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Abstract. Zero-correlation linear cryptanalysis is a new method based
on the linear approximations with correlation zero. In this paper, we pro-
pose a new model of multidimensional zero-correlation linear cryptanal-
ysis by taking the equivalent relations of round keys into consideration.
The improved attack model first finds out all the longest multidimensional
zero-correlation linear distinguishers, then regards the distinguishers with
the least independent guessed keys as the optimal distinguishers and fi-
nally chooses one optimal distinguisher to recover the secret key of cipher
by using the partial-compression technique. Based on the improved at-
tack model, we extend the original 22-round zero-correlation linear attack
on LBlock and first evaluate the security of TWINE against the
zero-correlation linear cryptanalysis. There are at least 8×8 classes of mul-
tidimensional zero-correlation linear distinguishers for 14-round LBlock
and TWINE. After determining the corresponding optimal distinguisher,
we carefully choose the order of guessing keys and guess each subkey nib-
ble one after another to achieve an attack on 23-round LBlock, an attack
on 23-round TWINE-80 and another attack on 25-round TWINE-128. As
far as we know, these results are the currently best results on LBlock and
TWINE in the single key scenario except the optimized brute force attack.

Keywords: lightweight block cipher, LBlock, TWINE,multidimensional
zero-correlation linear cryptanalysis, partial-compression.

1 Introduction

Zero-correlation cryptanalysis[1] is a novel promising attack technique for block
ciphers. The distinguishing property used in zero-correlation cryptanalysis is
the existence of zero-correlation linear hulls over a part of the cipher. Those
linear approximations hold true with probability p equal to 1/2 and correlation
c = 2p − 1 equal to 0. The original scheme had the disadvantage of requiring
almost the full codebook of data. Bogdanov et.al proposed a framework which
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uses several independent zero-correlation linear approximations to reduce data
complexity[2]. In a follow-up work at ASIACRYPT’12[3], a multidimensional dis-
tinguisher has been constructed for the zero-correlation property, which removed
the unnecessary independency assumptions on the distinguishers.

With the development of communication and electronic applications, the
limited-resource devices such as RFID tags and sensor nodes have been used
in many aspects of our life. Traditional block cipher is not suitable for this ex-
tremely constrained environment. Therefore, research on designing and analyzing
lightweight block ciphers has become a hot topic. Recently, several lightweight
block ciphers have been proposed, such as PRESENT[4], LED[5], Piccolo[6],
LBlock[7], TWINE[8], etc. To reduce the cost of hardware and to decrease key
set-up time, the key schedules of the lightweight ciphers are rather simple. As is
known to us, the diffusion of the key schedule plays an important role on the se-
curity of the block cipher. In contrast to the serious effort spent on the algorithm
design, the aspect of key schedules for block ciphers has attracted comparatively
little attention.

In order to take advantage of the simple key schedule algorithm, we introduce
an improved model of multidimensional zero-correlation linear cryptanalysis in
this paper. In the previous basic attack, the adversary partly encrypts the plain-
texts and decrypts the ciphertexts to obtain the values of the corresponding
positions determined by the zero-correlation distinguisher. During the above
process, attackers need to guess internal subkeys and the sizes of guessed keys
are various for different zero-correlation distinguishers. In the improved attack
model, we first compute the number of guessed round keys for all possible longest
zero-correlation distinguishers and choose the one with least guessed key as the
optimal distinguisher. After determining the optimal distinguisher, we finally re-
duce the complexity of the partial computation by guessing each subkey nibble
one after another, which is called partial-compression technique.

To demonstrate the practical impact of our attack model, we apply the im-
proved multidimensional zero-correlation linear attack model to LBlock and
TWINE. The attacked round of LBlock against zero-correlation linear crypt-
analysis is improved from 22-round to 23-round. As shown in [9], there are 8× 8
different classes of zero-correlation linear hulls for 14-round LBlock. We evaluate
the sizes of guessed keys for all classes of distinguishers and choose one distin-
guisher with least independent to attack 23-round LBlock. It cost a time com-
plexity of 276 23-round LBlock encryptions. Similarly, we also apply the above
multidimensional zero-correlation linear cryptanalysis to TWINE block cipher.
We first find 8 × 8 different classes of zero-correlation linear hulls for 14-round
TWINE. Then, two different zero-correlation linear distinguishers are chosen for
TWINE-80 and TWINE-128 because of their different key schedule algorithms.
Based on zero-correlation approximations with dimension 8, we carefully apply
the partial-compression technique to present an attack on 23-round TWINE-80
and 25-round TWINE-128. Table 1 outlines the results and compares the results
with previous attacks under the single-key model. The security of full-round
LBlock and TWINE have been evaluated by biclique cryptanalysis[10,11] but
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the biclique cryptanalysis can be regarded as an optimization of brute-force at-
tack. In this paper, we do not discuss such an optimized brute-force attack with
a small advantage of a constant factor.

Table 1. Comparisons of Cryptanalysis Results on LBlock and TWINE

Ciphers Round Data Time Memory Attacks Source

LBlock 22 261 CP 270 263 Integral [12]

LBlock 22 258 CP 279.28 268 Impossible Differential [13]

LBlock 22 262.1 KP 271.27 264 Zero-Correlation Linear [9]

LBlock 23 262.1 KP 276 260 Zero-Correlation Linear Sec.4

TWINE-80 22 262 CP 268.43 268.43 Saturation [8]

TWINE-80 23 261.39 CP 276.88 276.88 Impossible Differential [8]

TWINE-80 23 262.1 KP 272.15 260 Zero-Correlation Linear Sec.5.1

TWINE-128 23 262.81 CP 2106.14 2106.14 Saturation [8]

TWINE-128 24 252.21CP 2115.10 2115.10 Impossible Differential [8]

TWINE-128 25 248CP 2122 2125 Multid Meet-in-the-Middle [14]

TWINE-128 25 262.1KP 2122.12 260 Zero-Correlation Linear Sec.5.2

† CP: Chosen Plaintexts, † KP: Known Plaintexts † Multid: Multidimensional

The remainder of this paper is organized as follows. Section 2 presents the
general structure of previous multidimensional zero-correlation cryptanalysis.
Section 3 proposes the improved model of multidimensional zero-correlation
linear cryptanalysis. Section 4 applies the improved zero-correlation linear crypt-
analysis to 23-round LBlock. Section 5 shows the key recovery attacks on
23-round TWINE-80 and 25-round TWINE-128. Finally, Section 6 concludes
this paper.

2 Notations and Preliminaries

In this section, we introduce the definition of zero-correlation linear
approximation[1] and the previous basic methods of multidimensional zero-
correlation cryptanalysis.

2.1 Zero-Correlation Linear Approximations

Consider an n-bit block cipher f and let the input of the function be x ∈ Fn
2 .

A linear approximation (u, v) with an input mask u and an output mask v has
probability

p(u, v) = Prx∈Fn
2
(u · x⊕ v · f(x) = 0).

The value cf (u, v) = 2p(u, v)−1 is called the correlation of linear approximation
(u, v). Note that p(u, v) = 1/2 is equivalent to zero correlation cf (u, v) = 0.
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Zero-correlation linear cryptanalysis uses linear approximations that the cor-
relations are equal to zero for all keys. The round function of ciphers often makes
use of three basic operations: XOR operation, branching operation and a per-
mutation S-box. Linear approximations over these operations obey three major
rules(see also [15]):

Lemma 1 (XOR operation): Either the three linear masks at an XOR ⊕ are
equal or the correlation over ⊕ is exactly zero.

Lemma 2 (Branching operation): Either the three linear masks at a branching
point • sum up to 0 or the correlation over • is exactly zero.

Lemma 3 (S-box permutation): Over an S-box S, if the input and output masks
are neither both zero nor both nonzero, the correlation over S is exactly zero.

In order to find the longest zero-correlation linear approximations, several
methods are proposed to find the linear hull with zero-correlation. The matrix
method are proposed in [9] by using the miss-in-the-middle technique to establish
zero-correlation linear approximations. Given a distinguisher of zero-correlation
linear approximation over a part of the cipher, the basic key recovery can be
done with a technique similar to that of Matsui’s Algorithm 2[15], partially
encrypting/decrypting from the plaintext/ciphertext up to the boundaries of the
property. This is the key recovery approach used in all zero-correlation attacks
so far. In this paper, we aim to improve upon this by exploiting the weakness
of the key schedule algorithm and using the partial-compression technique to
reduce the computational complexity of attacks.

2.2 Multidimensional Zero-Correlation Linear Cryptanalysis

For most ciphers, a large number of zero-correlation approximations are avail-
able. To remove the statistical independence for multiple zero-correlation linear
approximations, the zero-correlation linear approximations available are treated
as a linear space spanned by m different zero-correlation linear approxima-
tions such that all l = 2m − 1 non-zero linear combinations of them have zero
correlation[3]. Given m linear approximations

〈ui, x〉+ 〈wi, y〉, i = 1, ...,m

where x and y are some parts of data in encryption process, one obtains an
m-tuples z by evaluating the m linear approximations for a plaintext-ciphertext
pair

z = (z1, ..., zm), zi = 〈ui, x〉+ 〈wi, y〉.
For each z ∈ F

m
2 , the attacker allocates a counter V [z] and initializes it to value

zero. Then for each distinct plaintext, the attacker computes the corresponding
data in F

m
2 and increments the counter V [z] of this data value by one. Then the

attacker computes the statistic T :

T =

2m−1∑

z=0

(V [z]−N2−m)
2

N2−m(1− 2−m)
=

N · 2m
(1− 2−m)

2m−1∑

z=0

(
V [z]

N
− 1

2m
)
2

. (1)
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The statistic T for the right key guess follows a χ2-distribution with mean
μ0 = l 2

n−N
2n−1 and variance σ2

0 = 2l(2
n−N
2n−1 ), while for the wrong key guess it follows

a χ2-distribution with mean μ1 = l and variance σ2
1 = 2l.

In order to show the relationships between data complexity and success prob-
ability, we first denote the type-I error probability ( the probability to wrongfully
discard the right key) with α and the type-II error probability ( the probability
to wrongfully accept a random key as the right key) with β. We consider the
decision threshold τ = μ0 + σ0z1−α = μ1 + σ1z1−β, then the number of known
plaintexts N should be about

N =
2n(z1−α + z1−β)√

l/2− z1−β

, (2)

where zp = Φ−1(p) for 0 < p < 1 and Φ is the cumulative function of the
standard normal distribution.

3 Improved Multidimensional Zero-Correlation Linear
Cryptanalysis

In contrast to the serious effort spent on the algorithm design, the aspect of key
schedules for block ciphers has attracted comparatively little attention. In this
section, we give an improved model of multidimensional zero-correlation linear
cryptanalysis by taking advantage of the weakness of key schedule algorithms.

Having the zero-correlation linear distinguisher, the adversary partly encrypts
the plaintexts and decrypts the ciphertexts to obtain the values of the corre-
sponding positions determined by the distinguisher. Attackers need to guess
internal subkeys during the above process. As mentioned above, a large number
of zero-correlation hulls are available for a single block cipher. Moreover, the
sizes of guessed keys can vary for different key schedule algorithms and differ-
ent classes of zero-correlation distinguishers. Thus, the choice and position of
the zero-correlation linear hull will influence the result of security evaluation. In
order to obtain a better attack on the target cipher, we present an improved
model of multidimensional zero-correlation linear cryptanalysis.

Specifically, the following steps are processed to reduce the time complexity
of attacks on some R-round block cipher.

1. Find all the longest multidimensional zero-correlation linear distinguishers
by using the matrix method or other properties of encryption algorithm. We
denote the number of different distinguishers by n and the round number of
that by Rd. Obviously, we assume that Rd is always smaller than R.

2. Put the Rd-round distinguisher in the middle of the cipher and calculate the
number of related round keys during the process of the partial computation.
(a) The set of possible cases are noted with {(i, Re), 0 ≤ i < n, 0 ≤ Re ≤

R−Rd} and the pairs are sorted according to the number of related round
keys. In each pair, the parameter i means the indexed number of differ-
ent distinguishers and Re means the round number of partial encryption.
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Meanwhile, the corresponding round number of partial decryption is
R−Rd−Re. Thus, different elements in the set represent different attack
schemes.

(b) Save the pairs (i, Re) with least number of keys in a set S.
The above process is determined by the diffusion of the encryption algorithm
and has no relation with the key schedule algorithm.

3. Minimize the set S to an optimal set O by taking the key schedule algo-
rithm into consideration. Having known the position of the corresponding
distinguisher, we can determine the realistic round keys for every pair in
S. Furthermore, the equivalent relations in round keys can be obtained by
carefully analyzing the key schedule algorithm.
(a) For each element in S, update the number of related keys with the num-

ber of independent guessed keys.
(b) Sort S again and only save the pairs with least guessed keys to O.

4. Choose an arbitrary pair from O to recover the secret key of the R-round
cipher. Assume that the dimensional number of the distinguisher is m.
(a) Allocate a counter V [z] for m-bit z. The vector z is the concatenation

of evaluations of m zero-correlation linear approximations.
(b) Update the counter V [z] by guessing subkeys nibble one after another

by using the partial-compression technique.

(c) For each guessing key k, compute Tk = N ·2m
(1−2−m)

2m−1∑
z=0

(V [z]
N − 1

2m )
2
.

(d) If Tk < τ , then the guessed subkey values are possible right subkey
candidates.

(e) Do exhaustive search for all right candidates.

In the following sections, these new improvements will be illustrated with
applications to block ciphers LBlock and TWINE.

4 Application to LBlock

In this section, we will evaluate the security of LBlock against multidimensional
zero-correlation linear cryptanalysis by using the above improved model and give
an attack on 23-round LBlock. We first give a brief description of LBlock and
then show the properties of zero-correlation linear distinguishers for 14-round
LBlock. Finally, a key recovery attack on 23-round LBlock is given.

4.1 A Brief Description of LBlock

Encryption Algorithm. The general structure of LBlock is a variant of Feistel
Network, which is depicted in Figure 1. The number of iterative rounds is 32.
The round function of LBlock includes three basic functions: AddRoundKey
AK, confusion function S and diffusion function P . The confusion function S
consists of eight 4× 4 S-boxes in parallel. The diffusion function P is defined as
a permutation of eight 4-bit words.
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AK 8S

rX
rK

P

1rX

Fig. 1. Round function of LBlock block cipher

Key Schedule Algorithm. To reduce the cost of hardware and to decrease
key set-up time, the key schedule of LBlock is rather simple. The 80-bit master
key MK is stored in a key register and represented as MK = k0k1...k79. At
round i, the leftmost 32 bits of current contents of register MK are output as
the round key Ki, i.e., Ki = k0k1...k31. The key schedule of LBlock can be shown
as follows:

1. K0 = MK[0− 31]
2. For i ← 1 to 31

(a) MK = MK <<< 29
(b) MK[0− 3] = s9(MK[0− 3])

MK[4− 7] = s8(MK[4− 7])
(c) MK[29− 33] = MK[29− 33]⊕ [i]2
(d) Ki = MK[0− 31]

4.2 Zero-Correlation Linear Approximations of 14-Round LBlock

If an incompatible pair of linear masks can be shown for each linear trail in a
linear hull, the correlation of the linear hull is zero. As studied in [9], there are
8 × 8 different classes of zero-correlation linear hulls for 14-round LBlock and
the characteristics can be summarized as the following property:

Property 1. For 14-round LBlock, if the input mask a of the first round locates
at the left branch and the output mask b of the last round locates in the right
branch, then the correlation of the linear approximation is zero, where a, b ∈ F 4

2 ,
a �= 0 and b �= 0.

To distinguish the 64 different zero-correlation hulls, we express them with
two integers as (la, lb), where 0 ≤ la ≤ 7 and 8 ≤ lb ≤ 15.

4.3 Key Recovery for 23-Round LBlock

In order to attack 23-round LBlock, we follows the improved attack model of
multidimensional zero-correlation cryptanalysis.
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Step 1. As noted before, R = 23 and Rd = 14 for block cipher LBlock. We need
to choose a distinguisher from the set {((la, lb), Re), 0 ≤ Re ≤ 9}.

Step 2. After calculating the number of related keys, the original set is reduced
to S = {((la, lb), Re), 4 ≤ Re ≤ 5}.

Step 3. For every element in S, compute the least number of guessed keys. The
least number of guessed keys is 63. Meanwhile, only four choices are left in the
optimal set and O = {((1, 14), 4), ((2, 14), 4), ((3, 14), 4), ((6, 14), 4)}.

Step 4. Finally, we select ((1, 14), 4) to give an attack on 23-round LBlock.
Because Re = 4, we put the 14-round zero-correlation linear hull in rounds 4 to
17 and attack LBlock from round 0 to round 22 (Figure 2).

AK 8S

0X

P

AK 8S

1X

P

AK 8S

2X

P

AK 8S

3X
3K

P

4X

2K

1K

0K
AK 8S

18X

P

AK 8S

19X

P

AK 8S
20X

P

AK 8S

21X

P

18K

19K

20K

21K

AK 8S
22X

P

23X

22K

18X zero-correlation linear hull of 14-round

Fig. 2. Attack on 23-Round LBlock

After collecting sufficient plaintext-ciphertext pairs, we guess corresponding
subkeys for the first four rounds and the last five rounds to estimate the statistic
T . If we directly guess the subkeys bits involved in the key recovery process,
then the time complexity will be greater than exhaustive search. Therefore, in
order to reduce the time complexity, we first express the two target values by
using the related round keys and plaintexts or ciphertexts, then use the partial-
compression technique to reduce the time complexity significantly.

As shown in Figure 2, the nibble X1
4 is affected by 32 bits of plaintext X0 and

28 bits of round keys and the expression can be shown as:

X1
4 = X5

0 ⊕ S(X12
0 ⊕ S(X0

0 ⊕K0
0 )⊕K2

1)⊕ S(X15
0 ⊕ S(X7

0 ⊕K7
0 )⊕

S(X4
0 ⊕ S(X10

0 ⊕ S(X1
0 ⊕K1

0 )⊕K0
1 )⊕K2

2)⊕K3
3 )
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Similarly, the nibble X14
18 is affected by 48 bits of ciphertext X23 and 48 bits

of round keys:

X14
18 =X0

23 ⊕ S(X9
23 ⊕K1

22)⊕ S(X14
23 ⊕ S(X2

23 ⊕ S(X8
23 ⊕K0

22)⊕K4
21)⊕K0

20)⊕
S(X9

23 ⊕ S(X1
23 ⊕ S(X11

23 ⊕K3
22)⊕K3

21)⊕ S(X6
23 ⊕ S(X12

23 ⊕K4
22)⊕

S(X15
23 ⊕ S(X4

23 ⊕ S(X13
23 ⊕K5

22)⊕K6
21)⊕K1

20)⊕K2
19)⊕K5

18)

After analyzing the key schedule of LBlock, we find the following relations in
the round keys:

K7
0 ⇒ K0

1 [0− 2], K3
21 ⇒ K5

18[0− 2], K4
21 ⇒ K5

18[3], K0
22 ⇒ K2

19[0− 2],
K1

22 ⇒ K2
19[3] and K0

20 ⇒ K5
22[2− 3].

Assuming that N known plaintexts are used, the partial encryption and de-
cryption using the partial-compression technique are proceeded as in Table 2.
The second column stands for the subkey nibbles that have to be guessed in
each step. The third column denotes the time complexity of corresponding step
measured in S-box access. In each step, we save the values of the ’Obtained
States’ during the encryption and decryption process. For each possible value
of xi(1 ≤ i ≤ 13), the counter Ni[xi] will record how many plaintext-ciphertext
pairs can produce the corresponding intermediate state xi. The counter size for
each xi is shown in the last column.

To be more clear, we explain some steps in Table 2 in detail.
Step 4.1. We allocate the 60-bit counter N1[x1] and initialize it to zero. We

then guess 17-bit keys and partially encrypt N plaintexts to compute x1, and
increment the corresponding counter.

The guessed keys are K1
0 ,K

7
0 ,K

0
1 [3] and K0

22,K
4
21. Because K7

0 [1 − 3] are
equivalent to K0

1 [0 − 2], K0
1 are all known. As shown in Figure 2, the values of

X1
4 |X14

18 are affected by 32 bits of plaintext and 48 bits of ciphertext. They are
represented by

x0 = X5
0 |X12

0 |X0
0 |X15

0 |X7
0 |X4

0 |X10
0 |X1

0 |X0
23|X9

23|X14
23 |X2

23|X8
23|X1

23|X11
23 |

X6
23|X12

23 |X15
23 |X4

23|X13
23 .

As the following three equations

X5
1 = X15

0 ⊕ S(X7
0 ⊕K7

0 )

X2
2 = X4

0 ⊕ S(X10
0 ⊕ S(X1

0 ⊕K1
0 )⊕K0

1)

X8
21 = X14

23 ⊕ S(X2
23 ⊕ S(X8

23 ⊕K0
22)⊕K4

21)

are true for LBlock, the 80-bit x0 can be reduced to 60-bit x1 after guessing the
17 bits keys. Update the expressions of X1

4 and X14
18 :

X1
4 = X5

0 ⊕ S(X12
0 ⊕ S(X0

0 ⊕K0
0)⊕K2

1 )⊕ S(X5
1 ⊕ S(X2

2 ⊕K2
2)⊕K3

3 )

X14
18 = X0

23 ⊕ S(X9
23 ⊕K1

22)⊕ S(X8
21 ⊕K0

20)⊕ S(X9
23 ⊕ S(X1

23 ⊕ S(X11
23 ⊕K3

22)

⊕K3
21)⊕ S(X6

23 ⊕ S(X12
23 ⊕K4

22)⊕ S(X15
23 ⊕ S(X4

23 ⊕ S(X13
23 ⊕K5

22)

⊕K6
21)⊕K1

20)⊕K2
19)⊕K5

18)
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Step 4.2. We first allocate 56-bit counter N2[x2] and initialize them to zero.
We then guess 4-bit K0

20 and partially decrypt x1 to compute x2 and add the
corresponding N1[x1] to N2[x2]. During the above process, A is defined as X0

23⊕
S(X8

21 ⊕K0
20). Meanwhile, the expression of X14

18 is update as:

X14
18 = A⊕ S(X9

23 ⊕K1
22)⊕ S(X9

23 ⊕ S(X1
23 ⊕ S(X11

23 ⊕K3
22)⊕K3

21)⊕ S(X6
23⊕

S(X12
23 ⊕K4

22)⊕ S(X15
23 ⊕ S(X4

23 ⊕ S(X13
23 ⊕K5

22)⊕K6
21)⊕K1

20)⊕K2
19)⊕K5

18)
.

Table 2. Partial encryption and decryption on 23-round LBlock

Step Guess Time Obtained States Size

K1
0 ,K

7
0 ,K

0
1 [3] x1 = X5

0 |X12
0 |X0

0 |X5
1 |X2

2 |X0
23|X9

23|X8
21|

4.1 K0
22,K

4
21 N · 217 · 5 X1

23|X11
23 |X6

23|X12
23 |X15

23 |X4
23|X13

23 260

x2 = X5
0 |X12

0 |X0
0 |X5

1 |X2
2 |A|X9

23|X1
23|

4.2 K0
20 260 · 217+4 X11

23 |X6
23|X12

23 |X15
23 |X4

23|X13
23 256

x3 = X5
0 |X12

0 |X0
0 |X5

1 |X2
2 |A|X9

23|
4.3 K5

22[0, 1] 256 · 221+2 X1
23|X11

23 |X6
23|X12

23 |X15
23 |X14

22 252

4.4 K2
2 252 · 223+4 x4=X5

0 |X12
0 |X0

0 |X3
3 |A|X9

23|X1
23|X11

23 |X6
23|X12

23 |X15
23 |X14

22 248

4.5 K0
0 248 · 227+4 x5 = X5

0 |X2
1 |X3

3 |A|X9
23|X1

23|X11
23 |X6

23|X12
23 |X15

23 |X14
22 244

4.6 K2
1 244 · 231+4 x6 = X11

3 |X3
3 |A|X9

23|X1
23|X11

23 |X6
23|X12

23 |X15
23 |X14

22 240

4.7 K3
3 240 · 235+4 x7 = X1

4 |A|X9
23|X1

23|X11
23 |X6

23|X12
23 |X15

23 |X14
22 236

4.8 K3
22 236 · 239+4 x8 = X1

4 |A|X9
23|X11

22 |X6
23|X12

23 |X15
23 |X14

22 232

4.9 K4
22 232 · 243+4 x9 = X1

4 |A|X9
23|X11

22 |X8
22|X15

23 |X14
22 228

4.10 K6
21 228 · 247+4 x10 = X1

4 |A|X9
23|X11

22 |X8
22|X9

21 224

4.11 K1
20 224 · 251+4 x11 = X1

4 |A|X9
23|X11

22 |X10
20 220

4.12 K1
22(K

2
19) 220 · 255+4 · 2 x12 = X1

4 |B|C|X11
22 216

4.13 K3
21(K

5
18) 216 · 259+4 · 2 x13 = X1

4 |X14
18 28

† A = X0
23 ⊕ S(X8

21 ⊕K0
20) † B = A⊕ S(X9

23 ⊕K1
22) † C = X9

23 ⊕ S(X10
20 ⊕K2

19)

Because the following steps are similar to the above two steps, we do not
explain in details. Besides, we note that the numbers of guessed keys in Step
12 and Step 13 are both 4-bit. However, the numbers of known keys are both 8
bit, that is because the key in the ′()′ can be obtained by using the relations of
round keys.

To recover the secret key, the following steps are performed:

1. Allocate a counter V [z] for 8-bit z.
2. For 28 values of x13:

(a) Evaluate all 8 basis zero-correlation masks on x13 and get z.
(b) Update the counter V [z] by V [z] = V [z] +N13[x13].

3. For each guessing key k, compute Tk = N ·28
(1−2−8)

28−1∑
z=0

(V [z]
N − 1

28 )
2
.

4. If Tk < τ , then the guessed subkey values are possible right subkey candi-
dates.

5. Do exhaustive search for all right candidates.
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Complexity. We set α = 2−2.7, β = 2−9, then z1−α ≈ 1, z1−β ≈ 2.88. Since
n = 64 and l = 255, then according to equation 2, the data complexity N
is about 262.1. Now we evaluate the time complexity of the key recovery on
23-round LBlock. We first sum the cost of step 1 to step 14 in the process of
partial computation and the result is about 281 · 6 S-box access, which is about
281 · 6 · 1/8 · 1/23 ≈ 276 23-round LBlock encryptions. The number of remaining
key candidates is about 280 ·β ≈ 271. The total time complexity is 276+271 ≈ 276

23-round LBlock encryptions.
All in all, the data complexity of our attack on 23-round LBlock is 262.1

known plaintexts, the time complexity is 276 23-round LBlock encryptions and
the memory requirements are about 260 bytes.

5 Application to TWINE

In this section, we apply the improved multidimensional zero-correlation linear
attack model to TWINE block cipher and give attacks on 23-round TWINE-80
and 25-round TWINE-128.

5.1 A Brief Description of TWINE

Encryption Algorithm. Round function of TWINE consists of eight identical
4-bit S-boxes and a diffusion layer π, which is depicted in Figure 3. This round
function is iterated for 36 times for both TWINE-80 and TWINE-128, where
the diffusion layer of the last round is omitted.

k S k S k S k S k S k S k S k S

1rX

rX

Fig. 3. Round function of TWINE block cipher

Key Schedule Algorithm. The key schedule of TWINE is quite simple. S-
boxes, XOR operations and a series of constants are used in the key schedule.
Due to the page limit, see the specific key schedule algorithms for both key
lengths in Reference [8].

5.2 Zero-Correlation Linear Approximations of 14-Round TWINE

We find that there are at least 8 × 8 zero-correlation linear hulls for 14-round
TWINE and the characteristics can be summarized as the following property:

Property 2. For 14-round TWINE, if the input mask a of the first round locates
at the even nibble and the output mask b of the last round locates in the odd
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nibble, then the correlation of the linear approximation is zero, where a, b ∈ F 4
2 ,

a �= 0 and b �= 0.
To distinguish the 64 different zero-correlation hulls, we express the distin-

guisher as (la, lb), where 0 ≤ la ≤ 14 is an even integer and 1 ≤ lb ≤ 15 is an
odd integer.

5.3 Key Recovery for 23-Round TWINE-80

Step 1. As noted before, R = 23 and Rd = 14 for block cipher TWINE-80. The
original set is {((la, lb), Re), 0 ≤ Re ≤ 9}.

Step 2. After analyzing the encryption algorithm, the candidates are reduced
to S = {((la, lb), Re), 4 ≤ Re ≤ 5}.

Step 3. Only one element {((2, 9), 4)} is left in the optimal set O. The size of
the guessed keys is reduced from 76 bits to 60 bits.

Step 4. We use ((2, 9), 4) to give an attack on 23-round TWINE-80. By puting
these 14-round zero-correlation linear approximations in rounds 4 to 17, we can
attack TWINE-80 from round 0 to round 22. Similarly, we first express the two
target values and then guess the keys one nibble after another to reduce the
time complexity of partial computation. The nibble X2

4 is affected by 32 bits of
plaintext X0 and 28 bits of round keys and the expression can be shown as:

X2
4 = X12

0 ⊕ S(X15
0 ⊕ S(X14

0 ⊕K7
0 )⊕K7

1 )⊕ S(X7
0 ⊕ S(X6

0 ⊕K3
0)⊕

S(X0
0 ⊕ S(X3

0 ⊕ S(X2
0 ⊕K1

0)⊕K2
1 )⊕K6

2 )⊕K5
3 )

Similarly, the nibble X9
18 is affected by 48 bits of ciphertext X23 and 48 bits of

round keys:

X9
18 =X8

23 ⊕ S(X3
23 ⊕K3

22)⊕ S(X5
23 ⊕ S(X12

23 ⊕ S(X7
23 ⊕K2

22)⊕K0
21)⊕K1

20)⊕
S(X3

23 ⊕ S(X10
23 ⊕ S(X15

23 ⊕K6
22)⊕K4

21)⊕ S(X2
23 ⊕ S(X9

23 ⊕K5
22)⊕

S(X1
23 ⊕ S(X6

23 ⊕ S(X13
23 ⊕K4

22)⊕K5
21)⊕K7

20)⊕K6
19)⊕K4

18)

The following relations exist in the related round keys:

K5
3 ⇐⇒ K3

0 ,K
6
2 ⇐⇒ K1

0 ,K
0
21 ⇐⇒ K4

18 and K1
20 ⇐⇒ K6

22.

Assuming that N known plaintexts are used, the partial encryption and de-
cryption using the partial-compression technique are proceeded as in Table 3.
Finally, attackers compute the statistic Tk for every guessed k and do exhaus-
tive search for all right candidates. The process can be referred to that of LBlock.

Complexity. We also set α = 2−2.7, β = 2−9, then z1−α ≈ 1, z1−β ≈ 2.88. Since
n = 64 and l = 255, the data complexity N is about 262.1. The complexity of
partial computation is about 276 · 8 S-box access, which is about 276 · 8 · 1/8 ·
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Table 3. Partial encryption and decryption on 23-round TWINE-80

Step Guess Time Obtained States Size

K5
3(K

3
0 ), x1 = A|X15

0 |X14
0 |X8

23|X3
23|X5

23|X12
23 |

4.1 K6
2 (K

1
0),K

2
1 N ·212 ·5 X7

23|X10
23 |X15

23 |X2
23|X9

23|X1
23|X6

23|X13
23 260

x2 = A|X14
1 |X8

23|X3
23|X5

23|X12
23 |X7

23|X10
23 |

4.2 K7
0 260 · 216 X15

23 |X2
23|X9

23|X1
23|X6

23|X13
23 256

x3 = X2
4 |X8

23|X3
23|X5

23|X12
23 |X7

23|X10
23 |

4.3 K7
1 276 X15

23 |X2
23|X9

23|X1
23|X6

23|X13
23 252

4.4 K2
22 276 x4=X2

4 |X8
23|X3

23|X5
23|X5

22|X10
23 |X15

23 |X2
23|X9

23|X1
23|X6

23|X13
23 248

4.5 K0
21 276 x5 = X2

4 |X8
23|X3

23|X1
21|X10

23 |X15
23 |X2

23|X9
23|X1

23|X6
23|X13

23 244

4.6 K6
22(K

1
20) 276 · 2 x6 = X2

4 |B|X3
23|X13

22 |X2
23|X9

23|X1
23|X6

23|X13
23 236

4.7 K5
22 272 x7 = X2

4 |B|X3
23|X13

22 |X11
22 |X1

23|X6
23|X13

23 232

4.8 K4
22 272 x8 = X2

4 |B|X3
23|X13

22 |X11
22 |X1

23|X9
22 228

4.9 K5
21 272 x9 = X2

4 |B|X3
23|X13

22 |X11
22 |X11

21 224

4.10 K7
20 272 x10 = X2

4 |B|X3
23|X13

22 |X15
20 220

4.11 K3
22 272 x11 = X2

4 |X3
20|X3

23|X13
22 |X15

20 220

4.12 K4
21 276 x12 = X2

4 |X3
20|X9

21|X15
20 216

4.13 K6
19 276 x13 = X2

4 |X9
18 28

† A = X12
0 ⊕ S(X7

0 ⊕ S(X6
0 ⊕K3

0 )⊕ S(X0
0 ⊕ S(X3

0 ⊕ S(X2
0 ⊕K1

0 )⊕K2
1 )⊕K6

2 )⊕K5
3 )

† B = X8
23 ⊕ S(X1

21 ⊕K1
20)

1/23 ≈ 271.48 23-round TWINE-80 encryptions. The number of remaining key
candidates is about 280 ·β ≈ 271. Thus, the total time complexity is 271.48+271 ≈
272.15 23-round TWINE-80 encryptions. Meanwhile, the memory requirements
are about 260 bytes.

5.4 Key Recovery for 25-Round TWINE-128

Step 1. R = 25 and Rd = 14 for block cipher TWINE-128 and the original set
equals to {((la, lb), Re), 0 ≤ Re ≤ 11}.

Step 2. When encrypting 5 or 6 rounds, the number of guessed keys is mini-
mal(124 bits) and S = {((la, lb), Re), 5 ≤ Re ≤ 6}.

Step 3. After deleting the equivalent keys for every element in S, we find that
only the cases in O = {((la, lb), 5), ((l∗a, l∗b ), 6), la ∈ {0, 4, 12, 14}, lb = 9, l∗a ∈
{0, 4, 10, 14}, l∗b = 11}} needs to guess 112-bit keys.

Step 4. The distinguisher ((4, 9), 5) is chosen to attack 25-round TWINE-128.
Firstly, express X4

5 by using subkeys and plaintexts and X9
19 by using subkeys

and ciphertexts.
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X4
5 = X13

0 ⊕ S(X12
0 ⊕K6

0)⊕ S(X4
0 ⊕ S(X9

0 ⊕ S(X8
0 ⊕K4

0 )⊕K3
1)⊕K4

2 )⊕
S(X12

0 ⊕ S(X15
0 ⊕ S(X14

0 ⊕K7
0 )⊕K7

1 )⊕ S(X7
0 ⊕ S(X6

0 ⊕K3
0 )⊕ S(X0

0⊕
S(X3

0 ⊕ S(X2
0 ⊕K1

0)⊕K2
1 )⊕K6

2)⊕K5
3 )⊕K1

4)

X9
19 = X13

25 ⊕ S(X4
25 ⊕ S(X1

25 ⊕K1
24)⊕K3

23)⊕ S(X12
25 ⊕ S(X7

25 ⊕K2
24)⊕

S(X15
25 ⊕ S(X8

25 ⊕ S(X3
25 ⊕K3

24)⊕K2
23)⊕K0

22)⊕K1
21)⊕

S(X4
25 ⊕ S(X1

25 ⊕K1
24)⊕ S(X9

25 ⊕ S(X14
25 ⊕ S(X11

25 ⊕K7
24)⊕K6

23)⊕K4
22)⊕

S(X1
25 ⊕ S(X6

25 ⊕ S(X13
25 ⊕K4

24)⊕K5
23)⊕ S(X0

25 ⊕ S(X5
25 ⊕K0

24)⊕
S(X3

25 ⊕ S(X10
25 ⊕ S(X15

25 ⊕K6
24)⊕K4

23)⊕K5
22)⊕K7

21)⊕K6
20)⊕K4

19)

Meanwhile, the following equivalent relations exist in the related round keys
of TWINE-128:

K1
4 ⇐⇒ K3

1 ,K
2
24 ⇐⇒ K6

20 and K6
24|K7

24 ⇒ K4
19.

The partial encryption and decryption are similarly proceeded as in Table 4.

Table 4. Partial encryption and decryption on 25-round TWINE-128

Step Guess Time Obtained States Size

K0−4,6,7
24 ,K4,5

22 , x1 = A|X5
23|X0

23|X15
0 |X14

0 |X13
0 |X12

0 |
4.1 K2−6

23 ,K7
21 N·260· 17 X9

0 |X8
0 |X7

0 |X6
0 |X4

0 |X3
0 |X2

0 |X0
0 260

x2 = A|X1
22|X15

0 |X14
0 |X13

0 |X12
0 |X9

0 |
4.2 K0

22 2124 X8
0 |X7

0 |X6
0 |X4

0 |X3
0 |X2

0 |X0
0 256

x3 = X9
19|X15

0 |X14
0 |X13

0 |X12
0 |X9

0 |
4.3 K1

21 2124 X8
0 |X7

0 |X6
0 |X4

0 |X3
0 |X2

0 |X0
0 252

4.4 K4
0 2124 x4 = X9

19|X15
0 |X14

0 |X13
0 |X12

0 |X6
1 |X7

0 |X6
0 |X4

0 |X3
0 |X2

0 |X0
0 248

4.5 K3
1 2124 x5 = X9

19|X15
0 |X14

0 |X13
0 |X12

0 |X8
2 |X7

0 |X6
0 |X3

0 |X2
0 |X0

0 244

4.6 K7
0 2124 x6 = X9

19|X14
1 |X13

0 |X12
0 |X8

2 |X7
0 |X6

0 |X3
0 |X2

0 |X0
0 240

4.7 K3
0 2124 x7 = X9

19|X14
1 |X13

0 |X12
0 |X8

2 |X8
1 |X3

0 |X2
0 |X0

0 236

4.8 K1
0 2124 x8 = X9

19|X14
1 |X13

0 |X12
0 |X8

2 |X8
1 |X4

1 |X0
0 232

4.9 K2
1 2124 x9 = X9

19|X14
1 |X13

0 |X12
0 |X8

2 |X8
1 |X12

2 228

4.10 K6
2 2124 x10 = X9

19|X14
1 |X13

0 |X12
0 |X8

2 |X10
3 224

4.11 K4
2 2124 x11 = X9

19|B|X14
1 |X12

0 |X10
3 220

4.12 K7
1 ,K

5
3 2128 · 3 x12 = X9

19|C|X12
0 212

4.13 K6
0 2124 x13 = X9

19|X4
5 28

† A = X7
23⊕S(X6

23⊕S(X13
23⊕K4

22)⊕S(X11
23⊕S(X2

23⊕S(X9
23⊕K5

22)⊕K7
21)⊕K6

20)⊕K4
19)

† B = X13
0 ⊕ S(X8

2 ⊕K4
2 )

† C = B ⊕ S(X12
0 ⊕ S(X14

1 ⊕K7
1 )⊕ S(X10

3 ⊕K5
3 )⊕K1

4 )

Complexity. We set α = 2−2.7, β = 2−9, then z1−α ≈ 1, z1−β ≈ 2.88. Since
n = 64 and l = 255, then according to equation 2, the data complexity N is
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also about 262.1. The total time complexity is 2121.95 + 2119 ≈ 2122.12 25-round
TWINE-128 encryptions and the memory requirements are about 260 bytes to
store counter in Step 4.1.

6 Conclusion

In this paper, we first present an improved model of multidimensional zero-
correlation linear cryptanalysis by taking the key schedule algorithm into con-
sideration. Besides, partial-compression technique is used to reduce the time
complexity, which is similar to the partial-sum technique of integral attack.
In order to illustrate the improved attack model, we evaluate the security of
LBlock and TWINE block cipher against zero-correlation linear cryptanalysis.
Based on 14-round zero-correlation distinguishers, we presented attacks on 23-
round LBlock, 23-round TWINE-80 and 25-round TWINE-128. In terms of the
number of attacked rounds, the result on LBlock is better than any previously
published results in the single key model up to now. While the previous attack on
TWINE-80 and TWINE-128, which can break the same number of rounds, uses
chosen plaintexts, our attacks assume only the known plaintexts and the attack
on TWINE-80 is of the less time complexity and memory. As discussed above,
we conclude that the diffusion of the key schedule algorithms influence the secu-
rity of block ciphers against zero-correlation linear cryptanalysis. Moreover, the
results reveal a criterion of designing the key schedule algorithm. Specifically,
designers should avoid equivalent subkeys when partly encrypting or decrypting
ciphers to obtain a single nibble.
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supported by the National Basic ResearchProgramof China (No. 2013CB338002)
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