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Abstract. In this paper, we study the security of RSA when there are
multiple public/secret exponents (e1, d1), . . . , (en, dn) with the same pub-
lic modulus N . We assume that all secret exponents are smaller than Nβ .
When n = 1, Boneh and Durfee proposed a polynomial time algorithm
to factor the public modulus N . The algorithm works provided that
β < 1− 1/

√
2. So far, several generalizations of the attacks for arbitrary

n have been proposed. However, these attacks do not achieve Boneh and
Durfee’s bound for n = 1. In this paper, we propose an algorithm which
is the exact generalization of Boneh and Durfee’s algorithm. Our algo-
rithm works when β < 1 − √

2/(3n + 1). Our bound is better than all
previous results for all n ≥ 2. We construct the lattices by collecting as
many helpful polynomials as possible. The collections reduce the volume
of the lattices and enable us to improve the bound.
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1 Introduction

1.1 Background

Small Secret Exponent RSA. Small secret exponent RSA is efficient for its
low cost decryption and signature generation, but is known to be insecure. We
assume that decryption exponent is smaller than Nβ . Wiener [Wie90] proposed
the polynomial time algorithm to factor public modulus N . The algorithm works
when β < 0.25. The algorithm is constructed by computing the diophantine
approximation of rational number.

Boneh and Durfee [BD00] revisited the Wiener’s attack. They constucted
improved algorithm by using lattice based method to solve modular equations
proposed by Coppersmith [Cop96a]. At first, they constructed the lattices which
provide Wiener’s bound, β < 0.25. They improved the bound to β < (7 −
2
√
7)/6 = 0.28474 · · · by adding some extra polynomials in the lattice bases.

Finally, they achieved the stronger bound β < 1 − 1/
√
2 = 0.29289 · · · by ex-

tracting sublattices from the previous lattices. Though several papers revisited
the work [BM01, HM10, Kun11, KSI11, Kun12], none of them improved Boneh
and Durfee’s stronger bound. Boneh and Durfee’s attack has also been applied
to the variants of RSA [DN00, IKK08a, May04].
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Multiple Small Secret Exponents RSA. Generalizations of small secret
exponent attack on RSA have also been considered when there are multiple
public/secret key pairs (e1, d1), . . . , (en, dn) for the same public modulus N . All
secret keys d1, . . . , dn are smaller than Nβ . Howgrave-Graham and Seifert [HS99]
generalized Wiener’s attack and achieved the bound

β <
(2n+ 1) · 2n − (2n+ 1)

(
n

n/2

)

(2n− 2) · 2n + (4n+ 2)
(

n
n/2

) when n is even,

β <
(2n+ 1) · 2n − 4n

(
n−1

(n−1)/2

)

(2n− 2) · 2n + 8n
(

n−1
(n−1)/2

) when n is odd.

The bound converges to full size secret exponents, β = 1.
Sarkar and Maitra [SM10b] used the Coppersmith’s method to find small

roots of polynomials over the integers [Cop96b] and improved the bound. They
constructed the lattices based on Jochemsz and May’s strategy [JM06]. The
algorithm works when

β <
3

4
− 1

n+ 1
.

The algorithm improved Howgrave-Graham and Seifert’s bound for 2 ≤ n ≤ 42.
In the same work [SM10b], Sarkar and Maitra achieved ad-hoc improvement,
β < 0.422 for n = 2. See also [SM10a].

Aono [Aon13] used the Coppersmith’s method to solve modular equations
[Cop96a] and improved the bound. Aono’s algorithm works when

β <
3

4
− 2

3n+ 1
.

The algorithm improved Sarkar and Maitra’s algorithm. The bound is better
than Howgrave-Graham and Seifert’s bound for 2 ≤ n ≤ 46. In the same work
[Aon13], Aono heurisically considered ad-hoc improvement for n ≥ 3, though no
exact conditions are given.

All these algorithms run in polynomial time in logN and exponential in n. It
is clear that these algorithms have the room to be improved. All algorithms only
achieve Winer’s bound [Wie90] for n = 1. In addition, we should consider the
case when there are infinitely many public/secret key pairs. In this case, Aono
[Aon13] counted the number of solutions and claimed that public modulus N
can be factored with full size secret exponents. Howgrave-Graham and Seifert’s
bound [HS99] converges to β < 1. However, Sarkar and Maitra’s bound [SM10b]
and Aono’s bound [Aon13] converge to β < 3/4. Therefore, we should construct
the algorithm which achieves Boneh and Durfee’s bound [BD00] and converges
to β < 1.

Lattice Constructions for the Coppersmith’s Methods. At Eurocrypt
1996, Coppersmith introduced celebrated lattice based methods. One method
is to solve modular univariate equations which have small solutions [Cop96a].
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The other method is to find small roots of bivariate polynomials over the
integers [Cop96b]. Both methods can be heuristically generalized to more mul-
tivariate cases with reasonable assumption. The former method was reformu-
lated by Howgrave-Graham [How97], and the latter method was reformulated
by Coron [Cor04, Cor07]. The Coppersmith’s methods have been used to re-
veal the vulnerabilites of several cryptosystems, especially RSA cryptosystem
[Cop97, Cop01, NS01, May10].

The Coppersmith’s methods have improved several algorithms which compute
diophantine approximation of rational numbers. Boneh and Durfee [BD00] im-
provedWiner’s small secret exponent attack on RSA [Wie90]. Howgrave-Graham
[How01] considered approximate common divisor problems and constructed two
types of algorithms. The first algorithm computes diophantine approximation.
The second algorithm uses the Coppersmith’s method. Since the second algo-
rithm is better than the first algorithm, Howgrave-Graham’s results imply that
the Coppersmith’s method is superior to the other method. Therefore, Howgrave-
Graham and Seifert’s result [HS99] is expected to be improved by using the
Coppersmith’s method.

To maximize the solvable root bounds using the Coppersmith’s methods, we
should select appropriate lattice bases which reduce the volume. At Asiacrypt
2006, Jochemsz and May [JM06] proposed the strategy for lattice constructions.
The strategy can automatically decide the selections of lattice bases. The strat-
egy covers several former results [BD00, Weg02, May04, EJMW05], and later
some algorithms [JM07] have been proposed based on the strategy including
Sarkar and Maitra’s work [SM10a, SM10b]. However, it is widely known that
Jochemsz andMay’s strategy does not always select the appropriate lattice bases.
In fact, for small secret exponent attacks on RSA, we only obtain Boneh and
Durfee’s weaker bound β < (7 − 2

√
7)/6 based on the strategy. The strategy

cannot tell us the selections of lattice bases which provide Boneh and Durfee’s
stronger bound [BD00]. Therefore, Sarkar and Maitra’s results [SM10a, SM10b]
are expected to be improved by selecting appropriate lattice bases.

For n ≥ 2, Aono solved simultaneous modular equations. Each single equation
is the same one which Boneh and Durfee [BD00] solve. Aono combined Boneh
and Durfee’s n lattices based on Minkowski sum. However, Aono used Boneh
and Durfee’s lattices which only achieve Wiener’s bound β < 0.25. Therefore, it
is clear that the algorithm cannot achieve Boneh and Durfee’s stronger bound
for n = 1 and is expected to be improved.

What makes the problems difficult is that we should change the selections of
lattice bases with respect to the sizes of root bounds. Sarkar and Maitra’s ad-hoc
improvement [SM10b] for n = 2 is achieved based on the condition β < 1/2. They
selected extra polynomials in the lattice bases to reduce the volume. Boneh and
Durfee’s improvement [BD00] from the Wiener’s bound [Wie90] is also based on
the condition β < 1/2 by adding extra polynomials. Conversely, though heuristic,
Aono’s ad-hoc improvement [Aon13] for n ≥ 3 is based on the fact that β > 1/2.
Aono claimed that some polynomials in the lattice bases should be eliminated to
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reduce the volume. Therefore, we should work out the selections of lattice bases
which take into account the sizes of root bounds in general.

Collecting Helpful Polynomials. Recently, Takayasu and Kunihiro [TK13]
proposed simple and useful strategy for lattice constructions. In their strategy,
the notion of helpful polynomials is essential. The notion was firstly noted by
May [May10]. Helpful polynomials can reduce the volume of the lattices and con-
tribute to the conditions for modular equations to be solved. If each polynomial
is helpful or not is decided by comparing the sizes of diagonals and the size of
modulus. Takayasu and Kunihiro claimed that as many helpful polynomials as
possible should be selected, and as few unhelpful polynomials as possible should
be selected in the lattice bases. Based on the strategy, they improved the algo-
rithms to solve two forms of modular multivariate linear equations [HM08, CH12]
when each root bound becomes extremely large or small.

1.2 Our Results

In this paper, we solve the same simultaneous modular equations as Aono
[Aon13]. However, we change the selections of lattice bases and improve the
previous bounds. Based on Takayasu and Kunihiro’s strategy for lattice con-
structions [TK13], we reveal that there are some helpful polynomials which were
not selected or there are some unhelpful polynomials which were selected in
Aono’s lattice bases. This analysis enables us to select as many helpful polyno-
mials as possible and as few unhelpful polynomials as possible. Our algorithm
works provided that

β < 1−
√

2

3n+ 1
.
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Fig. 1. The comparison of the recoverable sizes of secret exponents
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Table 1. Numerical data for the recoverable sizes of secret exponents

n Ours [Aon13] [SM10b] [HS99]

1 0.292893219 0.25 0.25 0.25
2 0.465477516 0.464285714 0.416666667 0.357142857
3 0.552786405 0.55 0.5 0.4
4 0.60776773 0.596153846 0.55 0.441176471
5 0.646446609 0.625 0.583333333 0.467741935
6 0.675557158 0.644736842 0.607142857 0.493103448
7 0.698488655 0.659090909 0.625 0.512048193
8 0.717157288 0.67 0.638888889 0.530181087
9 0.732738758 0.678571429 0.65 0.544740024
10 0.745999746 0.685483871 0.659090909 0.55872622
...

...
...

...
...

101 0.918889289 0.743421053 0.740196078 0.805167829
102 0.919286569 0.743485342 0.740291262 0.80595288
103 0.919678067 0.743548387 0.740384615 0.806723605
104 0.920063923 0.743610224 0.74047619 0.807488696
105 0.920444272 0.743670886 0.740566038 0.808240085
106 0.920819242 0.743730408 0.740654206 0.808986071
107 0.921188959 0.74378882 0.740740741 0.809718942
108 0.921553546 0.743846154 0.740825688 0.810446627
109 0.921913119 0.743902439 0.740909091 0.811161748
110 0.922267793 0.743957704 0.740990991 0.811871889

Our algorithm achieves Boneh and Durfee’s bound β < 1− 1/
√
2 for n = 1, and

converges to β < 1 with infinitely many exponents. The bound1 is better than
all known algorithms [HS99, SM10a, SM10b, Aon13].

Figure 1 compares the recoverable sizes of secret exponents for n = 1, 2, . . . , 60.
For smaller n, our algorithm is slightly better than Aono’s algorithm [Aon13].
However, for larger n, our algorithm is much better than all other algorithms
[HS99, SM10b, Aon13].

Table 1 represents the numerical data for the recoverable sizes of secret expo-
nents for n = 1, 2, . . . , 10, and n = 101, 102, . . . , 110. For smaller n, though our
algorithm and Aono’s algorithm [Aon13] achieve almost the same bound, our
algorithm is always better. For larger n, our algorithm is still much better than
Howgrave-Graham and Seifert’s algorithm [HS99].

1 It is not obvious that our bound is better than Howgrave-Graham and Seifert’s

bound [HS99]. For large n, we approximate binomial coefficients as
(

n
n/2

) ≈
√

2
πn

2n

(see [OLBC10] in detail). The approximation suggests that our bound is better than
the previous bound. The detailed analysis is written in the full version.
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1.3 Organizations

In Section 2, we introduce the lattice based Coppersmith’s method to solve
modular equations [Cop96a], and the lattice construction strategy proposed by
Takayasu and Kunihiro [TK13]. In Section 3, we recall the Boneh and Durfee’s
algorithm [BD00] and Aono’s algorithm [Aon13]. In Section 4, we analyze the
previous lattice constructions [BD00, Aon13] based on Takayasu and Kunihiro’s
strategy [TK13]. In Section 5, we propose our improved algorithm. In Section
6, we discuss the security of multiple exponents RSA in partial key exposure
situations.

2 Preliminaries

In this section, we introduce the Coppersmith’s method to solve modular equa-
tions which have small solutions [Cop96a]. First, we explain Howgrave-Graham’s
reformulation of the method [How97], and the LLL algorithm [LLL82]. After
that, we introduce the strategy for lattice constructions proposed by Takayasu
and Kunihiro [TK13].

Consider the modular equations, h(x1, . . . , xn) = 0 (mod W ). All sizes of
the solutions (x̃1, . . . , x̃n) are bounded by X1, . . . , Xn. When

∏n
j=1 Xj is much

smaller than W , the Coppersmith’s method can find all the solutions in polyno-
mial time. We write the norm of polynomials as ‖h(x1, . . . , xn)‖, which represents
the Euclidean norm of the coefficeint vector. The following Howgrave-Graham’s
Lemma reduces the modular equations into integer equations.

Lemma 1 (Howgrave-Graham’s Lemma [How97]). Let h̃(x1, . . . , xn) ∈
Z[x1, . . . , xn] be a polynomial with at most w monomials. Let m,W,X1, . . . , Xn

be positive integers. Consider the case when
1. h̃(x̃1, . . . , x̃n) = 0 (mod Wm), where |x̃1| < X1, . . . , |x̃n| < Xn,
2. ‖h̃(x1X1, . . . , xnXn)‖ < Wm/

√
w.

Then h̃(x̃1, . . . , x̃n) = 0 holds over the integers.

To solve n-variate modular equations h(x1, . . . , xn) = 0 (mod W ), it is suffice to
find n new polynomials h̃1(x1, . . . , xn), . . . , h̃n(x1, . . . , xn) whose roots are the
same as the solutions (x̃1, . . . , x̃n) and whose norms are small enough to satisfy
Hograve-Graham’s Lemma.

To find such polynomials from the original polynomial h(x1, . . . , xn), lattices
and the LLL algorithm are often used. Lattices represent the integer linear com-
binations of the basis vectors. All vectors are row representation. For the basis
vectors b1, . . . ,bw, which are all v dimensional vectors in R

v, the lattice spanned
by these vectors is defined as

L(b1, . . . ,bw) := {
w∑

j=1

cjbj : cj ∈ Z for all j = 1, . . . , w}.

We also use the matrix representation for the basis. We define the basis matrix B
as w× v matrix which has the basis vectors b1, . . . ,bw in each row. In the same
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way, the lattice can be rewritten as L(B). We call the lattice full-rank when w =
v. The volume of the lattice vol(L(B)) is defined as the w-dimensional volume
of the parallelpiped P(B) := {xB : x ∈ R

w, 0 ≤ xj < 1, for all j = 1, . . . , w}.
The volume can be computed as vol(L(B)) =

√
det(BBT ). It is clear that the

volume of full-rank lattice can be computed as vol(L(B)) = | det(B)|.
Lattice is used in many places in cryptography. See [NS01, nv10] in detail. In

cryptanalysis, it is very important to find non-zero short lattice vectors. In this
paper, we introduce the LLL algorithm [LLL82] which outputs non-zero short
lattice vectors in polynomial time.

Proposition 1 (LLL algorithm [LLL82]). Given basis vectors b1, . . . ,bw in
R

k, the LLL algorithm finds LLL-reduced bases b̃1, . . . , b̃w that satisfy

‖b̃n‖ ≤ 2w(w−1)/4(w−n+1)(vol(L(B)))1/(w−n+1) for 1 ≤ n ≤ w,

in polynomial time in w, v, and the maximum input length.

Again, we consider how to solve modular equations h(x1, . . . , xn) = 0
(mod W ). First, we construct w polynomials h1(x1, . . . , xn), . . . , hw(x1, . . . , xn),
which have the roots (x̃1, . . . , x̃n) modulo Wm with positive integer m. We
convert these polynomials to the vectors b1, . . . ,bw in Z

v, and construct the
matrix B. The elements of each vector bj are the same as the coefficients of
hj(x1X1, . . . , xnXn). All i-th elements of the vectors b1, . . . ,bw are the coeffi-
cients of the same variables xi1

1 · · ·xin
n for all 1 ≤ i ≤ k. The vectors can be

converted to the polynomials in the opposite way. We span the lattice L(B).
Since all the lattice vectors are the integer linear combinations of the basis
vectors, the polynomials which are conversions of the lattice vectors have the
roots (x̃1, . . . , x̃n) modulo Wm. We apply the LLL algorithm to the lattice bases
and obtain n LLL-reduced bases b̃1, . . . , b̃n. Finally, we can get the polyno-
mials h̃1(x1, . . . , xn), . . . , h̃n(x1, . . . , xn) by converting the LLL-reduced bases.
The norm of these polynomials are small. These polynomials satisfy Howgrave-
Graham’s Lemma provided that

(vol(L(B)))1/w < Wm.

We omit the small terms.
When we obtain the polynomials h̃1(x1, . . . , xn), . . . , h̃n(x1, . . . , xn), it is easy

to solve the modular equation h(x1, . . . , xn) = 0 (mod W ). What we should do
is to find the roots of the polynomials over the integers by computing resultant
or Gröbner basis. We should note that the method needs heuristic argument if
we consider multivariate problems. Since the polynomials h̃1(x1, . . . , xn), . . . ,
h̃n(x1, . . . , xn) have no assurance of algebraic independency. In this paper, we
assume that the polynomials are algebraic independence as the previous works
[BD00, SM10a, SM10b, Aon13]. In fact, there are few negative cases reported.

The solvable sizes of small solutions depend on the lattice constructions. To
maximize the sizes, we should select appropriate lattice bases which reduce the
volume. Recently, Takayasu and Kunihiro [TK13] proposed the strategy for the
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selections. To construct the triangular basis matrix, we define helpful polynomi-
als whose diagonals are smaller than the modulusWm. Since helpful polynomials
contribute to the conditions for modular equations to be solved, we should select
as many helpful polynomials as possible in the lattice bases. Conversely, unhelp-
ful polynomials whose diagonals are larger than the modulus do not contribute
to the conditions. We should select as few unhelpful polynomials as possible.
The selections should be done with the constraint for the basis matrix to be
triangular. The strategy clarifies which polynomials to be selected and which
polynomials not to be selected in the lattice bases. To improve the previous
bounds, we should add helpful polynomials or eliminate unhelpful polynomials
in the lattice bases. When we counstruct the basis matrix which is not triangu-
lar, we should transform the basis matrix to be triangular by using unravelled
linearization [HM09].

3 Previous Works

In this section, we introduce the lattice constructions in previous works
[BD00, Aon13], which used the Coppersmith’s method to solve modular equa-
tions [Cop96a, How97].

3.1 Boneh and Durfee’s Lattice Construction

We recall the RSA key generation,

ed = 1 + kφ(N), where φ(N) = (p− 1)(q − 1).

Boneh and Durfee [BD00] considered the modular polynomial

f(x, y) = 1 + x(N + y) (mod e).

The polynomial has the roots (x, y) = (k, 1 − p − q). The sizes of the roots are
bounded by X := Nβ , Y := 3N1/2. If we can find the roots, we can easily factor
RSA modulus N .

To solve the modular equation f(x, y) = 0, Boneh and Durfee constructed
the basis matrix with polynomials which have the roots (x, y) = (k, 1 − p − q)
modulo em. At first, Boneh and Durfee used the shift-polynomials,

xif(x, y)jem−j, with j = 0, 1, . . . ,m, i = 0, 1, . . . ,m− j,

in the lattice bases. The shift-polynomials modulo em have the roots (x, y) =
(k, 1 − p − q). The shift-polynomials generate the triangular basis matrix with
diagonals X i+jY jem−j for all i, j. Ignoring low order terms of m, we can com-
pute the dimension w = 1

2m
2 and the volume of the lattice vol(L(B)) =

X
1
3m

3

Y
1
6m

3

e
1
3m

3

. The lattice provides Wiener’s bound β < 0.25.
To improve the bound, Boneh and Durfee added extra shifts,

ylf(x, y)uem−u, with u = 0, 1, . . . ,m, l = 1, . . . , t,
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in the lattice bases. The shift-polynomials modulo em have the roots (x, y) =
(k, 1−p−q). We should optimize the parameter τ := t/u. Though the extra shifts
do not generate the tirangular basis matrix, we can transform it to be triangular
using unravelled linearization [HM09]. The detailed analysis is written in [HM10].
After the transformation, the sizes of the diagonals become XuY u+lem−u. Ig-
noring low order terms of m, we can compute the dimension w = (12 +

τ
2 )m

2 and

the volume of the lattice vol(L(B)) = X( 1
3+

τ
3 )m

3

Y ( 1
6+

τ
3 +

τ2

6 )m3

e(
1
3+

τ
6 )m

3

. We can
solve the modular equation f(x, y) = 0 provided that (vol(L(B)))1/w < em, that
is,

β(
1

3
+

τ

3
) +

1

2
(
1

6
+

τ

3
+

τ2

6
) +

1

3
+

τ

6
<

1

2
+

τ

2
.

To maximize the solvable bound β, we optimize τ = 1 − 2β and obtain the
stronger bound β < 1− 1/

√
2.

3.2 Aono’s Lattice Construction

For the multiple key setting, the attackers have multiple public exponents
e1, . . . , en that satisfy

ejdj = 1 + kjφ(N), for j = 1, 2, . . . , n.

Aono [Aon13] considered n modular polynomials

fj(xj , y) = 1 + xj(N + y) (mod ej), for j = 1, 2, . . . , n.

The polynomials have the roots (x1, . . . , xn, y) = (k1, . . . , kn, 1−p−q). The sizes
of the roots are bounded by Xj := Nβ for j = 1, 2, . . . , n, Y := 3N1/2. We also
write X := Nβ for simplicity. If we can find the roots, we can easily factor RSA
modulus N .

To solve simultaneous modular equations fj(xj , y) = 0 for j = 1, 2, . . . , n,
Aono constructed the basis matrix with polynomials which have the same roots
as the solutions of the modular equation modulo (e1 · · · en)m. Aono combined
n lattices, each of which is the lattice to solve a single equation. To solve each
single equation, Aono selected the shift-polynoials

x
ij
j fj(xj , y)

uj e
m−uj

j , with uj = 0, 1, . . . ,m, ij = 0, 1, . . . ,m− uj ,

for j = 1, 2, . . . , n.

The selection for each single equation generates the triangular basis matrix. Aono
combined the n lattices based onMinkowski sum. Aono proved that the combined
lattices based on Minkowski sum are also triangular, if each basis matrix is trian-

gular. The combined basis matrix has diagonals X
i′1
1 · · ·X i′n

n Y u′
e
m−min{i′1,u′}
1 · · ·

e
m−min{i′n,u′}
n , for 0 ≤ u′ ≤ ∑n

j=1 i
′
j, 0 ≤ i′j ≤ m for j = 1, 2, . . . , n. Each polyno-

mial of the row is the integer linear combination of shift-polynomials that have
the corresponding diagonals. This operation reduce the powers of e1, . . . , en. The
detailed discussion is written in [Aon13].
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Ignoring low order terms of m, we can compute the dimension w = n
2m

n+1,

and the volume of the lattice vol(L(B)) = X
sX1

1 · · ·XsXn
n Y sY e

se1
1 · · · esenn , where

sXj = (n4 + 1
12 )m

n+2, sY = (n
2

8 + n
24 )m

n+2, sej = (n4 + 1
12 )m

n+2, for j =
1, 2, . . . , n. The lattice provides the bound

β <
3

4
− 2

3n+ 1
.

4 Another Look at Previous Lattice Constructions

In this section, we analyze the previous lattice constructions [BD00, Aon13]
based on Takayasu and Kunihiro’s strategy [TK13]. What we should mention
is that if there are as many helpful polynomials as possible or as few unhelpful
polynomials as possible in the lattice bases.

4.1 The Analysis of Boneh and Durfee’s Lattices

We can rewrite the sizes of diagonals in Boneh and Durfee’s basis matrix as
X i′Y u′

em−min{i′,u′} for 0 ≤ u′ ≤ 2(1 − β)i′, 0 ≤ i′ ≤ m. We consider the
shift-polynomials for i′ < u′ ≤ 2(1 − β)i′, 0 ≤ i′ ≤ m. To examine if the shift-
polynomials are helpful or not, we compare the sizes of diagonals and the size
of the modulus em. For easy comparison, we rewrite the sizes as the powers of
N . The sizes of diagonals are Nβi′+ 1

2u
′+m−i′ , and the size of the modulus is

Nm. The shift-polynomials are helpful when βi′ + 1
2u

′ + m − i′ ≤ m, that is,
u′ ≤ 2(1−β)i′. Therefore, the shift-polynomials which Boneh and Dufee selected
for i′ < u′ are all helpful polynomials. Moreover, the condition is tight. That
means when 2(1 − β)i′ < u′, all shift-polynomials are unhelpful. For the basis
matrix to be triangular, we have to select the shift-polynomials for 0 ≤ u′ ≤
i′, 0 ≤ i′ ≤ m. This analysis implies that Boneh and Durfee selected as many
helpful polynomials as possible and as few unhelpful polynomials as possible.

4.2 The Analysis of Aono’s Lattices

Next, we consider the Aono’s lattices. We can rewrite the sizes of diagonals

in Aono’s basis matrix as X
i′1
1 · · ·X i′n

n Y u′
e
m−min{i′1,u′}
1 · · · em−min{i′n,u′}

n for 0 ≤
u′ ≤ ∑n

j=1 i
′
j, and 0 ≤ i′j ≤ m for j = 1, 2, . . . , n. We show that Aono selected

unhelpful polynomials or the selections are not tight. To examine if the shift-
polynomials are helpful or not, we compare the sizes of diagonals and the size of
the modulus (e1 · · · en)m. We consider the diagonalXm

1 · · ·Xm
n Y nm, which is the

case i′1 = · · · = i′n = m,u′ = nm. The size of the diagonal is (XY )nm. For easy
comparison, we rewrite the sizes as the powers of N . The sizes of the diagonal is
Nnmβ+nm

2 , and the size of the modulus is Nnm. The shift-polynomial is helpful
when nmβ + nm

2 ≤ nm, that is, β ≤ 1
2 . We recall that Aono’s lattice provides

the bound β < 3
4 − 2

3n+1 . Therefore, Aono selected unhelpful polynomials for
n ≥ 3, and the selections are not tight for n = 1, 2.
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Aono also pointed out the issue in his paper [Aon13]. They proposed the
heuristic improvement in appendix of their paper. They claimed that to improve
the bound, some polynomials with highr powers of Y should be omit for n ≥ 3.
However, no exact conditions are given in the paper.

5 Our Improvements

In this section, we show the improved lattice constructions. To improve
the bound, we select as many helpful polynomials as possible and as few
unhelpful polynomials as possible in the lattice bases. We consider the
same simultaneous modular equations as Aono [Aon13], fj(xj , y) = 1 +
xj(N + y) (mod ej) = 0, for j = 1, 2, . . . , n. We use shift-polynomials

x
ij
j fj(xj , y)

uj e
m−uj

j , yljfj(xj , y)
uje

m−uj

j for j = 1, 2, . . . , n. Aono’s analy-

sis suggests that we can construct the triangular basis matrix2 with di-

agonals X
i′1
1 · · ·X i′n

n Y u′
e
m−min{i′1,u′}
1 · · · em−min{i′n,u′}

n . We reveal the condition
when each lattice basis becomes helpful. We consider the polynomials with
max{i′1, . . . , i′n} ≤ u′. To examine if the shift-polynomials are helpful or not,
we compare the sizes of diagonals and the size of modulus (e1 · · · en)m. The

polynomials have the diagonals X
i′1
1 · · ·X i′n

n Y u′
e
m−i′1
1 · · · em−i′n

n . For easy com-
parison, we rewrite the sizes as the powers of N . The sizes of the diagonals

are Nβ
∑n

j=1 i′j+
u′
2 +nm−∑n

j=1 i′j , and the size of the modulus is Nnm. The shift-
polynomials are helpful when

β

n∑

j=1

i′j +
u′

2
+ nm−

n∑

j=1

i′j ≤ nm,

that is,

u′ ≤ 2(1− β)

n∑

j=1

i′j .

Therefore,we select the shift-polynomialsx
ij
j fj(xj , y)

uje
m−uj

j , yljfj(xj , y)
uj e

m−uj

j

for j = 1, 2, . . . , n, which generate the diagonalsX
i′1
1 · · ·X i′n

n Y u′
e
m−min{i′1,u′}
1 · · ·

e
m−min{i′n,u′}
n for 0 ≤ u′ ≤ 2(1 − β)

∑n
j=1 i

′
j, 0 ≤ i′j ≤ m for j = 1, 2, . . . , n. It

is clear that our selection becomes identical to Boneh and Durfee’s selection for
n = 1. The selection provides the better bound than previous works including
Aono’s heuristically improved lattices3.

2 For n = 1, 2 we should use unravelled linearization and transform the basis matrix
which is not triangular to be triangular. See [HM10] for n = 1 and the full version
of this paper for n = 2 in detail.

3 Compared with Aono’s heuristically improved lattice bases [Aon13], there are less un-
helpful polynomials and as many helpful polynomials in our lattice bases. See the full
version of this paper in detail.
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Ignoring low order terms of m, we can compute the dimension

w =

m∑

i′n=0

· · ·
m∑

i′1=0

�2(1−β)(i′1+···+i′n)�∑

u′=0

1 = n(1− β)mn+1,

and the volume of the lattice vol(L(B)) = X
sX1
1 · · ·XsXn

n Y sY e
se1
1 · · · esenn , where

sXj =
m∑

i′n=0

· · ·
m∑

i′1=0

�2(1−β)(i′1+···+i′n)�∑

u′=0

i′j =
(3n+ 1)(1− β)

6
mn+2,

sY =
m∑

i′n=0

· · ·
m∑

i′1=0

�2(1−β)(i′1+···+i′n)�∑

u′=0

u′ =
n(3n+ 1)

6
(1− β)2mn+2,

sej =

m∑

i′n=0

· · ·
m∑

i′1=0

�2(1−β)(i′1+···+i′n)�∑

u′=0

(m−min{u′, i′j}) = 1 + (3n− 1)(1− β)

6
mn+2.

We can solve the simultaneous modular equations fj(xj , y) = 1 + xj(N + y)
(mod ej) = 0, for j = 1, 2, . . . , n, when (vol(L(B)))1/w < (e1 · · · en)m,

nβ
(3n+ 1)(1− β)

6
+

1

2

n(3n+ 1)

6
(1− β)2 + n

1 + (3n− 1)(1 − β)

6
< n2(1 − β),

(3n+ 1)β2 − 2(3n+ 1)β + 3n− 1 > 0,

that is,

β < 1−
√

2

3n+ 1
.

The bound is superior to all known algorithms [HS99, SM10a, SM10b, Aon13].

6 Partial Key Exposure Attacks on RSA

In the context of the security evaluations of RSA, partial key exposure attacks
[BDF98, BM03, EJMW05, Aon09, SGM10] have been considered. In the par-
tial key exposure situaion, the attackers know the partial information of secret
exponent d. In the work [Aon13], Aono also considered partial key exposure at-
tacks on RSA with multiple key settings. In this case, the attackers know public
modulus N and multiple public exonents e1, . . . , en, whose corresponding secret
exponents d1, . . . , dn are smaller than Nβ, and the least significant δ logN bits
of secret exponents, d̃1, . . . , d̃n. Aono proposed the algorithm with Minkowski
sum based lattices, which works provided that

β <
δ

2
+

3

4
− 2

3n+ 1
.
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Based on Takayasu and Kunihiro’s strategy [TK13], we propose the improved
algorithm for partial key exposure attacks on RSA. Our algorithm works pro-
vided that

β < 1−
√

2(1− 2δ)

3n+ 1
, δ <

1

2
− 4

3n+ 1
.

Our algorithm is the same as Aono’s algorithm for n = 1, 2, and is superior to
Aono’s algorithm for n ≥ 3. The detailed analysis is written in the full version
of the paper.

7 Concluding Remarks

In this paper, we analyzed the security of RSA when the attackers have multi-
ple public exponents e1, . . . , en for the same public modulus N . We proposed im-
proved algorithm for small secret exponent attacks.All secret exponents d1, . . . , dn
are smaller than Nβ. Our algorithm factors public modulus N provided that β <
1−√

2/(3n+ 1). To the best of our knowledge, this is the first result that covers

Boneh and Durfee’s bound β < 1 − 1/
√
2 for n = 1, and converge to β < 1 for

infinitely large n, simultaneously. Our bound is better than all known previous
ones [HS99, SM10a, SM10b, Aon13].

Our lattice construction is based on Takayasu and Kunihiro’s strategy [TK13]
to collect helpful polynomials. The strategy enables us to determine the selections
of polynomials in the lattice bases while taking into account the sizes of root
bounds. That is the main difficulty in previous works [SM10b, Aon13].
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