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Abstract. Identity-based non-interactive key exchange (IB-NIKE) is a
powerful but a bit overlooked primitive in identity-based cryptography.
While identity-based encryption and signature have been extensively in-
vestigated over the past three decades, IB-NIKE has remained largely
unstudied. Currently, there are only few IB-NIKE schemes in the liter-
ature. Among them, Sakai-Ohgishi-Kasahara (SOK) scheme is the first
efficient and secure IB-NIKE scheme, which has great influence on follow-
up works. However, the SOK scheme required its identity mapping func-
tion to be modeled as a random oracle to prove security. Moreover, the
existing security proof heavily relies on the ability of programming the
random oracle. It is unknown whether such reliance is inherent.

In this work, we intensively revisit the SOK IB-NIKE scheme, and
present a series of possible and impossible results in the random or-
acle model and the standard model. In the random oracle model, we
first improve previous security analysis for the SOK IB-NIKE scheme
by giving a tighter reduction. We then use meta-reduction technique to
show that the SOK scheme is unlikely proven to be secure based on the
computational bilinear Diffie-Hellman (CBDH) assumption without pro-
gramming the random oracle. In the standard model, we show how to
instantiate the random oracle in the SOK scheme with a concrete hash
function from admissible hash functions (AHFs) and indistinguishability
obfuscation. The resulting scheme is fully adaptive-secure based on the
decisional bilinear Diffie-Hellman inversion (DBDHI) assumption. To the
best of our knowledge, this is first fully adaptive-secure IB-NIKE scheme
in the standard model that does not explicitly require multilinear maps.
Previous schemes in the standard model either have merely selective se-
curity or use multilinear maps as a key ingredient. Of particular interest,
we generalize the definition of AHFs, and propose a generic construction
which enables AHFs with previously unachieved parameters.
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1 Introduction

Identity-based non-interactive key exchange (IB-NIKE) is a natural extension
of NIKE [11] in the identity-based setting, which enables any two parties regis-
tered in the same key generator center (KGC) to agree on a unique shared key
without any interaction. IB-NIKE has important applications in managing keys
and enabling secure communications in mobile ad hoc and sensor networks. The
advantages of IB-NIKE, in terms of reducing communication costs and latency
in a realistic adversarial environment, are demonstrated in [8].

In 2000, Sakai, Ohgishi and Kasahara [22] proposed the first efficient and
secure IB-NIKE scheme in the random oracle model, namely the SOK scheme
(with security models and formal proofs in follow up works [12, 20]). Despite
the appearing of IB-NIKE in this celebrated work on identity-based cryptogra-
phy, it had received less attention as a fundamental primitive in its own right
over the past decade. In the last year, we have seen remarkable progress on
this topic. Freire et al. [15] constructed (poly, 2)-programmable hash functions
(PHFs) from multilinear maps. By substituting the random oracle in the original
SOK scheme with (poly, 2)-PHFs, they obtained the first IB-NIKE scheme in the
standard model. Boneh and Waters [6] demonstrated that constrained pseudo-
random functions that support left/right predicate imply IB-NIKE. Particularly,
they constructed such specific constrained PRFs based on the decisional bilin-
ear Diffie-Hellman (DBDH) assumption, and the resulting IB-NIKE scheme (the
BW scheme) can be viewed as a variant of the SOK scheme, which is also only
proven secure in the random oracle model. Boneh and Zhandry [7] proposed a
construction of multiparty IB-NIKE from PRG, constrained PRFs, and indistin-
guishability obfuscation. However, their construction only has selective security.
Hnece, how to achieve fully adaptive security is left as an open problem.

1.1 Motivations

For a security reduction R that converts any adversary A with advantage AdvA
against some hard problem in running time TimeA to an algorithm B with ad-
vantage AdvB against the target cryptographic scheme in running time TimeB,
we say it is tight if AdvB/AdvA (advantage loose factor) is close to 1 and
TimeB −TimeA (time loose factor) is close to 0, and loose otherwise. It has been
well known that besides theoretical interest, a tighter reduction is of utmost
practical importance. To obtain the same security level, cryptographic schemes
with tighter reduction generally admits more efficient implementations [1]. The
exisiting proof [20] for the SOK scheme programs the random oracle H (acting
as the identity mapping function in the construction) with “all-but-one” tech-
nique to implement partitioning strategy.1 As a consequence, the advantage loose

1 In the case of IB-NIKE, the partitioning strategy is to partition the set of all identities
into “extractable” and “unextractable” ones. The reduction hopes that all identities
for which an adversary requests for a secret key are extractable, while the target
identities are unextractable.
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factor is around 1/2180, which is far from tight. It is interesting to know if we
can provide an alternative proof with tighter reduction.

Both the original security reduction [20] and our new security reduction (as
we will show in Section 3.1) for the SOK scheme exploit full programmability
of the random oracle model (ROM) to implement partitioning strategy. Such
property allows the reduction to program the random oracle (RO) arbitrarily as
long as the output distributes uniformly and independently over the range. This
full-fledged model is usually refereed as fully programming ROM (FPROM). Full
programmability is a strong property in that it does not quite match with the
features of cryptographic hash functions. Therefore, two weaker random oracle
models are proposed by constraining the ability of the reduction to program
the RO. The randomly programming ROM (RPROM) [14] allows the reduction
to program the RO with random instead of arbitrary values, while the non-
programming ROM (NPROM) forbids the reduction to program the RO. Since
the NPROM is the weakest one among the above three random oracle models
and is closest to the standard model, it is curious to know if the SOK scheme
could be proven secure in the NPROM.

As previously mentioned, Freire et al. [15] successfully instantiated the SOK
scheme in the standard model by substituting the random oracle H with (poly, 2)-
programmable hash functions (PHFs). However, the construction of (poly, 2)-
PHFs requires multilinear maps [16]. So far, we do not have candidates for
multilinear maps between groups with cryptographically hard problems. Instead,
we only have concrete candidate for an “approximation” of multilinear maps,
named graded encoding systems [16]. Hence, we are motivated to find an alter-
native approach of substituting the random oracle in the SOK scheme, with the
hope that the replacements are not explicitly involved with multilinear maps.
Recently, Hohenberger, Sahai and Waters [19] gave a way to instantiate the ran-
dom oracle with concrete hash functions from indistinguishability obfuscation2

in the “full domain hash” signatures. It is natural to ask if their approach can
extend to other applications, and in particular, the SOK scheme.

1.2 Our Results

In the remainder of this paper, we give negative or affirmative answers to the
above questions. We summarize our main results as below.

Being aware of the usage of “all-but-one” programming technique is the reason
that makes the original reduction loose, we are motivated to find an alternative
programming technique that admits tighter reduction. Observing the structural
similarities between the SOK IB-NIKE scheme and the Boneh-Franklin [4] IBE
scheme and the Boneh-Lynn-Shacham (BLS) [5] short signature, we are inspired
to program the random oracle H in the SOK scheme with the flipping coin tech-
nique developed in [10], which were successfully employed in the reductions for

2 Although currently the only known construction of indistinguishability obfuscation
(iO) is from multilinear maps [18], it is still possible that iO can be constructed
from other primitives.
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the latter two well-known schemes. Roughly speaking, the flipping coin tech-
nique usually conducts as follows: to program H(x) (x is an identity in the IBC
setting or a message in the signature setting), the reduction flips a random coin
once, then programs H(x) according to the coin value in two different manners.
One allows the reduction to embed a trapdoor in order to extract a secret key or
produce a signature, while the other allows the reduction to embed some fixed
component of the challenge instance. However, this approach does not work well
in the case of the SOK scheme. This is because the reduction has to embed
two group elements g2 and g3 from the CBDH instance to H(id∗a) and H(id∗b)
respectively, where id∗a and id∗b are two target identities adaptively chosen by the
adversary. We overcome this difficulty by flipping random coins twice. Looking
ahead, to program H(x), the reduction first flips a random biased coin to de-
termine the partitioning, namely either embedding a trapdoor or embedding a
component from the CBDH instance. If the first round coin value indicates the
latter choice, then R further flips an independent and unbiased coin to deter-
mine which component is going to be embedded. As a result, we obtain a new
reduction with a loose factor around 1/2120, which significantly improves the
original result. The same technique can also be used to improve Boneh-Waters
constrained PRFs supporting left/right predicate [6], by minimizing the number
of RO and tightening the reduction.

Following the work of Fischlin and Fleischhacker [13], we use meta-reduction
technique to show that the SOK scheme is unlikely proven secure to be based
on the CBDH assumption in NPROM, assuming the hardness of an intractable
problem called one-more CBDH problem. We obtain this result by showing that
if there is a black-box reduction R basing the fully adaptive security of the
SOK IB-NIKE scheme on the CBDH assumption in NPROM, then there exists
a meta-reduction M breaking the one-more CBDH assumption. Our black-box
separation result holds with respect to single-instance reduction which invokes
only one instance of the adversary and can rewind it arbitrarily to the point
after sending over the master public key. Though single-instance reduction is
a slightly restricted type of reductions, it is still general enough to cover the
original reduction [20] and our new reduction shown in Section 3.1. Moreover,
our result holds even for selective semi-static one-way security.

Realizing the technical heart of Hohenberger-Sahai-Waters approach [19] is to
replace the programmable RO with a specific hash function H satisfying suitable
programmability, we successfully extend their approach in the case of IB-NIKE,
going beyond the “full domain hash” signatures. More precisely, we first create
a replacement hash function H for RO from puncturable PRFs. The result-
ing IB-NIKE scheme is selective-secure in the standard model. To attain fully
adaptive security, we hope to create a specific hash function H with (poly, 2)-
programmability from admissible hash functions (AHFs). This potentially re-
quires the AHF to be (poly, 2)-admissible, which is not met by current AHF
constructions. We circumvent this technical difficulty by giving a generic con-
struction of (poly, c)-AHF (c could be any constant integer) from any (poly, 1)-
AHF, which utilizes Cartesian product as the key mathematical tool. We note
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that beyond the usage in the above construction, (poly, c)-AHF may find more
important applications as a purely statistical cryptographic primitive.

2 Preliminaries and Definitions

Notations. For a distribution or random variable X , we write x
R←− X to de-

note the operation of sampling a random x according to X . For a set X , we

use x
R←− X to denote the operation of sampling x uniformly at random from

X , use UX to denote the uniform distribution over set X , and use |X | to de-
note its size. We write κ to denote the security parameter, and all algorithms
(including the adversary) are implicitly given κ as input. We write poly(κ) to
denote an arbitrary polynomial function in κ. We write negl(κ) to denote an
arbitrary negligible function in κ, one that vanishes faster than the inverse of
any polynomial. A probability is said to be overwhelming if it is 1−negl(κ), and
said to be noticeable if it is 1/poly(κ). A probabilistic polynomial-time (PPT)
algorithm is a randomized algorithm that runs in time poly(κ).

2.1 Cartesian Product and Power of Vectors

The Cartesian product of a m-dimension vector X = (x1, . . . , xm) and a n-
dimension vector Y = (y1, . . . , yn) over some finite set S is defined as:

X × Y = {zij := z(i−1)n+j = (xi, yj)}1≤i≤m,1≤j≤n,

where × denotes the Cartesian product operation. X × Y can be viewed as a
mn-dimension vector over S2 or a 2mn-dimension vector over S. The Cartesian
k-power of a m-dimension vector X = (x1, . . . , xn) over S is defined as:

Xk = X × · · · ×X
︸ ︷︷ ︸

k

,

where Xk can be viewed as a mk-dimension vector over Sk or a kmk-dimension
vector over S.

2.2 Bilinear Maps and Related Hardness Assumptions

A bilinear group system consists of two cyclic groups G and GT of prime order
p, with a bilinear map e : G×G → GT which satisfies the following properties:

– bilinear: ∀g ∈ G and ∀a, b ∈ Zp, we have e(ga, gb) = e(g, g)ab.

– non-degenerate: ∀g ∈ G∗, we have e(g, g) �= 1GT .

In the following, we write BLGroupGen to denote bilinear group system generator
which on input security parameter κ, output (p,G,GT , e).
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Assumption 2.1. The computational bilinear Diffie-Hellman (CBDH) assump-
tion in bilinear group system (p,G,GT , e) ← BLGroupGen(κ) is that for any PPT
adversary A, it holds that:

Pr[A(g, gx, gy, gz) = e(g, g)xyz] ≤ negl(κ),

where the probability is taken over the choice of g
R←− G, x, y, z

R←− Zp. Hereafter,
we write −→v to denote a CBDH instance (g, gx, gy, gy) ∈ G4. The
decisional bilinear Diffie-Hellman (DBDH) assumption is that the two distribu-
tions (g, gx, gy, gz, T0) and (g, gx, gy, gz, T1) are computationally indistinguish-

able, where T0
R←− GT and T1 = e(g, g)xyz.

Assumption 2.2. The n-one-more CBDH (n-omCBDH) assumption in bilin-
ear group system (p,G,GT , e) ← BLGroupGen(κ) is that for any PPT adversary
A, it holds that:

Pr[ADLg(·)(g, {gxi, gyi, gzi}n+1
i=1 ) = ({e(g, g)xiyizi}n+1

i=1 )] ≤ negl(κ),

where the probability is taken over the choices of g
R←− G, and xi, yi, zi

R←− Zp for
i ∈ [n + 1]. To solve n + 1 CBDH instances, A is allowed to query DLg(·) at
most n times, where DLg(·) is a discrete logarithm oracle which outputs t ∈ Zp

on input h = gt. The hardness of the omCBDH problem is demonstrated by a
recent result [23].

Assumption 2.3. Then-decisional bilinearDiffie-Hellman inversion (n-DBDHI)
assumption in bilinear group system (p,G,GT , e) ← BLGroupGen(κ) is that for any
PPT adversary A, it holds that:

|Pr[A(g, gx, . . . , gx
n

, Tβ) = 1]− 1/2| ≤ negl(κ),

where T0
R←− GT , T1 = e(g, g)1/x ∈ GT , and the probability is taken over the choices

of g
R←− G, x

R←− Zp, and β
R←− {0, 1}.

As observed in [2], the n-DBDHI assumption is equivalent to the n-DBDHI∗ as-
sumption, which is identical to the standard one except that T1 is set as e(g, g)

x2n+1

instead of e(g, g)1/x. We will, for notational convenience, base our proofs on the
n-DBDHI∗ assumption in this work.

2.3 Indistinguishability Obfuscation

We recall the definition of indistinguishability obfuscator from [17] as below.

Definition 1 (Indistinguishability Obfuscator (iO)). A uniform PPT ma-
chine iO is called an indistinguishability obfuscator for a circuit class {Cκ} if the
following properties satisfied:

– Functionality Preserving: For all security parameters κ ∈ N, for all C ∈
Cκ, for all inputs x, we have that:

Pr[C′(x) = C(x) : C′ ← iO(κ,C)] = 1
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– Indistinguishability Obfuscation: For any pairs of PPT adversaries
(S,D), there exists a negligible function α such that if Pr[∀x,C0(x) = C1(x) :
(C0, C1, state) ← S(κ)] ≥ 1− α(κ), then we have:

|Pr[D(state, iO(κ,C0)) = 1]− Pr[D(state, iO(κ,C1)) = 1]| ≤ α(κ)

2.4 Puncturable PRFs

We then recall the notion of puncturable PRFs [19, 21], in which the key owner
is able to generate a constrained key for all but polynomial number of elements
in the domain.

Definition 2. A family of puncturable PRFs Fk : X → Y , where X and Y
may be parameterized by κ, is efficiently evaluable itself with secret key k. In
addition, it consists of three polynomial-time algorithms KeyGen, Puncture, and
Eval satisfying the following properties:

– Evaluable under puncturing: For any S ⊆ {0, 1}n (containing polynomial
number of punctured points), and any x ∈ X but x /∈ S, we have:

Pr[Eval(kS , x) = Fk(x) : kS ← Puncture(k, S)] = 1

– Pseudorandom at punctured points: For any PPT adversary A =
(A1,A2) such that A1(κ) outputs a set S ⊆ X and state τ , we have:

|Pr[A2(τ, kS , S,Fk(S)) = 1]− Pr[A2(τ, kS , S, UY |S|) = 1]| ≤ negl(κ)

where S = {x1, . . . , xt} is the enumeration of the elements of S in lex-
icographic order, kS ← Puncture(k, S), Fk(S) denotes the concatenation
of Fk(x1), . . . ,Fk(xt). The probability is defined over the choice of k ←
KeyGen(κ).

For ease of notation, sometimes we write FkS (x) to represent Eval(kS , x), and
write k(S) to represent the punctured key kS ← Puncture(k, S).

2.5 Non-Interactive Identity-Based Key Exchange

An non-interactive identity-based key exchange (IB-NIKE) scheme consists of
the following polynomial-time algorithms:

– Setup(κ): on input security parameter κ, output master public key mpk and
master secret key msk. Let I be the identity space and SHK be the shared
key space.

– Extract(msk, id): on input msk and identity id ∈ I, output a secret key skid
for id.

– Share(skida , idb): on input secret key skida for identity ida and another iden-
tity idb, output a shared key shk for (ida, idb).
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Correctness: For any κ ∈ N, any (mpk,msk) ← Setup(κ), any pair of identities
(ida, idb), any skida ← Extract(msk, ida), skidb

← Extract(msk, idb), we have:

Share(skida , idb) = Share(skidb
, ida)

Security: Let A be an adversary against IB-NIKE and define its advantage as:

AdvA(κ) = Pr

⎡

⎢

⎢

⎢

⎢

⎣

β = β′ :

(mpk,msk) ← Setup(κ);
(id∗a, id∗b) ← AOextract(·),Oreveal(·,·)(mpk);

shk∗0
R←− SHK, shk∗1 ← Share(id∗a, id

∗
b);

β
R←− {0, 1};

β′ ← AOextract(·),Oreveal(·,·)(shk∗β);

⎤

⎥

⎥

⎥

⎥

⎦

− 1

2
,

where Oextract(id) = Extract(msk, id), Oreveal(ida, idb) = Share(skida , idb), and A
is not allowed to query Oextract(·) for the target identities id∗a and id∗b and query
Oreveal(·, ·) for (id∗a, id∗b) and (id∗b , id

∗
a). We say IB-NIKE is fully adaptive-secure

if no PPT adversary has non-negligible advantage in the above security experi-
ment. The fully adaptive security is the strongest security notion for IB-NIKE
so far. The selective security can be defined similarly as above by requiring the
adversary to commit the target identities (id∗a, id

∗
b) before it seeing mpk, while

the semi-static security can be defined similarly above by discarding Oreveal(·, ·).

3 Revisit Sakai-Ohgishi-Kasahara IB-NIKE

We begin this section by recalling the SOK IB-NIKE scheme [22], which is given
by the following three algorithms:

– Setup(κ): run BLGroupGen(κ) to generate (p,G,GT , e), pick x
R←− Zp, set

h = gx; output mpk = (h,H,G) and msk = x, where H : I → G is the
identity mapping function and G : GT → {0, 1}n is the key mapping function.

– Extract(msk, id): on input msk = x and id ∈ I, output skid ← H(id)x.

– Share(skida , idb): on input skida and idb, output shk ← G(e(skida ,H(idb))).

3.1 An Improved Proof for the SOK IB-NIKE

The original reduction [20] for the SOK IB-NIKE lose a factor of 1/Q2
1Q2. In

this subsection, we show that the fully adaptive security for the SOK scheme
can be reduced to the CBDH problem with a tighter security reduction.

Theorem 1. The SOK IB-NIKE scheme is fully adaptive-secure in the random
oracle model assuming the CBDH assumption holds in bilinear group system
generated by BLGroupGen(κ). Suppose H and G are random oracles, for any
adversary A breaking the SOK IB-NIKE scheme with advantage AdvA(κ) that
makes at most Qe extraction queries and Qr reveal queries and Q2 random
oracle queries to G, there is an algorithm B that solves the CBDH problem with
advantage 4AdvA(κ)/e2(Qe +Qr)

2Q2, where e is the natural logarithm.

Due to space limitation, we defer the proof of Theorem 1 in the full version.
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3.2 SOK IB-NIKE Is Not Provably Secure under NPROM

We now show that the SOK IB-NIKE can not be proven secure without program-
ming the random oracle with respect to a slightly restricted type of reductions,
which is called single-instance reduction in [13]. In the case of identity-based
schemes (including IBE, IBS as well as IB-NIKE), the restrictions lie at such a
type of reductions can only invoke a single instance of the adversary and, can
not rewind the adversary to a point before it hands over mpk for the first time.
We have the following theorem whose proof appears in the full version.

Theorem 2 (Non-Programming Irreducibility for SOK IB-NIKE). As-
sume the 1-omCBDH assumption holds in bilinear group system generated by
BLGroupGen(κ), then there exists no non-programming single-instance fully-black-
box reduction that reduces the fully adaptive security of SOK IB-NIKE to the
CBDH problem. More precisely, assume there exists such a reduction R that
converts any adversary A against the SOK IB-NIKE into an algorithm against
the CBDH problem. Assume further that the reduction R has success probabil-
ity SuccCBDH

RA for given A and runtime TimeR(κ). Then, there exists a family
A of successful (but possibly inefficient) adversaries AR,a against fully adaptive
security of SOK IB-NIKE and a meta-reduction M that breaks the 1-omCBDH
assumption with success probability Succ1-omCBDH

M (κ) ≥ (SuccCBDH
RAR,a (κ))

2 for a
random AR,a ∈ A and runtime TimeM(κ) = 2 · TimeR(κ) + poly(κ).

4 IB-NIKE from Indistinguishability Obfuscation

4.1 Warmup: Selectively Secure IB-NIKE from iO
As a warmup, we show how to create a replacement for the RO H(·) in the SOK
scheme from puncturable PRFs and iO. The resulting scheme is selective-secure
in the standard model.

Selectively Secure Construction from iO
– Setup(κ): run BLGroupGen(κ) to generate (p,G,GT , e), pick x

R←− Zp and

g
R←− G∗; pick a secret key k for puncturable PRF F : I → Zp; then create

an obfuscation of the program H shown in Fig. 1. The size of the program
is padded to be the maximum of itself and the program H∗ shown in Fig. 2.
We refer to the obfuscated program as the function H : I → G, which acts
as the random oracle type hash function in the SOK scheme. The msk is x,
whereas mpk is the hash function H(·).

– Algorithm Extract and Share are identical to that in the SOK scheme.

Theorem 3. The above IB-NIKE scheme is selective-secure if the obfuscation
scheme is indistinguishably secure, F is a secure punctured PRF, and the DBDH
assumption holds.

Due to space limitation, we defer the proof of Theorem 3 in the full version.
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Selective Hash H

Constants: Punctured PRF key k, g ∈ G
∗.

Input: Identity id.

1. Output gFk(id).

Fig. 1. Selective Hash H

Selective Hash H∗

Constants: Punctured PRF key k(S) for S = {id∗a, id∗b}, id∗a, id∗b ∈ I , z∗1 , z
∗
2 ∈ G,

g ∈ G
∗.

Input: Identity id.

1. If id = id∗a output z∗1 and exit.

2. If id = id∗b output z∗2 and exit.

3. Else output gFk(S)(id).

Fig. 2. Selective Hash H∗

4.2 Main Result: Adaptively Secure IB-NIKE from iO
We now show how to create a replacement for the RO H(·) in the SOK IB-NIKE
scheme from (poly, 2)-AHF and iO to attain adaptive security in the standard
model. We first recap the definition of AHF and present a generic construction
of (poly, 2)-AHF.

Admissible Hash Functions. Our definition below is generalization of “ad-
missible hash function”(AHF) [3, 9, 15].

Definition 3 (AHF). Let �, l, and θ be efficiently computable univariate poly-
nomials of κ. For an efficiently computable function AHF : {0, 1}� → {0, 1}l, de-
fine the predicate Pu : {0, 1}� → {0, 1} for any u ∈ {0, 1,⊥}l as Pu(x) = 0 ⇐⇒
∀i : AHF(x)i �= ui, where AHF(x)i denotes the i-th component of AHF(x). We
say that AHF is (m,n)-admissible if there exists a PPT algorithm AdmSample
and a polynomial θ(κ), such that for all x1, . . . , xm, z1, . . . , zn ∈ {0, 1}�, where
xi �= zj for all 1 ≤ i ≤ m and 1 ≤ j ≤ n, we have that:

Pr[Pu(x1) = · · · = Pu(xm) = 1 ∧ Pu(z1) = · · · = Pu(zn) = 0] ≥ 1/θ(κ) (1)

where the probability is over the choice of u ← AdmSample(κ). Particularly, we
say that AHF is (poly, n)-admissible if AHF is (q, n)-admissible for any polyno-
mial q = q(κ) and constant n > 0. Note that in the standard definition of AHF,
the second parameter n is fixed to 1. To show the existence of (q, n)-AHF for
n ≥ 1, we present the following theorem.
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Theorem 4. Let q = q(κ) be a polynomial, n be a constant, and AHF (with
AdmSample) be a (q, 1)-AHF from {0, 1}� into {0, 1}l. Then AHF′ with:

– AHF′(x) = AHF(x)× · · · × AHF(x)
︸ ︷︷ ︸

n

.

– P ′
u : {0, 1}� → {0, 1} for any u ∈ {0, 1,⊥}nln is defined as P ′

u(x) = 0 ⇐⇒
∀i : AHF′(x)i �= ui, where AHF′(x)i denotes the i-th component of AHF′(x).

– AdmSample′(κ): run AdmSample(κ) independently n times to generate u1,
. . . , un ∈ {0, 1}l, output u = u1 × · · · × un

︸ ︷︷ ︸

n

.

is a (q, n)-AHF from {0, 1}� into {0, 1}nln. Here × denotes the Cartesian product
defined in Section 2.1. AHF′(x) can be viewed as a nln-dimension vector over
{0, 1}, and u can be viewed as a nln-dimension vector over {0, 1,⊥}.
Proof. We first note that the definition of P ′

u for AHF′ is compatible with that
of Pu for AHF. According the construction of AHF′ and AdmSample′(κ), we have
P ′
u(x) = Pu1(x)∧· · ·∧Pun(x). Now fix q+n distinct elements x1, . . . , xq, z1, . . . , zn

∈ {0, 1}�. For each i ∈ [n], define event Ai as: Pui(xj) = 1 for all 1 ≤ j ≤ q and
Pui(zi) = 0 (the predicate values on the rest n − 1 elements could be either 0
or 1). Define event A as: P ′

u(xj) = 1 for all 1 ≤ j ≤ q and P ′
u(zi) = 0 for all

1 ≤ i ≤ n. According to the definition of P ′
u, we have: A ⊇ A1 ∧ · · · ∧An. Since

AHF is a (q, 1)-AHF, thus each event Ai happens independently with probability
at least 1/θ(κ) (over the choice of ui ← AdmSample(κ)). Therefore, we have:
Pr[A] ≥ ∏n

i=1 Pr[Ai] ≥ 1/(θ(κ))n, which indicates AHF′ is a (q, n)-AHF. This
proves the theorem.

Adaptively Secure Construction from iO
– Setup(κ): run BLGroupGen(κ) to generate (p,G,GT , e), pick x

R←− Zp and

g
R←− G∗; pick a secret key k for puncturable PRF F : I → Zp; pick uniformly

at random (c1,0, c1,1), . . . , (cn,0, cn,1) each from Zp; then create an obfus-
cation of the program H shown in Fig. 3, where the size of the program is
padded to be the maximum of itself and the program of H∗shown in Fig. 4.
The msk is x, whereas mpk is the hash function H(·).

– Algorithms Extract and Share are identical to that in the SOK IB-NIKE.

Theorem 5. The above IB-NIKE scheme is adaptively secure if the obfuscation
scheme is indistinguishable secure and the n-DBDHI assumption holds in bilinear
group system.

Proof. We proceed via a sequence of hybrid games, where the first game cor-
responds to the standard adaptive security game. We first prove that any two
successive games are computationally indistinguishable. We then show that any
PPT adversary in the final game that succeeds with non-negligible probability
can be used to break the n-DBDHI assumption.
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Adaptive Hash H

Constants: g ∈ G
∗, exponents ci,α ∈ Zp for i ∈ [n] and α ∈ {0, 1}.

Input: Identity id.

1. Compute w ← AHF(id).

2. Output g
∏n

i=1 ci,wi .

Fig. 3. Adaptive Hash H

Adaptive Hash H∗

Constants: g ∈ G
∗, gx, . . . , gx

n ∈ G for some x ∈ Zp, exponents yi,α ∈ Zp for
i ∈ [n] and α ∈ {0, 1}, u ∈ {0, 1,⊥}n.
Input: Identity id.

1. Compute w ← AHF(id).

2. Compute the set size |μ(w)|, where μ(w) is the set i such that wi �= ui.

3. Output (gx
|μ(w)|

)
∏n

i=1 yi,wi .

Fig. 4. Adaptive Hash H∗

Game 0: This game is identical to standard adaptive security game played
between adversary A and challenger CH:

– Setup: CH runs BLGroupGen(κ) to generate (p,G,GT , e), picks x
R←− Zp and

g
R←− G∗, then chooses exponents ci,α uniformly at random Zp for i ∈ [n] and

α ∈ {0, 1}, creates the hash function H(·) as an obfuscation of the program
of H shown in Fig. 3, and pads its size to be the maximum of itself and the
program of H∗ shown in Fig. 4. CH sets msk = x and mpk = H.

– Phase 1: A can issue the following two types of queries:
• extraction query 〈id〉: CH responds with skid = H(id)x.

• reveal query 〈ida, idb〉: CH first extracts secret key skida for ida, then
responds with shk ← Share(skida , idb).

– Challenge: A submits id∗a and id∗b as the target identities with the restriction

that either id∗a or id∗b has not been queried for secret key. CH picks shk∗0
R←−

SHK and computes shk∗1 ← Share(skid∗
a
, id∗b), then picks β

R←− {0, 1} and
sends shk∗β to A as the challenge.

– Phase 2:A can continue to issue the extraction queries and the reveal queries,
CH proceeds the same way as in Phase 1 except that the extraction queries
to id∗a or id∗b and reveal query for (id∗a, id

∗
b) are not allowed.

– Guess: A outputs its guess β′ and wins if β = β′.

Game 1: same as Game 0 except that CH generates the exponents ci,α as follows:
first samples u ∈ ({0, 1,⊥})n via AdmSample(κ,Q), where Q is the upper bound
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on the number of queries made by A (including extraction queries and reveal

queries), then for i ∈ [n] and α ∈ {0, 1} chooses yi,α
R←− Zp, and sets:

ci,α =

{

yi,α if α = ui

x · yi,α if α �= ui

Game 2: same as Game 1 except that CH creates the hash function H(·) as an
obfuscation of program H∗ shown in Fig. 4.

Lemma 1. Game 0 and Game 1 are statistically indistinguishable.

Proof. This lemma immediately follows from the facts: (1) in Game 1 the sam-
pling of u only determines the generation of ci,α and it is independent of the
rest game; (2) the value of ci,α distributes uniformly at random from Zp in both
Game 0 and Game 1.

Lemma 2. Game 1 and Game 2 are computationally indistinguishable if the
underlying obfuscation scheme is indistinguishability secure.

Proof. We prove this lemma by giving a reduction to the indistinguishability
security of the obfuscator. More precisely, suppose there is an PPT adversary A
can distinguish Game 1 and Game 2, then we can build algorithms (S,D) against
the indistinguishability of the obfuscator by interacting with A as follows.

Sample: S runs BLGroupGen(κ) to generate (p,G,GT , e), picks x
R←− Zp and

g
R←− G, prepares gx

i

for i ∈ [n], runs AdmSample(κ,Q) to obtain a string

u ∈ ({0, 1,⊥})n, and for i ∈ [n] and α ∈ {0, 1} chooses yi,α
R←− Zp, then sets:

ci,α =

{

yi,α if α = ui

x · yi,α if α �= ui

It sets τ = (ci,α, yi,α, u) and builds C0 as the program of H, and C1 as the pro-
gram of H∗. Before describing D, we observe that by construction, the circuits C0

and C1 always behave identically on every input. To show program equivalence,
note that for all w ∈ {0, 1}n, we have that:

g
∏n

i ci,αi = gx
|μ(w)|·∏n

i yi,wi = (gx
|μ(w)|

)
∏n

i yi,wi

With suitable padding, both C0 and C1 have the same size. Thus, S satisfies
the conditions needed for invoking the indistinguishability property of the ob-
fuscator. Now, we can describe the algorithm D, which takes as input τ as given
above, and the obfuscation of either C0 or C1.

Distinguish: D sets msk = x and builds mpk from Cβ , then invokes A in
the adaptive security game for IB-NIKE. When A issues extraction queries and
reveal queries, D responds with msk. If A wins, D outputs 1.

By construction, if D receives an obfuscation of C0, then the probability that D
outputs 1 is exactly the probability that A wins in Game 1. On the other hand,
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if D receives an obfuscation of C1, then the probability that D outputs 1 is the
probability that A wins in Game 2. The indistinguishability of the obfuscator
implies Game 1 and Game 2 are computationally indistinguishable. The lemma
immediately follows.

Lemma 3. A’s advantage in Game 2 is negligible in κ.

Proof. We prove this lemma by showing that any adversaryA has non-negligible
advantage in Game 2 implies an algorithm B that has non-negligible advantage
against the n-DBDHI problem. Given a n-DBDHI instance (g, gx, . . . , gx

n

, Tβ),
B interacts with A as follows:

– Setup: B first runs AdmSample(κ,Q) to obtain u ∈ {0, 1,⊥}n, where Q is
the sum of Qe (the maximum number of extraction queries) and Qr (the
maximum number of the reveal queries). For i ∈ [n] and α ∈ {0, 1}, B chooses
random yi,α ∈ Zp, then creates the hash function H(·) as an obfuscation of
the program H∗ using the input DBDHI instance as well as yi,α and u.

– Phase 1: A can issue the following two types of queries:
• extraction queries 〈id〉: If Pu(id) = 0, then B aborts and outputs a
random guess for β. Else, B extracts the secret key from the input n-
DBDHI instance and the yi,α values. B could to do so since Pu(id) = 1
implies there exists at least one i such that wi = ui. In this case H(id)
will contain a power of x that is strictly less than n.

• reveal queries 〈ida, idb〉: If Pu(ida) = 0 ∧ Pu(idb) = 0, then B aborts
and outputs a random guess for β. Otherwise, either Pu(ida) = 1 or
Pu(idb) = 1. Therefore, B can at least extract a secret key for one identity
and then computes the shared key.

– Challenge:A outputs the target identities (id∗a, id∗b). If Pu(id
∗
a)=1∨Pu(id

∗
b) =

1, then B aborts and outputs a random guess for β. Else, we have Pu(id
∗
a) =

0 ∧ Pu(id
∗
b ) = 0, which means AHF(id∗a)i �= ui and AHF(id∗b ) �= ui for all

i ∈ [n]. In this situation, both the hash values of id∗a and id∗b will be ga
n

raised to some known product of some yi,α values. Denote the products by
y∗a and y∗b , respectively. B thus sends shk∗β = (Tβ)

y∗
ay

∗
b to A as the challenge.

It is easy to verify that if Tβ
R←− GT then shk∗β also distributes uniformly

over GT , else if Tβ = e(g, g)x
2n+1

then shk∗β = e(H(id∗a),H(id
∗
b))

a.

– Phase 2: same as in Phase 1 except that the extraction queries 〈id∗a〉, 〈id∗b〉
and the reveal query 〈id∗a, id∗b〉 are not allowed.

– Guess: When A outputs its guess β′, B forwards β′ to its own challenger.

Since the choice of u ← AdmSample(κ,Q) determines whether or not B aborts
and it is independent of the rest of the interaction. We conclude that conditioned
on B does not abort, A’s view in the above game is identical to that in Game 2.
Let F be the event that B does not abort, we have AdvB(κ) = Pr[F ] · AdvA(κ).
In what follows, we estimate the low bound of Pr[F ]. Let {idi}1≤i≤Qe be Qe

distinct extraction queries, {(idj,1, idj,2)}1≤j≤Qr be Qr distinct reveal queries.
During the game, B will abort if one of the following events does not happen.
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F1 :
∧Qe

i=1(P (idi) = 1)

F2 :
∧Qr

j=1(P (idj,1) = 1 ∨ P (idj,2) = 1)

F3 : Pu(id
∗
1) = 0 ∧ Pu(id

∗
2) = 0

We have F = F1 ∧ F2 ∧ F3. Note that in each extraction query, there exists at
least one identity different from both id∗1 and id∗2. Suppose Qe + Qr ≤ Q, then
according to the fact that AHF is a (Q, 2)-AHF, we have Pr[F ] ≥ θ(κ). The
lemma immediately follows.

Combining the above three lemma, our main theorem immediately follows.
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