
Low Data Complexity Inversion Attacks

on Stream Ciphers via Truncated
Compressed Preimage Sets

Xiao Zhong1,2, Mingsheng Wang3, Bin Zhang1,4, and Shengbao Wu1,2

1 Trusted Computing and Information Assurance Laboratory, Institute of Software,
Chinese Academy of Sciences, Beijing, China

2 Graduate School of Chinese Academy of Sciences, Beijing, China
3 State Key Laboratory of Information Security, Institute of Information

Engineering, Chinese Academy of Sciences, Beijing, China
4 State Key Laboratory of Computer Science, Institute of Software, Chinese

Academy of Sciences, Beijing, China
zhongxiao456@163.com, mingsheng wang@aliyun.com,

{zhangbin,wushengbao}@tca.iscas.ac.cn

Abstract. This paper focuses on the analysis of LFSR-based stream
ciphers with low data complexity. We introduce a novel parameter called
the k-th truncated compressed preimage set (TCP set), and propose a
low data complexity attack to recover the initial LFSR state via the TCP
sets. Our method costs very few keystream bits and less time than the
brute force under some condition. We apply our method to a 90-stage
LFSR-based keystream generator with filter Boolean function which can
resist the algebraic attack and inversion attack given by Golić to the
greatest extent. It needs only 10-bit keystream to recover the 90-bit initial
state, costing less time and data than the algebraic attack. The time
complexity is also less than that of the inversion attack. Moreover, we
recover the 128-bit initial state of the stream cipher LILI-128 with our
method. The data cost is just 9 keystream bits along with a memory cost
of O(28.5), which is the minimum data cost to theoretically break LILI-
128 so far as we know. The time complexity is O(2122.4), better than the
brute force. We also define a new security parameter called Tcomp and
suggest a design criterion for the LFSR-based stream ciphers.

Keywords: LFSR-based stream ciphers, k-th truncated compressed
preimage set, algebraic attack, inversion attack, LILI-128.

1 Introduction

Last decades have witnessed the fast development of stream ciphers. As a key
component of many stream ciphers, LFSR-based keystream generator is often
fused with nonlinear filter generator for better performance. There are many
stream ciphers which adopt the LFSR-based nonlinear filter generator, such as
Grain v1 [8], SNOW 3G [5], WG-7 [9] and LILI-128 [4].

W. Susilo and Y. Mu (Eds.): ACISP 2014, LNCS 8544, pp. 131–147, 2014.
c© Springer International Publishing Switzerland 2014

132 X. Zhong et al.

There are many classical analytical methods on LFSR-based stream ciphers,
such as algebraic attack [2,1] and inversion attack [6,7]. For LFSR-based gener-
ators with nonlinear filter Boolean function, the algebraic immunity [10] of the
Boolean function should be large enough to resist the algebraic attack. To resist
the inversion attack, the memory size of the stream cipher should be close or
equal to the length of the LFSR. We need to note that what is called “mem-
ory” has nothing to do with filters or combiners with memory and refers to a
specific inversion attack [6,7] in which the attacker guesses as many consecutive
bits of the LFSR as spanned by the taps of the filter function. What is called
“memory” in these attacks is the span of the filter function. Designers often
choose keystream generators filtered by Boolean functions of optimum algebraic
immunity along with large memory size.

Analysts value attacks on stream ciphers which cost less time than the brute
force or the declared security level. To sufficiently understand the security of the
analyzed stream cipher, we should pay attention to the fact that sometimes the
amount of the data available to the adversary is extremely small due to the prac-
tical restrictions. Then it is necessary to pursue the research of attacks costing
small amount of data, along with a time complexity less than the brute force or
the declared security level.

In this paper, we propose a low data complexity attack on the LFSR-based
keystream generators with nonlinear filter. Our method can recover the initial
LFSR state with very few keystream bits faster than the brute force under some
condition. It also shows that although the filter Boolean function is of optimum
algebraic immunity and the memory size is equal to the length of the LFSR,
our method may recover the initial state in less time and data than that of the
algebraic attack or inversion attack given by Golić, J.D. et al.

For the model of LFSR-based keystream generator with nonlinear filter Bool-
ean function f ∈ Bn, where Bn is the ring of Boolean functions in n variables,
we introduce two parameters called the k-th compressed preimage set (CP set)
and k-th truncated compressed preimage set (TCP set). We propose a low data
complexity attack to recover the initial LFSR state via the k-th TCP sets. Our
method costs very few keystream bits to recover the initial state when the number
of the k-th TCP sets for the filter Boolean function is large enough. When the
algebraic immunity of the filter function is optimum, people can try our method
to see whether they can recover the initial state with less time and data than
that of the algebraic attack.

Our method can recover the initial LFSR state with time complexity less than
the exhaustive search on condition that at least one k-th appropriate TCP set
(ATCP set) exists. We define a new security parameter called Tcomp when there
exists at least one k-th ATCP set. To resist our attack, we suggest that Tcomp

should be larger than 2l−1, where l is the length of the LFSR, which is another
design criterion for the LFSR-based stream ciphers.

Furthermore, we apply our method to a 90-stage LFSR-based keystream gen-
erator with a 9-variable Carlet-Feng Boolean function as its filter, and its memory
size is 90, which indicates that it can resist the algebraic attack given in [2] and

Low Data Complexity Inversion Attacks on Stream Ciphers 133

inversion attack [6,7] to the greatest extent. The time complexity of our method
to recover the 90-bit initial state is Tcomp = O(275.1), and the data complexity is
Dcomp = 10 bits. The time complexity of the algebraic attack is TAA = O(276.2)
with a data complexity of DAA = O(225.4). Moreover, the time complexity of the
inversion attack [6,7] is close to O(290), which is larger than that of our method.
We also recover the 128-bit initial state of the stream cipher LILI-128 with our
method. The data cost is just 9 keystream bits along with a memory cost of
O(28.5), which is the minimum data cost to theoretically break LILI-128 so far
as we know. It highlights the advantage of the low data cost for our method.
The time complexity is O(2122.4), better than the brute force.

This paper is organized as follows: Section 2 introduces some preliminaries
related to our work. In Section 3, we introduce two novel parameters called the
k-th compressed preimage set and k-th truncated compressed preimage set and
give an algorithm to compute the k-th ATCP sets. In Section 4, for LFSR-based
keystream generators with nonlinear filter Boolean function, we propose a low
data complexity attack to recover the initial state via the k-th TCP sets. An
example is given in Section 5, along with the analysis of the time and data
complexity. We also apply our method to the stream cipher LILI-128 in Section
6. Section 7 concludes this paper.

2 Preliminaries

2.1 Brief Description of the LFSR-Based Keystream Generator
with Nonlinear Filter

Denote the ring of Boolean functions in n variables as Bn. Let f be any Boolean
function in Bn, denote S1(f) = {x ∈ Fn

2 |f(x) = 1}, S0(f) = {x ∈ Fn
2 |f(x) = 0}.

In this paper, we focus on the model of LFSR-based keystream generator with
nonlinear filter Boolean function, which is a common component of the stream
ciphers. Figure 1 shows the general model.

Fig. 1. LFSR-based keystream generator with nonlinear filter

First, we give a brief description for this model. Let the length of the linear
feedback shift register be l. L is the “connection function” of the LFSR, and it
is linear. The LFSR generator polynomial is a primitive polynomial p(x) = p0+
p1x+...+pl−1x

l−1+xl. Let the initial state of the LFSR be s0 = (s0, s1, ..., sl−1),

134 X. Zhong et al.

and it generates a m-sequence s0, s1, s2, For sake of narrative convenience, we
call this m-sequence as LFSR sequence. The state of the LFSR at time t is

st = (st, st+1, ..., st+l−1) = Lt(s0, s1, ..., sl−1),

which is filtered by a balanced nonlinear Boolean function f ∈ Bn and out-
puts one bit ct at time t. For any ct, there are 2n−1 possible preimage tuples
(s1t , s

2
t , ..., s

n
t). Define the corresponding preimage set as

Sct = {s ∈ Fn
2 |f(s) = ct}.

Our goal is to recover the l initial state bits of the LFSR. Suppose we observe
m = � l

n� keystream bits ct1 , ct2 , ..., , ctm at time t1, t2..., tm, then we can build
an equation system.

cti = f(sti) = f(Lti(s0, ..., sl−1)) =

l−1∑

j=0

ai,jsj , i = 1, 2, ...,m. (1)

Notice that the “connection function” of the LFSR is linear, so the coefficient
ai,j can be derived from the “connection function” L. Moreover, if the coefficient
matrix of the equation system (1) is full rank, then its solution is unique, resulted
to the initial state bits of the LFSR.

2.2 Algebraic Attack and Inversion Attack

In this section, we would like to review two classical methods: algebraic attack [2]
and inversion attack [6,7], which are efficient analytical methods on LFSR-based
keystream generators.

Algebraic Attack
With the same notation in Section 2.1, for each ct, we can construct an equation
involving some key bits and initial value as its variables. Denote the output of
the filter generator by c0, c1, c2, ..., where ci ∈ F2, then we can get the following
equation system: ⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

c0 = f (s0, s1, ..., sl−1)
c1 = f(L (s0, s1, ..., sl−1))
c2 = f(L2(s0, s1, ..., sl−1))
...

(2)

Then the problem of recovering the l initial state bits of the LFSR is reduced to
solving the equation system (2).

The main idea of the algebraic attack proposed in [2] is to decrease the degree
of the equation system (2) by using the annihilators of f or f + 1.

Algebraic attack motivated the research of the annihilators and algebraic
immunity for Boolean functions.

Low Data Complexity Inversion Attacks on Stream Ciphers 135

Definition 1. [10] For f ∈ Bn, define AN(f) = {g ∈ Bn|fg = 0}. Any function
g ∈ AN(f) is called an annihilator of f . The algebraic immunity of f , denoted
by AI(f), is the minimum degree of all the nonzero annihilators for f or f + 1.

By Courtois and Meier’s theorem [2], AI(f) ≤ �n
2 �. In general AI(f) should be

as large as possible in order to resist the algebraic attack.
Table 1 shows the complexity of the algebraic attack on the LFSR-based

keystream generator in Figure 1, where N =
(

l
AI(f)

)
, ω is the parameter of the

Gaussian elimination and in theory ω ≤ 2.376 [3].

Table 1. Complexity of AA for the Model in Figure 1

Time Data Memory

Nω N N2

While as the authors of [2] declare, the (neglected) constant factor in that
algorithm is expected to be very big and they regard Strassen’s algorithm [12]
as the fastest practical algorithm. Then they evaluate the complexity of the
Gaussian reduction to be 7 · N log7

2/64 CPU clocks. Many scholars adopt ω = 3
when they use Table 1 to evaluate the time and data complexity of the algebraic
attack. In this paper, we also adopt ω = 3 in Table 1 to estimate the complexity
of the algebraic attack.

Inversion Attack
The main idea of the inversion attack is proposed in [6,7]. With the above nota-
tions, let γ = (γi)

n
i=1 denote the tapping sequence specifying the inputs to the

filter Boolean function f , and let M = γn − γ1 denote the input memory size
of the nonlinear filter generator regarded as the finite input memory combiner
with one input and one output.

The inversion attack in [6] targets to the case when the filter function is linear
in the first or the last input variable, and runs forwards or backwards accordingly.
The attack guesses M -bit unknown initial LFSR bits first and then recover the
initial LFSR state by taking advantage of the property of the filter function and
the recursion of the LFSR.

It takes 2M−1 trials on average to find a correct initial memory state. One
may as well examine all 2M initial memory states.

Golić, J.D. et al. generalized the inversion attack in [7]. Unlike the inversion
attack which requires that the filter function be linear in the first or the last
input variable, the attack in [7] can be applied for any filter function. The time
complexity remains close to 2M .

Remark 1. In fact, since algebraic attack and inversion attack are powerful tools
for the LFSR-based stream ciphers with nonlinear filter generators, designers
often adopt Boolean functions of optimum algebraic immunity, with a memory
size close or equal to the length of the LFSR.

136 X. Zhong et al.

3 k-th Truncated Compressed Preimage Sets

In this section, we propose two novel parameters called the k-th compressed
preimage set (CP set) and k-th truncated compressed preimage set (TCP set),
which helps to recover the l-bit initial LFSR state. To begin with, we give the
following definition.

Definition 2. For a balanced Boolean function f(x1, x2, ..., xn) ∈ Bn, we can
get the preimage set Su(f) for f(x) = u, u ∈ {0, 1}. For a fixed k ∈ [1, n],
for some fixed set of indexes I = {i1, i2, ..., ik} ⊆ {1, 2, ..., n} and a certain k-
dimensional vector b = (b1, b2, ..., bk) ∈ F k

2 , define the k-th compressed preimage
sets of Su(f) as:

ek,b = {a ∈ Su(f)|aij = bj for j = 1, 2, ..., k}.

Denote
Nk,b = |ek,b|,

here |.| denotes the number of the elements in a set.
Define the k-th truncated compressed preimage set Ek,b corresponding to Nk,b as

Ek,b = {b} = {(b1, b2, ..., bk)}.

Then we can get that for f(x1, x2, ..., xn) = u, the probability that p(xi1 =
b1, xi2 = b2, ..., xik = bk) is

pk =
Nk,b

2n−1
.

Notice that there may exist another k-dimensional vector b
′
= (b

′
1, b

′
2, ..., b

′
k) ∈

F k
2 such that |ek,b′ | = Nk,b.
For f(x) = u, given a k-th TCP set of Su(f), Ek,b = {(b1, b2, ..., bk)}, we can

get that p(f(x1, x2, ..., xn) = u|xi1 = b1, xi2 = b2, ..., xik = bk) =
Nk,b

2n−1 . We use
the method called “guess and determine” to solve this nonlinear equation at an

expected cost of 2n−k+2n−k−1

2 = 2n−k−1 + 2n−k−2, for the worst complexity is
the exhaustive search of the 2n−k possible bit-strings for the left n− k unknown
bits, and the best case is that one of the left n−k unknown bits can be uniquely
determined by guessing the other n−k−1 bits. The probability that the solution
is the right one is p =

Nk,b

2n−1 .
Then we are expected to do the above operation 1

p times to get the right

solution, we can make it by choosing 1
p keystream bits.

The time complexity that we recover the right solution is

T =
1

p
· (2n−k−1 + 2n−k−2) =

22n−k−2 + 22n−k−3

Nk,b
.

The data complexity is

D =
1

p
.

Low Data Complexity Inversion Attacks on Stream Ciphers 137

We can derive that when 2n−k−1 + 2n−k−2 < Nk,b < 2n−k, then T < 2n−1,
which means that it is less than the complexity of exhaustive search. We call the
k-th TCP sets which satisfy the condition 2n−k−1 + 2n−k−2 < Nk,b < 2n−k as
the k-th appropriate TCP sets (ATCP sets). The following example shows that
we can make the complexity strictly less than the exhaustive search with our
idea.

Example 1. Given a 5-variable Carlet-Feng Boolean function f = x1x2x3x5 +
x1x2x5+x1x2+x1x3x4x5+x1x3x4+x1x3x5+x1x4x5+x1x4+x2x3+x2x4x5+
x2x5 + x3x4 + x4x5 +1. |S0(f)| = |S1(f)| = 16. Table 2 shows some k-th ATCP
sets of S0(f) and S1(f). Here we choose to compute the sets for k = 2.

Table 2. Compute the k-th appropriate TCP sets of S0(f) and S1(f)

(a) ATCP sets of S0(f)

k Indexes Nk,b b

2 {4, 5} 7 {1, 1}
2 {1, 4} 7 {1, 1}

(b) ATCP sets of S1(f)

k Indexes Nk,b b

2 {2, 4} 7 {0, 0}

From Table 2, for f(x) = 0, the time complexity to recover the right solution
is

T0 =
22n−k−2 + 22n−k−3

Nk
=

26 + 25

7
= 23.77 < 24.

For f(x) = 1, the complexity to recover the right solution is

T1 =
22n−k−2 + 22n−k−3

Nk
=

26 + 25

7
= 23.77 < 24.

We give an algorithm to compute the k-th appropriate TCP sets which satisfy
2n−k−1 + 2n−k−2 < Nk,b < 2n−k.

Algorithm 1. Compute the k-th ATCP sets of Su(f) (ATCP Algorithm)

Input: Boolean function f , u ∈ {0, 1}.
Set E = ∅, E0 = Su(f), k = 1.
while k ≤ n do

for {i1, i2, ..., ik} ⊆ {1, 2, ..., n}, b = (b1, b2, ..., bk) ∈ F k
2 do

Compute Ek,b defined in Definition 2 and the corresponding Nk,b;
if 2n−k−1 + 2n−k−2 < Nk,b < 2n−k then

E = E
⋃{((i1, i2, ..., ik), Nk,b, Ek,b)};

k = k + 1;

Output E.

138 X. Zhong et al.

4 Low Data Complexity Inversion Attack to Recover the
Initial LFSR State via the k-th ATCP Sets

According to Section 2, we can reduce the problem of recovering the initial state
of LFSR to solving an equation system whose coefficient matrix is full rank.

With the same model introduced in Figure 1, let the length of the LFSR be
l. The LFSR sequence is s0, s1, s2, The nonlinear filter Boolean function is
f ∈ Bn, which is balanced. The keystream bits generated by the LFSR-based
nonlinear filter generator are c0, c1, c2,

In this section, we give a method to recover the initial LFSR state via the k-th
ATCP sets. We divide the process into two parts. One is the precomputation
phase, the other is the online phase.

Precomputation Phase: For Boolean function f ∈ Bn, for a fixed k ∈ [1, n],
compute the k-th ATCP sets of S0(f) and S1(f) respectively, and denote them
as group G0 and group G1. Choose one set from each group and denote them as
E0 and E1 respectively. Compute the corresponding probability p0 =

Nk,b

2n−1 and

p1 =
N

k,b
′

2n−1 , where Nk,b and Nk,b′ can be derived from the output of the ATCP
algorithm.

Online Phase: Denote m = � l
n�.

Step 1: According to the specific tap positions of the filter Boolean function
f , choose m-bit keystream ct1 , ct2 ..., ctm (continuous or not) which satisfy the
following condition:
(1)Denote the set of the tap positions corresponding to cti as Ati = {s1ti , s2ti , ...,
snti}. Require that Ati , i = 1, 2, ...,m are pairwise disjoint.
(2)The coefficient matrix of the corresponding equation system cti = f(sti) =

f(Lti(s0, ..., sl−1)) =
∑l−1

j=0 ai,jsj , i = 1, 2, ...,m should be full rank.

Step 2: For each cti , we can get the k-th ATCP sets of Scti
(f) from the precom-

putation phase directly. Choose one set and denote it as Eti , and then we can
get a nonlinear equation with probability of pcti . Solve this nonlinear equation

with “guess and determine” method, we can get a candidate solution Êti for
f(x) = cti with an expected cost of 2n−k−1 + 2n−k−2. Then we can get a candi-
date vector E = Êt1 ||Êt2 || · · · ||Êtm for l bits of the LFSR sequence, where “||”
denotes a concatenation of two vectors. Because Ati , i = 1, 2, ...,m are pairwise
disjoint and the coefficient matrix of the corresponding linear equation system is
full rank, the probability that E is the right solution for the l-bit LFSR sequence
is P = pct1 · pct2 · · · · · pctm .

Step 3: Test the candidate vector E and check that if it is the right one. If it
is, then we can derive the initial LFSR state bits, otherwise back to Step 2.
We can also choose the other sets in group G0 and group G1 to do the operation.

With the similar analysis in Section 3, the time complexity of the online phase
is

T = (2n−k−1 + 2n−k−2)m · 1

P
. (3)

According to Algorithm 1, we know that 1
P < (2n−1

2n−k−1+2n−k−2)
m, then T < 2l−1.

Low Data Complexity Inversion Attacks on Stream Ciphers 139

In the precomputation phase, compute all the k-th ATCP sets of S0(f): E
1
0 ,

E2
0 ,..., and denote the number of them as l0. Also, compute all the k-th TCP

sets of S1(f): E
1
1 , E

2
1 ,..., and denote the number of them as l1.

For the keystream bits chosen in Step 1: ct1 , ct2 , ..., ctm , denote

n0 = |{cti |cti = 0, i = 1, ...,m}|, n1 = |{cti |cti = 1, i = 1, ...,m}|.

Then for each m-bit keystream chosen in Step 1, the number of the candidate
vectors for the l LFSR sequence bits in Step 2 is

ln0
0 · ln1

1 .

Then the data complexity of our method is

D = m ·
1
P

ln0
0 · ln1

1

. (4)

When the parameters l0 and l1 are large enough such that

1
P

ln0
0 · ln1

1

≤ 1, (5)

then the data complexity of our method would become very small, that is, we
need only m keystream bits to recover the initial state of the LFSR. In fact, the
values of l0 and l1 can satisfy the condition (5) in most cases.

For a fixed k ∈ [1, n], when there exists at least one k-th ATCP set, we give
the following definition.

Definition 3. For a fixed k ∈ [1, n], denote the time complexity and data com-
plexity to recover the initial LFSR state via the k-th ATCP sets as Tk and Dk

respectively, define
Tcomp = min{Tk|k ∈ [1, n]}.

Denote the data complexity corresponding to Tcomp as Dcomp.

Remark 2. Our method suggests a new design criterion for the LFSR-based
stream ciphers with nonlinear filter. Suppose the time complexity of our method
to recover the l-bit initial LFSR state is Tcomp given in Definition 3, and the cor-
responding data complexity Dcomp is acceptable, then the stream cipher should
satisfy the following condition to resist our attack:

2l−1 < Tcomp. (6)

In the next section, we would like to give an example to show how to apply
our method to the LFSR-based nonlinear filter keystream generators.

140 X. Zhong et al.

5 Analysis on a Keystream Generator with a Filter
Boolean Function of Optimum Algebraic Immunity

In this section, we choose a model of keystream generator with nonlinear filter
Boolean function which can resist the algebraic attack [2] and the inversion at-
tack [6,7] to the greatest extent. Let the length of the LFSR be 90. The filter
Boolean function f is a 9-variable Carlet-Feng Boolean function which is listed
in Appendix A. The input memory size of the filter function is 90, which is the
length of the LFSR. We can see that the stream cipher possesses two advantages:
optimum algebraic immunity and large input memory size. The keystream gen-
erator outputs one bit each clock. In the following, we apply our method to the
above keystream generator.

First of all, we compute the k-th ATCP sets of S0(f) and S1(f) using the
ATCP algorithm. Practically, we usually choose the k-th ATCP sets whose Nk,b

is large, which helps to decrease the time and data complexity. Table 3 shows
some k-th ATCP sets of S0(f) and S1(f).

Table 3. Compute the k-th appropriate TCP sets of S0(f) and S1(f)

(a) ATCP sets of S0(f)

k Indexes Nk,b b k Indexes Nk,b b

5 {1, 2, 6, 7, 8} 13 [0, 0, 1, 1, 1] 5 {1, 5, 6, 7, 9} 13 [0, 1, 1, 1, 0]

5 {2, 3, 5, 7, 9} 13 [1, 1, 0, 0, 0] 5 {1, 2, 3, 5, 6} 13 [1, 1, 1, 0, 1]

5 {2, 3, 4, 6, 7} 13 [1, 0, 0, 0, 1] 5 {3, 4, 5, 6, 8} 13 [0, 1, 1, 1, 0]

5 {4, 5, 6, 8, 9} 13 [1, 1, 1, 0, 0] 5 {1, 3, 5, 7, 9} 13 [1, 0, 1, 0, 1]

5 {1, 3, 5, 6, 8} 13 [0, 0, 1, 1, 0] 5 {3, 4, 5, 7, 8} 13 [1, 0, 0, 0, 1]

5 {2, 4, 5, 7, 9} 13 [0, 1, 1, 0, 0] 5 {1, 3, 4, 8, 9} 13 [1, 0, 0, 1, 1]

5 {2, 3, 7, 8, 9} 13 [0, 0, 1, 1, 1] 5 {1, 3, 4, 6, 8} 13 [0, 1, 1, 0, 0]

5 {1, 2, 4, 6, 8} 13 [1, 1, 0, 0, 0] 5 {1, 2, 4, 5, 9} 13 [1, 1, 0, 0, 1]

5 {2, 4, 6, 8, 9} 13 [0, 1, 0, 1, 1] 6 159 groups of indexes 7 many

(b) ATCP sets of S1(f)

k Indexes Nk,b b k Indexes Nk,b b

5 {1, 3, 4, 5, 6} 14 [0, 0, 1, 1, 0] 5 {1, 2, 3, 7, 9} 14 [1, 1, 0, 0, 0]

5 {1, 2, 3, 4, 8} 14 [0, 1, 1, 0, 0] 5 {4, 6, 7, 8, 9} 14 [1, 0, 1, 1, 0]

5 {1, 2, 6, 8, 9} 14 [1, 0, 0, 0, 1] 5 {2, 3, 4, 5, 9} 14 [0, 1, 1, 0, 0]

5 {1, 5, 7, 8, 9} 14 [0, 1, 0, 1, 1] 6 130 groups of indexes 7 many

We choose � 90
9 � = 10 keystream bits which obey the two conditions in Step

1 given in Section 4, and denote them as ct1 , ct2 , , ..., ct10 . Then we follow Step
2, here we choose k = 6. Denote n0 = |{cti |cti = 0, i = 0, 1, ..., 10}| and n1 =
|{cti |cti = 1, i = 0, 1, ..., 10}|. Then the time and data complexity of recovering
the 90-bit initial LFSR state by the low data complexity attack are

TLDA = (29−6−1 + 29−6−2)10 · (256
7

)10 = 275.1.

Low Data Complexity Inversion Attacks on Stream Ciphers 141

DLDA = 10 · (2567)10

159n0 · 130n1
.

Because
(256

7)10

159n0 ·130n1
< 1, we just need 10 bits to recover the 90-bit initial LFSR

state, then
DLDA = 10.

The successful probability that we can recover the right 90-bit initial state is

P = 1− (1− (
7

256
)10)(

256
7)10 ≈ 1− e−1 ≈ 0.63.

According to Table 1, the time and data complexity of the algebraic attack on
this model are

TAA =

(
90

AI(f)

)3

=

(
90
5

)3

= 276.2, DAA =

(
90

AI(f)

)
=

(
90
5

)
= 225.4.

If we adopt inversion attack [6,7] to analyze this model, the time complexity
TIA is close to 290.

Table 4 shows the comparison among our method (LDA), algebraic attack
(AA) and inversion attack (IA) on the above model.

Table 4. Comparison among LDA, AA and IA

TLDA DLDA TAA DAA TIA

O(275.1) 10 O(276.2) O(225.4) near O(290)

We can see that our method costs less time and data than the algebraic attack
[2] in this case. The time complexity is also less than that of the inversion attack
[6,7].

Remark 3. For the LFSR-based keystream generator model given in Section 2,
when the filter Boolean function is of optimum algebraic immunity, people can
try our method to see whether the cost of time and data can be less than that
of the algebraic attack.

6 Low Data Complexity Attack on LILI-128 via the k-th
TCP Sets

In this section, we apply our method to the stream cipher LILI-128 [4] to show
the advantage of the low data complexity for our method. The structure of the
LILI-128 generator is illustrated in Figure 2. It contains two subsystems: clock
control and data generation.

142 X. Zhong et al.

Fig. 2. Structure of LILI-128 Keystream Generator

The clock-control subsystem of LILI-128 adopts a pseudorandom binary
sequence produced by a regularly clocked LFSR, LFSRc, of length 39 and a
function, fc, operating on the contents of k = 2 stages of LFSRc to produce a
pseudorandom integer sequence, c = c(t)

∞
t=1. The feedback polynomial of LFSRc

is chosen to be the primitive polynomial

x39 + x35 + x33 + x31 + x17 + x15 + x14 + x2 + 1.

The data-generation subsystem of LILI-128 uses the integer sequence c pro-
duced by the clock subsystem to control the clocking of a binary LFSR, LFSRd,
of length Ld = 89. The contents of a fixed set of n = 10 stages of LFSRd are
input to a specially chosen Boolean function, fd. The binary output of fd is the
keystream bit z(t). After z(t) is produced, the two LFSRs are clocked and the
process repeated to generate the keystream z = z(t)

∞
t=1.

The feedback polynomial of LFSRd is chosen to be the primitive polynomial

x89 + x83 + x80 + x55 + x53 + x42 + x39 + x+ 1.

The initial state of LFSRd is never the all zero state. Let the stages of LFSRd

be labeled α[0], α[1], ..., α[88] from left to right. Let the LFSR shift left. Then at
time t, we have the following formula to calculate the feedback bit:

α[89+t] = α[88+t]⊕α[50+t]⊕α[47+t]⊕α[36+t]⊕α[34+t]⊕α[9+t]⊕α[6+t]⊕α[t],

where ⊕ indicates the exclusive-or operation on bits(equivalent to addition
modulo 2).

The 10 inputs to fd are taken from LFSRd according to this full positive
difference set: (0,1,3,7,12,20,30,44,65,80). The following is the expression of fd:

fd = x4x6x7x8x9x10 + x5x6x7x8x9x10 + x4x6x7x9x10 + x5x6x7x9x10 + x3x7x8x9x10

+x4x7x8x9x10 + x4x6x7x8x9 + x5x6x7x8x9 + x4x8x9x10 + x6x8x9x10 + x4x6x7x9 +

x5x6x7x9 + x2x7x8x9 + x4x7x8x9 + x3x7x8x10 + x5x7x8x10 + x2x7x9x10 + x4x7x9x10

+x6x7x9x10 + x1x8x9x10 + x3x8x9x10 + x6x7x10 + x3x8x10 + x4x8x10 + x2x9x10 +

x3x9x10+x4x9x10+x5x9x10+x3x7x9+x6x7x9+x3x8x9+x6x8x9+x4x7x10+x5x7x10+

x6x7 + x1x8 + x2x8 + x1x9 + x3x9 + x4x10 + x6x10 + x2 + x3 + x4 + x5.

Low Data Complexity Inversion Attacks on Stream Ciphers 143

To begin with, we first guess the 39-bit internal state of LFSRc and attack the
second component LFSRd alone. The total time complexity should be multiplied
by 239. In the following, we recover the internal state of LFSRd by using our
method given in Section 4.

In the case of LILI-128, for k = 5, even the parameter Nk,b defined in Defini-
tion 2 is less than 2n−k−1+2n−k−2, the time complexity of recovering the initial
state is better than the brute force, which highlights the power of the TCP sets.
To comprehensively consider the requirements of less time complexity than the
brute force and low data complexity, we choose the 5-th TCP sets whose Nk,b

satisfy the condition of 20 ≤ Nk,b < 32. Table 5 shows the 5-th TCP sets which
would be adopted.

We choose � 89
10� = 9 keystream bits which obey the two conditions in Step 1

given in Section 4, and denote them as ct1 , ct2 , , ..., ct9 . Denote n0 = |{cti |cti =
0, i = 0, 1, ..., 9}| and n1 = |{cti |cti = 1, i = 0, 1, ..., 9}|.

Then the time and data complexity of recovering the 128-bit internal state of
LILI-128 are about

TLDA = 239 · (210−5−1+210−5−2)9 · (512
20

)n0 · (512
20

)n1 = 239 ·249 · (512
20

)9 = 2122.4.

DLDA = 9 · (
512
20)n0 · (51220)n1

36n0 · 35n1
.

Notice that
(512

20)n0 ·(512
20)n1

36n0 ·35n1
< 1, then the data complexity is

DLDA = 9.

We need to store the k-th TCP sets of S0(f) and S1(f) shown in Table 5. Then
the required memory is

MLDA = (36 + 35) · 5 = 28.5.

The successful probability that we can recover the right 89-bit LFSRc internal
state is

P = 1− (1− (
20

512
)9)(

512
20)9 ≈ 1− e−1 ≈ 0.63.

If we apply algebraic attack to LILI-128, the time and data complexity are about

TAA = 239 ·
(

89
AI(f)

)3

= 239 ·
(
89
4

)3

= 2102.7 , DAA =

(
89

AI(f)

)

=

(
89
4

)

= 221.2.

The required memory is about

MAA =

(
89

AI(f)

)2

=

(
89
4

)2

= 242.4.

As related research we note that Tsunoo, Y. et al. proposed an attack which
recovers the internal state of LILI-128 by using 27 keystream bits and 299.1

computations, along with 228.6-bit memory [11].
Table 6 shows the comparison among our method (LDA), algebraic attack

(AA) and the method in [11] on LILI-128.

144 X. Zhong et al.

Table 5. Compute the 5-th TCP sets of S0(f) and S1(f)

(a) TCP sets of S0(f)

k Indexes Nk,b b k Indexes Nk,b b

5 {1, 3, 4, 5, 6} 22 [0, 0, 0, 0, 0] 5 {2, 3, 4, 5, 6} 22 [0, 0, 0, 0, 0]

5 {1, 2, 4, 5, 6} 21 [0, 0, 0, 0, 0] 5 {1, 2, 4, 5, 6} 21 [1, 0, 1, 0, 0]

5 {1, 2, 3, 4, 6} 21 [0, 0, 0, 1, 1] 5 {1, 2, 3, 4, 5} 20 [0, 0, 0, 1, 1]

5 {1, 2, 3, 4, 5} 20 [0, 0, 0, 0, 0] 5 {2, 5, 6, 7, 9} 20 [0, 1, 1, 1, 1]

5 {2, 5, 6, 7, 10} 20 [0, 1, 1, 1, 0] 5 {2, 5, 6, 9, 10} 20 [0, 0, 0, 1, 0]

5 {2, 5, 6, 8, 9} 20 [0, 1, 1, 1, 1] 5 {2, 5, 6, 8, 10} 20 [0, 1, 1, 1, 0]

5 {2, 5, 6, 8, 9} 20 [0, 0, 0, 1, 1] 5 {2, 5, 6, 9, 10} 20 [1, 1, 0, 1, 0]

5 {2, 3, 4, 5, 6} 20 [0, 1, 1, 0, 0] 5 {2, 5, 6, 8, 9} 20 [1, 1, 0, 1, 1]

5 {2, 5, 6, 9, 10} 20 [1, 0, 1, 1, 0] 5 {1, 3, 4, 5, 6} 20 [1, 1, 1, 1, 1]

5 {2, 5, 6, 7, 9} 20 [0, 0, 0, 1, 1] 5 {2, 5, 6, 7, 8} 20 [0, 1, 1, 1, 1]

5 {2, 5, 6, 8, 10} 20 [1, 0, 1, 1, 0] 5 {2, 5, 6, 7, 10} 20 [1, 0, 1, 1, 0]

5 {2, 5, 6, 7, 10} 20 [0, 0, 0, 1, 0] 5 {2, 5, 6, 8, 9} 20 [1, 0, 1, 1, 1]

5 {1, 2, 3, 4, 6} 20 [0, 0, 0, 0, 0] 5 {2, 5, 6, 8, 10} 20 [0, 0, 0, 1, 0]

5 {1, 2, 3, 5, 6} 20 [0, 0, 0, 1, 1] 5 {2, 5, 6, 8, 10} 20 [1, 1, 0, 1, 0]

5 {2, 5, 6, 7, 10} 20 [1, 1, 0, 1, 0] 5 {2, 5, 6, 7, 8} 20 [1, 1, 0, 1, 1]

5 {2, 5, 6, 7, 8} 20 [0, 0, 0, 1, 1] 5 {1, 2, 3, 5, 6} 20 [1, 1, 0, 0, 1]

5 {2, 5, 6, 7, 8} 20 [1, 0, 1, 1, 1] 5 {2, 5, 6, 9, 10} 20 [0, 1, 1, 1, 0]

5 {2, 5, 6, 7, 9} 20 [1, 0, 1, 1, 1] 5 {2, 5, 6, 7, 9} 20 [1, 1, 0, 1, 1]

(b) TCP sets of S1(f)

k Indexes Nk,b b k Indexes Nk,b b

5 {1, 3, 4, 5, 6} 20 [0, 0, 0, 1, 0] 5 {1, 3, 4, 5, 6} 20 [0, 0, 0, 0, 1]

5 {1, 3, 4, 5, 6} 20 [0, 0, 1, 0, 0] 5 {1, 3, 4, 5, 6} 20 [0, 0, 0, 1, 0]

5 {2, 5, 6, 7, 9} 20 [1, 1, 1, 1, 1] 5 {2, 5, 6, 7, 8} 20 [1, 0, 0, 1, 1]

5 {2, 5, 6, 8, 9} 20 [0, 0, 1, 1, 1] 5 {2, 5, 6, 7, 10} 20 [0, 1, 0, 1, 0]

5 {2, 5, 6, 7, 8} 20 [0, 0, 1, 1, 1] 5 {2, 5, 6, 8, 10} 20 [1, 1, 1, 1, 0]

5 {2, 5, 6, 9, 10} 20 [1, 0, 0, 1, 0] 5 {2, 5, 6, 7, 8} 20 [0, 1, 0, 1, 1]

5 {2, 5, 6, 7, 10} 20 [1, 1, 1, 1, 0] 5 {2, 5, 6, 8, 10} 20 [0, 1, 0, 1, 0]

5 {2, 5, 6, 8, 10} 20 [1, 0, 0, 1, 0] 5 {2, 5, 6, 7, 9} 20 [0, 0, 1, 1, 1]

5 {2, 5, 6, 9, 10} 20 [0, 1, 0, 1, 0] 5 {2, 3, 4, 5, 6} 20 [0, 0, 0, 0, 1]

5 {1, 3, 4, 5, 6} 20 [0, 1, 0, 0, 0] 5 {1, 3, 4, 5, 6} 20 [1, 0, 0, 0, 0]

5 {2, 5, 6, 9, 10} 20 [0, 0, 1, 1, 0] 5 {2, 5, 6, 7, 9} 20 [0, 1, 0, 1, 1]

5 {2, 5, 6, 7, 9} 20 [1, 0, 0, 1, 1] 5 {2, 5, 6, 7, 8} 20 [1, 1, 1, 1, 1]

5 {2, 5, 6, 8, 9} 20 [1, 0, 0, 1, 1] 5 {2, 3, 4, 5, 6} 20 [1, 0, 1, 1, 1]

5 {2, 5, 6, 7, 10} 20 [1, 0, 0, 1, 0] 5 {2, 5, 6, 8, 9} 20 [0, 1, 0, 1, 1]

5 {2, 3, 4, 5, 6} 20 [1, 0, 0, 0, 0] 5 {2, 5, 6, 7, 10} 20 [0, 0, 1, 1, 0]

5 {2, 5, 6, 8, 10} 20 [0, 0, 1, 1, 0] 5 {2, 3, 4, 5, 6} 20 [0, 1, 0, 0, 0]

5 {2, 5, 6, 9, 10} 20 [1, 1, 1, 1, 0] 5 {1, 2, 3, 4, 6} 20 [0, 0, 0, 1, 0]

5 {2, 5, 6, 8, 9} 20 [1, 1, 1, 1, 1]

Low Data Complexity Inversion Attacks on Stream Ciphers 145

Table 6. Comparison among LDA, AA and method in [11]

T D M

Our method O(2122.4) 9 O(28.5)

Algebraic attack O(2102.7) O(221.2) O(242.4)

Method in [11] O(299.1) O(27) O(228.6)

7 Conclusion

This paper introduces two novel parameters for Boolean functions called the k-
th compressed preimage set (CP set) and k-th truncated compressed preimage
set (TCP set). We give an algorithm to compute the k-th appropriate TCP sets
and propose a low data complexity attack to recover the initial LFSR state via
the k-th TCP sets. Our method costs very few keystream bits to recover the
initial state when the number of the k-th TCP sets is large enough. We apply
our method to a 90-stage LFSR-based keystream generator with a 9-variable
filter Boolean function of optimum algebraic immunity. The time complexity
and data complexity are both less than that of the algebraic attack [2]. The
time complexity is also less than that of the inversion attack [6,7]. Moreover,
we recover the 128-bit initial state of the stream cipher LILI-128 by using our
method. The data cost is just 9 keystream bits along with a memory cost of
O(28.5), which is the minimum data cost to theoretically break LILI-128 so far
as we know. It highlights the advantage of the low data cost for our method.
The time complexity is O(2122.4), better than the brute force. Our method also
suggests a new design criterion for the LFSR-based stream ciphers with nonlinear
filter: with an acceptable data cost, the parameter Tcomp should be larger than
2l−1, where l is the length of the LFSR.

Acknowledgements. We are grateful to the anonymous reviewers for their valu-
able comments on this paper. This work was supported by the National Basic Re-
search Program of China (Grant No. 2013CB834203, Grant No. 2013CB338002)
and theNationalNatural Science Foundation ofChina (GrantNo. 61379142,Grant
No. 11171323, Grant No. 60833008, Grant No. 60603018, Grant No. 61173134,
Grant No. 91118006, Grant No. 61272476), the Strategic Priority Research Pro-
gram of the Chinese Academy of Sciences (Grant No. XDA06010701), IIEs Re-
search Project on Cryptography (Grant No. Y3Z0016102).

References

1. Armknecht, F., Krause, M.: Algebraic attacks on Combiners with Memory. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 162–175. Springer, Heidelberg
(2003)

2. Courtois, N.T., Meier, W.: Algebraic attacks on stream ciphers with linear feed-
back. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 345–359.
Springer, Heidelberg (2003)

146 X. Zhong et al.

3. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions.
J. Symbolic Computation 9, 251–280 (1990)

4. Dawson, E., Clark, A., Golic, J., Millan, W., Penna, L., Simpson, L.: The LILI-128
Keystream Generator, NESSIE submission. In: The Proceedings of the First Open
NESSIE Workshop (2000)

5. ETSI/SAGE. Specification of the 3GPP Confidentiality and Integrity Algorithms
UEA2 & UIA2. Document 2: SNOW3G Specification, version 1.1 (2006),
http://www.3gpp.org/ftp/

6. Golić, J.D.: On the security of nonlinear filter generators. In: Gollmann, D. (ed.)
FSE 1996. LNCS, vol. 1039, pp. 173–188. Springer, Heidelberg (1996)

7. Golić, J.D., Clark, A., Dawson, E.: Inversion Attack and Branching. In: Pieprzyk,
J., Safavi-Naini, R., Seberry, J. (eds.) ACISP 1999. LNCS, vol. 1587, pp. 88–102.
Springer, Heidelberg (1999)

8. Hell, M., Johansson, T., Meier, W.: Grain-A Stream Cipher for Constrained Envi-
ronments. eStream Project,
http://www.ecrypt.eu.org/stream/p3ciphers/grain/Grain-p3.pdf

9. Luo, Y., Chai, Q., Gong, G., Lai, X.: A lightweight stream cipher wg-7 for RFID
encryption and authentication. In: GLOBECOM, pp. 1–6 (2010)

10. Meier, W., Pasalic, E., Carlet, C.: Algebraic attacks and decomposition of boolean
functions. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 474–491. Springer, Heidelberg (2004)

11. Tsunoo, Y., Saito, T., Shigeri, M., Kubo, H., Minematsu, K.: Shorter bit sequnence
is enough to break stream cipher LILI-128. Trans. Inf. Theory 51(12), 4312–4319
(2008)

12. Strassen, V.: Gaussian Elimination is Not Optimal. Numerische Mathematik 13,
354–356 (1969)

http://www.3gpp.org/ftp/
http://www.ecrypt.eu.org/stream/p3ciphers/grain/Grain-p3.pdf

Low Data Complexity Inversion Attacks on Stream Ciphers 147

A Appendix: 9-variable Carlet-Feng Boolean Function

f = x1x2x3x4x5x6x7x8 +x1x2x3x4x5x6x8 +x1x2x3x4x5x6x9 +x1x2x3x4x5x6 +
x1x2x3x4x5x7x8x9+x1x2x3x4x5x8+x1x2x3x4x6x7+x1x2x3x4x6x8x9+x1x2x3x4

x7x8x9 + x1x2x3x4x7x9 + x1x2x3x4x8x9 + x1x2x3x5x6x7x9 + x1x2x3x5x6x8 +
x1x2x3x5x7x8 + x1x2x3x5x7x9 + x1x2x3x5x7 + x1x2x3x5x8x9 + x1x2x3x5x8 +
x1x2x3x5x9+x1x2x3x6x7x8x9+x1x2x3x6x7x8+x1x2x3x6x7x9+x1x2x3x6x7+
x1x2x3x6x8+x1x2x3x7x8+x1x2x3x8+x1x2x3x9+x1x2x4x5x6x7x8x9+x1x2x4x5

x6x7x9+x1x2x4x5x6x9+x1x2x4x5x7x8x9+x1x2x4x5x8x9+x1x2x4x5x9+x1x2x4

x6x7x8x9+x1x2x4x6x7x8+x1x2x4x6x7+x1x2x4x6x8x9+x1x2x4x6x8+x1x2x4x6

+x1x2x4x7x8+x1x2x4x7x9+x1x2x4x8+x1x2x4x9+x1x2x5x6x7x8+x1x2x5x6x7+
x1x2x5x6x8 + x1x2x5x7x8x9 + x1x2x5x7x8 + x1x2x5x8x9 + x1x2x5x9 + x1x2x6

x7x8x9 + x1x2x6x8x9 + x1x2x6x8 + x1x2x6 + x1x2x7x8 + x1x2x7x9 + x1x2x7 +
x1x2x8 + x1x2x9 + x1x3x4x5x6x7x8x9 + x1x3x4x5x6x7x8 + x1x3x4x5x6x7x9 +
x1x3x4x5x6x8x9+x1x3x4x5x6x8+x1x3x4x5x6x9+x1x3x4x5x6+x1x3x4x5x7x8x9

+x1x3x4x5x7x8+x1x3x4x5x7x9+x1x3x4x5x8+x1x3x4x5x9+x1x3x4x5+x1x3x4

x6x7x8x9+x1x3x4x6x7x8+x1x3x4x6x7x9+x1x3x4x6x7+x1x3x4x7x8x9+x1x3x4

x7x8+x1x3x4x7x9+x1x3x4x8+x1x3x5x6x7x8x9+x1x3x5x6x7x8+x1x3x5x6x8+
x1x3x5x7x8+x1x3x5x7+x1x3x5x8x9+x1x3x5x8+x1x3x6x7x8+x1x3x6x7x9+
x1x3x6x8 + x1x3x6 + x1x3x7x8x9 + x1x3x7x8 + x1x3x7 + x1x3x8x9 + x1x3x8 +
x1x3+x1x4x5x6x7x8x9+x1x4x5x6x7x8+x1x4x5x6x7+x1x4x5x6x8x9+x1x4x5x6

+x1x4x5x7x8x9+x1x4x5x8x9+x1x4x5x8+x1x4x5x9+x1x4x5+x1x4x6x7x8x9+
x1x4x6x7x8+x1x4x6x7+x1x4x6x8x9+x1x4x6x9+x1x4x7x8+x1x4x7+x1x4x8x9+
x1x4+x1x5x6x7x8+x1x5x6x7x9+x1x5x6x7+x1x5x6x8x9+x1x5x6x9+x1x5x7+
x1x5x8x9 + x1x5x8 + x1x6x7x8x9 + x1x6x7x8 + x1x6x7x9 + x1x6x7 + x1x6x8 +
x1x6+x1x7+x1x8x9+x2x3x4x5x6x7+x2x3x4x5x6x9+x2x3x4x5x7x8+x2x3x4x6

x7x8x9+x2x3x4x6x8x9+x2x3x4x6x8+x2x3x4x6x9+x2x3x4x7x8x9+x2x3x4x7x8

+x2x3x4x7x9+x2x3x4x8x9+x2x3x4x9+x2x3x5x7x8x9+x2x3x5x7x8+x2x3x5x7

x9+x2x3x5x7+x2x3x5x8x9+x2x3x5x9+x2x3x6x7x8x9+x2x3x6x7x8+x2x3x6x7

x9+x2x3x6x8x9+x2x3x7x9+x2x3x7+x2x3x8x9+x2x3x8+x2x3x9+x2x4x5x6x7+
x2x4x5x6x8x9+x2x4x5x6x9+x2x4x5x6+x2x4x5x7x8x9+x2x4x5x7x8+x2x4x5x8

x9+x2x4x5x9+x2x4x6x8x9+x2x4x6x8+x2x4x6x9+x2x4x7x8x9+x2x4x7x9+
x2x4x7 + x2x4x8x9 + x2x4x8 + x2x4x9 + x2x4 + x2x5x6x7x8x9 + x2x5x6x7x8 +
x2x5x6x7+x2x5x6x9+x2x5x6+x2x5x7x8x9+x2x5x7x8+x2x5x8x9+x2x5x8+
x2x5+x2x6x7x8x9+x2x6x7x8+x2x6x8+x2x6x9+x2x7x8x9+x2x7x8+x2x7x9+
x2x7 + x2x8 + x3x4x5x6x7x8 + x3x4x5x6x8x9 + x3x4x5x7x9 + x3x4x5x8x9 +
x3x4x6x8x9+x3x4x6x8+x3x4x7x8x9+x3x4x8+x3x4x9+x3x5x6x7x8+x3x5x6x7+
x3x5x6x8x9 + x3x5x7x9 + x3x5x8 + x3x5x9 + x3x5 + x3x6x7x8x9 + x3x6x7x8 +
x3x6x7 + x3x6x8x9 + x3x6x9 + x3x6 + x3x7x8x9 + x3x7x9 + x3x8x9 + x3x8 +
x3x9+x4x5x6x7x8x9+x4x5x7x9+x4x5x9+x4x6x7x8x9+x4x6x7x8+x4x6x9+
x4x6 + x4x7x8x9 + x4x7x8 + x4x7 + x4x9 + x5x7x8x9 + x5x7 + x5x8x9 + x5x8 +
x6x8 + x6x9 + x7x9 + 1.

	Low Data Complexity Inversion Attackson Stream Ciphers via TruncatedCompressed Preimage Sets
	1 Introduction
	2 Preliminaries
	2.1 Brief Description of the LFSR-Based Keystream Generator with Nonlinear Filter
	2.2 Algebraic Attack and Inversion Attack

	3 k-th Truncated Compressed Preimage Sets
	4 Low Data Complexity Inversion Attack to Recover the Initial LFSR State via the k-th ATCP Sets
	5 Analysis on a Keystream Generator with a Filter Boolean Function of Optimum Algebraic Immunity
	6 Low Data Complexity Attack on LILI-128 via the k-th TCP Sets
	7 Conclusion
	References
	A Appendix: 9-variable Carlet-Feng Boolean Function

