stated in Theorem 3, there are exactly two global solutions. In this case,
˛ becomes a scalar and has exactly two possible directions, which are mutual
opposite and, respectively, lead to the two global solutions. For general cases, there
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may be infinite number of global solutions for the problem (P), and we can show
that between solutions of the problem (P) and directions of ˛ there is a one-to-one
correspondence [24].

4 Numerical Results

Based on the perturbation method discussed in the previous section, a canonical
primal-dual algorithm is developed [24], which is matrix inverse free and the
essential cost of calculation is only the matrix-vector multiplication.

One hundred examples are randomly generated, containing 50 examples of the
general case and 50 examples of the hard case. Both cases have ten examples for
dimensions of 500, 1,000, 2,000, 3,000, and 5,000. All elements of the coefficients,
Q, f and r , are integer numbers in Œ�100; 100�. For each example of the hard
case, in order to make f can be easily chosen, we use a matrix Q of whom
the multiplicity of the smallest eigenvalue is equal to one. Then, the vector f

is constructed such that it is perpendicular to the eigenvector of the smallest
eigenvalue, and a proper radius r is selected such that the existence conditions are
violated.

For the hard case, a perturbation ˛U 1 is added to the vector f , where U 1 is
the eigenvector of the smallest eigenvalue, and two values of ˛, 1e�3 and 1e�4,
are tried. The algorithm is implemented on Matlab 7.13, which was runned in the
platform with a Linux 64-bit system and a quad-core CPU.

Results are shown in Tables 1, 2, 3, and 4, and they contain the number of
examples which are successfully solved (Succ.Solv.), the distance of the optimal
solution to the boundary of the sphere (Dist.Boun.), the number of iterations in
Algorithm: Main (Numb.Iter.) and the running time (in second) of the algorithm
(Runn.Time). The values in the columns of Dist.Boun., Numb.Iter. and Runn.Time
are averages of the examples successfully solved. We compare the results of the
algorithm adopting “left division” and that of the algorithm adopting “quadprog” in
the same table, where LD denotes “left division” and QP denotes “quadprog.”

We can see that the examples are solved very accurately with error allowance
being less than 1e-09. The failure in solving some examples is due to “left division”

Table 1 General case and ˛ D 1e � 3

Succ.Solv. Dist.Boun. Numb.Iter. Runn.Time.
Dim LD QP LD QP LD QP LD QP

500 10 10 4:716e�09 5:245e�09 28:9 28:6 0:53 1:29

1,000 10 10 4:261e�09 3:974e�09 27:1 27:5 1:67 6:25

2,000 10 10 3:211e�09 3:822e�09 28:2 27:8 6:52 15:23

3,000 10 10 5:674e�09 5:221e�09 26:1 26:4 20:90 72:43

5,000 10 10 5:422e�09 3:873e�09 28:6 28:5 71:68 170:34
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Table 2 General case and ˛ D 1e � 4

Succ.Solv. Dist.Boun. Numb.Iter. Runn.Time.
Dim LD QP LD QP LD QP LD QP

500 10 10 4:532e�09 4:464e�09 28:9 28:9 0:43 1:16

1,000 10 10 3:849e�09 5:931e�09 27:4 27:1 1:47 6:08

2,000 10 10 2:648e�09 2:872e�09 27:9 28:5 6:26 15:82

3,000 10 10 5:299e�09 5:137e�09 26:2 26:2 20:15 73:60

5,000 10 10 3:188e�09 4:005e�09 28:7 28:5 65:71 171:92

Table 3 Hard case and ˛ D 1e � 3

Succ.Solv. Dist.Boun. Numb.Iter. Runn.Time.
Dim LD QP LD QP LD QP LD QP

500 10 10 4:340e�09 6:297e�09 36:0 34:9 0:48 1:11

1,000 10 10 4:253e�09 4:904e�09 34:6 34:9 1:54 3:54

2,000 10 10 2:808e�09 4:255e�09 35:9 35:8 7:15 15:11

3,000 9 10 5:479e�09 4:466e�09 34:0 35:0 19:41 36:01

5,000 10 10 3:755e�09 4:705e�09 35:2 35:5 74:79 121:41

Table 4 Hard case and ˛ D 1e � 4

Succ.Solv. Dist.Boun. Numb.Iter. Runn.Time.
Dim LD QP LD QP LD QP LD QP

500 7 9 2:503e�09 4:488e�09 39:6 40:6 0:51 1:36

1,000 9 9 3:148e�09 4:482e�09 37:4 38:3 1:56 3:81

2,000 5 9 8:668e�09 5:785e�09 38:6 42:6 7:36 17:95

3,000 5 10 6:003e�09 3:997e�09 38:4 40:6 20:43 41:06

5,000 8 10 4:748e�09 2:814e�09 37:8 38:8 72:72 131:51

and “quadprog” being unable to handle very nearly singular matrices. For general
cases, all the examples can be solved within no more than 30 iterations, while
for hard cases, the number of iterations is around 40. From the running time, we
notice that our method is capable to handle very large problems in reasonable time.
The algorithms using “left division” and “quadprog” have similar performances in
the accuracy and the number of iterations. The one using “left division” needs much
less time than that of the one using “quadprog”, but “quadprog” is able to solve
more examples successfully.

5 Conclusion Remarks

We have presented a detailed study on the quadratic minimization problem with
a sphere constraint. By the canonical duality, this nonconvex optimization is
equivalent to a concave maximization dual problem over a convex domain SC

a ,



Canonical Dual Approach for Minimizing a Nonconvex Quadratic Function. . . 155

which is true also for many other global optimization problems (see [25–31]). Based
on this canonical dual problem, sufficient and necessary conditions are obtained for
both general and hard cases. In order to solve hard-case problems, a perturbation
method and the associated algorithm are proposed. Numerical results demonstrate
that the proposed approach is able to handle the problem effectively. Combining
with the trust region method, the results presented in this paper can be used to solve
general global optimizations.
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