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�Introduction

A clinical trial is any form of planned experiment in medicine, which involves 
patients and is designed to elucidate the most appropriate treatment for future 
patients with a given medical condition. In the randomized clinical trial (RCT), the 
subjects are randomly assigned to two or more healthcare interventions. The results 
from this limited sample of patients are exploited to get insight about what treat-
ment should be given in the general population of patients. In the famous pyramid 
of evidence-based medicine (see, e.g., Chapter 2 of [1]), the RCT scores the 
second highest (immediately below meta-analyses of RCTs) with respect to the 
hard evidence it provides about the tested intervention. In fact, the RCT is the only 
single study design which allows the researcher to draw causal relationships between 
a risk factor (absence or presence of experimental treatment) and outcome (improve-
ment of the patient’s condition).

RCTs have been widely used in health care starting only in the second half of the 
twentieth century with the British Medical Research Council trial of streptomycin 
for treatment of tuberculosis as the landmark study [2]. However, despite the inher-
ent strength of the RCT, its conclusions are only to be trusted when it is set up and 
conducted properly. In this chapter, we review the essential concepts, steps in 
setting up, conducting, analyzing, and reporting as related to the RCT.
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The National Institutes of Health (NIH) classifies the trials into six different 
types: (1) prevention trials, which aim to prevent people from disease via, e.g., life-
style changes; (2) screening trials to detect, e.g., diseases; (3) diagnostic trials, which 
look for better diagnostic procedures; (4) treatment trials to test experimental treat-
ments based on drugs, surgical techniques, etc.; (5) quality-of-life trials, which test 
new strategies to improve the quality of life of patients; and (6) compassionate use 
trials that offer experimental (but not yet approved) therapeutics to patients for whom 
there is no effective therapy and who have no other realistic options. In this chapter, 
we focus on drug treatment trials in rheumatology, but most of the topics discussed 
apply also to the other types of interventional studies. Furthermore, what we discuss 
is not limited to rheumatology.

�Phases of Clinical Research

Drug research is typically classified into the following stages:

•	 Preclinical phase: These are studies on animals to provide Information about    
efficacy, toxicity, and pharmacokinetics.

•	 Phase 0: This is to find out whether the drug behaves as expected. Subtherapeutic 
doses are administered to a small number of people (10–20 subjects).

•	 Phase I (Is the drug safe?): These are dose-ranging studies to find the maximally 
tolerated dose on healthy volunteers or patients (between 20 and 100 subjects), 
often done in an adaptive manner. In addition, initial information on adverse events 
is collected, together with pharmacokinetics and pharmacodynamics parameters.

•	 Phase II (Does the drug work?): This is about testing the drug on about 100–300 
patients to obtain a better idea of efficacy and safety. This phase determines 
whether one should move on to phase III studies and are referred to as “proof of 
concept” studies.

•	 Phase III (Is the drug better than what is on the market?): Here, the formal testing 
of the therapeutic dose of the drug on patients takes place, involving typically at 
least 500–1,000 patients. This phase is decisive for the registration of the drug by 
regulatory agencies like the U.S. Food and Drug Administration (FDA, http://www.
fda.gov/) and European Medicines Agency (EMEA, http://www.emea.europa.eu/).

•	 Phase IV (Are there other uses of/problems with the drug?): These are postmar-
keting surveillance studies to determine infrequent adverse events.

•	 Phase V: This phase is about translational research and is done on already col-
lected data.

Sometimes, a further subdivision into phases IIa, IIb, IIIa, IIIb, etc. is made [3]. In 
[4] phase 0 to phase II, trials are referred to as learning (or exploratory) phase trials, 
while phase III trials are called confirmatory (also pivotal). Nowadays, there is a trend 
to shorten the entire regulatory process of an experimental drug by combining, espe-
cially, phase II and phase III trials in the so-called adaptive designs [5]. From above, 
it is evident that the aims are different in the different phases of clinical research. The 
topics discussed in this chapter primarily concern phase II and III trials.
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�Asking the Appropriate Scientific Question

A well-formulated scientific question is an essential condition for a successful clini-
cal trial. While it sounds almost as an obvious requirement, in practice, there is 
always the temptation to verify a great variety of (definitely interesting) clinical 
hypotheses in one RCT. There is now overwhelming evidence that the identification 
of an unambiguous primary scientific question has enormous benefits for all aspects 
of the trial. Less important research questions (but still within the scope of the trial) 
can then be classified as secondary questions. By focusing the design and imple-
mentation of the trial to address the needs of the primary question, one maximizes 
the chances of obtaining a definitive answer. Obviously, the nature of the primary 
and secondary questions depends on the phase of the trial.

The general principles of formulating scientific questions for RCTs of all phases 
are described below using the PICO system (http://www.usc.edu/hsc/ebnet/ebframe/
PICO.htm), which specifies that a “well-built” question should identify: (1) the 
population, (2) the intervention and control treatment, and (3) the outcome.

�The Population

A detailed description of the study population is a necessary part of the scientific 
question. The RCT population is defined by inclusion and exclusion criteria. The 
inclusion criteria specify what kind of patients one wishes to treat. For instance, the 
inclusion criteria for patients with systemic sclerosis treated with a disease-
modifying intervention might be (1) older than 18 years of age, (2) clinically appar-
ent involvement of the skin on the extremities proximal to the elbows or knees or on 
the trunk, and (3) disease duration <2 years from the first symptom; see [6]. On the 
other hand, exclusion criteria aim to reduce the heterogeneity of the population. For 
instance, an often used exclusion criterion is “drug or alcohol abuse,” but also 
“pregnant women.” In reference [6], the investigators excluded also patients with 
kidney malfunction. Exclusion criteria also address ethical considerations. For 
instance, by excluding pregnant women, embryos are not exposed to unknown risks. 
Another typical exclusion criterion is the administration of concomitant medication 
that might interfere with the trial treatments. This is to avoid adverse events origi-
nating from sources other than those from the trial treatment.

Strict eligibility criteria will make the RCT population more homogeneous, which 
in general will reduce the variability of the outcome measure and hence the neces-
sary study size. The drawback of strict criteria is that they limit the extrapolation of 
the trial results to the general patient population and thus affect the generalizability, 
also called the external validity, of the trial. For instance, by excluding pregnant 
women from the trial, no claim can be made on the efficacy and safety of the experi-
mental treatment on this subpopulation. Note also that strict eligibility criteria may 
harden patient recruitment. Therefore, establishing appropriate inclusion and exclu-
sion criteria is often a difficult process balancing between homogeneity and external 
validity. See also the section on “RCTs versus observational studies” for a further 
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discussion on external validity. Different eligibility criteria across studies with the 
same experimental treatment can throw light of the generalizability of the estimated 
efficacy and safety of the drug. However, when eligibility criteria vary wildly across 
RCTs with different experimental treatments, the comparability of the effects across 
the treatments will become difficult. In reference [6], a list of proposed guidelines for 
specifying eligibility criteria in systemic sclerosis is given.

�Choice of Intervention and Control Treatment

The choice of the interventional treatment is often quite clear from the start of the 
RCT, except for some possibly important details. Indeed, the RCT is set up to evalu-
ate the effect of that intervention. That does not, however, mean that it is a fait 
accompli. For instance, in drug trials, it may be clear what the experimental 
medication is, but it still needs to be decided what the mode of delivery (tablet, solu-
tion, intravenous, or subcutaneous injection), dose, frequency, and timing of admin-
istration of the intervention will be.

Placebo treatment is often the preferred control treatment by regulatory agen-
cies, unless there is an established accepted active treatment for the disease in 
which case it is unethical to administer a placebo treatment. It goes without saying 
that placebo treatment does not imply absence of treatment but rather that the stan-
dard care has been provided to the patient. Since standard care improves over time, 
the need for a “placebo” also evolves with time. The choice of the control (active or 
placebo) arm may impact the type of significance test; see section “Superiority and 
non-inferiority tests.”

More than one intervention or control treatment may be considered. For instance, 
in phase I dose escalation studies, patients are allocated to one of several different 
doses of a drug with the goal of identifying the dose with an optimal trade-off 
between a desired biological action and unwanted side effects. Multiple group 
designs may also arise when combinations of interventions are tested, which occurs 
in the factorial design (see section “Factorial Designs”).

�Superiority and Non-inferiority Tests

The classical statistical tests described in chapter “A review of statistical approaches 
for the analysis of data in rheumatology” aim to show that one treatment is superior 
to the other treatment, either a placebo or an active control. However, in many 
therapeutic areas, it becomes harder to improve upon current medication and one 
will be contented if the experimental drug has about the same efficacy as the con-
trol drug but shows better properties in other respects. This leads to non-inferiority 
tests explained below.
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For a long time, clinical trials were only superiority trials; namely, they were set 
up to show that the experimental (E) treatment was superior to a control (C) treat-
ment. The statistical tests used to analyze such trials are superiority tests. Recall that 
E is statistically significantly better than C at α = 0.05 when P < 0.05, or equivalently 
that the 95 % confidence interval for the true difference (or ratio, odds ratio, etc.) 
does not include zero (or one in case of a relative measure).

It is, however, increasingly difficult to come up nowadays with new drugs that 
improve upon the existing ones in efficacy. For instance, thrombolytic agents have 
been developed over the last five decades to treat patients with an acute myocardial 
infarction. The initial 30-day mortality rates (percent of patients dying within 
30 days after the onset of attack) were around 15 % but then dropped to about 6–7 % 
a decade later. It became clear that a further reduction in mortality rate may not be 
hoped for so that the focus turned into improving secondary objectives such as the 
mode of administration of the thrombolytic agent while preserving the achieved 
30-day mortality rates. This requires other types of statistical tests, i.e., equivalence 
and non-inferiority tests, which will now be illustrated via fictive examples.

An example of a superiority trial in RA could be where one aims to show that 
ΔS = 10 % more patients who go into a remission after 6 months for the experimental 
treatment E compared to the placebo control. In another RCT, the aim might be to 
show that this experimental treatment has the same efficacy as a standard control 
treatment C. However, proving that E and C are equally effective is not possible in 
classical statistics, as we discussed in chapter “A review of statistical approaches 
for the analysis of data in rheumatology”. In fact, we can only show that treatments 
are practically equivalent, say, that they differ in efficacy by at most, say, 2 %, in 
absolute value. Such a test is called an equivalence test and is used to show that 
generic drugs have similar properties as the original patented drugs. A one-sided 
version of such a test is a non-inferiority test and the associated trial a non-inferior-
ity trial. Namely, a treatment E is called non-inferior to treatment C, when it is 
either better or not much worse than C where “not much worse” is defined by the 
non-inferiority boundary here denoted as ΔNI. This value should be chosen small 
enough so that it does not create ethical difficulties. Let us assume that for the above 
RA trial, ΔNI = 2 % is a good choice. Then one way to prove non-inferiority is to 
show that the 95 % confidence interval does not include ΔNI = 2 %. Since ΔNI should 
be considerably smaller than ΔS, the required sample size with a non-inferiority 
study is often much larger than that of a superiority trial. The choice of the appropri-
ate non-inferiority boundary is often subjective and requires a balanced choice 
between ethical, practical, statistical, and regulatory considerations. This may ren-
der the comparison of non-inferiority trials with different boundaries hard. Another 
flaw of the non-inferiority trial is that there is no standard analysis set, in contrast to 
a superiority trial where the intention-to-treat population is usually the default anal-
ysis set (as discussed below in the section on “Intention-to-treat versus per-protocol 
analysis”). An illustrative example of the difference between a superiority and non-
inferiority trial can be found in [7]. Briefly, this study consists of two studies com-
paring etoricoxib 30 mg qd (ET) and celecoxib 200 mg qd (CE) to placebo (PL), 
which is the superiority part of the trial. In the second part of the trial, two studies 
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were conducted to compare the relative performance of ET and CE with a non-
inferiority design. The two randomized three-arm double-blinded clinical trials 
described in [7] each contains a non-inferiority assessment of ET versus CE for the 
treatment of osteoarthritis of the knee and hip using a time-weighted average (TWA) 
change from baseline over 12 weeks in (a) the WOMAC pain subscale (WOMACPA), 
(b) the WOMAC physical function subscale (WOMACPH), and (c) the patient 
global assessment of disease status (PGADS). All three scales are scored on a visual 
analogue scale. The experimental treatment CE was defined to be non-inferior to ET 
when the upper bound of the two-sided 95 % CIs for the difference between CE and 
ET was not more than 10  mm for the three primary endpoints WOMACPA, 
WOMACPH, and PGADS. Thus, in order that non-inferiority is shown, all three 
conditions had to be satisfied. In [7], it is shown that for the two studies, these condi-
tions were satisfied (95 % CIs entirely below upper bound), and the authors’ conclu-
sion was therefore that “etoricoxib 30 mg is comparable to celecoxib 200 mg in 
osteoarthritis.” At first glance, the authors used a tough criterion for “non-inferiority,” 
only it is not clear how they chose ΔNI = 10 mm.

We refer to [8] for a more detailed nontechnical introduction to non-inferiority 
studies, while a more technical and a broader discussion of the subject can be 
found in [9].

�Study Outcomes

The outcome, also called the endpoint, is the third component of the PICO system, 
and its characteristics determine many other aspects of the RCT. That is, the choice 
of the primary endpoint has a large impact on the size and the conduct of the study. 
Hard endpoints, such as mortality, leave no room for interpretation. However, when 
we choose for cardiac mortality, subjectivity creeps in since now the clinical judgement 
of the treating physician is required and this makes it a softer endpoint. Soft end-
points suffer from intra- and interobserver variability, and their use will therefore 
increase the necessary study size. Examples of (relatively) soft endpoints are, e.g., 
the EULAR response criteria (DAS and DAS28) and the ACR response criteria 
(ACR20, ACR50, ACR70); see also chapter “Outcome measures in rheumatoid 
arthritis.” The use of many different criteria in European and US clinical trials to 
measure the rheumatic disease outcomes makes it difficult to compare and combine 
results in a meta-analysis (chapter “Systematic reviews and meta-analyses in rheu-
matology”). This was the trigger to establish the OMERACT network in 1992 [10]. 
Through regular meetings, the network aims to improve the outcome measures in 
rheumatology.

Clinical considerations may be in conflict with statistical requirements. For 
instance, it may be clinically more relevant to take the binary endpoint remission 
defined as DAS28 <2.6. However, from a statistical viewpoint, binarizing the end-
points implies a loss of information and hence a decrease in power. In addition, a 
statistical comparison between treatments based on DAS28 measurements only at 
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the study end may suffer a lot from intersubject variability. This variability can be 
drastically reduced by taking the improvement from baseline as an endpoint instead, 
as in the ACR criteria.

Prior to the study, it may feel unconformable to bet on one endpoint, so there is often 
the temptation to select several endpoints and then to choose the one that demonstrates 
best the efficacy of the experimental treatment. However, this leads to an inflation of 
the Type I error rate as we discussed in chapter “A review of statistical approaches for 
the analysis of data in rheumatology”. An alternative approach is to make use of a 
composite endpoint, which is a clinical combination of different endpoints. Many of 
the responses in rheumatology trials are composite. Composite endpoints are also pop-
ular when the primary endpoint of interest exhibits a too low frequency, thereby 
increasing the necessary study size. An example in cardiovascular research is the binary 
composite endpoint MACE (major adverse cardiac events), which can be 0 or 1. While 
there are several definitions of MACE, the common definition is an outcome of death, 
having a myocardial infarction or a stroke. However, interpretation difficulties will 
occur when, e.g., a better result for MACE is seen under treatment A, while under treat-
ment B, mortality is lower. Finally, we note that multiple endpoints can also be com-
bined in a statistical manner (subject to the same issues as the above clinical composite 
endpoints) using a factor analysis technique; see chapter “A review of statistical 
approaches for the analysis of data in rheumatology” and [11].

Patient-centered outcomes, i.e., outcomes that represent a tangible benefit or 
harm to the patient, are especially most relevant in phase III trials. But because it 
may take too long to record the patient-centered endpoint, it might be necessary to 
choose for a surrogate endpoint, also called disease-centered outcomes. Such an 
outcome represents a measure of the disease process that is believed/hoped to be 
strongly related to a tangible patient benefit or harm. However, often such a relation 
is believed to exist purely from lower level studies, e.g., from animal studies. For 
example, in oncology, progression-free survival (PFS), which is the time to progres-
sion of the tumor, is often used in clinical trials as a surrogate outcome for overall 
survival. While there is a growing use of PFS as a primary outcome, there is no clear 
evidence of such a strong relationship (see, e.g., [12]), which therefore puts serious 
doubts on the usefulness of this outcome. We conclude that there are no specific 
statistical issues involved with using a surrogate endpoint; rather, the problem lies 
in the clinical interpretation of the study results. See also [13] for considerations on 
patient- and disease-centered outcomes.

Finally, in some studies, it may be of interest to express the benefit of an experi-
mental treatment by the whole longitudinal profile of the primary endpoint or a 
summary measure of the profile. For instance, one might be interested in the rate 
with which DAS28 decreases over time. In that case, the average profiles need to be 
compared between the treatment arms, or at least the averages of the summary mea-
sure. This requires the use of longitudinal models as we saw in chapter “A review of 
statistical approaches for the analysis of data in rheumatology”. In other studies, 
one might be interested in the time to an event. For instance, one might be interested 
in the time to remission (DAS28 <2.6). In that case, survival analysis techniques are 
required; see again chapter “A review of statistical approaches for the analysis of 
data in rheumatology”.

The Randomized Controlled Trial: Methodological Perspectives

http://dx.doi.org/10.1007/978-3-319-08374-2_2
http://dx.doi.org/10.1007/978-3-319-08374-2_2
http://dx.doi.org/10.1007/978-3-319-08374-2_2
http://dx.doi.org/10.1007/978-3-319-08374-2_2
http://dx.doi.org/10.1007/978-3-319-08374-2_2
http://dx.doi.org/10.1007/978-3-319-08374-2_2
http://dx.doi.org/10.1007/978-3-319-08374-2_2
http://dx.doi.org/10.1007/978-3-319-08374-2_2


166

�Randomization and Blinding

Random allocation of patients to treatments together with blinding enables one to 
draw a causal relationship between the administered treatment and the status of the 
patient at completion of the RCT. Randomization guarantees balance of the treat-
ment arms with respect to the recorded covariates but also to all unmeasured covari-
ates. Such a balance can never be achieved by any epidemiological study, irrespective 
of the analysis tricks used (e.g., with regression models).

Several randomization schemes are in use. The simplest randomization tech-
nique, e.g., by using a toss of a coin, is only practical for small study sizes, as in 
phase II studies, but even then, it is rarely used nowadays. Nowadays, the majority 
of phase III RCTs involve many centers often with a small number of patients from 
each center. In this case, simple randomization implies too much risk for imbalance 
in the treatment arms, and this could compromise the conclusions of the study. 
Therefore, a blocked randomization is often used in each center. Block randomiza-
tion is not a pure stochastic allocation procedure anymore, but rather allocates 
patients to treatments such that balance is created within blocks of consecutive 
patients usually sized 6 to 10. To mask the block size (to avoid the investigator can 
predict the next treatment to administer), the block size is often taken random. Note 
that any randomization procedure that allocates patients within a center is called a 
stratified randomization procedure with center as stratum.

The with adaptive randomization, also discussed in the section on “Adaptive 
designs,” the probability of allocation to one of the treatment arms may change over 
time. Minimization is an example of an adaptive allocation procedure that allocates 
subjects to treatments such that in a dynamic way, the imbalance of a set of a priori 
chosen covariates is minimized. For example, when the gender distribution is aimed 
to be balanced, the next male will be allocated to treatment B when the proportion 
of males is higher in the treatment arm A. The method is basically deterministic but 
can be given a stochastic flavor by adding a random component. Adaptive random-
ization can also be based on the response. In that case, more patients will be dynam-
ically allocated to the winning treatment arm.

Note that randomization guarantees only that there is balance between the treat-
ment groups for large samples. But, there is always the possibility of a random 
imbalance. Covariate adjustment, via using a regression model containing baseline 
covariates, can then, besides increasing the power, also remove the random imbal-
ance and thereby improve the interpretability of the results.

Further, note that it does not make sense to statistically compare two randomized 
treatment groups at baseline with P-values since at baseline the patients are only 
different in the label they received from the trialist (A or B).

In practice, patients are allocated using any of the above procedures in 
combination with an automated (computerized) allocation system connected to 
either the Internet or a telephone. For example, the interactive voice response sys-
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tem (IVRS) is a multi-language automated telephone system that allocates patients 
to different treatments, which can accommodate stratified randomization.

While randomization ensures balanced treatment arms at the start, blinding the 
treatment allocation to all parties of the RCT will avoid bias due to knowledge of 
which treatment was delivered. The terms “single blind” and “double blind” are 
often used to indicate that only the patient (single blind) or both the patient and 
clinician (double blind) are masked, but double blinding often means that basi-
cally everyone involved in the study is blinded during the conduct of the study. 
While double-blinded studies are the gold standard procedure, for some interven-
tions, any blinding may be hard to achieve. For example, suppose that two knee-
replacement surgical techniques are compared in one RCT, then blinding the 
surgeons will be impossible. On the other hand, there is a way out by appointing 
an evaluator (different from the treating surgeons) who is blinded to the adminis-
tered treatment.

�Study Designs

In this section, various designs for RCTs are discussed. Focus will be on superiority 
trials, but what is discussed equally applies to non-inferiority trials.

�Single-Center Versus Multicenter Studies

A multicenter trial is a clinical trial conducted at more than one medical center or 
clinic. Most large clinical trials, particularly phase III trials, are conducted in sev-
eral clinical research centers. The organizational aspects with single-center studies 
are considerably simpler than with multicenter studies. A simple illustration of this 
is that stratified randomization is required for multicenter studies, while simple 
randomization may readily work for single-center studies. Multicenter studies are 
recommended whenever it takes too much time for a single center to recruit the 
necessary number of patients. Such studies may also considerably increase the 
external validity of the RCT. Statistical methods for multicenter studies are some-
what more involved. While they should incorporate the stratification factor center, 
in practice, it is often and wrongly ignored. With a small number of centers, a 
Mantel-Haenszel-type test (see chapter “Methodological issues relevant to obser-
vational studies, registries, and administrative health databases in rheumatology”) 
could be used or a regression model with each center as binary covariate (called 
fixed effects model). With many centers, a mixed effects model may be used with 
center represented by a random intercept, but there is no consensus on which model 
is preferable [14].
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�Parallel-Group Versus Cross-Over Designs

Most popular is the parallel-group design whereby patients are randomly assigned 
to one of two (or more) treatment regimens and are followed up in time. It is a 
simple design, which is almost always possible to implement. The statistical analy-
sis is often also straightforward involving only standard statistical tests such as the 
chi-square test for binary outcomes, the unpaired t-test for continuous outcomes, a 
log-rank test for survival outcomes, etc.; see chapter “A review of statistical 
approaches for the analysis of data in rheumatology”.

On the other hand, in a cross-over design involving treatments A and B, each 
patient receives more than one treatment in a random order. Namely, one group of 
patients receives the treatment sequence A-B and the other group receives treatment 
sequence B-A.  More complex allocations with more switches such as ABBA, 
BABA, etc. and more than two treatment arms are possible. This design has the 
advantage over the parallel group design in that within-patient treatment compari-
sons become possible by this method. This, in turn, removes a major portion of the 
intersubject variability and therefore commonly achieves a higher power than the 
parallel-arm design (with equal number of patients recruited). However, the cross-
over design is only applicable in diseases where the patients return to their initial 
condition upon withdrawal of the study medication. This happens, for instance, 
when examining the effect of beta-blockers in treating hypertensive patients. An 
important issue with cross-over designs is that the effect of the first period treatment 
may leak into the second period and cause a carry-over effect (also called cross-over 
effect). In drug trials, this problem can be solved by inserting a washout period 
between the two treatment periods.

Cross-over designs are typically used in phase II trials, while parallel group 
designs are regularly applied in phase II and phase III studies. Both designs can be 
used in a single- and multicenter setting, but single-center cross-over studies are 
more frequent. Finally, we note that the statistical tests for the analysis of cross-over 
trials are extensions of the tests seen in chapter “A review of statistical approaches 
for the analysis of data in rheumatology” for paired data. A comprehensive treat-
ment of cross-over designs can be found in [15].

�Factorial Designs

Factorial designs aim to examine the effects of two interventions simultaneously. In 
[16], an RCT with a factorial design was set up to examine the effect of patient-
administered assessment tools for pain and disability, on the one hand, and an unsu-
pervised home-based exercise program alone, on the other hand, or their combination 
on the symptoms of osteoarthritis. In that trial, the rheumatologists were assigned to 
four groups according to the treatment given to the patient: (1) patient-administered 
assessment tools, (2) or more exercises, (3) both tools and exercises, or (4) usual 
care. The aim was to check whether exercises have an impact on the symptoms and 
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also whether the assessment tools gave a better insight to the necessary treatment to 
also reduce symptoms. In addition, it was of interest to know whether the two or 
more interventions work synergistically when combined. Factorial designs are ana-
lyzed using 2-way ANOVA approaches when the response is continuous or with 
logistic regression models for binary or ordinal responses with interaction terms 
(see chapter “Evidence-based medicine in rheumatology: how does it differ from 
other diseases?”).

�The Cluster-Randomized Design

In the abovementioned study [16], the rheumatologists and not the patients were 
randomized to treatments. In the case of the cluster-randomized design, all patients 
in a center are randomly assigned to the same treatment with the expectation that in 
another center all patients will be randomized to the alternative medication by other 
doctors. This design may be needed when it is not practical or ethical to randomize 
patients within a center, which was the case in [16]. In that study, the cluster-
randomized design was chosen because the investigators were convinced that one 
could not insist that one physician advises one patient to do physical exercises and 
not give the same advice to other patients. Therefore, each rheumatologist was to 
enroll four patients with osteoarthritis. Since the response of the four patients 
assigned to a rheumatologist is more alike than for the patients assigned to another 
rheumatologist, there is more clustering in the data as compared to what is seen in 
standard multicenter studies. This almost inevitable clustering must be taken into 
account at the design stage (increasing the sample size compared to a design with-
out clustering) and at the analysis stage. Specialized statistical methodology has 
been developed for cluster-randomized designs [17, 18] to account for the correla-
tion between outcomes within a cluster.

�Group Sequential Designs

It may be of interest for ethical and/or commercial reasons to evaluate the results of 
an RCT at an interim time. However, such interim analyses cannot be done ad hoc; 
there are statistical issues with repeated testing (multiple testing), and it would be 
impractical not to know in advance when cleaned data ready for inspection should 
be available. Regulatory authorities require indeed a correction for multiple testing. 
However, not all interim analyses deserve a statistical penalty. There are three types 
of interim analyses: (1) administrative interim analyses, (2) interim analyses for 
safety, and (3) interim analyses for efficacy. Such analyses are typically evaluated 
by an external committee called the Data Monitoring Committee (DMC) (also 
called Data and Safety Monitoring Board (DSMB)) consisting of two to four clini-
cians and one independent statistician. The purpose of an administrative interim 
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analysis is to evaluate whether the study, up to that time point, has been conducted 
according to the plan. If the number of patients enrolled has been too few, the DMC 
may suggest including more centers in the study or to relax the inclusion and exclu-
sion criteria. With an administrative interim analysis, there is no statistical penalty.

Interim analyses for safety are necessary for RCTs where there is a risk for life-
threatening adverse events. In such an interim analysis, the DMC reviews safety and 
other data (e.g., demographic data, data on past medication use, etc.) in a semi-
blinded (only the labels A and B are given, not the actual treatments) or unblinded 
manner. Again, no correction for multiple testing is required, since the treatments 
are not compared for efficacy.

Interim analyses for efficacy involve repeated statistical comparisons between 
the administered treatments with the aim to see whether the study can be stopped 
early for efficacy. A correction for multiple testing is required to avoid producing 
spurious conclusions. Correction for multiple testing is done with dedicated proce-
dures that devote at each interim analysis a part of the overall significance level α 
(often equal to 0.05) such that together they amount to α. The methods look similar 
to the Bonferroni correction, but here, they capitalize on the staggered data pre-
sented at the DMC meetings. They are therefore called group sequential designs, 
but in contrast to Bonferroni correction, their global significance level is exactly the 
a priori defined α. A group sequential design allows stopping the study when the 
results become convincing enough. In that case, the number of patients needed 
enroll will be less than originally planned. However, the originally planned (maxi-
mal) sample size will be larger with planned interim analyses because the correction 
for multiple testing inflates the sample size. Pocock’s method [19] was one of the 
first group sequential designs. The procedure specifies an equal, more stringent, 
significance level at each interim analysis, e.g., for α = 0.05 and 5 analyses (4 interim 
and one final analysis), the study can only be stopped when the P-value is smaller 
than 0.016. Nowadays, the O’Brien-Fleming [14] design is more popular. For this 
design, a very stringent significance level is used in the early part of the study mak-
ing it hard to stop early, but is then relaxed towards the end of the study. The timing 
of the repeated analyses with group sequential designs can be calendar-driven or 
event-driven; they must however be specified at the start of the study. A more flex-
ible design was proposed by Lan and DeMets [14], which allows flexible timing and 
number of analyses, called the alpha spending approach. This is now the most pop-
ular approach because of its flexibility and has been extended in various ways, e.g., 
to non-inferiority studies, to cluster-randomized designs, etc. Note that these designs 
can be also used to monitor safety.

The second type of interim analysis for efficacy checks whether there is a rea-
sonable chance that the study will be positive at the end. Such an analysis, called 
futility analysis, aims to avoid wasting financial resources in a study that has little 
chance to show a beneficial effect of the experimental treatment. The need for cor-
rection for multiple testing is, in this instance, negligible, since now the trial cannot 
be stopped when at interim the experimental arm shows much better efficacy than 
the control arm.
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�Adaptive Designs

Adaptive designs are generalizations of the group sequential designs. Examples 
of adaptive designs are (1) determination of the maximum tolerated dose in a 
phase I oncology trial, (2) adaptive randomization, (3) sample size reestimation, and 
(4) adaptive seamless designs. Below, we briefly elaborate on some of these exam-
ples but refer to [5, 20] for more details and references. Adaptive designs are some-
times referred to as flexible designs, but the latter incorporate both planned and 
unplanned features, while the first must be described in detail at the start of the 
study and must ensure that the probability for a Type 1 error is addressed.

In phase I oncology trials, there is the continual reassessment method (CRM) 
[5, 28], which is a Bayesian approach to determine the maximum tolerated dose of 
the test drug. It involves assuming a model for the relationship between the dose and 
the probability of an unacceptable side effect. The maximal dose that a new patient 
can be administered is determined via the (Bayesian posterior) probability of caus-
ing an unacceptable adverse effect.

Adaptive randomization is an allocation rule whereby the allocation probabil-
ities depend on covariate imbalance and/or response imbalance (see section 
“Randomization and blinding” for more details).

Establishing the sample size of a study is not an easy task, always prone to mis-
judgment. In section “Sample size calculations,” we show how sample size estima-
tion is done in practice and indicate possible difficulties in establishing a 
well-motivated choice. It seems reasonable to roughly guess the sample size of a 
pilot portion of the trial data and then reestimate the sample size for the whole trial 
based on this. This is done in a calibrated internal pilot design, which is a two-stage 
design with no interim testing for efficacy but only estimating the nuisance parame-
ters (say common standard deviation for an unpaired t-test) from the first-stage data. 
This approach does not necessitate a correction in the projected Type I error rate.

Traditionally, phase II and phase III trials are set up in two distinct stages. Since 
this may delay regulatory approval, statisticians have looked for ways to speed up 
the approval of experimental treatments. One way is to rapidly move from phase II 
to phase III studies, in fact in a seamless manner. This is done in an adaptive seam-
less design that combines the data of the two stages for the final analysis. For exam-
ple, one trial could consist in choosing between two doses of a drug in the first stage, 
while in the second stage, the chosen dose is compared to a control group.

Adaptive designs have recently gained a lot of popularity. However, they are con-
siderably more complex not only from a statistical viewpoint but also from an orga-
nizational viewpoint, needing a much more sophisticated clinical trial infrastructure.

�Sample Size Calculations

The sample size calculation is an essential part of any RCT. It attempts to minimize 
the risk of not detecting the aimed effect (if present) of the experimental treatment 
vis-à-vis the control treatment. Ultimately, a statistical test determines the necessary 
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sample size and is a quite technical job that most often requires a computer program. 
The computation of the sample size for a classical (superiority) unpaired t-test goes 
as follows: (1) fix the overall significance (two-sided) level α (usually = 0.05) and 
the power (at least 0.80); (2) choose the clinically relevant difference ΔS (not the 
difference that we expect but the difference that we aim for); (3) make an educated 
guess about the common standard deviation σ; and (4) the sample size in each treat-
ment arm is then the result of the equation n= t + /2n-2,a/2 2n-2,a/2

2

S
2t( ) D , with t2n-2,–/2  is 

the α/2 quantile of a t-distribution with 2n − 2 degrees of freedom.
These steps illustrate a few important things for computing the sample size:

•	 Clinicians must have a good idea of the effect they aim to show, i.e., what value 
for ΔS to choose, but they do not need to guess what the true effect might be.

•	 Extra information to perform the computations is usually required. Here, it is the 
common standard deviation. For the comparison of two proportions, it is the 
proportion of the control arm.

•	 The computation of the sample size is in general quite technical, varies from test 
to test, and usually requires a dedicated computer program.

Note that for a non-inferiority test, ΔS needs to be replaced by ΔNI and the statis-
tical test needs to be adapted accordingly. For group sequential designs, dedicated 
programs have been written not only to compute the sample size but also to compute 
the intermediate significance levels. For more complicated statistical tests, such as 
for mixed models (see chapter “A review of statistical approaches for the analysis 
of data in rheumatology”) and adaptive designs, often only a simulation computer 
program may throw light on the required study size. A comprehensive, but techni-
cal, reference for sample size calculation is given in [21].

�Intention-to-Treat Versus Per-Protocol Analysis

The eligibility criteria specify which of the screened patients will be included in the 
statistical analysis. However, during the conduct of the study, a lot of deviations 
from the initial plan may take place. For instance, it may happen that due to an 
administrative error, a patient who should have been randomized to treatment A in 
fact received treatment B, or that a patient violates the protocol (takes forbidden 
concomitant medication), or even drops out from the study, etc. What to do with 
such patients? One approach is to take in the analysis only the “pure patient popula-
tion,” i.e., only patients who strictly adhere to the instructions. This set of patients 
is called the per-protocol (PP) set and is preferred by many clinicians because it is 
believed to express best what the effect of the treatment is on the patients. That is true 
for the patients still included at the end of the study, but not necessarily for all 
patients randomized. It is rather the intention-to-treat (ITT) set that is the standard 
in RCTs. The ITT principle states that all patients who have been randomized in the 
study should be included in the analysis according to the planned treatment irre-
spective of what happened during the conduct of the trial. This principle may appear 
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logical at first but may have some unexpected implications. For instance, patients 
wrongly allocated to B will be analyzed as if they received treatment A; protocol 
violators are in the ITT analysis set, also patients dropping out the study will be part 
of the ITT population, etc. FDA and EMEA prefer the ITT analysis in a superiority 
trial, because it delivers a conservative result in case of the abovementioned prob-
lems during the conduct of the study. While the ITT principle is clear, in practice, it 
may not always be easy to implement and consequently several versions of an ITT 
analysis exist. For example, it is not immediately clear how to include patients in an 
ITT analysis with missing values on the primary endpoint. In that case, the ITT 
analysis cannot include all randomized subjects. But if some values of the primary 
response are available, then techniques for imputing missing values allow for 
including such dropouts. Statistical methods that can deal appropriately with miss-
ing data are quite important to guarantee the internal validity of the RCT, i.e., that 
the RCT estimates the true treatment effect in an unbiased manner. An imputation 
technique that was quite popular for many years but now recognized as problematic 
is the last-observation-carried-forward (LOCF) approach. This imputation tech-
nique imputes the last observed value for the missing primary outcome. For exam-
ple, suppose the total treatment period is 2 years and every 6 months the primary 
outcome is measured. Then, when a patient drops out at year 1, the imputed value 
with the LOCF method for the primary outcome at years 1.5 and 2 is equal to the 
value observed at year 1. The problem with the LOCF approach is that it imputes an 
unrealistic value for the outcome (not taking into account the natural pattern of the 
disease and/or of the curing process) and it underestimates the natural variability of 
the outcome. In [22], more appropriate imputation techniques are discussed.

In an equivalence or non-inferiority study, the ITT analysis is not the primary 
analysis anymore since the ITT analysis will bias the results and the conclusions 
towards the desired hypothesis (equivalence or non-inferiority). Because also the PP 
analysis does not guarantee to provide an unbiased estimate, regulatory agencies 
require that an ITT and a PP analysis are performed in an equivalence/non-inferiority 
RCT and that they show consistent results.

�RCT and Some Practical Aspects

The protocol is the reference manual for the RCT containing the background of the 
intervention, the reason and motivation for conducting the trial, a review of the 
phase I and phase II results, the justification of the sample size, the eligibility crite-
ria, and the primary and secondary endpoints. In addition, it contains details of the 
randomization procedure, the informed consent document, the administration of the 
interventions, etc.

Furthermore, NIH developed a document, called the Manual of Procedures (MOP) 
(http://www.ninds.nih.gov/research/clinical_research/policies/mop.htm), that trans-
forms a protocol into an operational research project that ensures compliance with 
federal law and regulations. The MOP typically describes in detail all key ingredients 
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of the conduct of the study, for instance, how data capture will be done, how the 
patients will be followed up in order to maximize data collection, etc. For example, 
a list of all eligible patients is never available at the start of an RCT, so the process 
by which potential trial participants are identified needs to be explicitly stated at the 
start. In practical terms, this implies that it needs to be specified which countries and 
centers will be involved in the RCT and what characteristics the involved centers 
should have.

The protocol also specifies which statistical tests will be chosen for analysis. 
This can be tricky since many statistical tests depend on distributional assumptions. 
For instance, the unpaired t-test assumes that there is normality in each of the two 
treatment arms and that the variances are equal. But, one can only test these assump-
tions when the results roll in. This rigid requirement does not leave much room for 
creativity, but is needed to preserve the Type I error rate. As an example, suppose 
that the protocol dictates to choose the unpaired t-test but that this test does not yield 
a significantly better result for the experimental arm while a nonparametric Wilcoxon 
rank-sum test (see chapter “A review of statistical approaches for the analysis of 
data in rheumatology”) does. Hand switching from one statistical test to another 
only on the basis of the obtained P-value is an example of a data dredging exercise, 
which is known to produce many spurious results. In a RCT, all statistical activities 
should be described in even more detail than discussed in the statistical analysis 
plan (SAP). The SAP is typically finalized prior to locking the database to avoid 
speculative choices of statistical procedures.

Trial participants must be fully aware of the risks and benefits of participation 
and therefore must fill in an informed consent form. This document is also part of 
the trial protocol.

Finally, each protocol of a RCT needs to be approved by the Medical Ethical 
Committee of the centers where the study is conducted; they are also called 
Institutional Review Boards in the United States. In addition, in order to avoid dif-
ficulties when applying for registration, protocols are nowadays often discussed 
with the regulatory bodies to obtain approval (not the drug!) prior to the start of the 
RCT.

�Reporting the Results of a RCT

The statistical analysis plan specifies in detail which statistical tests need to be cho-
sen. No doubt this is accordingly reported in the registration file for the experimen-
tal drug, but this is not necessarily the case for the scientific paper written after the 
study is finalized. Indeed, most referees of medical journals do not check the con-
sistency of the technical report with the submitted paper. Hence, in principle, the 
reader cannot be sure that the analysis described in the scientific paper is an exact 
reflection of what has been specified in the protocol. For example, a recently pub-
lished phase III trial compared pazopanib with sunitinib with respect to progression-
free survival in renal-cell carcinoma patients [23]. In that paper, the authors state 
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that “the results of the progression-free survival analysis in the per-protocol popula-
tion were consistent with the results of the primary analysis” without providing 
further details. However, from the technical report, one can infer that the predefined 
margin of non-inferiority (<1.25) was only met for the ITT population and not for 
the PP population. This is in conflict with the requirement that in both analysis sets, 
non-inferiority must be claimed (see also [24]).

Subgroup analyses have been a topic of discussion already for many years. Next 
to the global analysis, clinicians wish to know which patients (if any) may benefit 
most from the experimental treatment (if any). Therefore, subsequent to a global 
primary analysis, often the treatments are compared in a variety of subgroups, e.g., 
within the group of patients (a) below 65 years of age, (b) above 65 years of age, (c) 
males, (d) females, etc. This is a typical example of data dredging, especially 
because there is often no strong clinical background why in a particular subgroup 
the experimental treatment should do much better. Subgroup analyses are some-
times prespecified in the protocol, but that does not alleviate the problem much. 
Subgroup analyses can be thought provoking, but should always be considered as 
exploratory analyses for which the conclusions need to be verified with a new study 
or in a meta-analysis.

�RCTs Versus Observational Studies

In chapter “Methodological issues relevant to observational studies, registries, and 
administrative health databases in rheumatology” it is seen that the major differ-
ence of the observational study with the RCT is that in the observational study, the 
groups are self-selected. This causes the groups to be different at baseline. The 
problem is now that there is no way to guarantee that the difference in disease out-
come may not be a result of an existing difference at the start of the study. Hence, it 
is said that an observational study has in general a relatively low internal validity. 
Regression methods (including the method of propensity scores, see chapter 
“Methodological issues relevant to observational studies, registries, and adminis-
trative health databases in rheumatology”) may improve the internal validity by 
correcting for baseline imbalance, but one can never rule out a residual imbalance 
caused by unobserved characteristics of the patients. On the other hand, randomiza-
tion and blinding alone do not guarantee that an RCT has a high internal validity. 
Indeed, the internal validity can be highly affected by missing values and dropouts. 
For example, if in one treatment group, patients drop out because of inefficacy of 
the treatment, while in the other treatment group patients drop out because of safety 
concerns, then the estimated treatment effect at the end of the RCT is likely not to 
be a good estimate of the true treatment effect based on all patients who should have 
been treated.

In an observational study, a heterogeneous group of subjects is included. This 
is in contrast to an RCT where a homogeneous group of patients is aimed at. 
This implies that an observational study has a higher external validity than a RCT. 
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In [25], the factors that cause the low external validity of the RCT are discussed; 
see also [26]. The author discusses the impact of the general settings of the trial 
(e.g., the country or countries in which the study is executed), the eligibility 
criteria of the patients, the difference between the trial protocol and routine prac-
tice, etc. Further, the author recommends a thorough consideration of factors 
which might interfere with the generalizability of the RCT findings to the clini-
cal practice (see also chapter “Limitations of traditional randomized controlled 
clinical trials in rheumatology”).

�The Bayesian Approach to RCTs

In chapter “A review of statistical approaches for the analysis of data in rheumatol-
ogy” the Bayesian approach to inference was introduced. The main difference 
with the classical (also called frequentist) approach is that the posterior distribu-
tion and its summary measures make up the inference, instead of the P-value. For 
instance, in the frequentist approach, the conservation of the overall Type I error 
is the motivation to develop the group sequential designs that allow for interim 
analyses in a calibrated manner. A Bayesian approach in this case consists in 
repeatedly evaluating the posterior probability that the experimental treatment is 
better than the control treatment and stops either when the planned number of 
patients was recruited or that posterior probability was, say, greater than 0.975. 
An alternative Bayesian approach is to let the stopping rule based on the posterior 
predictive probability, generate future samples (combined with the already sam-
pled subjects), and determine the predictive probability of a significant result 
(with a classical test), as was done in [27]. Yet another example of a Bayesian 
approach is an interim analysis that exploits prior information on the drug (say 
from phase II and III studies) when monitoring the safety of the drug for a rare 
event in a phase III study.

The Bayesian adaptive approach, i.e., counterpart of the frequentist adaptive 
approach, is gaining much popularity. While the frequentist approach aims to main-
tain the overall Type I error rate, the Bayesian approach monitors the more intuitive 
posterior probabilities (which could be a few in a complex design). We refer to [28] 
for a recent but a technical review of this topic.

The Bayesian approach has been widely accepted in phase I studies, as men-
tioned above, and is becoming increasingly popular in phase II studies. Yet in 
a phase III study, this approach is more used for interim and auxiliary analyses, 
and there is great resistance against its use for the primary analysis. However, 
I predict that when combined with non-informative priors, the Bayesian 
approach will likely become one of the options for a phase III study if the 
investigator can show its good frequentist properties. Note that in medical 
device trials, it has now become one of the standard approaches. See the NIH 
website on guidelines for the use of Bayesian methods for medical devices:http://
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www.fda.gov/medicaldevices/deviceregulationand guidance/guidancedocu-
ments/ucm071072.htm

�Conclusions

After its introduction in the 1940s, the RCT remains the only study type that allows 
for causal relationships between risk factors and disease outcome. However, that 
does not mean it is the only study type useful for this. The often limited external 
validity, and the difficulty to keep the internal validity high, requires considering 
alternative study types more explored in chapter “Methodological issues relevant to 
observational studies, registries, and administrative health databases in rheumatol-
ogy” in the context of using registries and administrative data bases.

There are many excellent textbooks on RCTs. For an accessible introduction for 
clinicians, there is the standard book of Pocock [29] and the more recent book by 
Senn [30].
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