
On Selection of Samples in Algebraic Attacks

and a New Technique to Find Hidden Low
Degree Equations

Petr Sušil�, Pouyan Sepehrdad, and Serge Vaudenay

EPFL, Switzerland
{petr.susil,pouyan.sepehrdad,serge.vaudenay}@epfl.ch

Abstract. The best way of selecting samples in algebraic attacks against
block ciphers is not well explored and understood. We introduce a sim-
ple strategy for selecting the plaintexts and demonstrate its strength
by breaking reduced-round KATAN32 and LBlock. In both cases, we
present a practical attack which outperforms previous attempts of alge-
braic cryptanalysis whose complexities were close to exhaustive search.
The attack is based on the selection of samples using cube attack and
ElimLin which was presented at FSE’12, and a new technique called Uni-
versal Proning. In the case of LBlock, we break 10 out of 32 rounds.
In KATAN32, we break 78 out of 254 rounds. Unlike previous attempts
which break smaller number of rounds, we do not guess any bit of the key
and we only use structural properties of the cipher to be able to break
a higher number of rounds with much lower complexity. We show that
cube attacks owe their success to the same properties and therefore, can
be used as a heuristic for selecting the samples in an algebraic attack.
The performance of ElimLin is further enhanced by the new Universal
Proning technique, which allows to discover linear equations that are not
found by ElimLin.

Keywords: algebraic attacks, LBlock, KATAN32, ElimLin, Gröbner basis,
cube attack, universal proning.

1 Introduction

Algebraic attacks is a very powerful method for breaking ciphers in low data
complexity attacks. This scenario is the most usual in practice. Algebraic crypt-
analysis has brought about several important results (see [1, 14–17, 25]). An
algebraic attack can be divided into several steps: building a system of equations
and finding the solution to the system using an appropriate algorithm. The meth-
ods for finding the solution are, however, not sufficiently adapted for algebraic
cryptanalysis, which shed a skeptical light on the entire discipline. The attacks
mostly report breaking several rounds of a target cipher, but fail to explore scal-
able strategies for improvements. In this paper, we start filling this gap.

� Supported by a grant of the Swiss National Science Foundation, 200021 134860/1.

W. Susilo and Y. Mu (Eds.): ACISP 2014, LNCS 8544, pp. 50–65, 2014.
c© Springer International Publishing Switzerland 2014

On Selection of Samples in Algebraic Attacks 51

One approach in algebraic cryptanalysis is building a system of linear equa-
tions in the key variables using extensive preprocessing, such as cube attacks
[5, 23, 25, 26]. Another approach is building a system of multivariate quadratic
equations, and solving the system using Gröbner basis computation (F4/F5,
XL/mXL), see [2, 28, 34, 39, 40, 43], using XSL algorithm, see [12, 13, 19, 37], or
converting the multivariate system into algebraic normal form and running SAT
solvers. such as in [42]. All these methods usually implement a common step
called ElimLin [22]. ElimLin is a simple algorithm which uses linear equations from
the linear span of a system for elimination of variables by substitution. It works
iteratively until no new linear equation can be found. Using this method we can,
in some cases, linearize a large multivariate polynomial system. Since this tech-
nique is used as the first step by all advanced techniques a proper understanding
of ElimLin algorithm is crucial for further advances in algebraic cryptanalysis.
In this paper, we present evidence that the success of SAT solvers in algebraic
attacks depends on the performance of ElimLin algorithm and we expect similar
phenomena to occur in the case of F4 and mXL. We show that the selection of
samples based on a cube attack on R round ciphers performs well when breaking
R + ε rounds cipher for a small ε. We demonstrate this by breaking 10 rounds
(out of 32) of LBlock [44] in Section 3.4 and 78 rounds of KATAN32 (out of 254)
[10] without guessing any key bits in Section 6, while all previous approaches
were guessing 32−45 bits of the key. Therefore, the complexity of their attack is
of order 232T(SAT)−245T(SAT). We also note that unlike SAT solvers, whenever
ElimLin with our extensions, which we introduce in Section 5, was successful to
recover one key, it was successful to recover the key in all cases we tested. The
running time of our attack was several hours for smaller sets of samples, and
up to 10 days for the largest sets of samples. Finally, we introduce a technique
called Universal Proning which allows to find additional linear equations of the
system which are satisfied for a random key with high probability. The relation
between these algebraic methods have been extensively studied. ElimLin is a ba-
sic algorithm which is part of every algebraic tool. XSL is an ad-hoc version of
XL which was analyzed in [13]. The XL algorithm computes the Gröbner basis in
a similar way as F4, but it performs additional unnecessary computations [4].
The mXL variant of XL [40] is equivalent to F4 [3]. The comparison between
Gröbner basis computation and performance of SAT solver was shown in [27].
The complexity of SAT was further studied in [38]. The asymptotic estimates
of the complexity of XL and Gröbner basis were given in [45]. The multivariate
equations representing the cipher are difficult to solve in general. The most gen-
eral solving technique is to find the Gröbner basis of the ideal generated by the
system using algorithms such as F4. Using this technique, the degree of equations
in the system is iteratively increased until the first fall appears [32, Section 4.6],
and the system is fully solved, when a so-called degree of regularity is reached
[8, Definition 3]. This degree is usually high [7] and therefore such computation
is often infeasible due to memory requirements. The SAT solving techniques also
do not perform very well for complicated systems. The XL algorithm is a variant
of the F4 algorithm [3] and therefore, suffers from the same problems. ElimLin

52 P. Sušil, P. Sepehrdad, and S. Vaudenay

algorithm can be seen as iterations of a Gauss elimination and a substitution. It
does not increase the degree of the system in any intermediate step, and hence
it finds no solution in many cases. We observe that the running time of all the
techniques above depends on the selection of plaintext-ciphertext pairs. In this
paper, we introduce a technique for the selection of samples which significantly
improves the running time for selected ciphers. In Section 2, we recall ElimLin
algorithm then, in Section 3, we introduce our method for selecting samples in
an algebraic attack and show its performance using reduced round LBlock. In
Section 4, we discuss implementation improvements of ElimLin, which allow to
parallelize the attack and reduce memory requirements. In Section 5, we intro-
duce a new technique called Universal Proning for recovering linear equations
which cannot be found by ElimLin, but which are satisfied for a random key
with high probability. We use this technique together with ElimLin in Section 6
to attack reduced round KATAN32. It was previously analysed in [33, 35, 41].
We compare our results to state-of-the-art algebraic attacks on KATAN32 and
show that our technique of selecting samples and recovering hidden linear equa-
tions outperform previous results. The recent attack against KATAN32 in [41]
achieves similar number of rounds as we do but the authors guess 45 statebits
before running the SAT. Hence, the complexity of their attack is 245T(SAT)
which is comparable to a previous attack in [6]. We show the effectiveness of
our approach on two well-known ciphers as an example and provide evidence
to support the hypothesis that this would be the case for other ciphers as well.
Our sample selection technique can also be used in attacks based on F4/mXL
and SAT solvers. The trade-off between increasing number of samples for ElimLin
and increasing degree in F4/mXL still remains an open problem.

2 The ElimLin Algorithm

The ElimLin algorithm is a very simple tool for solving systems of multivariate
equations. It is based on iterations of a Gauss elimination and a substitution of
variables by linear equations. It is used as a preprocessing tool in most computer
algebra systems, e.g., F4/F5 algorithm, XL, or even in cryptominisat. Since this
algorithm is a common base of all solvers, it is important to carefully investigate
its properties and capabilities. We refer the reader to [22] for additional details.
Later in the paper, we discuss a strategy to improve the running time of ElimLin
when we consider many samples. It was already shown in [22] that increasing
the number of samples helps to find the secret key using ElimLin. We now show
that selecting the plaintexts carefully can significantly improve the performance
of ElimLin and even outperforms state-of-the-art attacks based on SAT solvers.
Since ElimLin performs only substitution by linear terms, the degree of the system
cannot increase. Therefore, ElimLin can solve the system and recover the secret
key only in very special cases. ElimLin is performed as the first step of Gröbner
basis computation and even some SAT solvers, such as cryptominisat, run ElimLin
as a preprocessing step. Therefore, we focus on the selection of plaintexts which

On Selection of Samples in Algebraic Attacks 53

allows ElimLin to solve the system or eliminate the highest possible number of
variables.

3 On the Selection of Samples

In this section, we define our system of equations and give necessary defini-
tions. In part 3.1, we give a new characterization of the system when ElimLin
succeeds. In part 3.2, we find a strategy for selection of samples, which allows to
satisfy this condition. This selection strategy is based on cube attacks which we
recall in part 3.3. In part 3.4, we show the performance of such a technique on
LBlock, and compare our results to previous algebraic attacks based on ElimLin.
In part 3.5, we give further insight into our method and directions for future
testing and improvements.

Notation 1. We use kln to represent the key length. We use sln to represent
the message length and the length of the state vector. We use smpn to represent
the number of plaintext/ciphertext pairs. We use rndn to represent the number
of rounds of the cipher.

We represent state bits and key bits by variables. Each state variable sjp,r
corresponds to a plaintext of index p, a round r, and an index j in the state
vector. The key is represented by key variables k1, . . . , kkln. The plaintext p is
represented by sjp,0 and ciphertext by sjp,rndn.

Notation 2. We denote V =
⋃

t∈[1,kln]

{kt}∪
⋃

p∈[1,smpn]

⋃

r∈[0,rndn]

⋃

j∈[1,sln]

{sjp,r} the set

of variables.

The round function of the cipher is represented by a set of polynomials rjr which
takes as input all state variables at round r and returns the j-th state variable at
round r + 1, i.e., sjp,r+1 is given by polynomial rjr(s

1
p,r, . . . , s

sln
p,r, k1, . . . , kkln). We

denote corresponding equation1 Eqpj,r = rjr
(
s1p,r, . . . , s

sln
p,r, k1, . . . , kkln

)− sjp,r+1.

Notation 3 (system). We denote

S =

⎛
⎝ ⋃

p∈[1,smpn]

⋃
r∈[0,rndn]

⋃
j∈[1,sln]

{
Eqpj,r

}
⎞
⎠ ∪

(⋃
v∈V

{v2 − v}
)

where the first part represents equations between variables of round r and r + 1
and the second part represents equations which hold trivially over F2. We further

denote Sω,�,� = S ∪
⋃

p∈[1,smpn]

⋃
j∈[1,sln]

(
sjp,0 − ωj

p

)
, S�,�,κ = S ∪

⋃
i∈[1,kln]

{ki − κi}

S�,γ,� = S ∪
⋃

p∈[1,smpn]

⋃
j∈[1,sln]

(
sjp,rndn − γj

p

)
,

1 We assume that our equations are sound in the sense being fully ”Describing” equa-
tions [18] for each component of the encryption process.

54 P. Sušil, P. Sepehrdad, and S. Vaudenay

We use notation Sω,γ,κ to denote that we set plaintext to ω, ciphertext to γ and
key to κ. The symbol � at any position means that the value is unset. Hence,
Sω,�,� is the system of equations when we fix the plaintexts to χ and S�,γ,� is the
system when we fix the ciphertexts to γ. We later use Sω,γ,� which represents,
thus, the system in which we fix both the plaintext and the ciphertext.

Notation 4. For a system S, we denote Sω,�,κ = Sω,�,� ∪ S�,�,κ , S�,γ,κ =
S�,γ,� ∪ S�,�,κ , and Sω,γ,� = Sω,�,� ∪ S�,γ,�

Assumption 5. We assume that the ideal 〈Sω,γ,�〉 is a maximal ideal.

We recall that smpn denotes the number of plaintext/ciphertext pairs. For the
assumption to be satisfied we require that smpn is large enough to uniquely
characterize κ. In our experiments, the equations for KATAN32 are build as
in [6] and the equations for LBlock as in [22]. This allows for more accurate
comparison of our the method of selection of samples.

3.1 Characterization of Systems when ElimLin Succeeds

We now explore the properties of systems for which ElimLin succeeds to recover
the secret key. We use this characterization in Part 3.2 to derive a selection
strategy for plaintexts.

Lemma 6. Consider a system S such that ElimLin applied to Sω,γ,� recovers
the key bit kj as value cj ∈ F2. Let ElimLin′ be a variant of ElimLin which treats
plaintext and ciphertext variables of the system S as if they had degree 0. Then,
∃q ∈ elspan’ (S) which has the following form: q = kj + cj + q′ and q′ evaluates
to 0 when we set plaintext variables to ω and ciphertext variables to γ.

Proof. We perform the same substitution while running ElimLin′ and obtain the
polynomial q′.

The polynomial q′ will be important in the selection strategy of plaintexts. The
existence of such a polynomial is essential for ElimLin to be able to recover the
secret key. At the same time, the existence of such polynomials can be guaranteed
if we select the samples based on a successful cube attack.

3.2 A Selection Strategy for Plaintexts in ElimLin

Lemma 6 characterizes the span of ElimLin when it recovers the value of the
key kj . We now discuss the strategy to ensure that this condition is satisfied.
We now consider the polynomial q′ from Lemma 6. Since we cannot choose
simultaneously the plaintext and the ciphertext for a single sample, we consider
several different scenarios: selecting plaintexts only, ciphertexts only, selecting
partly plaintexts and partly ciphertexts. The selection of related plaintexts such
that corresponding ciphertexts are also related is considered in [21]. These pairs
are constructed using higher order and/or truncated differential cryptanalysis

On Selection of Samples in Algebraic Attacks 55

[36]. In our scenario, we concentrate on the selection of only plaintexts. We
found no advantage in the selection of only ciphertexts. The selection of part
of plaintexts and part of ciphertexts is yet to be explored. The selection of
related plaintexts and corresponding ciphertexts is specific to a chosen cipher.
However, our goal is to determine an optimal generic selection of samples. We
use Lemma 6 for the selection of plaintexts. It specifies the properties of q′ which
has to evaluate to 0 when we set plaintext and ciphertext variables, i.e., when
we set ω and γ. However, we would like to guarantee that q′ evaluates to 0 only
when setting the plaintexts since we cannot control both the plaintexts and the
ciphertexts. Hence, we are looking for a set of samples that lead to existence of
such q′ when we set only plaintext variables. Let degr(p) denote the total degree
of the polynomial p in variables corresponding to round r, i.e., sr1,1, . . . , s

r
smpn,sln.

Provided the deg0(q
′) < d, we can build a set of 2D samples, i.e., find ω, such

that q′ evaluates to 0. This leads us to setting values ω according to a cube
recovered from cube attack.

3.3 Cube Attack

The cube attack [23] can be seen as a tool to analyze a black-box polynomial.
Throughout the paper, we represent this polynomial by f(x, k). The aim is to
derive a set of equations which is easy to solve and which is satisfied for all keys,
i.e., for all values of k. The attacker does this in the offline phase. Afterwards, in
the online phase, the attacker finds the evaluation for each equation and solves
the system. We query this polynomial in an offline phase for both parameters
x and k. In the online phase, we are allowed to use queries only in the first
parameter x, since k is set to an unknown value κ. The objective is to recover
this κ. To achieve this, we find a hidden structure of f(x, k) in the offline phase
and use it to derive κ in the online phase. In the offline phase, we find sets
of plaintexts Ci such that

∑
x∈Ci

f(x, k) behaves like a linear function �i(k)
and �i’s are linearly independent. In the online phase, we ask the oracle for
encryptions of plaintexts from Ci and solve the system of linear equations. In
the following, we derive the algebraic expression of

∑
x∈Ci

f(x, k) and show that
this function can indeed behave like a function �(k). Let f(x, k) be a black-box
polynomial which can be for some coefficients aIJ ∈ F2 expressed as f(x, k) =∑

I⊆{0,1}sln
J⊆{0,1}kln

aIJ
∏

i∈I

xi

∏

j∈J

kj .

Definition 7. Let m ∈ {0, 1}sln and t ∈ {0, 1}sln such that t∧m = 0. We define
Cm,t = {x : x∧m̄ = t}. We call Cm,t a “cube”, m a “mask”, and t a “template”,
and we denote Im = {i : 2i ∧m �= 0}, where 2i represent the bitstring with 1 at
position i.

Example: Let m = 00010110 and t = 11100001. Then, we have |Cm,t| = 23. Cm,t =
{11110111, 11100111, 11110101, 11110011, 11100011, 11100001, 11110101, 11100001}.

56 P. Sušil, P. Sepehrdad, and S. Vaudenay

The success of cube attacks is based on finding enough cubes Cmi,ti , i.e., enough

mis, tis, such that
∑

ω∈Cmi,ti

f(x, k) =
∑

J⊆{0,1}kln

aiJ
∏

j∈J

kj are linearly independent

low degree equations. Even though cube attack may be a powerful tool in al-
gebraic cryptanalysis, it has been successful against only very few ciphers. The
reduced round TRIVIUM [9] can be attacked for 784 and 799 rounds [30], and can
be distinguished with 230 samples up to 885 rounds [5]. The full round TRIVIUM
has 1152 rounds, which means that 70% of the cipher can be broken by this sim-
ple algebraic technique. GRAIN128 [31] was broken using so called dynamic cube
attack in [25]. KATAN32 was attacked in [6] using so called side-channel cube
attack first introduced in [24]. While cube attacks celebrate success in only few
cases, we show that they can be used for selection of samples in other algebraic
attacks.

3.4 Selection of Plaintexts

In this section, we show that the selection of plaintexts based on the success
of cube attack is a good strategy for satisfying the condition from Section 3.1.
We give an attack against 10 rounds of LBlock. This attack outperforms the
previous attempts of algebraic cryptanalysis [22]. We compare our strategy of
using samples for cube attack to the strategy of selecting a random cube or a
random set of samples. The strategy of selecting a random cube was previously
explored in [29]. The authors were choosing correlated messages based on a
algebraic-high order differential.

Breaking 8 rounds of LBlock. The previous result on breaking 8 rounds of LBlock
using ElimLin required 8 random plaintexts, and guessing 32 bits of the key
(out of 80bits). We found that if we select 8 plaintexts based on cube Cm,t for
m=0x0000000000000007 and t=0xe84fa78338cd9fb0, we break 8 rounds of LBlock
without guessing any key bits. We verified this result for 100 random keys and
we were able to recover each of the 100 secret keys we tried using ElimLin.

Breaking 10 rounds of LBlock. We found that if we select 16 plaintexts based
on cube Cm,t for m=0x0000000000003600 and t=0xe84fa78338cd89b6, we break
10-rounds of LBlock without guessing any key bits. We verified this result for
100 random keys. We were able to recover each of the 100 secret keys we tried
using ElimLin. We tried to extend the attack to 11 rounds of LBlock, however we
have not found any cube of dimension 5 or 6 which would allow ElimLin to solve
the system.

Random vs Non-Random Selection of Plaintexts. We tested the performance of
ElimLin applied to 10-round LBlock for the same number of plaintext-ciphertext
pairs. Our results show that when ElimLin algorithm is applied to a set of n
plaintexts from a cube, the linear span it recovers is larger than for a set of
n random samples. We also show that ElimLin behaves better on some cubes,

On Selection of Samples in Algebraic Attacks 57

and that this behavior is invariant to affine transformation. The results are
summarized in Table 1.

Table 1. Results on 10-round LBlock

10 rounds of LBlock: Cm,t system of 24 samples solved remaining variables

m=0x0000000000003600 t=0xe84fa78338cd89b6 yes 0
m=0x0000000000d00001 t=0x856247de122f7eaa yes 0

m=0x0000000000003600 random yes 0
m=0x0000000000d00001 random yes 0

m=random deg4 random no ≈ 700

random set no ≈ 2000

3.5 ElimLin and Cube Attacks

In this section, we explain the intuition behind using a cube attack for selecting
samples for ElimLin. We first elaborate on our observations about ElimLin’s ability
to recover the equation found by cube attack. Later, we compare our approach to
classical cube attacks and give additional observations about behavior of ElimLin
with our selection of samples.

Structure of the cube. Let Eκ denote the encryption under the key κ, and let
consider two samples for the plaintexts ω and ω+Δ, whereΔ has a low Hamming
weight. Many statebits in the first rounds of computation Eκ(ω) and Eκ(ω +
Δ) take the same value since they can be expressed by the same low degree
polynomial in the key and state variables. This can be detected by ElimLin and
used to reduce the total number of variables of the system. Therefore, good
candidates for the selection of samples are plaintexts which are pairwise close
to each other — in other words, plaintexts from a cube. Let now consider ω =
(ωp : ωp ∈ Cm,t). We consider a blackbox polynomial f(x, k) computing the value
of state variable sjx,r for a key k, a plaintext x, a statebit j and r rounds. The cube
attack gives an equation

∑
ωp∈Cm,t

f(ωp, k) = �(k) for a linear function �. We

observe that the equation
∑

ωp∈Cm,t
f(ωp, k) = �(k) is found also by ElimLin in a

majority of cases. We further found that ElimLin can find many pairs of indices
(a, b), such that sja,r equals to sjb,r. We assume that this is the fundamental reason
for the success of cube attack. Thanks to such simple substitutions, ElimLin can
break a higher number of rounds while decreasing the running time.

ElimLin vs. Cube Attacks. The attack based on cube attack consists of an expen-
sive offline phase, where we build the system of equations which is easy to solve,
i.e., linear (or low degree) equations in the key bits, and the online phase where
we find evaluations for these linear equations and solve the system. The attack
based on ElimLin consists of a cheap offline phase, since the system of equations

58 P. Sušil, P. Sepehrdad, and S. Vaudenay

represents the encryption algorithm, and the online phase is therefore more ex-
pensive. Our attack can be seen as a mix of these two approaches. We increase
the cost of the offline phase to find a good set of samples and run ElimLin on the
system without the knowledge of ciphertext. Hence, we simplify the system for
the online phase.

Comparison of number of attacked rounds by Cube Attacks and ElimLin with same
samples. In our attacks we observed an interesting phenomena which occurs for
every cipher we tested. Our first phase consists of finding a cube attack against
a R round ciphers. In the next phase, we consider R + r round cipher, build a
system of equations, set plaintext bits correspondingly, and run ElimLin to obtain
a system P . In the next step, we query the encryption oracle for ciphertexts, build
a system of equations corresponding to rounds [R,R + r], and run ElimLin to
obtain a system C. We found that the success of ElimLin to recover the secret key
of R + r round cipher strongly depends on the selection of plaintexts: random
samples perform worse than random cubes and random cubes preform worse
than the ones which perform well in cube attack. The plaintexts selected based
on a cube allow ElimLin to find more linear relations, which are in many cases
of form sja,r = sjb,r. Hence, we obtain a system with significantly less variables.
This allows us to recover the secret key. In the cases of LBlock and KATAN32 we
obtained r ≈ R

3 . These observation suggest a further research in performance
of ElimLin against ciphers such as TRIVIUM and GRAIN128, since there already
exist cube attacks against a significant number of rounds [30, 25, 5].

4 Optimizing ElimLin

The implementation of ElimLin faces several challenges. For ElimLin to be suc-
cessful it is necessary to consider a lot of samples. However, a high number of
samples leads to an increase in memory requirements. We remind the Theorem
13 from [22] and use the result to split the system into small subsystems corre-
sponding to different plaintext samples and recover most linear equations with
small memory requirements.

Definition 8. Let S be the initial set for ElimLin. Let ST ,SL be the resulting
sets of ElimLin. We call the linear span of ST ∪ SL ElimLin span and denote it
by elspan (S) = linspan (ST ∪ SL).

Theorem 9 (ElimLin invariant [22]).
The span elspan (S) is invariant with respect to the order of substitutions and
Gauss elimination.

In the next section, we show the performance of our new version of ElimLin
algorithm and give examples of reduced round KATAN32 and sets of plaintexts
that allow us to derive the key using ElimLin. All our attacks outperform the best
known attacks and they can be performed using a standard computer with suf-
ficient RAM. In our case, the limitation was 40GB of RAM memory. We expect

On Selection of Samples in Algebraic Attacks 59

that our results can be improved both in terms of time, memory and data. This
requires better implementation of ElimLin and finding a better cube for selection
of samples. Therefore we mainly concentrate on successes and failures of ElimLin
to recover the secret key. Additionally, we use a method called Universal Proning
which we describe in Section 5. This method allows to recover equations among
state variables corresponding to different plaintexts which are valid for every key.
These additional equations further speed up ElimLin and allow to break more
rounds in some cases.

5 Universal Proning: Recovering Linear Polynomials not
found by ElimLin

We observe that most linear equations which ElimLin recovers are satisfied inde-
pendent of the secret key, these are the linear equations in elspan (Sω,�,�) and
elspan (S�,γ,�). Therefore we introduce a new method called Universal Proning
for finding all linear equations which are satisfied independently of the value of
the key.

In this section, we introduce universal polynomials. A universal polynomial is
a polynomial f ∈ R, such that f ∈ 〈Sω,�,κ〉 or f ∈ 〈S�,γ,κ〉 for every key κ, hence,
the name universal. Intuitively, we can see that a universal polynomial cannot
help to recover the secret key but it helps to simplify the polynomial system. The
concept of universal polynomials is closely related to concepts earlier studied in
[20, slide 118-120]. Let us consider a polynomial m ∈ F2[V] and a function which
evaluates m under key κ.

Definition 10. Let F2[V] be the set of all polynomials in variables V over F2.
Let us define the function eω : F2[V] → Func

(
Fkln

2 ,F2

)
, such that eω(m) is

the function mapping κ in F kln
2 to the reduction of the polynomial m modulo

〈Sω,�,κ〉. Similarly, let us define the function dγ : F2[V] → Func
(
Fkln

2 ,F2

)
, such

that dγ(m) is the function mapping κ in F kln
2 to the reduction of the polynomial

m modulo 〈S�,γ,κ〉.
We recover universal polynomials from approximation of ker (eω) and ker (dγ).

6 Selection of Samples in KATAN32

We give the results of the attack against KATAN32 in Table 3. The previous best
algebraic attack is given by Bard et al. [6]. The authors attack:

– 79 rounds of KATAN32 using SAT solver, 20 chosen plaintexts and guessing
45 key bits.

– 71 and 75 rounds of KATAN32, and guessing 35-bits of the key.

In our attacks, we do not guess any key bit and achieve a comparable number
of rounds. However, we need to use more plaintext ciphertext pairs (128− 1024
instead of 20). The main advantage of our attack is not only the fact that we

60 P. Sušil, P. Sepehrdad, and S. Vaudenay

do not need to guess the key bits but also its determinism. Since the success
of other algebraic attacks such as SAT solvers and Gröbner basis depends on
the performance of ElimLin, our results may be applied in these scenarios for
improving the attacks. In Table 2, we show that the selection of samples is
important for KATAN32. The reader can observe that in the case of 69 rounds,
the template of the cube is important for ElimLin to succeed. In the case when
the template was selected based on cube attack for 55 rounds, the attack using
ElimLin is successful to recover the key. However, when we use the same mask
but a fixed template, ElimLin cannot recover any key bit. We can also see that
when the number is maximal for this set of plaintexts: when we increase the
number of rounds, ElimLin fails to recover the key. The reader should also note
that the number of linear equations we recover for 70 round KATAN32 in the
Universal Proning phase varies for different cubes. In the first case we recover less
linear equations by Universal Proning compared to 69 round case, because some
linear equations were already recovered by ElimLin. In the second case, ElimLin
was unable to recover the new equations appearing in the additional round, but
they exist in the ideal, and therefore they can be found by the Universal Proning
technique. The reader can also see that an increase in the number of samples
allows to break more rounds in some cases. In the case of 71 rounds we extend
the mask of the cube by one bit and in one case we can recover the key using
ElimLin. In the other case we cannot. In the case of 76 rounds we were unable to
break the system for any cube attack for 55 rounds. However, we found a cube
attack of 59 rounds, which allowed ElimLin to solve the system for 76 round
KATAN32 and 256 samples. In Table 3, we give successful results of attack by
ElimLin applied on reduced round KATAN32 for various number of rounds. The
previous best algebraic attacks can be found in [6]. The authors guess 35 out
of 80 bits of the key and solve the system using SAT solver. We can achieve
the same amount of rounds without any key guessing and with a running time
within several hours.

Table 2. Attack on KATAN32 using ElimLin: rounds vs. masks

rnd cube rnd mask template samples proned lin success time

69 55 m=0x00007104 t=0x39d88a02 32 29 10/10 <1 hour
69 55 m=0x00007104 t=0x65f30240 32 29 10/10 <1 hour
69 n.a m=0x00007104 t=0x00000000 32 35 no 2 hours
69 n.a m=0x00007104 t=0xf0000000 32 29 no 2 hours
69 n.a m=0x00007104 t=0x0f000000 32 29 no 2 hours
69 n.a m=0x00007104 t=0x00f00000 32 29 no 2 hours

70 55 m=0x00007104 t=0x39d88a02 32 27 no 3 hours
70 55 m=0x00007104 t=0x65f30240 32 30 no 3 hours

71 55 m=0x00007105 t=0x23148a40 64 61 10/10 3 hours
71 55 m=0x00007904 t=0x20128242 64 56 no 7 hours

76 59 m=0x0004730c t=0x21638040 256 572 3/3 3 days

On Selection of Samples in Algebraic Attacks 61

Table 3. Attack on KATAN32 using ElimLin

rnd cube rnd mask template samples proned lin success time

71 55 m=0x0002700c t=0xf2b50080 64 116 5/5 <1 hour

70 55 m=0x0c007104 t=0xa2d88a61 128 235 5/5 <1 hour
70 55 m=0x00a07104 t=0x50570043 128 213 5/5 <1 hour

71 55 m=0x00007105 t=0x23148a40 64 61 10/10 3 hours

72 55 m=0x00a07104 t=0x50570043 128 245 20/20 7 hours
72 55 m=0x0c007104 t=0xa2d88a61 128 238 60/60 7 hours
73 55 m=0x0c007104 t=0xa2d88a61 128 217 5/5 7 hours
73 55 m=0x0002d150 t=0x20452820 128 226 20/20 8 hours
73 55 m=0x0002d150 t=0xffd40821 128 231 20/20 8 hours

74 56 m=0x10826048 t=0xca458604 128 212 5/5 9 hours

75 56 m=0x80214630 t=0x76942040 256 538 5/5 23 hours
75 56 m=0x1802d050 t=0x267129a8 256 563 5/5 23 hours
75 56 m=0x908a1840 t=0x6b05c0bd 256 544 5/5 23 hours
75 56 m=0x08030866 t=0x8620f000 256 592 5/5 23 hours
75 56 m=0x52824041 t=0x0d288d08 256 516 5/5 23 hours
75 56 m=0x10027848 t=0xcf758200 256 588 5/5 23 hours

76 59 m=0x0004730c t=0x21638040 256 572 3/3 3 days

77 59 m=0x03057118 t=0x2cb20001 1024 2376 3/3 8 days
78 59 m=0x03057118 t=0x2cb20001 1024 2381 2/2 9 days

7 Final Remarks on ElimLin

On increasing the degree in F4 and increasing the number of samples in ElimLin

The F4/mXL keeps increasing the degree until the solution is found in the linear
span. ElimLin on the other hand requires more plaintext-ciphertext pairs to re-
cover the key. We show that a better selection strategy improves the success of
ElimLin, but the question whether the cipher can be broken for a large enough set
of well selected samples remains opened. Similarly, we can consider the increase
of the number of samples as an alternative to linearization step of F4/mXL. The
open problem is whether these strategies are equivalent or if one or the other
performs better. However, we believe there is an advantage of considering mul-
tiple samples and using a method introduced in Section 5 over increasing the
degree and linearization.

Implications for F4/mXL/SAT solvers
Table 2 show that selection of samples influences the degree of regularity of
the system. This claim is based on the fact that for some choices of samples
(choices of cubes m, t) ElimLin can solve the system. Therefore, the degree of
regularity is at most 2. While for other choices it cannot recover the secret key
and hence, the degree of regularity is in these cases greater than 2. We com-
pare several strategies for selection of 16 samples for attacking 10-round LBlock.

62 P. Sušil, P. Sepehrdad, and S. Vaudenay

In the first case we select the samples based on a cube attack of 6 rounds. Then,
we run ElimLin which successfully recovers a secret key only for subset of these
cubes. Subsequently, whenever ElimLin succeeds to recover the secret key for a
cube, we perform additional tests with 100 random secret keys and were able to
recover the secret key in all cases. In the second case we select samples based
on a random cube and obtain a system of 700 variables after ElimLin. In the
third case we select samples randomly and obtain a system of 2000 variables
after ElimLin. This example shows the importance of selection of samples. The
running time of F4/mXL is proportional to the degree of regularity and the num-
ber of variables in the system and, therefore, the proper selection of samples is a
crucial step. In the case of SAT solvers, the running time depends on the number
of restarts performed by the solver and the number of restarts depends on the
number of high degree relations.

8 Conclusion

We showed that the offline phase of the cube attack can be used for the selection
of samples in other algebraic techniques and that such selection significantly
outperforms the random selection of samples. We used this method against re-
duced round KATAN32, and showed that 78 rounds can be broken only using
ElimLin and 59-round cube of 210 samples. The approach can be seen as an in-
novative method of turning a single cube from cube attack into a key recovery
technique. Our results highlight several open problems. The strategy of select-
ing more samples can be seen as an alternative to increasing the degree as it
is done by F4/mXL. Using more samples leads to more variables in the system,
yet the same goal is achieved by increasing the degree and linearization. Hence,
the comparison of our selection of samples for ElimLin and state of the art im-
plementations of XL such as [11, 40] is crucial for future directions for algebraic
cryptanalysis. During our work we have discovered the existence of exploitable
internal low degree relations inside open-ended systems of equations which de-
pend on the plaintext and depend neither on the ciphertext nor the key [20,
slide 118]. These additional equations are not always found by ElimLin and we
show that our attacks can be enhanced by finding such equations first, which
process we call Universal Proning. The fact that the solution is usually found in
linspan (elspan (Sω,�,�) ∪ elspan (S�,γ,�)) and the proper analysis of Universal
Proning is a part of an ongoing research.

References

1. Al-Hinai, S.Z., Dawson, E., Henricksen, M., Simpson, L.R.: On the security of
the LILI family of stream ciphers against algebraic attacks. In: Pieprzyk, J., Gho-
dosi, H., Dawson, E. (eds.) ACISP 2007. LNCS, vol. 4586, pp. 11–28. Springer,
Heidelberg (2007)

2. Albrecht, M.R., Cid, C., Faugère, J.-C., Perret, L.: On the Relation Between the
Mutant Strategy and the Normal Selection Strategy in Gröbner Basis Algorithms.
IACR Cryptology ePrint Archive 2011, 164 (2011)

On Selection of Samples in Algebraic Attacks 63

3. Albrecht, M.R., Cid, C., Faugère, J.-C., Perret, L.: On the relation between the
MXL family of algorithms and Gröbner basis algorithms. J. Symb. Comput. 47(8),
926–941 (2012)

4. Ars, G., Faugère, J.-C., Imai, H., Kawazoe, M., Sugita, M.: Comparison between
XL and Gröbner basis algorithms. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS,
vol. 3329, pp. 338–353. Springer, Heidelberg (2004)

5. Aumasson, J.-P., Dinur, I., Meier, W., Shamir, A.: Cube testers and key recovery
attacks on reduced-round MD6 and Trivium. In: Dunkelman, O. (ed.) FSE 2009.
LNCS, vol. 5665, pp. 1–22. Springer, Heidelberg (2009)

6. Bard, G.V., Courtois, N.T., Nakahara Jr, J., Sepehrdad, P., Zhang, B.: Algebraic,
aida/cube and side channel analysis of katan family of block ciphers. In: Gong, G.,
Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS, vol. 6498, pp. 176–196. Springer,
Heidelberg (2010)

7. Bardet, M., Faugère, J.-C., Salvy, B., Yang, B.-Y.: Asymptotic behaviour of the
degree of regularity of semi-regular polynomial systems. In: Eighth International
Symposium on Effective Methods in Algebraic Geometry, MEGA 2005, Porto
Conte, Alghero, Sardinia, Italy, May 27-June 1 (2005)

8. Bardet, M., Faugère, J.-C., Salvy, B., Spaenlehauer, P.-J.: On the complexity of
solving quadratic boolean systems. J. Complexity 29(1), 53–75 (2013)

9. De Cannière, C.: Trivium: A Stream Cipher Construction Inspired by Block Cipher
Design Principles. In: Katsikas, S.K., López, J., Backes, M., Gritzalis, S., Preneel,
B. (eds.) ISC 2006. LNCS, vol. 4176, pp. 171–186. Springer, Heidelberg (2006)

10. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN - a family
of small and efficient hardware-oriented block ciphers. In: Clavier, C., Gaj, K. (eds.)
CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009)

11. Cheng, C.-M., Chou, T., Niederhagen, R., Yang, B.-Y.: Solving quadratic equations
with XL on parallel architectures. In: Prouff, E., Schaumont, P. (eds.) CHES 2012.
LNCS, vol. 7428, pp. 356–373. Springer, Heidelberg (2012)

12. Choy, J., Yap, H., Khoo, K.: An analysis of the compact XSL attack on BES and
embedded SMS4. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS,
vol. 5888, pp. 103–118. Springer, Heidelberg (2009)

13. Cid, C., Leurent, G.: An analysis of the XSL algorithm. In: Roy, B. (ed.)
ASIACRYPT 2005. LNCS, vol. 3788, pp. 333–352. Springer, Heidelberg (2005)

14. Courtois, N.T.: Higher order correlation attacks, XL algorithm and cryptanaly-
sis of toyocrypt. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587,
pp. 182–199. Springer, Heidelberg (2003)

15. Courtois, N.T.: Algebraic attacks over GF(2k), application to HFE challenge 2
and Sflash-v2. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947,
pp. 201–217. Springer, Heidelberg (2004)

16. Courtois, N.T., Bard, G.V.: Algebraic cryptanalysis of the data encryption stan-
dard. In: Galbraith, S.D. (ed.) Cryptography and Coding 2007. LNCS, vol. 4887,
pp. 152–169. Springer, Heidelberg (2007)

17. Courtois, N.T., Bard, G.V., Wagner, D.: Algebraic and slide attacks on KeeLoq.
In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 97–115. Springer, Heidelberg
(2008)

18. Courtois, N.T., Debraize, B.: Algebraic description and simultaneous linear ap-
proximations of addition in Snow 2.0. In: Chen, L., Ryan, M.D., Wang, G. (eds.)
ICICS 2008. LNCS, vol. 5308, pp. 328–344. Springer, Heidelberg (2008)

19. Courtois, N.T., Pieprzyk, J.: Cryptanalysis of block ciphers with overdefined
systems of equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501,
pp. 267–287. Springer, Heidelberg (2002)

64 P. Sušil, P. Sepehrdad, and S. Vaudenay

20. Courtois, N.T.: A new frontier in symmetric cryptanalysis. Invited talk, Indocrypt
(2008), http://www.nicolascourtois.com/papers/front_indocrypt08_2p.pdf

21. Courtois, N.T., Mourouzis, T., Song, G., Sepehrdad, P., Sušil, P.: Combined Alge-
braic and Truncated Differential Cryptanalysis on Reduced-Round Simon (April
2014) (Preprint)

22. Courtois, N.T., Sepehrdad, P., Sušil, P., Vaudenay, S.: ElimLin algorithm revis-
ited. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 306–325. Springer,
Heidelberg (2012)

23. Dinur, I., Shamir, A.: Cube attacks on tweakable black box polynomials. In: Joux,
A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 278–299. Springer, Heidelberg
(2009)

24. Dinur, I., Shamir, A.: Side Channel Cube attacks on Block Ciphers. IACR Cryp-
tology ePrint Archive 2009, 127 (2009)

25. Dinur, I., Shamir, A.: Breaking grain-128 with dynamic cube attacks. In: Joux, A.
(ed.) FSE 2011. LNCS, vol. 6733, pp. 167–187. Springer, Heidelberg (2011)

26. Dinur, I., Shamir, A.: Applying cube attacks to stream ciphers in realistic scenarios.
Cryptography and Communications 4(3-4), 217–232 (2012)

27. Erickson, J., Ding, J., Christensen, C.: Algebraic cryptanalysis of SMS4: Gröbner
basis attack and SAT attack compared. In: Lee, D., Hong, S. (eds.) ICISC 2009.
LNCS, vol. 5984, pp. 73–86. Springer, Heidelberg (2010)

28. Faugère, J.-C.: A new efficient algorithm for computing Grobner bases (F4). Jour-
nal of Pure and Applied Algebra 139(13), 61–88 (1999)

29. Faugère, J.-C., Perret, L.: Algebraic cryptanalysis of curry and flurry using corre-
lated messages. In: Bao, F., Yung, M., Lin, D., Jing, J. (eds.) Inscrypt 2009. LNCS,
vol. 6151, pp. 266–277. Springer, Heidelberg (2010)

30. Fouque, P.A., Vannet, T.: Improving Key Recovery to 784 and 799 rounds of
Trivium using Optimized Cube Attacks. In: FSE 2013 (2013)

31. Hell, M., Johansson, T., Meier, W.: Grain; a stream cipher for constrained envi-
ronments. Int. J. Wire. Mob. Comput. 2(1), 86–93 (2007)

32. Hodges, T., Petit, C., Schlather, J.: Degree of Regularity for Systems arising from
Weil Descent. In: YAC 2012 - Yet Another Conference in Cryptography, p. 9 (2012)

33. Isobe, T., Sasaki, Y., Chen, J.: Related-key boomerang attacks onKATAN32/48/64.
In: Boyd, C., Simpson, L. (eds.) ACISP. LNCS, vol. 7959, pp. 268–285. Springer,
Heidelberg (2013)

34. Faugère, J.-C.: A New Efficient Algorithm for Computing Gröbner Bases Without
Reduction to Zero (F5). In: ISSAC 2002: Proceedings of the 2002 International
Symposium on Symbolic and Algebraic Computation, pp. 75–83 (2002)

35. Knellwolf, S., Meier, W., Naya-Plasencia, M.: Conditional differential cryptanaly-
sis of Trivium and KATAN. In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS,
vol. 7118, pp. 200–212. Springer, Heidelberg (2012)

36. Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.) FSE
1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995)

37. Lim, C.-W., Khoo, K.: An analysis of XSL applied to BES. In: Biryukov, A. (ed.)
FSE 2007. LNCS, vol. 4593, pp. 242–253. Springer, Heidelberg (2007)

38. Lipton, R.J., Viglas, A.: On the complexity of SAT. In: 40th FOCS, October 17-19,
pp. 459–464. IEEE Computer Society Press, New York (1999)

39. Mohamed, M.S.E., Mohamed, W.S.A.E., Ding, J., Buchmann, J.: MXL2: Solving
Polynomial Equations over GF(2) Using an Improved Mutant Strategy. In: Buch-
mann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 203–215. Springer,
Heidelberg (2008)

http://www.nicolascourtois.com/papers/front_indocrypt08_2p.pdf

On Selection of Samples in Algebraic Attacks 65

40. Mohamed, M.S.E., Cabarcas, D., Ding, J., Buchmann, J., Bulygin, S.: MXL3: An
efficient algorithm for computing Gröbner bases of zero-dimensional ideals. In: Lee,
D., Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 87–100. Springer, Heidelberg
(2010)

41. Song, L., Hu, L.: Improved algebraic and differential fault attacks on the katan
block cipher. In: Deng, R.H., Feng, T. (eds.) ISPEC 2013. LNCS, vol. 7863,
pp. 372–386. Springer, Heidelberg (2013)

42. Soos, M.: Cryptominisat 2.5.0. In: SAT Race competitive event booklet (July 2010)
43. Stegers, T.: Faugère’s F5 Algorithm Revisited. Cryptology ePrint Archive, Report

2006/404 (2006), http://eprint.iacr.org/
44. Wu, W., Zhang, L.: LBlock: A lightweight block cipher. In: Lopez, J., Tsudik, G.

(eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011)
45. Yang, B.-Y., Chen, J.-M., Courtois, N.T.: On asymptotic security estimates in

XL and Gröbner bases-related algebraic cryptanalysis. In: López, J., Qing, S.,
Okamoto, E. (eds.) ICICS 2004. LNCS, vol. 3269, pp. 401–413. Springer, Heidelberg
(2004)

http://eprint.iacr.org/

	On Selection of Samples in Algebraic Attacks
and a New Technique to Find Hidden Low
Degree Equations

	1 Introduction
	2 The ElimLin Algorithm

	3 On the Selection of Samples
	3.1 Characterization of Systems when ElimLin Succeeds

	3.2 A Selection Strategy for Plaintexts in ElimLin

	3.3 Cube Attack
	3.4 Selection of Plaintexts
	3.5 ElimLin and Cube Attacks

	4 Optimizing ElimLin

	5 Universal Proning: Recovering Linear Polynomials not
found by ElimLin

	6 Selection of Samples in KATAN32

	7 Final Remarks on ElimLin

	8 Conclusion
	References

