
Willy Susilo
Yi Mu (Eds.)

 123

LN
CS

 8
54

4

19th Australasian Conference, ACISP 2014
Wollongong, NSW, Australia, July 7–9, 2014
Proceedings

Information Security
and Privacy



Lecture Notes in Computer Science 8544
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany



Willy Susilo Yi Mu (Eds.)

Information Security
and Privacy

19th Australasian Conference, ACISP 2014
Wollongong, NSW, Australia, July 7-9, 2014
Proceedings

13



Volume Editors

Willy Susilo
University of Wollongong
Centre for Computer and Information Security Research
School of Computer Science and Software Engineering
Northfields Avenue
Wollongong, NSW 2522, Australia
E-mail: wsusilo@uow.edu.au

Yi Mu
University of Wollongong
Centre for Computer and Information Security Research
School of Computer Science and Software Engineering
Northfields Avenue
Wollongong, NSW 2522, Australia
E-mail: ymu@uow.edu.au

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-08343-8 e-ISBN 978-3-319-08344-5
DOI 10.1007/978-3-319-08344-5
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014941281

LNCS Sublibrary: SL 4 – Security and Cryptology

© Springer International Publishing Switzerland 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

The 19th Australasian Conference on Information Security and Privacy (ACISP
2014) was held at Wollongong, Australia, during July 7–9, 2014. The conference
was sponsored by the Centre for Computer and Information Security of the
University of Wollongong. The submission and review process was conducted
with Easychair.

There were 91 submissions. Each submission was reviewed by at least 3 Pro-
gram Committee members. The Program Committee selected 26 full papers and
6 short papers for presentation at the conference after a rigorous review pro-
cess and thorough discussion. These papers are included in the proceedings. The
accepted papers cover a range of topics in information security, including crypto-
graphic protocols, cryptanalysis, key exchange protocols, cryptographic theories,
lattices and homomorphic encryption, and cryptographic applications.

The conference proceedings contain revised versions of the selected papers.
Since some of them were not checked again for correctness prior to the publi-
cation, the authors bear full responsibility for the contents of their papers. We
would like to thank the authors of all papers for submitting their papers to the
conference.

In addition to the contributed papers, the program comprised two invited
talks. The invited speakers were Tatsuaki Okamoto (NTT Laboratory, Japan)
with the topic on “Oblivious Functional Search” and Giuseppe Ateniese
(Sapienza, Università di Roma) with the topic on “Cloud Storage in the Bit-
coin Era”. We would like to express our thanks to them.

As in previous years, the Program Committee selected a “best student pa-
per”. To be eligible for selection, a paper has to be co-authored by a postgrad-
uate student, whose contribution was more than 50%. The winner was Liang
Liu from Xidian University, Xi’an, China for the paper “A Secure Three-Party
Computational Protocol for Triangle Area”.

We would like to thank all the people who helped with the conference pro-
gram and organization. In particular, we heartily thank the Program Committee
and the sub-reviewers listed on the following pages for the effort and time they
contributed to the review process. We would also like to express our thanks to
Springer for continuing to support the ACISP conference and for help in the
conference proceedings production.

Finally, we would like to thank the general chair, Jennifer Seberry, and the
Organizing Committee for their excellent contribution to the conference.

July 2014 Willy Susilo
Yi Mu



Organization

Program Chairs

Willy Susilo University of Wollongong, Australia
Yi Mu University of Wollongong, Australia

General Chair

Jennifer Seberry University of Wollongong, Australia

Program Committee

Man Ho Au University of Wollongong, Australia
Joonsang Baek Khalifa University of Science, United

Arab Emirates
Lynn Batten Deakin University, Australia
Alex Biryukov University of Luxembourg, Luxembourg
Ioana Boureanu EPFL Lausanne, Switzerland
Xavier Boyen Queensland University of Technology, Australia
Serdar Boztas RMIT University, Australia
Liqun Chen Hewlett-Packard Laboratories, UK
Xiaofeng Chen Xidian University, China
Kim-Kwang Raymond Choo University of South Australia, Australia
Nicolas Courtois UCL, UK
Ed Dawson Queensland University of Technology, Australia
Qiong Huang South China Agricultural University, China
Xinyi Huang Fujian Normal University, China
Xuejia Lai Shanghai Jiaotong University, China
Jin Li Guangzhou University, China
Dongdai Lin Chinese Academy of Sciences,

China
Joseph Liu Institute for infocomm research, Singapore
Chris Mitchell Royal Holloway, University of London,

UK
Atsuko Miyaji Japan Advanced Institute of Science and

Technology, Japan
Tatsuaki Okamoto NTT, Japan
Udaya Parampalli The University of Melbourne, Australia
Josef Pieprzyk Macquarie University, Australia
Reza Reyhanitabar EPFL Lausanne, Switzerland



VIII Organization

Rei Safavi-Naini University of Calgary, Canada
Pierangela Samarati Università degli Studi di Milano, Italy
Palash Sarkar Indian Statistical Institute, India
Douglas Stebila Queensland University of Technology, Australia
Damien Stehle CNRS, France
Ron Steinfeld Monash University, Australia
Douglas Stinson David R. Cheriton School of Computer Science,

Canada
Tsuyoshi Takagi Kyushu University, Japan
Huaxiong Wang Nanyang Technological University, Singapore
Duncan Wong City University of Hong Kong, Hong Kong
Hongjun Wu Nanyang Technological University, Singapore
Qianhong Wu Wuhan University, China
Guomin Yang University of Wollongong, Australia
Kan Yasuda NTT Corporation, Japan
Xun Yi Victoria University, Australia
Jianying Zhou Institute for infocomm research, Singapore

Publication Chairs

Man Ho Au University of Wollongong, Australia
Yong Yu University of Wollongong, Australia

Local Organization Committee

Fuchun Guo University of Wollongong, Australia
Thomas Plantard University of Wollongong, Australia

External Reviewers

Aoki, Kazumaro
Askari, Mina
Bartlett, Harry
Bay, Asli
Boyd, Colin
Chen, Jiageng
Chen, Jie
Chun, Guo
Dalkilic, Gokhan
Deng, Hua
Deng, Yi
Derbez, Patrick
Duc, Alexandre
El Kaafarani, Ali
Foresti, Sara

Futa, Yuichi
Gong, Zheng
Gong, Zhong
Guo, Yanfei
Henricksen, Matt
Huang, Jialin
Huang, Tao
Ishiguro, Tsukasa
Jhawar, Mahavir
Jiang, Tao
Khovratovich, Dmitry
Kojima, Tetsuya
Le Corre, Yann
Lee, Peter Hyun-Jeen
Li, Wei

Liang, Kaitai
Libert, Benoit
Lin, Changlu
Liu, Liang
Liu, Weiran
Liu, Zhen
Livraga, Giovanni
Lu, Yao
Luo, Yiyuan
Ma, Jiangang
Ma, Sha
Mandal, Kalikinkar
Martini, Ben
Meng, Weizhi
Morozov, Kirill



Organization IX

Mouha, Nicky
Nguyen, Khoa
Omote, Kazumasa
Paulet, Russell
Pelosi, Gerardo
Perret, Ludovic
Perrin, Leo Paul
Pustogarov, Ivan
Quang Dinh, Trung
Radke, Kenneth
Rahman, Sk Md Mizanur
Renault, Guenael
Roy, Arnab
Sasaki, Yu
Schmidt, Desmond
Smith, Ben

Su, Chunhua
Sun, Li
Susil, Petr
Tan, Xiao
Tao, Huang
Tibouchi, Mehdi
Tso, Raylin
Upadhyay, Jalaj
Vadnala, Praveen Kumar
Velichkov, Vesselin
Vizár, Damian
Wang, Jianfeng
Wang, Wenhao
Wang, Yujue
Wei, Lei
Welch, Ian

Wong, Kenneth
Wu, Wei
Xie, Xiang
Xu, Hong
Xue, Weijia
Yang, Anjia
Yang, Yanjiang
Zhang, Hui
Zhang, Huiling
Zhang, Jiang
Zhang, Liang Feng
Zhang, Shiwei
Zhang, Yinghui
Zhao, Xingwen



Table of Contents

Cryptanalysis

Improved Multidimensional Zero-Correlation Linear Cryptanalysis and
Applications to LBlock and TWINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Yanfeng Wang and Wenling Wu

Differential and Impossible Differential Related-Key Attacks on
Hierocrypt-L1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Bungo Taga, Shiho Moriai, and Kazumaro Aoki

Some Insights into Differential Cryptanalysis of Grain v1 . . . . . . . . . . . . . . 34
Subhadeep Banik

On Selection of Samples in Algebraic Attacks and a New Technique to
Find Hidden Low Degree Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Petr Sušil, Pouyan Sepehrdad, and Serge Vaudenay

Cryptographic Protocols

Strongly Simulation-Extractable Leakage-Resilient NIZK . . . . . . . . . . . . . . 66
Yuyu Wang and Keisuke Tanaka

A Secure Three-Party Computational Protocol for Triangle Area . . . . . . . 82
Liang Liu, Xiaofeng Chen, and Wenjing Lou

Universally Composable Efficient Priced Oblivious Transfer from a
Flexible Membership Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

TMDS: Thin-Model Data Sharing Scheme Supporting Keyword Search
in Cloud Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Zheli Liu, Jin Li, Xiaofeng Chen, Jun Yang, and Chunfu Jia

Cryptanalysis

Low Data Complexity Inversion Attacks on Stream Ciphers via
Truncated Compressed Preimage Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Xiao Zhong, Mingsheng Wang, Bin Zhang, and Shengbao Wu



XII Table of Contents

A New Attack against the Selvi-Vivek-Rangan Deterministic Identity
Based Signature Scheme from ACISP 2012 . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Yanbin Pan and Yingpu Deng

Further Research on N-1 Attack against Exponentiation Algorithms . . . . 162
Zhaojing Ding, Wei Guo, Liangjian Su, Jizeng Wei, and Haihua Gu

Cryptanalysis of RSA with Multiple Small Secret Exponents . . . . . . . . . . 176
Atsushi Takayasu and Noboru Kunihiro

Fine-grain Cryptographic Protocols

New Model and Construction of ABE: Achieving Key Resilient-Leakage
and Attribute Direct-Revocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

Mingwu Zhang

Expressive Bandwidth-Efficient Attribute Based Signature and
Signcryption in Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

Y. Sreenivasa Rao and Ratna Dutta

Incrementally Executable Signcryptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
Dan Yamamoto, Hisayoshi Sato, and Yasuko Fukuzawa

Hierarchical Identity-Based Broadcast Encryption . . . . . . . . . . . . . . . . . . . . 242
Weiran Liu, Jianwei Liu, Qianhong Wu, and Bo Qin

Key Exchange

Continuous After-the-Fact Leakage-Resilient Key Exchange . . . . . . . . . . . 258
Janaka Alawatugoda, Colin Boyd, and Douglas Stebila

Sakai-Ohgishi-Kasahara Identity-Based Non-Interactive Key Exchange
Scheme, Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

Yu Chen, Qiong Huang, and Zongyang Zhang

Fundamentals

On the Impossibility of Proving Security of Strong-RSA Signatures via
the RSA Assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

Masayuki Fukumitsu, Shingo Hasegawa, Shuji Isobe, and
Hiroki Shizuya

ELmE : A Misuse Resistant Parallel Authenticated Encryption . . . . . . . . . 306
Nilanjan Datta and Mridul Nandi



Table of Contents XIII

Lattices and Homomorphic Encryption

Lattice Decoding Attacks on Binary LWE . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
Shi Bai and Steven D. Galbraith

Privacy-Preserving Wildcards Pattern Matching Using Symmetric
Somewhat Homomorphic Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

Masaya Yasuda, Takeshi Shimoyama, Jun Kogure,
Kazuhiro Yokoyama, and Takeshi Koshiba

Applications

Once Root Always a Threat: Analyzing the Security Threats of Android
Permission System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354

Zhongwen Zhang, Yuewu Wang, Jiwu Jing, Qiongxiao Wang, and
Lingguang Lei

A High-Throughput Unrolled ZUC Core for 100Gbps Data
Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370

Qinglong Zhang, Zongbin Liu, Miao Li, Ji Xiang, and Jiwu Jing

Another Look at Privacy Threats in 3G Mobile Telephony . . . . . . . . . . . . 386
Mohammed Shafiul Alam Khan and Chris J. Mitchell

ExBLACR: Extending BLACR System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
Weijin Wang, Dengguo Feng, Yu Qin, Jianxiong Shao, Li Xi, and
Xiaobo Chu

Short Papers

A Semantics-Aware Classification Approach for Data Leakage
Prevention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413

Sultan Alneyadi, Elankayer Sithirasenan, and Vallipuram
Muthukkumarasamy

Route 66: Passively Breaking All GSM Channels . . . . . . . . . . . . . . . . . . . . . 422
Philip S. Vejre and Andrey Bogdanov

An Analysis of Tracking Settings in Blackberry 10 and Windows Phone
8 Smartphones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430

Yogachandran Rahulamathavan, Veelasha Moonsamy, Lynn Batten,
Su Shunliang, and Muttukrishnan Rajarajan

Running Multiple Androids on One ARM Platform . . . . . . . . . . . . . . . . . . 438
Zhijiao Zhang, Lei Zhang, Yu Chen, and Yuanchun Shi



XIV Table of Contents

CoChecker: Detecting Capability and Sensitive Data Leaks from
Component Chains in Android . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446

Xingmin Cui, Da Yu, Patrick Chan, Lucas C.K. Hui,
S.M. Yiu, and Sihan Qing

Integral Zero-Correlation Distinguisher for ARX Block Cipher, with
Application to SHACAL-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454

Long Wen and Meiqin Wang

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463



Improved Multidimensional Zero-Correlation

Linear Cryptanalysis and Applications
to LBlock and TWINE

Yanfeng Wang1,3 and Wenling Wu1,2

1 Trusted Computing and Information Assurance Laboratory, Institute of Software,
Chinese Academy of Sciences, Beijing 100190, P.R. China

2 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing 100190, P.R. China

3 Graduate University of Chinese Academy of Sciences, Beijing 100049, P.R. China
{wwl,wangyanfeng}@tca.iscas.ac.cn

Abstract. Zero-correlation linear cryptanalysis is a new method based
on the linear approximations with correlation zero. In this paper, we pro-
pose a new model of multidimensional zero-correlation linear cryptanal-
ysis by taking the equivalent relations of round keys into consideration.
The improved attack model first finds out all the longest multidimensional
zero-correlation linear distinguishers, then regards the distinguishers with
the least independent guessed keys as the optimal distinguishers and fi-
nally chooses one optimal distinguisher to recover the secret key of cipher
by using the partial-compression technique. Based on the improved at-
tack model, we extend the original 22-round zero-correlation linear attack
on LBlock and first evaluate the security of TWINE against the
zero-correlation linear cryptanalysis. There are at least 8×8 classes of mul-
tidimensional zero-correlation linear distinguishers for 14-round LBlock
and TWINE. After determining the corresponding optimal distinguisher,
we carefully choose the order of guessing keys and guess each subkey nib-
ble one after another to achieve an attack on 23-round LBlock, an attack
on 23-round TWINE-80 and another attack on 25-round TWINE-128. As
far as we know, these results are the currently best results on LBlock and
TWINE in the single key scenario except the optimized brute force attack.

Keywords: lightweight block cipher, LBlock, TWINE,multidimensional
zero-correlation linear cryptanalysis, partial-compression.

1 Introduction

Zero-correlation cryptanalysis[1] is a novel promising attack technique for block
ciphers. The distinguishing property used in zero-correlation cryptanalysis is
the existence of zero-correlation linear hulls over a part of the cipher. Those
linear approximations hold true with probability p equal to 1/2 and correlation
c = 2p − 1 equal to 0. The original scheme had the disadvantage of requiring
almost the full codebook of data. Bogdanov et.al proposed a framework which

W. Susilo and Y. Mu (Eds.): ACISP 2014, LNCS 8544, pp. 1–16, 2014.
c© Springer International Publishing Switzerland 2014



2 Y. Wang and W. Wu

uses several independent zero-correlation linear approximations to reduce data
complexity[2]. In a follow-up work at ASIACRYPT’12[3], a multidimensional dis-
tinguisher has been constructed for the zero-correlation property, which removed
the unnecessary independency assumptions on the distinguishers.

With the development of communication and electronic applications, the
limited-resource devices such as RFID tags and sensor nodes have been used
in many aspects of our life. Traditional block cipher is not suitable for this ex-
tremely constrained environment. Therefore, research on designing and analyzing
lightweight block ciphers has become a hot topic. Recently, several lightweight
block ciphers have been proposed, such as PRESENT[4], LED[5], Piccolo[6],
LBlock[7], TWINE[8], etc. To reduce the cost of hardware and to decrease key
set-up time, the key schedules of the lightweight ciphers are rather simple. As is
known to us, the diffusion of the key schedule plays an important role on the se-
curity of the block cipher. In contrast to the serious effort spent on the algorithm
design, the aspect of key schedules for block ciphers has attracted comparatively
little attention.

In order to take advantage of the simple key schedule algorithm, we introduce
an improved model of multidimensional zero-correlation linear cryptanalysis in
this paper. In the previous basic attack, the adversary partly encrypts the plain-
texts and decrypts the ciphertexts to obtain the values of the corresponding
positions determined by the zero-correlation distinguisher. During the above
process, attackers need to guess internal subkeys and the sizes of guessed keys
are various for different zero-correlation distinguishers. In the improved attack
model, we first compute the number of guessed round keys for all possible longest
zero-correlation distinguishers and choose the one with least guessed key as the
optimal distinguisher. After determining the optimal distinguisher, we finally re-
duce the complexity of the partial computation by guessing each subkey nibble
one after another, which is called partial-compression technique.

To demonstrate the practical impact of our attack model, we apply the im-
proved multidimensional zero-correlation linear attack model to LBlock and
TWINE. The attacked round of LBlock against zero-correlation linear crypt-
analysis is improved from 22-round to 23-round. As shown in [9], there are 8× 8
different classes of zero-correlation linear hulls for 14-round LBlock. We evaluate
the sizes of guessed keys for all classes of distinguishers and choose one distin-
guisher with least independent to attack 23-round LBlock. It cost a time com-
plexity of 276 23-round LBlock encryptions. Similarly, we also apply the above
multidimensional zero-correlation linear cryptanalysis to TWINE block cipher.
We first find 8 × 8 different classes of zero-correlation linear hulls for 14-round
TWINE. Then, two different zero-correlation linear distinguishers are chosen for
TWINE-80 and TWINE-128 because of their different key schedule algorithms.
Based on zero-correlation approximations with dimension 8, we carefully apply
the partial-compression technique to present an attack on 23-round TWINE-80
and 25-round TWINE-128. Table 1 outlines the results and compares the results
with previous attacks under the single-key model. The security of full-round
LBlock and TWINE have been evaluated by biclique cryptanalysis[10,11] but



Improved Multidimensional Zero-Correlation Linear Cryptanalysis 3

the biclique cryptanalysis can be regarded as an optimization of brute-force at-
tack. In this paper, we do not discuss such an optimized brute-force attack with
a small advantage of a constant factor.

Table 1. Comparisons of Cryptanalysis Results on LBlock and TWINE

Ciphers Round Data Time Memory Attacks Source

LBlock 22 261 CP 270 263 Integral [12]

LBlock 22 258 CP 279.28 268 Impossible Differential [13]

LBlock 22 262.1 KP 271.27 264 Zero-Correlation Linear [9]

LBlock 23 262.1 KP 276 260 Zero-Correlation Linear Sec.4

TWINE-80 22 262 CP 268.43 268.43 Saturation [8]

TWINE-80 23 261.39 CP 276.88 276.88 Impossible Differential [8]

TWINE-80 23 262.1 KP 272.15 260 Zero-Correlation Linear Sec.5.1

TWINE-128 23 262.81 CP 2106.14 2106.14 Saturation [8]

TWINE-128 24 252.21CP 2115.10 2115.10 Impossible Differential [8]

TWINE-128 25 248CP 2122 2125 Multid Meet-in-the-Middle [14]

TWINE-128 25 262.1KP 2122.12 260 Zero-Correlation Linear Sec.5.2

† CP: Chosen Plaintexts, † KP: Known Plaintexts † Multid: Multidimensional

The remainder of this paper is organized as follows. Section 2 presents the
general structure of previous multidimensional zero-correlation cryptanalysis.
Section 3 proposes the improved model of multidimensional zero-correlation
linear cryptanalysis. Section 4 applies the improved zero-correlation linear crypt-
analysis to 23-round LBlock. Section 5 shows the key recovery attacks on
23-round TWINE-80 and 25-round TWINE-128. Finally, Section 6 concludes
this paper.

2 Notations and Preliminaries

In this section, we introduce the definition of zero-correlation linear
approximation[1] and the previous basic methods of multidimensional zero-
correlation cryptanalysis.

2.1 Zero-Correlation Linear Approximations

Consider an n-bit block cipher f and let the input of the function be x ∈ Fn
2 .

A linear approximation (u, v) with an input mask u and an output mask v has
probability

p(u, v) = Prx∈Fn
2
(u · x⊕ v · f(x) = 0).

The value cf (u, v) = 2p(u, v)−1 is called the correlation of linear approximation
(u, v). Note that p(u, v) = 1/2 is equivalent to zero correlation cf (u, v) = 0.



4 Y. Wang and W. Wu

Zero-correlation linear cryptanalysis uses linear approximations that the cor-
relations are equal to zero for all keys. The round function of ciphers often makes
use of three basic operations: XOR operation, branching operation and a per-
mutation S-box. Linear approximations over these operations obey three major
rules(see also [15]):

Lemma 1 (XOR operation): Either the three linear masks at an XOR ⊕ are
equal or the correlation over ⊕ is exactly zero.

Lemma 2 (Branching operation): Either the three linear masks at a branching
point • sum up to 0 or the correlation over • is exactly zero.

Lemma 3 (S-box permutation): Over an S-box S, if the input and output masks
are neither both zero nor both nonzero, the correlation over S is exactly zero.

In order to find the longest zero-correlation linear approximations, several
methods are proposed to find the linear hull with zero-correlation. The matrix
method are proposed in [9] by using the miss-in-the-middle technique to establish
zero-correlation linear approximations. Given a distinguisher of zero-correlation
linear approximation over a part of the cipher, the basic key recovery can be
done with a technique similar to that of Matsui’s Algorithm 2[15], partially
encrypting/decrypting from the plaintext/ciphertext up to the boundaries of the
property. This is the key recovery approach used in all zero-correlation attacks
so far. In this paper, we aim to improve upon this by exploiting the weakness
of the key schedule algorithm and using the partial-compression technique to
reduce the computational complexity of attacks.

2.2 Multidimensional Zero-Correlation Linear Cryptanalysis

For most ciphers, a large number of zero-correlation approximations are avail-
able. To remove the statistical independence for multiple zero-correlation linear
approximations, the zero-correlation linear approximations available are treated
as a linear space spanned by m different zero-correlation linear approxima-
tions such that all l = 2m − 1 non-zero linear combinations of them have zero
correlation[3]. Given m linear approximations

⊇ui, x〉+ ⊇wi, y〉, i = 1, ...,m

where x and y are some parts of data in encryption process, one obtains an
m-tuples z by evaluating the m linear approximations for a plaintext-ciphertext
pair

z = (z1, ..., zm), zi = ⊇ui, x〉+ ⊇wi, y〉.
For each z ∈ F

m
2 , the attacker allocates a counter V [z] and initializes it to value

zero. Then for each distinct plaintext, the attacker computes the corresponding
data in F

m
2 and increments the counter V [z] of this data value by one. Then the

attacker computes the statistic T :

T =

2m−1∑

z=0

(V [z]−N2−m)
2

N2−m(1− 2−m)
=

N · 2m
(1− 2−m)

2m−1∑

z=0

(
V [z]

N
− 1

2m
)
2

. (1)



Improved Multidimensional Zero-Correlation Linear Cryptanalysis 5

The statistic T for the right key guess follows a χ2-distribution with mean
μ0 = l 2

n−N
2n−1 and variance σ2

0 = 2l(2
n−N
2n−1 ), while for the wrong key guess it follows

a χ2-distribution with mean μ1 = l and variance σ2
1 = 2l.

In order to show the relationships between data complexity and success prob-
ability, we first denote the type-I error probability ( the probability to wrongfully
discard the right key) with α and the type-II error probability ( the probability
to wrongfully accept a random key as the right key) with β. We consider the
decision threshold τ = μ0 + σ0z1−α = μ1 + σ1z1−β, then the number of known
plaintexts N should be about

N =
2n(z1−α + z1−β)√

l/2− z1−β

, (2)

where zp = Φ−1(p) for 0 < p < 1 and Φ is the cumulative function of the
standard normal distribution.

3 Improved Multidimensional Zero-Correlation Linear
Cryptanalysis

In contrast to the serious effort spent on the algorithm design, the aspect of key
schedules for block ciphers has attracted comparatively little attention. In this
section, we give an improved model of multidimensional zero-correlation linear
cryptanalysis by taking advantage of the weakness of key schedule algorithms.

Having the zero-correlation linear distinguisher, the adversary partly encrypts
the plaintexts and decrypts the ciphertexts to obtain the values of the corre-
sponding positions determined by the distinguisher. Attackers need to guess
internal subkeys during the above process. As mentioned above, a large number
of zero-correlation hulls are available for a single block cipher. Moreover, the
sizes of guessed keys can vary for different key schedule algorithms and differ-
ent classes of zero-correlation distinguishers. Thus, the choice and position of
the zero-correlation linear hull will influence the result of security evaluation. In
order to obtain a better attack on the target cipher, we present an improved
model of multidimensional zero-correlation linear cryptanalysis.

Specifically, the following steps are processed to reduce the time complexity
of attacks on some R-round block cipher.

1. Find all the longest multidimensional zero-correlation linear distinguishers
by using the matrix method or other properties of encryption algorithm. We
denote the number of different distinguishers by n and the round number of
that by Rd. Obviously, we assume that Rd is always smaller than R.

2. Put the Rd-round distinguisher in the middle of the cipher and calculate the
number of related round keys during the process of the partial computation.
(a) The set of possible cases are noted with {(i, Re), 0 ≤ i < n, 0 ≤ Re ≤

R−Rd} and the pairs are sorted according to the number of related round
keys. In each pair, the parameter i means the indexed number of differ-
ent distinguishers and Re means the round number of partial encryption.



6 Y. Wang and W. Wu

Meanwhile, the corresponding round number of partial decryption is
R−Rd−Re. Thus, different elements in the set represent different attack
schemes.

(b) Save the pairs (i, Re) with least number of keys in a set S.
The above process is determined by the diffusion of the encryption algorithm
and has no relation with the key schedule algorithm.

3. Minimize the set S to an optimal set O by taking the key schedule algo-
rithm into consideration. Having known the position of the corresponding
distinguisher, we can determine the realistic round keys for every pair in
S. Furthermore, the equivalent relations in round keys can be obtained by
carefully analyzing the key schedule algorithm.
(a) For each element in S, update the number of related keys with the num-

ber of independent guessed keys.
(b) Sort S again and only save the pairs with least guessed keys to O.

4. Choose an arbitrary pair from O to recover the secret key of the R-round
cipher. Assume that the dimensional number of the distinguisher is m.
(a) Allocate a counter V [z] for m-bit z. The vector z is the concatenation

of evaluations of m zero-correlation linear approximations.
(b) Update the counter V [z] by guessing subkeys nibble one after another

by using the partial-compression technique.

(c) For each guessing key k, compute Tk = N ·2m
(1−2−m)

2m−1∑
z=0

(V [z]
N − 1

2m )
2
.

(d) If Tk < τ , then the guessed subkey values are possible right subkey
candidates.

(e) Do exhaustive search for all right candidates.

In the following sections, these new improvements will be illustrated with
applications to block ciphers LBlock and TWINE.

4 Application to LBlock

In this section, we will evaluate the security of LBlock against multidimensional
zero-correlation linear cryptanalysis by using the above improved model and give
an attack on 23-round LBlock. We first give a brief description of LBlock and
then show the properties of zero-correlation linear distinguishers for 14-round
LBlock. Finally, a key recovery attack on 23-round LBlock is given.

4.1 A Brief Description of LBlock

Encryption Algorithm. The general structure of LBlock is a variant of Feistel
Network, which is depicted in Figure 1. The number of iterative rounds is 32.
The round function of LBlock includes three basic functions: AddRoundKey
AK, confusion function S and diffusion function P . The confusion function S
consists of eight 4× 4 S-boxes in parallel. The diffusion function P is defined as
a permutation of eight 4-bit words.



Improved Multidimensional Zero-Correlation Linear Cryptanalysis 7

AK 8S

rX
rK

P

1rX

Fig. 1. Round function of LBlock block cipher

Key Schedule Algorithm. To reduce the cost of hardware and to decrease
key set-up time, the key schedule of LBlock is rather simple. The 80-bit master
key MK is stored in a key register and represented as MK = k0k1...k79. At
round i, the leftmost 32 bits of current contents of register MK are output as
the round key Ki, i.e.,Ki = k0k1...k31. The key schedule of LBlock can be shown
as follows:

1. K0 =MK[0− 31]
2. For i ← 1 to 31

(a) MK = MK <<< 29
(b) MK[0− 3] = s9(MK[0− 3])

MK[4− 7] = s8(MK[4− 7])
(c) MK[29− 33] = MK[29− 33]⊕ [i]2
(d) Ki = MK[0− 31]

4.2 Zero-Correlation Linear Approximations of 14-Round LBlock

If an incompatible pair of linear masks can be shown for each linear trail in a
linear hull, the correlation of the linear hull is zero. As studied in [9], there are
8 × 8 different classes of zero-correlation linear hulls for 14-round LBlock and
the characteristics can be summarized as the following property:

Property 1. For 14-round LBlock, if the input mask a of the first round locates
at the left branch and the output mask b of the last round locates in the right
branch, then the correlation of the linear approximation is zero, where a, b ∈ F 4

2 ,
a ∅= 0 and b ∅= 0.

To distinguish the 64 different zero-correlation hulls, we express them with
two integers as (la, lb), where 0 ≤ la ≤ 7 and 8 ≤ lb ≤ 15.

4.3 Key Recovery for 23-Round LBlock

In order to attack 23-round LBlock, we follows the improved attack model of
multidimensional zero-correlation cryptanalysis.



8 Y. Wang and W. Wu

Step 1. As noted before, R = 23 and Rd = 14 for block cipher LBlock. We need
to choose a distinguisher from the set {((la, lb), Re), 0 ≤ Re ≤ 9}.

Step 2. After calculating the number of related keys, the original set is reduced
to S = {((la, lb), Re), 4 ≤ Re ≤ 5}.

Step 3. For every element in S, compute the least number of guessed keys. The
least number of guessed keys is 63. Meanwhile, only four choices are left in the
optimal set and O = {((1, 14), 4), ((2, 14), 4), ((3, 14), 4), ((6, 14), 4)}.

Step 4. Finally, we select ((1, 14), 4) to give an attack on 23-round LBlock.
Because Re = 4, we put the 14-round zero-correlation linear hull in rounds 4 to
17 and attack LBlock from round 0 to round 22 (Figure 2).

AK 8S

0X

P

AK 8S

1X

P

AK 8S

2X

P

AK 8S

3X
3K

P

4X

2K

1K

0K
AK 8S

18X

P

AK 8S

19X

P

AK 8S
20X

P

AK 8S

21X

P

18K

19K

20K

21K

AK 8S
22X

P

23X

22K

18X zero-correlation linear hull of 14-round

Fig. 2. Attack on 23-Round LBlock

After collecting sufficient plaintext-ciphertext pairs, we guess corresponding
subkeys for the first four rounds and the last five rounds to estimate the statistic
T . If we directly guess the subkeys bits involved in the key recovery process,
then the time complexity will be greater than exhaustive search. Therefore, in
order to reduce the time complexity, we first express the two target values by
using the related round keys and plaintexts or ciphertexts, then use the partial-
compression technique to reduce the time complexity significantly.

As shown in Figure 2, the nibble X1
4 is affected by 32 bits of plaintext X0 and

28 bits of round keys and the expression can be shown as:

X1
4 = X5

0 ⊕ S(X12
0 ⊕ S(X0

0 ⊕K0
0 )⊕K2

1)⊕ S(X15
0 ⊕ S(X7

0 ⊕K7
0 )⊕

S(X4
0 ⊕ S(X10

0 ⊕ S(X1
0 ⊕K1

0 )⊕K0
1 )⊕K2

2)⊕K3
3 )



Improved Multidimensional Zero-Correlation Linear Cryptanalysis 9

Similarly, the nibble X14
18 is affected by 48 bits of ciphertext X23 and 48 bits

of round keys:

X14
18 =X0

23 ⊕ S(X9
23 ⊕K1

22)⊕ S(X14
23 ⊕ S(X2

23 ⊕ S(X8
23 ⊕K0

22)⊕K4
21)⊕K0

20)⊕
S(X9

23 ⊕ S(X1
23 ⊕ S(X11

23 ⊕K3
22)⊕K3

21)⊕ S(X6
23 ⊕ S(X12

23 ⊕K4
22)⊕

S(X15
23 ⊕ S(X4

23 ⊕ S(X13
23 ⊕K5

22)⊕K6
21)⊕K1

20)⊕K2
19)⊕K5

18)

After analyzing the key schedule of LBlock, we find the following relations in
the round keys:

K7
0 ⇒ K0

1 [0− 2], K3
21 ⇒ K5

18[0− 2], K4
21 ⇒ K5

18[3], K0
22 ⇒ K2

19[0− 2],
K1

22 ⇒ K2
19[3] and K0

20 ⇒ K5
22[2− 3].

Assuming that N known plaintexts are used, the partial encryption and de-
cryption using the partial-compression technique are proceeded as in Table 2.
The second column stands for the subkey nibbles that have to be guessed in
each step. The third column denotes the time complexity of corresponding step
measured in S-box access. In each step, we save the values of the ’Obtained
States’ during the encryption and decryption process. For each possible value
of xi(1 ≤ i ≤ 13), the counter Ni[xi] will record how many plaintext-ciphertext
pairs can produce the corresponding intermediate state xi. The counter size for
each xi is shown in the last column.

To be more clear, we explain some steps in Table 2 in detail.
Step 4.1. We allocate the 60-bit counter N1[x1] and initialize it to zero. We

then guess 17-bit keys and partially encrypt N plaintexts to compute x1, and
increment the corresponding counter.

The guessed keys are K1
0 ,K

7
0 ,K

0
1 [3] and K0

22,K
4
21. Because K7

0 [1 − 3] are
equivalent to K0

1 [0 − 2], K0
1 are all known. As shown in Figure 2, the values of

X1
4 |X14

18 are affected by 32 bits of plaintext and 48 bits of ciphertext. They are
represented by

x0 = X5
0 |X12

0 |X0
0 |X15

0 |X7
0 |X4

0 |X10
0 |X1

0 |X0
23|X9

23|X14
23 |X2

23|X8
23|X1

23|X11
23 |

X6
23|X12

23 |X15
23 |X4

23|X13
23 .

As the following three equations

X5
1 = X15

0 ⊕ S(X7
0 ⊕K7

0 )

X2
2 = X4

0 ⊕ S(X10
0 ⊕ S(X1

0 ⊕K1
0 )⊕K0

1)

X8
21 = X14

23 ⊕ S(X2
23 ⊕ S(X8

23 ⊕K0
22)⊕K4

21)

are true for LBlock, the 80-bit x0 can be reduced to 60-bit x1 after guessing the
17 bits keys. Update the expressions of X1

4 and X14
18 :

X1
4 = X5

0 ⊕ S(X12
0 ⊕ S(X0

0 ⊕K0
0)⊕K2

1 )⊕ S(X5
1 ⊕ S(X2

2 ⊕K2
2)⊕K3

3 )

X14
18 = X0

23 ⊕ S(X9
23 ⊕K1

22)⊕ S(X8
21 ⊕K0

20)⊕ S(X9
23 ⊕ S(X1

23 ⊕ S(X11
23 ⊕K3

22)

⊕K3
21)⊕ S(X6

23 ⊕ S(X12
23 ⊕K4

22)⊕ S(X15
23 ⊕ S(X4

23 ⊕ S(X13
23 ⊕K5

22)

⊕K6
21)⊕K1

20)⊕K2
19)⊕K5

18)



10 Y. Wang and W. Wu

Step 4.2. We first allocate 56-bit counter N2[x2] and initialize them to zero.
We then guess 4-bit K0

20 and partially decrypt x1 to compute x2 and add the
corresponding N1[x1] to N2[x2]. During the above process, A is defined as X0

23⊕
S(X8

21 ⊕K0
20). Meanwhile, the expression of X14

18 is update as:

X14
18 = A⊕ S(X9

23 ⊕K1
22)⊕ S(X9

23 ⊕ S(X1
23 ⊕ S(X11

23 ⊕K3
22)⊕K3

21)⊕ S(X6
23⊕

S(X12
23 ⊕K4

22)⊕ S(X15
23 ⊕ S(X4

23 ⊕ S(X13
23 ⊕K5

22)⊕K6
21)⊕K1

20)⊕K2
19)⊕K5

18)
.

Table 2. Partial encryption and decryption on 23-round LBlock

Step Guess Time Obtained States Size

K1
0 ,K

7
0 ,K

0
1 [3] x1 = X5

0 |X12
0 |X0

0 |X5
1 |X2

2 |X0
23|X9

23|X8
21|

4.1 K0
22,K

4
21 N · 217 · 5 X1

23|X11
23 |X6

23|X12
23 |X15

23 |X4
23|X13

23 260

x2 = X5
0 |X12

0 |X0
0 |X5

1 |X2
2 |A|X9

23|X1
23|

4.2 K0
20 260 · 217+4 X11

23 |X6
23|X12

23 |X15
23 |X4

23|X13
23 256

x3 = X5
0 |X12

0 |X0
0 |X5

1 |X2
2 |A|X9

23|
4.3 K5

22[0, 1] 256 · 221+2 X1
23|X11

23 |X6
23|X12

23 |X15
23 |X14

22 252

4.4 K2
2 252 · 223+4 x4=X5

0 |X12
0 |X0

0 |X3
3 |A|X9

23|X1
23|X11

23 |X6
23|X12

23 |X15
23 |X14

22 248

4.5 K0
0 248 · 227+4 x5 = X5

0 |X2
1 |X3

3 |A|X9
23|X1

23|X11
23 |X6

23|X12
23 |X15

23 |X14
22 244

4.6 K2
1 244 · 231+4 x6 = X11

3 |X3
3 |A|X9

23|X1
23|X11

23 |X6
23|X12

23 |X15
23 |X14

22 240

4.7 K3
3 240 · 235+4 x7 = X1

4 |A|X9
23|X1

23|X11
23 |X6

23|X12
23 |X15

23 |X14
22 236

4.8 K3
22 236 · 239+4 x8 = X1

4 |A|X9
23|X11

22 |X6
23|X12

23 |X15
23 |X14

22 232

4.9 K4
22 232 · 243+4 x9 = X1

4 |A|X9
23|X11

22 |X8
22|X15

23 |X14
22 228

4.10 K6
21 228 · 247+4 x10 = X1

4 |A|X9
23|X11

22 |X8
22|X9

21 224

4.11 K1
20 224 · 251+4 x11 = X1

4 |A|X9
23|X11

22 |X10
20 220

4.12 K1
22(K

2
19) 220 · 255+4 · 2 x12 = X1

4 |B|C|X11
22 216

4.13 K3
21(K

5
18) 216 · 259+4 · 2 x13 = X1

4 |X14
18 28

† A = X0
23 ⊕ S(X8

21 ⊕K0
20) † B = A⊕ S(X9

23 ⊕K1
22) † C = X9

23 ⊕ S(X10
20 ⊕K2

19)

Because the following steps are similar to the above two steps, we do not
explain in details. Besides, we note that the numbers of guessed keys in Step
12 and Step 13 are both 4-bit. However, the numbers of known keys are both 8
bit, that is because the key in the ≤()≤ can be obtained by using the relations of
round keys.

To recover the secret key, the following steps are performed:

1. Allocate a counter V [z] for 8-bit z.
2. For 28 values of x13:

(a) Evaluate all 8 basis zero-correlation masks on x13 and get z.
(b) Update the counter V [z] by V [z] = V [z] +N13[x13].

3. For each guessing key k, compute Tk = N ·28
(1−2−8)

28−1∑
z=0

(V [z]
N − 1

28 )
2
.

4. If Tk < τ , then the guessed subkey values are possible right subkey candi-
dates.

5. Do exhaustive search for all right candidates.



Improved Multidimensional Zero-Correlation Linear Cryptanalysis 11

Complexity. We set α = 2−2.7, β = 2−9, then z1−α ≈ 1, z1−β ≈ 2.88. Since
n = 64 and l = 255, then according to equation 2, the data complexity N
is about 262.1. Now we evaluate the time complexity of the key recovery on
23-round LBlock. We first sum the cost of step 1 to step 14 in the process of
partial computation and the result is about 281 · 6 S-box access, which is about
281 · 6 · 1/8 · 1/23 ≈ 276 23-round LBlock encryptions. The number of remaining
key candidates is about 280 ·β ≈ 271. The total time complexity is 276+271 ≈ 276

23-round LBlock encryptions.
All in all, the data complexity of our attack on 23-round LBlock is 262.1

known plaintexts, the time complexity is 276 23-round LBlock encryptions and
the memory requirements are about 260 bytes.

5 Application to TWINE

In this section, we apply the improved multidimensional zero-correlation linear
attack model to TWINE block cipher and give attacks on 23-round TWINE-80
and 25-round TWINE-128.

5.1 A Brief Description of TWINE

Encryption Algorithm. Round function of TWINE consists of eight identical
4-bit S-boxes and a diffusion layer π, which is depicted in Figure 3. This round
function is iterated for 36 times for both TWINE-80 and TWINE-128, where
the diffusion layer of the last round is omitted.

k S k S k S k S k S k S k S k S

1rX

rX

Fig. 3. Round function of TWINE block cipher

Key Schedule Algorithm. The key schedule of TWINE is quite simple. S-
boxes, XOR operations and a series of constants are used in the key schedule.
Due to the page limit, see the specific key schedule algorithms for both key
lengths in Reference [8].

5.2 Zero-Correlation Linear Approximations of 14-Round TWINE

We find that there are at least 8 × 8 zero-correlation linear hulls for 14-round
TWINE and the characteristics can be summarized as the following property:

Property 2. For 14-round TWINE, if the input mask a of the first round locates
at the even nibble and the output mask b of the last round locates in the odd



12 Y. Wang and W. Wu

nibble, then the correlation of the linear approximation is zero, where a, b ∈ F 4
2 ,

a ∅= 0 and b ∅= 0.
To distinguish the 64 different zero-correlation hulls, we express the distin-

guisher as (la, lb), where 0 ≤ la ≤ 14 is an even integer and 1 ≤ lb ≤ 15 is an
odd integer.

5.3 Key Recovery for 23-Round TWINE-80

Step 1. As noted before, R = 23 and Rd = 14 for block cipher TWINE-80. The
original set is {((la, lb), Re), 0 ≤ Re ≤ 9}.

Step 2. After analyzing the encryption algorithm, the candidates are reduced
to S = {((la, lb), Re), 4 ≤ Re ≤ 5}.

Step 3. Only one element {((2, 9), 4)} is left in the optimal set O. The size of
the guessed keys is reduced from 76 bits to 60 bits.

Step 4. We use ((2, 9), 4) to give an attack on 23-round TWINE-80. By puting
these 14-round zero-correlation linear approximations in rounds 4 to 17, we can
attack TWINE-80 from round 0 to round 22. Similarly, we first express the two
target values and then guess the keys one nibble after another to reduce the
time complexity of partial computation. The nibble X2

4 is affected by 32 bits of
plaintext X0 and 28 bits of round keys and the expression can be shown as:

X2
4 = X12

0 ⊕ S(X15
0 ⊕ S(X14

0 ⊕K7
0 )⊕K7

1 )⊕ S(X7
0 ⊕ S(X6

0 ⊕K3
0)⊕

S(X0
0 ⊕ S(X3

0 ⊕ S(X2
0 ⊕K1

0)⊕K2
1 )⊕K6

2 )⊕K5
3 )

Similarly, the nibble X9
18 is affected by 48 bits of ciphertext X23 and 48 bits of

round keys:

X9
18 =X8

23 ⊕ S(X3
23 ⊕K3

22)⊕ S(X5
23 ⊕ S(X12

23 ⊕ S(X7
23 ⊕K2

22)⊕K0
21)⊕K1

20)⊕
S(X3

23 ⊕ S(X10
23 ⊕ S(X15

23 ⊕K6
22)⊕K4

21)⊕ S(X2
23 ⊕ S(X9

23 ⊕K5
22)⊕

S(X1
23 ⊕ S(X6

23 ⊕ S(X13
23 ⊕K4

22)⊕K5
21)⊕K7

20)⊕K6
19)⊕K4

18)

The following relations exist in the related round keys:

K5
3 ⇐⇒ K3

0 ,K
6
2 ⇐⇒ K1

0 ,K
0
21 ⇐⇒ K4

18 and K1
20 ⇐⇒ K6

22.

Assuming that N known plaintexts are used, the partial encryption and de-
cryption using the partial-compression technique are proceeded as in Table 3.
Finally, attackers compute the statistic Tk for every guessed k and do exhaus-
tive search for all right candidates. The process can be referred to that of LBlock.

Complexity. We also set α = 2−2.7, β = 2−9, then z1−α ≈ 1, z1−β ≈ 2.88. Since
n = 64 and l = 255, the data complexity N is about 262.1. The complexity of
partial computation is about 276 · 8 S-box access, which is about 276 · 8 · 1/8 ·



Improved Multidimensional Zero-Correlation Linear Cryptanalysis 13

Table 3. Partial encryption and decryption on 23-round TWINE-80

Step Guess Time Obtained States Size

K5
3(K

3
0 ), x1 = A|X15

0 |X14
0 |X8

23|X3
23|X5

23|X12
23 |

4.1 K6
2 (K

1
0),K

2
1 N ·212 ·5 X7

23|X10
23 |X15

23 |X2
23|X9

23|X1
23|X6

23|X13
23 260

x2 = A|X14
1 |X8

23|X3
23|X5

23|X12
23 |X7

23|X10
23 |

4.2 K7
0 260 · 216 X15

23 |X2
23|X9

23|X1
23|X6

23|X13
23 256

x3 = X2
4 |X8

23|X3
23|X5

23|X12
23 |X7

23|X10
23 |

4.3 K7
1 276 X15

23 |X2
23|X9

23|X1
23|X6

23|X13
23 252

4.4 K2
22 276 x4=X2

4 |X8
23|X3

23|X5
23|X5

22|X10
23 |X15

23 |X2
23|X9

23|X1
23|X6

23|X13
23 248

4.5 K0
21 276 x5 = X2

4 |X8
23|X3

23|X1
21|X10

23 |X15
23 |X2

23|X9
23|X1

23|X6
23|X13

23 244

4.6 K6
22(K

1
20) 276 · 2 x6 = X2

4 |B|X3
23|X13

22 |X2
23|X9

23|X1
23|X6

23|X13
23 236

4.7 K5
22 272 x7 = X2

4 |B|X3
23|X13

22 |X11
22 |X1

23|X6
23|X13

23 232

4.8 K4
22 272 x8 = X2

4 |B|X3
23|X13

22 |X11
22 |X1

23|X9
22 228

4.9 K5
21 272 x9 = X2

4 |B|X3
23|X13

22 |X11
22 |X11

21 224

4.10 K7
20 272 x10 = X2

4 |B|X3
23|X13

22 |X15
20 220

4.11 K3
22 272 x11 = X2

4 |X3
20|X3

23|X13
22 |X15

20 220

4.12 K4
21 276 x12 = X2

4 |X3
20|X9

21|X15
20 216

4.13 K6
19 276 x13 = X2

4 |X9
18 28

† A = X12
0 ⊕ S(X7

0 ⊕ S(X6
0 ⊕K3

0 )⊕ S(X0
0 ⊕ S(X3

0 ⊕ S(X2
0 ⊕K1

0 )⊕K2
1 )⊕K6

2 )⊕K5
3 )

† B = X8
23 ⊕ S(X1

21 ⊕K1
20)

1/23 ≈ 271.48 23-round TWINE-80 encryptions. The number of remaining key
candidates is about 280 ·β ≈ 271. Thus, the total time complexity is 271.48+271 ≈
272.15 23-round TWINE-80 encryptions. Meanwhile, the memory requirements
are about 260 bytes.

5.4 Key Recovery for 25-Round TWINE-128

Step 1. R = 25 and Rd = 14 for block cipher TWINE-128 and the original set
equals to {((la, lb), Re), 0 ≤ Re ≤ 11}.

Step 2. When encrypting 5 or 6 rounds, the number of guessed keys is mini-
mal(124 bits) and S = {((la, lb), Re), 5 ≤ Re ≤ 6}.

Step 3. After deleting the equivalent keys for every element in S, we find that
only the cases in O = {((la, lb), 5), ((l∗a, l∗b ), 6), la ∈ {0, 4, 12, 14}, lb = 9, l∗a ∈
{0, 4, 10, 14}, l∗b = 11}} needs to guess 112-bit keys.

Step 4. The distinguisher ((4, 9), 5) is chosen to attack 25-round TWINE-128.
Firstly, express X4

5 by using subkeys and plaintexts and X9
19 by using subkeys

and ciphertexts.



14 Y. Wang and W. Wu

X4
5 = X13

0 ⊕ S(X12
0 ⊕K6

0)⊕ S(X4
0 ⊕ S(X9

0 ⊕ S(X8
0 ⊕K4

0 )⊕K3
1)⊕K4

2 )⊕
S(X12

0 ⊕ S(X15
0 ⊕ S(X14

0 ⊕K7
0 )⊕K7

1 )⊕ S(X7
0 ⊕ S(X6

0 ⊕K3
0 )⊕ S(X0

0⊕
S(X3

0 ⊕ S(X2
0 ⊕K1

0)⊕K2
1 )⊕K6

2)⊕K5
3 )⊕K1

4)

X9
19 = X13

25 ⊕ S(X4
25 ⊕ S(X1

25 ⊕K1
24)⊕K3

23)⊕ S(X12
25 ⊕ S(X7

25 ⊕K2
24)⊕

S(X15
25 ⊕ S(X8

25 ⊕ S(X3
25 ⊕K3

24)⊕K2
23)⊕K0

22)⊕K1
21)⊕

S(X4
25 ⊕ S(X1

25 ⊕K1
24)⊕ S(X9

25 ⊕ S(X14
25 ⊕ S(X11

25 ⊕K7
24)⊕K6

23)⊕K4
22)⊕

S(X1
25 ⊕ S(X6

25 ⊕ S(X13
25 ⊕K4

24)⊕K5
23)⊕ S(X0

25 ⊕ S(X5
25 ⊕K0

24)⊕
S(X3

25 ⊕ S(X10
25 ⊕ S(X15

25 ⊕K6
24)⊕K4

23)⊕K5
22)⊕K7

21)⊕K6
20)⊕K4

19)

Meanwhile, the following equivalent relations exist in the related round keys
of TWINE-128:

K1
4 ⇐⇒ K3

1 ,K
2
24 ⇐⇒ K6

20 and K6
24|K7

24 ⇒ K4
19.

The partial encryption and decryption are similarly proceeded as in Table 4.

Table 4. Partial encryption and decryption on 25-round TWINE-128

Step Guess Time Obtained States Size

K0−4,6,7
24 ,K4,5

22 , x1 = A|X5
23|X0

23|X15
0 |X14

0 |X13
0 |X12

0 |
4.1 K2−6

23 ,K7
21 N·260· 17 X9

0 |X8
0 |X7

0 |X6
0 |X4

0 |X3
0 |X2

0 |X0
0 260

x2 = A|X1
22|X15

0 |X14
0 |X13

0 |X12
0 |X9

0 |
4.2 K0

22 2124 X8
0 |X7

0 |X6
0 |X4

0 |X3
0 |X2

0 |X0
0 256

x3 = X9
19|X15

0 |X14
0 |X13

0 |X12
0 |X9

0 |
4.3 K1

21 2124 X8
0 |X7

0 |X6
0 |X4

0 |X3
0 |X2

0 |X0
0 252

4.4 K4
0 2124 x4 = X9

19|X15
0 |X14

0 |X13
0 |X12

0 |X6
1 |X7

0 |X6
0 |X4

0 |X3
0 |X2

0 |X0
0 248

4.5 K3
1 2124 x5 = X9

19|X15
0 |X14

0 |X13
0 |X12

0 |X8
2 |X7

0 |X6
0 |X3

0 |X2
0 |X0

0 244

4.6 K7
0 2124 x6 = X9

19|X14
1 |X13

0 |X12
0 |X8

2 |X7
0 |X6

0 |X3
0 |X2

0 |X0
0 240

4.7 K3
0 2124 x7 = X9

19|X14
1 |X13

0 |X12
0 |X8

2 |X8
1 |X3

0 |X2
0 |X0

0 236

4.8 K1
0 2124 x8 = X9

19|X14
1 |X13

0 |X12
0 |X8

2 |X8
1 |X4

1 |X0
0 232

4.9 K2
1 2124 x9 = X9

19|X14
1 |X13

0 |X12
0 |X8

2 |X8
1 |X12

2 228

4.10 K6
2 2124 x10 = X9

19|X14
1 |X13

0 |X12
0 |X8

2 |X10
3 224

4.11 K4
2 2124 x11 = X9

19|B|X14
1 |X12

0 |X10
3 220

4.12 K7
1 ,K

5
3 2128 · 3 x12 = X9

19|C|X12
0 212

4.13 K6
0 2124 x13 = X9

19|X4
5 28

† A = X7
23⊕S(X6

23⊕S(X13
23⊕K4

22)⊕S(X11
23⊕S(X2

23⊕S(X9
23⊕K5

22)⊕K7
21)⊕K6

20)⊕K4
19)

† B = X13
0 ⊕ S(X8

2 ⊕K4
2 )

† C = B ⊕ S(X12
0 ⊕ S(X14

1 ⊕K7
1 )⊕ S(X10

3 ⊕K5
3 )⊕K1

4 )

Complexity. We set α = 2−2.7, β = 2−9, then z1−α ≈ 1, z1−β ≈ 2.88. Since
n = 64 and l = 255, then according to equation 2, the data complexity N is



Improved Multidimensional Zero-Correlation Linear Cryptanalysis 15

also about 262.1. The total time complexity is 2121.95 + 2119 ≈ 2122.12 25-round
TWINE-128 encryptions and the memory requirements are about 260 bytes to
store counter in Step 4.1.

6 Conclusion

In this paper, we first present an improved model of multidimensional zero-
correlation linear cryptanalysis by taking the key schedule algorithm into con-
sideration. Besides, partial-compression technique is used to reduce the time
complexity, which is similar to the partial-sum technique of integral attack.
In order to illustrate the improved attack model, we evaluate the security of
LBlock and TWINE block cipher against zero-correlation linear cryptanalysis.
Based on 14-round zero-correlation distinguishers, we presented attacks on 23-
round LBlock, 23-round TWINE-80 and 25-round TWINE-128. In terms of the
number of attacked rounds, the result on LBlock is better than any previously
published results in the single key model up to now. While the previous attack on
TWINE-80 and TWINE-128, which can break the same number of rounds, uses
chosen plaintexts, our attacks assume only the known plaintexts and the attack
on TWINE-80 is of the less time complexity and memory. As discussed above,
we conclude that the diffusion of the key schedule algorithms influence the secu-
rity of block ciphers against zero-correlation linear cryptanalysis. Moreover, the
results reveal a criterion of designing the key schedule algorithm. Specifically,
designers should avoid equivalent subkeys when partly encrypting or decrypting
ciphers to obtain a single nibble.

Acknowledgments. We thank the anonymous reviewers for their useful com-
ments that help to improve the paper. The research presented in this paper is
supported by the National Basic ResearchProgramof China (No. 2013CB338002)
and National Natural Science Foundation of China (No. 61272476, No.61232009
and No. 61202420).

References

1. Bogdanov, A., Rijmen, V.: Linear Hulls with Correlation Zero and Linear Crypt-
analysis of Block Ciphers. Designs, Codes and Cryptography 70(3), 369–383 (2014)

2. Bogdanov, A., Wang, M.Q.: Zero Correlation Linear Cryptanalysis with Reduced
Data Complexity. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 29–48.
Springer, Heidelberg (2012)

3. Bogdanov, A., Leander, G., Nyberg, K., Wang, M.Q.: Integral and Multidimen-
sional Linear Distinguishers with Correlation Zero. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 244–261. Springer, Heidelberg (2012)

4. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)



16 Y. Wang and W. Wu

5. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED Block Cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer,
Heidelberg (2011)

6. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo:
An Ultra-Lightweight Block Cipher. In: Preneel, B., Takagi, T. (eds.) CHES 2011.
LNCS, vol. 6917, pp. 342–357. Springer, Heidelberg (2011)

7. Wu, W., Zhang, L.: LBlock: A Lightweight Block Cipher. In: Lopez, J., Tsudik, G.
(eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011)

8. Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: TWINE: A Lightweight
Block Cipher for Multiple Platforms. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012.
LNCS, vol. 7707, pp. 339–354. Springer, Heidelberg (2013)

9. Soleimany, H., Nyberg, K.: Zero-Correlation Linear Cryptanalysis of Reduced-
Round LBlock. Cryptology ePrint Archive, https://eprint.iacr.org/2012/570

10. Wang, Y., Wu, W., Yu, X., Zhang, L.: Security on LBlock against Biclique Crypt-
analysis. In: Lee, D.H., Yung, M. (eds.) WISA 2012. LNCS, vol. 7690, pp. 1–14.
Springer, Heidelberg (2012)

11. Çoban, M., Karakoç, F., Boztaş, Ö.: Biclique Cryptanalysis of TWINE. In:
Pieprzyk, J., Sadeghi, A.-R., Manulis, M. (eds.) CANS 2012. LNCS, vol. 7712,
pp. 43–55. Springer, Heidelberg (2012)

12. Sasaki, Y., Wang, L.: Comprehensive Study of Integral Analysis on 22-round
LBlock. In: Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC 2012. LNCS, vol. 7839,
pp. 156–169. Springer, Heidelberg (2013)

13. Karakoç, F., Demirci, H., Harmancı, A.E.: Impossible Differential Cryptanalysis of
Reduced-Round LBlock. In: Askoxylakis, I., Pöhls, H.C., Posegga, J. (eds.) WISTP
2012. LNCS, vol. 7322, pp. 179–188. Springer, Heidelberg (2012)

14. Boztaş, Ö., Karakoç, F., Çoban, M.: Multidimensional Meet-in-the-middle Attacks
on Reduced-Round TWINE-128. In: Avoine, G., Kara, O. (eds.) LightSec 2013.
LNCS, vol. 8162, pp. 55–67. Springer, Heidelberg (2013)

15. Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.)
Advances in Cryptology - EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397.
Springer, Heidelberg (1994)

https://eprint.iacr.org/2012/570


Differential and Impossible Differential

Related-Key Attacks on Hierocrypt-L1

Bungo Taga1,2,α, Shiho Moriai2, and Kazumaro Aoki3

1 National Police Academy
3-12-1, Asahi-cho, Fuchu-shi, Tokyo, 183-8558, Japan

b.taga@nparc.ac.jp
2 National Institute of Information and Communications Technology

4-2-1 Nukui-Kitamachi, Koganei, Tokyo, 184-8795, Japan
shiho.moriai@nict.go.jp

3 NTT Secure Platform Laboratories, Nippon Telegraph and Telephone Corporation
3-9-11 Midoricho, Musashino-shi, Tokyo, 180-8585 Japan

aoki.kazumaro@lab.ntt.co.jp

Abstract. Hierocrypt-L1 is one of the Japanese e-Government Recom-
mended Ciphers listed by CRYPTREC in 2003, and its security was
reconfirmed as secure by CRYPTREC in 2013. In this paper we first
find differential characteristics with probability 1 in the key scheduling
of Hierocrypt-L1. Then, using the above characteristics, we construct
related-key differentials and related-key impossible differentials. The im-
possible differentials are in a new type of impossible differential charac-
teristics in that the S-box impossible differentials are directly utilized.
The above related-key differentials and impossible differentials are ap-
plied to key recovery attacks on 8 S-function layers of Hierocrypt-L1,
which are the best attacks on Hierocrypt-L1 in terms of the number of
attackable S-function layers.

Keywords: Cryptanalysis, key scheduling, related-key attacks, impos-
sible differential, Hierocrypt-L1, CRYPTREC.

1 Introduction

Hierocrypt-L1 [21,11,24] is a block cipher developed by Toshiba Corporation in
2000. It was among the final candidates competing to be in the list of portfolio
of the NESSIE project [19]. After that it was selected to be one of the Japanese
e-Government Recommended Ciphers in 2003, and its security was reconfirmed
as secure by CRYPTREC [13] in 2013.

The block size and key size of Hierocrypt-L1 are 64 bits and 128 bits, re-
spectively. The design of the key scheduling part of Hierocrypt-L1 consists of a
Feistel structure in the 64-bit left half and a linear diffusion transformation in
the 64-bit right half, which is independent of the left half, while the left half is

β Most of the work was done when the first author was in National Institute of Infor-
mation and Communications Technology (NICT).

W. Susilo and Y. Mu (Eds.): ACISP 2014, LNCS 8544, pp. 17–33, 2014.
c© Springer International Publishing Switzerland 2014



18 B. Taga, S. Moriai, and K. Aoki

Table 1. Key-recovery attacks on Hierocrypt-L1

Attack S-function Data Time Memory

layers

Square1 [9] 6 6 · 232 CP 253 not given

Impossible differential1 [23] 6 271 KP 255 not given

Square1 [9] 7 14 · 232 CP 2118 not given

Related-key impossible 8 267.5/k(k − 1) CP, 2122.5 2120

differential (Sect. 5.2) k-RK

Related-key differential (Sect. 5.1) 8 261 CP, 2-RK 2117 2120

– KP: known plaintexts, CP: chosen plaintexts, RK: related keys, k: the number of
related keys (k ⊕ 4)

– The unit of time about related-key impossible differential attack is the time for
marking an incorrect 120-bit round key.

– The unit of time about related-key differential attack is the time for incrementing
a counter for correct 120-bit round key candidates.

– The unit of memory is a counter for 120-bit round keys, which is at most one
byte.

1single-key setting

dependent on the right half. In our analysis, the above properties are exploited
to find the particular differential characteristics of the key scheduling part in
Section 3 to recover the encryption key of Hierocrypt-L1 more efficiently than a
brute force attack.

Regarding full-round Hierocrypt-L1, no theoretical attacks are yet known.
The previous best known attack on Hierocrypt-L1 was the Square attack [9]
on the last 7 out of the 12 S-function layers in the single-key setting.

Biryukov et al. showed the first attack on full-round AES-192 and AES-
256 [14], which recovered an AES encryption key and distinguished AES from a
random permutation more efficiently than a brute force attack in the related-key
setting [6,7]. A related-key attack is not theoretical, but may be practical in case
of careless key generation or distribution.

In this paper we will first analyze the key scheduling part of Hierocrypt-L1
to find differential characteristics with probability 1. Then, using them, we will
search for the best related-key differential characteristics of the data random-
izing part. As a result, we will show that the encryption key can be recovered
more efficiently by a related-key differential attack and a related-key impossi-
ble differential attack than by a brute force attack on the 8 S-function layers
of Hierocrypt-L1. These are the best attacks in terms of the number of attack-
able S-function layers. The previous best attack and our attacks are shown in
Table 1. Furthermore, we will show a new type of impossible differential charac-
teristics. It is a new point that S-box impossible differentials are utilized directly
on impossible differential characteristics.



Differential and Impossible Differential Related-Key Attacks 19

Table 2. The notation used in this paper

Subscript:(128) Denotes 128-bit data

Subscript:1(64) Denotes the left half 64-bit data of 128-bit data

Subscript:2(64) Denotes the right half 64-bit data of 128-bit data

Subscript:n(32) Denotes the n-th word of 128-bit data (n = 1, 2, 3, 4)
e.g., X(128) = X1(64)||X2(64) = X1(32)||X2(32) ||X3(32)||X4(32)

Typewriter style Hexadecimal notation (e.g., 9a)

Z(r)
(128) The r-th round intermediate key, Z(r)

(128) = Z(8−r)
(128)

K(r)
(128) The round key used in the r-th round of the data randomizing part

X(r)
(64) The intermediate data after the r-th operation of the round function

I(r)K1(64) The intermediate data after the XOR operation of K(r)
1(64)

I(r)K2(64) The intermediate data after the XOR operation of K(r)
2(64)

I(r)s1(64) The intermediate data after the 1st S-function operation of the r-th round

I(r)s2(64) The intermediate data after the 2nd S-function operation of the r-th round

I(r)mL(64) The intermediate data after the MDSL transformation of the r-th round

This paper consists of the following sections: In Section 2 we outline the design
of Hierocrypt-L1 and related-key and impossible differential attacks. In Section 3
we analyze the key scheduling part and thereby find differential characteristics
with probability 1. In Sections 4 and 5 we describe related-key differential and
impossible differential attacks using the above characteristics. In Section 6 we
summarize our results.

2 Preliminaries

2.1 Notation

The notation used throughout this paper is as shown in the references [11,24]
and Table 2. The position of each data byte is numbered from the left, and 1
word is defined as 32-bit data in this paper.

2.2 Description of Hierocrypt-L1

The algorithm of Hierocrypt-L1 consists of a key scheduling part and a data
randomizing part. In the following, we will describe each Hierocrypt-L1 part. In
regard to the details of Hierocrypt-L1, see the references [11,24].

Encryption. The data randomizing part is sketched in Fig. 1. It consists of five
ρ-functions and one XS-function. The ρ-function consists of two linear transfor-
mation layers, which are the MDSL- and MDSH-function, and two nonlinear
S-function layers. The XS-function is the same structure as the ρ-function with-
out the last MDSH-function. The S-function consists of 8 parallel S-boxes that
is the only nonlinear transformation in Hierocrypt-L1. The maximum differential
probability of the S-box is 2−6.



20 B. Taga, S. Moriai, and K. Aoki

�

�

�

XS

�

K(7)
1(64)

ciphertext : C(64)

X(1)
(64)

X(2)
(64)

X(3)
(64)

X(5)
(64)

X(6)
(64)

�

K(1)
(128)

K(2)
(128)

K(3)
(128)

K(5)
(128)

K(6)
(128)

K(4)
(128)

X(4)
(64)

plaintext : P(64)

s s s s s s s s

mdsL mdsL

MDSH

s s s s s s s s

K(1)
1(64)

P(64) 

X(1)
(64)

K(1)
2(64)

S-function

MDS L-function

MDS H-function

I(1)
s1(64)

I(1)
s2(64)

I(1)
mL(64)

I(1)
K1(64)

I(1)
K2(64)

s s s s s s s s

mdsL mdsL

K(6)
2(64)

K(6)
1(64)

X(5)
(64)

I(6)
s1(64)

I(6)
mL(64)

I(6)
K1(64)

I(6)
2(64)

Each element is multiplied by 8-bit data.

MDSH = 

1 0 1 0 1 1 1 0
1 1 0 1 1 1 1 1
1 1 1 0 0 1 1 1
0 1 0 1 1 1 0 1
1 1 0 1 0 1 0 1
1 1 1 0 1 0 1 0 
1 1 1 1 1 1 0 1
1 0 1 0 1 0 1 1

mdsL = 

c4 65 c8 8b
8b c4 65 c8
c8 8b c4 65
65 c8 8b c4 

Each element is an element of GF(28).
The primitive polynomial is

p(z) = z8 + z6 + z5 + z + 1.

s s s s s s s s

C(64)

X(6)
(64)

K(7)
1(64)

I(6)
K2(64)

Fig. 1. Data randomizing part of Hierocrypt-L1

Key Scheduling. The key scheduling part is sketched in Fig. 2. It consists of
nonlinear Feistel transformations and linear transformations, which operate on
the left and right two words of the encryption/intermediate keys, respectively.
The input is a 128-bit encryption key denoted by K(128). The output consists of

six 128-bit round keys and one 64-bit round key, denoted byK(r)
(128) (1 ∈ r ∈ 6)

and K(7)
1(64). The 128-bit intermediate keys denoted by Z(r)

(128) (0 ∈ r ∈ 7)
are generated in the process of the key scheduling operation. The 5th to 7th
round functions are the inverse of the 2nd to 4th ones; therefore, the following
relationships hold: Z(r)

(128) = Z(8−r)
(128) (5 ∈ r ∈ 7). The right two words

of the intermediate keys are independent of the left two words by virtue of the
structure of the key scheduling part.

2.3 Related-Key Attacks

Related-key attacks were proposed in the early 1990s [2,15]. In a related-key
setting, attackers can obtain pairs of plaintexts and ciphertexts associated with
each other by related keys besides the encryption key. Attackers can also dis-
cover and control the relationships between the encryption key and related keys,
even if they do not know the encryption key itself. In our attack, we consider the



Differential and Impossible Differential Related-Key Attacks 21

F�

8-bit �4 
= 32-bit

8-bit �4 
= 32-bit

s
s
s
s

P(8)

G(4)
K(5)

1(32)

K(5) M M

K(1)
1(32)

K(1)
4(32)

K(1)
3(32)

K(1)
2(32)

K(2)
1(32)

K(2)
4(32)

K(2)
3(32)

K(2)
2(32)

K(3)
1(32)

K(3)
4(32)

K(3)
3(32)

K(3)
2(32)

K(4)
1(32)

K(4)
4(32)

K(4)
3(32)

K(4)
2(32)

G(0)

G(1)

G(2)

G(3)

G(4)

K1(32) = Z (-1)
1(32) K2(32) = Z (-1)

2(32)

K3(32) =
Z (-1)

3(32)

K4(32) =
Z (-1)

4(32)

000000||�1 �0

�

�

�

�

�1||00||�1||�1

Z(1)
(128)

Z(0)
(128)

Z(3)
(128)

Z(2)
(128)

Z(4)
(128)

encryption key : 

round keys : 

M5 MBF�

M5 MB

P(16)F�

M5 MB

P(16)F�

M5 MB

P(16)F�

M5 MB

P(16)F�

Each element is multiplied by n-bit data.

P(n) = 

1 0 1 0
0 1 0 1
0 1 1 1
1 0 1 1 

Each element is multiplied by 8-bit data.

M5 = 

1 0 1 0
1 1 0 1
1 1 1 0
0 1 0 1 

MB = M5
-1 = 

0 1 0 1
1 0 1 0
1 1 0 1
1 0 1 1 

Bold lines denote non-zero differences.

G(3)

G(2)

K(5)
4(32)

K(5)
3(32)

K(5)
2(32)

K(6)
1(32)

K(6)
4(32)

K(6)
3(32)

K(6)
2(32)

K(7)
1(32)

K(7)
4(32)

K(7)
3(32)

K(7)
2(32)

Z(6)
(128)

= Z(2)
(128)

Z(5)
(128)

= Z(3)
(128)

Z(7)
1(32)

= Z(1)
1(32)

Z(7)
2(32)

= Z(1)
2(32)

Z(7)
3(32)

= Z(1)
3(32)

Z(7)
4(32)

= Z(1)
4(32)

�
-1

�
-1

�
-1

00||�1||00||�1

00||�1||0000

MB M5

(P(16))-1F�

MB M5

(P(16))-1F�

MB M5

(P(16))-1F�

If and only if there are no active F� functions, the same differences repeat in every other round, 
that is

�Z(r+2)
(128) = �Z(r)

(128) (r = 0, 1,… ,5).

Fig. 2. Key scheduling part of Hierocrypt-L1 and differential characteristics with
probability 1



22 B. Taga, S. Moriai, and K. Aoki

following setting:

P
K−⊕ C

P ⊇ΔP
K∈βK−⊕ C ⊇ΔC,

where P and K denote plaintext and the encryption key, and ΔP and ΔK
denote differences in the plaintexts and the encryption keys, respectively. Good
combinations of ΔP and ΔK may lead to a greater probability of differential
characteristics than that in a single-key setting, so that more number of rounds
may be attacked.

2.4 Impossible Differential Attacks

In impossible differential attacks [3], we use differential characteristics with prob-
ability 0 to exclude incorrect keys from the correct key candidates. Impossible
differential attacks sometimes work on many number of rounds of block ci-
phers [17,8,16]. In our attack, we found a new type of impossible differential
characteristics in that the S-box impossible differentials are directly utilized,
and we use it in the related-key setting to recover the encryption key for a
Hierocrypt-L1 reduced to the middle 8 S-function layers.

3 Analysis of Key Scheduling of Hierocrypt-L1 –
Key Scheduling Differential Characteristics with
Probability 1

In the case of a related-key setting for attacking block ciphers or the Davies-
Meyer hash construction using a block cipher, differential characteristics with
large probabilities in the key scheduling may be advantageous to attackers.
Therefore, we searched for differential characteristics in key scheduling of as
large a probability as possible.

As for the key scheduling part, nonlinear transformations are only in the
left 64-bit Feistel transformations. If no Feistel round functions are active, then
the same differences repeat in every other round of the left two words of the
intermediate keys. Because of the structure of the key scheduling part, if the
similar property appears in the third word of the intermediate keys, then there
exist differential characteristics that no active S-boxes appear in the entire key
scheduling part, that is, the probabilities of these characteristics are 1! Even if
this property appears only in part of rounds, the differential characteristics are
expected to be advantageous to attackers in a related-key setting.

To search for the characteristics that the same differences repeat in every
other round of the third word of the intermediate keys, ΔZ(r)

3(32), we solved



Differential and Impossible Differential Related-Key Attacks 23

Table 3. Differences in the encryption key and round keys that lead to differential
characteristics with probability 1

βK(128) 000000≤β1 00000000 00000000 000000≤β1

βK(1)
(128) = βK(3)

(128) 00000000 000000≤β1 000000≤β1 00000000

βK(2)
(128) = βK(4)

(128) 000000≤β1 00000000 β1≤00≤β1≤β1 β1≤00≤β1≤β1

βK(5)
(128) 000000≤β1 00000000 000000≤β1 000000≤β1

βK(6)
(128) 000000≤β1 β1≤00≤β1≤β1 00≤β1≤00≤β1 00≤β1≤0000

βK(7)
1(64) 000000≤β1 00000000

βK(128) 00000000 000000≤β2 β2≤00≤β2≤β2 00≤β2≤00≤β2

βK(1)
(128) = βK(3)

(128) 000000≤β2 00000000 β2≤00≤β2≤β2 β2≤00≤β2≤β2

βK(2)
(128) = βK(4)

(128) 00000000 000000≤β2 000000≤β2 00000000

βK(5)
(128) 000000≤β2 β2≤00≤β2≤β2 00≤β2≤00≤β2 00≤β2≤0000

βK(6)
(128) 000000≤β2 00000000 000000≤β2 000000≤β2

βK(7)
1(64) 000000≤β2 β2≤00≤β2≤β2

(Δ1,Δ2 =01, 02, . . ., ff)

the following linear algebraic equation for ΔZ(r)
3(32):

ΔZ(r)
3(32)‖ΔZ(r+2)

4(32) =

(
P (16)

(
M5 O
O MB

))2

ΔZ(r)
3(32)‖ΔZ(r)

4(32)

(r = 0, 1 and 2)

where (
M5 O
O MB

)
X3(32)‖X4(32) := M5X3(32)‖MBX4(32).

Note that ΔZ(r)
4(32) and ΔZ

(r+2)
4(32) are not necessarily equal. Then, we found

two different characteristics that

ΔZ(2r⊆)
(128) = 00000000 000000‖Δ1 00000000 Δ1‖00‖Δ1‖Δ1 (1)

ΔZ(2r⊆)
(128) = 000000‖Δ2 00000000 000000‖Δ2 000000‖Δ2 (2)

(Δ1, Δ2 = 01, 02, . . . , ff, r∗ = 0, 1 and 2).

The differences in the encryption key and the round keys are derived from
ΔZ(r)

(128)s. They are shown in Table 3. The positions of active bytes are in-
dependent of the values of Δ1 or Δ2. Because of linearity, it is easy to make sure
that the probabilities of the differential characteristics represented by the linear
combinations of (1) and (2) are 1.

Among the 216 encryption keys related to each other by (1) and (2), one
round key enables attackers to immediately obtain the other 216− 1 round keys.
In Fig. 2 the differential characteristics for equation (1) is shown.



24 B. Taga, S. Moriai, and K. Aoki

differential
characteristics

plaintext : P(64)

MDSH
X(2)

(64)

00000000

K(2)
2(64)

probability 1

mdsL mdsL

MDSH

mdsL mdsL

X(3)
(64)

000000||�1

K(3)
1(64)

K(4)
2(64)

K(3)
2(64)

K(4)
1(64)

I(3)
K2(64)

I(3)
s2(64)

I(4)
s1(64)

I(4)
mL(64)

I(4)
K1(64)

I(4)

"Possible"?
or

Impossible?

s s s s s s s s

s s s s s s s s

s s s s s s s s

s s s s s s s s

000000||�1

00000000 

I(2)
s2(64)

I(2)
K2(64)

mdsL mdsL

MDSH

mdsL mdsL

ciphertext : C(64)

X(5)
(64)

000000||�1

K(5)
1(64)

K(6)
2(64)

K(5)
2(64)

K(6)
1(64)

I(5)
K2(64)

MDSH
X(4)

(64)

000000||�1

�1||�1||0000

K( )
2(64)I(4)

K2(64)

probability 1

s s s s s s s s

s s s s s s s s

s s s s s s s s

s s s s s s s s

I(6)
mL(64)

00||�1||00||�1

00000000

000000||�1

I(4)
s2(64)

Fig. 3. Related-key possible/impossible differential characteristics on the middle 5
S-function layers of Hierocrypt-L1 with 9 active S-boxes



Differential and Impossible Differential Related-Key Attacks 25

4 Construction of Related-Key Differentials and
Impossible Differentials

In this section, related-key differentials and impossible differentials are con-
structed using the differential characteristics in the key scheduling that are found
in Section 3.

4.1 Truncated Differentials

We searched for truncated differential characteristics in the data randomizing
part with the related key in which the number of active S-boxes did not ex-
ceed 10. This is because if the number of active S-boxes is more than 10, then
the corresponding probability is less than 2−64. As a result, we found that the
longest truncated differential characteristic was in the middle 5 S-function layers
placed between I(2)s2(64) and I(5)K2(64), with nine active S-boxes in which the

related key shown in (1) is used (see also Fig. 3). From I(2)s2(64) to I
(3)

K2(64) and

from X(4)
(64) to I(5)K2(64), there are no active S-boxes and the corresponding

differential probabilities are 1.
For each Δ1 in equation (1) we investigated whether the truncated differential

characteristic in Fig. 3 was impossible or not. As a result, we found that this
characteristic is possible if and only if Δ1 in equation (1) is an element of

{06, 13, 34, 3f, 65, 66, 68, 7f, 9a, a6, ac, b2, bd, c6, dc, f0}. (3)

For example, consider the case of Δ1 = 9a;

– All bytes of ΔI(3)K2(64) are 0 except for the 4th byte, so the 1st, 3rd, 6th

and 8th bytes of ΔI(4)s1(64) are 0 and ΔI(3)s2(64), ΔX
(3)

(64) and ΔI
(4)

K1(64)

are represented as in the 2nd to 4th lines of Table 5.
– The 3rd, 4th, 5th and 7th bytes of ΔI(4)s2(64) are 0, so the same bytes of

ΔI(4)mL(64) are all 9a.

– Searching for ΔI(4)s1(64) and ΔI(4)mL(64) that satisfy the above conditions,

there is only one pair of ΔI(4)s1(64) and ΔI(4)mL(64)

– For the above ΔI(3)K2(64) and ΔI(4)s1(64), ΔI is restricted to be 18 values
in Table 5.

– For the above ΔI(4)mL(64) and ΔI(4)s2(64), ΔI
(4)

K2(64) is restricted to be
the only value represented in Table 5.

– The differential probability is equal to the sum of the differential character-
istic probabilities for all possible ΔIs.

If Δ1 is in (3), then, by the same procedure, the differential probabilities are
calculated to be those shown in Table 4, which is useful for differential attacks.
Otherwise, there are no ΔI and ΔI(4)K2(64) that satisfy both the conditions in
4th and 5th steps of the above procedure, then the differential probabilities are
0, which is useful for impossible differential attacks.



26 B. Taga, S. Moriai, and K. Aoki

Table 4. Differential probabilities between I(2)s2(64) and I(5)K2(64) (see also Fig. 3)

Δ1 06 13 34 3f 65 66 68 7f 9a

Prob. 2−58.75 2−58.75 2−58.75 2−58.68 2−59.42 2−59.09 2−59.00 2−59.30 2−58.61

Δ1 a6 ac b2 bd c6 dc f0 others (00)

Prob. 2−58.91 2−59.09 2−58.75 2−58.83 2−59.00 2−58.68 2−58.91 0 (1)

Table 5. Differential characteristics and probabilities for Δ1 = 9a illustrated in Fig. 3

ΔI(3)K2(64) 0000009a 00000000

ΔI(3)s2(64) 000000≤ΔI 00000000

ΔX(3)
(64) 00≤ΔI≤00≤ΔI ΔI≤00≤ΔI≤00

ΔI(4)K1(64) 00≤ΔI≤00≤ΔI←9a ΔI≤00≤ΔI≤00
ΔI(4)s1(64) 003f007b ac00ac00

ΔI(4)mL(64) 340f9a9a 9aca9aca

ΔI(4)K2(64) ae0f0000 00ca0050

ΔI(4)s2(64) 9a9a0000 009a009a

ΔI 0a,21,3c,53,55,56,8b,8d,9d,a3,ad,ae,ba,ca,ee,f5,fe fd others total

Prob. 2−63 2−61 0 2−58.61

Equivalent Transform. For convenience, the positions of the XORing two
round keys were changed. As a result, ΔK ∗(6)

1(64) and ΔK ∗(6)
2(64) were also

changed, and X ∗(5)
(64) and I ∗(6)mL(64) were redefined, simultaneously, as follows

(see also Fig. 4):

ΔK ∗(6)
1(64) =MDS−1

H (ΔK(6)
1(64)) =MDS−1

H (0000009a 9a009a9a)

= 9a9a9a00 9a9a0000

ΔK ∗(6)
2(64) =MDS−1

L (ΔK(6)
2(64)) =MDS−1

L (009a009a 009a0000).

= d52ed52e 6002b52c

X ∗(5)
(64) = I(5)s2(64) ⊇K ∗(6)

1(64)

I ∗(6)mL(64) = I(6)s1(64) ⊇K ∗(6)
2(64) .

4.2 New Type of Impossible Differentials

The truncated differentials derived in Section 4.1 lead to impossible differentials
besides “possible” differentials depending on Δ1. That is, the impossible differ-
entials are directly connected to impossible differentials for S-box at I(4)K1(64)

and I(4)s1(64). In this sense, these are the novel type of impossible differentials
as far as we know. Similar studies were done in [5] using a small differential ex-
pansion rate, while our construction for an impossible differential directly uses
the impossible differentials in S-box when we apply the “miss-in-the-middle”
technique [4].



Differential and Impossible Differential Related-Key Attacks 27

5 Related-Key Attacks on Hierocrypt-L1

By using the differentials constructed in Section 4.1, related-key differential and
impossible differential attacks can be done. In this section, the related-key dif-
ferential attack and the related-key impossible differential attack are shown (See
also Fig. 4).

5.1 Related-Key Differential Attack

Attack Procedures. We consider the case of two related keys, one of which
is the encryption key itself, and adopt Δ1 = 9a in (3) because it leads to the
largest differential probability (See Table 4).

differential
characteristics

Guess the round keys circled.
About 235 differential 
values are possible.

MDSH

X(2)
(64) 00000000 0000009a

9a009a00
9a009a9a

K(2)
2(64)

plaintext : P(64)

I(2)
K2(64)

I(2)
s2(64)

Sort plaintexts by  
the 3-bytes circled.

9a009a9a 9a009a9a

s s s s s s s s

About 214 differential values 
are possible.

MDSH

X'(5)
(64)

0000009a 0000009a

K'(6)
1(64)

I(5)
K2(64)

I(5)
s2(64)

I(6)

9a9a9a00 9a9a0000

G th d

s s s s s s s s

mdsL mdsL

I'(6)
mL(64)

ciphertext : C(64)

K'(6)
2(64)

I(6)
K1(64)

I(6)
s1(64)

d52ed52e 6002b52c

Change the position 
to input the round keys 
by equivalent transform.

Sort ciphertexts by 
the 2-bytes circled.

About 248 differential 
values are possible.

Guess the round 
Keys circled.s s s s s s s s

Fig. 4. Procedure for a related-key possible/impossible differential attack on the middle
8 S-function layers of Hierocrypt-L1



28 B. Taga, S. Moriai, and K. Aoki

(i) Choice of Plaintexts

First, sort by the 2nd, 4th and 6th bytes of plaintexts, form 224 sets containing
240 plaintexts and choose 2n (1 ∈ n < 24) sets so that two sets are chosen
simultaneously in which differences in the 2nd and 6th bytes of plaintexts are
0 and difference in the 4th byte of plaintexts is 9a. Then, encrypt all 2n+40

plaintexts using the encryption key and the related key, and sort also by the
1st and 6th bytes of I ∗(6)mL(64).

(ii) Formation of Plaintext Pairs

There are five active bytes at I(2)K2(64), and the difference in each active

byte at I(2)K2(64) is restricted about 27 values because the difference in each

active byte at I(2)s2(64) is restricted to 9a. So, the differences in I(2)K2(64) and
plaintext are restricted to about 27·5 = 235 values. Therefore, about 2n+40+35 =
2n+75 plaintext pairs can be formed whose differences are among the above 235

differences. Note that the number of the above plaintext pairs is not 2n+75−1

because each pair is distinguished from that pair in which two plaintexts change
each other in related key settings.

(iii) Extraction of Ciphertext Pairs

The differences in I(6)s1(64), I
∗(6)

mL(64) and ciphertext, are restricted to about
28·6 = 248 out of all 264 values, because differences in the 1st and 6th bytes of
I(6)s1(64) are 0 and differences in the other six bytes of I(6)s1(64) can take any

28 values. Therefore, there exist about 2n+75−(64−48) = 2n+59 ciphertext pairs
whose differences are among the above 248 differences out of 2n+75 ciphertext
pairs corresponding to the plaintexts pairs formed in (ii).

(iv) Guess Round Keys at Plaintext Side

Guess the 1st, 3rd, 5th, 7th and 8th bytes of K(2)
2(64) in order that differ-

ence in I(2)s2(64) is 9a009a00 9a009a9a. The number of these round keys is

about 2(8−7)·5 = 25 for each plaintext pair extracted in (iii), because the mean
nonzero differential probability of the S-box is about 2−7. This is also derived
as follows: 2n+40 plaintext pairs satisfy the differential condition at I(2)s2(64)
for each key among 240 guessed keys, therefore, 2n+40+40 = 2n+80 tuples of
plaintext and guessed key can be constructed, while the number of the plain-
text pairs constructed in (ii) is about 2n+75.

(v) Guess Round Keys at Ciphertext Side

The differences in the 4th and 8th bytes of I(5)s2(64) are restricted to about 27

out of 28 values in order that the difference in I(5)K2(64) is 0000009a 0000009a.

For each ciphertext pair, the difference in each active byte of I(6)K1(64) is
restricted to about 27 out of 28 values. First, think about a pair of ciphertexts
extracted in (iii) and guess the difference in the 8th byte of I(5)s2(64). For each

ciphertext pair, it is restricted to about 27−(8−7)·2 = 25 out of about 27 values
by the differential conditions at the 3rd and 8th bytes of I(6)K1(64) and for

each of them 22 out of 216 values of the 3rd and 8th bytes of I(6)K1(64) are

possible. Then, about 25+2 = 27 values of the 3rd and 8th bytes of I(6)K1(64) are

possible. Next, guess the difference in the 4th byte of I(5)s2(64). It is restricted

to about 27−(8−7)·4 = 23 out of about 27 values by the differential conditions



Differential and Impossible Differential Related-Key Attacks 29

at the 2nd, 4th, 5th and 7th bytes of I(6)K1(64) and for each of them 22 out of

216 values of the 3rd and 8th bytes of I(6)K1(64) are possible. Finally, guess the

1st and 6th bytes of K ∗(6)
2(64) and the 4th and 8th bytes of K ∗(6)

1(64). About
28+8+1+1 = 218 out of 28·4 = 232 guessed keys satisfy the differential condition
at I(5)K2(64). After all, about 2

14+18 = 232 guessed keys, the 4th and 8th bytes

of K ∗(6)
1(64) and all bytes of K ∗(6)

2(64), remain for each ciphertext pairs. Note
that these procedures are independent of the procedure in (iv).

(vi) Construction of Tuples of Plaintext Pair, Ciphertext Pair and Round Key
By the argument in (iv) and (v), about 25+32 = 237 round keys, which consist
of the 1st, 3rd, 5th, 7th and 8th bytes of K(2)

2(64), the 4th and 8th bytes

of K ∗(6)
1(64) and all bytes of K ∗(6)

2(64), remain for each plaintext pair with
corresponding ciphertext pair extracted in (iii). Overall, 2n+59+37 = 2n+96

tuples of plaintext pairs with corresponding ciphertext pairs and round keys
satisfy the differential conditions. They suggest the correct key candidates.

(vii) Extraction from Key Candidates
As mentioned in (iv), 2n+40 pairs satisfy the differential conditions at the plain-
text side for each key candidate. Among the 2n+40 pairs, about 2n+40−58.61 =
2n−18.61 pairs satisfy the conditions of the differences at both plaintext side
and ciphertext side for the correct key, while about 2n+40−64 = 2n−24 pairs
satisfy those conditions for incorrect keys. By counting the number of votes
suggested by the 2n+96 tuples mentioned in (vi), we can extract the correct key
candidates because of the differences of probabilities between for the correct
key and for incorrect keys.

Complexities

(a) Data Complexity
As mentioned in (i), 2n+40 plaintexts with their corresponding ciphertexts and
two related keys are necessary, which are the data complexity for this attack.

(b) Time Complexity
There are four procedures taking large complexities. The first is to choose
about 2n+59 plaintext pairs with corresponding ciphertext pairs. By sorting
plaintexts and ciphertexts appropriately, the time complexity of this procedure
become O(2n+59). The second is to construct about 2n+96 tuples of plaintext
pairs with corresponding ciphertext pairs and guessed keys. This procedure
on the plaintext side is independent of that on the ciphertext side. On the
plaintext side, it takes O(2n+59+5) = O(2n+64) times. On the ciphertext side,
it takes O(2n+59+32) = O(2n+91) times, because the key candidates can be
efficiently picked up according to the procedure mentioned in (v). The third
is to increment and count counters for key candidates. It takes about 2n+96

times. Therefore among the first three procedures, the third has dominant time
complexity. The last is exhaustive search for remaining keys. Its complexity
depends on n and threshold to distinguish the correct key and incorrect keys
mentioned later.



30 B. Taga, S. Moriai, and K. Aoki

(c) Memory Complexity
As mentioned in (vii), 2120 counters for guessed keys are necessary, which is
independent of n. It is enough for each counter to have one byte.

For example, consider the case of n = 21. The correct key is expected to be
suggested about 221−18.61 = 5.25 times by the 221+96 = 2117 tuples mentioned
in (vi), while incorrect keys are expected to be suggested about 221−24 = 2−3

times. If key candidates suggested at least four times are regarded as the cor-
rect key and remains, then the number of remaining correct key candidates is
about 2103.3 out of 2120, and then the probability of a successful attack is about
0.77. The data, time and memory complexities are 240+21 = 261 plaintexts with
two related keys, incrementing and counting counter for correct key candidates
221+96 = 2117 times and enough memory for 2120 round keys, respectively. If the
above threshold is lowered, then the number of remaining correct key candidates
increases, although the probability of success increases.

5.2 Related-Key Impossible Differential Attack

Attack Procedures. In this attack, k (≤ 4) related keys are necessary because
of large data complexity to be mentioned later, and Δ1s must be non-zero values
excluding those in (3). We assume that all Δ1s are neither 0 nor in (3). Then

(
k
2

)

related-key pairs can be formed, though in practice 16 among the 255 non-zero
Δ1s are in (3).

(i) Choice of Plaintexts
This procedure is same as described in Section 5.1, except for using k related
keys.

(ii) Formation of Plaintext Pairs
This procedure is same as described in Section 5.1. Then about

(
k
2

) · 2n+75

plaintext pairs with their corresponding related-key pairs can be formed.
(iii) Extraction of Ciphertext Pairs
This procedure is same as described in Section 5.1. Then about

(
k
2

) · 2n+59

plaintext pairs with their corresponding related-keys pairs and ciphertext pairs
are extracted.

(iv) Guess Round Keys at Plaintext Side
This procedure is same as described in Section 5.1.

(v) Guess Round Keys at Ciphertext Side
This procedure is same as described in Section 5.1.

(vi) Construction of Tuples of Plaintext Pair, Ciphertext Pair and Round Key
This procedure is same as described in Section 5.1. Then about

(
k
2

) · 2n+96

tuples of plaintext pairs with corresponding ciphertext pairs and guessed keys
are constructed.

(vii) Exclusion of incorrect keys from Key Candidates
The key candidates satisfying the same conditions as those in Section 5.1 are
excluded from the correct key candidates in impossible differential attacks,
unlike in differential attacks. About 237 among the 2120 120-bit round keys
satisfy these conditions for each pair. Therefore, they are excluded by impos-
sible differentials, unlike the case in Section 5.1.



Differential and Impossible Differential Related-Key Attacks 31

Complexities

(a) Data Complexity
Similar to the argument in Section 5.1, attackers need 2n+40 plaintexts with k
related keys.

(b) Time Complexity
Similar to the argument in Section 5.1, to mark incorrect keys or search for
remaining keys has dominant complexity. The time complexity to mark incor-
rect keys is about

(
k
2

) · 2n+96 times. In order to reduce the number of 120-bit
round key candidates to 2120−d, the following equation holds:

2120−d = 2120(1− 237−120)(
k
2)·2n+59

.

(c) Memory Complexity
Similar to the case in Section 5.1, attackers need to have enough memory
for 2120 120-bit round keys, which is independent of n. It is enough for each
counter to have one byte.

For example, if d = 8, then the data complexity is 267.5/k(k − 1) with k related
keys. k must be at least four, otherwise the data complexity exceeds 264. The
time complexity is marking incorrect keys about 2122.5 times. As d decreases, the
number of remaining key candidates increases, while the data/time complexities
decrease, and vice versa.

6 Conclusion

We found particular differential characteristics in key scheduling of Hierocrypt-
L1. They have no active S-boxes, that is, their probability is 1. Such char-
acteristics do not exist in many block ciphers [14,1,22,18,10,12], except the
trivial example like DES [20] with no S-boxes in its key scheduling part. Us-
ing these characteristics, we present two related-key attacks on the middle 8
S-function layers of Hierocrypt-L1. One is an ordinary differential attack, for
which the data/memory/time complexities are 261 chosen plaintexts with two
related keys/2117/2120. The other is an impossible differential attack, for which
the data/memory/time complexities are 267.5/k(k − 1) chosen plaintexts with
k (≤ 4) related keys/2122.5/2120. In the impossible differential attack, we use a
new type of impossible differential characteristic.

There might be other differential characteristics in the key scheduling that
can lead to powerful attacks on more than 8 S-function layers in Hierocrypt-L1,
though the probability of differential characteristics in key scheduling is less than
1. There also might be other kinds of attack using those characteristics. These
problems remain open.

References

1. Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita,
T.: Camellia: A 128-Bit Block Cipher Suitable for Multiple Platforms - Design
and Analysis. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012,
pp. 39–56. Springer, Heidelberg (2001)



32 B. Taga, S. Moriai, and K. Aoki

2. Biham, E.: New types of cryptanalytic attacks using related keys. J. Cryptol-
ogy 7(4), 229–246 (1994)

3. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack Reduced to 31
Rounds Using Impossible Differentials. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 12–23. Springer, Heidelberg (1999)

4. Biham, E., Biryukov, A., Shamir, A.: Miss in the Middle Attacks on IDEA and
Khufu. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 124–138. Springer,
Heidelberg (1999)

5. Bouillaguet, C., Dunkelman, O., Fouque, P.-A., Leurent, G.: New Insights on Im-
possible Differential Cryptanalysis. In: Miri, A., Vaudenay, S. (eds.) SAC 2011.
LNCS, vol. 7118, pp. 243–259. Springer, Heidelberg (2012)

6. Biryukov, A., Khovratovich, D.: Related-Key Cryptanalysis of the Full AES-192
and AES-256. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 1–18.
Springer, Heidelberg (2009)

7. Biryukov, A., Khovratovich, D., Nikolić, I.: Distinguisher and Related-Key Attack
on the Full AES-256. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
231–249. Springer, Heidelberg (2009)

8. Bai, D., Li, L.: New Impossible Differential Attacks on Camellia. In: Ryan, M.D.,
Smyth, B., Wang, G. (eds.) ISPEC 2012. LNCS, vol. 7232, pp. 80–96. Springer,
Heidelberg (2012)

9. Barreto, P.S.L.M., Rijmen, V., Nakahara Jr., J., Preneel, B., Vandewalle, J., Kim,
H.Y.: Improved Square Attacks against Reduced-Round Hierocrypt. In: Matsui,
M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 165–173. Springer, Heidelberg (2002)

10. CRYPTREC: Cryptographic Techniques Specifications: CIPHERUNICORN-A,
http://www.cryptrec.go.jp/cryptrec 03 spec cypherlist files/PDF/

07 02espec.pdf

11. CRYPTREC: Specification on a Block Cipher: Hierocrypt-L1,
http://www.cryptrec.go.jp/cryptrec 03 spec cypherlist files/PDF/

04 02espec.pdf

12. CRYPTREC: Specification on a Block Cipher: Hierocrypt-3,
http://www.cryptrec.go.jp/cryptrec 03 spec cypherlist files/PDF/

08 02espec.pdf

13. CRYPTREC homepage, http://www.cryptrec.go.jp/english/index.html
14. FIPS-197: Advanced Encryption Standard (November 2001),

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

15. Knudsen, L.R.: Cryptanalysis of LOKI91. In: Zheng, Y., Seberry, J. (eds.)
AUSCRYPT 1992. LNCS, vol. 718, pp. 196–208. Springer, Heidelberg (1993)

16. Liu, Y., Gu, D., Liu, Z., Li, W.: Impossible Differential Attacks on Reduced Round
LBlock. In: Ryan, M.D., Smyth, B., Wang, G. (eds.) ISPEC 2012. LNCS, vol. 7232,
pp. 97–108. Springer, Heidelberg (2012)

17. Mala, H., Dakhilalian, M., Rijmen, V., Modarres-Hashemi, M.: Improved Impos-
sible Differential Cryptanalysis of 7-Round AES-128. In: Gong, G., Gupta, K.C.
(eds.) INDOCRYPT 2010. LNCS, vol. 6498, pp. 282–291. Springer, Heidelberg
(2010)

18. Matsui, M.: New block encryption algorithm MISTY. In: Biham, E. (ed.) FSE
1997. LNCS, vol. 1267, pp. 54–68. Springer, Heidelberg (1997)

19. NESSIE project, https://www.cosic.esat.kuleuven.be/nessie/
20. NIST Special Publication 800-67 Revision 1: Recommendation for the Triple Data

Encryption Algorithm (TDEA) Block Cipher, http://csrc.nist.gov/
publications/nistpubs/800-67-Rev1/SP-800-67-Rev1.pdf

http://www.cryptrec.go.jp/cryptrec_03_spec_cypherlist_files/PDF/07_02espec.pdf
http://www.cryptrec.go.jp/cryptrec_03_spec_cypherlist_files/PDF/07_02espec.pdf
http://www.cryptrec.go.jp/cryptrec_03_spec_cypherlist_files/PDF/04_02espec.pdf
http://www.cryptrec.go.jp/cryptrec_03_spec_cypherlist_files/PDF/04_02espec.pdf
http://www.cryptrec.go.jp/cryptrec_03_spec_cypherlist_files/PDF/08_02espec.pdf
http://www.cryptrec.go.jp/cryptrec_03_spec_cypherlist_files/PDF/08_02espec.pdf
http://www.cryptrec.go.jp/english/index.html
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
https://www.cosic.esat.kuleuven.be/nessie/
http://csrc.nist.gov/publications/nistpubs/800-67-Rev1/SP-800-67-Rev1.pdf
http://csrc.nist.gov/publications/nistpubs/800-67-Rev1/SP-800-67-Rev1.pdf


Differential and Impossible Differential Related-Key Attacks 33

21. Ohkuma, K., Muratani, H., Sano, F., Kawamura, S.: The Block Cipher Hiero-
crypt. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp. 72–88.
Springer, Heidelberg (2001)

22. Shimoyama, T., Yanami, H., Yokoyama, K., Takenaka, M., Itoh, K., Yajima, J.,
Torii, N., Tanaka, H.: The Block Cipher SC2000. In: Matsui, M. (ed.) FSE 2001.
LNCS, vol. 2355, pp. 312–327. Springer, Heidelberg (2002)

23. Toshiba Co., Ltd.: Self Evaluation: Hierocrypt-L1, http://www.toshiba.co.jp/
rdc/security/hierocrypt/files/hcl1 01eeval.pdf

24. Toshiba Co., Ltd.: Specification on a Block Cipher: Hierocrypt-L1,
http://www.toshiba.co.jp/rdc/security/hierocrypt/index.htm

http://www.toshiba.co.jp/rdc/security/hierocrypt/files/hcl1_01eeval.pdf
http://www.toshiba.co.jp/rdc/security/hierocrypt/files/hcl1_01eeval.pdf
http://www.toshiba.co.jp/rdc/security/hierocrypt/index.htm


Some Insights into Differential Cryptanalysis

of Grain v1

Subhadeep Banikα

Applied Statistics Unit, Indian Statistical Institute Kolkata
s.banik r@isical.ac.in

Abstract. As far as the Differential Cryptanalysis of reduced round
Grain v1 is concerned, the best results were those published by Knellwolf
et al. in Asiacrypt 2011. In an extended version of the paper, it was
shown that it was possible to retrieve (i) 5 expressions in the Secret
Key bits for a variant of Grain v1 that employs 97 rounds (in place
of 160) in its Key Scheduling process using 227 chosen IVs and (ii) 1
expression in Secret Key bits for a variant that employs 104 rounds in
its Key Scheduling using 235 chosen IVs. The authors had arrived at the
values of these Secret Key expressions by observing certain biases in the
keystream bits generated by the chosen IVs. These biases were observed
purely experimentally and no theoretical justification was provided for
the same. In this paper, we will revisit Knellwolf’s attacks on Grain v1
and try to provide a theoretical framework that will serve to prove the
correctness of these attacks. We will also look at open problems which
may possibly pave way for further research on Differential Cryptanalysis
of Grain v1.

Keywords: eStream, Differential Cryptanalysis, Dynamic Cube Attack,
Stream Cipher.

1 Introduction

The Grain v1 stream cipher is in the hardware profile of the eStream portfolio [1]
that has been designed by Hell, Johansson and Meier in 2005 [15]. It is a syn-
chronous bit oriented cipher, although it is possible to achieve higher throughput
at the expense of additional hardware. The physical structure of Grain is simple
as well as elegant and it has been designed so as to require low hardware com-
plexity. Following the publication of two attacks [6, 18] on the initial design of
the cipher, the modified version Grain v1 [15] was proposed. Later, the design-
ers came up with a second version of Grain, i.e., Grain-128 [16] that uses 128
bit Key. Thereafter, cipher Grain-128a [2] was designed for the dual purpose of
message authentication alongside message encryption. For detailed cryptanalytic
results related to this family, the reader may refer to [3–5,7–9,13,14,21] and the
references therein.

β Supported by Center of Excellence in Cryptography and R.C. Bose Center for Cryp-
tology and Information Security, ISI Kolkata.

W. Susilo and Y. Mu (Eds.): ACISP 2014, LNCS 8544, pp. 34–49, 2014.
c© Springer International Publishing Switzerland 2014



Some Insights into Differential Cryptanalysis of Grain v1 35

Cube attacks was first introduced by Dinur and Shamir in [12] and have
been used extensively to attack reduced round variants of the Grain family.
In [10, 11], cube attacks have been used to successfully cryptanalyze reduced-
round variants as well as full Grain 128. In [17], cube distinguishers were used to
distinguish a variant of Grain-128a, that employs 189 out of the 256 rounds in
the Key Scheduling process. However, due to the relative complex nature of the
component functions used in the design of Grain v1, there have not been many
advances in this direction against it. The best published work on Grain v1 is
by Knellwolf et al [20], an extended version of which appeared in [19, Chapter
3.4]. The attack, which can be best described as a dynamic cube attack over a
single-dimensional cube, achieves the following objectives:

a) It retrieves 5 expressions in the Secret Key bits for a variant of Grain v1
that employs 97 rounds (in place of 160) in its Key Scheduling process using
227 chosen IVs.

b) It retrieves 1 expression in Secret Key bits for a variant that employs 104
rounds in its Key Scheduling using 235 chosen IVs.

The values of these Secret Key expressions by observing certain non-randomness
in the keystream bits generated by the chosen IVs. More specifically, the authors
could enumerate a set of IVs for which, the sum of the output bits over the sin-
gle dimensional cube were biased towards 0. These biases were observed purely
experimentally and no theoretical justification was provided for the same. Pro-
viding a theoretical explanation of these experimental observations has thus been
an open problem in this domain.

In this paper we will try to provide some answers to these questions which
have thus far remained open. We will first briefly revisit the details of the attacks
on Grain v1 described in [19, Chapter 3.4]. We will then describe a Differential
Engine that will keep track of the differential trails in the Key Scheduling part
of the cipher. Using this tool we will show that biases observed in the output
cubes after 97 rounds respectively are due to unbalanced derivatives of the NFSR
update function g and output function h used in the design of Grain v1, i.e.,
there exist differentials χ, σ for which the Boolean Functions g(x) ⊕ g(x ⊕ χ)
and h(x) ⊕ h(x ⊕ σ) are both unbalanced. For the attack on 104 rounds, the
author of [19] observes that the bias is observed in only about 50% of the cases,
and at this point it is not exactly clear what algebraic conditions the Secret Key
needs to satisfy in order to observe the bias and perform the Key recovery.

1.1 Description of Grain v1

Grain v1 consists of an 80-bit LFSR and an 80-bit NFSR. Certain bits of both
the shift registers are taken as inputs to a combining Boolean function, whence
the key-stream is produced. The update function of the LFSR is given by the
equation yt+80 = f(Yt), where Yt = [yt, yt+1, . . . , yt+79] is the 80-bit vector
that denotes the LFSR state at the tth clock interval and f is a linear function
on the LFSR state bits. The NFSR state is updated as xt+n = yt ⊕ g(Xt).



36 S. Banik

Here, Xt = [xt, xt+1, . . . , xt+n−1] is an n-bit vector that denotes the NFSR state
at the tth clock interval and g is a non-linear function of the NFSR state bits.
The output key-stream is produced by combining the LFSR and NFSR bits
as zt = h∈(Xt, Yt) =

⊕
a≤A xt+a ⊕ h(Xt, Yt), where A is some fixed subset of

{0, 1, 2, . . . , n− 1}.
The cipher uses an 80-bit Secret Key and a 64-bit IV. The Key is loaded in

the NFSR and the IV is loaded in the 0th to the 63rd bits of the LFSR. The
remaining bits of the LFSR are loaded with the P = 0x ffff. After this, the
Key-Scheduling Algorithm (KSA) is executed, during which for 160 rounds,
the key-stream produced at the output point of the function h∈ is XOR-ed to
both the LFSR and NFSR update functions, i.e., during the first 160 clock
intervals, the LFSR and the NFSR bits are updated as yt+80 = zt ⊕ f(Yt),
xt+80 = yt ⊕ zt ⊕ g(Xt). After the completion of the KSA, the feedback of the
keystream bit is discontinued and made available for encryption. For a complete
mathematical description of the functions f, g, h please refer to [15].

2 Knellwolf’s Attack on Grain v1

The paper [20] by Knellwolf et al. at Asiacrypt 2011 remains the best published
result in the field of cryptanalysis of Grain v1 in terms of the number of rounds
attacked. We will describe a slightly modified version of the same attack that
appeared in [19, Chapter 3.4]. As alluded to earlier, the attack can be described
as a dynamic cube attack over a cube of dimension one. Grain v1 employs a 64
bit IV, and the 37th IV bit was chosen as the cube variable. Algebraically, this is
equivalent to analyzing two initializations of the Grain v1 cipher, one with the
initial state equal to

X0 = [k0, k1, . . . , k79], Y0 = [v0, v1, . . . , v37, . . . , v63, 1, 1, . . . , 1],

and the other with the initial state equal to

X ∈
0 = [k0, k1, . . . , k79], Y ∈

0 = [v0, v1, . . . , 1⊕ v37, . . . , v63, 1, 1, . . . , 1].

where K = [k0, k1, . . . , k79], V = [v0, v1, . . . , v37, . . . , v63], V
∈ = [v0, v1, . . . , 1 ⊕

v37, . . . , v63] are the formal notations for the Secret Key and the two IVs that
differ in the 37th position. Let Xi, Yi and X

∈
i, Y

∈
i denote the NFSR, LFSR states

at the ith KSA round produced during the evolution of X0, Y0 and X ∈
0, Y

∈
0 re-

spectively.
The two initializations byX0, Y0 andX

∈
0, Y

∈
0 , thus, imply that at the beginning

of the Key Scheduling Algorithm (KSA), a differential is introduced in the 37th

LFSR bit. It seems inevitable that as more and more KSA rounds are completed
the difference would inevitably spread to the NFSR as well, i.e., there exists some
i for which Xi and X ∈

i would no longer be algebraically equal. The strategy of
the attackers, in [19], was to delay the inevitable and prevent the diffusion of
the differential to the NFSR for as many KSA rounds as possible, by imposing
certain algebraic conditions on the IV and Secret Key bits. As a result of this



Some Insights into Differential Cryptanalysis of Grain v1 37

the attacker obtains several algebraic relations between the Secret Key bits and
the IV bits that must be satisfied if the differential is to be contained in the
LFSR for as long as possible. These relations may be of the following types :

Type 1: A relation of the form F1(V ) = 0, i.e., involving only the IV bits.

Type 2: A relation of the form F2(K,V ) = 0, i.e., involving both the Secret
Key and the IV bits.

Now let the term zt, z
∈
t respectively be used describe the output bit produced

in the tth KSA round by the Key-IV pair K,V and K,V ∈ (note that when we try
to cryptanalyze Grain v1 reduced to r KSA rounds, the values of the output bits
zt, z

∈
t for all t < r are unavailable to the attacker). The attacker now analyzes

the pair of simplified cipher initializations where the the differential originally
introduced in the 37th LFSR bit is prevented from propagating into the NFSR
by imposing suitable Type 1, 2 relations between the Key and IV bits. In such a
simplified cipher, the attacker now tries to find some i for which the distribution
of the sum zi ⊕ z∈i shows some non-randomness. Based on this randomness the
attacker tries to guess the values of one or several expressions in the Secret
Key bits. We will illustrate this attack paradigm with this concrete example as
described below.

1. The attacker begins to analyze the two algebraic systems resulting from the
initialization of Grain v1 by the Key-IV pairs K,V and K,V ∈ respectively.
Thus the attacker has to analyze the evolution of the difference between
the states Xi, Yi and X ∈

i, Y
∈
i for increasing values of i starting from 0, with

X0 = K,Y0 = V ||0x ffff and X ∈
0 = K,Y ∈

0 = V ∈||0x ffff as described
above.

2. The attacker then looks at all KSA rounds t during which the differential
could propagate to the NFSR. The first such instance occurs at round t = 12,
when the difference originally introduced at LFSR bit 37 at t = 0, now sits in
LFSR location 25 which feeds the output function h. Since during the KSA
the NFSR is updated as xt+n = g(Xt) ⊕ yt ⊕ zt, the difference generated
between the updated NFSR bits x80+12 and x∈80+12 is given by

x80+12 ⊕ x∈80+12 = [ g(X12)⊕ y12 ⊕ z12 ]⊕ [ g(X ∈
12)⊕ y∈12 ⊕ z∈12 ]

= z12 ⊕ z∈12 = v15v58 ⊕ v58k75 ⊕ 1

By algebraic calculation it can be verified that X12 = X ∈
12 and y12 = y∈12

and hence the above result follows. Now, the attacker must therefore set
x80+12 ⊕ x∈80+12 = v15v58 ⊕ v58k75 ⊕ 1 = 0 to prevent the propagation of this
differential. This can be achieved by setting v58 ⊕ 1 = 0 and

C1 : v15 ⊕K1 = 0, (1)

where K1 = k75 ⊕ 1. Thus we obtain one Type 1 relation and one Type 2
relation.



38 S. Banik

3. The next instance of difference propagation occurs at KSA round t = 34. At
this round, the difference generated between the updated NFSR bits x80+34

and x∈80+34 is given by

x80+34 ⊕ x∈80+34 =[ g(X34)⊕ y34 ⊕ z34 ]⊕ [ g(X ∈
34)⊕ y∈34 ⊕ z∈34 ] = z34 ⊕ z∈34

=y98 ⊕ y59y80 ⊕ y80y98 ⊕ y80x97

This difference can be nullified if we set y98 = y80 = 0. Now, both y98 and y80
are functions of k0, k1, . . . , k79 and v0, v1, . . . , v63 and hence y98 = y80 = 0 is
satisfied if we impose the following conditions: v0 = 0, v1 = 0, v3 = 0, v4 =
0, v5 = 0, v21 = 0, v25 = 0, v26 = 0, v27 = 0, v43 = 0, v46 = 0, v47 = 0, v48 = 0

C2 : v13 ⊕ v23 ⊕ v38 ⊕ v51 ⊕ v62 ⊕K2 = 0, (2)

C3 : v2 ⊕ v18 ⊕ v31 ⊕ v40 ⊕ v41 ⊕ v53 ⊕ v56 ⊕K3 = 0, (3)

where
K2 = k1 ⊕ k2 ⊕ k4 ⊕ k10 ⊕ k31 ⊕ k43 ⊕ k56,

and K3 is a polynomial expression of degree 7 with 39 monomials and 31
key variables.

4. The next instance is at t = 40. Again it can be verified that

x80+40 ⊕ x∈80+40 = [g(X40)⊕ y40 ⊕ z40]⊕ [g(X ∈
40)⊕ y∈40 ⊕ z∈40] = z40 ⊕ z∈40

= v43y86 ⊕ v43 ⊕ y86x103 ⊕ y86 ⊕ x103

The difference is nullified if we set v43 = 0, y86 = 0, and x103 = 0 for which
the following conditions are imposed: v8 = 0, v9 = 0, v10 = 0, v19 = 0, v28 =
0, v29 = 0, v31 = 0, v44 = 0, v49 = 0, v51 = 0, v52 = 0, v53 = 0, v57 = 0

C4 : v6 ⊕K4 = 0, (4)

C5 : v7 ⊕ v20 ⊕ v23 ⊕ v32 ⊕ v45 ⊕K5 = 0, (5)

K4 = k7 ⊕ k8 ⊕ k10 ⊕ k16 ⊕ k37 ⊕ k49 ⊕ k62 ⊕ 1

and K5 is a polynomial expression of degree 15 with 2365 monomials in 57
key variables.

The five Type 2 relations C1, C2, . . . , C5 obtained in Equations (1)-(5) are
crucial to the Key recovery attack. First note that due to the several Type
1 relations that assign 27 of the IV bits to 0 or 1, the effective IV space is
reduced to {0, 1}37. We will partition this space into 25 disjoint sets Ti, 0 ≤
i < 32 as follows. Let {v2, v6, v7, v13, v15} be the set of dynamic cube variables.
Let K1,K2, . . . ,K5 be the unknown key expressions as described above and
write U = [K1,K2,K3,K4,K5]. Then, for each U ∈ {0, 1}5 the set TU can be
generated as follows:



Some Insights into Differential Cryptanalysis of Grain v1 39

1. Define the Set

TU ← {V ∈ {0, 1}64 | v58 = 1, v0 = 0, v1 = 0, v3 = 0, v4 = 0, v5 = 0, v21 = 0,

v25 = 0, v26 = 0, v27 = 0, v43 = 0, v46 = 0, v47 = 0,

v48 = 0, v8 = 0, v9 = 0, v10 = 0, v19 = 0, v28 = 0,

v29 = 0, v31 = 0, v44 = 0, v49 = 0, v51 = 0, v52 = 0,

v53 = 0, v57 = 0}
2. For all V ∈ TU, adjust v2, v6, v7, v13, v15 according to U:

v15 ← K1, v13 ← v23 ⊕ v38 ⊕ v51 ⊕ v62 ⊕K2,

v2 ← v18 ⊕ v31 ⊕ v40 ⊕ v41 ⊕ v53 ⊕ v56 ⊕K3

v6 ← K4, v7 ← v20 ⊕ v23 ⊕ v32 ⊕ v45 ⊕K5

The attacker observes that if the conditions C1 to C5 are all satisfied then
the distributions of z97 ⊕ z∈97 and z104 ⊕ z∈104 exhibit non-random behavior.
More specifically, it was experimentally observed that

Pr [z97 ⊕ z∈97 = 0 | Ci is satisfied ∀i ∈ [1, 5]] =
1

2
+ α1, (6)

Pr [z104 ⊕ z∈104 = 0 | Ci is satisfied ∀i ∈ [1, 5]] =
1

2
+ α2, (7)

where α1, α2 are some positive biases. Note that these biases were observed
experimentally and no theoretical proof was provided for them. In this paper,
we shall attempt to provide a theoretical framework to prove the bias at
round 97. To mount the attack, the attacker tries to compute the distribution
of z97 ⊕ z∈97 and z104 ⊕ z∈104 in each of the 32 sets TU. Observe that all the
conditions C1, C2, . . . , C5 are satisfied in only one of these sets TU0 where
U0 is the correct value of U. The attacker will therefore be able to observe
the bias in the set TU0 , and by standard randomness assumptions, fail to
observe any bias in the other sets, thereby determining the values of the five
expressions K1,K2, . . . ,K5. As it turns out, it the attacker may observe bias
in three other sets TU′ , where the values of U∈ are different from the correct
U0. In fact the conditions C2, C3 need not be satisfied and thus the bias will
be observed in all the other 3 sets where C1, C4, C5 are satisfied but C2, C3

are not, and we shall provide a framework to prove this.

3 The Differential Engine ΔGrainKSA

In order to prove the biases observed in the distribution of z97⊕z∈97 and z104⊕z∈104
we will define a tool βGrainKSA that will keep track of the differential trails of
any cipher in the Grain family during the Key Scheduling process. The tool is
a modification of the engine D-Grain that appeared in [3]. Note that while
D-Grain computed the differential trails during the PRGA, our engine will do
so during the KSA.



40 S. Banik

3.1 Generalized Grain Cipher

To begin, let us define a generalized Grain stream cipher which will cover the
descriptions of Grain v1, Grain-128 and Grain-128a as well. Any cipher in the
Grain family consists of an n-bit LFSR and an n-bit NFSR. The update function
of the LFSR is given by the equation

yt+n = f(Yt) = yt ⊕ yt+f1 ⊕ yt+f2 ⊕ · · · ⊕ yt+fa ,

where Yt = [yt, yt+1, . . . , yt+n−1] is an n-bit vector that denotes the LFSR state
at the tth clock interval and f is a linear function on the LFSR state bits obtained
from a primitive polynomial in GF (2) of degree n. The NFSR state is updated
as

xt+n = yt ⊕ g(Xt) = yt ⊕ g(xt, xt+g1 , xt+g2 , . . . , xt+gb )

= yt ⊕ xt ⊕ xt+g1 ⊕ · · · ⊕ xt+gb0
⊕ g∈(xt+gb0+1

, xt+gb0+2
, . . . , xt+gb )

Here, Xt = [xt, xt+1, . . . , xt+n−1] is an n-bit vector that denotes the NFSR state
at the tth clock interval and g is a non-linear function of the NFSR state bits in
which the NFSR locations 0, g1, g2, . . . , gb0 only contribute linearly. The output
key-stream is produced by combining the LFSR and NFSR bits as

zt = xt+l1 ⊕ xt+l2 ⊕ · · · ⊕ xt+lc ⊕ yt+i1 ⊕ yt+i2 ⊕ · · · ⊕ yt+id⊕
h(yt+h1 , yt+h2 , . . . , yt+he , xt+j1 , xt+j2 , . . . , xt+jw ).

Here h is another non-linear combining Boolean function. So it is clear that
Grain v1, Grain-128 and Grain-128a are particular instances of the generalized
Grain cipher.

3.2 ΔGrainKSA

As defined earlier, let S0 = [X0||Y0] ∈ {0, 1}2n be the initial state of the general-

ized Grain KSA and Sβ
0 = [Xβ

0 ||Y β
0 ] be the initial state which differs from S0 in

some LFSR location τ ∈ [0,m− 1], where m is the length of the IV. Note that,
in the particular case of Grain v1, where we introduce the difference in the 37th

IV bit, the notation X ∈
0, Y

∈
0 actually implies X37

0 , Y 37
0 in this context.

The task is to ascertain how the corresponding internal states in the tth round
St and S

β
t will differ from each other, for some integer t > 0. We present the fol-

lowing algorithm which we will call βGrainKSA that takes as input the difference
location τ ∈ [0,m− 1] and the value r of the number of rounds, and returns the
following: (i) a set of r integer arrays Φt, for 0 ≤ t < r, each of length c + d,
(ii) a set of r integer arrays πt, for 0 ≤ t < r, each of length e + w and (iii) an
integer array βZ of length r. Note that as already defined in the description of
generalized Grain, d, c are the number of LFSR, NFSR bits which are linearly
added to the output function h. And e, w are the number of LFSR, NFSR bits
that are input to the function h.

Now consider the corresponding generalized differential engine ββ-GrainKSA
with an n-cell LFSR βL and an n-cell NFSR βN . All the elements of βL



Some Insights into Differential Cryptanalysis of Grain v1 41

and βN are integers. We will denote the tth round state of βL as βLt =
[ut, ut+1, . . . , ut+n−1] and that of βN as βNt = [vt, vt+1, . . . , vt+n−1]. Initially
all the elements of βN,βL are set to 0, with the only exception that – The cell
numbered τ of βL is set to 1. The initial states βN0, βL0 are indicative of the
difference between S0 and Sβ

0 and we will show that the tth states βNt, βLt

are indicative of the difference between St and Sβ
t . Define the function lin :

∪∗
i=1Z

i
+ → {0, 1, 2} (where Z+ is the set of non negative integers)

lin(q1, q2, . . . , qi) =

{
q1 + q2 + · · ·+ qi mod 2 if max(q1, q2, . . . , qi) ≤ 1,
2, otherwise.

Define the intermediate variables Σt, rt, Ωt as follows:

Σt = lin (ut, ut+f1 , . . . , ut+fa), rt = lin (ut, vt, vt+g1 , · · · , vt+gb0
)

Ωt = 2 ·OR(vt+gb0+1
, vt+gb0+2

, . . . , vt+gb).

Here OR is a map from ∪∗
i=1Z

i
+ → {0, 1} which roughly represents the logical

‘or’ operation and is defined as

OR(q0, q1, . . . , qi) =

{
0, if q0 = q1 = q2 = · · · = qi = 0,
1, otherwise.

Let Φt = [vt+l1 , vt+l2 , . . . , vt+lc , ut+i1 , ut+i2 , . . . , ut+id ], and also define the vector
πt = [ut+h1 , ut+h2 , . . . , ut+he , vt+j1 , vt+j2 , . . . , vt+jw ]. Note that Φt(πt) is the set
of cells in ββ-GrainKSA which corresponds to the bits which are linearly added
to the output function h (input to h) in the tth KSA stage of the actual cipher.
The tth key-stream element πt produced by this engine is given as

πt = lin (lin(Φt), 2 ·OR(πt))
Here 0 denotes the all zero vector. Now βL updates itself as ut+n = lin(Σt, πt).
And similarly, βN updates itself as vt+n = lin(rt, Ωt, πt). We will now explain
the rationale behind choosing the internal variables and then explain clearly the
working of the engine:

1. The Keystream element πt: We will begin with the working hypothesis that
if any element in the differential engine is :
→ 0, the difference of the corresponding elements in St and Sβ

t is always 0.

→ 1, the difference of the corresponding elements in St and Sβ
t is always 1.

→ 2, the difference of the corresponding elements in St and Sβ
t is proba-

bilistically either 0 or 1 and the exact value would depend on the exact
value of the initial vector S0 and actual update functions.

For example if some element ut+n is 0 we can assume that the corresponding
LFSR bits yt+n and yβt+n are always equal, if πt is 1 for some t, then we can

assume that difference of the keystream bits zt and z
β
t is always unequal etc.

We will show that this hypotheses is correct as we go along trying to explain
the rationale behind the various elements of the engine.



42 S. Banik

The function lin(Δ) computes the modulo 2 sum of the elements of the
vector Δ only if all its elements are 0 or 1, otherwise it returns 2. This
captures the notion of difference propagation rules over ordinary GF(2) ad-
dition. Let x and xβ be vectors in the original cipher initializations S0 and
Sβ
0 respectively, whose contents need to be summed for some intermediate

cipher operation. Let δ = x ⊕ xβ, then the difference of sums of the bits of
x and xβ is equal to the sum of the contents of δ. Now if the elements of
δ are always 0 or 1 (this corresponds to all elements of Δ being either 0 or
1 in the differential engine), it implies that the corresponding elements of
x and xβ are respectively always equal or different. Then, the difference of
sums of the bits of x and xβ will either be always 0 or 1 and is given by the
sum of elements of δ. In such an event, lin(Δ) computes the modulo 2 sum
of the elements of Δ which is either 0 or 1. If, however, some corresponding
elements x and xβ are only probabilistically equal (this corresponds to some
elements of Δ being equal to 2), then the difference between the sums of
their contents is also probabilistically 0 or 1. and lin(Δ) returns 2.
The function 2 ·OR(Δ) returns 0 only if all elements of the vector Δ is 0
and returns 2 otherwise. This captures the notion of difference propagation
rules over non-linear Boolean functions. Again, let x and xβ be vectors in the
original cipher initializations S0 and Sβ

0 respectively, which are fed to some
non-linear function F during some intermediate cipher operation. As above,
let δ = x⊕xβ. Then difference between F (x) and F (xβ) is deterministically
0 only if all elements of δ are also deterministically 0 (this corresponds to
all elements of Δ being 0). If even one element of δ is not deterministically
0 then the difference between F (x) and F (xβ) becomes probabilistic and
depends on the nature of the Boolean Function F (x) ⊕ F (xβ). In such an
event, 2 · OR(Δ) returns 2.

Now observe the equation defining πt. Note that Φt consists of tap locations
that add linearly to the output function and πt consists of the locations that
feed the non-linear h function in the original generalized Grain cipher. Thus
the lin() of lin(Φt) and 2 · OR(πt) will effectively capture the difference be-

tween actual tth round keystream bits zt and zβt in the two initializations of
the generalized cipher.

2. Update rule of βL: In the original cipher, the update to the LFSR is the
GF(2) sum of 2 parts: the keystream bit zt and the linear update func-
tion f over the LFSR bits yt, yt+f1 , yt+f2 , . . . , yt+fa . The function Σt =
lin(ut, ut+f1 , . . . , ut+fa) captures the difference propagation over the linear
sum. So the definition of ut+n which is lin(Σt, πt) captures the difference

between yt+n and yβt+n.

3. Update rule of βN : In the original cipher, the update to the NFSR is the
GF(2) sum of 4 parts: the keystream bit zt, the LFSR bit yt, the linear func-
tion over the NFSR bits xt, xt+g1 , . . . , xt+gb0

and the non-linear update func-
tion g∈ over the bits xt+gb0+1

, . . . , xt+gb . The function rt = lin (ut, vt, vt+g1



Some Insights into Differential Cryptanalysis of Grain v1 43

, · · · , vt+gb0
) captures the difference propagation over the linear parts, and

Ωt = 2 · OR(vt+gb0+1
, vt+gb0+2

, . . . , vt+gb) captures the difference over the
non-linear function g∈. And thus the definition of vt+n which is lin(rt, Ωt, πt)

captures the difference between xt+n and xβt+n.

4. An exception to the rule: Our definition of πt some times fails to capture the
exact difference between zt and zβt . We will demonstrate this with an exam-
ple: We go back to our original system in Grain v1 where the differential is
introduced via the 37th IV bit and therefore we run the engine β37-GrainKSA.
At round 30 the values of Φt and πt are as follows:

t = 30 : Φt = 0, πt = [ut+3 = 0, ut+25 = 0, ut+46 = 0, ut+64 = 1, vt+63 = 0]

Here 0 is the all zero vector. This implies that if we introduce an IV dif-
ferential at location 37 then at KSA round 30 all state bits in S30 and S37

30

involved in the computation of their respective keystream bits are equal
except the bits yt+64 and y37t+64, which are deterministically unequal, i.e.,
yt+64 = 1⊕ y37t+64 always holds. Then, it follows that

z30 ⊕ z3730 = h(y33, y55, y76, y94, x93)⊕ h(y33, y55, y76, 1⊕ y94, x93)

= y33y76 ⊕ y33 ⊕ y76x93 ⊕ y76 ⊕ x93 = 1.

The above follows because y76 is initialized to 1 as it is a part of the 0x ffff

padding that is used in Grain v1. Thus, z30 and z3730 are deterministically
unequal. But according to the definition of πt, the value of π30 would be
computed as 2. To prevent a situation like this one must always check if for
some t, the values of Φt and πt throw up an exception. If it does we must
assign the value 1 to πt. Thus the definition of πt can be rewritten thus:

πt =

{
1 if Φt, πt throws up an exception
lin (lin(Φt), 2 · OR(πt)) otherwise.

We present an algorithmic description of ββ-GrainKSA in Algorithm 1.

4 Proving the Biases

We will now provide a theoretical frame work to prove the biases reported in
Equations (6), (7) using the differential engine ββ-GrainKSA that was described
in the previous Section. Note that the probability values we shall work out are
computed over the randomness due to the Key bits and the those IV bits not
assigned by the Type 1, 2 relations in Section 2. However, these results also
hold, even if the Key is fixed, and the randomness comes only from the IV bits.
Before we do that let us look at the following Lemma that we will use. As the
lemma is quite straightforward, we state it here without proof.



44 S. Banik

Input: Δ: An LFSR location ∈ [0, m− 1], an integer r(> 0);

Output: An integer array κZ of r elements;

Output: Two integer arrays χt, Υt for 0 ≤ t < r ;

[u0, u1, . . . , un−1] ← 0, [v0, v1, . . . , vn−1] ← 0, t ← 0, uφ = 1;
while t < r do

Υt ← [ut+h1 , ut+h2 , . . . , ut+he , vt+j1 , vt+j2 , . . . , vt+jw ] ;

χt ← [vt+l1 , vt+l2 , . . . , vt+lc , ut+i1 , ut+i2 , . . . , ut+id ];

ξt ← lin(ut, ut+f1 , ut+f2 , . . . , ut+fa);

rt ← lin(ut, vt, vt+g1 , · · · , vt+gb0
);

Ωt ← 2 ·OR(vt+gb0+1 , vt+gb0+2 , . . . , vt+gb);

if χt, Υt throws up an exception then
πt ← 1

end
else

πt ← lin (lin(χt), 2 · OR(Υt))
end
ut+n ← lin(πt, ξt), vt+n ← lin(πt, rt, Ωt);

/*Any modification goes here */;0.1

t = t+ 1;
end
Return [χ0, χ1, . . . , χr−1], [Υ0, Υ1, . . . , Υr−1], κZ = [κz0,κz1, . . . ,κzr−1]

Algorithm 1: ββ-GrainKSA

Lemma 1. Let F be an i-variable Boolean function, with wt(F ) = w. If the
vector X is chosen uniformly from {0, 1}i then Pr[F (X) = 0] = 1− w

2i .

4.1 Δφ-GrainKSA with Overrides

The system ββ-GrainKSA works fine to track differential trails produced due
to difference introduced in the τth IV bit. But notice that, Knellwolf’s attack
imposes several algebraic conditions among the Secret Key and IV bits in order to
prevent the propagation of any difference to the NFSR. So, in order to replicate
the difference propagation in Knellwolf’s system by using the engineββ-GrainKSA
certain modifications need to be made to it.

Since Knellwolf’s system introduces difference at the 37th IV bit, we run
β37-GrainKSA. Thereafter the propagation of the differential is stopped at t =
12, 34, 40. Hence at these rounds ut+n, vt+n need to be manually assigned to
0. This corresponds to inserting the following code snippet at line 0.1 of Algo-
rithm 1.

if t ∈ {12, 34, 40} : ut+n ← 0, vt+n ← 0



Some Insights into Differential Cryptanalysis of Grain v1 45

Thereafter we look at the output produced by such a system at KSA round 97.
The values of Φ97, π97 are as follows:

Φ97 : [v98 = 0, v99 = 0, v101 = 0, v107 = 0, v128 = 2, v140 = 0, v153 = 2]

π97 : [u100 = 0, u122 = 1, u143 = 2, u161 = 2, v160 = 2]

This implies that of all the bits S97, S
∈
97 involved in the computation of z97

and z∈97 respectively, the relations between only i) x128, x
∈
128 ii) x153, x

∈
153 iii)

y143, y
∈
143 iv) y161, y

∈
161 v) x160, y

∈
160 is probabilistic. Therefore we have

z97 ⊕ z∈97 = [x128 ⊕ x∈128]⊕ [x153 ⊕ x∈153]⊕
[h(y100, y122, y143, y161, y160)⊕ h(y100, 1⊕ y122, y

∈
143, y

∈
161, y

∈
160)]

(8)

We begin with the assumption that the random variables x128 ⊕ x∈128, x153 ⊕
x∈153, y143⊕y∈143, y161⊕y∈161 and x160⊕y∈160 are statistically mutually independent
of one another. It is difficult to prove this assumption theoretically but extensive
computer simulations have shown that one can make this assumption. We must
therefore attempt to find the distributions of these variables, to prove the bias.

A. x128 ⊕ x∈128 : To find this distribution we need to look at the state of our
modified β37-GrainKSA at t = 128− 80 = 48. At this round the vectors Φt, πt
are as follows:

Φ48 : 0, π48 : [u51 = 0, u73 = 0, u94 = 1, u112 = 1, v111 = 0]

Among, the other state bits used in the computation of v128 only v110 = 1
and the rest are 0.Thus we have

x128 ⊕ x∈128 = [g(X48)⊕ y48 ⊕ z48]⊕ [g(X ∈
48)⊕ y∈48 ⊕ z∈48]

= [g(x48, x57, . . . , x110, x111)⊕ g(x48, x57, . . . , 1⊕ x110, x111)]⊕
[h(y51, y73, y94, y112, x111)⊕ h(y51, y73, 1⊕ y94, 1⊕ y112, x111)]

= x111 ⊕ y94x111 ⊕ y94 ⊕ y112x111 ⊕ y112

The above equations follow because y73 = 1 as required by the padding rule
of Grain v1, and y51 = 0 as this is one of the Type 1 conditions imposed
on the IV bits. Assuming that the variables y94, x111, y112 are uniformly and
independently distributed, and since x111 ⊕ y94x111 ⊕ y94 ⊕ y112x111 ⊕ y112
is a Boolean Function of weight 6 we can use Lemma 1 to say:

Pr[x128 ⊕ x∈128 = 0] = 1− 6

8
=

1

4

B. x153 ⊕ x∈153 : To find this distribution we need to look at the state of our
modified β37-GrainKSA at t = 153 − 80 = 73. At this round, it turns out
that Φt = πt = 0. Among the other elements involved in the computation
of v153 only v110 = v135 = 1 and v133 = 2 and the rest are zero. Since
v133 = 2, the difference between x133 and x∈133 is still probabilistic. We would



46 S. Banik

need to compute the distribution of x133 ⊕ x∈133 before we can compute the
distribution of x153 ⊕ x∈153.
To find this distribution we look at β37-GrainKSA at t = 133− 80 = 53. At
this round among all the elements involved in the computation of v153 only
u117 = 1 and the rest are 0. So we have,

x133 ⊕ x∈133 = [ g(X53)⊕ y53 ⊕ z53 ]⊕ [ g(X ∈
53)⊕ y∈53 ⊕ z∈53 ]

= h(y56, y78, y99, y117, x116)⊕ h(y56, y78, y99, 1⊕ y117, x116)

= y56y99 ⊕ y56 ⊕ y99x116 ⊕ y99 ⊕ x116

Again, assuming independent and uniform distribution of the inputs, and
since y56y99 ⊕ y56 ⊕ y99x116 ⊕ y99 ⊕ x116 is Boolean Function of weight 6, we
have

Pr[x133 ⊕ x∈133 = 0] = 1− 6

8
=

1

4
Now going back to the original problem, we have

x153 ⊕ x∈153 = [ g(X73)⊕ y73 ⊕ z73 ]⊕ [ g(X ∈
73)⊕ y∈73 ⊕ z∈73 ]

= g(. . . , x110, . . . , x133, x135, . . .) ⊕ g(. . . , 1⊕ x110, . . . , x
∈
133, 1⊕ x135, . . .)

Define

G1 = g(. . . , x110, . . . , x133, x135, . . .)⊕ g(. . . , 1⊕ x110, . . . , x133, 1⊕ x135, . . .)

G2 = g(. . . , x110, . . . , x133, x135, . . .)⊕g(. . . , 1⊕x110, . . . , 1⊕x133, 1⊕x135, . . .)
We have x153⊕x∈153 equal to G1 if x133⊕x∈133 = 0 and equal to G2 otherwise.
Since, G1 is a Boolean Function of weight 3456 and weight of G2 is 3840,
under standard assumptions of independence we have

Pr[x153 ⊕ x∈153 = 0] =

1∑

i=0

Pr[x133 ⊕ x∈133 = i]Pr[G1 = i]

=
1

4

[
1− 3456

213

]
+

3

4

[
1− 3840

213

]
=

139

256

C. y143 ⊕ y∈143 : As before we look at the output of β37-GrainKSA at t = 143−
80 = 63. At this round we have Φ63 = 0 and

π63 : [u66 = 0, u88 = 0, u109 = 0, u127 = 2, v126 = 2]

All other elements involved in the computation of u143 are zero. We therefore
need to compute the distributions of y127 ⊕ y∈127 and x126 ⊕ x∈126.
To compute the distribution of y127 ⊕ y∈127 we look at t = 47. All elements
involved in the computation of u127 is 0 except v110 = 1. So we have

y127 ⊕ y∈127 = [ f(Y47)⊕ z47 ]⊕ [ f(Y ∈
47)⊕ z∈47 ]

= h(y50, y72, y93, y111, x110)⊕ h(y50, y72, y93, y111, 1⊕ x110)

= y50y93 ⊕ y93 ⊕ y93y111 ⊕ y111 ⊕ 1



Some Insights into Differential Cryptanalysis of Grain v1 47

The above expression represents a balanced Boolean Function and hence we
have Pr[y127 ⊕ y∈127 = 0] = 1

2 . To compute the distribution of x126 ⊕ x∈126 we
look at t = 46. At this round all the elements involved in the computation
of v126 are zero except u110 = 1. So we have

x126 ⊕ x∈126 = [ g(X46)⊕ y46 ⊕ z46 ]⊕ [ g(X ∈
46)⊕ y∈46 ⊕ z∈46 ]

= h(y49, y71, y92, y110, x109)⊕ h(y49, y71, y92, 1⊕ y110, x109)

= y92x109 ⊕ y92 ⊕ x109

This is an Boolean Function of weight 3 and so we have Pr[x126 ⊕ x∈126 =
0] = 1− 3

4 = 1
4 . Now we have

y143 ⊕ y∈143 = [ f(Y63)⊕ z63 ]⊕ [ f(Y ∈
63)⊕ z∈63 ]

= h(y66, y88, y109, y127, x126)⊕ h(y66, y88, y109, y
∈
127, x

∈
126)

= h(1, y88, y109, y127, x126)⊕ h(1, y88, y109, y
∈
127, x

∈
126)

The above follows since y66 = 1 is a part of the padding used in Grain v1.
For i, j = 0, 1, define

hij = h(1, . . . , y127, x126)⊕ h(1, . . . , i⊕ y127, j ⊕ x126)

h01, h11 are balanced functions and Pr[h10 = 0] = 1
4 . Assuming indepen-

dence, Pr[y143 ⊕ y∈143 = 0] is given by the expression

1∑

i=0

1∑

j=0

Pr[y127 ⊕ y∈127 = i]Pr[x126 ⊕ x∈126 = j] · Pr[hij = 0] =
17

32

D. y161 ⊕ y∈161 and x160 ⊕ x∈160 : To compute the distribution of y161 ⊕ y∈161 we
need to look at round t = 81. At this round both Φt and πt have many
elements equal to 2 and hence at this point we have to delve into several
lower KSA rounds, and frankly this exercise becomes a little tedious. Due to
lack of space we do not include extensive analysis of these two distributions
and simply state the results.

Pr[y161 ⊕ y∈161 = 0] = 0.5, Pr[x160 ⊕ x∈160 = 0] = 0.4977

E. h(y100, y122, y143, y161, y160)⊕ h(y100, 1⊕ y122, y
∈
143, y

∈
161, y

∈
160) : For the sake

of conciseness, let this expression be denoted by the symbol H and again for
i, j, k = 0, 1, let us define the functions

Hijk = h(y100, y122, y143, y161, y160)⊕h(y100, 1⊕y122, y143⊕i, y161⊕j, y160⊕k)
It turns out that all Hijk are balanced except for H000 for which Pr[H000 =
0] = 1

4 . Assuming independence, Pr[H = 0] is given by the expression:

1∑

i,j,k=0

Pr[y143 ⊕ y∈143 = i] Pr[y161 ⊕ y∈161 = j] Pr[x160 ⊕ x∈160 = k] Pr[Hijk = 0]

= 0.467



48 S. Banik

4.2 Computing Pr[z97 ⊕ z′
97 = 0]

Now we know from Equation (8), that z97 ⊕ z∈97 is the GF(2) sum of the three
expressions x128 ⊕ x∈128, x153 ⊕ x∈153 and H whose distributions we have just
computed. Thus we have

Pr[z97 ⊕ z∈97 = 0] =
∑

i⊥j⊥k=0

Pr[x128 ⊕ x∈128 = i] · Pr[x153 ⊕ x∈153 = j] · Pr[H = k]

= 0.5014

The above bias has been verified by experiments with over 220 randomly
chosen Secret Keys.

4.3 Biases in the Other Sets

In [19], it was observed that bias can be observed in 3 other sets TU other
than the one indexed by the 5 correct Key expressions U0. These sets are those
indexed by sets three TU where a) C2 is not satisfied but C1 is, b) C1 is not
satisfied but C2 is and c) None of C1 or C2 is satisfied. This can be proven in
a similar manner by performing the above analysis with β37-GrainKSA with a
different set of overrides than the ones used in the previous proof. Note that
for all the cases a-c implies that the differential at KSA round t = 34 is not
eliminated. So as before we analyze a modified β37-GrainKSA, i.e., a modified
Algorithm 1 in which Line 0.1 is replaced by

if t ∈ {12, 40} : ut+n ← 0, vt+n ← 0

5 Conclusion and Open Problems

In this paper, we revisited Knellwolf’s attacks [19,20], on Grain v1. The attacks,
which were the best published on Grain v1, in terms of the number of rounds
attacked, were based on certain biases that were observed experimentally in the
distribution of the keystream bits. There were however no theoretical proof of
these biases. In this work, we have tried to provide a theoretical framework to
prove the biases and thus prove correctness of these attacks. One open problem
in this area is, of course, to use the engineββ-GrainKSA to attack a higher number
rounds of the KSA of Grain v1. Another important open problem in this domain
is to prove the bias at round 104. The author of [19] observes that at round 104,
a bias is observed in one of the Sets in only about 50 % of the cases. It would
be a worthwhile exercise, to determine explicitly, the algebraic conditions the
Secret Key bits need to satisfy for the bias to be observed.

References

1. The ECRYPT Stream Cipher Project. eSTREAM Portfolio of Stream Ciphers
(revised on September 8, 2008)

2. Ågren, M., Hell, M., Johansson, T., Meier, W.: A New Version of Grain-128 with
Authentication. In: Symmetric Key Encryption Workshop 2011, DTU, Denmark
(February 2011)



Some Insights into Differential Cryptanalysis of Grain v1 49

3. Banik, S., Maitra, S., Sarkar, S.: A Differential Fault Attack on the Grain family
under reasonable assumptions. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT
2012. LNCS, vol. 7668, pp. 191–208. Springer, Heidelberg (2012)

4. Banik, S., Maitra, S., Sarkar, S.: A Differential Fault Attack on the Grain Family of
Stream Ciphers. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428,
pp. 122–139. Springer, Heidelberg (2012)

5. Banik, S., Maitra, S., Sarkar, S., Meltem Sönmez, T.: A Chosen IV Related Key
Attack on Grain-128a. In: Boyd, C., Simpson, L. (eds.) ACISP. LNCS, vol. 7959,
pp. 13–26. Springer, Heidelberg (2013)

6. Berbain, C., Gilbert, H., Maximov, A.: Cryptanalysis of Grain. In: Robshaw, M.
(ed.) FSE 2006. LNCS, vol. 4047, pp. 15–29. Springer, Heidelberg (2006)

7. Berzati, A., Canovas, C., Castagnos, G., Debraize, B., Goubin, L., Gouget, A., Pail-
lier, P., Salgado, S.: Fault Analysis of Grain-128. In: IEEE International Workshop
on Hardware-Oriented Security and Trust, pp. 7–14 (2009)

8. Bjørstad, T.E.: Cryptanalysis of Grain using Time/Memory/Data tradeoffs (v1.0
/ February 25, 2008), http://www.ecrypt.eu.org/stream

9. De Cannière, C., Küçük, Ö., Preneel, B.: Analysis of Grain’s Initialization Algo-
rithm. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 276–289.
Springer, Heidelberg (2008)

10. Dinur, I., Güneysu, T., Paar, C., Shamir, A., Zimmermann, R.: An Experimentally
Verified Attack on Full Grain-128 Using Dedicated Reconfigurable Hardware. In:
Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 327–343.
Springer, Heidelberg (2011)

11. Dinur, I., Shamir, A.: Breaking Grain-128 with Dynamic Cube Attacks. In: Joux,
A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 167–187. Springer, Heidelberg (2011)

12. Dinur, I.,Shamir,A.:CubeAttacksonTweakableBlackBoxPolynomials. In:Joux,A.
(ed.) EUROCRYPT2009. LNCS, vol. 5479, pp. 278–299. Springer, Heidelberg (2009)

13. Englund, H., Johansson, T., Sönmez Turan, M.: A framework for chosen IV statis-
tical analysis of stream ciphers. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.)
INDOCRYPT 2007. LNCS, vol. 4859, pp. 268–281. Springer, Heidelberg (2007)

14. Fischer, S., Khazaei, S., Meier, W.: Chosen IV statistical analysis for key recovery
attacks on stream ciphers. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS,
vol. 5023, pp. 236–245. Springer, Heidelberg (2008)

15. Hell, M., Johansson, T., Meier, W.: Grain - A Stream Cipher for Constrained
Environments. ECRYPT Stream Cipher Project Report 2005/001 (2005),
http://www.ecrypt.eu.org/stream

16. Hell, M., Johansson, T., Meier, W.: A Stream Cipher Proposal: Grain-128. In:
IEEE International Symposium on Information Theory, ISIT 2006 (2006)

17. Lehmann, M., Meier, W.: Conditional Differential Cryptanalysis of Grain-128a.
In: Pieprzyk, J., Sadeghi, A.-R., Manulis, M. (eds.) CANS 2012. LNCS, vol. 7712,
pp. 1–11. Springer, Heidelberg (2012)

18. Khazaei, S., Hassanzadeh, M., Kiaei, M.: Distinguishing Attack on Grain.
ECRYPT Stream Cipher Project Report 2005/071 (2005),
http://www.ecrypt.eu.org/stream

19. Knellwolf, S.: Cryptanalysis of Hardware-Oriented Ciphers, The Knapsack Gener-
ator, and SHA-1. PhD Dissertation (2012),
http://e-collection.library.ethz.ch/eserv/eth:5999/eth-5999-02.pdf

20. Knellwolf, S., Meier, W., Naya-Plasencia, M.: Conditional Differential Cryptanal-
ysis of NLFSR-based Cryptosystems. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 130–145. Springer, Heidelberg (2010)

21. Stankovski, P.: Greedy Distinguishers and Nonrandomness Detectors. In: Gong, G.,
Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS, vol. 6498, pp. 210–226. Springer,
Heidelberg (2010)

http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://e-collection.library.ethz.ch/eserv/eth:5999/eth-5999-02.pdf


On Selection of Samples in Algebraic Attacks

and a New Technique to Find Hidden Low
Degree Equations

Petr Sušilα, Pouyan Sepehrdad, and Serge Vaudenay

EPFL, Switzerland
{petr.susil,pouyan.sepehrdad,serge.vaudenay}@epfl.ch

Abstract. The best way of selecting samples in algebraic attacks against
block ciphers is not well explored and understood. We introduce a sim-
ple strategy for selecting the plaintexts and demonstrate its strength
by breaking reduced-round KATAN32 and LBlock. In both cases, we
present a practical attack which outperforms previous attempts of alge-
braic cryptanalysis whose complexities were close to exhaustive search.
The attack is based on the selection of samples using cube attack and
ElimLin which was presented at FSE’12, and a new technique called Uni-
versal Proning. In the case of LBlock, we break 10 out of 32 rounds.
In KATAN32, we break 78 out of 254 rounds. Unlike previous attempts
which break smaller number of rounds, we do not guess any bit of the key
and we only use structural properties of the cipher to be able to break
a higher number of rounds with much lower complexity. We show that
cube attacks owe their success to the same properties and therefore, can
be used as a heuristic for selecting the samples in an algebraic attack.
The performance of ElimLin is further enhanced by the new Universal
Proning technique, which allows to discover linear equations that are not
found by ElimLin.

Keywords: algebraic attacks, LBlock, KATAN32, ElimLin, Gröbner basis,
cube attack, universal proning.

1 Introduction

Algebraic attacks is a very powerful method for breaking ciphers in low data
complexity attacks. This scenario is the most usual in practice. Algebraic crypt-
analysis has brought about several important results (see [1, 14–17, 25]). An
algebraic attack can be divided into several steps: building a system of equations
and finding the solution to the system using an appropriate algorithm. The meth-
ods for finding the solution are, however, not sufficiently adapted for algebraic
cryptanalysis, which shed a skeptical light on the entire discipline. The attacks
mostly report breaking several rounds of a target cipher, but fail to explore scal-
able strategies for improvements. In this paper, we start filling this gap.

β Supported by a grant of the Swiss National Science Foundation, 200021 134860/1.

W. Susilo and Y. Mu (Eds.): ACISP 2014, LNCS 8544, pp. 50–65, 2014.
c© Springer International Publishing Switzerland 2014



On Selection of Samples in Algebraic Attacks 51

One approach in algebraic cryptanalysis is building a system of linear equa-
tions in the key variables using extensive preprocessing, such as cube attacks
[5, 23, 25, 26]. Another approach is building a system of multivariate quadratic
equations, and solving the system using Gröbner basis computation (F4/F5,
XL/mXL), see [2, 28, 34, 39, 40, 43], using XSL algorithm, see [12, 13, 19, 37], or
converting the multivariate system into algebraic normal form and running SAT
solvers. such as in [42]. All these methods usually implement a common step
called ElimLin [22]. ElimLin is a simple algorithm which uses linear equations from
the linear span of a system for elimination of variables by substitution. It works
iteratively until no new linear equation can be found. Using this method we can,
in some cases, linearize a large multivariate polynomial system. Since this tech-
nique is used as the first step by all advanced techniques a proper understanding
of ElimLin algorithm is crucial for further advances in algebraic cryptanalysis.
In this paper, we present evidence that the success of SAT solvers in algebraic
attacks depends on the performance of ElimLin algorithm and we expect similar
phenomena to occur in the case of F4 and mXL. We show that the selection of
samples based on a cube attack on R round ciphers performs well when breaking
R + χ rounds cipher for a small χ. We demonstrate this by breaking 10 rounds
(out of 32) of LBlock [44] in Section 3.4 and 78 rounds of KATAN32 (out of 254)
[10] without guessing any key bits in Section 6, while all previous approaches
were guessing 32−45 bits of the key. Therefore, the complexity of their attack is
of order 232T(SAT)−245T(SAT). We also note that unlike SAT solvers, whenever
ElimLin with our extensions, which we introduce in Section 5, was successful to
recover one key, it was successful to recover the key in all cases we tested. The
running time of our attack was several hours for smaller sets of samples, and
up to 10 days for the largest sets of samples. Finally, we introduce a technique
called Universal Proning which allows to find additional linear equations of the
system which are satisfied for a random key with high probability. The relation
between these algebraic methods have been extensively studied. ElimLin is a ba-
sic algorithm which is part of every algebraic tool. XSL is an ad-hoc version of
XL which was analyzed in [13]. The XL algorithm computes the Gröbner basis in
a similar way as F4, but it performs additional unnecessary computations [4].
The mXL variant of XL [40] is equivalent to F4 [3]. The comparison between
Gröbner basis computation and performance of SAT solver was shown in [27].
The complexity of SAT was further studied in [38]. The asymptotic estimates
of the complexity of XL and Gröbner basis were given in [45]. The multivariate
equations representing the cipher are difficult to solve in general. The most gen-
eral solving technique is to find the Gröbner basis of the ideal generated by the
system using algorithms such as F4. Using this technique, the degree of equations
in the system is iteratively increased until the first fall appears [32, Section 4.6],
and the system is fully solved, when a so-called degree of regularity is reached
[8, Definition 3]. This degree is usually high [7] and therefore such computation
is often infeasible due to memory requirements. The SAT solving techniques also
do not perform very well for complicated systems. The XL algorithm is a variant
of the F4 algorithm [3] and therefore, suffers from the same problems. ElimLin



52 P. Sušil, P. Sepehrdad, and S. Vaudenay

algorithm can be seen as iterations of a Gauss elimination and a substitution. It
does not increase the degree of the system in any intermediate step, and hence
it finds no solution in many cases. We observe that the running time of all the
techniques above depends on the selection of plaintext-ciphertext pairs. In this
paper, we introduce a technique for the selection of samples which significantly
improves the running time for selected ciphers. In Section 2, we recall ElimLin
algorithm then, in Section 3, we introduce our method for selecting samples in
an algebraic attack and show its performance using reduced round LBlock. In
Section 4, we discuss implementation improvements of ElimLin, which allow to
parallelize the attack and reduce memory requirements. In Section 5, we intro-
duce a new technique called Universal Proning for recovering linear equations
which cannot be found by ElimLin, but which are satisfied for a random key
with high probability. We use this technique together with ElimLin in Section 6
to attack reduced round KATAN32. It was previously analysed in [33, 35, 41].
We compare our results to state-of-the-art algebraic attacks on KATAN32 and
show that our technique of selecting samples and recovering hidden linear equa-
tions outperform previous results. The recent attack against KATAN32 in [41]
achieves similar number of rounds as we do but the authors guess 45 statebits
before running the SAT. Hence, the complexity of their attack is 245T(SAT)
which is comparable to a previous attack in [6]. We show the effectiveness of
our approach on two well-known ciphers as an example and provide evidence
to support the hypothesis that this would be the case for other ciphers as well.
Our sample selection technique can also be used in attacks based on F4/mXL
and SAT solvers. The trade-off between increasing number of samples for ElimLin
and increasing degree in F4/mXL still remains an open problem.

2 The ElimLin Algorithm

The ElimLin algorithm is a very simple tool for solving systems of multivariate
equations. It is based on iterations of a Gauss elimination and a substitution of
variables by linear equations. It is used as a preprocessing tool in most computer
algebra systems, e.g., F4/F5 algorithm, XL, or even in cryptominisat. Since this
algorithm is a common base of all solvers, it is important to carefully investigate
its properties and capabilities. We refer the reader to [22] for additional details.
Later in the paper, we discuss a strategy to improve the running time of ElimLin
when we consider many samples. It was already shown in [22] that increasing
the number of samples helps to find the secret key using ElimLin. We now show
that selecting the plaintexts carefully can significantly improve the performance
of ElimLin and even outperforms state-of-the-art attacks based on SAT solvers.
Since ElimLin performs only substitution by linear terms, the degree of the system
cannot increase. Therefore, ElimLin can solve the system and recover the secret
key only in very special cases. ElimLin is performed as the first step of Gröbner
basis computation and even some SAT solvers, such as cryptominisat, run ElimLin
as a preprocessing step. Therefore, we focus on the selection of plaintexts which



On Selection of Samples in Algebraic Attacks 53

allows ElimLin to solve the system or eliminate the highest possible number of
variables.

3 On the Selection of Samples

In this section, we define our system of equations and give necessary defini-
tions. In part 3.1, we give a new characterization of the system when ElimLin
succeeds. In part 3.2, we find a strategy for selection of samples, which allows to
satisfy this condition. This selection strategy is based on cube attacks which we
recall in part 3.3. In part 3.4, we show the performance of such a technique on
LBlock, and compare our results to previous algebraic attacks based on ElimLin.
In part 3.5, we give further insight into our method and directions for future
testing and improvements.

Notation 1. We use kln to represent the key length. We use sln to represent
the message length and the length of the state vector. We use smpn to represent
the number of plaintext/ciphertext pairs. We use rndn to represent the number
of rounds of the cipher.

We represent state bits and key bits by variables. Each state variable sjp,r
corresponds to a plaintext of index p, a round r, and an index j in the state
vector. The key is represented by key variables k1, . . . , kkln. The plaintext p is
represented by sjp,0 and ciphertext by sjp,rndn.

Notation 2. We denote V =
⋃

t∈[1,kln]

{kt}∈
⋃

p∈[1,smpn]

⋃

r∈[0,rndn]

⋃

j∈[1,sln]

{sjp,r} the set

of variables.

The round function of the cipher is represented by a set of polynomials rjr which
takes as input all state variables at round r and returns the j-th state variable at
round r + 1, i.e., sjp,r+1 is given by polynomial rjr(s

1
p,r, . . . , s

sln
p,r, k1, . . . , kkln). We

denote corresponding equation1 Eqpj,r = rjr
(
s1p,r, . . . , s

sln
p,r, k1, . . . , kkln

)− sjp,r+1.

Notation 3 (system). We denote

S =

⎛
⎝ ⎨

p∈[1,smpn]

⎨
r∈[0,rndn]

⎨
j∈[1,sln]

⎩
Eqpj,r

⎫
⎞
⎠ ∪

( ⎨
v∈V

{v2 − v}
)

where the first part represents equations between variables of round r and r + 1
and the second part represents equations which hold trivially over F2. We further

denote Sφ,β,β = S ∪
⎨

p∈[1,smpn]

⎨
j∈[1,sln]

⎟
sjp,0 − ωj

p

)
, Sβ,β,κ = S ∪

⎨
i∈[1,kln]

{ki − κi}

Sβ,γ,β = S ∪
⎨

p∈[1,smpn]

⎨
j∈[1,sln]

⎟
sjp,rndn − γj

p

)
,

1 We assume that our equations are sound in the sense being fully ”Describing” equa-
tions [18] for each component of the encryption process.



54 P. Sušil, P. Sepehrdad, and S. Vaudenay

We use notation Sβ,γ,κ to denote that we set plaintext to σ, ciphertext to α and
key to β. The symbol τ at any position means that the value is unset. Hence,
Sβ,α,α is the system of equations when we fix the plaintexts to Φ and Sα,γ,α is the
system when we fix the ciphertexts to α. We later use Sβ,γ,α which represents,
thus, the system in which we fix both the plaintext and the ciphertext.

Notation 4. For a system S, we denote Sβ,α,κ = Sβ,α,α ∈ Sα,α,κ , Sα,γ,κ =
Sα,γ,α ∈ Sα,α,κ , and Sβ,γ,α = Sβ,α,α ∈ Sα,γ,α

Assumption 5. We assume that the ideal ⊕Sβ,γ,α⊇ is a maximal ideal.

We recall that smpn denotes the number of plaintext/ciphertext pairs. For the
assumption to be satisfied we require that smpn is large enough to uniquely
characterize β. In our experiments, the equations for KATAN32 are build as
in [6] and the equations for LBlock as in [22]. This allows for more accurate
comparison of our the method of selection of samples.

3.1 Characterization of Systems when ElimLin Succeeds

We now explore the properties of systems for which ElimLin succeeds to recover
the secret key. We use this characterization in Part 3.2 to derive a selection
strategy for plaintexts.

Lemma 6. Consider a system S such that ElimLin applied to Sβ,γ,α recovers
the key bit kj as value cj ∈ F2. Let ElimLin≤ be a variant of ElimLin which treats
plaintext and ciphertext variables of the system S as if they had degree 0. Then,
≤q ∈ elspan’ (S) which has the following form: q = kj + cj + q≤ and q≤ evaluates
to 0 when we set plaintext variables to σ and ciphertext variables to α.

Proof. We perform the same substitution while running ElimLin≤ and obtain the
polynomial q≤.

The polynomial q≤ will be important in the selection strategy of plaintexts. The
existence of such a polynomial is essential for ElimLin to be able to recover the
secret key. At the same time, the existence of such polynomials can be guaranteed
if we select the samples based on a successful cube attack.

3.2 A Selection Strategy for Plaintexts in ElimLin

Lemma 6 characterizes the span of ElimLin when it recovers the value of the
key kj . We now discuss the strategy to ensure that this condition is satisfied.
We now consider the polynomial q≤ from Lemma 6. Since we cannot choose
simultaneously the plaintext and the ciphertext for a single sample, we consider
several different scenarios: selecting plaintexts only, ciphertexts only, selecting
partly plaintexts and partly ciphertexts. The selection of related plaintexts such
that corresponding ciphertexts are also related is considered in [21]. These pairs
are constructed using higher order and/or truncated differential cryptanalysis



On Selection of Samples in Algebraic Attacks 55

[36]. In our scenario, we concentrate on the selection of only plaintexts. We
found no advantage in the selection of only ciphertexts. The selection of part
of plaintexts and part of ciphertexts is yet to be explored. The selection of
related plaintexts and corresponding ciphertexts is specific to a chosen cipher.
However, our goal is to determine an optimal generic selection of samples. We
use Lemma 6 for the selection of plaintexts. It specifies the properties of q≤ which
has to evaluate to 0 when we set plaintext and ciphertext variables, i.e., when
we set σ and α. However, we would like to guarantee that q≤ evaluates to 0 only
when setting the plaintexts since we cannot control both the plaintexts and the
ciphertexts. Hence, we are looking for a set of samples that lead to existence of
such q≤ when we set only plaintext variables. Let degr(p) denote the total degree
of the polynomial p in variables corresponding to round r, i.e., sr1,1, . . . , s

r
smpn,sln.

Provided the deg0(q
≤) < d, we can build a set of 2D samples, i.e., find σ, such

that q≤ evaluates to 0. This leads us to setting values σ according to a cube
recovered from cube attack.

3.3 Cube Attack

The cube attack [23] can be seen as a tool to analyze a black-box polynomial.
Throughout the paper, we represent this polynomial by f(x, k). The aim is to
derive a set of equations which is easy to solve and which is satisfied for all keys,
i.e., for all values of k. The attacker does this in the offline phase. Afterwards, in
the online phase, the attacker finds the evaluation for each equation and solves
the system. We query this polynomial in an offline phase for both parameters
x and k. In the online phase, we are allowed to use queries only in the first
parameter x, since k is set to an unknown value β. The objective is to recover
this β. To achieve this, we find a hidden structure of f(x, k) in the offline phase
and use it to derive β in the online phase. In the offline phase, we find sets
of plaintexts Ci such that

∑
x∈Ci

f(x, k) behaves like a linear function πi(k)
and πi’s are linearly independent. In the online phase, we ask the oracle for
encryptions of plaintexts from Ci and solve the system of linear equations. In
the following, we derive the algebraic expression of

∑
x∈Ci

f(x, k) and show that
this function can indeed behave like a function π(k). Let f(x, k) be a black-box
polynomial which can be for some coefficients aIJ ∈ F2 expressed as f(x, k) =∑

I⊆{0,1}sln
J⊆{0,1}kln

aIJ
∏

i∈I

xi
∏

j∈J

kj .

Definition 7. Let m ∈ {0, 1}sln and t ∈ {0, 1}sln such that t←m = 0. We define
Cm,t = {x : x←m̄ = t}. We call Cm,t a “cube”, m a “mask”, and t a “template”,
and we denote Im = {i : 2i ←m ∅= 0}, where 2i represent the bitstring with 1 at
position i.

Example: Let m = 00010110 and t = 11100001. Then, we have |Cm,t| = 23. Cm,t =
{11110111, 11100111, 11110101, 11110011, 11100011, 11100001, 11110101, 11100001}.



56 P. Sušil, P. Sepehrdad, and S. Vaudenay

The success of cube attacks is based on finding enough cubes Cmi,ti , i.e., enough

mis, tis, such that
∑

β∈Cmi,ti

f(x, k) =
∑

J∗{0,1}kln

aiJ
∏

j∈J

kj are linearly independent

low degree equations. Even though cube attack may be a powerful tool in al-
gebraic cryptanalysis, it has been successful against only very few ciphers. The
reduced round TRIVIUM [9] can be attacked for 784 and 799 rounds [30], and can
be distinguished with 230 samples up to 885 rounds [5]. The full round TRIVIUM
has 1152 rounds, which means that 70% of the cipher can be broken by this sim-
ple algebraic technique. GRAIN128 [31] was broken using so called dynamic cube
attack in [25]. KATAN32 was attacked in [6] using so called side-channel cube
attack first introduced in [24]. While cube attacks celebrate success in only few
cases, we show that they can be used for selection of samples in other algebraic
attacks.

3.4 Selection of Plaintexts

In this section, we show that the selection of plaintexts based on the success
of cube attack is a good strategy for satisfying the condition from Section 3.1.
We give an attack against 10 rounds of LBlock. This attack outperforms the
previous attempts of algebraic cryptanalysis [22]. We compare our strategy of
using samples for cube attack to the strategy of selecting a random cube or a
random set of samples. The strategy of selecting a random cube was previously
explored in [29]. The authors were choosing correlated messages based on a
algebraic-high order differential.

Breaking 8 rounds of LBlock. The previous result on breaking 8 rounds of LBlock
using ElimLin required 8 random plaintexts, and guessing 32 bits of the key
(out of 80bits). We found that if we select 8 plaintexts based on cube Cm,t for
m=0x0000000000000007 and t=0xe84fa78338cd9fb0, we break 8 rounds of LBlock
without guessing any key bits. We verified this result for 100 random keys and
we were able to recover each of the 100 secret keys we tried using ElimLin.

Breaking 10 rounds of LBlock. We found that if we select 16 plaintexts based
on cube Cm,t for m=0x0000000000003600 and t=0xe84fa78338cd89b6, we break
10-rounds of LBlock without guessing any key bits. We verified this result for
100 random keys. We were able to recover each of the 100 secret keys we tried
using ElimLin. We tried to extend the attack to 11 rounds of LBlock, however we
have not found any cube of dimension 5 or 6 which would allow ElimLin to solve
the system.

Random vs Non-Random Selection of Plaintexts. We tested the performance of
ElimLin applied to 10-round LBlock for the same number of plaintext-ciphertext
pairs. Our results show that when ElimLin algorithm is applied to a set of n
plaintexts from a cube, the linear span it recovers is larger than for a set of
n random samples. We also show that ElimLin behaves better on some cubes,



On Selection of Samples in Algebraic Attacks 57

and that this behavior is invariant to affine transformation. The results are
summarized in Table 1.

Table 1. Results on 10-round LBlock

10 rounds of LBlock: Cm,t system of 24 samples solved remaining variables

m=0x0000000000003600 t=0xe84fa78338cd89b6 yes 0
m=0x0000000000d00001 t=0x856247de122f7eaa yes 0

m=0x0000000000003600 random yes 0
m=0x0000000000d00001 random yes 0

m=random deg4 random no ≈ 700

random set no ≈ 2000

3.5 ElimLin and Cube Attacks

In this section, we explain the intuition behind using a cube attack for selecting
samples for ElimLin. We first elaborate on our observations about ElimLin’s ability
to recover the equation found by cube attack. Later, we compare our approach to
classical cube attacks and give additional observations about behavior of ElimLin
with our selection of samples.

Structure of the cube. Let Eκ denote the encryption under the key β, and let
consider two samples for the plaintexts σ and σ+Σ, whereΣ has a low Hamming
weight. Many statebits in the first rounds of computation Eκ(σ) and Eκ(σ +
Σ) take the same value since they can be expressed by the same low degree
polynomial in the key and state variables. This can be detected by ElimLin and
used to reduce the total number of variables of the system. Therefore, good
candidates for the selection of samples are plaintexts which are pairwise close
to each other — in other words, plaintexts from a cube. Let now consider σ =
(σp : σp ∈ Cm,t). We consider a blackbox polynomial f(x, k) computing the value
of state variable sjx,r for a key k, a plaintext x, a statebit j and r rounds. The cube
attack gives an equation

∑
βp∈Cm,t

f(σp, k) = π(k) for a linear function π. We

observe that the equation
∑

βp∈Cm,t
f(σp, k) = π(k) is found also by ElimLin in a

majority of cases. We further found that ElimLin can find many pairs of indices
(a, b), such that sja,r equals to sjb,r. We assume that this is the fundamental reason
for the success of cube attack. Thanks to such simple substitutions, ElimLin can
break a higher number of rounds while decreasing the running time.

ElimLin vs. Cube Attacks. The attack based on cube attack consists of an expen-
sive offline phase, where we build the system of equations which is easy to solve,
i.e., linear (or low degree) equations in the key bits, and the online phase where
we find evaluations for these linear equations and solve the system. The attack
based on ElimLin consists of a cheap offline phase, since the system of equations



58 P. Sušil, P. Sepehrdad, and S. Vaudenay

represents the encryption algorithm, and the online phase is therefore more ex-
pensive. Our attack can be seen as a mix of these two approaches. We increase
the cost of the offline phase to find a good set of samples and run ElimLin on the
system without the knowledge of ciphertext. Hence, we simplify the system for
the online phase.

Comparison of number of attacked rounds by Cube Attacks and ElimLin with same
samples. In our attacks we observed an interesting phenomena which occurs for
every cipher we tested. Our first phase consists of finding a cube attack against
a R round ciphers. In the next phase, we consider R + r round cipher, build a
system of equations, set plaintext bits correspondingly, and run ElimLin to obtain
a system P . In the next step, we query the encryption oracle for ciphertexts, build
a system of equations corresponding to rounds [R,R + r], and run ElimLin to
obtain a system C. We found that the success of ElimLin to recover the secret key
of R + r round cipher strongly depends on the selection of plaintexts: random
samples perform worse than random cubes and random cubes preform worse
than the ones which perform well in cube attack. The plaintexts selected based
on a cube allow ElimLin to find more linear relations, which are in many cases
of form sja,r = sjb,r. Hence, we obtain a system with significantly less variables.
This allows us to recover the secret key. In the cases of LBlock and KATAN32 we
obtained r ⇒ R

3 . These observation suggest a further research in performance
of ElimLin against ciphers such as TRIVIUM and GRAIN128, since there already
exist cube attacks against a significant number of rounds [30, 25, 5].

4 Optimizing ElimLin

The implementation of ElimLin faces several challenges. For ElimLin to be suc-
cessful it is necessary to consider a lot of samples. However, a high number of
samples leads to an increase in memory requirements. We remind the Theorem
13 from [22] and use the result to split the system into small subsystems corre-
sponding to different plaintext samples and recover most linear equations with
small memory requirements.

Definition 8. Let S be the initial set for ElimLin. Let ST ,SL be the resulting
sets of ElimLin. We call the linear span of ST ∈ SL ElimLin span and denote it
by elspan (S) = linspan (ST ∈ SL).

Theorem 9 (ElimLin invariant [22]).
The span elspan (S) is invariant with respect to the order of substitutions and
Gauss elimination.

In the next section, we show the performance of our new version of ElimLin
algorithm and give examples of reduced round KATAN32 and sets of plaintexts
that allow us to derive the key using ElimLin. All our attacks outperform the best
known attacks and they can be performed using a standard computer with suf-
ficient RAM. In our case, the limitation was 40GB of RAM memory. We expect



On Selection of Samples in Algebraic Attacks 59

that our results can be improved both in terms of time, memory and data. This
requires better implementation of ElimLin and finding a better cube for selection
of samples. Therefore we mainly concentrate on successes and failures of ElimLin
to recover the secret key. Additionally, we use a method called Universal Proning
which we describe in Section 5. This method allows to recover equations among
state variables corresponding to different plaintexts which are valid for every key.
These additional equations further speed up ElimLin and allow to break more
rounds in some cases.

5 Universal Proning: Recovering Linear Polynomials not
found by ElimLin

We observe that most linear equations which ElimLin recovers are satisfied inde-
pendent of the secret key, these are the linear equations in elspan (Sβ,α,α) and
elspan (Sα,γ,α). Therefore we introduce a new method called Universal Proning
for finding all linear equations which are satisfied independently of the value of
the key.

In this section, we introduce universal polynomials. A universal polynomial is
a polynomial f ∈ R, such that f ∈ ⊕Sβ,α,κ⊇ or f ∈ ⊕Sα,γ,κ⊇ for every key β, hence,
the name universal. Intuitively, we can see that a universal polynomial cannot
help to recover the secret key but it helps to simplify the polynomial system. The
concept of universal polynomials is closely related to concepts earlier studied in
[20, slide 118-120]. Let us consider a polynomialm ∈ F2[V ] and a function which
evaluates m under key β.

Definition 10. Let F2[V ] be the set of all polynomials in variables V over F2.
Let us define the function eβ : F2[V ] ≈ Func

(
Fkln

2 ,F2

)
, such that eβ(m) is

the function mapping β in F kln
2 to the reduction of the polynomial m modulo

⊕Sβ,α,κ⊇. Similarly, let us define the function dγ : F2[V ] ≈ Func
(
Fkln

2 ,F2

)
, such

that dγ(m) is the function mapping β in F kln
2 to the reduction of the polynomial

m modulo ⊕Sα,γ,κ⊇.
We recover universal polynomials from approximation of ker (eβ) and ker (dγ).

6 Selection of Samples in KATAN32

We give the results of the attack against KATAN32 in Table 3. The previous best
algebraic attack is given by Bard et al. [6]. The authors attack:

– 79 rounds of KATAN32 using SAT solver, 20 chosen plaintexts and guessing
45 key bits.

– 71 and 75 rounds of KATAN32, and guessing 35-bits of the key.

In our attacks, we do not guess any key bit and achieve a comparable number
of rounds. However, we need to use more plaintext ciphertext pairs (128− 1024
instead of 20). The main advantage of our attack is not only the fact that we



60 P. Sušil, P. Sepehrdad, and S. Vaudenay

do not need to guess the key bits but also its determinism. Since the success
of other algebraic attacks such as SAT solvers and Gröbner basis depends on
the performance of ElimLin, our results may be applied in these scenarios for
improving the attacks. In Table 2, we show that the selection of samples is
important for KATAN32. The reader can observe that in the case of 69 rounds,
the template of the cube is important for ElimLin to succeed. In the case when
the template was selected based on cube attack for 55 rounds, the attack using
ElimLin is successful to recover the key. However, when we use the same mask
but a fixed template, ElimLin cannot recover any key bit. We can also see that
when the number is maximal for this set of plaintexts: when we increase the
number of rounds, ElimLin fails to recover the key. The reader should also note
that the number of linear equations we recover for 70 round KATAN32 in the
Universal Proning phase varies for different cubes. In the first case we recover less
linear equations by Universal Proning compared to 69 round case, because some
linear equations were already recovered by ElimLin. In the second case, ElimLin
was unable to recover the new equations appearing in the additional round, but
they exist in the ideal, and therefore they can be found by the Universal Proning
technique. The reader can also see that an increase in the number of samples
allows to break more rounds in some cases. In the case of 71 rounds we extend
the mask of the cube by one bit and in one case we can recover the key using
ElimLin. In the other case we cannot. In the case of 76 rounds we were unable to
break the system for any cube attack for 55 rounds. However, we found a cube
attack of 59 rounds, which allowed ElimLin to solve the system for 76 round
KATAN32 and 256 samples. In Table 3, we give successful results of attack by
ElimLin applied on reduced round KATAN32 for various number of rounds. The
previous best algebraic attacks can be found in [6]. The authors guess 35 out
of 80 bits of the key and solve the system using SAT solver. We can achieve
the same amount of rounds without any key guessing and with a running time
within several hours.

Table 2. Attack on KATAN32 using ElimLin: rounds vs. masks

rnd cube rnd mask template samples proned lin success time

69 55 m=0x00007104 t=0x39d88a02 32 29 10/10 <1 hour
69 55 m=0x00007104 t=0x65f30240 32 29 10/10 <1 hour
69 n.a m=0x00007104 t=0x00000000 32 35 no 2 hours
69 n.a m=0x00007104 t=0xf0000000 32 29 no 2 hours
69 n.a m=0x00007104 t=0x0f000000 32 29 no 2 hours
69 n.a m=0x00007104 t=0x00f00000 32 29 no 2 hours

70 55 m=0x00007104 t=0x39d88a02 32 27 no 3 hours
70 55 m=0x00007104 t=0x65f30240 32 30 no 3 hours

71 55 m=0x00007105 t=0x23148a40 64 61 10/10 3 hours
71 55 m=0x00007904 t=0x20128242 64 56 no 7 hours

76 59 m=0x0004730c t=0x21638040 256 572 3/3 3 days



On Selection of Samples in Algebraic Attacks 61

Table 3. Attack on KATAN32 using ElimLin

rnd cube rnd mask template samples proned lin success time

71 55 m=0x0002700c t=0xf2b50080 64 116 5/5 <1 hour

70 55 m=0x0c007104 t=0xa2d88a61 128 235 5/5 <1 hour
70 55 m=0x00a07104 t=0x50570043 128 213 5/5 <1 hour

71 55 m=0x00007105 t=0x23148a40 64 61 10/10 3 hours

72 55 m=0x00a07104 t=0x50570043 128 245 20/20 7 hours
72 55 m=0x0c007104 t=0xa2d88a61 128 238 60/60 7 hours
73 55 m=0x0c007104 t=0xa2d88a61 128 217 5/5 7 hours
73 55 m=0x0002d150 t=0x20452820 128 226 20/20 8 hours
73 55 m=0x0002d150 t=0xffd40821 128 231 20/20 8 hours

74 56 m=0x10826048 t=0xca458604 128 212 5/5 9 hours

75 56 m=0x80214630 t=0x76942040 256 538 5/5 23 hours
75 56 m=0x1802d050 t=0x267129a8 256 563 5/5 23 hours
75 56 m=0x908a1840 t=0x6b05c0bd 256 544 5/5 23 hours
75 56 m=0x08030866 t=0x8620f000 256 592 5/5 23 hours
75 56 m=0x52824041 t=0x0d288d08 256 516 5/5 23 hours
75 56 m=0x10027848 t=0xcf758200 256 588 5/5 23 hours

76 59 m=0x0004730c t=0x21638040 256 572 3/3 3 days

77 59 m=0x03057118 t=0x2cb20001 1024 2376 3/3 8 days
78 59 m=0x03057118 t=0x2cb20001 1024 2381 2/2 9 days

7 Final Remarks on ElimLin

On increasing the degree in F4 and increasing the number of samples in ElimLin

The F4/mXL keeps increasing the degree until the solution is found in the linear
span. ElimLin on the other hand requires more plaintext-ciphertext pairs to re-
cover the key. We show that a better selection strategy improves the success of
ElimLin, but the question whether the cipher can be broken for a large enough set
of well selected samples remains opened. Similarly, we can consider the increase
of the number of samples as an alternative to linearization step of F4/mXL. The
open problem is whether these strategies are equivalent or if one or the other
performs better. However, we believe there is an advantage of considering mul-
tiple samples and using a method introduced in Section 5 over increasing the
degree and linearization.

Implications for F4/mXL/SAT solvers
Table 2 show that selection of samples influences the degree of regularity of
the system. This claim is based on the fact that for some choices of samples
(choices of cubes m, t) ElimLin can solve the system. Therefore, the degree of
regularity is at most 2. While for other choices it cannot recover the secret key
and hence, the degree of regularity is in these cases greater than 2. We com-
pare several strategies for selection of 16 samples for attacking 10-round LBlock.



62 P. Sušil, P. Sepehrdad, and S. Vaudenay

In the first case we select the samples based on a cube attack of 6 rounds. Then,
we run ElimLin which successfully recovers a secret key only for subset of these
cubes. Subsequently, whenever ElimLin succeeds to recover the secret key for a
cube, we perform additional tests with 100 random secret keys and were able to
recover the secret key in all cases. In the second case we select samples based
on a random cube and obtain a system of 700 variables after ElimLin. In the
third case we select samples randomly and obtain a system of 2000 variables
after ElimLin. This example shows the importance of selection of samples. The
running time of F4/mXL is proportional to the degree of regularity and the num-
ber of variables in the system and, therefore, the proper selection of samples is a
crucial step. In the case of SAT solvers, the running time depends on the number
of restarts performed by the solver and the number of restarts depends on the
number of high degree relations.

8 Conclusion

We showed that the offline phase of the cube attack can be used for the selection
of samples in other algebraic techniques and that such selection significantly
outperforms the random selection of samples. We used this method against re-
duced round KATAN32, and showed that 78 rounds can be broken only using
ElimLin and 59-round cube of 210 samples. The approach can be seen as an in-
novative method of turning a single cube from cube attack into a key recovery
technique. Our results highlight several open problems. The strategy of select-
ing more samples can be seen as an alternative to increasing the degree as it
is done by F4/mXL. Using more samples leads to more variables in the system,
yet the same goal is achieved by increasing the degree and linearization. Hence,
the comparison of our selection of samples for ElimLin and state of the art im-
plementations of XL such as [11, 40] is crucial for future directions for algebraic
cryptanalysis. During our work we have discovered the existence of exploitable
internal low degree relations inside open-ended systems of equations which de-
pend on the plaintext and depend neither on the ciphertext nor the key [20,
slide 118]. These additional equations are not always found by ElimLin and we
show that our attacks can be enhanced by finding such equations first, which
process we call Universal Proning. The fact that the solution is usually found in
linspan (elspan (Sβ,α,α) ∈ elspan (Sα,γ,α)) and the proper analysis of Universal
Proning is a part of an ongoing research.

References

1. Al-Hinai, S.Z., Dawson, E., Henricksen, M., Simpson, L.R.: On the security of
the LILI family of stream ciphers against algebraic attacks. In: Pieprzyk, J., Gho-
dosi, H., Dawson, E. (eds.) ACISP 2007. LNCS, vol. 4586, pp. 11–28. Springer,
Heidelberg (2007)

2. Albrecht, M.R., Cid, C., Faugère, J.-C., Perret, L.: On the Relation Between the
Mutant Strategy and the Normal Selection Strategy in Gröbner Basis Algorithms.
IACR Cryptology ePrint Archive 2011, 164 (2011)



On Selection of Samples in Algebraic Attacks 63

3. Albrecht, M.R., Cid, C., Faugère, J.-C., Perret, L.: On the relation between the
MXL family of algorithms and Gröbner basis algorithms. J. Symb. Comput. 47(8),
926–941 (2012)

4. Ars, G., Faugère, J.-C., Imai, H., Kawazoe, M., Sugita, M.: Comparison between
XL and Gröbner basis algorithms. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS,
vol. 3329, pp. 338–353. Springer, Heidelberg (2004)

5. Aumasson, J.-P., Dinur, I., Meier, W., Shamir, A.: Cube testers and key recovery
attacks on reduced-round MD6 and Trivium. In: Dunkelman, O. (ed.) FSE 2009.
LNCS, vol. 5665, pp. 1–22. Springer, Heidelberg (2009)

6. Bard, G.V., Courtois, N.T., Nakahara Jr, J., Sepehrdad, P., Zhang, B.: Algebraic,
aida/cube and side channel analysis of katan family of block ciphers. In: Gong, G.,
Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS, vol. 6498, pp. 176–196. Springer,
Heidelberg (2010)

7. Bardet, M., Faugère, J.-C., Salvy, B., Yang, B.-Y.: Asymptotic behaviour of the
degree of regularity of semi-regular polynomial systems. In: Eighth International
Symposium on Effective Methods in Algebraic Geometry, MEGA 2005, Porto
Conte, Alghero, Sardinia, Italy, May 27-June 1 (2005)

8. Bardet, M., Faugère, J.-C., Salvy, B., Spaenlehauer, P.-J.: On the complexity of
solving quadratic boolean systems. J. Complexity 29(1), 53–75 (2013)

9. De Cannière, C.: Trivium: A Stream Cipher Construction Inspired by Block Cipher
Design Principles. In: Katsikas, S.K., López, J., Backes, M., Gritzalis, S., Preneel,
B. (eds.) ISC 2006. LNCS, vol. 4176, pp. 171–186. Springer, Heidelberg (2006)

10. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN - a family
of small and efficient hardware-oriented block ciphers. In: Clavier, C., Gaj, K. (eds.)
CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009)

11. Cheng, C.-M., Chou, T., Niederhagen, R., Yang, B.-Y.: Solving quadratic equations
with XL on parallel architectures. In: Prouff, E., Schaumont, P. (eds.) CHES 2012.
LNCS, vol. 7428, pp. 356–373. Springer, Heidelberg (2012)

12. Choy, J., Yap, H., Khoo, K.: An analysis of the compact XSL attack on BES and
embedded SMS4. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS,
vol. 5888, pp. 103–118. Springer, Heidelberg (2009)

13. Cid, C., Leurent, G.: An analysis of the XSL algorithm. In: Roy, B. (ed.)
ASIACRYPT 2005. LNCS, vol. 3788, pp. 333–352. Springer, Heidelberg (2005)

14. Courtois, N.T.: Higher order correlation attacks, XL algorithm and cryptanaly-
sis of toyocrypt. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587,
pp. 182–199. Springer, Heidelberg (2003)

15. Courtois, N.T.: Algebraic attacks over GF(2k), application to HFE challenge 2
and Sflash-v2. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947,
pp. 201–217. Springer, Heidelberg (2004)

16. Courtois, N.T., Bard, G.V.: Algebraic cryptanalysis of the data encryption stan-
dard. In: Galbraith, S.D. (ed.) Cryptography and Coding 2007. LNCS, vol. 4887,
pp. 152–169. Springer, Heidelberg (2007)

17. Courtois, N.T., Bard, G.V., Wagner, D.: Algebraic and slide attacks on KeeLoq.
In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 97–115. Springer, Heidelberg
(2008)

18. Courtois, N.T., Debraize, B.: Algebraic description and simultaneous linear ap-
proximations of addition in Snow 2.0. In: Chen, L., Ryan, M.D., Wang, G. (eds.)
ICICS 2008. LNCS, vol. 5308, pp. 328–344. Springer, Heidelberg (2008)

19. Courtois, N.T., Pieprzyk, J.: Cryptanalysis of block ciphers with overdefined
systems of equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501,
pp. 267–287. Springer, Heidelberg (2002)



64 P. Sušil, P. Sepehrdad, and S. Vaudenay

20. Courtois, N.T.: A new frontier in symmetric cryptanalysis. Invited talk, Indocrypt
(2008), http://www.nicolascourtois.com/papers/front_indocrypt08_2p.pdf

21. Courtois, N.T., Mourouzis, T., Song, G., Sepehrdad, P., Sušil, P.: Combined Alge-
braic and Truncated Differential Cryptanalysis on Reduced-Round Simon (April
2014) (Preprint)

22. Courtois, N.T., Sepehrdad, P., Sušil, P., Vaudenay, S.: ElimLin algorithm revis-
ited. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 306–325. Springer,
Heidelberg (2012)

23. Dinur, I., Shamir, A.: Cube attacks on tweakable black box polynomials. In: Joux,
A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 278–299. Springer, Heidelberg
(2009)

24. Dinur, I., Shamir, A.: Side Channel Cube attacks on Block Ciphers. IACR Cryp-
tology ePrint Archive 2009, 127 (2009)

25. Dinur, I., Shamir, A.: Breaking grain-128 with dynamic cube attacks. In: Joux, A.
(ed.) FSE 2011. LNCS, vol. 6733, pp. 167–187. Springer, Heidelberg (2011)

26. Dinur, I., Shamir, A.: Applying cube attacks to stream ciphers in realistic scenarios.
Cryptography and Communications 4(3-4), 217–232 (2012)

27. Erickson, J., Ding, J., Christensen, C.: Algebraic cryptanalysis of SMS4: Gröbner
basis attack and SAT attack compared. In: Lee, D., Hong, S. (eds.) ICISC 2009.
LNCS, vol. 5984, pp. 73–86. Springer, Heidelberg (2010)

28. Faugère, J.-C.: A new efficient algorithm for computing Grobner bases (F4). Jour-
nal of Pure and Applied Algebra 139(13), 61–88 (1999)

29. Faugère, J.-C., Perret, L.: Algebraic cryptanalysis of curry and flurry using corre-
lated messages. In: Bao, F., Yung, M., Lin, D., Jing, J. (eds.) Inscrypt 2009. LNCS,
vol. 6151, pp. 266–277. Springer, Heidelberg (2010)

30. Fouque, P.A., Vannet, T.: Improving Key Recovery to 784 and 799 rounds of
Trivium using Optimized Cube Attacks. In: FSE 2013 (2013)

31. Hell, M., Johansson, T., Meier, W.: Grain; a stream cipher for constrained envi-
ronments. Int. J. Wire. Mob. Comput. 2(1), 86–93 (2007)

32. Hodges, T., Petit, C., Schlather, J.: Degree of Regularity for Systems arising from
Weil Descent. In: YAC 2012 - Yet Another Conference in Cryptography, p. 9 (2012)

33. Isobe, T., Sasaki, Y., Chen, J.: Related-key boomerang attacks onKATAN32/48/64.
In: Boyd, C., Simpson, L. (eds.) ACISP. LNCS, vol. 7959, pp. 268–285. Springer,
Heidelberg (2013)

34. Faugère, J.-C.: A New Efficient Algorithm for Computing Gröbner Bases Without
Reduction to Zero (F5). In: ISSAC 2002: Proceedings of the 2002 International
Symposium on Symbolic and Algebraic Computation, pp. 75–83 (2002)

35. Knellwolf, S., Meier, W., Naya-Plasencia, M.: Conditional differential cryptanaly-
sis of Trivium and KATAN. In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS,
vol. 7118, pp. 200–212. Springer, Heidelberg (2012)

36. Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.) FSE
1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995)

37. Lim, C.-W., Khoo, K.: An analysis of XSL applied to BES. In: Biryukov, A. (ed.)
FSE 2007. LNCS, vol. 4593, pp. 242–253. Springer, Heidelberg (2007)

38. Lipton, R.J., Viglas, A.: On the complexity of SAT. In: 40th FOCS, October 17-19,
pp. 459–464. IEEE Computer Society Press, New York (1999)

39. Mohamed, M.S.E., Mohamed, W.S.A.E., Ding, J., Buchmann, J.: MXL2: Solving
Polynomial Equations over GF(2) Using an Improved Mutant Strategy. In: Buch-
mann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 203–215. Springer,
Heidelberg (2008)

http://www.nicolascourtois.com/papers/front_indocrypt08_2p.pdf


On Selection of Samples in Algebraic Attacks 65

40. Mohamed, M.S.E., Cabarcas, D., Ding, J., Buchmann, J., Bulygin, S.: MXL3: An
efficient algorithm for computing Gröbner bases of zero-dimensional ideals. In: Lee,
D., Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 87–100. Springer, Heidelberg
(2010)

41. Song, L., Hu, L.: Improved algebraic and differential fault attacks on the katan
block cipher. In: Deng, R.H., Feng, T. (eds.) ISPEC 2013. LNCS, vol. 7863,
pp. 372–386. Springer, Heidelberg (2013)

42. Soos, M.: Cryptominisat 2.5.0. In: SAT Race competitive event booklet (July 2010)
43. Stegers, T.: Faugère’s F5 Algorithm Revisited. Cryptology ePrint Archive, Report

2006/404 (2006), http://eprint.iacr.org/
44. Wu, W., Zhang, L.: LBlock: A lightweight block cipher. In: Lopez, J., Tsudik, G.

(eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011)
45. Yang, B.-Y., Chen, J.-M., Courtois, N.T.: On asymptotic security estimates in

XL and Gröbner bases-related algebraic cryptanalysis. In: López, J., Qing, S.,
Okamoto, E. (eds.) ICICS 2004. LNCS, vol. 3269, pp. 401–413. Springer, Heidelberg
(2004)

http://eprint.iacr.org/


Strongly Simulation-Extractable

Leakage-Resilient NIZK �

Yuyu Wang and Keisuke Tanaka

Tokyo Institute of Technology

Abstract. This paper defines strongly simulation-extractable leakage-
resiliency (sSE-LR), which is a new notion for NIZK proof system. Our
definition extends the weaker notion called true simulation-extractable
leakage-resiliency (tSE-LR) defined by Garg, Jain, and Sahai in CRYPTO
2011. Moreover, improving the construction of tSE-LR-NIZK proof sys-
tem by Garg et al., we construct an NIZK scheme that satisfies sSE-LR.
An sSE-LR-NIZK proof system is applicable to construct a fully leakage
resilient signature scheme which is strongly existentially unforgeable. As
far as we know, this is the first fully leakage resilient signature scheme that
is strongly existentially unforgeable.

Keywords: NIZK, leakage, simulation-extractability, signature.

1 Introduction

1.1 Background

Non-interactive zero knowledge (NIZK) proof system is a variant of zero knowl-
edge (ZK) proof system. In ZK proof system, the prover makes a proof to con-
vince the verifier that there exists a witness, without the verifier being able to
learn any information about the witness. In NIZK proof system, the proof is
realized without interaction.

Dodis, Haralambiev, López-Alt, and Wichs [5] defined two new notions called
true simulation extractable (tSE) NIZK proof system and strongly simulation
extractable (sSE) NIZK proof system and gave their constructions. An NIZK
proof system is said to be tSE if there exists a probabilistic polynomial time
(PPT) extractor that can always extract a correct witness from any valid proof
generated by the adversary on a statement-tag pair. The adversary can obtain
proofs of true statements previously given by the simulator. There is a limitation
that the statement-tag pair used by the adversary to generate the proof must

β Department of Mathematical and Computing Sciences, Graduate School of In-
formation Science and Engineering, Tokyo Institute of Technology, W8-55, 2-12-
1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan. Supported by the Ministry of
Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research (A)
No.24240001 and (C) No.23500010, a grant of I-System Co. Ltd., and NTT Secure
Platform Laboratories.

W. Susilo and Y. Mu (Eds.): ACISP 2014, LNCS 8544, pp. 66–81, 2014.
c© Springer International Publishing Switzerland 2014



Strongly Simulation-Extractable Leakage-Resilient NIZK 67

be different from all the pairs having been used by the simulator. For sSE-
NIZK proof system, this limitation is relaxed, which means even if the adversary
outputs a new proof on a statement-tag pair that has been used by the simulator
before, the witness can still be extracted.

Garg, Jain, and Sahai [6] extended the notion of tSE-NIZK proof system
to true simulation extractable leakage resilient (tSE-LR) NIZK proof system.
That is, there exists a PPT extractor that can always extract a correct witness
from any valid proof generated by the adversary, who obtains not only proofs of
true statements previously given by the simulator, but also leakage on witnesses
and randomness which can explain the proofs. The limitation is the same as
tSE-NIZK proof system. They gave the construction of tSE-LR-NIZK proof sys-
tem by exploiting the UC-secure NIZK proof system by Groth, Ostrovsky and
Sahai [7].

Simulation extractable NIZK proof system is useful in many applications.
Dodis et al. [5] gave a generic construction of LR-signature scheme based on the
tSE-NIZK proof system and a generic construction of LR-CCA-secure encryption
based on the sSE-NIZK proof system. Following the approach of Dodis et al. [5],
Garg et al. [6] made use of the tSE-LR-NIZK proof system to obtain a fully
leakage resilient (FLR) signature scheme.

FLR signature prevents forgery of signature while the information of the secret
key and the randomness used by the signing algorithm throughout the lifetime of
the system is leaked. Note that in the case of LR-signature, only the information
of the secret key is leaked. An FLR signature scheme has to satisfy the security
of existential unforgeability (EUF) which prevents forgery of signatures on the
messages not signed before. However, for some applications, a stronger security
called strongly existential unforgeability (sEUF) is required which also prevents
forgery of new signatures on possibly the same messages signed before.

1.2 Our Results

In this paper, we give a definition of strongly simulation-extractable leakage-
resilient (sSE-LR) NIZK proof system which relaxes the limitation of tSE-LR-
NIZK proof system. Furthermore, we provide a construction of sSE-LR-NIZK
proof system. We improve the tSE-LR-NIZK construction in [6], which follows
the UC-secure NIZK proof system in [7], to satisfy our definition.

By making use of the sSE-LR-NIZK proof system and the technique by Dodis
et al. [5], and Garg et al. [6], we obtain an FLR signature scheme that satisfies
the security of sEUF immediately.

There exists several general transformations [2,12,11,1,8] to convert EUF sig-
nature schemes into sEUF ones. However, since all of the existing transformations
have to add new information to the secret key or generate additional random
bits during the signing process, there is no evidence that signatures converted by
the existing transformations are secure when the additional secret information is
leaked. That is, the existing transformations from EUF-FLR signature schemes
into sEUF-FLR ones cannot guarantee the security of the resulting schemes in
the bounded leakage model.



68 Y. Wang and K. Tanaka

We show that an sSE-LR-NIZK proof system is applicable to construct an
FLR signature scheme which satisfies sEUF. As far as we know, this is the first
FLR signature scheme that is sEUF. In this paper, we call an FLR signature
scheme which is sEUF a strongly fully leakage-resilient signature (sFLR) scheme.
We compare our result with the related works in Table 1.

Table 1. Comparison between our result and the related works

Dodis et al. [5] Dodis et al. [5] Garg et al.[6] This work

NIZK tSE-NIZK sSE-NIZK tSE-LR-NIZK sSE-LR-NIZK

Application LR-Signature LR-CCA-Encryption FLR-Signature sFLR-Signature

2 Preliminaries

2.1 NIZK Proof System

Let R be an efficiently computable binary relation. For pairs (x,w) ∈ R we call x
the statement and w the witness. Let L be the language consisting of statements
in R.

A non-interactive proof system for a relation R consists of a key generation
algorithmK, a prover P and a verifier V . The key generation algorithm produces
a common reference string (CRS) χ. The prover takes as input (χ, x, w) and
checks whether (x,w) ∈ R. In case of (x,w) ∈ R, it produces a proof string σ,
otherwise it outputs fail. The verifier takes as input (χ, x, σ) and outputs 1 if
the proof is acceptable, and 0 otherwise.

Definition 1 (Non-interactive proof system). A tuple of algorithms
(K,P, V ) is called a non-interactive proof system for a language L with a PPT
relation R if the following two conditions hold.

– Completeness: For any adversary A, we have

Pr[χ ⊕ K(1k); (x,w) ⊕ A(χ);σ ⊕ P (χ, x, w) :

V (χ, x, σ) = 1 if (x,w) ∈ R] ⊇ 1− negl(k).

– Soundness: For any adversary A, we have

Pr[χ ⊕ K(1k); (x, σ) ⊕ A(χ) : V (χ, x, σ) = 1 if x /∈ L] ≤ negl(k).

Now we introduce the definition of zero knowledge.

Definition 2 (Zero knowledge). A non-interactive proof system (K,P, V ) for
a relation R is said to be zero knowledge if there exists a simulator S = (S1, S2)
such that for any adversary A, we have

Pr[χ ⊕ K(1k) : AP (α,·,·)(χ) = 1] ≤ Pr[(χ, α) ⊕ S1(1
k) : AS⊆(α,β,·,·)(χ) = 1],

where S∈(χ, α, x, w) = S2(χ, α, x) if (x,w) ∈ R and outputs fail otherwise.



Strongly Simulation-Extractable Leakage-Resilient NIZK 69

A non-interactive proof system is said to be an NIZK proof system if the zero
knowledge property holds. In this paper, we require another property for NIZK
proof system called knowledge extraction [7].

Definition 3 (Knowledge extraction). We call (K,P, V ) a proof of knowl-
edge for a relation R if there exists a knowledge extractor E = (E1, E2) which
satisfies the two properties described below.

– For any adversary A, we have

Pr[χ ⊕ K(1k) : A(χ) = 1] ≤ Pr[(χ, β) ⊕ E1(1
k) : A(χ) = 1].

– For any adversary A, we have

Pr[(χ, β) ⊕ E1(1
k); (x, σ) ⊕ A(χ);w ⊕ E2(χ, β, x, σ) :

V (χ, x, σ) = 0 or (x,w) ∈ R] ⊇ 1− negl(k).

2.2 Leakage Resilient NIZK

We now state an extension of the zero knowledge property, called honest prover
state reconstruction [7,6]. Recall that the property of zero knowledge implies
the capability of simulating proofs by the honest prover without any witness.
With honest prover state reconstruction property, the randomness of the honest
prover is also simulatable with the witness.

Definition 4 (Honest prover state reconstruction). We say that a non-
interactive proof system (K,P, V ) for a relation R has honest prover state re-
construction property if there exists a simulator S = (S1, S2, S3) such that for
all adversary A, we have

Pr[χ ⊕ K(1k) : APR(α,·,·)(χ) = 1] ≤ Pr[(χ, α) ⊕ S1(1
k) : ASR(α,β,·,·)(χ) = 1],

where PR(χ, x, w) computes r ⊕ {0, 1}γP (k); σ ⊕ P (χ, x, w; r); returns
(σ,w, r), and SR(χ, α, x, w) computes τ ⊕ {0, 1}γS(k); σ ⊕ S2(χ, α, x; τ);
r ⊕ S3(χ, α, x, w; τ); and returns (σ,w, r). Both of the oracles output fail if
(x,w) /∈ R.

LR-NIZK proof system was defined by Garg et al. [6]. The simulator of an
LR-NIZK proof system can simulate leakage on the witness and randomness
used by the honest prover with a leakage oracle.

The simulator S is a PPT machine that has access to a leakage oracle Lk
w(·)

which is parameterized by the honest prover’s witness w and the security pa-
rameter k. The leakage oracle accepts queries of the form f where f(·) is an
efficiently computable function and outputs f(w). If the verifier obtains Φ bits
of total leakage from the honest prover, then the total leakage obtained by the
simulator from the leakage oracle must be bounded by Φ bits.



70 Y. Wang and K. Tanaka

Definition 5 (LR-NIZK). A non-interactive proof system (K,P, V ) for a
PPT relation R is said to be LR-NIZK if there exists a simulator S = (S1, S2, S3)
such that for any adversary A, we have

Pr[(χ) ⊕ K(1k) : APR(α,·,·,·)(χ) = 1]

≤ Pr[(χ, α) ⊕ S1(1
k) : ASRLk

w(·)(α,β,·,·,·)(χ) = 1].

Here, PR(χ,w, x, f) computes r ⊕ {0, 1}γP (k); σ ⊕ P (χ, x, w; r); y = f(w||r);
and returns (σ, y), and SRLk

w(·)(χ, α, x, w, f) computes τ ⊕ {0, 1}γS(k); σ ⊕
S2(χ, α, x; τ); f

∈ ⊕ S3(χ, α, x, τ, f); y ⊕ Lk
w(f

∈); and returns (σ, y). The output
length of the leakage query f ∈ to Lk

w(·) is no more than the output length of f .
Both the oracles PR and SR output fail if (x,w) /∈ R.

Garg et al. [6] proved that every NIZK proof system for a relation R with the
honest prover state reconstruction property is an LR-NIZK proof system for R.

2.3 Encryption with Pseudorandom Ciphertexts

A public-key cryptosystem (Kpseudo, E,D) has pseudorandom ciphertexts of
length ΦE(k) if for any PPT adversary A, we have

Pr[(pk, dk) ⊕ Kpseudo : AEpk(·)(pk) = 1]

≤ Pr[(pk, dk) ⊕ Kpseudo : ARpk(·)(pk) = 1],

where Rpk(m) returns c ⊕ {0, 1}γE(k) every time. We require that the cryp-
tosystem has errorless decryption. The existence of public-key cryptosystem with
pseudorandom ciphertexts is implied by the existence of trapdoor permutations.
We refer the reader to [7] for details of the constructions.

2.4 Simulation-Sound Trapdoor Commitment

A simulation-sound trapdoor commitment (SSTC) scheme [9,7] consists of four
algorithms (Kcom, com, T com, Topen). Kcom takes as input 1k and outputs
(ck, tk) where ck is a commitment key and tk is a trapdoor key. com takes
as input ck, a message m, a tag tag, and randomness r, and outputs the com-
mitment c. To open the commitment c with tag tag, we reveal m and r and
verify c = comck(m, tag; r). The commitment scheme must satisfy both hiding
and binding properties.
Tcom takes as input tk and tag and outputs (c, ek) where c is an equivocal

commitment and ek is an equivocal key. Topen takes as input an equivocal ek,
an equivocal commitment c, a message m, and a tag tag, and outputs r, such
that c = comck(m, tag; r).

The SSTC commitment must satisfy two properties, which are trapdoor prop-
erty and simulation-soundness property. The trapdoor property is satisfied if for
any PPT adversary A, we have

Pr[(ck, tk) ⊕ Kcom : AR(·,·)(ck) = 1] ≤ Pr[(ck, tk) ⊕ Kcom : AO(·,·)(ck) = 1].



Strongly Simulation-Extractable Leakage-Resilient NIZK 71

Here, R(m, tag) chooses r at random and returns (r, comck(m, tag; r)),
O(m, tag) computes (c, ek) ⊕ comtk(tag); r ⊕ Topenek(c,m, tag); and re-
turns (r, c). In [7,6], the limitation was made that A does not submit the same
tag twice to the oracle. However, according to the definition of trapdoor prop-
erty and the DSA-based construction of SSTC in [9], this limitation should be
removed.

The simulation-soundness property is satisfied if for any PPT adversary A,
we have

Pr[(ck, tk) ⊕ Kcom(1k); (c, tag,m, r,m∈, r∈) ⊕ AO(·)(ck) :
tag /∈ Q and c = comck(m, tag; r) = comck(m

∈, tag; r∈) and m ←= m∈] ≤ negl(k),

where O operates as follows, with Q initially set to ∅.
– On input (commit, tag), computes (c, ek) ⊕ Tcomtk(tag), stores

(c, tag, ek), adds tag to Q, and returns c.
– On input (open, c,m, tag), if (c, tag, ek) has been stored, returns r ⊕
Topenek(c,m, tag).

3 sSE-LR-NIZK

In this section we give a definition and a construction of tag-based sSE-LR-NIZK
proof system which is an extension of sSE-NIZK proof system in [5]. Although
the original definition of LR-NIZK (c.f. Definition 5) does not include tags, it
can be easily extended to do so [6].

3.1 Definition

Here, we define sSE-LR-NIZK proof system. Our definition is the same as
tSE-LR-NIZK proof system in [6], except for the winning condition. For tSE-LR-
NIZK, the adversary is not allowed to generate an NIZK proof on the statement-
tag pair which was queried to the simulator before. But in our definition, the
adversary only needs to generate a new tuple of statement, tag, and proof to
win the game, which means it is allowed to generate a different NIZK proof on
the statement-tag pair queried before.

Definition 6 (sSE-LR-NIZK proof system). Let (K,P, V ) be an LR-NIZK
proof system for a relation R with a simulator S = (S1, S2, S3) and a leakage
oracle Lk

w(·). We say that (K,P, V ) is a tag-based sSE-LR-NIZK proof system
if there exists a PPT extractor algorithm Ext such that for any adversary A, we
have Pr[A wins] ≤ negl(k) in the following experiment:

1. (χ, α) ⊕ S1(1
k).

2. (x≤, tag≤, σ≤) ⊕ ASRLk
w(·)(α,β,·,·,·,·), where SRLk

w(·)(χ, α, x, w, tag, f) com-
putes r ⊕ {0, 1}γS(k); σ ⊕ S2(χ, α, x, tag, r); f

∈ ⊕ S3(χ, α, x, r, f); y ⊕
Lk
w(f

∈); and returns (σ, y) (or fail if x /∈ L). Note that A can query SRLk
w(·)

multiple times adaptively.



72 Y. Wang and K. Tanaka

3. w≤ ⊕ Ext(χ, α, x≤, tag≤, σ≤).
4. A wins if: (a) The tuple (x≤, tag≤, σ≤) is new, that is, either the pair

(x≤, tag≤) was not a part of a simulator query or if it was, σ≤ is different
from the one(s) generated as the proof(s) of x≤ with tag≤ by the simulator.
(b) V (χ, x≤, tag≤, σ≤) = 1. (c) R(x≤, w≤) = 0.

3.2 NIZK Proof for Circuit Satisfiability

Before giving the construction of sSE-LR-NIZK proof system, we modify the
construction of the NIZK proof system for circuit satisfiability presented in [7].
We use this modified construction as a tool to achieve our goal later. The gen-
eration of an NIZK proof by this modified construction is separated into two
parts. The first part is to generate two sets cc and cp. The second part is to
generate the proof σ corresponding to the two sets. No fresh randomness is cho-
sen in the second part. For this NIZK proof system, when sampling cc||cp, the
prover has to know the witness but does not need to see the statement circuit.
Furthermore, if there are two different proofs produced with the same cc||cp for
the same statement, then at least one of them is invalid.

Let G be an algorithm which takes a security parameter as input and outputs
(p, q,G,G1, e) such that p, q are primes, n = pq and G, G1 are descriptions of
groups of order n and e: G×G ⇒ G1 is a bilinear map. Let Gq be the subgroup of
G of order q. The construction of NIZK proof system for circuit satisfiability [7]
is given in Figure 2 which uses the NIZK proof system in Figure 1 as a tool (we
refer the reader to [7] for more details on this NIZK proof system). We also show
how we modify this construction to achieve our goal.

Our modification. We modify the NIZK proof system in Figure 2 as follows.
Assume that the length of witness is Φ∈ (i.e., let mi be the ith bit of m and

wi the ith bit of witness, we have (m1, ...,mγ⊆) = (w1, ..., wγ⊆).) and the number
of the wires in circuit C cannot be larger than Φ. Every time before starting to
generate a proof, the prover randomly chooses ri,mi from Z

≤
n for i = 1, ..., Φ∈,

randomly chooses ri,b from Z
≤
n for i = Φ∈ + 1, ..., Φ and b = 0 to 1 and lets

cc = (gm1hr1,m1 , ..., gmκ⊆h
rκ⊆,m

κ⊆ , {hrκ⊆+1,0 , ghrκ⊆+1,1}, ..., {hrκ,0, ghrκ,1}). For i =
Φ∈ + 1, ..., Φ, {hri,0 , ghri,1} has 1/2 chance to be (hri,0 , ghri,1) and 1/2 chance to
be (ghri,1 , hri,0). The prover also chooses r∈i randomly from Z

≤
n for i = 0, ..., 2Φ

and lets cp = (hr
⊆
1 , ..., hr

⊆
2κ). Apparently, to sample cc and cp, the prover only

needs to know the witness, without seeing the statement.
Instead of encrypting each bit mi as ci = gmihri with ri ⊕ Z

≤
n (in Step 2 of

Proof, Figure 2), the prover uses gmihri,mi in cc as the ciphertext of mi (which
is also a commitment for mi). Furthermore, for the ith NIZK proof, instead of
choosing a fresh randomizer r from Z

≤
n and computing σ1, σ2, σ3 with r (in Step

2, 3 of Proof, Figure 1), the prover uses hr
⊆
i in cp as σ1 and uses r∈i to generate

σ2 and σ3. In Step 6, Figure 2, the prover returns cc, cp, and σ as the proof.
Before checking the proof σ, the verifier checks whether each ciphertext ci is

the same as gmihri,mi in cc for i ≤ Φ∈, whether ci is from {hri,0 , ghri,1} in cc for
i > Φ∈, and whether each σ1 for the ith NIZK proof is the same as hr

⊆
i in cp.



Strongly Simulation-Extractable Leakage-Resilient NIZK 73

CRS generation:

1. (p, q,G,G1, e) ← G(1k).
2. n = pq.
3. Choose a random generator g from G.
4. Choose a random generator h from Gq .
5. Return Δ = (n,G,G1, e, g, h).

Proof: On input (Δ, c, (w,m)) such that c ∈ G, (m,w) ∈ Z
2, m ∈ {0, 1}, and

c = gmhw.

1. Check m ∈ {0, 1} and c = gmhw. Return failure if check fails.
2. r ← Z

∈
n.

3. κ1 = hr, κ2 = (g2m−1hw)wr−1

, κ3 = gr.
4. Return κ = (κ1, κ2, κ3).

Verification: On input (Δ, c, κ = (κ1, κ2, κ3)).

1. Check c ∈ G and κ ∈ G
3.

2. Check e(c, cg−1) = e(κ1, κ2) and e(κ1, g) = e(h, κ3).
3. Return 1 if the check works out, else return 0.

Fig. 1. NIZK proof system of plaintext being zero or one in [7]

If this check works out, the verifier continues to check whether σ is a valid proof.
Otherwise, the verifier returns 0.

By the modification described above, the properties of completeness, sound-
ness, knowledge extraction, zero knowledge, and honest prover reconstruction
can be shown with similar arguments of [7]. The proof is appeared in the full
version of this paper.

Additional property. For some statement C, if cc||cp is produced honestly, the
ciphertexts are determined by cc and all the NIZK proofs (Step 6 of Proof,
Figure 2) are determined by cp and the ciphertexts. We argue that if two different
proofs are generated with the same cc||cp for the same statement, then there must
be at least one proof that is invalid. The reason is that there must exist at least
one NAND-gate for which, the ciphertext of the output is not the commitment
to the right bit. This means a valid NIZK proof cannot be produced for that
gate.

In fact, for that gate, we have ci0ci1c
2
i2
g−2 = gmhr where m /∈ {0, 1}, depend-

ing on the fact that b0 + b1 + b2 − 2 ∈ {0, 1} if and only if b2 = ¬(b0 ≈ b1)
when b0, b1, b2 ∈ {0, 1}. If there exists gm

∗
hr

∗
such that m≤ ∈ {0, 1} and

gm
∗
hr

∗
= gmhr, we have gqm

∗
= gqm, equivalently, mq ⇐ q (mod n) or

mq ⇐ 0 (mod n). However, since both p and q are large prime numbers and
m ∈ {−2,−1, 2}, none of the equations holds. According to the soundness of the
NIZK proof of plaintext being zero or one (Figure 1), a valid NIZK proof cannot
be produced.



74 Y. Wang and K. Tanaka

CRS generation: The same as in Figure 1.
Proof: On input (Δ,C,w) such that C is a circuit built from NAND-gates and
C(w) = 1.

1. Extend w to m which contains the bits of all wires in the circuit.
2. Encrypt each bit mi as ci = gmihri , with ri ← Z

∈
n.

3. For all ci make an NIZK proof of existence of mi, ri, so mi = {0, 1} and ci =
gmihri (c.f., Figure 1).

4. For the output of the circuit we let the ciphertext be coutput = g, i.e., an easily
verifiable encryption of 1.

5. For all NAND-gates, we do the following. We have input ciphertexts ci0 , ci1 and
output ciphertexts ci2 . We wish to prove the existence of mi0 , mi1 , mi2 ∈ {0, 1}
and ri0 , ri1 , ri2 so mi2 = ¬(mi0 ∧mi,1) and cij = g

mij h
rij . To do so we make

an NIZK proof that there exist m, r with m ∈ {0, 1} so ci0ci1ci2g
−2 = gmhr

(c.f., Figure 1).
6. Return κ consisting of all the ciphertexts and NIZK proofs.

Verification: The verifier given a circuit C and a proof κ.

1. Check that all wires have a corresponding ciphertext and that the output wire’s
ciphertext is g.

2. Check that all ciphertexts have an NIZK proof of the plaintext being 0 or 1.
3. Check that all NAND-gates have a valid NIZK proof of compliance.
4. Return 1 if all checks work out, else return 0.

Fig. 2. NIZK proof system for circuit satisfiability in [7]

Remark on common random string. As noted in [7], we can choose h to be a
random generator of G instead of choosing h of order q when generating the
CRS, i.e., we can use the CRS generated by S1 instead of the CRS generated by
the honest prover. It is clear that the CRS generated by S1 can be chosen to be a
common random string without learning the trapdoor information (p, q, π). The
completeness, soundness, zero-knowledge, honest prover reconstruction, and the
additional property do not change since no adversary can distinguish h of order
n from h of order q. The property of knowledge extraction does not change as
well when E1(1

k) generates the β = (p, q) and the original χ, in which, the h is
still of order q.

3.3 Construction of sSE-LR-NIZK Proof System

To obtain the construction, there are two key hurdles as noted in [6]. The first
one is that the simulator has to be able to simulate the CRS Σ and proof Ω
without the witness. It also has to simulate the randomness to explain the proofs,
given the witness. The second one is that the simulator has to extract a correct
witness from a valid proof Ω generated by the adversary for a statement C.



Strongly Simulation-Extractable Leakage-Resilient NIZK 75

The same as [6], a prover commits to all the bits of witness w and encrypts
the openings (while the simulator creates equivocal commitments to do the sim-
ulating) and then makes an NIZK proof with the honest prover reconstruction
property so that the leakage queries can be simulated.

However, different from [6], we use the NIZK proof system introduced in
Section 3.2 as the underlying NIZK proof system. Furthermore, instead of com-
mitting to the bits of witness with the tag tag directly, we use a new tag which
is a concatenation of C, tag, and crand, while crand is a concatenation of a com-
mitment to witness, commitments to the randomizers and a part of the NIZK
proof cc||cp.

Intuitively, if the adversary uses a tag which has been used by the simulator, it
is difficult to generate a different proof. To generate a different proof, the adver-
sary has to either find other witness or randomizers to explain the commitments
than the ones obtained from the leakage, or generate a new proof for the under-
lying NIZK while the statement and cc||cp are the same as the one(s) used by
the simulator, breaking the simulation-soundness property of the SSTC scheme
or the additional property of the underlying NIZK described in Section 3.2.

We give the construction of sSE-LR-NIZK in Figure 3 (using the notation
from Section 2).

Theorem 1. The NIZK proof system described in Figure 3 is an sSE-LR-NIZK
proof system if (Kpseudo, E,D) is a public-key cryptosystem having pseudoran-
dom ciphertexts, (Kcom, com, T com, Topen) is an SSTC scheme, and the under-
lying NIZK proof system is the one described in Section 3.2.

Proof. We prove the protocol is an LR-NIZK proof system at first. Then we prove
that our construction satisfies the property of strong simulation extractability.
We denote the simulator of the sSE-LR-NIZK proof system as S and the simu-
lator of the underlying NIZK proof system as (S1, S2, S3).

Soundness and completeness follow from the soundness and completeness of
the underlying NIZK.

Simulating proofs and randomness. S simulates a proof as described in Figure 4.
Now we describe how S simulates the convincing randomness which can

explain the proof Ω with witness. According to the trapdoor property, for
i = 1, ..., Φ, S pretends that τi,wi is the randomness ri used to compute com-
mitment ci, that ri,wi is the randomness Rwi used to encrypt ri, and that
Epk(τi,1−wi , ri,1−wi) is the randomness Ri (which is equivalent to ci,1−wi). Fur-
thermore, the randomness used to commit to ri, Rwi , Ri, and w can be all sim-
ulated correctly since the commitments are equivocal and can be opened by S
with the equivocation key generated in Step 1 of proof, Figure 4. S also runs
the simulator algorithm S3 to obtain the randomness that would lead a honest
prover to produce the same proof cc||cp||σ. With all the randomness being simu-
lated successfully so far, S can transform all the leakage queries made on witness
and randomness into queries made only on the witness. Hence, S can use the
leakage oracle Lk

w(·) to answer the leakage queries correctly.



76 Y. Wang and K. Tanaka

CRS generation:

1. (ck, tk) ← Kcom(1k).
2. (pk, dk) ← Kpseudo(1

k).
3. (Δ, χ ) ← S1(1

k).
4. Return Υ = (ck, pk, Δ).

Proof: On input (Υ,C,w, tag) such that C(w) = 1 do.

1. For i = 1 to ξ choose ri, r∪i, Rwi , R∪
wi

, Ri, R
∪
i respectively at random

and let cri := comck(ri, tag; r
∪
i), cRwi

:= comck(Rwi , tag, R
∪
wi

), cRi :=
comck(Ri, tag;R

∪
i). Choose rw at random and let cw := comck(w, tag; rw).

2. Choose randomizer r to generate two sets cc and cp (c.f., Section 3.2) with the
witness (w, rw, {ri, r∪i, Rwi , R

∪
wi

, Ri, R
∪
i}i=1,..,φ).

3. Let crand := (cr1 , cr2 , ..., crκ , cRw1
, cRw2

, ..., cRwκ
, cR1 , cR2 , ..., cRκ , cc, cp, cw).

4. For i = 1 to ξ, let ci := comck(wi, C||tag||crand; ri).
5. For i = 1 to ξ, set ci,wi := Epk(ri, Rwi) and ci,1−wi := Ri.
6. Let c := (c1, c1,0, c1,1, ..., cφ, cφ,0, cφ,1, crand).
7. Create an NIZK proof κ with cc and cp for the statement that there exists w

and randomness such that c has been produced as described in Step 1, 3, 4, 5,
and 6 and C(w) = 1.

8. Return Ω = (tag, c, cc||cp||κ).
Verification: On input (Υ,C,Ω).

1. Parse Ω = (tag, c, cc||cp||κ).
2. Verify the NIZK proof cc||cp||κ.
3. Return 1 if the check works out, else return 0.

Fig. 3. sSE-LR-NIZK proof system

To argue that no PPT adversary A can distinguish its interaction with a real
prover from its interaction with a simulator S, we create hybrid games and show
the indistinguishability of them.

Game0: S owns the witness and works as an honest prover.

Game1: Instead of committing to the witness and randomness honestly (Step
1, proof, Figure 3), S creates the commitments equivocally and opens them
by computing r∈i ⊕ Topenekri

(cri , ri, tag), R
∈
wi

⊕ TopenekRwi
(cRwi

, Rwi , tag),

R∈
i ⊕ TopenekRi

(cRi , Ri, tag), rw ⊕ Topenekw
(cw, w, tag) to make the proof

and answer the leakage queries.
Since it is hard to distinguish the normal commitments and openings from

the equivocal commitments and openings, it is hard to distinguish Game0 and
Game1 for A.

After showing that the above two games are indistinguishable, we argue that
Game1 is distinguishable from the interaction between A and S which works



Strongly Simulation-Extractable Leakage-Resilient NIZK 77

CRS generation:

1. (ck, tk) ← Kcom(1k).
2. (pk, dk) ← Kpseudo(1

k).
3. (Δ, χ ) ← S1(1

k).
4. Return Υ = (ck, pk, Δ) and T = (tk, dk, χ ).

Proof: On input (Υ,T, C, w, tag) such that C(w)=1 do.

1. For i = 1 to ξ, let (cri , ekri) ← Tcomtk(tag), (cRwi
, ekRwi

) ← Tcomtk(tag)
and (cRi , ekRi) ← Tcomtk(tag). Let (cw , ekw) ← Tcomtk(tag).

2. Choose π at random to simulate cc and cp.
3. Let crand := (cr1 , cr2 , ..., crκ , cRw1

, cRw2
, ..., cRwκ

, cR1 , cR2 , ..., cRκ , cc, cp, cw).
4. For i = 1 to ξ, let (ci, eki) ← Tcomtk(C||tag||crand).
5. For i = 1 to ξ, and b = 0 to 1, choose ri,b at random and set πi,b ←

Topeneki
(ci, b, C||tag||crand), ci,b ← Epk(πi,b; ri,b).

6. Let c := (c1, c1,0, c1,1, ..., cφ, cφ,0, cφ,1, crand).
7. Simulate the NIZK proof for the statement of Step 7, Figure 3 with cc and cp.
8. Return Ω = (tag, c, cc||cp||κ).

Fig. 4. Simulating proofs

in the way of Figure 4. This part of proof is similar to the proof in [6] except
the tag is different.

Game2: Instead of computing ci := comck(wi, C||tag||crand; ri) in Step 4 of
Proof, Figure 3, S computes (ci, eki) ⊕ Tcomtk(C||tag||crand), and τi,wi ⊕
Topeneki

(ci, wi, C||tag||crand), and uses τi,wi instead of ri in the whole proof.
Since it is hard to distinguish the normal commitments and openings from

the equivocal commitments and openings, it is hard to distinguish Game1 and
Game2 for A.

Game3: Instead of choosing Ri at random, S computes τi,1−wi ⊕
Topeneki

(ci, 1−wi;C||tag||crand) and Ri := Epk(τi,1−wi ; ri,1−wi) for a randomly
chosen ri,1−wi .

Since it is hard to distinguish the pseudorandom ciphertexts from the real
randomizers, it is hard to distinguish Game2 and Game3 for A.

Game4: Instead of making NIZK proofs in the same way as an honest prover,
S chooses τ at random and uses S2 to simulate cc||cp and the NIZK proof
σ. On input the witness, S uses S3(χ, α, x, cc||cp||σ, ·, τ) to create convincing
randomness that would lead the prover to output the same cc||cp||σ. Therefore
any leakage query on the randomness and witness is reduced to a leakage query
only on the witness.

It is hard to distinguishGame3 andGame4 forA according to the properties
of NIZK and honest prover reconstruction.



78 Y. Wang and K. Tanaka

Extraction. Now we prove that for a valid proof Ω generated by the adversaryA
in the strong simulation extractability experiment, the witness can be extracted.

The proof of strong simulation extractability is divided into two parts. In the
first part, we consider the situation that the tuple (C, tag, crand) produced by
A is not a part of an answer from S. In the second part, we argue that in the
contrast situation, namely, when A creates an proof with a triplet (C, tag, crand)
that has been used by S, the proof is either invalid or the same as the one(s)
produced by S.

When it comes to the first situation, S can definitely extract the witness ac-
cording to the simulation-soundness property of SSTC schemes and the sound-
ness property of NIZK proof. The proof follows directly from [6]. The details are
as follows.

For an NIZK proof Ω = (tag, c, σ) generated by A, the extractor parses
c as (c1, c1,0, c1,1, ..., cγ, cγ,0, cγ,1, crand) and decrypts ci,b’s to get τi,b’s. Then it
checks whether ci,b = comck(b, C||tag||crand; τi,b) for i = 1, ..., Φ and b = 0, 1. If
the check works out for some i and b, then the ith bit of w is b, otherwise, 1− b.

According to the simulation-soundness property, the probability that ci =
comck(0, C||tag||crand, τi,0) = comck(1, C||tag||crand, τi,1) for some i is negligi-
ble since the simulator has never produced any equivocal commitment with the
tag C||tag||crand before.

According to the soundness property of NIZK, the probability that ci ←=
comck(0, C||tag||crand, τi,0) and ci ←= comck(1, C||tag||crand, τi,1) for some i is
negligible, too.

As a result, S can extract the witness with overwhelming probability in this
situation if the proof is valid.

Now we argue that if A uses (C, tag, crand) created by S before, it can-
not produce a new valid proof. To prove this, we give a hybrid experiment
by substituting (χ, α) ⊕ S1(1

k) (in Step 3 of CRS generation, Figure 3) with

(χ, β) ⊕ E1(1
k) (c.f., Definition 3) and SRLk

w(·) with PR (c.f., Definition 5)
in the experiment of sSE-LR-NIZK proof system (c.f., Definition 6). According
to the property of LR-NIZK proof of knowledge, A cannot distinguish this hy-
brid experiment from the original one, i.e., the probabilities that A produces a
new valid proof while C||tag||crand is a part of an answer from S in the two
experiments are the same.

When A outputs the statement, tag, and proof at some point, S gives β to A.
Then A runs algorithm E2 to extract the witness and randomness from the proof
cc||cp||σ if it is valid. Since all the queries are answered by PR which provides
no information about the trapdoor string, the witness and randomness which
are committed to can be extracted with overwhelming probability.

If c produced by A is a new one for the same C||tag||crand used by simulator,
the extracted witness and randomness (committed to in the first step of Proof,
Figure 3) must be new but lead to the same crand, breaking the simulation-
soundness property of the underlying SSTC.



Strongly Simulation-Extractable Leakage-Resilient NIZK 79

Now we consider the situation that σ produced by A is new for the same pair
(C||tag||crand, c) used by the simulator. Since the statement described in Step
7 (Figure 3) is determined by (C||tag||crand, c) and there cannot be two valid
proofs for the same statement and the same cc||cp (contained in crand), the new
proof produced by A is invalid.

Remark on statement circuit. To make use of the underlying NIZK proof system
(in Section 3.2), the circuit for the statement described in Step 7 of proof
(Figure 3) has to be built from NAND-gates. The adversary may have a chance
to produce different proof(s) for the same statement and cc||cp if it constructs
the circuit in different ways. We rule out this probability by making the prover
construct the statement circuit and transform it to a circuit built from NAND-
gates in some fixed way. The verifier will check whether the circuit is constructed
in that way and return 0 if it is not. By doing this, we make sure that for one
statement, there is only one statement circuit.

Remark on the number of circuit wires. As noted in Section 3.2, the elements in
cc and cp are candidates for the ciphertexts of the wires in the statement circuit.
The number of these elements is linear with a number Φ, which should be larger
than the number of the wires. However, since the statement described in Step
7 of proof (Figure 3) contains information of crand which contains cc||cp, the
number of wires will increase while the number of elements in cc||cp increases. As
a result, the number of elements in cc||cp may be not enough for the wires. We
can solve this problem by using the hashing of cc||cp instead of cc||cp as a part
of crand and let the verifier check the correctness of the hashing. By doing this,
the statement circuit will not become too large when the number of elements in
cc||cp increases.

Remark on common random string. According to Garg et al. [6], the public key
of the pseudorandom encryption scheme and the SSTC scheme can be chosen
randomly without learning the associated secret parameters. Furthermore, as
we noted in Section 3.2, the CRS of the underlying NIZK can also be chosen
randomly without learning the trapdoor information.

4 sFLR Signature

In this section, we first give the definition of sFLR signature which extends the
notion of FLR signature [3,6]. A signature scheme is said to be sFLR if it satisfies
sEUF property while the information of the secret key and the randomness used
by the signing algorithm throughout the lifetime of the system is leaked. As the
same as [6], for convenience, we do not consider the leakage on the randomness
used in the key generation algorithm in the definition. However, our construction
can tolerate leakage during key generation as discussed later.



80 Y. Wang and K. Tanaka

We describe only the idea of the construction of the sFLR signature in this
section. We give a complete description in the full version of the paper.

The sFLR signature scheme is defined as follows.

Definition 7 (sFLR signature scheme). A signature scheme (KeyGen , Sign ,
Verify) is called an Φ-sFLR signature scheme in the bounded leakage model if
for all PPT adversary A, we have that Pr[A wins] ≤ negl(k) in the following
experiment:

1. Compute (pk, sk) ⊕ KeyGen(1k, Φ), and set state := sk.
2. Run the adversary A on input tuple (1k, pk, Φ). The adversary may make

adaptive queries to the signing oracle and the leakage oracle, defined as fol-
lows.
– Signature oracle: On receiving a query mi, the signing oracle samples
ri ⊕ {0, 1}≤, and computes Φi ⊕ Signsk(mi; ri). It updates state :=
state||ri and outputs Φi.

– Leakage oracle: On receiving the description of a polynomial-time com-
putable function fj : {0, 1}≤ ⇒ {0, 1}γj , the leakage oracle outputs
f(state).

3. At some point, A stops and outputs (m≤, Φ≤).
4. A wins in the experiment if : (a) Verifypk(m

≤, Φ≤) = 1. (b) The pair (m≤,
Φ≤) is new, that is, either m≤ was not queried to the signing oracle or it
was, Φ≤ is not the one(s) generated as the signature(s) of m≤ by the signing
oracle. (c)

∑
j Φj ≤ Φ.

By substituting the underlying tSE-LR-NIZK proof system of the FLR signa-
ture scheme in [6] with an sSE-LR-NIZK proof system, we can obtain an sFLR
signature scheme. By using the sSE-LR-NIZK proof system, the security of the
sFLR signature scheme is reduced to the security of a leakage resilient primi-
tive called leakage resilient hard relation (LR-hard relation) defined by Dodis et
al. [5], who provided a generic approach to construct an LR-signature scheme
by using the LR-hard relation.

Leakage during key generation. As the same as [6], since the CRS of the sSE-
LR-NIZK can be sampled without learning the associated secret parameters (as
discussed in Section 3.3), this scheme can tolerate leakage during key generation,
which makes it satisfy the original definition of [3]. Furthermore, by substituting
the LR-hard relation with a continual LR-hard relation [4], we can obtain an
sFLR signature scheme in the continual leakage model [4]. In the same way, by
instantiating of a hard relation secure in the noisy leakage model [10], we can
obtain a scheme secure in the noisy leakage model as well. We refer the reader
to [6] for details.



Strongly Simulation-Extractable Leakage-Resilient NIZK 81

References

1. Bellare, M., Shoup, S.: Two-tier signatures, strongly unforgeable signatures, and
Fiat-Shamir without random oracles. In: Okamoto, T., Wang, X. (eds.) PKC 2007.
LNCS, vol. 4450, pp. 201–216. Springer, Heidelberg (2007)

2. Boneh, D., Shen, E., Waters, B.: Strongly unforgeable signatures based on com-
putational Diffie-Hellman. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.)
PKC 2006. LNCS, vol. 3958, pp. 229–240. Springer, Heidelberg (2006)

3. Boyle, E., Segev, G., Wichs, D.: Fully leakage-resilient signatures. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 89–108. Springer, Heidelberg
(2011)

4. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Cryptography against con-
tinuous memory attacks. In: Proceedings of the 2010 IEEE 51st Annual Symposium
on Foundations of Computer Science, FOCS 2010, pp. 511–520. IEEE Computer
Society (2010)

5. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Efficient public-key cryptog-
raphy in the presence of key leakage. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 613–631. Springer, Heidelberg (2010)

6. Garg, S., Jain, A., Sahai, A.: Leakage-resilient zero knowledge. In: Rogaway, P.
(ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 297–315. Springer, Heidelberg (2011)

7. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for np.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer,
Heidelberg (2006)

8. Huang, Q., Wong, D.S., Zhao, Y.: Generic transformation to strongly unforgeable
signatures. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 1–17.
Springer, Heidelberg (2007)

9. MacKenzie, P.D., Yang, K.: On simulation-sound trapdoor commitments. In:
Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 382–
400. Springer, Heidelberg (2004)

10. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi,
S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009)

11. Steinfeld, R., Pieprzyk, J., Wang, H.: How to strengthen any weakly unforgeable
signature into a strongly unforgeable signature. In: Abe, M. (ed.) CT-RSA 2007.
LNCS, vol. 4377, pp. 357–371. Springer, Heidelberg (2006)

12. Teranishi, I., Oyama, T., Ogata, W.: General conversion for obtaining strongly
existentially unforgeable signatures. In: Barua, R., Lange, T. (eds.) INDOCRYPT
2006. LNCS, vol. 4329, pp. 191–205. Springer, Heidelberg (2006)



A Secure Three-Party Computational Protocol
for Triangle Areaρ

Liang Liu1, Xiaofeng Chen1, and Wenjing Lou2

1 State Key Laboratory of Integrated Service Networks (ISN),
Xidian University, Xi’an 710071, China

liu.liang.xidian@gmail.com, xfchen@xidian.edu.cn
2 Department of Computer Science,

Virginia Tech, Falls Church 22043, USA
wjlou@vt.edu

Abstract. We address a concrete secure multi-party computational (MPC) prob-
lem related to a triangle, of which the coordinates of the three vertexes are con-
fidentially kept by the three participants, respectively. The three parties wish to
collaboratively compute the area of this triangle while preserving their own co-
ordinate privacy. As one of the merits, our protocol employs weaker assumptions
of the existence of pseudorandom generators. Especially, unlike massive secure
MPC protocols that mainly rely on the primitive of oblivious transfer (OT), ours
utilizes a new computing idea named round summation to avoid this burdensome
obstacle. Finally, we provide a proof of the protocol by a series of security re-
ductions of our newly-defined games, which seems somewhat stronger than the
previous simulation-based proofs.

1 Introduction

Secure multi-party computation (a.k.a. SMC) is of great importance in modern cryptog-
raphy and communication. As one of the most significant cryptographic primitives, it
has received much attention from international cryptographic community since its birth.
It is created to solve a category of problems, involving n distributed and mutually dis-
trustful parties in evaluating a pre-determined n-ary function f(x1, x2, . . . , xn), where
xi is the i-th party’s private input. After the protocol execution, no more than the out-
put fi(x1, x2, . . . , xn) can the i-th party obtain. From its notion, besides a diversity of
real-life applications, e.g., secret voting, electronic auction, we can learn that the most
appealing feature of MPC may be its theoretical nature that we can treat plenty of other
cryptographic protocols as a special case of it.

Similar to our protocol w.r.t. both MPC and geometry, there are some prior works
closely related to the two themes, thus several keen-minded researchers have summed
up this kind of MPC problems to be in a new subclass, secure multi-party computa-
tional geometry (MPCG), or referred to as privacy-preserving computational geome-
try (PPCG) [1]. It represents a certain kind of MPC problems in which the objective

β This work is done when the first two authors were visiting Virginia Polytechnic Institute and
State University.

W. Susilo and Y. Mu (Eds.): ACISP 2014, LNCS 8544, pp. 82–97, 2014.
c← Springer International Publishing Switzerland 2014



A Secure Three-Party Computational Protocol for Triangle Area 83

function f(·) relates closely to geometry. These problems has extensive application
prospects. For instance, a real estate speculator has learned a fiscal plan made by pol-
icymakers that a region will be rebuilt into a commercial center and a trunk road will
pass through it, meaning that the storefronts there will soon rise in value. Therefore, he
intends to purchase some in advance and wait for their increment. Nevertheless, there
are (mainly) two barriers hinder him from making a fortune – one is that he cannot learn
the precise locality of the road that may have tremendous influence on the future price
of the storefronts now at the same price level, and the other is he is not willing to leak
his intention to others. Appreciation of the storefronts differs from each other in terms
of their location relations with the road, e.g., the closer the storefront is to the road, the
more increment in value it will gain; or the one on the north side of the road (it can be
modeled as a point above the curve) will increase more than that on the south side [2].
So of course, the ones have the most potential should be at the top of his priority list. In
a nutshell, all above can be ascribed to privately determining the geometrical relation
or evaluating the distance between a point (storefront) and a curve (road), which are
typical PPCG problems. Beyond that, for the triangle area problem which we target to
address, one can imagine such a scenario. Three countries have planned to conduct a
joint terrain exploration. Each of them do not want disclose their starting point whereas
all of them need to know the area of the triangle consisted by the three points since they
must have some (at least approximate) workload assessment before execution.

Apart from the scenarios above, there are also other considerable applications in real
life. In the cloud computing era, on one hand a myriad of new applications are springing
up in every minute, and on the other hand the security and privacy issues rising along
with have unprecedentedly troubled people that much. For instance, location based ser-
vice (LBS) [3,4], a burgeoning service at present mainly oriented to smart phone users
and vehicle drivers, is becoming more and more popular in daily life. It provides us with
excellent social activities, economical products, high-quality services as well as other
convenience. Nevertheless, at the meantime, privacy concerns that have accompanied
with its rapid development are also increasing. Taking the prevailing smart phone chat-
ting software as an example, they usually comprise one or more modules, making use
of the application requesters’ location data and in turn supplying them for some LBS-
related services, e.g., “restaurant recommendation” and “people nearby”. This kind of
behavior sometimes harms the interest of the application users due to the sensitivity of
their private location data. However, secure multi-party computation, especially PPCG
when in the settings that the function of the protocol is relevant to geometrical prob-
lems, offers us a good solution to this tricky situation. It is possible for the users to both
reap the benefit of the services and prevent leakage of their privacy by taking advantage
of an appropriate secure MPC protocol.

In this paper, we have addressed a new secure three-party computational problem
with respect to triangle area. Our contribution can be concluded as follows:

• Our protocol is constructed under simpler assumption, namely, only assuming the
existence of pseudo-random generator. A highlighted point worth mentioning is
that ours avoids the usage of oblivious transfer, which is a basic tool in secure
multi-party computation.



84 L. Liu, X, Chen, and W. Lou

• Our work addresses this kind of problems in a more complex situation compared
with former literatures, especially to the one addresses this issue in the two-party
case[27]. Besides, our solution can also be deemed as a beginning as well as a basis
for some more complex problems, e.g., how to decide other metrics when given
more participants.

• We provide a stronger proof for our protocol. Our proof allows for adaptively-
chosen output of the function/protocol and arbitrary knowledge of other parties’
inputs in the interactive games (not in the protocol itself, otherwise it breaches the
principles of SMC).

2 Preliminaries

The main building block of our protocol is Heron’s Formula.

Theorem 1. Heron’s Formula. In a triangle ∈ABC , given the length of the three edges
and the semiperimeter, the area of ∈ABC can be calculated as:

SareaABC =
√
P · (P − Ea) · (P − Eb) · (P − Ec),

where Ei is the opposite side of the i-th (i ⊕ {a, b, c}) vertex, and P = (Ea + Eb +
Ec)/2 is the semiperimeter of this triangle.

There is a truth about evaluating the summation sum of a certain set of numbers ni’s
(i ⊕ Z, i ⊇ 3), where each of the numbers is secretly held by only one participant. And
after the execution, every party should not be able to learn more than all the other
parties’ summation, namely, sum − ni. Here, we referred this process as summation
protocol (or round summation protocol). We make use of a developed version of this
protocol several times in our protocol.

Claim 1. As stated above, in the context of a round summation protocol, the participants
can achieve the goal by the following steps: Party 1 launches the protocol by sending
to Party 2 the sum of his private number n1 and a random number r. At this point,
they have s = n1 + r. Party 2 then adds up her private number n2 to s and sends the
updated s to the next participant. The protocol proceeds in this manner one by one until
the last participant sends back s to the first participant, at which point it satisfies that
s = sum+ r. Finally, Party 1 broadcasts the result s− r to all the other parties within
this protocol execution.

Theorem 2. Single-Message Security Implies Multiple-Message Security. A public-
key encryption scheme E has indistinguishable encryptions for multiple messages if
and only if it has indistinguishable encryptions for a single message, say, for any PPT
adversary A, any security parameter n, there exists a negligible function negl(·) such
that,

Advind-cpa
A,E (n) =Pr

[
Expind-cpa

A,E (n) = 1
]
− 1

2
≤ negl(n)

≤← Advind-cpa-mult
A,E (n) = Pr

[
Expind-cpa-mult

A,E (n) = 1
]
− 1

2
≤ negl(n)



A Secure Three-Party Computational Protocol for Triangle Area 85

The ind-cpa-mult experiment is the same as the ind-cpa experiment except that in the
Step 2 of the ind-cpa experiment, the adversary A chooses a pair of message vectors
M0 and M1 rather than a pair of single messages. For the sake of simplicity, we do not
repeat the experiment again.

Theorem 3. Pseudorandom Generators Imply Indistinguishable Encryption Schemes.
There are several ways to bridge these two notions, e.g., pseudorandom generators
imply pseudorandom functions and pseudorandom functions imply pseudorandom per-
mutations, which along with an efficient trapdoor generation algorithm imply indistin-
guishable encryption schemes; or pseudorandom generators imply one-way functions,
which along with an efficient trapdoor generation algorithm imply indistinguishable en-
cryption schemes. For simplicity, we do not give constructions here. Readers can refer
to revelent books and articles.

Theorem 2 is used to simplify our proof of the indistinguishability between some
adjacence game sequences, e.g., Game1 and Game2. Theorem 3 speaks to the sound-
ness of our statement that our protocol relies only on the existence of pseudorandom
generators.

3 Evaluating the Area of a Triangle While Preserving the
Coordinate Privacy

Without loss of generality, we suppose that Alice, Bob and Carol each has a point
Pi = (xi, yi) ⊕ Z

∗ × Z
∗, i ⊕ {a, b, c}. Denote as Π the protocol, the aim of which

is to engage the three in calculating the area of the triangle composed of their points
without leaking any private information more than the area. Next we give our protocol
intuition first and then the solution to address this problem.

3.1 Protocol Intuition

Let us recall Heron’s Formula. The main idea behind our protocol is that firstly the three
participants interactively and privately calculate the three edges Ea, Eb and Ec (Ei is
the length of the opposite edge of the point Pi) of the triangle by randomization and
modified summation protocol. Note that on account of the changes in the round sum-
mation protocol, by which each of the three participants obtains the product (with the
form of G(·)Ei) of its opposite edge and a pseudorandom number rather than trivially
obtains the edge, we can achieve the goal of protecting the value of Ei’s. And then for
the same reason, they can obtain some pseudo-randomized version of semiperimeter
P and (P − Ei)’s of this triangle by using the modified round summation protocol in
nearly the same manner (but not exactly the same). After all these steps, by making use
of Heron Formula and derandomization, the correct output of the protocol, namely the
area of this triangle, can be obtained.

Intuitively, the difficulty of preserving privacy lies in privately evaluatingP andEi’s,
which is also one of our highlights. Aiming to solve it, we put forth our protocol Π .
Besides, to offer convenience to readers in reading our work, we make some of the
symbols more visual and meaningful. For instance, ciphertext CTc∈a,1 indicates the



86 L. Liu, X, Chen, and W. Lou

first ciphertext Alice sends to Carol – the meaning can more or less be learnt by the
index.

3.2 Formal Specification of Our Protocol Π

1. Alice and Bob agree on two random numbers, denoted as rc, rc1 that should be kept
secret to Carol. The two then get G(rc) and G(rc1 ) respectively.

2. Alice encrypts G(rc)xa + G(rc1 ), G(rc)ya + G(rc1 ) under Carol’s public key
PKc and then sends to Carol the ciphertexts EPKc(G(rc)xa + G(rc1)) and
EPKc(G(rc)ya + G(rc1)). Bob uses his point (xb, yb) to do the same procedures
as Alice does. Thus, after this step, Carol receives

CTc∈a,1 = EncPKc(G(rc)xa +G(rc1 )),CTc∈a,2 = EncPKc(G(rc)ya +G(rc1))

and

CTc∈b,1 = EncPKc(G(rc)xb +G(rc1 )),CTc∈b,2 = EncPKc(G(rc)yb +G(rc1 ))

3. Carol calculates
√

(DecSKc(CTc←b,1)− DecSKc(CTc←a,1))2 + (DecSKc(CTc←b,2)− DecSKc(CTc←a,2))2

and obtains G(rc) ·Ec.
4. The three parties execute Step 1-3 as a whole subprotocol twice, with the exception

that Bob and Alice in turn play the computing role as Carol does in the first round
execution and the random numbers needed are denoted as rb, rb1 and ra, ra1. Note
that, after this step, Bob and Alice respectively obtain G(rb) · Eb and G(ra) ·Ea.

5. Alice, Bob and Carol respectively calculate their corresponding components,

Coma =
1

2
G(ra)Ea ·G(rb) ·G(rc)

Comb =
1

2
G(rb)Eb ·G(rc) ·G(ra)

Comc =
1

2
G(rc)Ec ·G(ra) ·G(rb)

6. Alice chooses a random number rcoma and sends EncPKb
(G(rcoma ) − Coma)

to Bob; Bob decrypts it and sends EncPKc(G(rcoma)−Coma +Comb) to Carol;
Carol uses her private key SKc to recover the plaintextG(rcoma)−Coma+Comb,
and then sends EncPKa(G(rcoma)− Coma + Comb + Comc) to Alice; after de-
cryption and subtracting G(rcoma) from the plaintext, Alice finally obtains

Comb + Comc − Coma = G(ra)G(rb)G(rc)(P − Ea) = Mula

7. Again, they repeat Step 6 twice, with the exception that Bob and Carol in turn
play the role as Alice does, viz., one who launches an execution round generates a
random number rcomi , (i ⊕ {b, c}) to hide the correspondingComi before starting
the modified summation protocol. After this step, Bob and Carol obtain Mulb =
G(ra)G(rb)G(rc)(P −Eb) and Mulc = G(ra)G(rb)G(rc)(P −Ec), respectively.



A Secure Three-Party Computational Protocol for Triangle Area 87

8. Alice chooses a random number rmul+ , then she and the other two execute the
same procedure except that each of them uses G(ra)G(rb)G(rc)(P − Ei) instead
of Comi, where i ⊕ {a, b, c}. After this step, Alice obtains

Mulp =Mula +Mulb +Mulc = G(ra)G(rb)G(rc)P

9. Bob chooses a random number rmul× and then sends EncPKc(Mulb · G(rmul×))
to Carol; Carol multiplies the plaintextMulb ·G(rmul× ) by Mulc/(G(ra)G(rb))

4,
and then she sends to Alice the encryption of it, i.e., Alice will receive
such message, EncPKa((MulbMulc · G(rmul×))/(G(ra)G(rb))

4); Then Al-
ice multiplies MulaMulp to the plaintext product and after her execution,
Bob receives EncPKb

(S), a shorthand for EncPKb
((MulpMulaMulbMulc ·

G(rmul×))/(G(ra)G(rb))
4).

10. Bob decrypts EncPKb
(S) and sends the other two

√
S/(G(rmul×) ·G(rc)4), which

is exactly the area of the triangle.

3.3 Correctness

We argue that the deduction below guarantees the correctness of our protocol.

S/(G(rmul×) ·G(rc)
4) =

(MulpMulaMulbMulc ·G(rmul× ))/(G(ra)G(rb))
4

(G(rmul× ) ·G(rc)4)

=
MulpMulaMulbMulc
G(ra)4G(rb)4G(rc)4

=
(G(ra)G(rb)G(rc)P ) ·∏a,b,c

i G(ra)G(rb)G(rc)(P − Ei)

G(ra)4G(rb)4G(rc)4

= P (P − Ea)(P − Eb)(P − Eb) = S2
area

4 Proof of Security

When it comes to security proof for a secure multi-party computational protocol,
simulation-based method is always the first (sometimes even the only) avenue one can
think of, e.g., the famous UC (Universal Composition) security model. However, we
develop a new proof paradigm grounded upon game-based proof methodology, which
captures the nature that if a protocol π is secure, none of the participants is able to ob-
tain extra information beyond the protocol’s provision even when she knows arbitrary
number of inputs belonging to other parties. In addition to providing a new vision for
MPC security, we have demonstrated that the novel proof below is “somewhat adap-
tive”, meaning that it can prove security in the manner that the adversary can even
choose an (reasonable) output for the function. Due to the similarity of the proof for
each of the three participants, we only provide a proof from Alice’s stance.



88 L. Liu, X, Chen, and W. Lou

4.1 Definition of the Original Game

Game (Selective Area) IND-PointPairs Gameind-pps
A,Π (n, κ)

• The adversary chooses an area Sarea which she wants to be challenged upon and
sends it to the challenger.

• The challenger generates a collection P of point pairs, i.e.

P = {pair1, pair2, . . . , pairl(κ)},
where pairi = {(xb,i, yb,i), (xc,i, yc,i)}, κ is a security parameter and l(·) is a
polynomial.

• The adversary chooses two point pairs from P , say

pairi = {(xb,i, yb,i), (xc,i, yc,i)} and pairj = {(xb,j , yb,j), (xc,j , yc,j)}
as the challenging point pairs which are subject to those two restrictions:
a) the area of the triangle consisting by the adversary’s point and every pair of the

points from the collection P must be equal to Sarea. This requirement is for
the correctness. Informally speaking, the triangles must at least have same area
so as to prevent the trivial distinction.

b) the two pairs pairi and pairj must have the same slope, namely,

yc,i − yb,i
xc,i − xb,i

=
yc,j − yb,j
xc,j − xb,j

We state that restriction b) is only required in our proof. We delay explaining the
reason in the appendix. In addition, to be well coincident with the traditional ex-
pression of game-based proof, we ignore the index difference, namely, we always
denote adversary’s choice as pair0 and pair1. After that, She sends them to the
challenger.

• The challenger flips a coin b ⊕ {0, 1} as challenge bit, and executes the protocol
with OIDEALBob(·) and OIDEALCarol(·). It records the sequence (denoted as sequenceb)
it has received, and then sends the sequence to the adversary.

• The adversary returns a guess b≤, and if b≤ = b, she wins the game.

The advantage of the adversary in this game is,

Advind-pps
A,Game(n, κ) = Pr

[
b = b≤|sequenceb ∅ Gameind-pps

A,Π (n, κ)
]
− 1

2

Remark 1. There are two points worth mentioning. First, note that we ignore the
details on by what means the challenger gets sequenceb. Second, in our game-based
proof the adversary does know the private information whereas that should be replaced
by one produced by the simulation in the simulation-based proof.

We now specify sequenceb Alice receives1 in this game. Note that in some literature
terminology “sequence” can also be named as “view” or others. Again for readers’

1 Actually, only the content one party cannot obtain by direct deductions can be seen as parts of
the sequence.



A Secure Three-Party Computational Protocol for Triangle Area 89

convenience, we make use of meaningful denotations. The front index with the form of
“i.” of the sequence indicates the step number, viz., i-th step of our protocolΠ , and the
rear index with the form of “ j⇒” of the sequence indicates the game number, viz., j-th
game Gamej .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1. rc, rc1 , G(rc), G(rc1) 1⊕
4. rb, rb1, G(rb), G(rb1); CTa←b,1,CTa←b,2,CTa←c,1,CTa←c,2, G(ra)Ea 2⊕
5. Coma =

1

2
G(ra)Ea ·G(rb) ·G(rc) 3⊕

6. rcoma , EncPKa(G(rcoma)− Coma + Comb +Comc), Mula 4⊕
7. G(rcomb)−Comb + Comc, G(rcomc)− Comc 5⊕
8. rmul+ , G(rmul+), Mulp 6⊕
9. EncPKa(Mulb ·Mulc ·G(rmul×)/(G(ra)G(rb))

4) 7⊕
10. Sarea 8⊕

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Let ε1 be the advantage that the adversary can successfully distinguish a random
string r from a string G(x) generated by G(·), which is uniformly chosen from a fam-
ily of PRGs. According to the widely-adopted assumption, ε1 is negligible. Likewise,
let ε2 be the advantage that the adversary can successfully distinguish two ciphertexts
produced by an IND-CPA secure public-key encryption scheme E . Due to the same
reason, we deem ε2 as a negligible function, too.

4.2 Proof Intuition

It is akin to the classical game-based methodology that we try to change some partic-
ipants’ behavior during the execution of our protocol to turn the current game into a
new one, where the two games are indistinguishable from the adversary’s stance. And
finally, after a set of these transformations, the game moves into a final game which is
easy to be proven secure. More specifically, in our design mechanism, Game0 actually
is the real game which is interactively played by the challenger and the adversary. For
Gamei, we state that in each Gamei, usually we replace the outputs of G(·) by those
equal-length string r’s chosen uniformly at random, and/or replace the encryption parts
in the distribution (namely, in the i⇒-th part of the sequence) by other ones generated
from the same encryption algorithm with the same parameters. After those step-by-step
alternations, the final game Gamefinal is easy to prove secure (in our case, the advan-
tage of the adversary for the final game is 0), and each couple of Gamei and Gamei+1

are proven indistinguishable. Thus, the protocol is proven secure by the set of games.

4.3 Security Games

Game0. Actually, Game0 is the original game (namely, Gameind-pps
A,Π ) in which the se-

quence of the adversary (here for Alice) is denoted as sequenceg0 . It is obvious that
sequenceg0=sequenceb.

Game1. In this game, all the steps are executed in the same way as those have been
executed in Game0 expect that:



90 L. Liu, X, Chen, and W. Lou

- We change the randomness in Step 1 of the protocol, that is, replace rc and rc1 by
r̃c and r̃c1 . This change will result in the corresponding changes in the sequence of
this game. Formally, the 1⇒ part of sequenceg1 turns into {r̃c, r̃c1 , G(r̃c), G(r̃c1)}.

- The ciphertexts generated afterwards are a little different from that in the standard
protocol. The outputs of the PRG G(·) which are used for randomization will be re-
placed by random ones, e.g., the ciphertext CTc∈a,1 = EncPKc(G(rc)xa+G(rc1))

in Step 2 should be replaced by ˜CTc∈a,1 = EncPKc(r̃cxa + r̃c1)

Game2. As stated above, in this game we change Step 4 in the protocol s.t. no more than
the (circled) second part of the sequenceg2 is different from sequenceg1 . To achieve
this, the random numbers rb and rb1 Alice and Carol have agreed on during the execu-
tion are replaced by r̃b and r̃b1 , so do the corresponding outputs of the pseudorandom
generatorG(·). In addition, the four CT’s in this sequence are also changed in the same
manner as in Game1, namely, four new ciphertexts produced by E with the same param-
eters are used to substitute for the four ciphertexts in this sequence. At last, G(ra)Ea

will be changed to r̃aEa where pseudorandom outputG(ra) is replaced by random r̃a.

Game3. Only one small change should be made, namely, replaceComa = 1
2G(ra)Ea ·

G(rb) · G(rc) by C̃oma = 1
2 r̃aEa · r̃b · r̃c. To this end, the players taking part in this

game should substitute their corresponding pseudorandom variables by equal-length
uniformly random strings.

Game4. In this part, like the changes in the previous games, the changes introduce new
identically distributed randomness r̃coma to replace the former one, G(rcoma). The
encrypted part EncPKa(G(rcoma) − Coma + Comb + Comc) is also taken place by
EncPKa(r̃coma − Coma + Comb + Comc). The last part Mula is as well changed to

M̃ula along with the changes happened in Comi’s.

Game5. This game, corresponding to Step 7 in our protocol, touches upon two sub-
steps. In each step of the original protocol, the round launcher i ⊕ {b, c} subtracts their
corresponding component Comi from the output of G(·) in the randomness rcomi .
Here in the proof game, analogous to previous changes, thoseG(rcomi) are replaced by
corresponding r̃comi .

Game6. In this game, a new random variable r̃mul+ with the same distribution as
G(rmul+) has been selected, which is then used to replace G(rmul+) during this game.
The last componentMulp of this game in sequenceg6 will vary following the variations
of those Muli’s where i ⊕ {a, b, c}.

Game7. This is the last game which needs alternations. From the adversary’s
(here Alice’s) point of view, she receives an encryption of Mulb · Mulc ·
G(rmul×)/(G(ra)G(rb))

4. In order to make the final game a random one, the changes
in this game must resemble to the former. That is, we replace EncPKa(Mulb ·Mulc ·
G(rmul×)/(G(ra)G(rb))

4) by EncPKa(M̃ulb · M̃ulc · r̃mul×/(r̃ar̃b)
4).

Game8. There is no change needs to be made in this game due to the restriction that for
either pair0 or pair1, the value of the area is a constant chosen in advance.



A Secure Three-Party Computational Protocol for Triangle Area 91

Gamefinal. As previously mentioned, Gamefinal is the ultimate game. Since all the
(pseudo) randomness are changed (and replaced), all the IND-CPA secure encryptions
are replaced, and all the intermediate variables are correspondingly changed, the proto-
col becomes unconditionally secure. Moreover, the sequence of this game is identical to
the one of Game8, namely sequencegf = sequenceg8 as we do not make any change
in this game comparing with Game8.

4.4 Indistinguishability of Gamei and Gamei+1

To begin with, we set Game0 to be the same game as original game Gameind-pps
A,Π . There-

fore, as aforementioned, it holds that sequenceb=sequenceg0 and the advantage for the
adversary to successfully distinguish Gameind-pps

A,Π and Game0 is 0.
Note that rc, rc1 , r̃c and r̃c1 are all uniformly chosen in the same domain and all

the other parts of sequenceg0 and sequenceg1 are the same. The advantage of an ad-
versary to distinguish the two sequence is equivalent to that of the same adversary to
distinguish two identically distributed variablesRV1 andRV2 (The output ofG(·) is de-
termined, so they cannot provide any useful information for distinguishing). Therefore,
the advantage of the adversary to distinguish Game0 and Game1 is 0.

For Game1 and Game2, only the second part of each game sequence is different.
Therefore, the advantage of the adversary to successfully distinguish the two sequences
comes from the advantage over the distinctions between CTa∈b,1, CTa∈b,2, CTa∈c,1,

CTa∈c,2,G(ra)Ea of sequenceg1 and ˜CTa∈b,1, ˜CTa∈b,2, ˜CTa∈c,1, ˜CTa∈c,2, r̃aEa of
sequenceg2 . In terms of Theorem 2, we just need to prove that two simplified sequences
with the form of {CT, G(ra)Ea} and {C̃T, r̃aEa}. The proof is given as follow:

Proof. For simplicity, denote as subseq0 the subsequence {CT, G(ra)Ea} and subseq1
the subsequence {C̃T, r̃aEa}. Suppose an adversary A can successfully distinguish the
two games, namely, A can successfully distinguish subseq0 and subseq1 with a non-
negligible advantage p. We can construct an adversary A≤ to either successfully attack
the pseudorandom generator G(·) or the IND-CPA encryption scheme E (or both) with
a non-negligible probability 1

2p.
Adversary A≤ involves in two challenge-response games with the two corresponding

challengers, which we respectively denote as G(·)-challenger and E-challenger for the
sake of clear expressiveness. After setups and other preparation steps, adversaryA≤ can:

– Directly receive string R’s which may be random or pseudorandom from
G(·)-challenger.

– Receive challenge ciphertext that is the encryption to her chosen plaintexts from
E-challenger.

Then A≤ combines those elements to form a challenge subsequence subseqb =
{CT (b), R(b)Ea}, which then will be sent to A. A will response in two manners. First,
it returns a bit b≤ to A≤ if the subsequence is well-formed. Second, it rejects subseqb
if the subsequence is not well-formed. Say well-formed, we mean that the first part
is the encryption of random (or pseudorandom) element with the form of r̃1 · t + r̃2



92 L. Liu, X, Chen, and W. Lou

(or G(r1) · t+G(r2)) and the second part is the multiplication of a random (or pseudo-
random) number andEa. Note thatR(b) is either random or pseudorandom andCT (b) is
either an encryption of r̃1 ·t+r̃2 orG(r1)·t+G(r2). The probability of the well-formed
subsequence is 1

2 and in this condition, A≤ can win the game by just sending the bit b≤

to the challenger. Thus the advantage for A≤ to win is 1
2p, which is non-negligible. It is

contradictory to the assumption that either ε1 or ε2 is negligible. Therefore, the advan-
tage p should be negligible and that is to say, Game1 and Game2 are indistinguishable.

For Game2 and Game3, the only difference lies in the third circled part of the two
sequences. Therefore, to successfully distinguish these two games, the adversary must

successfully distinguish Coma and C̃oma. Recall that Coma = 1
2G(ra)Ea · G(rb) ·

G(rc) and C̃oma = 1
2 r̃aEa · r̃b · r̃c. Distinguishing Coma and C̃oma is identical to

distinguishing an output of G(·) and an equal-length uniformly random variable r and
thus the advantage for the adversary to successfully distinguish Game2 and Game3
is ε1, a negligible function. The reason is that if there exists an adversary A can suc-

cessfully distinguish Coma and C̃oma, then an adversary A≤ is able to invoke A as
a subprogram to distinguish pseudorandom and true random variables. Adversary A≤

taking part in a indistinguishability game can ask for challenge inputs three times and
multiples them by a proper Ea to obtain a challenge Com(b)

a which is sent to A. A≤

will send the same bit b≤ it receives from A to the challenger, meaning that if A makes
a claim that Com(b)

a is product of three random (or pseudorandom) number and Ea, A≤

then asserts that the challenge string is random (or pseudorandom). It is obvious that
the two advantages are equal. Since the outputs of pseudorandom generators can not
be distinguished with a non-negligible advantage from the random strings, Game2 and
Game3 are indistinguishable.

For Game3 and Game4, it is analogous to the proof for indistinguishability of
Game1 and Game2. At first, we extract the different parts and abbreviate it as subseq0=

{rcoma , CT,Mula} and subseq1 = {r̃coma, C̃T , M̃ula}. Thus, the slightly differ-
ent part is that there is a third component in each of the two subsequences which are

needed to be distinguished. Recall the form of Mula and M̃ula, it is evident that they
are a pseudorandom variable and a random variable, respectively. Then for an adver-
sary A whom is given the task to distinguish the two subsequences with the form of
{RV1, CT, psRV2} and {R̃V 1, C̃T , R̃V 2}, we can proceed a similar proof to the
one for indistinguishability of Game1 and Game2 following the same methodology:
When adversaryA≤ receives challenge texts, namelyCT ’s and (pseudo)random strings,
she can combine them to form a challenge subsequence subseqb which will be sent to
subprogram A. A≤ then takes the guess bit b≤ from A as her guess. If adversary A
can successfully distinguish the two subsequences with a non-negligible advantage, A≤

can also successfully break the pseudorandom generator or the IND-CPA encryption
scheme with a non-negligible advantage, which according to the assumption is impos-
sible. Therefore, we have proven that Game3 and Game4 are indistinguishable.

For the sake of simplicity, we only give the constructions of subsequences for the
rest of games which have analogous indistinguishability proofs to the former.

For Game4 and Game5, it is identical to proving the indistinguishability of subseq0
with the form of two pseudorandom variables {psRV1, psRV2} and subseq1 with the



A Secure Three-Party Computational Protocol for Triangle Area 93

form of random variables {R̃V 1, R̃V 2}. For Game5 and Game6, the two subsequences
have the form of {RV1, psRV1, psRV2} and {R̃V1, psR̃V1, R̃V2}, respectively. All
the two can be proved using the same method stated above. For Game6 and Game7,
the only different point is the circled seventh part, namely the ciphertext. So their in-
distinguishability can be directly proved by the assumption that the encryption scheme
is IND-CPA secure. For Game7 and Game8, due to the game restriction that either
the triangle ∈0 consisting of point A and points pair0 or the triangle ∈1 consisting
of point A and points pair1 must have the same area Sarea, the two game sequences
sequenceg7 and sequenceg8 are in fact the same. For Game8 and Gamefinal, as exhib-
ited in game construction, they are the same games that cannot be distinguished with
a probability more than 1

2 . And for Gamefinal, it is a unconditionally secure game
in which all the elements are randomized elements or the encryptions of randomized
elements. Therefore, up to this point, we finish all the parts of our proof.

5 Related Work

After Yao’s seminal work [5] in 1982, which has introduced secure multiparty compu-
tation (two-party situation) to the research community via a vivid example named as
Millionaires’ Problem, the researches to promote it have never ceased. Regarding the
question of the existence of general solution to MPC problem, Yao’s work has solved
this problem in the two-party conditions [6] and Goldreich et al. have given a con-
struction in the multi-party case [7]. Then numerous literatures came out, investigating
in every respect of secure multi-party computation. In the early days, research on re-
alizations in the presence of malicious adversary is one of the highlighted directions
[8,9,10], which is still an active branch in present research community. In addition,
there are also substantial works on other different aspects of security. In reality, one
protocol would merely be executed in the isolation setting, where a great deal of se-
cure multi-party computational protocols are traditionally analyzed. Due to the insuf-
ficiency of the stand-alone security, concurrent security [11] of the analyzed protocol
which may be executed with arbitrarily many other protocols simultaneously are de-
veloped and probed. To make progress in promoting the efficiency of secure MPC pro-
tocols, some works explore the possibility and methods to improve upon performance
in several respects [12,13,14], e.g. round complexity, interactivity. Furthermore, Secure
multi-party computation has close connection to other cryptographic tools, such as zero
knowledge proof [15,16,17], oblivious transfer [18], secret sharing scheme [19] and it
can also be realized by other primitives like (fully) homomorphic encryption [20,21],
and so forth. There are also a lot of researches on the practical implementations of se-
cure multi-party computational protocols, e.g. Fairplay [22] system and its enhanced
followup FairplayMP [23] system, TASTY [24] and the widely investigated ones by
means of cut-and-choose technique based on garbled circuit [25].

Besides those studies on secure multi-party computation regarding general prob-
lem/function, another important area of secure MPC is to research on the secure MPC
protocols with respect to concrete problem/function. We emphasize that although study
on general secure multi-party computation facilitates rapid progress in lots of aspects
of SMC, e.g., solvability in principle, generic design mechanism, lower bounds, it can-
not be well competent for all the tasks especially the ones related closely to real life



94 L. Liu, X, Chen, and W. Lou

applications. For example, using a general protocol to solve privacy-preserving data
mining [26] is impractical. Therefore, constructing different concrete protocols for dif-
ferent problems is of independent interest. In this direction, there are also an amount
of works. The most relevant work to our paper by Li et al. [27] solves the same trian-
gle area problem in the two-party case, a little simpler than ours. Moreover, aiming at
other geometrical issues and practical applications, investigators probe into areas like
privately determining relations between geometrical objects [28], location test. In ad-
dition to aforementioned PPCG protocols, the research community, likewise, makes
progress in protocol design for other concrete problems, e.g. secure database/set op-
eration [29,30], privacy-preserving data mining, secure clustering [31], scientific com-
putation , approximation [32], private information retrieve [33,34], privacy-preserving
auction [35], delegation computation, and so on. Recently, secure two-party computa-
tion finds out a fit place in big data scenario [36]. A comprehensive survey offers a
summarization of those problems [37]. In particular, in the context of the omnipresent
cloud computing that features distributed computing, the study on concrete protocols
plays more significant role than ever.

6 Conclusion

In this paper, we first solve a concrete secure three-party computational problem re-
garding triangle area, in which three participants respectively owning their private point
intend to securely evaluate the area without any leakage of their point privacy. More
specifically, we employ Heron’s Formula and round summation protocol to successfully
construct our protocol with weak assumption. Besides, we provide a novel and plausibly
stronger proof for our protocol and exhibit the reason why our proof seems to fit better
than the traditional simulation-based one. Furthermore, we would like to make a short
discussion with respect to the future directions of secure multi-party computation, es-
pecially its relation with the emerging primitives and applications. Secure multi-party
computation seems to have some connection with functional encryption (FE), while
maybe the most different point is that functional encryption requires no interactivity.
Although to date, typical functional encryption only involves two participants, we do
not consider it as a clear distinction. Secure multi-party computation seems closely
related to delegation schemes (a.k.a verifiable delegation, outsourced computation or
others), in which circumstances the participants usually has unbalanced computational
ability/resources. In our opinion, future secure MPC will have new models related to
uneven participants and additional requirements in the computation tasks.

Acknowledgement. We are grateful to the anonymous referees for their invaluable
suggestions. This work is supported by the National Natural Science Foundation of
China (Nos. 61272455), China 111 Project (No. B08038), Doctoral Fund of Ministry
of Education of China (No.20130203110004), and Program for New Century Excellent
Talents in University (No. NCET-13-0946). Besides, Lou’s work is supported by US
National Science Foundation under grant (CNS-1217889).



A Secure Three-Party Computational Protocol for Triangle Area 95

References

1. Atallah, M.J., Du, W.: Secure multi-party computational geometry. In: Dehne, F., Sack, J.-
R., Tamassia, R. (eds.) WADS 2001. LNCS, vol. 2125, pp. 165–179. Springer, Heidelberg
(2001)

2. Liu, L., Wu, C., Li, S.: Two privacy-preserving protocols for point-curve relation. Journal of
Electronics (China) 29(5), 422–430 (2012)

3. Junglas, I.A., Watson, R.T.: Location-based services. Commun. ACM 51(3), 65–69 (2008)
4. Lien, I.T., Lin, Y.H., Shieh, J.R., Wu, J.L.: A novel privacy preserving location-based ser-

vice protocol with secret circular shift for k-nn search. IEEE Transactions on Information
Forensics and Security 8(6), 863–873 (2013)

5. Yao, A.C.C.: Protocols for secure computations. In: Proc. 23rd Ann. Symp. on Foudations of
Computer Science, FOCS 1982, pp. 160–164 (1982)

6. Yao, A.C.C.: How to generate and exchange secrets. In: 27th Annual Symposium on Foun-
dations of Computer Science, vol. 1986, pp. 162–167 (1986)

7. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness
theorem for protocols with honest majority. In: Proceedings of the Nineteenth Annual ACM
Symposium on Theory of Computing, STOC 1987, pp. 218–229. ACM, New York (1987)

8. Mohassel, P., Franklin, M.K.: Efficiency tradeoffs for malicious two-party computation.
In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958,
pp. 458–473. Springer, Heidelberg (2006)

9. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation in the pres-
ence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515,
pp. 52–78. Springer, Heidelberg (2007)

10. Woodruff, D.P.: Revisiting the efficiency of malicious two-party computation. In: Naor, M.
(ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 79–96. Springer, Heidelberg (2007)

11. Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols.
In: Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science, 2001,
pp. 136–145 (2001)

12. Horvitz, O., Katz, J.: Universally-composable two-party computation in two rounds. In:
Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 111–129. Springer, Heidelberg
(2007)

13. Harnik, D., Ishai, Y., Kushilevitz, E.: How many oblivious transfers are needed for se-
cure multiparty computation? In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622,
pp. 284–302. Springer, Heidelberg (2007)

14. Ishai, Y., Kushilevitz, E., Paskin, A.: Secure multiparty computation with minimal interac-
tion. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 577–594. Springer, Heidelberg
(2010)

15. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure multiparty
computation. In: Proceedings of the Thirty-ninth Annual ACM Symposium on Theory of
Computing, STOC 20707, pp. 21–30. ACM, New York (2007)

16. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge proofs from secure mul-
tiparty computation. SIAM Journal on Computing 39(3), 1121–1152 (2009)

17. Choi, S.G., Elbaz, A., Malkin, T., Yung, M.: Secure multi-party computation minimizing
online rounds. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 268–286.
Springer, Heidelberg (2009)

18. Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious transfer and
extensions for faster secure computation. In: Proceedings of the 2013 ACM SIGSAC Con-
ference on Computer & Communications Security. CCS 2013, pp. 535–548. ACM, New
York (2013)



96 L. Liu, X, Chen, and W. Lou

19. Cramer, R., Damgård, I.B., Ishai, Y.: Share conversion, pseudorandom secret-sharing and
applications to secure computation. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378,
pp. 342–362. Springer, Heidelberg (2005)

20. Cramer, R., Damgård, I.B., Nielsen, J.B.: Multiparty computation from threshold homomor-
phic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 280–300.
Springer, Heidelberg (2001)

21. Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat
homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 643–662. Springer, Heidelberg (2012)

22. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay-secure two-party computation system.
In: USENIX Security Symposium, pp. 287–302 (2004)

23. Ben-David, A., Nisan, N., Pinkas, B.: Fairplaymp: A system for secure multi-party com-
putation. In: Proceedings of the 15th ACM Conference on Computer and Communications
Security, pp. 257–266. ACM (2008)

24. Henecka, W., Kögl, S., Sadeghi, A.R., Schneider, T., Wehrenberg, I.: Tasty: Tool for au-
tomating secure two-party computations. In: Proceedings of the 17th ACM Conference on
Computer and Communications Security, CCS 2010, pp. 451–462. ACM, New York (2010)

25. Huang, Y., Katz, J., Evans, D.: Efficient secure two-party computation using symmetric cut-
and-choose. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043,
pp. 18–35. Springer, Heidelberg (2013)

26. Lindell, P.: Privacy preserving data mining. Journal of Cryptology 15(3), 177–206 (2002)
27. Li, S., Wang, D., Dai, Y.: Efficient secure multiparty computational geometry. Chinese Jour-

nal of Electronics 19(2), 324–328 (2010)
28. Luo, Y.L., Huang, L.S., Zhong, H.: Secure two-party point-circle inclusion problem. Journal

of Computer Science and Technology 22(1), 88–91 (2007)
29. Hazay, C., Lindell, Y.: Efficient protocols for set intersection and pattern matching with

security against malicious and covert adversaries. In: Canetti, R. (ed.) TCC 2008. LNCS,
vol. 4948, pp. 155–175. Springer, Heidelberg (2008)

30. Hazay, C., Nissim, K.: Efficient set operations in the presence of malicious adversaries. Jour-
nal of Cryptology 25(3), 383–433 (2012)

31. Bunn, P., Ostrovsky, R.: Secure two-party k-means clustering. In: Proceedings of the 14th
ACM Conference on Computer and Communications Security, CCS 2007, pp. 486–497.
ACM, New York (2007)

32. Feigenbaum, J., Ishai, Y., Malkin, T., Nissim, K., Strauss, M.J., Wright, R.N.: Secure multi-
party computation of approximations. ACM Trans. Algorithms 2(3), 435–472 (2006)

33. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval. J.
ACM 45(6), 965–981 (1998)

34. Yekhanin, S.: Private information retrieval. Commun. ACM 53(4), 68–73 (2010)
35. Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism design. In:

Proceedings of the 1st ACM Conference on Electronic Commerce, EC 1999, pp. 129–139.
ACM, New York (1999)

36. Dong, C., Chen, L., Wen, Z.: When private set intersection meets big data: An efficient and
scalable protocol. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2013, pp. 789–800. ACM, New York (2013)

37. Du, W., Atallah, M.J.: Secure multi-party computation problems and their applications: A re-
view and open problems. In: Proceedings of the 2001 Workshop on New Security Paradigms,
NSPW 2001, pp. 13–22. ACM, New York (2001)



A Secure Three-Party Computational Protocol for Triangle Area 97

Appendix

A Brief Note on the Simulation-Based Proof

The traditional simulation-based proofs take advantage of a simulator S to build a (com-
putational indistinguishable) relationship between the real execution and the emulated
execution. We now illustrate the major differences between the simulation-based proof
and ours in order to indicate the reason why ours seems stronger. For the sake of sim-
plicity, we just prove in Alice’s stance as before.

To this end, assume that there are two simulator (resp. Sb and Sc) that execute the
protocol with Alice. In simulation-based proof, we should prove that Alice’s real view
sequence viewreal is computationally indistinguishable from the ideal view sequence
viewideal. In the simulation procedures, the adversary is only given the output of the
protocol function and access to simulators. For our proof, the most remarkable differ-
ence from the simulation-based proof is that we permit the access to the private inputs
of others (only in proof, not in protocol). That is why restriction b) in Gameind-pps

A,Π (n, κ)
is needed. Otherwise, the adversary can win the game by directly comparing the two
value

slope0 =
yc,0 − yb,0
xc,0 − xb,0

and slope1 =
yc,1 − yb,1
xc,1 − xb,1

from the computation of

slopei =
DecSKa(CTa∈b,2)− DecSKa(CTa∈c,2)

DecSKa(CTa∈b,1)− DecSKa(CTa∈c,1)

Besides, our proof supports another stronger change that the adversary can choose the
protocol’s output while the simulation-based ones do not have such ability. Moreover,
due to the different game design mechanism, we prove security in different manner. For
instance, some sequences in our proof are different from that in traditional proof which
would result in different proofs. Take the third part Coma in sequenceg3 of Game3 as
an example. In our proof, we replace the pseudorandom strings by random ones. It is on
contrary to the simulation-based proof in which they prove indistinguishability without
those changes.



Universally Composable Efficient Priced

Oblivious Transfer from a Flexible Membership
Encryption

Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

Department of Mathematics
Indian Institute of Technology Kharagpur

Kharagpur-721302, India
{pratishdatta,ratna,sourav}@maths.iitkgp.ernet.in

Abstract. Membership encryption is a newly developed cryptographic
primitive that combines membership proof and encryption into an uni-
fied setting. This paper presents a new flexible membership encryption
scheme which is provably secure and significantly more efficient than the
previous scheme. Further we apply our proposed membership encryption
to construct a round optimal 1-out-of-n priced oblivious transfer (POT)
protocol which, unlike the existing 1-out-of-n POT schemes, is proven
secure under the universally composable (UC) security model and thus
preserves security when it is executed with multiple protocol instances
that run concurrently in an adversarily controlled way. Moreover, using
our membership encryption, the POT protocol exhibits constant commu-
nication complexity on the buyer’s side and O(n) communication cost
on the vendor’s side, which is so far the best known in the literature.

Keywords: membership encryption, priced oblivious transfer, univer-
sally composable security, bilinear maps, non-interactive proof of knowl-
edge, P-Signature, non-interactive range proof.

1 Introduction

Membership proof and membership encryption are two important cryptographic
primitives of which membership encryption has been developed very recently.
Membership proof [7], [2] is useful and nontrivial particularly when protecting
the privacy is at prime concern. Membership encryption combines encryption
and membership proof into a unified setting, thereby improving the communi-
cation efficiency. Further, while a membership proof cannot be converted to a
membership encryption, a successful decryption of the ciphertext in membership
encryption naturally serves as a proof of membership. The idea of membership
encryption is that, if a message is encrypted using an attribute and a privacy
preserving token for a group attribute, decryption of the ciphertext is possible
if and only if the used attribute is a member of the used group attribute. The
concept of membership encryption has been introduced by Guo et al. [12] and, to
the best of our knowledge, is so far the only membership encryption available in

W. Susilo and Y. Mu (Eds.): ACISP 2014, LNCS 8544, pp. 98–114, 2014.
c© Springer International Publishing Switzerland 2014



UC-Secure Efficient POT from a Flexible Membership Encryption 99

the literature. Membership encryption is applicable in advanced cryptographic
protocols where privacy protection is important, e.g., priced oblivious transfer.

Priced oblivious transfer (POT) protocol aims at protecting the privacy of
customers purchasing digital goods. More specifically, POT allows a buyer to
purchase digital goods from a vendor without letting the vendor learn what it
is buying. Usually after making a pre-payment to the vendor, the buyer engages
in an unlimited number of transactions such that, as long as the buyer’s balance
contains sufficient funds it will successfully retrieve the selected item and its
balance will be debited by the item’s price. However, the buyer should be unable
to retrieve an item whose cost exceeds its remaining balance.

The first 1-out-of-n priced oblivious transfer scheme [1], as well as subse-
quent works [15] analyse security in the half-simulation model, where simulation
security is required against the buyer only and stand-alone privacy is needed
against the vendor. Afterwards, a number of k-out-of-n priced oblivious trans-
fer protocols have been proposed [13], [8], [14] of which only the scheme of [13]
is proven secure in the universally composable (UC) security model. The UC-
security paradigm [9] provides a framework for representing cryptographic proto-
cols and analysing their security. Protocols that are proven UC-secure maintain
their security even when they are run concurrently with an unbounded number
of arbitrary protocol instances controlled by an adversary.

Our Contributions: Our contribution in this paper is two fold:
First, we introduce a cost-effective flexible membership encryption scheme se-
cure in the standard model that outperforms the existing one [12]. To be pre-
cise, our membership encryption scheme is built on a prime order bilinear group
setup. Our scheme is proven to be secure in the selective security model of [12]
without using random oracles under the Square Decisional Bilinear Diffie-
Hellman and Simultaneous Square Decisional Bilinear Diffie-Hellman
assumptions. Unlike [12], our scheme is flexible in the sense that the universe of
attributes can be changed at any time keeping the setup unaltered. This prop-
erty is crucial for an application such as priced oblivious transfer where item
prices may change with time. Further, our membership encryption has smaller
(constant) group token and ciphertext sizes, as well as, lesser number of expo-
nentiation and pairing computations compared to [12]. On a more positive note,
our scheme, when applied with a fixed universe of attributes, results in constant
computational cost.

Next, we apply our proposed membership encryption scheme to construct an 1-
out-of-n priced oblivious transfer protocol that is UC-secure under the assumption
that there is an honestly generated common reference string, employing Groth-
Sahai non-interactive proof techniques [11], P-Signatures [3] and non-interactive
range proof [13]. Security is proven in a static corruption model without relying
on random oracles. Our protocol allows more than one item to have the same
price. After an initialization of complexity O(n), each transfer phase is optimal
in terms of rounds of communication. Moreover, the complexities of computation



100 P. Datta, R. Dutta, and S. Mukhopadhyay

and communication are constant on the buyer’s side whereasO(n) on the vendor’s
side – the best known in the literature for 1-out-of-n POT.

2 Preliminaries

2.1 Bilinear Maps and Complexity Assumptions

Let G and GT be multiplicative groups of prime order p. A bilinear map e :
G×G ∈ GT must satisfy the following properties:
(a) Bilinearity : A map e : G×G ∈ GT is bilinear if e(ax, by) = e(a, b)xy for all
a, b ⊕ G and x, y ⊕ Zp;
(b) Non-degeneracy: For all generators g ⊕ G, e(g, g) generates GT ;
(c) Efficiency: There exists an efficient algorithm that outputs the pairing group
setup (p,G,GT , e, g) and an efficient algorithm to compute e(a, b) for any a, b ⊕
G.

Definition 1. [Hidden Strong DH (HSDH)]: On input (g, gα) ⊕ G
2, u ⊕

G, and a set of tuples (g1/(α+ci), gci , uci)li=1 for random exponents χ ⊕ Z
∈
p,

c1, . . . , cl ⊕ Zp, the l-HSDH assumption holds if it is computationally hard to
output a new tuple (g1/(α+c), gc, uc) for c ⊕ Zp.

Definition 2. [Triple DH (TDH)]: On input (g, gx, gy) ⊕ G
3 and a set

of tuples (ci, g
1/(x+ci))li=1 for random exponents x, y ⊕ Z

∈
p, c1, . . . , cl ⊕ Zp,

the l-TDH assumption holds if it is computationally hard to output a tuple
(gμx, gμy, gμxy) for μ ⊕ Z

∈
p.

Definition 3. [Decisional Linear (DLIN)]: On input (g, ga, gb, gac, gbd, z) ⊕
G

6 for random exponents a, b ⊕ Z
∈
p, c, d ⊕ Zp, the DLIN assumption holds if it

computationally hard to decide whether z = gc+d.

The validity of the HSDH assumption in the generic group model is proven
by Boyen and Waters [6] and that of the DLIN assumption by Boneh et al. [4].
The TDH assumption has been introduced by Belenkiy et al. [3]. We introduce
two new assumptions, viz., the Square Decisional Bilinear DH assump-
tion, which is a derived version of the well-known Decisional Bilinear DH
(DBDH) assumption introduced by Boneh and Francklin [5], and an extended
version of that, namely, the Simultaneous Square Decisional Bilinear DH
assumption.

Definition 4. [Square Decisional Bilinear DH (SqDBDH)]: On input
(g, ga, gb, z) ⊕ G

3 × GT for random exponents a, b ⊕ Z
∈
p, the SqDBDH as-

sumption holds if it computationally hard to decide whether z = e(g, g)a
2b.

Definition 5. [Simultaneous Square Decisional Bilinear DH (SimSqD-
BDH)]: On input (g, ga, gb, z1, z2) ⊕ G

3 × G
2
T for random exponents a, b ⊕

Z
∈
p, the SimSqDBDH assumption holds if it is computationally hard to decide

whether z1 = e(g, g)a
2b and z2 = e(g, g)ab

2

.



UC-Secure Efficient POT from a Flexible Membership Encryption 101

The SqDBDH problem and the SimSqDBDH problem in (G,GT , e) are
no harder than the DBDH problem in (G,GT , e). However, in both cases, the
converse is currently an open problem. Nonetheless, one can easily establish that
the computational version of both of our new problems are exactly equivalent to
the Bilinear DH (BDH) problem. We believe the SqDBDH and the Sim-
SqDBDH assumptions hold in certain bilinear groups of prime order.

2.2 Non-interactive Zero-Knowledge Proofs of Knowledge of [11]

Let R be an efficiently computable relation and L = {y : R(y, w) = accept for
some w} be an NP-language. For tuples (y, w) ⊕ R, we call y the instance and w
the witness. A non-interactive proof of knowledge system consists of algorithms
PoKSetup, PoKProve and PoKVerify. PoKSetup(1β) outputs a common reference
string crsPoK , PoKProve(crsPoK , y, w) computes a proof of knowledge pok of
instance y by using witness w and PoKVerify(crsPoK , y, pok) outputs accept if
pok is correct.

Zero-knowledge captures the notion that a verifier learns nothing from the
proof except the truth of the statement. Witness-indistinguishability is a weaker
property that guarantees that the verifier learns nothing about the witness that
was used in the proof. In either case, we will also require soundness, meaning
that an adversarial prover cannot convince an honest verifier of a false statement,
and completeness, meaning that all correctly computed proofs are accepted by
the honest verification algorithm.

In addition, a proof of knowledge needs to be extractable. Extractability
means that ⊇ a polynomial time extractor (PoKExtractSetup,PoKExtract). Al-
gorithm PoKExtractSetup(1β) generates parameters crsPoK that are identically
distributed to the ones generated by algorithm PoKSetup and an extraction trap-
door tdext. PoKExtract(crsPoK , tdext, y, pok) extracts the witness w with all but
negligible probability when PoKVerify(crsPoK , y, pok) outputs accept.

We recall the notion of f -extractability defined by Belenkiy et al. [3]. In an
f -extractable proof system the extractor PoKExtract extracts a value z such that
z = f(w) ∧ (y, w) ⊕ R for some w. If f(·) is the identity function, we get the
usual notion of extractability.

Commitment schemes: A non-interactive commitment scheme consists of algo-
rithms ComSetup and Commit. ComSetup(1β) generates the parameters of the
commitment scheme paramsCom. The algorithm Commit(paramsCom, x, open)
outputs a commitment C to x using auxiliary information open. A commitment
C is opened by revealing (x, open) and checking Commit(paramsCom, x, open) =
C. A commitment scheme has a hiding property and a binding property. Infor-
mally speaking, the hiding property ensures that a commitment C to x does
not reveal any information about x, whereas the binding property ensures that
C cannot be opened to another value x≤. When it is clear from the context, we
omit the commitment parameters paramsCom.

A notation for f-extractable non-interactive proofs of knowledge (NIPK): We are
interested in NIPK about (unconditionally binding) commitments. By ‘x in C’ we



102 P. Datta, R. Dutta, and S. Mukhopadhyay

denote that there exists open such that C = Commit(paramsCom, x, open). After
Belenkiy et al. [3], we use the following notation for an f -extractable NIPK pok,
on the instance (C1, . . . , Cm,Condition)withwitness (x1, open1, . . . , xm, openm, s)
that allows to extract all the witnesses except the openings of the commitments.
Here Condition stands for a constraint on crs, x1, . . . , xm, s.

NIPK{(x1, . . . , xm, s) : Condition(crs, x1, . . . , xm, s)∧ x1 in C1 ∧ . . .∧ xm in Cm}

The f -extractability of a NIPK ensures that, with overwhelming probability
over the choice of crs, we can extract (x1, . . . , xm, s) from pok, when PoKVerify
accepts, xi is contained in commitment Ci, where 1 ≤ i ≤ m, and Condition(crs,
x1, . . . , xm, s) is satisfied. To further abbreviate this notation, we omit crs when
it is understood from the context.

Applying the notation to Groth-Sahai proofs: We now illustrate below the above
equation by applying the notation to Groth-Sahai proofs [11] which allow proving
statements about pairing product equations. The pairing group setup (p,G,GT , e,
g) is part of the common reference string crsPoK output by PoKSetup(1β) and
the instance consists of the constants {Ai}mi=1 ⊕ G, tT ⊕ GT , {σi,j}mi,j=1 ⊕ Zp of

the pairing product equation:
m∏

i=1

e(Ai,Yi)
m∏

i=1

m∏

j=1

e(Yi,Yj)
γi,j = tT . The prover

knows {Yi}mi=1 satisfying this equation.
Internally, Groth-Sahai proofs prove relations between commitments. A ho-

momorphism guarantees that the same relations also hold for the committed
values. Normally, as the first step in creating the proof, the prover prepares
commitments {Ci}mi=1 for all values Yi in G. Then, the instance, known to the
prover and the verifier, is the pairing product equation alone, i.e., its constants.

In addition, it is possible to add pre-existing Groth-Sahai commitments
{Ci}ni=1, n ≤ m, to the instance for some of the Yi values. The correspond-
ing openings openYi become part of the witness. The proof will be computed
in the same way, except that for values with existing commitments no fresh
commitments need to be computed. We will write Ci = Commit(Yi, openYi)
to create Groth-Sahai commitments. Note that here Commit uses parameters
contained in the crsPoK of the Groth-Sahai proof systems. This proof sys-
tem generates f -extractable witness indistinguishable1 NIPK pok of the form

NIPK{(Y1, . . . ,Yn,Yn+1, . . . ,Ym) :

m∏

i=1

e(Ai,Yi)

m∏

i=1

m∏

j=1

e(Yi,Yj)
γi,j = tT ∧ Y1 in

C1 ∧ . . .∧Ym in Cm}. In order to construct NIPK for a system of pairing prod-
uct equations, a separate proof is to be computed for each equation. In [11],
Groth and Sahai have given three different instantiations of their proof system.
(In fact, their proposed proof system also works in asymmetric pairing groups.)
Groth-Sahai proofs are extractable, composable witness-indistinguishable and
composable zero-knowledge (given certain conditions). For definitions of these
notions the reader is referred to [11]. Out of the three instantiations presented

1 Some classes of pairing product equations also admit zero-knowledge proofs.



UC-Secure Efficient POT from a Flexible Membership Encryption 103

in [11], we will consider the one based on the DLIN assumption for constructing
our POT protocol.

2.3 P-Signature Scheme of [3]

P-Signatures introduced by Belenkiy et al. [3] are signatures equipped with a
common reference string crsSig and a NIPK that allows proving possession of a
signature of a committed message. Belenkiy et al. show in [3] how to use the
Groth-Sahai proof system to build this proof. Since in their constructionM ⊕ Zp

and Groth-Sahai proofs prove knowledge of a witness in G, they need to compute
a bijection F (M) ⊕ G and prove knowledge of F (M). The P-Signature scheme
is said to be F -unforgeable if no p.p.t. adversary can output (F (M), s) without
previously obtaining a signature on M .

Below we present the P-Signature scheme of [3]. This P-Signature scheme is
employed in the range proof discussed in Section 2.4 and in our POT scheme.

PSetup: Taking as input a security parameter 1β, a trusted authority runs the
Groth-Sahai PoKSetup under DLIN instance with input 1β to obtain crsPoK

for pairing groups (p,G,GT , e, g), picks random u ⊕ G, and publishes crsSig =
(crsPoK , u).

PKeygen: On input crsSig, the signer picks a secret key sk = (χ, α)
$←− Zp and

computes a public key pk = (v, w) = (gα, gκ). Note that ‘
$←−’ stands for random

selection.

PSign: The signer takes as input (crsSig , sk,M ⊕ Zp), picks random r
$←−

Zp/{α−M
κ } and computes s = (s1, s2, s3) = (g1/(α+M+κr), wr , ur).

PVerifySig: On input (crsSig , pk,M, s), verifier outputs accept if e(s1, vg
Ms2)

= e(g, g), e(u, s2) = e(s3, w). Otherwise, it outputs reject.
Using Groth-Sahai proofs, a NIPK of such a signature is constructed as follows.

This is a proof of a pairing product equation of the form

NIPK{(gM , uM , s1, s2, s3) : e(s1, vg
Ms2) = e(g, g) ∧ e(u, s2) = e(s3, w) ∧

e(u, gM) = e(uM , g)}. (1)

We abbreviate this expression as NIPK{(gM , uM , s) : PVerifySig(pk, s,M) =
accept}. We would like to highlight the fact that to construct this NIPK the
knowledge of gM and uM is sufficient, no need to know M explicitly. This
scheme is F -unforgeable (F (M) = (gM , uM )) under the HSDH and the TDH
assumption.

2.4 Non-Interactive Range Proof of [13]

We use the efficient non-interactive range proof proposed by Rial et al. [13] to
prove that a committed value β ⊕ Zp lies in an interval [0, da) by representing β
in base d and employing P-Signature of [3] discussed in Section 2.3.



104 P. Datta, R. Dutta, and S. Mukhopadhyay

RPSetup(1β): Given a security parameter 1β, a trusted third party executes
PSetup(1β) to generate crsSig = (crsPoK , u).

RPInitVerifier(crsSig , A): The verifier takes as input A = da, and runs PKey-
gen(crsSig) to get (sk, pk). Then ∅ i ⊕ Zd, it computes Si = PSign(crsSig , sk, i).
It outputs paramsRange = (pk, {Si}i∗Zd

).

RPInitProver(crsSig , paramsRange): Prover parses paramsRange as (pk, {Si}i∗Zd
).

It verifies the signatures by running PVerifySig(crsSig , pk, Si, i), for all i ⊕ Zd.
If these verifications succeed, it outputs accept. Otherwise it outputs reject.
RangeProve(crsSig , paramsRange, g, β, openχ): The prover computes the following
proof for a commitment Cχ = Commit(gχ, openχ):

NIPK{(gχ, {gχj , uχj , Sχj}a−1
j=0 ) : {PVerifySig(pk, Sχj , βj) = accept}a−1

j=0 ∧

e(g, gχ)
a−1∏

j=0

e(g−dj

, gχj ) = 1 ∧ gχ in Cχ}.

The short form NIPK{(gχ) : 0 ≤ β < A ∧ gχ in Cχ} is used to refer to this
proof. This proof is only witness indistinguishable. While this is sufficient for
our application, it is possible to make the proof zero-knowledge using techniques
described in [11].

3 Our Membership Encryption

As defined in [12], a membership encryption consists of four algorithms, viz.,
MSetup, MGroupGen, MEncrypt and MDecrypt, which for our scheme
are described as follows.

MSetup: On input a security parameter 1β and universe of attributes A =
{A1, . . . , An} ⇒ Zp, a trusted authority runs the MSetup algorithm that works
as follows:

– Choose a pairing group PG = (p,G,GT , e, g).

– Select distinct z1, . . . , zn
$←− Z

∈
p such that for all i ≈= j, ziAi ≈⇐ zjAj mod p

or equivalently gziAi ≈= gzjAj , and compute ui = gzi , ui,j = gzizj , i, j =
1, 2, . . . , n, i ≈= j.

– Publish the system parameter SP = (PG, {ui}ni=1, {ui,j}ni,j=1
i⊥=j

).

MGroupGen: The decryptor takes input a group attribute G = {Ai1 , . . . , Aik}
⇒ {A1, . . . , An} for any k ≤ n, the system parameter SP, and computes the group

token P(G) = (

k∏

l=1

u
Ail

il
)gr = w (say), where r

$←− Zp is the secret key of the

group token. The decryptor sends P(G) to the encryptor and keeps r secret to
itself.



UC-Secure Efficient POT from a Flexible Membership Encryption 105

MEncrypt (ME): Taking as input an attribute Ai∗ ⊕ A, a group token P(G) =
w, a messageM ⊕ GT and the system parameter SP, the encryptor prepares the
ciphertext as follows:

– Choose S
$←− Zp.

– Compute the ciphertext C = (C1, C2) = (e(w/uAi∗
i∗ , uSi∗)M, gS) and send C

to the decryptor.

MDecrypt (MD): On input the ciphertext C = (C1, C2), the secret key r, the
attribute Ai∗ , the group attribute G = {Ai1 , . . . , Aik} and the system parameter
SP, the decryptor proceeds as follows:

– Compute τ = (

k∏

l=1
il ⊥=i∗

u
Ail
i∗,il)u

r
i∗ .

– Retrieve the message as M = C1/e(τ,C2).

• Security Properties: We adopt the security model of [12] to analyse secu-
rity of our membership encryption. The security properties of our scheme are
summarized in the following theorems. Due to space consideration we omit the
proofs of Theorems 1 and 3 which can be found in the full version.

Theorem 1 (Indistinguishability against Secret Key). The above mem-
bership encryption scheme is (t≤, qk, Φ≤)-selectively secure against secret key un-
der the assumption that the SimSqDBDH problem is (t, Φ)-hard. Here, t≤ =
t − O(qknte), qk is number of group token query made by the adversary and
Φ≤ = ε

qk
, where te denotes the average time of an exponentiation in G.

Theorem 2 (Indistinguishability against Membership). The membership
encryption scheme introduced above is (t≤, Φ≤)-selectively secure against mem-
bership under the assumption that the SqDBDH problem is (t, Φ)-hard. Here,
t≤ = t− O(n2te) and Φ≤ = Φ, where te denotes the average time of an exponenti-
ation in G.

Proof. Indistinguishability against membership is formally defined by the fol-
lowing game:

Setup: The challenger runs the MSetup algorithm to generate the system pa-
rameter SP and sends it to the adversary.

Challenge: The adversary gives the challenger an attribute Ai∗ , a group to-
ken P(G∈), group attribute G∈, secret key S and two messages M0,M1. The
challenger first verifies that Ai∗ /⊕ P(G∈) with G∈ and S. Then, the chal-
lenger responds by randomly choosing a coin c ⊕ {0, 1}, generating a cipher-
text C∈ ← ME [Ai∗ ,P(G∈),Mc], and sending the challenge ciphertext to the
adversary.

Win: The adversary outputs a guess c≤ of c and wins the game if c≤ = c.
A membership encryption is (t≤, Φ≤)-selectively secure against membership if for
all adversaries, whose running time is at most t≤ and who outputs Ai∗ , G

∈ before



106 P. Datta, R. Dutta, and S. Mukhopadhyay

setup of the system parameter, the probability of winning the above game is at
most Φ≤ better than 1/2.

Now, suppose there exist an adversary who can (t≤, Φ≤) break the membership
encryption against membership under selective security model. We construct an
algorithm B that solves the SqDBDH problem in time t with advantage Φ. B
interacts with the adversary as follows:

Initialization: Let PG = (p,G,GT , e, g) be the pairing group and A = {A1, . . . ,
An} be the attribute universe. The adversary outputs (Ai∗ ,G

∈) for challenge
where Ai∗ /⊕ G∈.

Setup: Let (ga, gb, e(g, g)c1) be the given instance of the SqDBDH problem.
For i = i∈, B sets ui∗ = ga. For i ≈= i∈, B randomly chooses distinct zi ← Z

∈
p

such that gziAi ≈= gzjAj ≈= gaAi∗ for all i ≈= j ≈= i∈, and computes ui = gzi . Also
B sets ui∗,j = (ga)zj , j ≈= i∈. For i ≈= i∈, B computes ui,j = gzizj , i ≈= j. B sends
the system parameter SP = (PG, {ui}ni=1, {ui,j}ni,j=1

i⊥=j

) to the adversary.

Challenge: The adversary returns (P(G∈),S∈,M0,M1) for challenge. Let the
secret randomness or the secret key in computation of P(G∈) as sent by the
adversary be S∈ = r and G∈ = {Ai1 , . . . , Aik}. B randomly chooses a coin
c ⊕ {0, 1} and simulates the challenge ciphertext C∈ as follows: C∈ = (C∈

1 , C
∈
2 )

= (Mce((

k∏

l=1

u
Ail

i∗,il)u
r
i∗ , g

b)e(g, g)−c1Ai∗ , gb). If c1 = a2b then C∈
1 = Mce(g, g)

η,

where π = a(

k∑

l=1

zilAil + r − aAi∗)b, which implies that C∈ is a valid ciphertext

on Mc for (Ai∗ ,P(G∈)). B sends the ciphertext C∈ to the adversary.

Win: The adversary outputs c≤ ⊕ {0, 1}, and the algorithm B outputs 1 if c≤ = c,
i.e., the adversary wins, and outputs 0 otherwise.

This completes the description of our simulation. If c1 = a2b, the challenge
ciphertext is valid and the adversary will output c≤ = c with probability (12 +
Φ≤); otherwise, the challenge ciphertext is universally random and the adversary
outputs c≤ = c with probability 1

2 . In order to see the relationship between t and
t≤, note that the simulation time is mainly dominated by the ui,j simulation each
of which takes 1 exponentiation and there are O(n2) such ui,j ’s. �∩
Theorem 3 (Privacy). P(G) unconditionally preserves the privacy of all at-
tributes in G.

Remark 1. As in [12], the membership encryption described above is secure
against chosen-plaintext attack (CPA). Using the Fujisaki-Okamoto approach
[10] in the random oracle model, our scheme can also be extended to the secu-
rity against chosen-ciphertext attack (CCA).

• Efficiency: Table 1 presents the computation and communication complex-
ities of our membership encryption in comparison with that of [12]. Our con-
struction has significantly less cost than [12] both in terms of computation and



UC-Secure Efficient POT from a Flexible Membership Encryption 107

communication. In Particular, the number of exponentiations is much smaller in
our scheme.

Table 1: Comparison Summary
Membership
encryption

#E #P
Public
key size

Group
token size

Ciphertext
size

[12] (n2 + 3n + 4k + 10) in G,
2 in GT

3 (n2 + 3n + 3) in G,
1 in GT

3 in G
2 in G,
1 in GT

Ours ((n2 + n)/2 + 2k + 3) in G 2 ((n2 + n)/2) in G 1 in G
1 in G,
1 in GT

Here, #E, #P and k denote respectively number of exponentiation, number
of pairing and size of group attribute.

Note 1. Our membership encryption scheme has the advantage that, unlike [12]
our scheme does not involve the attributes explicitly in the setup parameter. As
a result, the same setup can be used for performing the operation using different
universe of attributes A with the only restriction that |A| = n and Ai’s are such
that for all i ≈= j, gziAi ≈= gzjAj holds. In this sense our scheme is more flexible
than that of [12] which can be applied only with an universe of attributes fixed
before generation of the system parameters. This property makes our scheme
particularly suitable for application in POT where item prices may change with
time. Further, in case of our membership encryption, if the attribute universe
A is fixed for the entire operation, then the MGroupGen, MEncrypt and
MDecrypt algorithms will each require only a single exponentiation resulting
in a scheme with constant computation complexity.

4 Our Priced Oblivious Transfer

In this section, we show how to construct an efficient 1-out-of-n priced oblivious
transfer protocol (POT) from our membership encryption. Our 1-out-of-n POT
scheme is inspired from the k-out-of-n POT scheme of [13]. To construct the POT
we employ the Groth-Sahai proof system [11] for the DLIN instance (Section
2.2), the P-Signature scheme [3] (Section 2.3) and the range proof [13] (Section
2.4) with our membership encryption. In our scheme, each transaction (a single
‘buy’ operation) requires two passes of communication: (1) a message from the
buyer; (2) the vendor’s reply. Note that this is optimal. Also our scheme allows
more than one items to have the same price.

Protocol requirements: Our scheme is parameterized with integers (n, l) (for the
number of messages and their length), pmax (the upper bound for the prices)
and A = da (the upper bound for the deposit). This scheme is built on a pairing
group setup (p,G,GT , e, g) such that pmax < A (mod p) holds. As in [1], [13],
we develop a prepaid scheme, where in the initialization phase the buyer B pays
an initial deposit ac0 to the vendor V and in subsequent transfer phases this



108 P. Datta, R. Dutta, and S. Mukhopadhyay

deposit is subtracted by the price pχt of the message Mχt that is being bought.
The message space is {0, 1}l, but we abuse notation and write Mi to denote
the corresponding group element in GT assuming the existence of some efficient
and invertible mapping. Also the prices pi and the deposit ac0 are considered as
elements of Zp.

A secure POT scheme must ensure that V learns neither the price of the
message being queried nor the new value of the account, while B pays the correct
price for the message updating the balance honestly and that it has enough
funds to buy it. Our POT scheme is proven secure in the universally composable
security model of [9] with static corruption assuming the existence of an honestly
generated common reference string. We formally describe our POT scheme below.

Initialization Phase: At time t = 0, on input (sid,V , n) for the vendor V
and (sid,B, n, ac0) for the buyer B, where sid is the session id of the particular
instance of the POT protocol,

1. V queries FCRS, the trusted third party or ideal functionality for generating
common reference string crs, with (sid,V ,B, n). FCRS generates crs by run-
ning POTGenCRS(1β, pmax, A, n), as discussed below, and sends (sid, crs) to
V .
POTGenCRS(1β, pmax, A, n): Given security parameter 1β and the total num-
ber of messages n,
– FCRS generates a Groth-Sahai reference string crsPoK under DLIN in-

stance for the pairing group setup (p,G,GT , e, g) such that pmax <
A (mod p) holds, i.e., crsPoK = (t1, t2, t3), where t1 = (gα, 1, g), t2 =

(1, gκ, g), t3 = (grα, gsκ, gr+s) = (y1, y2, y3), say, where χ, α
$←− Z

∈
p and

r, s
$←− Zp.

– FCRS picks distinct random z1, . . . , zn ⊕ Z
∈
p and computes ui = gzi , ui,j =

gzizj , i, j = 1, 2, . . . , n, i ≈= j. FCRS also computes vi = yzi3 , i = 1, 2, . . . , n.
– FCRS chooses random u ← G and computes qi = uzi , i = 1, . . . , n.
– FCRS runs PKeyGen(crsSig) of the P-Signature scheme, discussed in

Section 2.3, where crsSig = (crsPoK , u) to get a signing-verification key

pair (sk = (σ, Σ), pk = (gγ , gδ)), σ, Σ
$←− Zp, and for all i ⊕ {1, . . . , n}, it

computes si = PSign(crsSig , sk, zi).
– FCRS sets crs=(crsPoK , {ui}ni=1, {ui,j}ni,j=1

i⊥=j

, {vi}ni=1, u, pk, {(qi, si)}ni=1).

We mention that vi’s help B to decrypt the ciphertext sent by V and
(ui, qi, si) is used to construct a non-interactive proof of possession of the
P-Signature si on zi by B without knowing zi, as explained in Section
2.3, in the transfer phase.

2. B queries FCRS with (sid,V ,B, n). FCRS sends (sid, crs) to B. This crs is the
same as that generated by FCRS following the procedure POTGenCRS.

3. V runs the following procedure POTInitVendor(crs, A) to obtain paramsRange

and sends (sid, paramsRange) to B.
POTInitVendor(crs, A): Taking input crs and A, V works as follows:
– V parses the crs to obtain crsSig = (crsPoK , u).
– V runs RPInitVerifier(crsSig, A), as per Section 2.4, to get paramsRange.



UC-Secure Efficient POT from a Flexible Membership Encryption 109

4. Upon receiving (sid, paramsRange) from V , the buyer B computes (P,D
(Priv)
0 )

by invoking POTInitBuyer on input (crs, paramsRange, ac0) as follows.

POTInitBuyer(crs, paramsRange, ac0): On input paramsRange and a deposit
ac0 ⊕ [0, . . . , A);

– B parses crs to obtain crsSig = (crsPoK , u).

– B runs RPInitProver(crsSig , paramsRange), discussed in Section 2.4 , to
verify paramsRange.

– If the above check fails, B outputs reject. Otherwise, B sets P = ac0 and

D
(Priv)
0 = (ac0, openac0 = (0, 0, 0)).

B aborts if the output is reject. Otherwise, B sends (sid, P ) to V and keeps

D
(Priv)
0 . Note that, B also needs to pay an amount of ac0 to V through an

arbitrary payment channel.

5. After getting the initial deposit money, V runs POTGetDeposit(crs, P,A)
described below to check that ac0 corresponds to amount of money received.

POTGetDeposit(crs, P,A): Receiving P from B, V works as follows:

– V checks that ac0 ⊕ [0, . . . , A)

– V sets D0 = Commit(gac0 , openac0 = (0, 0, 0)) = (1, 1, gac0).

6. V stores state information V0 = (paramsRange, D0) and B stores state infor-

mation B0 = (paramsRange, D
(Priv)
0 ).

Transfer Phase: At time t > 0 (t = 1, 2, . . .), V with state information Vt−1 and
input (sid,V , {M1,M2, . . . . ,Mn}, {p1, p2, . . . , pn}) and B with state information
Bt−1 and input (sid,B, {p1, p2, . . . , pn}, βt) interact as follows. HereMi’s and pi’s
are the messages for sale and their corresponding prices such that, for all i ≈= j,
gzipi ≈= gzjpj . Note that this can always be done while selecting pi’s. For instance,
if it is found that gzipi = gzjpj for some i ≈= j, then one can choose pi = pi + 1
etc.

1. B invokes POTRequest(crs, paramsRange, {p1, . . . , pn}, D(Priv)
t−1 , βt) to set a

request Q and to generate private state (Q(Priv), D
(Priv)
t ) as detailed below.

B sends (sid, Q) to V and stores (sid, Q(Priv), D
(Priv)
t ) as private informa-

tion. POTRequest(crs, paramsRange, {p1, . . . , pn}, D(Priv)
t−1 , βt): Taking input

set of prices {p1, . . . , pn} and a selection value βt ⊕ {1, . . . , n}, B proceeds
as follows:

– B parses crs to obtain crsPoK , u, {ui}ni=1, pk, {(qi, si)}ni=1.

– B parses D
(Priv)
t−1 as (act−1, openact−1

= (lt−1,1, lt−1,2, lt−1,3)), where
(lt−1,1, lt−1,2, lt−1,3) ⊕ Z

3
p, and obtainsDt−1 = Commit(gact−1 , openact−1)

= (gα(lt−1,1+rlt−1,3), gκ(lt−1,2+slt−1,3), glt−1,1+lt−1,2+(r+s)lt−1,3gact−1).

– B also picks fresh openpσt
=(a1, a2, a3), openzσt

= (b1, b2, b3), openzσtpσt

= (r1, r2, r3), openact = (lt,1, lt,2, lt,3) randomly from Z
3
p, where act =

act−1−pχt and computes Dt=Commit(gact , openact), h1 = Commit(gpσt ,
openpσt

), h2 = Commit(uχt , openzσt
), h3 = Commit(gzσtpσt , openzσtpσt

)
as above for Dt−1.



110 P. Datta, R. Dutta, and S. Mukhopadhyay

– B runs PoKProve on input crsPoK to compute a witness indistinguishable
proof pokt following approaches discussed in Section 2.2:

NIPK{(gact , gact−1 , gpσt , uχt , g
zσtpσt , qχt , sχt) : 0 ≤ act < A ∧

e(g, gact−1)e(g−1, gact)e(g−1, gpσt ) = 1 ∧
e(g, gzσtpσt )e(uχt , g

pσt )−1 = 1 ∧
PVerifySig(pk, sχt , zχt) = accept ∧ act in Dt ∧
act−1 in Dt−1 ∧ pχt in h1 ∧ uχt in h2 ∧ gzσtpσt in h3} (2)

Note that pokt includes range proof NIPK{(gact) : 0 ≤ act < A} =
NIPK{(gact , {gαj , uαj , s≤αj

}a−1
j=0 ) : {PVerifySig(pk≤, s≤αj

, χj)=accept}a−1
j=0

∧ e(g, gact)

a−1∏

j=0

e(g−dj

, gαj ) = 1 ∧ gact in Dt}, for act committed in Dt,

where pk≤ and {gαj , uαj , s≤αj
}a−1
j=0 are contained in paramsRange sent by

V during the initialization phase and act =
a−1∑

j=0

χjd
j . Also pokt contains

a non-interactive proof of possession of the P-Signature sχt on zχt using
uχt and qχt following equation 1 of Section 2.3.

– B sets Q = (h1, h2, h3, pokt, Dt), Q
(Priv)=(βt, openzσtpσt

) andD
(Priv)
t =

(act, openact).

2. Upon receiving (sid, Q) from B, V runs POTRespond on input (crs, {M1, . . . ,
Mn}, {p1, . . . , pn}, Dt−1, Q) to obtain a response R and stateDt as explained
below. V sends (sid, R) to B and stores (sid,Dt).
POTRespond(crs, {M1, . . . ,Mn}, {p1, . . . , pn}, parmsRange, Dt−1, Q): Taking
input paramsRange, a set of messages {M1, . . . ,Mn} with prices {p1, . . . , pn},
state information Dt−1 and a request Q, V works as follows:

– V parses crs to get (crsPK , u, {ui}ni=1, pk), Q to get (h1, h2, h3, pokt, Dt).

– V verifies pokt by running PoKVarify on input crsPoK and it aborts
if the output is reject. For this verification, V uses the commitments
(h1, h2, h3, Dt−1, Dt). For a clear insight regarding such verifications the
reader is refer to [11].

– V parses h3=(w1, w2, w3)=(gα(r1+rr3), gκ(r2+sr3), gzσtpσt gr1+r2+(r+s)r3)
where openzσtpσt

= (r1, r2, r3) ⊕ Z
3
p is not known to V . Note that w3

can be written as w3 = gzσtpσt gb, where b = r1 + r2 + (r + s)r3 ⊕ Zp is
random since openzσtpσt

= (r1, r2, r3) ⊕ Z
3
p is random. Thus w3 can be

viewed as a group token P(G) for group attribute G = {pχt} according
to our membership encryption introduced in Section 3. However, in this
case we are only able to guarantee computational privacy of the group
token since the group token in this case is actually part of a commitment
of the Groth-Sahai proof system which has computational witness indis-
tinguishability, whereas, in the original membership encryption scheme,
the privacy of group tokens is unconditional.



UC-Secure Efficient POT from a Flexible Membership Encryption 111

– For i = 1, . . . , n, V selects random Si ← Zp and computes Ci =

(C
(1)
i , C

(2)
i ) = (e(w3/u

pi

i , u
Si

i )Mi, g
Si). Note that, Ci is essentially the

membership encryption ofMi using pi and the group token w3 for {pχt}.
– V sets R = (C1, . . . , Cn).

3. B, upon receiving (sid, R) from V , runs the following procedure POTComplete
on input crs,R,Q(Priv) to obtain Mχt .
POTComplete(crs,R,Q(Priv)): Taking input R and private state Q(Priv),

– B extracts (crsPoK , {ui}ni=1, {vi}ni=1, {ui,j}ni,j=1
i⊥=j

) from crs, parses R as

(C1, . . . , Cn), Q
(Priv) as (βt, openzσtpσt

) where openzσtpσt
= (r1, r2, r3) ⊕

Z
3
p is known to B.

– B parses Cχt as (C
(1)
χt , C

(2)
χt ) and it retrieves the message Mχt =

C
(1)
χt /e(u

r1+r2
χt

vr3χt
, C

(2)
χt ).

4. V stores state information Vt = (paramsRange, Dt) and B stores state infor-

mation Bt = (paramsrange, D
(Priv)
t ) and outputs (sid,Mχt).

Theorem 4. The priced oblivious transfer protocol described above securely real-
izes FPOT, the ideal functionality for POT, under {max{n, d}}-HSDH, {max{n,
d}}-TDH, DLIN and SqDBDH assumptions, where n = number of messages
and A = da is the upper bound of the buyer’s account.

The proof of Theorem 4 is available in the full version.
• A note on efficiency: The common reference string of our POT protocol
consists of n2+6n+12 group elements. Regarding the communication complex-
ity of this scheme, we note that, in the initialization phase V ’s message contains
3d+2 group elements, which is the size of paramsRange, and that of B involves
a single element of Zp. In each transfer phase B’s request Q is composed of
30a + 57 group elements and V ’s response R has 2n group elements. For the
computational complexity of our POT scheme, observe that the initialization
phase requires n2 + 6n+ 7 exponentiations for FCRS, 3d+ 3 exponentiations for
V and d exponentiations along with 3d pairings for B. Further, each transfer
phase involves 2 exponentiations, 1 pairings plus the complexity of construct-
ing the NIPK (2), which involves the cost of generating a range proof, a non-
interactive proof of a P-Signature possession and Groth-Sahai non-interactive
proof of knowledge for two additional pairing product equations, for B and 3n
exponentiations, n+87a+174 pairings for V . We note that A = da is the upper
bound of buyer’s account.

Remark 2. Observe that, since in our POT construction the membership encryp-
tion discussed in Section 3 is applied for singleton group attributes {pχt}, ui,j ’s
are not required for decrypting the ciphertext Cχt . Thus we can omit {ui,j}i⊥=j

from the crs resulting in further reduction in crs size an well as the number of
exponentiations computed by FCRS by n2. This modification will not affect the
security argument.



112 P. Datta, R. Dutta, and S. Mukhopadhyay

5 Extending Our Priced Oblivious Transfer to
Subscription Setting

The motivation of a subscription is to allow efficient one-way communication
from the vendor to the buyer. By subscribing to a particular index, the buyer
indicates that it wishes to continue buying the item with that chosen index until
overriding the subscription with a new request, provided its balance contains
sufficient funds, or unsubscribing, i.e., terminating a previous ‘subscribe’ request.
Here we will briefly sketch how our proposed POT can be modified to fit in a
‘subscription’ setting. We assume that for subscription a buyer B is charged the
same price pi for the i-th message effective at time of subscription even if prices
may change over time. To initialize the protocol first both the vendor V and the
buyer B takes crs from FCRS and V sends (sid, paramsRange) to B by executing
POTInitVendor as in the POT of Section 4. In the subscription scenario we have
the following operations:

Subscribing: The buyer B computes (P,D
(Priv)
0 ) by running POTInitBuyer on

input (crs, paramsRange, ac0), chooses an index β to subscribe and a time period
Ω to subscribe. Now B picks openpσ , openzσ , openzσpσ , {openact}τt=1 randomly
from Z

3
p and computes h1=Commit(gpσ , openpσ), h2=Commit(uχ, openzσ), h3 =

Commit(gzσpσ , openzσpσ ), Dt = Commit(gact , openact), t = 1, . . . , Ω. Also for t =
1, . . . , Ω , B runs PoKProve introduced in Section 2.2 on input crsPoK to obtain
non-interactive proof of knowledge pokt:

NIPK{(gact , gact−1 , gpσ , uχ, g
zσpσ , qχ, sχ) : 0 ≤ act < A ∧

e(g, gact−1)e(g−1, gact)e(g−1, gpσ) = 1 ∧ e(g, gzσpσ )e(uχ, g
pσ)−1 = 1 ∧

PVerifySig(pk, sχ, zχ) = accept ∧ act in Dt ∧ act−1 in Dt−1 ∧
pχ in h1 ∧ uχ in h2 ∧ gzσpσ in h3}.

B sets Q = (h1, h2, h3, {(pokt, Dt)}τt=1), Q
(Priv) = (β, openzσpσ ) and {D(Priv)

t =

(act, openact)}τt=0. B sends (sid, P,Q, Ω) to V and stores (Q(Priv), {D(priv)
t }τt=0).

The vendor V runs D0 ← POTGetDeposit(crs, P,A) as in our POT protocol
of Section 4. V sets D = (Q, Ω) after checking whether it really has received Ω
number of (pokt, Dt)’s.

Maintaining a Subscription: At time t > 0 following a subscription, V runs
POTRespond on input Dt−1, Qt where Qt = (h1, h2, h3, pokt, Dt), sends response
(sid,Rt) to B and sets D = (h1, h2, h3, {pokj}τj=t+1, {Dj}τj=t, Ω − t).

Upon receiving (sid,Rt), B executes POTComplete(crs,Rt, Q
(Priv)) to obtain

M
(t)
χ . Also B updates D

(Priv)
t = {(acj , openacj )}τj=t.

Unsubscribing: After time Ω (for which B has subscribed), V finds D =
(h1, h2, h3, φ, {Dτ}, 0) and hence, V automatically unsubscribes B. However, if B
wants to unsubscribe after l transfers, where l < Ω , then V sends (sid, {Dt}τt=l)
to B. Here Dl contains B’s remaining balance after l-th transaction. B can open
the commitment Dl to any trusted third party or the court of law to claim



UC-Secure Efficient POT from a Flexible Membership Encryption 113

his remaining balance from V . Note that, since Groth-Sahai commitments are
perfectly binding, B cannot open Dl to any value other than acl.

6 Conclusion

In this paper we have constructed a new efficient, provably secure membership
encryption scheme and have applied it to develop an efficient 1-out-of-n POT
protocol. Our proposed membership encryption has constant length group token
and constant ciphertext size both of which is shorter than that of [12], as well as,
it computationally outperforms [12]. Also unlike [12], our scheme is flexible in the
sense that the same setup can be used with different universe of attributes. This
property is important for applications such as POT where item prices may change
with time. Our developed POT protocol is secure under universally composable
framework and thus, unlike the existing 1-out-of-n schemes [1], [15] available
in the literature, preserves security when it is executed with multiple protocol
instances that run concurrently in an adversarily controlled way. Further, the
protocol is round optimal having constant computation and communication cost
on the buyer’s side and O(n) complexity on the vendor’s side, which is so far
the best known for 1-out-of-n POT.

References

1. Aiello, B., Ishai, Y., Reingold, O.: Priced oblivious transfer: How to sell digital
goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135.
Springer, Heidelberg (2001)

2. Au, M.H., Tsang, P.P., Susilo, W., Mu, Y.: Dynamic universal accumulators for
ddh groups and their application to attribute-based anonymous credential sys-
tems. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 295–308. Springer,
Heidelberg (2009)

3. Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: P-signatures and nonin-
teractive anonymous credentials. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948,
pp. 356–374. Springer, Heidelberg (2008)

4. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

5. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

6. Boyen, X., Waters, B.: Full-domain subgroup hiding and constant-size group sig-
natures. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 1–15.
Springer, Heidelberg (2007)

7. Camenisch, J.L., Chaabouni, R., Shelat, A.: Efficient protocols for set member-
ship and range proofs. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350,
pp. 234–252. Springer, Heidelberg (2008)

8. Camenisch, J., Dubovitskaya, M., Neven, G.: Unlinkable priced oblivious transfer
with rechargeable wallets. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 66–81.
Springer, Heidelberg (2010)

9. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: Proceedings of the 42nd IEEE Symposium on Foundations of Com-
puter Science, 2001, pp. 136–145. IEEE (2001)



114 P. Datta, R. Dutta, and S. Mukhopadhyay

10. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999)

11. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008)

12. Guo, F., Mu, Y., Susilo, W., Varadharajan, V.: Membership encryption and its ap-
plications. In: Boyd, C., Simpson, L. (eds.) ACISP. LNCS, vol. 7959, pp. 219–234.
Springer, Heidelberg (2013)

13. Rial, A., Kohlweiss, M., Preneel, B.: Universally composable adaptive priced obliv-
ious transfer. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671,
pp. 231–247. Springer, Heidelberg (2009)

14. Rial, A., Preneel, B.: Optimistic fair priced oblivious transfer. In: Bernstein, D.J.,
Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 131–147. Springer,
Heidelberg (2010)

15. Tobias, C.: Practical oblivious transfer protocols. In: Petitcolas, F.A.P. (ed.) IH
2002. LNCS, vol. 2578, pp. 415–426. Springer, Heidelberg (2003)



TMDS: Thin-Model Data Sharing Scheme

Supporting Keyword Search in Cloud Storage

Zheli Liu1, Jin Li2, Xiaofeng Chen3, Jun Yang1, and Chunfu Jia1,α

1 College of Computer and Control Engineering, Nankai University, China
{liuzheli,junyang,cfjia}@nankai.edu.cn

2 School of Computer Science, Guangzhou University, China
lijin@gzhu.edu.cn

3 State Key Laborary of Integrated Service Networks, Xidian University, China
xfchen@xidian.edu.cn

Abstract. Data sharing systems based on cloud storage have attracted
much attention recently. In such systems, encryption techniques are
usually utilized to protect the privacy of outsourced sensitive data. How-
ever, to support data sharing while keeping data confidentiality, encryp-
tion keys should be shared by authorized users. As a result, many keys
have to be stored and shared by the users in the data sharing system,
which would be a bottleneck for users. To tackle the challenges above, we
propose a secure thin-model data sharing scheme supporting a keyword
search scheme called TMDS, where only a user’s master key is utilized
and the keys used for keyword search are not required to be stored at the
user side. Furthermore, the cloud server is assumed to be an honest-but-
curious entity in our construction. TMDS offers many attractive features
as follows: 1) users are able to encrypt and share data without distribut-
ing shared encryption keys; 2) each user can flexibly retrieve and decrypt
data from the cloud with only a master key; 3) secure data sharing and
keyword search are both supported in a single system. Furthermore, we
explain how to construct a data sharing system based on TMDS. Secu-
rity analysis and performance evaluation show that our scheme is secure
and practical.

Keywords: cloud storage, data sharing, searchable encryption, access
control.

1 Introduction

With the development of cloud storage, data sharing becomes an important func-
tionality. By migrating the local data management systems into cloud servers,
users can enjoy high-quality services and save significant investments on their
local infrastructures. For example, an organization (such as company, school,
association, etc.) allows its members to store and share files in the cloud. By
utilizing the cloud, the members can retrieve data by any device (such as mobile

β Corresponding author.

W. Susilo and Y. Mu (Eds.): ACISP 2014, LNCS 8544, pp. 115–130, 2014.
c© Springer International Publishing Switzerland 2014



116 Z. Liu et al.

phone, computer, etc) at any time and any place. Thus, they can be completely
released from the troublesome local data storage and maintenance.

However, data files stored in the cloud, such as business plans, may be sensi-
tive, while cloud servers are not fully trusted by users. To preserve data privacy, a
basic solution is to encrypt data files and upload the ciphertexts into the cloud,
but this leads to the challenge of how to retrieve encrypted files containing a
given keyword. Searchable encryption (SE) can provide a solution for this chal-
lenge, but it has the drawback of requiring a user to provide the cloud server
with a keyword trapdoor, which will be used to search over ciphertexts in the
cloud.

Considering a data sharing system supporting keyword search in cloud, 1)
each member of organization can upload encrypted files and share them with
the other users by sending the SE keys and encryption keys to them. For se-
curity considerations, different SE keys and data encryption keys are always
used for different files, so that the number of keys for each member scales with
the number of files shared by others. These keys should be stored in the user’s
device and it would increase the system complexity on key management. Even
these keys are stored in the USB device, to achieve the goal of retrieving data
from cloud by any device at any time, the user must carry the USB device all
the time, which would be impractical and inflexible; 2) access control for ver-
ifying user’s permission of shared files always needs a trusted center to store
the necessary information. Some recently proposed fine-grained access control
mechanisms based on ciphertext-policy attribute based encryption (CP-ABE)
all require a trusted attribute authority. To construct such a trusted center,
one choice is to deploy it in a private cloud, which can be constructed by host
trusteeship in cloud service provider, however, it is impractical for lots of small-
scale organizations, because the private cloud construction is expensive for the
investment of server and management.

To implement a practical data sharing system supporting keyword search for
an organization, it would be a major contribution if (1) users are not required
to send searchable keys to other users while allowing them to perform keyword
search, and (2) access control can be supported outside cloud control to save
on investment. Compared with the existing data sharing systems, such a system
will be more lightweight, simple and flexible because there is no need to carry
the shared keys for data sharing all the time. We call it as “thin-model” data
sharing system.

Our contributions. We propose TMDS, a secure thin-model data sharing
scheme supporting keyword search in the cloud, and discuss how to implement
such a data sharing system using TMDS. The main contributions include:
1. Our scheme is built on the public cloud to realize secure access control or

key management. The group manager (maybe CEO or HR Officer of this
organization) will act as the role of system manager, that is to say, he is
responsible for user management, maintaining the public system parameters
stored in the cloud server.

2. Each member in the group can flexibly share his files to an arbitrary group
of members without distributing SE keys and data encryption keys to them.



TMDS Scheme Supporting Keyword Search in Cloud Storage 117

The user can flexibly retrieve the encrypted files by any device without these
sharing keys.

3. Our scheme is very efficient because that the cryptographic operations are
based on symmetric encryption, including generation of keyword ciphertext
and trapdoors.

2 Related Works

2.1 Data Sharing Scheme

In 2003, Kallahalla et al. [1] proposed a secure file sharing system named Plutus
on untrusted servers. In Plutus, data owner must deliver encryption keys to
others and brings about a heavy key distribution overhead. Later, Ateniese et
al. [2] leveraged proxy re-encryptions to secure distributed storage in 2005. In
this system, a trusted cloud is required for encryption and access control.

Recently, attribute-based encryption (ABE) has been widely used in the fine-
grained access control [4]. In 2010, Yu et al. [3] presented a data sharing system
based on the key-policy ABE (KP-ABE) technique. However, a trusted attribute
authority for ABE is need to manage attributes in both systems.

In 2013, Liu et al. [6] proposed a secure multi-owner data sharing scheme
namedMona, for dynamic groups in the cloud. By leveraging group signature and
dynamic broadcast encryption (BE) techniques, any cloud user can anonymously
share data with others. Mona is suitable for sharing files to all members except
revoked ones without a trusted cloud, but it is not practical for flexibly sharing
files to a group of arbitrary members. In fact, Mona inspires us to build a flexible
data sharing system without a trusted cloud on the basis of broadcast encryption.

In general, in order to share several files having different encryption keys with
the same user, the data owner will normally distribute all these keys to the
user, leading to a key management problem. Aiming at tackling this challenge,
in 2014, Chu et al. [7] developed the key-aggregate cryptosystem to generate an
aggregated key for the user. The motivation of reducing data encryption keys
also inspired us to construct a flexible data sharing system in which encryption
keys do not need to be distributed but, nevertheless, the user can decrypt the data.

2.2 Searchable Encryption

Keyword search is an important functionality of data sharing system. Lots of
researches about searchable encryption have been proposed, including searchable
symmetric encryption (SSE) [8–10,13] and public key encryption with keyword
search (PEKS) [11,12,14–16]. Compared with PEKS, SSE is more efficient, but
it is not flexible enough to design schemes supporting complexity query, such as
fuzzy keyword search [14], conjunctive wildcard search [15], and so on.

Recently, keyword search under multi-user setting (usually in data sharing
scenarios) gets the attention of researchers. In 2006, Curtmola et al. [9] firstly
proposed such a scheme using SSE and BE by sharing the SE key. In this scheme,



118 Z. Liu et al.

BE is used to implement access control by encrypting a random number for a
group of users. The implementation of access control based on BE inspires us to
build a flexible data sharing system without a trusted cloud.

In 2012, fine-grained access control based on ABE is applied in multi-user
keyword search in [16]. However, in their schemes, trusted attribute authorities
are used to manage users’ attribute and trusted third parties to verify user’s
identity. In 2013, Liu et al. [17] proposed the concept of “coarse-grained access
control” based on BE, but they didn’t give the concrete scheme. Moreover, in
their scheme, a trusted cloud is used to perform two-phase encryption to against
the collusion attack from revoked users and cloud server.

3 Preliminaries

In this section, we will review some cryptographic tools used in this paper.

3.1 Bilinear Maps

Let G and G1 be two cyclic groups of prime order p, and g be a generator of G.
A bilinear map is a map e : G × G ∈ G1 with the following properties:

1. Bilinearity: for all u, v ⊕ G and a, b ⊕ Z∈
p , we have e(ua, vb) = e(u, v)ab.

2. Non-degeneracy: e(g, g) ⊇= 1.
3. Computable: for any u, v ⊕ G, e(u, v) can be efficiently computed.

3.2 Complexity Assumptions

Definition 1 (Computational co-Diffie-Hellman (co-CDH) Assumption
on (G,G1)). Let G and G1 be bilinear groups of prime order p, given g, ga ⊕ G and
h ⊕ G1 as input, it is infeasible to compute ha ⊕ G1, where a ⊕ Z∈

p .

Definition 2 (Computational Diffie-Hellman (CDH) Assumption). If
G = G1, the co-CDH problem can be reduced to standard CDH problem.

Definition 3 (Bilinear Diffie-Hellman (BDH) Assumption). Given a bi-
linear group G of prime order p, a tuple g, ga, gb, gc ⊕ G as input, it is infeasible
to compute e(g, g)abc ⊕ G, where a, b, c ⊕ Z∈

p .

Definition 4 (BilinearDiffie-HellmanExponent (BDHE)Assumption).

Given a bilinear group G of prime order p, a tuple (h, g, ga, ga
2

,..., ga
n

, ga
n+2

,

ga
n+3

,..., ga
2n ⊕ G2n+1), it is infeasible to compute e(g, h)a

n+1

, where a, n ⊕ Z∈
p .

4 System Model

We consider a thin-model data sharing system based on cloud storage with an
example that an organization uses a public cloud to enable its members or staffs
to share files. Each user can freely upload file and specify a group of members
to retrieve it. The shared file can be retrieved by the authorized users in the
specified group, and it can be searched by the given keywords.



TMDS Scheme Supporting Keyword Search in Cloud Storage 119

Manager Data ownerRecipients

System parameters

Revoked user list

Key distribution

Registration

Upload data
Data

Trapdoor

File

Public
cloud

the organization

Fig. 1. Thin-model data sharing system in cloud storage

4.1 Role Definitions

As shown in Fig.1, there are four different roles defined as follows:

1. Public cloud is operated by cloud service providers (CSPs) and provides
priced abundant storage services. Similar to [3], we assume that the cloud
server is “honest but curious”. That is, the cloud server will provide the
right service according to the pre-given scheme, and it will not maliciously
delete or modify user data due to the protection of data auditing schemes
[18], but will try to learn the content of the stored data.

2. Manager takes charge of system parameters generation, user registration,
user revocation, and so on. The Manager can be acted by the administrator
of the organization, such as CEO, HR Officer, etc. Therefore, the manager
is fully trusted by the other parties.

3. Owner is a registered user that will store his private data into the public
cloud and share them with other members or staffs of his organization.

4. Recipients are registered users who can query and retrieve the enciphered
data with the permission to access.

4.2 Design Goals

In the thin-model data sharing system: 1) the trusted cloud will be removed;
2) SE key and data encryption key will not be distributed to recipients, and
these keys are not necessary to be stored in user’s device, so that user can
flexibly retrieve data from cloud by any device at any time; 3) but its main
design goals remain unchanged, including access control, data confidentiality,
revocation capability, and efficiency as follows.

Access control : The requirement is to verify the access permission of target
data with no help of trusted cloud. Unauthorized users cannot access the cloud
resource at any time, and revoked users will be incapable of using the cloud
again once they are revoked.



120 Z. Liu et al.

Data confidentiality: The requirement is to ensure only the authorized users
can retrieve the shared data, but unauthorized users including cloud are in-
capable of learning the privacy information of the stored data, including data
content, whether containing a concrete keyword, etc.

Revocation capability: The requirement is twofold. First, manager can delete
a user and revoke his ability from the organization. Second, owner can flexibly
revoke the access permission of an existing authorized user.

Efficiency: The requirement is also twofold. First, the cryptographic opera-
tions should be efficient; second, user join or revocation can be achieved effi-
ciently, that is, the stored encrypted data can be directly shared to a new user,
but user revocation can be achieved without updating private keys of others.

5 The Proposed Scheme: TMDS

Our goal is to design a complete cryptography scheme for privacy-preserving data
sharing system supporting keyword search without trusted cloud. The design of
TMDS is inspired from short signatures scheme named BLS [21], BE schemes
[19, 20] and SSE scheme [8]. In this section, we will first describe our scheme
TMDS, and then introduce how to use it to construct a concrete thin-model
data sharing system in details, which achieves our design goals.

5.1 Scheme Description

1. Setup(1β, n). The manager will use this algorithm to initialize system
parameters as follows:

– Generate a bilinear map group system B=(p, G, G1, e(·, ·)), where p is
the order of G and 2β ≤ p ≤ 2β+1.

– Set n as the maximum number of members in the organization.
– Pick a random generator g ⊕ G and a random α ⊕ Zp, and computes

gi = g(γ
i) ⊕ G for i = {1, 2, · · ·, n, n+ 2, · · ·, 2n}.

– Pick a random γ ⊕ Z∈
p and set v = gκ ⊕ G.

Finally, manager publishes the system parameters PK = (B, PubK, v, H ,
H1, E, F ), where PubK = (g, g1, ..., gn, gn+2, ..., g2n, v) ⊕ G2n+1, H is a
one-way hash function: G ∈ {0, 1}∈, H1 is also a one-way hash function:
{0, 1}∈ ∈ G, E is a pseudo random permutation (a block cipher, such as
AES) which is used to encrypt the keyword, and F is a one-way hash function
(such as MD5, SHA1):{0, 1}∈ ∈ {0, 1}∈.

2. Keygen(i). The manager will use this algorithm to generate the key pair
for a new user with sequence number of i, where i ⊕ {1, ..., n}:
– Pick a random x ⊕ Z∈

p and compute GX = gx ⊕ G.
– Compute di = gκi ⊕ G, note that di = v(γ

i).

Finally, manager will dispatch the public key pku=(i, GX) and private key
sku=(x, di) to this user. Note that: < x, GX > will be used to compute
signature for identity authentication based on BLS scheme [21]; < i, di >
will be used to encrypt the shared keys, which will be stored in the cloud.



TMDS Scheme Supporting Keyword Search in Cloud Storage 121

Wj

Lj Rj

EK(Wj)

E

Sj F(Sj)

F

XOR Cj

First layer

Second layer

Fig. 2. Computation of the keyword ciphertexts

3. Encrypt(PubK, S, m): The owner will use this algorithm to encrypt the
data m and generate keyword ciphertexts of m as follows:
– Let DK be the key for data encryption. The owner randomly selects a
d ⊕ Z∈

p and computes

DK = H(e(gn+1, g)
d).

Then, owner will use E to encrypt data m by DK: EDK(m). In general,
data encryption process should be under ECB (Electronic Codebook)or
CBC (Cipher Block Chaining) mode.

– Let SEK be the key for searchable encryption. The owner randomly
selects a k ⊕ Z∈

p and computes

SEK = H(e(gn+1, g)
k).

Then, owner uses E and F to generate keyword ciphertexts: as shown
in figure 2, for the given j-th keywordWj , randomly selects s ⊕R {0, 1}∈
and then computes its corresponding keyword ciphertext Cj as:

Cj = ESEK(Wj)≤ s||F (s).
Finally, owner will store both encrypted results into the cloud.

4. Share(S, DK, SEK): To make the members in set S can retrieve the keys,
the owner will use this algorithm to encrypt the data encryption key and SE
key, compute HdrDK = (D0, D1), HdrSE = (S0, S1) and store (S, HdrDK ,
HdrSE) to the cloud, where:

D0 = gd, D1 = (v ·Πj≤sgn+1−j)
d

S0 = gk, S1 = (v ·Πj≤sgn+1−j)
k

5. Trapdoor(PubK, S, W , sku): The recipient will use this algorithm to
generate the trapdoor for a keyword W by the following steps:

– Step 1. Download the S, HdrSE from the cloud and compute:
SEK = H(e(gi, S1)/e(di ·Πj≤s,j ∗=ign+1−j+i, S0)).

– Step 2. Generate the trapdoor as: Tr = ESEK(W ).

Finally, recipient will send Tr to cloud server.
In particular, the recipient can only run step 1 for the first time to extract
the searchable encryption key SEK by a new device.

6. Match(Tr, C): After receiving the trapdoor Tr, cloud will use this algo-
rithm to test whether the stored encrypted keyword ciphertexts C contains
this keyword. For each keyword ciphertext Cj in C, cloud :



122 Z. Liu et al.

– Firstly, computes C⊥
j = Cj ≤ Tr.

– Secondly, retrieves the s⊥ from left part of C⊥
j .

– Finally, compares F (s⊥) with the right part of C⊥
j . If they are equal,

outputs success.

If there is no keyword ciphertext outputting success, cloud outputs failure.

7. Decrypt(PubK, sku, Cm): The recipient will use this algorithm to retrieve
and decrypt the encrypted data from the cloud by the following steps:

– Step 1. Download the S, HdrDK from the cloud and get DK by com-
puting:

DK = H(e(gi, D1)/e(di ·Πj≤s,j ∗=ign+1−j+i, D0)).

– Step 2. Download the encrypted data Cm and decrypt it by DK.

In particular, the recipient can only run step 1 for the first time to extract
the encryption key DK by a new device.

8. Sign(sku, msg): The user will use this algorithm to generate a signature σ
of message msg by computing: σ = H1(msg)

x.

9. Verify(pku, σ): The cloud will use this algorithm to verify the signature
σ of msg using user’s public key pku by testing whether e(g, σ) is equal to
e(GX,H1(msg)).

5.2 Concrete Data Sharing System

In this section, we will describe the implementation of a concrete thin-model file
sharing system constructed by TMDS in details.

Table Definitions. In order to facilitate data management, we assume that
the cloud will use database to manage the necessary information. Any type of
database can be applied and we define four tables as follows:

– Table company<companyID, companyName, parameters> is to store the
system information, including public parameters of TMDS.

– Table userinfo<userID, userName, password, publicKey> is to store mem-
bers information, including user’s public key.

– Table fileinfo<fileID, fileName, ownerUserid, HdrDK, HdrSEK, userSet,
filePath> is to store file information of owner with identity ownerUserid,
including encrypted keys and users who can access this file.

– Table revokeusers<userID, revokeDate> is to store revoked user informa-
tion.

When an organization submits an apply for using the file sharing service, the
cloud will create a database containing above four tables and assign a companyID
for this organization. Moreover, it will assign an administrator account for the
manager and insert a record into table company. Then, the file sharing system
will work under the control of manager.



TMDS Scheme Supporting Keyword Search in Cloud Storage 123

User ACloud Server

Step 1

Step 2

login<i, companyID, uname, password>

<file1, , filen>, revokeusers

sign<msg>

Step 3
verify<i, TMDS.Sign(sku, msg)>

Step 4
Step 5

(a) Steps of user login

User ACloud Server

Step 1

Step 2

query<i, fileID, TMDS.trapdoor(W)>

enrypted data

Step 4

Step 3

check access permission

(b) Steps of data retrieving

Fig. 3. Work flows

Work Flows. To further describe this system in details, we describe its main
work flows in this section.

System setup. The manager must firstly authorize his identity by the as-
signed administrator account (we assume this process will be provided by CSPs).
Then, manager runs the algorithm TMDS.Setup to generate the system public
parameters PK, and updates the field parameters in table company as PK.

User registration. When to add the i-th member, the manager firstly as-
signs a uname (name, email, etc) as user’s identity, sets user’s userID as i,
generates a password and runs the algorithm TMDS.Keygen to generate the
key pair for him. Then, manager securely distributes private key sku, i, un-
ame, password and companyID to this user, inserts a new record < i, uname,
companyID, pku> into the table userinfo, and appends < i, pku> into the PK.

User login. To upload or retrieve file, the user must firstly authorize his
identity. As shown in Fig. 3(a), cloud can verify his identity by following steps:

– Step 1. User submits a request as login<userID, companyID, uname, pass-
word> to the cloud.

– Step 2. The cloud queries the table userinfo to verify user’s identity. If
succeed, cloud randomly generates a msg ⊕ {0, 1}∈ and responses sign<
msg > to user to require the signature of this random value.

– Step 3. User runs the algorithm TMDS.Sign to generate the signature and
sends the request verify< i, TMDS.Sign(sku, msg)> to the cloud.

– Step 4. After receiving the verify request, cloud obtains i-th user’s public
key from table userinfo and runs the algorithm TMDS.Verify to verify the
signature. If succeed, cloud will sends the file list which i-th user can access
and revoked user list to this user.

– Step 5. User synchronizes his local file list with the cloud (this process is sim-
ilar with that of other data sharing softwares based on cloud like dropbox).
If the revokeusers is not null, user may update his encrypted files which the
revoked user can access by the way of changing keys.

Data uploading. To upload data, owner runs the algorithm TMDS.Encrypt
to encrypt the data and generate keyword ciphertexts, then uploads the en-
crypted data, his identity userID and file information to the cloud. The cloud



124 Z. Liu et al.

assigns a fileID for it and stores it in the path filePath, then inserts a record as
<fileID, fileName, userID, null, null, null, filePath> into the table fileinfo.

Data sharing. Before data sharing, the cloud would search the table fileinfo
to verify whether the user is the owner.

For a file with ID of fileID, there are three cases about data sharing:

– When to share this file to members whose userID is in set S, owner runs
the algorithm TMDS.Share to encrypt the data encryption key and SE key
to conduct the HdrDK and HdrSE , and updates them in the corresponding
record of table fileinfo.

– When to add a new user to access this file, owner adds user’s userID into
the original set S and runs the algorithm TMDS.Share to re-encrypt the
HdrDK and HdrSE , then updates the corresponding record as new <S,
HdrDK , HdrSE>.

– When to revoke a user’s access permission, owner removes user’s userID
from the original set S, then re-encrypts and updates the corresponding
record as new <S, HdrDK , HdrSE>.

Data retrieving. As shown in Fig.3(b), for an authorized recipient whose
userID is i, there are four steps to retrieve data of file with ID of fileID :

– Step 1. The recipient uses the algorithm TMDS.Trapdoor to generate a
trapdoor Tr for keyword W and submits a request as query< i, fileID, Tr>
to the cloud. In the request, the null value of Tr means that the recipient
wants to download file without keyword search.

– Step 2. The cloud checks whether the user is in the set S of this file, if not,
abort interactive process.

– Step 3. If Tr is not null, cloud runs the algorithm TMDS.Match to test
whether file contains the submitted keyword. If contains or Tr is null, cloud
sends the encrypted data to the user.

– Step 4. The recipient runs algorithm TMDS.Decrypt to get the plaintext.

User revocation. To remove a user with ID of userID from the organization,
manager deletes the record of this user in the table userinfo, inserts a new record
as <userID, current date> into the table revokeusers and further notices all
the members to update set S and re-encrypt the keys (if necessary, re-encrypt
file content and re-generate keyword ciphertexts by changing keys).

Analysis. The above system can achieve the design goals:

– User’s identity is authorized by password authentication and cryptography
method without trusted cloud. Thus, the goal of access control is achieved.

– Security analysis in 5.3 shows that the system is secure, even if cloud server
colludes with the revoked user. So, the goals of data confidentiality and
revocation capability are achieved.

– Section 6 evaluates the performance and shows that the goal of efficiency can
be achieved because: 1) data encryption and keyword ciphertexts generation
are based on symmetric encryption; 2) user can only perform once decryption
of the HdrDK and HdrSE and store them for future use.



TMDS Scheme Supporting Keyword Search in Cloud Storage 125

5.3 Security Analysis

In this section, we prove the security of our system in terms of access control
and data confidentiality.

Theorem 1. Based on the TMDS, the system can achieve secure access control.

Proof: To upload or retrieve data from the cloud, 1) a user must firstly au-
thorize his identity by submitting a signature of random value from the cloud;
2) an authorized user must decrypt the HdrDK and HdrSE to get the keys.
TMDS.Sign can be regarded as a variant of BLS signature scheme [21], and
TMDS.Share can be regarded as a variant of broadcast encryption scheme [19],
and thus they both have a provable security. The demonstration of Theorem 1
can be derived from the following lemmas:

Lemma 1. An attacker is unable to access the cloud server based on the as-
sumption of the intractability of CDH problem in G.
Proof: If attacker A wants to pass the authentication of the cloud, he must
submit the signature of random value from the cloud. Because attacker A has no
right key, he may attack a real user’s private key or generate a correct signature.
However, 1) to retrieve the private key x from a real user’s public key gx, A
must resolve the discrete logarithm problem; 2) to conduct a correct signature
with the knowledge of g and public key gx, A must output the result as the form
of hx, obviously, this contradicts with CDH assumption.

Lemma 2. Unrevoked users are able to retrieve the encrypted file.

Proof: Lemma 2 is equivalent to the correctness of decryption of the encrypted
keys. For correctness, we can see that the i-th user in the set S can get the
shared key SEK (the same as DK) by computing:

SEK ⊥ =
e(gi, S1)

e(di ·Πj≤s,j ∗=ign+1−j+i, S0)
=

e(gγ
i

, (v ·Πj≤sgn+1−j)
k)

e(vγi ·Πj≤s,j ∗=ign+1−j+i, gk)

=
e(gγ

i

, gkn+1−i) · e(gγ
i

, (v ·Πj≤s,j ∗=ign+1−j)
k)

e(vγi ·Πj≤s,j ∗=ign+1−j+i, gk)

=
e(gi, gn+1−i)

k · e(gγi

, (v ·Πj≤s,j ∗=ign+1−j)
k)

e(vγi ·Πj≤s,j ∗=ign+1−j+i, gk)

=
e(gn+1, g)

k · e(gγi

, (v ·Πj≤s,j ∗=ign+1−j)
k)

e(vγi ·Πj≤s,j ∗=ign+1−j+i, gk)

=
e(gn+1, g)

k · e(g, (vγi ·Πj≤s,j ∗=ign+1−j))
k

e(vγi ·Πj≤s,j ∗=ign+1−j+i, g)k

= e(gn+1, g)
k

So, unrevoked user can get SEK = H(SEK ⊥) and use it to retrieve data.

Theorem 2. Based on the TMDS, the system supports data confidentiality.



126 Z. Liu et al.

Proof: Theorem 2 can be deduced from the following lemmas:

Lemma 3. The cloud server is unable to learn the content of the stored files.

Proof: There are two things to check. First, cloud server has no ability to
decrypt the encrypted keys on the basis of its knowledge. With the knowledge of
g and ga in PK, cloud server must resolve the discrete logarithm problem to get
the a; with the knowledge of D0 = gd and S0 = gk in HdrDK and HdrSE , cloud
server must resolve the discrete logarithm problem to get the d or k, too. As
a result, cloud server is incapable of getting the key e(gn+1, g)

d or e(gn+1, g)
k.

In fact, this result is ensured by the assumption of the intractability of BDHE
problem. Second, with the knowledge of Tr = ESEK(W ), but without SEK,
cloud server has no ability to learn keyword information from the trapdoor.
This result is ensured by the adopted pseudo random permutation with proved
security like AES. Thus, the correctness of Lemma 3 can be ensured.

Lemma 4. Even cloud server colludes with revoked users, the cloud is also
incapable of learning the content of the files stored after their revocation.

Proof: With the knowledge of revoke user, the cloud server can know PK,
HdrDK = (D0, D1), key pair < i, di = gκi > and the set S, where i /⊕ S. The
equation e(gi, D1)/e(di · Πj≤s,j ∗=ign+1−j+i, D0) can be used to compute DK
by the key pair of revoked user. However, because PK is missing the term
gn+1 = ga

n+1

, the cloud server cannot finish the computation, so that it is
incapable of learning the content.

6 Performance Evaluation

Considering that: 1) the user can retrieve data by any possible device in a prac-
tical file sharing system based on the cloud, and the mobile devices are widely
used now; 2) the cryptographic techniques are adopted to protect data privacy,
and the performance of the data sharing system is highly dependent on the
basic cryptography operations including symmetric encryption and pairing com-
putation. So, to evaluate TMDS scheme’s performance, we focus on whether its
cryptography operations can be quickly executed in both computer and mobile
device.

6.1 Implementation Details

Block cipher AES is selected as pseudo random permutation E, SHA1 is selected
as one-way hash function F . The cryptography operations based on pairing com-
putation are implemented by type A pairing.

In our implementation, some source libraries are used: 1) polarssl library
is used to implement AES and SHA1 in computer; 2) jpbc library is used to
implement cryptography operations based on pairing computation running in
mobile smartphone; 3) pbc library is used to implement cryptography operations
based on pairing computation running in computer.



TMDS Scheme Supporting Keyword Search in Cloud Storage 127

6.2 Evaluation

Each cryptographic operation involved in our construction will be evaluated in
two different platforms: one is in Java on Samsung G3502U phone with Android
OS 4.2, the other is in C++ on Computer of Intel(R) Core(TM)i5-3337U CPU
@ 1.80GHZ with Windows7 OS.

Pairing Computation. In 2007, Oliveira et al. [22] shows that the pairing
computation needs 5s in mobile phone. In 2010, Li et al. [23] shows that the
pairing computation only need 1.5s in sensor node and 0.5s in PDA.

Table 1. Execution time of type A pairing computation (ms)

Device Pairing(in1, in2) Pow/mul (in G) Pow/mul (in G1) Pow/mul (in Zp)

Mobile 487 246/251 73/75 0.8/0

Computer 9 13/11 1.7/1.6 0.05/0

A bilinear map e : G × G ∈ G1 is tested in our experiments, and let p be the
order of G and G1, Zp be the ring of integers modulo p. As shown in Table 1,
the average time of pairing computation (two different element in G as input, for
example, e(g, h)) is 487ms in mobile device, which has the same result in PDA.
Table 1 also shows the results of pow and mul computation in different groups.

Table 2. Execution time of key extraction in TMDS.Decrypt (ms)

��������������Device
Number of recipients

1 2 3 4 5 10 20 50 500

Mobile 971 1223 1462 1723 1959 3134 5842 13953 129970

Computer 18 29 40 50 63 120 231 576 5634

Data Retrieving. Considering that the recipient always uses smartphone to
retrieve data but not upload them, the cryptography operations of TMDS run-
ning in the mobile device mainly include key extraction (i.e, the step 1 of
TMDS.Decrypt or TMDS.Trapdoor), data decryption and trapdoor gener-
ation:

– Key extraction.Table 2 shows the results of key extraction inTMDS.Decrypt,
and we can see that the execution time is linear with the number of recipients.
When the recipient numbers increase to 500, the decryption time in smart-
phone will be 2 minute, but that in computer will be only 5 second.

– Data decryption. Two kinds of AES implementation are evaluated, one is
android API of javax.crypto.Cipher, the other is Java Native Interface (JNI)
to call the native implementation of polarssl. The average time of AES en-
cryption of android API is about 0.5ms, but that of JNI is only 0.002ms. So,
for a file with size of 1M, the time of decryption by JNI will be only 0.13s.



128 Z. Liu et al.

– Trapdoor generation. The cryptography operation in trapdoor generation is
an AES encryption, whose average time can be only 0.002ms in smartphone.

We can see that key extraction is much lower than data decryption or trapdoor
generation. Even so, TMDS can be regarded as efficient, because key extraction
is only run when the recipient uses his smartphone to retrieve data for the first
time. To evaluate it, we test the cost to a single user of running keyword search
by his smartphone. In the simulation, we assume that the searchable encryption
key will be shared by 5 users, and the recipient will use the same smartphone,
that is to say, he will extract the searchable encryption key for the first time and
store it for the future use. Table 3 shows the execution time of keyword search
at different sequence. From Table 3, we can see that the first keyword search is
lowest, because pairing computations in key extraction are executed, but others
are all efficient for executing an AES encryption.

Table 3. Execution time of keyword search on a mobile phone (ms)

��������������Implementation

Sequence number
1st 2nd 3rd 4th 5th 6th

Android API 1959.002 0.0021 0.0019 0.002 0.0021 0.002

JNI 1959.5 0.51 0.51 0.49 0.5 0.51

Comparison. In this section, we describe the brief comparisons with other data
sharing schemes as follows:

– The other data sharing schemes have not considered how to distribute keys,
that is to say, they assume that these keys will be distributed through secure
channel. So, the key extraction is not considered as the cost of system. In
TMDS, the key distribution is viewed as one of important factors to make the
system be flexible. Although its cost is included in the TMDS, as described
in the above, TMDS can be also regarded as efficient.

– TMDS can support both data sharing and keyword search, especially it pro-
vides the keyword search function based on symmetric encryption. However,
most of the other data sharing schemes have not considered the searchable
encryption. In particular, to realize fine grained access control, public key
encryption with keyword search may be used here. In this sense, we think
TMDS has a good efficiency for keyword search.

7 Conclusion

We consider building flexible, practical and privacy-preserving data sharing sys-
tem which supports keyword search based on cloud storage. We observe that
there are rare researches focusing on the fact that shared keys stored in user side
will increase the complexity of key management, and lead to impracticability



TMDS Scheme Supporting Keyword Search in Cloud Storage 129

and inflexibility when user changes the device. In this paper, we proposed the
concept of “thin-model” data sharing system, which needn’t carry the shared
keys for data sharing all the time and without trusted cloud, and presented
such a scheme called “TMDS”, in which: 1) each member never sends searchable
keys to others, but allows them to perform keyword search; 2) trusted cloud
is removed but access control for shared files can be worked normally. Further-
more, we constructed a concrete file sharing system based on TMDS, analyzed
its security and evaluated its performance in both computer and mobile device.
The analysis and evaluation show that the proposed system is both secure and
efficient.

Acknowledgment. This work is supported by the National Key Basic Re-
search Program of China (No. 2013CB834204), the National Natural Science
Foundation of China (Nos. 61272423, 61100224, 61272455 and 61300241), Na-
tional Natural Science Foundation of Tianjin (No. 13JCQNJC00300), Special-
ized Research Fund for the Doctoral Program of Higher Education of China
(No. 20120031120036), Natural Science Foundation of Guangdong Province
(Grant No. S2013010013671), the Guangzhou Zhujiang Science and Technol-
ogy Future Fellow Fund (Grant No.2012J2200094), Distinguished Young Schol-
ars Fund of Department of Education(No. Yq2013126), Guangdong Province,
China 111 Project (No. B08038), Doctoral Fund of Ministry of Education of
China (No.20130203110004), Program for New Century Excellent Talents in Uni-
versity (No. NCET-13-0946), the Fundamental Research Funds for the Central
Universities (BDY15).

References

1. Kallahalla, M., Riedel, E., Swaminathan, R., Wang, Q., Fu, K.: Plutus: Scalable Se-
cure File Sharing on Untrusted Storage. In: Proc. USENIX Conf. File and Storage
Technologies, pp. 29–42 (2003)

2. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved Proxy Re-Encryption
Schemes with Applications to Secure Distributed Storage. In: Proc. Network and
Distributed Systems Security Symp (NDSS), pp. 29–43 (2005)

3. Yu, S., Wang, C., Ren, K., Lou, W.: Achieving Secure, Scalable, and Fine-Grained
Data Access Control in Cloud Computing. In: Proc. IEEE INFOCOM, pp. 534–542
(2010)

4. Li, J., Chen, X., Li, J., Jia, C., Ma, J., Lou, W.: Fine-grained Access Control
based on Outsourced Attribute-based Encryption. In: Crampton, J., Jajodia, S.,
Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 592–609. Springer, Heidel-
berg (2013)

5. Li, J., Chen, X., Huang, Q., Wong, D.S.: Digital Provenance Enabling Secure Data
Forensics in Cloud Computing. In: Future Generation Computer Systems. Elsevier
(2013), http://dx.doi.org/10.1016/j.future.2013.10.006

6. Liu, X., Zhang, Y., Wang, B., Yan, J.: Mona: secure multi-owner data sharing
for dynamic groups in the cloud. IEEE Transactions on Parallel and Distributed
Systems 24(6), 1182–1191 (2013)

http://dx.doi.org/10.1016/j.future.2013.10.006


130 Z. Liu et al.

7. Chu, C., Chow, S., Tzeng, W., et al.: Key-Aggregate Cryptosystem for Scalable
Data Sharing in Cloud Storage. IEEE Transactions on Parallel and Distributed
Systems 25(2), 468–477 (2014)

8. Song, X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: IEEE Symposium on Security and Privacy, pp. 44–55. IEEE Press (2000)

9. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryp-
tion: improved definitions and efficient constructions. In: Proceedings of the 13th
ACM conference on Computer and Communications Security, pp. 79–88. ACM
Press (2006)

10. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryp-
tion. In: Proceedings of the 2012 ACM Conference on Computer and Communica-
tions Security (CCS), pp. 965–976. ACM (2012)

11. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public Key Encryption
with Keyword Search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

12. Hwang, Y.-H., Lee, P.J.: Public Key Encryption with Conjunctive Keyword Search
and Its Extension to a Multi-user System. In: Takagi, T., Okamoto, T., Okamoto,
E., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp. 2–22. Springer, Heidel-
berg (2007)

13. Li, J., Chen, X.: Efficient Multi-user Keyword Search Over Encrypted Data in
Cloud Computing. Computing and Informatics 32(4), 723–738 (2013)

14. Li, J., Wang, Q., Wang, C.: Fuzzy keyword search over encrypted data in cloud
computing. In: Proc. IEEE INFOCOM, pp. 1–5 (2010)

15. Bösch, C., Brinkman, R., Hartel, P., Jonker, W.: Conjunctive wildcard search over
encrypted data. In: Jonker, W., Petković, M. (eds.) SDM 2011. LNCS, vol. 6933,
pp. 114–127. Springer, Heidelberg (2011)

16. Zhao, F., Nishide, T., Sakurai, K.: Multi-User Keyword Search Scheme for Secure
Data Sharing with Fine-Grained Access Control. In: Kim, H. (ed.) ICISC 2011.
LNCS, vol. 7259, pp. 406–418. Springer, Heidelberg (2012)

17. Liu, Z., Wang, Z., Cheng, X., et al.: Multi-user Searchable Encryption with Coarser-
Grained Access Control in Hybrid Cloud. In: Fourth International Conference on
Emerging Intelligent Data and Web Technologies (EIDWT), pp. 249–255. IEEE
(2013)

18. Wang, C., Wang, Q., Ren, K., Lou, W.: Privacy-Preserving Public Auditing
for Data Storage Security in Cloud Computing. In: Proc. IEEE INFOCOM,
pp. 525–533 (2010)

19. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with
short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 258–275. Springer, Heidelberg (2005)

20. Phan, D.H., Pointcheval, D., Shahandashti, S.F., et al.: Adaptive CCA broadcast
encryption with constant-size secret keys and ciphertexts. International Journal of
Information Security 12(4), 251–265 (2013)

21. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In:
Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Hei-
delberg (2001)

22. Oliveira, L.B., Aranha, D.F., Morais, E., et al.: Tinytate: Computing the tate
pairing in resource-constrained sensor nodes. In: IEEE Sixth IEEE International
Symposium on Network Computing and Applications, pp. 318–323 (2007)

23. Li, M., Lou, W., Ren, K.: Data security and privacy in wireless body area networks.
IEEE Wireless Communications 17(1), 51–58 (2010)



Low Data Complexity Inversion Attacks

on Stream Ciphers via Truncated
Compressed Preimage Sets

Xiao Zhong1,2, Mingsheng Wang3, Bin Zhang1,4, and Shengbao Wu1,2

1 Trusted Computing and Information Assurance Laboratory, Institute of Software,
Chinese Academy of Sciences, Beijing, China

2 Graduate School of Chinese Academy of Sciences, Beijing, China
3 State Key Laboratory of Information Security, Institute of Information

Engineering, Chinese Academy of Sciences, Beijing, China
4 State Key Laboratory of Computer Science, Institute of Software, Chinese

Academy of Sciences, Beijing, China
zhongxiao456@163.com, mingsheng wang@aliyun.com,

{zhangbin,wushengbao}@tca.iscas.ac.cn

Abstract. This paper focuses on the analysis of LFSR-based stream
ciphers with low data complexity. We introduce a novel parameter called
the k-th truncated compressed preimage set (TCP set), and propose a
low data complexity attack to recover the initial LFSR state via the TCP
sets. Our method costs very few keystream bits and less time than the
brute force under some condition. We apply our method to a 90-stage
LFSR-based keystream generator with filter Boolean function which can
resist the algebraic attack and inversion attack given by Golić to the
greatest extent. It needs only 10-bit keystream to recover the 90-bit initial
state, costing less time and data than the algebraic attack. The time
complexity is also less than that of the inversion attack. Moreover, we
recover the 128-bit initial state of the stream cipher LILI-128 with our
method. The data cost is just 9 keystream bits along with a memory cost
of O(28.5), which is the minimum data cost to theoretically break LILI-
128 so far as we know. The time complexity is O(2122.4), better than the
brute force. We also define a new security parameter called Tcomp and
suggest a design criterion for the LFSR-based stream ciphers.

Keywords: LFSR-based stream ciphers, k-th truncated compressed
preimage set, algebraic attack, inversion attack, LILI-128.

1 Introduction

Last decades have witnessed the fast development of stream ciphers. As a key
component of many stream ciphers, LFSR-based keystream generator is often
fused with nonlinear filter generator for better performance. There are many
stream ciphers which adopt the LFSR-based nonlinear filter generator, such as
Grain v1 [8], SNOW 3G [5], WG-7 [9] and LILI-128 [4].

W. Susilo and Y. Mu (Eds.): ACISP 2014, LNCS 8544, pp. 131–147, 2014.
c© Springer International Publishing Switzerland 2014



132 X. Zhong et al.

There are many classical analytical methods on LFSR-based stream ciphers,
such as algebraic attack [2,1] and inversion attack [6,7]. For LFSR-based gener-
ators with nonlinear filter Boolean function, the algebraic immunity [10] of the
Boolean function should be large enough to resist the algebraic attack. To resist
the inversion attack, the memory size of the stream cipher should be close or
equal to the length of the LFSR. We need to note that what is called “mem-
ory” has nothing to do with filters or combiners with memory and refers to a
specific inversion attack [6,7] in which the attacker guesses as many consecutive
bits of the LFSR as spanned by the taps of the filter function. What is called
“memory” in these attacks is the span of the filter function. Designers often
choose keystream generators filtered by Boolean functions of optimum algebraic
immunity along with large memory size.

Analysts value attacks on stream ciphers which cost less time than the brute
force or the declared security level. To sufficiently understand the security of the
analyzed stream cipher, we should pay attention to the fact that sometimes the
amount of the data available to the adversary is extremely small due to the prac-
tical restrictions. Then it is necessary to pursue the research of attacks costing
small amount of data, along with a time complexity less than the brute force or
the declared security level.

In this paper, we propose a low data complexity attack on the LFSR-based
keystream generators with nonlinear filter. Our method can recover the initial
LFSR state with very few keystream bits faster than the brute force under some
condition. It also shows that although the filter Boolean function is of optimum
algebraic immunity and the memory size is equal to the length of the LFSR,
our method may recover the initial state in less time and data than that of the
algebraic attack or inversion attack given by Golić, J.D. et al.

For the model of LFSR-based keystream generator with nonlinear filter Bool-
ean function f ∈ Bn, where Bn is the ring of Boolean functions in n variables,
we introduce two parameters called the k-th compressed preimage set (CP set)
and k-th truncated compressed preimage set (TCP set). We propose a low data
complexity attack to recover the initial LFSR state via the k-th TCP sets. Our
method costs very few keystream bits to recover the initial state when the number
of the k-th TCP sets for the filter Boolean function is large enough. When the
algebraic immunity of the filter function is optimum, people can try our method
to see whether they can recover the initial state with less time and data than
that of the algebraic attack.

Our method can recover the initial LFSR state with time complexity less than
the exhaustive search on condition that at least one k-th appropriate TCP set
(ATCP set) exists. We define a new security parameter called Tcomp when there
exists at least one k-th ATCP set. To resist our attack, we suggest that Tcomp

should be larger than 2l−1, where l is the length of the LFSR, which is another
design criterion for the LFSR-based stream ciphers.

Furthermore, we apply our method to a 90-stage LFSR-based keystream gen-
erator with a 9-variable Carlet-Feng Boolean function as its filter, and its memory
size is 90, which indicates that it can resist the algebraic attack given in [2] and



Low Data Complexity Inversion Attacks on Stream Ciphers 133

inversion attack [6,7] to the greatest extent. The time complexity of our method
to recover the 90-bit initial state is Tcomp = O(275.1), and the data complexity is
Dcomp = 10 bits. The time complexity of the algebraic attack is TAA = O(276.2)
with a data complexity of DAA = O(225.4). Moreover, the time complexity of the
inversion attack [6,7] is close to O(290), which is larger than that of our method.
We also recover the 128-bit initial state of the stream cipher LILI-128 with our
method. The data cost is just 9 keystream bits along with a memory cost of
O(28.5), which is the minimum data cost to theoretically break LILI-128 so far
as we know. It highlights the advantage of the low data cost for our method.
The time complexity is O(2122.4), better than the brute force.

This paper is organized as follows: Section 2 introduces some preliminaries
related to our work. In Section 3, we introduce two novel parameters called the
k-th compressed preimage set and k-th truncated compressed preimage set and
give an algorithm to compute the k-th ATCP sets. In Section 4, for LFSR-based
keystream generators with nonlinear filter Boolean function, we propose a low
data complexity attack to recover the initial state via the k-th TCP sets. An
example is given in Section 5, along with the analysis of the time and data
complexity. We also apply our method to the stream cipher LILI-128 in Section
6. Section 7 concludes this paper.

2 Preliminaries

2.1 Brief Description of the LFSR-Based Keystream Generator
with Nonlinear Filter

Denote the ring of Boolean functions in n variables as Bn. Let f be any Boolean
function in Bn, denote S1(f) = {x ∈ Fn

2 |f(x) = 1}, S0(f) = {x ∈ Fn
2 |f(x) = 0}.

In this paper, we focus on the model of LFSR-based keystream generator with
nonlinear filter Boolean function, which is a common component of the stream
ciphers. Figure 1 shows the general model.

Fig. 1. LFSR-based keystream generator with nonlinear filter

First, we give a brief description for this model. Let the length of the linear
feedback shift register be l. L is the “connection function” of the LFSR, and it
is linear. The LFSR generator polynomial is a primitive polynomial p(x) = p0+
p1x+...+pl−1x

l−1+xl. Let the initial state of the LFSR be s0 = (s0, s1, ..., sl−1),



134 X. Zhong et al.

and it generates a m-sequence s0, s1, s2, .... For sake of narrative convenience, we
call this m-sequence as LFSR sequence. The state of the LFSR at time t is

st = (st, st+1, ..., st+l−1) = Lt(s0, s1, ..., sl−1),

which is filtered by a balanced nonlinear Boolean function f ∈ Bn and out-
puts one bit ct at time t. For any ct, there are 2n−1 possible preimage tuples
(s1t , s

2
t , ..., s

n
t ). Define the corresponding preimage set as

Sct = {s ∈ Fn
2 |f(s) = ct}.

Our goal is to recover the l initial state bits of the LFSR. Suppose we observe
m = ⊕ l

n⊇ keystream bits ct1 , ct2 , ..., , ctm at time t1, t2..., tm, then we can build
an equation system.

cti = f(sti) = f(Lti(s0, ..., sl−1)) =

l−1∑

j=0

ai,jsj , i = 1, 2, ...,m. (1)

Notice that the “connection function” of the LFSR is linear, so the coefficient
ai,j can be derived from the “connection function” L. Moreover, if the coefficient
matrix of the equation system (1) is full rank, then its solution is unique, resulted
to the initial state bits of the LFSR.

2.2 Algebraic Attack and Inversion Attack

In this section, we would like to review two classical methods: algebraic attack [2]
and inversion attack [6,7], which are efficient analytical methods on LFSR-based
keystream generators.

Algebraic Attack
With the same notation in Section 2.1, for each ct, we can construct an equation
involving some key bits and initial value as its variables. Denote the output of
the filter generator by c0, c1, c2, ..., where ci ∈ F2, then we can get the following
equation system: ⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

c0 = f (s0, s1, ..., sl−1)
c1 = f(L (s0, s1, ..., sl−1))
c2 = f(L2(s0, s1, ..., sl−1))
...

(2)

Then the problem of recovering the l initial state bits of the LFSR is reduced to
solving the equation system (2).

The main idea of the algebraic attack proposed in [2] is to decrease the degree
of the equation system (2) by using the annihilators of f or f + 1.

Algebraic attack motivated the research of the annihilators and algebraic
immunity for Boolean functions.



Low Data Complexity Inversion Attacks on Stream Ciphers 135

Definition 1. [10] For f ∈ Bn, define AN(f) = {g ∈ Bn|fg = 0}. Any function
g ∈ AN(f) is called an annihilator of f . The algebraic immunity of f , denoted
by AI(f), is the minimum degree of all the nonzero annihilators for f or f + 1.

By Courtois and Meier’s theorem [2], AI(f) ≤ ⊕n
2 ⊇. In general AI(f) should be

as large as possible in order to resist the algebraic attack.
Table 1 shows the complexity of the algebraic attack on the LFSR-based

keystream generator in Figure 1, where N =
⎥

l
AI(f)

⎦
, ω is the parameter of the

Gaussian elimination and in theory ω ≤ 2.376 [3].

Table 1. Complexity of AA for the Model in Figure 1

Time Data Memory

Nω N N2

While as the authors of [2] declare, the (neglected) constant factor in that
algorithm is expected to be very big and they regard Strassen’s algorithm [12]
as the fastest practical algorithm. Then they evaluate the complexity of the
Gaussian reduction to be 7 · N log7

2/64 CPU clocks. Many scholars adopt ω = 3
when they use Table 1 to evaluate the time and data complexity of the algebraic
attack. In this paper, we also adopt ω = 3 in Table 1 to estimate the complexity
of the algebraic attack.

Inversion Attack
The main idea of the inversion attack is proposed in [6,7]. With the above nota-
tions, let γ = (γi)

n
i=1 denote the tapping sequence specifying the inputs to the

filter Boolean function f , and let M = γn − γ1 denote the input memory size
of the nonlinear filter generator regarded as the finite input memory combiner
with one input and one output.

The inversion attack in [6] targets to the case when the filter function is linear
in the first or the last input variable, and runs forwards or backwards accordingly.
The attack guesses M -bit unknown initial LFSR bits first and then recover the
initial LFSR state by taking advantage of the property of the filter function and
the recursion of the LFSR.

It takes 2M−1 trials on average to find a correct initial memory state. One
may as well examine all 2M initial memory states.

Golić, J.D. et al. generalized the inversion attack in [7]. Unlike the inversion
attack which requires that the filter function be linear in the first or the last
input variable, the attack in [7] can be applied for any filter function. The time
complexity remains close to 2M .

Remark 1. In fact, since algebraic attack and inversion attack are powerful tools
for the LFSR-based stream ciphers with nonlinear filter generators, designers
often adopt Boolean functions of optimum algebraic immunity, with a memory
size close or equal to the length of the LFSR.



136 X. Zhong et al.

3 k-th Truncated Compressed Preimage Sets

In this section, we propose two novel parameters called the k-th compressed
preimage set (CP set) and k-th truncated compressed preimage set (TCP set),
which helps to recover the l-bit initial LFSR state. To begin with, we give the
following definition.

Definition 2. For a balanced Boolean function f(x1, x2, ..., xn) ∈ Bn, we can
get the preimage set Su(f) for f(x) = u, u ∈ {0, 1}. For a fixed k ∈ [1, n],
for some fixed set of indexes I = {i1, i2, ..., ik} ≤ {1, 2, ..., n} and a certain k-
dimensional vector b = (b1, b2, ..., bk) ∈ F k

2 , define the k-th compressed preimage
sets of Su(f) as:

ek,b = {a ∈ Su(f)|aij = bj for j = 1, 2, ..., k}.

Denote
Nk,b = |ek,b|,

here |.| denotes the number of the elements in a set.
Define the k-th truncated compressed preimage set Ek,b corresponding to Nk,b as

Ek,b = {b} = {(b1, b2, ..., bk)}.

Then we can get that for f(x1, x2, ..., xn) = u, the probability that p(xi1 =
b1, xi2 = b2, ..., xik = bk) is

pk =
Nk,b

2n−1
.

Notice that there may exist another k-dimensional vector b
⊆
= (b

⊆
1, b

⊆
2, ..., b

⊆
k) ∈

F k
2 such that |ek,b⊆ | = Nk,b.
For f(x) = u, given a k-th TCP set of Su(f), Ek,b = {(b1, b2, ..., bk)}, we can

get that p(f(x1, x2, ..., xn) = u|xi1 = b1, xi2 = b2, ..., xik = bk) =
Nk,b

2n−1 . We use
the method called “guess and determine” to solve this nonlinear equation at an

expected cost of 2n−k+2n−k−1

2 = 2n−k−1 + 2n−k−2, for the worst complexity is
the exhaustive search of the 2n−k possible bit-strings for the left n− k unknown
bits, and the best case is that one of the left n−k unknown bits can be uniquely
determined by guessing the other n−k−1 bits. The probability that the solution
is the right one is p =

Nk,b

2n−1 .
Then we are expected to do the above operation 1

p times to get the right

solution, we can make it by choosing 1
p keystream bits.

The time complexity that we recover the right solution is

T =
1

p
· (2n−k−1 + 2n−k−2) =

22n−k−2 + 22n−k−3

Nk,b
.

The data complexity is

D =
1

p
.



Low Data Complexity Inversion Attacks on Stream Ciphers 137

We can derive that when 2n−k−1 + 2n−k−2 < Nk,b < 2n−k, then T < 2n−1,
which means that it is less than the complexity of exhaustive search. We call the
k-th TCP sets which satisfy the condition 2n−k−1 + 2n−k−2 < Nk,b < 2n−k as
the k-th appropriate TCP sets (ATCP sets). The following example shows that
we can make the complexity strictly less than the exhaustive search with our
idea.

Example 1. Given a 5-variable Carlet-Feng Boolean function f = x1x2x3x5 +
x1x2x5+x1x2+x1x3x4x5+x1x3x4+x1x3x5+x1x4x5+x1x4+x2x3+x2x4x5+
x2x5 + x3x4 + x4x5 +1. |S0(f)| = |S1(f)| = 16. Table 2 shows some k-th ATCP
sets of S0(f) and S1(f). Here we choose to compute the sets for k = 2.

Table 2. Compute the k-th appropriate TCP sets of S0(f) and S1(f)

(a) ATCP sets of S0(f)

k Indexes Nk,b b

2 {4, 5} 7 {1, 1}
2 {1, 4} 7 {1, 1}

(b) ATCP sets of S1(f)

k Indexes Nk,b b

2 {2, 4} 7 {0, 0}

From Table 2, for f(x) = 0, the time complexity to recover the right solution
is

T0 =
22n−k−2 + 22n−k−3

Nk
=

26 + 25

7
= 23.77 < 24.

For f(x) = 1, the complexity to recover the right solution is

T1 =
22n−k−2 + 22n−k−3

Nk
=

26 + 25

7
= 23.77 < 24.

We give an algorithm to compute the k-th appropriate TCP sets which satisfy
2n−k−1 + 2n−k−2 < Nk,b < 2n−k.

Algorithm 1. Compute the k-th ATCP sets of Su(f) (ATCP Algorithm)

Input: Boolean function f , u ∈ {0, 1}.
Set E = ∅, E0 = Su(f), k = 1.
while k ≤ n do

for {i1, i2, ..., ik} ⊆ {1, 2, ..., n}, b = (b1, b2, ..., bk) ∈ F k
2 do

Compute Ek,b defined in Definition 2 and the corresponding Nk,b;
if 2n−k−1 + 2n−k−2 < Nk,b < 2n−k then

E = E
⋃{((i1, i2, ..., ik), Nk,b, Ek,b)};

k = k + 1;

Output E.



138 X. Zhong et al.

4 Low Data Complexity Inversion Attack to Recover the
Initial LFSR State via the k-th ATCP Sets

According to Section 2, we can reduce the problem of recovering the initial state
of LFSR to solving an equation system whose coefficient matrix is full rank.

With the same model introduced in Figure 1, let the length of the LFSR be
l. The LFSR sequence is s0, s1, s2, .... The nonlinear filter Boolean function is
f ∈ Bn, which is balanced. The keystream bits generated by the LFSR-based
nonlinear filter generator are c0, c1, c2, ....

In this section, we give a method to recover the initial LFSR state via the k-th
ATCP sets. We divide the process into two parts. One is the precomputation
phase, the other is the online phase.

Precomputation Phase: For Boolean function f ∈ Bn, for a fixed k ∈ [1, n],
compute the k-th ATCP sets of S0(f) and S1(f) respectively, and denote them
as group G0 and group G1. Choose one set from each group and denote them as
E0 and E1 respectively. Compute the corresponding probability p0 =

Nk,b

2n−1 and

p1 =
N

k,b
⊆

2n−1 , where Nk,b and Nk,b⊆ can be derived from the output of the ATCP
algorithm.

Online Phase: Denote m = ⊕ l
n⊇.

Step 1: According to the specific tap positions of the filter Boolean function
f , choose m-bit keystream ct1 , ct2 ..., ctm (continuous or not) which satisfy the
following condition:
(1)Denote the set of the tap positions corresponding to cti as Ati = {s1ti , s2ti , ...,
snti}. Require that Ati , i = 1, 2, ...,m are pairwise disjoint.
(2)The coefficient matrix of the corresponding equation system cti = f(sti) =

f(Lti(s0, ..., sl−1)) =
∑l−1

j=0 ai,jsj , i = 1, 2, ...,m should be full rank.

Step 2: For each cti , we can get the k-th ATCP sets of Scti
(f) from the precom-

putation phase directly. Choose one set and denote it as Eti , and then we can
get a nonlinear equation with probability of pcti . Solve this nonlinear equation

with “guess and determine” method, we can get a candidate solution Êti for
f(x) = cti with an expected cost of 2n−k−1 + 2n−k−2. Then we can get a candi-
date vector E = Êt1 ||Êt2 || · · · ||Êtm for l bits of the LFSR sequence, where “||”
denotes a concatenation of two vectors. Because Ati , i = 1, 2, ...,m are pairwise
disjoint and the coefficient matrix of the corresponding linear equation system is
full rank, the probability that E is the right solution for the l-bit LFSR sequence
is P = pct1 · pct2 · · · · · pctm .

Step 3: Test the candidate vector E and check that if it is the right one. If it
is, then we can derive the initial LFSR state bits, otherwise back to Step 2.
We can also choose the other sets in group G0 and group G1 to do the operation.

With the similar analysis in Section 3, the time complexity of the online phase
is

T = (2n−k−1 + 2n−k−2)m · 1

P
. (3)

According to Algorithm 1, we know that 1
P < ( 2n−1

2n−k−1+2n−k−2 )
m, then T < 2l−1.



Low Data Complexity Inversion Attacks on Stream Ciphers 139

In the precomputation phase, compute all the k-th ATCP sets of S0(f): E
1
0 ,

E2
0 ,..., and denote the number of them as l0. Also, compute all the k-th TCP

sets of S1(f): E
1
1 , E

2
1 ,..., and denote the number of them as l1.

For the keystream bits chosen in Step 1: ct1 , ct2 , ..., ctm , denote

n0 = |{cti |cti = 0, i = 1, ...,m}|, n1 = |{cti |cti = 1, i = 1, ...,m}|.

Then for each m-bit keystream chosen in Step 1, the number of the candidate
vectors for the l LFSR sequence bits in Step 2 is

ln0
0 · ln1

1 .

Then the data complexity of our method is

D = m ·
1
P

ln0
0 · ln1

1

. (4)

When the parameters l0 and l1 are large enough such that

1
P

ln0
0 · ln1

1

≤ 1, (5)

then the data complexity of our method would become very small, that is, we
need only m keystream bits to recover the initial state of the LFSR. In fact, the
values of l0 and l1 can satisfy the condition (5) in most cases.

For a fixed k ∈ [1, n], when there exists at least one k-th ATCP set, we give
the following definition.

Definition 3. For a fixed k ∈ [1, n], denote the time complexity and data com-
plexity to recover the initial LFSR state via the k-th ATCP sets as Tk and Dk

respectively, define
Tcomp = min{Tk|k ∈ [1, n]}.

Denote the data complexity corresponding to Tcomp as Dcomp.

Remark 2. Our method suggests a new design criterion for the LFSR-based
stream ciphers with nonlinear filter. Suppose the time complexity of our method
to recover the l-bit initial LFSR state is Tcomp given in Definition 3, and the cor-
responding data complexity Dcomp is acceptable, then the stream cipher should
satisfy the following condition to resist our attack:

2l−1 < Tcomp. (6)

In the next section, we would like to give an example to show how to apply
our method to the LFSR-based nonlinear filter keystream generators.



140 X. Zhong et al.

5 Analysis on a Keystream Generator with a Filter
Boolean Function of Optimum Algebraic Immunity

In this section, we choose a model of keystream generator with nonlinear filter
Boolean function which can resist the algebraic attack [2] and the inversion at-
tack [6,7] to the greatest extent. Let the length of the LFSR be 90. The filter
Boolean function f is a 9-variable Carlet-Feng Boolean function which is listed
in Appendix A. The input memory size of the filter function is 90, which is the
length of the LFSR. We can see that the stream cipher possesses two advantages:
optimum algebraic immunity and large input memory size. The keystream gen-
erator outputs one bit each clock. In the following, we apply our method to the
above keystream generator.

First of all, we compute the k-th ATCP sets of S0(f) and S1(f) using the
ATCP algorithm. Practically, we usually choose the k-th ATCP sets whose Nk,b

is large, which helps to decrease the time and data complexity. Table 3 shows
some k-th ATCP sets of S0(f) and S1(f).

Table 3. Compute the k-th appropriate TCP sets of S0(f) and S1(f)

(a) ATCP sets of S0(f)

k Indexes Nk,b b k Indexes Nk,b b

5 {1, 2, 6, 7, 8} 13 [ 0, 0, 1, 1, 1 ] 5 {1, 5, 6, 7, 9} 13 [ 0, 1, 1, 1, 0 ]

5 {2, 3, 5, 7, 9} 13 [ 1, 1, 0, 0, 0 ] 5 {1, 2, 3, 5, 6} 13 [ 1, 1, 1, 0, 1 ]

5 {2, 3, 4, 6, 7} 13 [ 1, 0, 0, 0, 1 ] 5 {3, 4, 5, 6, 8} 13 [ 0, 1, 1, 1, 0 ]

5 {4, 5, 6, 8, 9} 13 [ 1, 1, 1, 0, 0 ] 5 {1, 3, 5, 7, 9} 13 [ 1, 0, 1, 0, 1 ]

5 {1, 3, 5, 6, 8} 13 [ 0, 0, 1, 1, 0 ] 5 {3, 4, 5, 7, 8} 13 [ 1, 0, 0, 0, 1 ]

5 {2, 4, 5, 7, 9} 13 [ 0, 1, 1, 0, 0 ] 5 {1, 3, 4, 8, 9} 13 [ 1, 0, 0, 1, 1 ]

5 {2, 3, 7, 8, 9} 13 [ 0, 0, 1, 1, 1 ] 5 {1, 3, 4, 6, 8} 13 [ 0, 1, 1, 0, 0 ]

5 {1, 2, 4, 6, 8} 13 [ 1, 1, 0, 0, 0 ] 5 {1, 2, 4, 5, 9} 13 [ 1, 1, 0, 0, 1 ]

5 {2, 4, 6, 8, 9} 13 [ 0, 1, 0, 1, 1 ] 6 159 groups of indexes 7 many

(b) ATCP sets of S1(f)

k Indexes Nk,b b k Indexes Nk,b b

5 {1, 3, 4, 5, 6} 14 [ 0, 0, 1, 1, 0 ] 5 {1, 2, 3, 7, 9} 14 [ 1, 1, 0, 0, 0 ]

5 {1, 2, 3, 4, 8} 14 [ 0, 1, 1, 0, 0 ] 5 {4, 6, 7, 8, 9} 14 [ 1, 0, 1, 1, 0 ]

5 {1, 2, 6, 8, 9} 14 [ 1, 0, 0, 0, 1 ] 5 {2, 3, 4, 5, 9} 14 [ 0, 1, 1, 0, 0 ]

5 {1, 5, 7, 8, 9} 14 [ 0, 1, 0, 1, 1 ] 6 130 groups of indexes 7 many

We choose ⊕ 90
9 ⊇ = 10 keystream bits which obey the two conditions in Step

1 given in Section 4, and denote them as ct1 , ct2 , , ..., ct10 . Then we follow Step
2, here we choose k = 6. Denote n0 = |{cti |cti = 0, i = 0, 1, ..., 10}| and n1 =
|{cti |cti = 1, i = 0, 1, ..., 10}|. Then the time and data complexity of recovering
the 90-bit initial LFSR state by the low data complexity attack are

TLDA = (29−6−1 + 29−6−2)10 · (256
7

)10 = 275.1.



Low Data Complexity Inversion Attacks on Stream Ciphers 141

DLDA = 10 · (2567 )10

159n0 · 130n1
.

Because
( 256

7 )10

159n0 ·130n1
< 1, we just need 10 bits to recover the 90-bit initial LFSR

state, then
DLDA = 10.

The successful probability that we can recover the right 90-bit initial state is

P = 1− (1− (
7

256
)10)(

256
7 )10 ← 1− e−1 ← 0.63.

According to Table 1, the time and data complexity of the algebraic attack on
this model are

TAA =

(
90

AI(f)

)3

=

(
90
5

)3

= 276.2, DAA =

(
90

AI(f)

)
=

(
90
5

)
= 225.4.

If we adopt inversion attack [6,7] to analyze this model, the time complexity
TIA is close to 290.

Table 4 shows the comparison among our method (LDA), algebraic attack
(AA) and inversion attack (IA) on the above model.

Table 4. Comparison among LDA, AA and IA

TLDA DLDA TAA DAA TIA

O(275.1) 10 O(276.2) O(225.4) near O(290)

We can see that our method costs less time and data than the algebraic attack
[2] in this case. The time complexity is also less than that of the inversion attack
[6,7].

Remark 3. For the LFSR-based keystream generator model given in Section 2,
when the filter Boolean function is of optimum algebraic immunity, people can
try our method to see whether the cost of time and data can be less than that
of the algebraic attack.

6 Low Data Complexity Attack on LILI-128 via the k-th
TCP Sets

In this section, we apply our method to the stream cipher LILI-128 [4] to show
the advantage of the low data complexity for our method. The structure of the
LILI-128 generator is illustrated in Figure 2. It contains two subsystems: clock
control and data generation.



142 X. Zhong et al.

Fig. 2. Structure of LILI-128 Keystream Generator

The clock-control subsystem of LILI-128 adopts a pseudorandom binary
sequence produced by a regularly clocked LFSR, LFSRc, of length 39 and a
function, fc, operating on the contents of k = 2 stages of LFSRc to produce a
pseudorandom integer sequence, c = c(t)

∈
t=1. The feedback polynomial of LFSRc

is chosen to be the primitive polynomial

x39 + x35 + x33 + x31 + x17 + x15 + x14 + x2 + 1.

The data-generation subsystem of LILI-128 uses the integer sequence c pro-
duced by the clock subsystem to control the clocking of a binary LFSR, LFSRd,
of length Ld = 89. The contents of a fixed set of n = 10 stages of LFSRd are
input to a specially chosen Boolean function, fd. The binary output of fd is the
keystream bit z(t). After z(t) is produced, the two LFSRs are clocked and the
process repeated to generate the keystream z = z(t)

∈
t=1.

The feedback polynomial of LFSRd is chosen to be the primitive polynomial

x89 + x83 + x80 + x55 + x53 + x42 + x39 + x+ 1.

The initial state of LFSRd is never the all zero state. Let the stages of LFSRd

be labeled α[0], α[1], ..., α[88] from left to right. Let the LFSR shift left. Then at
time t, we have the following formula to calculate the feedback bit:

α[89+t] = α[88+t]∅α[50+t]∅α[47+t]∅α[36+t]∅α[34+t]∅α[9+t]∅α[6+t]∅α[t],
where ∅ indicates the exclusive-or operation on bits(equivalent to addition
modulo 2).

The 10 inputs to fd are taken from LFSRd according to this full positive
difference set: (0,1,3,7,12,20,30,44,65,80). The following is the expression of fd:

fd = x4x6x7x8x9x10 + x5x6x7x8x9x10 + x4x6x7x9x10 + x5x6x7x9x10 + x3x7x8x9x10

+x4x7x8x9x10 + x4x6x7x8x9 + x5x6x7x8x9 + x4x8x9x10 + x6x8x9x10 + x4x6x7x9 +

x5x6x7x9 + x2x7x8x9 + x4x7x8x9 + x3x7x8x10 + x5x7x8x10 + x2x7x9x10 + x4x7x9x10

+x6x7x9x10 + x1x8x9x10 + x3x8x9x10 + x6x7x10 + x3x8x10 + x4x8x10 + x2x9x10 +

x3x9x10+x4x9x10+x5x9x10+x3x7x9+x6x7x9+x3x8x9+x6x8x9+x4x7x10+x5x7x10+

x6x7 + x1x8 + x2x8 + x1x9 + x3x9 + x4x10 + x6x10 + x2 + x3 + x4 + x5.



Low Data Complexity Inversion Attacks on Stream Ciphers 143

To begin with, we first guess the 39-bit internal state of LFSRc and attack the
second component LFSRd alone. The total time complexity should be multiplied
by 239. In the following, we recover the internal state of LFSRd by using our
method given in Section 4.

In the case of LILI-128, for k = 5, even the parameter Nk,b defined in Defini-
tion 2 is less than 2n−k−1+2n−k−2, the time complexity of recovering the initial
state is better than the brute force, which highlights the power of the TCP sets.
To comprehensively consider the requirements of less time complexity than the
brute force and low data complexity, we choose the 5-th TCP sets whose Nk,b

satisfy the condition of 20 ≤ Nk,b < 32. Table 5 shows the 5-th TCP sets which
would be adopted.

We choose ⊕ 89
10⊇ = 9 keystream bits which obey the two conditions in Step 1

given in Section 4, and denote them as ct1 , ct2 , , ..., ct9 . Denote n0 = |{cti |cti =
0, i = 0, 1, ..., 9}| and n1 = |{cti |cti = 1, i = 0, 1, ..., 9}|.

Then the time and data complexity of recovering the 128-bit internal state of
LILI-128 are about

TLDA = 239 · (210−5−1+210−5−2)9 · (512
20

)n0 · (512
20

)n1 = 239 ·249 · (512
20

)9 = 2122.4.

DLDA = 9 · (
512
20 )n0 · (51220 )n1

36n0 · 35n1
.

Notice that
( 512

20 )n0 ·( 512
20 )n1

36n0 ·35n1
< 1, then the data complexity is

DLDA = 9.

We need to store the k-th TCP sets of S0(f) and S1(f) shown in Table 5. Then
the required memory is

MLDA = (36 + 35) · 5 = 28.5.

The successful probability that we can recover the right 89-bit LFSRc internal
state is

P = 1− (1− (
20

512
)9)(

512
20 )9 ← 1− e−1 ← 0.63.

If we apply algebraic attack to LILI-128, the time and data complexity are about

TAA = 239 ·
(

89
AI(f)

)3

= 239 ·
(
89
4

)3

= 2102.7 , DAA =

(
89

AI(f)

)
=

(
89
4

)
= 221.2.

The required memory is about

MAA =

(
89

AI(f)

)2

=

(
89
4

)2

= 242.4.

As related research we note that Tsunoo, Y. et al. proposed an attack which
recovers the internal state of LILI-128 by using 27 keystream bits and 299.1

computations, along with 228.6-bit memory [11].
Table 6 shows the comparison among our method (LDA), algebraic attack

(AA) and the method in [11] on LILI-128.



144 X. Zhong et al.

Table 5. Compute the 5-th TCP sets of S0(f) and S1(f)

(a) TCP sets of S0(f)

k Indexes Nk,b b k Indexes Nk,b b

5 {1, 3, 4, 5, 6} 22 [ 0, 0, 0, 0, 0 ] 5 {2, 3, 4, 5, 6} 22 [ 0, 0, 0, 0, 0 ]

5 {1, 2, 4, 5, 6} 21 [ 0, 0, 0, 0, 0 ] 5 {1, 2, 4, 5, 6} 21 [ 1, 0, 1, 0, 0 ]

5 {1, 2, 3, 4, 6} 21 [ 0, 0, 0, 1, 1 ] 5 {1, 2, 3, 4, 5} 20 [ 0, 0, 0, 1, 1 ]

5 {1, 2, 3, 4, 5} 20 [ 0, 0, 0, 0, 0 ] 5 {2, 5, 6, 7, 9} 20 [ 0, 1, 1, 1, 1 ]

5 {2, 5, 6, 7, 10} 20 [ 0, 1, 1, 1, 0 ] 5 {2, 5, 6, 9, 10} 20 [ 0, 0, 0, 1, 0 ]

5 {2, 5, 6, 8, 9} 20 [ 0, 1, 1, 1, 1 ] 5 {2, 5, 6, 8, 10} 20 [ 0, 1, 1, 1, 0 ]

5 {2, 5, 6, 8, 9} 20 [ 0, 0, 0, 1, 1 ] 5 {2, 5, 6, 9, 10} 20 [ 1, 1, 0, 1, 0 ]

5 {2, 3, 4, 5, 6} 20 [ 0, 1, 1, 0, 0 ] 5 {2, 5, 6, 8, 9} 20 [ 1, 1, 0, 1, 1 ]

5 {2, 5, 6, 9, 10} 20 [ 1, 0, 1, 1, 0 ] 5 {1, 3, 4, 5, 6} 20 [ 1, 1, 1, 1, 1 ]

5 {2, 5, 6, 7, 9} 20 [ 0, 0, 0, 1, 1 ] 5 {2, 5, 6, 7, 8} 20 [ 0, 1, 1, 1, 1 ]

5 {2, 5, 6, 8, 10} 20 [ 1, 0, 1, 1, 0 ] 5 {2, 5, 6, 7, 10} 20 [ 1, 0, 1, 1, 0 ]

5 {2, 5, 6, 7, 10} 20 [ 0, 0, 0, 1, 0 ] 5 {2, 5, 6, 8, 9} 20 [ 1, 0, 1, 1, 1 ]

5 {1, 2, 3, 4, 6} 20 [ 0, 0, 0, 0, 0 ] 5 {2, 5, 6, 8, 10} 20 [ 0, 0, 0, 1, 0 ]

5 {1, 2, 3, 5, 6} 20 [ 0, 0, 0, 1, 1 ] 5 {2, 5, 6, 8, 10} 20 [ 1, 1, 0, 1, 0 ]

5 {2, 5, 6, 7, 10} 20 [ 1, 1, 0, 1, 0 ] 5 {2, 5, 6, 7, 8} 20 [ 1, 1, 0, 1, 1 ]

5 {2, 5, 6, 7, 8} 20 [ 0, 0, 0, 1, 1 ] 5 {1, 2, 3, 5, 6} 20 [ 1, 1, 0, 0, 1 ]

5 {2, 5, 6, 7, 8} 20 [ 1, 0, 1, 1, 1 ] 5 {2, 5, 6, 9, 10} 20 [ 0, 1, 1, 1, 0 ]

5 {2, 5, 6, 7, 9} 20 [ 1, 0, 1, 1, 1 ] 5 {2, 5, 6, 7, 9} 20 [ 1, 1, 0, 1, 1 ]

(b) TCP sets of S1(f)

k Indexes Nk,b b k Indexes Nk,b b

5 {1, 3, 4, 5, 6} 20 [ 0, 0, 0, 1, 0 ] 5 {1, 3, 4, 5, 6} 20 [ 0, 0, 0, 0, 1 ]

5 {1, 3, 4, 5, 6} 20 [ 0, 0, 1, 0, 0 ] 5 {1, 3, 4, 5, 6} 20 [ 0, 0, 0, 1, 0 ]

5 {2, 5, 6, 7, 9} 20 [ 1, 1, 1, 1, 1 ] 5 {2, 5, 6, 7, 8} 20 [ 1, 0, 0, 1, 1 ]

5 {2, 5, 6, 8, 9} 20 [ 0, 0, 1, 1, 1 ] 5 {2, 5, 6, 7, 10} 20 [ 0, 1, 0, 1, 0 ]

5 {2, 5, 6, 7, 8} 20 [ 0, 0, 1, 1, 1 ] 5 {2, 5, 6, 8, 10} 20 [ 1, 1, 1, 1, 0 ]

5 {2, 5, 6, 9, 10} 20 [ 1, 0, 0, 1, 0 ] 5 {2, 5, 6, 7, 8} 20 [ 0, 1, 0, 1, 1 ]

5 {2, 5, 6, 7, 10} 20 [ 1, 1, 1, 1, 0 ] 5 {2, 5, 6, 8, 10} 20 [ 0, 1, 0, 1, 0 ]

5 {2, 5, 6, 8, 10} 20 [ 1, 0, 0, 1, 0 ] 5 {2, 5, 6, 7, 9} 20 [ 0, 0, 1, 1, 1 ]

5 {2, 5, 6, 9, 10} 20 [ 0, 1, 0, 1, 0 ] 5 {2, 3, 4, 5, 6} 20 [ 0, 0, 0, 0, 1 ]

5 {1, 3, 4, 5, 6} 20 [ 0, 1, 0, 0, 0 ] 5 {1, 3, 4, 5, 6} 20 [ 1, 0, 0, 0, 0 ]

5 {2, 5, 6, 9, 10} 20 [ 0, 0, 1, 1, 0 ] 5 {2, 5, 6, 7, 9} 20 [ 0, 1, 0, 1, 1 ]

5 {2, 5, 6, 7, 9} 20 [ 1, 0, 0, 1, 1 ] 5 {2, 5, 6, 7, 8} 20 [ 1, 1, 1, 1, 1 ]

5 {2, 5, 6, 8, 9} 20 [ 1, 0, 0, 1, 1 ] 5 {2, 3, 4, 5, 6} 20 [ 1, 0, 1, 1, 1 ]

5 {2, 5, 6, 7, 10} 20 [ 1, 0, 0, 1, 0 ] 5 {2, 5, 6, 8, 9} 20 [ 0, 1, 0, 1, 1 ]

5 {2, 3, 4, 5, 6} 20 [ 1, 0, 0, 0, 0 ] 5 {2, 5, 6, 7, 10} 20 [ 0, 0, 1, 1, 0 ]

5 {2, 5, 6, 8, 10} 20 [ 0, 0, 1, 1, 0 ] 5 {2, 3, 4, 5, 6} 20 [ 0, 1, 0, 0, 0 ]

5 {2, 5, 6, 9, 10} 20 [ 1, 1, 1, 1, 0 ] 5 {1, 2, 3, 4, 6} 20 [ 0, 0, 0, 1, 0 ]

5 {2, 5, 6, 8, 9} 20 [ 1, 1, 1, 1, 1 ]



Low Data Complexity Inversion Attacks on Stream Ciphers 145

Table 6. Comparison among LDA, AA and method in [11]

T D M

Our method O(2122.4) 9 O(28.5)

Algebraic attack O(2102.7) O(221.2) O(242.4)

Method in [11] O(299.1) O(27) O(228.6)

7 Conclusion

This paper introduces two novel parameters for Boolean functions called the k-
th compressed preimage set (CP set) and k-th truncated compressed preimage
set (TCP set). We give an algorithm to compute the k-th appropriate TCP sets
and propose a low data complexity attack to recover the initial LFSR state via
the k-th TCP sets. Our method costs very few keystream bits to recover the
initial state when the number of the k-th TCP sets is large enough. We apply
our method to a 90-stage LFSR-based keystream generator with a 9-variable
filter Boolean function of optimum algebraic immunity. The time complexity
and data complexity are both less than that of the algebraic attack [2]. The
time complexity is also less than that of the inversion attack [6,7]. Moreover,
we recover the 128-bit initial state of the stream cipher LILI-128 by using our
method. The data cost is just 9 keystream bits along with a memory cost of
O(28.5), which is the minimum data cost to theoretically break LILI-128 so far
as we know. It highlights the advantage of the low data cost for our method.
The time complexity is O(2122.4), better than the brute force. Our method also
suggests a new design criterion for the LFSR-based stream ciphers with nonlinear
filter: with an acceptable data cost, the parameter Tcomp should be larger than
2l−1, where l is the length of the LFSR.

Acknowledgements. We are grateful to the anonymous reviewers for their valu-
able comments on this paper. This work was supported by the National Basic Re-
search Program of China (Grant No. 2013CB834203, Grant No. 2013CB338002)
and theNationalNatural Science Foundation ofChina (GrantNo. 61379142,Grant
No. 11171323, Grant No. 60833008, Grant No. 60603018, Grant No. 61173134,
Grant No. 91118006, Grant No. 61272476), the Strategic Priority Research Pro-
gram of the Chinese Academy of Sciences (Grant No. XDA06010701), IIEs Re-
search Project on Cryptography (Grant No. Y3Z0016102).

References

1. Armknecht, F., Krause, M.: Algebraic attacks on Combiners with Memory. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 162–175. Springer, Heidelberg
(2003)

2. Courtois, N.T., Meier, W.: Algebraic attacks on stream ciphers with linear feed-
back. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 345–359.
Springer, Heidelberg (2003)



146 X. Zhong et al.

3. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions.
J. Symbolic Computation 9, 251–280 (1990)

4. Dawson, E., Clark, A., Golic, J., Millan, W., Penna, L., Simpson, L.: The LILI-128
Keystream Generator, NESSIE submission. In: The Proceedings of the First Open
NESSIE Workshop (2000)

5. ETSI/SAGE. Specification of the 3GPP Confidentiality and Integrity Algorithms
UEA2 & UIA2. Document 2: SNOW3G Specification, version 1.1 (2006),
http://www.3gpp.org/ftp/

6. Golić, J.D.: On the security of nonlinear filter generators. In: Gollmann, D. (ed.)
FSE 1996. LNCS, vol. 1039, pp. 173–188. Springer, Heidelberg (1996)

7. Golić, J.D., Clark, A., Dawson, E.: Inversion Attack and Branching. In: Pieprzyk,
J., Safavi-Naini, R., Seberry, J. (eds.) ACISP 1999. LNCS, vol. 1587, pp. 88–102.
Springer, Heidelberg (1999)

8. Hell, M., Johansson, T., Meier, W.: Grain-A Stream Cipher for Constrained Envi-
ronments. eStream Project,
http://www.ecrypt.eu.org/stream/p3ciphers/grain/Grain-p3.pdf

9. Luo, Y., Chai, Q., Gong, G., Lai, X.: A lightweight stream cipher wg-7 for RFID
encryption and authentication. In: GLOBECOM, pp. 1–6 (2010)

10. Meier, W., Pasalic, E., Carlet, C.: Algebraic attacks and decomposition of boolean
functions. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 474–491. Springer, Heidelberg (2004)

11. Tsunoo, Y., Saito, T., Shigeri, M., Kubo, H., Minematsu, K.: Shorter bit sequnence
is enough to break stream cipher LILI-128. Trans. Inf. Theory 51(12), 4312–4319
(2008)

12. Strassen, V.: Gaussian Elimination is Not Optimal. Numerische Mathematik 13,
354–356 (1969)

http://www.3gpp.org/ftp/
http://www.ecrypt.eu.org/stream/p3ciphers/grain/Grain-p3.pdf


Low Data Complexity Inversion Attacks on Stream Ciphers 147

A Appendix: 9-variable Carlet-Feng Boolean Function

f = x1x2x3x4x5x6x7x8 +x1x2x3x4x5x6x8 +x1x2x3x4x5x6x9 +x1x2x3x4x5x6 +
x1x2x3x4x5x7x8x9+x1x2x3x4x5x8+x1x2x3x4x6x7+x1x2x3x4x6x8x9+x1x2x3x4
x7x8x9 + x1x2x3x4x7x9 + x1x2x3x4x8x9 + x1x2x3x5x6x7x9 + x1x2x3x5x6x8 +
x1x2x3x5x7x8 + x1x2x3x5x7x9 + x1x2x3x5x7 + x1x2x3x5x8x9 + x1x2x3x5x8 +
x1x2x3x5x9+x1x2x3x6x7x8x9+x1x2x3x6x7x8+x1x2x3x6x7x9+x1x2x3x6x7+
x1x2x3x6x8+x1x2x3x7x8+x1x2x3x8+x1x2x3x9+x1x2x4x5x6x7x8x9+x1x2x4x5
x6x7x9+x1x2x4x5x6x9+x1x2x4x5x7x8x9+x1x2x4x5x8x9+x1x2x4x5x9+x1x2x4
x6x7x8x9+x1x2x4x6x7x8+x1x2x4x6x7+x1x2x4x6x8x9+x1x2x4x6x8+x1x2x4x6
+x1x2x4x7x8+x1x2x4x7x9+x1x2x4x8+x1x2x4x9+x1x2x5x6x7x8+x1x2x5x6x7+
x1x2x5x6x8 + x1x2x5x7x8x9 + x1x2x5x7x8 + x1x2x5x8x9 + x1x2x5x9 + x1x2x6
x7x8x9 + x1x2x6x8x9 + x1x2x6x8 + x1x2x6 + x1x2x7x8 + x1x2x7x9 + x1x2x7 +
x1x2x8 + x1x2x9 + x1x3x4x5x6x7x8x9 + x1x3x4x5x6x7x8 + x1x3x4x5x6x7x9 +
x1x3x4x5x6x8x9+x1x3x4x5x6x8+x1x3x4x5x6x9+x1x3x4x5x6+x1x3x4x5x7x8x9
+x1x3x4x5x7x8+x1x3x4x5x7x9+x1x3x4x5x8+x1x3x4x5x9+x1x3x4x5+x1x3x4
x6x7x8x9+x1x3x4x6x7x8+x1x3x4x6x7x9+x1x3x4x6x7+x1x3x4x7x8x9+x1x3x4
x7x8+x1x3x4x7x9+x1x3x4x8+x1x3x5x6x7x8x9+x1x3x5x6x7x8+x1x3x5x6x8+
x1x3x5x7x8+x1x3x5x7+x1x3x5x8x9+x1x3x5x8+x1x3x6x7x8+x1x3x6x7x9+
x1x3x6x8 + x1x3x6 + x1x3x7x8x9 + x1x3x7x8 + x1x3x7 + x1x3x8x9 + x1x3x8 +
x1x3+x1x4x5x6x7x8x9+x1x4x5x6x7x8+x1x4x5x6x7+x1x4x5x6x8x9+x1x4x5x6
+x1x4x5x7x8x9+x1x4x5x8x9+x1x4x5x8+x1x4x5x9+x1x4x5+x1x4x6x7x8x9+
x1x4x6x7x8+x1x4x6x7+x1x4x6x8x9+x1x4x6x9+x1x4x7x8+x1x4x7+x1x4x8x9+
x1x4+x1x5x6x7x8+x1x5x6x7x9+x1x5x6x7+x1x5x6x8x9+x1x5x6x9+x1x5x7+
x1x5x8x9 + x1x5x8 + x1x6x7x8x9 + x1x6x7x8 + x1x6x7x9 + x1x6x7 + x1x6x8 +
x1x6+x1x7+x1x8x9+x2x3x4x5x6x7+x2x3x4x5x6x9+x2x3x4x5x7x8+x2x3x4x6
x7x8x9+x2x3x4x6x8x9+x2x3x4x6x8+x2x3x4x6x9+x2x3x4x7x8x9+x2x3x4x7x8
+x2x3x4x7x9+x2x3x4x8x9+x2x3x4x9+x2x3x5x7x8x9+x2x3x5x7x8+x2x3x5x7
x9+x2x3x5x7+x2x3x5x8x9+x2x3x5x9+x2x3x6x7x8x9+x2x3x6x7x8+x2x3x6x7
x9+x2x3x6x8x9+x2x3x7x9+x2x3x7+x2x3x8x9+x2x3x8+x2x3x9+x2x4x5x6x7+
x2x4x5x6x8x9+x2x4x5x6x9+x2x4x5x6+x2x4x5x7x8x9+x2x4x5x7x8+x2x4x5x8
x9+x2x4x5x9+x2x4x6x8x9+x2x4x6x8+x2x4x6x9+x2x4x7x8x9+x2x4x7x9+
x2x4x7 + x2x4x8x9 + x2x4x8 + x2x4x9 + x2x4 + x2x5x6x7x8x9 + x2x5x6x7x8 +
x2x5x6x7+x2x5x6x9+x2x5x6+x2x5x7x8x9+x2x5x7x8+x2x5x8x9+x2x5x8+
x2x5+x2x6x7x8x9+x2x6x7x8+x2x6x8+x2x6x9+x2x7x8x9+x2x7x8+x2x7x9+
x2x7 + x2x8 + x3x4x5x6x7x8 + x3x4x5x6x8x9 + x3x4x5x7x9 + x3x4x5x8x9 +
x3x4x6x8x9+x3x4x6x8+x3x4x7x8x9+x3x4x8+x3x4x9+x3x5x6x7x8+x3x5x6x7+
x3x5x6x8x9 + x3x5x7x9 + x3x5x8 + x3x5x9 + x3x5 + x3x6x7x8x9 + x3x6x7x8 +
x3x6x7 + x3x6x8x9 + x3x6x9 + x3x6 + x3x7x8x9 + x3x7x9 + x3x8x9 + x3x8 +
x3x9+x4x5x6x7x8x9+x4x5x7x9+x4x5x9+x4x6x7x8x9+x4x6x7x8+x4x6x9+
x4x6 + x4x7x8x9 + x4x7x8 + x4x7 + x4x9 + x5x7x8x9 + x5x7 + x5x8x9 + x5x8 +
x6x8 + x6x9 + x7x9 + 1.



A New Attack against the Selvi-Vivek-Rangan

Deterministic Identity Based Signature
Scheme from ACISP 2012ρ

Yanbin Pan and Yingpu Deng

Key Laboratory of Mathematics Mechanization, NCMIS,
Academy of Mathematics and Systems Science, Chinese Academy of Sciences

Beijing 100190, China
{panyanbin,dengyp}@amss.ac.cn

Abstract. In ACISP 2012, Selvi, Vivek and Rangan claimed that they
proposed the first fully deterministic identity based signature scheme,
based on which they also proposed the first fully aggregate identity based
signature scheme with no prior communication among different signers.
Under the strong RSA assumption, they showed their schemes could re-
sist the adaptive chosen message and adaptive chosen identity attack
in the random oracle model. However, Nose gave a universal attack to
recover the private key successfully recently. In this paper, we indepen-
dently present a new universal attack to show there is an alternative
way to forge a valid signature on any message instead of using the legal
signing procedure with the original private key. The new attack appears
more simple, and efficient both in theory and practice. What’s more,
with our attack, the mistake in the original security proof can be easily
pointed out. Such mistake should be avoided in other similar security
proofs.

Keywords: Cryptanalysis, Identity Based Deterministic Signature,
Aggregate Signature, Full Aggregation.

1 Introduction

To simplify the key management procedures of certificate-based public key in-
frastructures (PKIs), Shamir [15] first proposed the concept of identity based
cryptography in 1984, both identity based encryption and identity based signa-
ture (IBS) schemes, by allowing any user to use his identity as the public key.
The corresponding secret key is generated by a trusted Private Key Generator
(PKG), who derives it from a secret master secret that only the PKG knows.

Since then, a lot of identity based signature schemes have been proposed.
Among them, many schemes, like [3,7,5,12], have probabilistic key generation

β This work was supported in part by the NNSF of China (No.11201458, and
No.61121062), in part by 973 Project (No. 2011CB302401) and in part by the
National Center for Mathematics and Interdisciplinary Sciences, CAS.

W. Susilo and Y. Mu (Eds.): ACISP 2014, LNCS 8544, pp. 148–161, 2014.
c© Springer International Publishing Switzerland 2014



A New Attack against the Selvi-Vivek-Rangan IBS Schemes 149

algorithm and signing algorithm, whereas some others [9,13] have the determinis-
tic signing algorithm but probabilistic key generation algorithm. In ACISP 2012,
Selvi, Vivek and Rangan [14] proposed the first fully deterministic IBS scheme
which has both the deterministic key generation and deterministic signing algo-
rithms. A fully deterministic IBS scheme has many advantages. For example, the
forking lemma is not necessary to analyze its security and the security reduction
will be tight due to the determinism, whereas the former IBS schemes usually
employ the forking lemma to prove their security. What’s more, the Selvi-Vivek-
Rangan IBS scheme is shown to be more efficient in practice since it contains
just one component, while the former schemes often involve at least two or more
components.

Based on the fully deterministic IBS scheme, they also proposed the first full
aggregate identity based signature scheme with no prior communication among
different signers. An aggregate signature scheme consists of finding a more com-
pact signature to replace a list of signatures produced by different signers. More
precisely, suppose there are some signatures σ1, · · · , σt on messages m1, · · · ,mt

by users ID1, · · · , IDt, then the aggregate signature scheme generates a single
signature σagg to take place of those σi’s. It is expected that the size of σagg is
substantially smaller than sum of the sizes of σi’s, so one can transmit or store
σagg instead of σ1, · · · , σt, and the communication cost or storage requirements
can be significantly reduced. An aggregate signature scheme is called partial ag-
gregation if |σagg| depends on the number of signatures or number of messages
(or both) and called full aggregation if |σagg | is independent of both the number
of messages and signatures.

Since the public key is just the ID of users, identity based aggregate signature
scheme is shown to be more efficient in practice for it does not need transmit
the users’ public keys and the corresponding signatures from the certification
authority. Meanwhile, transmitting or storing fewer data also accords with the
original intention to design an aggregate signature scheme.

There are some full aggregate identity based signature schemes that are prov-
ably secure in the random oracle model, like [6,8,4,2]. However, these schemes
require some communication among users to produce the aggregate signatures,
which decreases the efficiency and involves some risks. Selvi, Vivek and Rangan
[14] claimed that their aggregate signature scheme does not require any com-
munication among users since the basic IBS scheme is fully deterministic, which
settles the open problem proposed in [10].

The security of the Selvi-Vivek-Rangan schemes is related to the strong RSA
problem, which asks to write an integer as a non-trivial power in a residue
class ring defined by an RSA modulus. Selvi, Vivek and Rangan showed that if
the strong RSA problem is hard, both of their schemes are secure against the
adaptive chosen message and adaptive chosen identity attack.

However, Nose [11] very recently gave a universal attack against the Selvi-
Vivek-Rangan signature scheme. More precisely, it can be shown that the pri-
vate key of a user can be recovered efficiently by eight genuine signatures on
average. Hence, the adversary can then use it to generate forged signatures on



150 Y. Pan and Y. Deng

any messages. Nevertheless, Nose did not discuss why the original security proof
in [14] is not correct.

In this paper, we independently present a new universal chosen message at-
tack against the Selvi-Vivek-Rangan fully deterministic IBS scheme. Instead of
recovering the private key of some user, we find there is another way to generate
a valid signature on any message besides the original signing procedure. The new
attack looks more simple and much easier to understand. Both the theory and
experiments show that the attack is very efficient. Since the basic IBS scheme
is not secure, the corresponding aggregate signature scheme is not as secure as
they claimed.

What’s more, our attack reveals the mistake in the original security proof
in [14] easily. It can be shown by the fact that the corresponding strong RSA
problem can not be solved with our attack by following the idea in the security
proof. Simply speaking, we need to find an invertible matrix by querying the
signing oracle to complete our attack. However, such an invertible matrix can
never be found in their proof since the challenger always returns two dependent
hash values in the training phase, but in the random oracle model or the real life
we show that such an invertible matrix can be found efficiently with very high
probability. Hence, the oracles to replace the hash functions provided by the
challenger can be easily distinguished from random oracles, which shows that
the proof in [14] was not given in the real random oracle model. Such mistake
should be avoided in the security proof of any scheme.

Roadmap: The remainder of the paper is organized as follows. In Section 2, we
give some preliminaries needed. We describe the Selvi-Vivek-Rangan schemes in
Section 3, and present our attack in Section 4. In Section 5, we explain why
the original security proof is not correct. Finally, a short conclusion is given in
Section 6.

2 Preliminaries

We denote by Z the integer ring, by Zn the residue class ring Z/nZ and by
Z
∈
n the group of all the invertible elements in Zn. Let GL(2,Zn) be the general

linear group that consists of all the invertible matrices over Z2×2
n , and log(·) be

the natural logarithm.

2.1 Computational Assumption

The security of the Selvi-Vivek-Rangan deterministic IBS scheme and the cor-
responding aggregate signature scheme is based on the hardness of the strong
RSA problem.

Definition 1 (Strong RSA Problem). Given a randomly chosen RSA mod-
ulus n and a random c ∈ Z

∈
n, the strong RSA problem asks to find b > 1 and

a ∈ Z
∈
n, such that c = ab mod n.



A New Attack against the Selvi-Vivek-Rangan IBS Schemes 151

Roughly speaking, the strong RSA assumption supposes that the strong RSA
problem is hard. Formally,

Definition 2 (Strong RSA Assumption). For any probabilistic polynomial
time algorithm F to solve the strong RSA problem in Z

∈
n, the advantage Adv

sRSA
F

is negligibly small, where

AdvsRSA
F = Pr[F(n, c) ⊕ {a, b}|(a ∈ Z

∈
n, b > 1) ⊇ (c = ab mod n)].

2.2 Generic Framework

Generally, an identity based signature scheme consists of the first four polynomial-
time algorithms described below, and the corresponding identity based aggregate
signature scheme consists of all the six polynomial-time algorithms below.

– Setup: With the security parameter κ, the private key generator (PKG)
generates the system parameters params and the master private key msk.
Then, PKG publishes params and keeps msk secret.

– Extract: Given a user’s identity ID, the PKG generates the corresponding
private key D, and sends it to user ID through a secure channel.

– Sign: The user uses his identity ID, his private key D, and the system
parameters params to produce a signature σ on a message m.

– Verify: The verifier checks whether σ is a valid signature on message m by
ID or not.

– AggregateSign: On receiving the signatures (σi)i=1 to t on message
(mi)i=1 to t from different users (IDi)i=1 to t, any third party or one of the
signers can generate the aggregate signature σagg for the set of
(mi, IDi)i=1 to t.

– AggregateVerify: Checks whether σagg is a valid aggregate signature on
(mi, IDi)i=1 to t or not.

Definition 3 (Fully Deterministic IBS Scheme). An identity based signa-
ture scheme is said to be fully deterministic if both the key generation and signing
algorithms are deterministic, or equivalently, the signature for a message by a
fixed user is always the same.

2.3 Security Model

An IBS scheme is said to be secure against existential forgery under adaptive
chosen identity and message attack if for any probabilistic polynomial time al-
gorithm forger F , its advantage to win the following game is negligibly small.
Game:
Setup Phase: The challenger C runs the setup algorithm, publishes params
and keeps msk secret.
Training Phase: F can query the two oracles provided by C:

– Extract Oracle: C will send F the private key D of user with identity
ID, when F makes an extract query with ID.



152 Y. Pan and Y. Deng

– Signing Oracle: C will send F a valid signature σ on m by ID, when F
makes a signing query with ID and message m.

Forgery Phase: F outputs a signature σ on a message m, with IDS as the
signer, without querying the extract oracle with IDS and without querying the
signing oracle with (IDS ,m).

F wins the game if σ is a valid signature. The probability of F succeeding is
called its advantage.

Similarly, for the identity based aggregate signature scheme, we say F wins
the game if F outputs a valid aggregate signature σagg for signatures (σi)i=1 to t

from the users (IDi)i=1 to t on messages (mi)i=1 to t, where at least one identity
in the list of identities, for example IDS , is not queried by F to the extract oracle
and the corresponding pair (IDS ,mS) is not queried to the signing oracle. If there
is no probabilistic polynomial time algorithm F has non-negligible advantage to
win the game, the identity based aggregate signature scheme is called secure
against existential forgery under adaptive chosen identity and message attack.

3 Description of the Selvi-Vivek-Rangan Schemes

3.1 A Simple Description of the Selvi-Vivek-Rangan Schemes

We first describe the deterministic IBS scheme as in [14].

– Setup(κ): Given security parameter κ, the PKG generates params andmsk
as follows:
• Chooses two primes p and q with κ bits, such that (p−1)/2 and (q−1)/2
are also primes.

• Computes the RSA modulus n = pq and the Euler’s totient function
ϕ(n) = (p− 1)(q − 1).

• Chooses e with κ/4 bits such that there is a d with ed = 1 mod ϕ(n).
• Chooses three hash functions

H0 : {0, 1}∈ × {0, 1} ⊕ Z
∈
n,

H1 : {0, 1}lm × {0, 1}l1 × {0, 1} ⊕ {0, 1}κ/2,
H2 : {0, 1}lm × {0, 1}l1 × {0, 1} ⊕ {0, 1}κ/2,

where lm is the size of message and l1 is the size of identity of a user.
The system parameters published by PKG is

params = (κ, n, e,H0, H1, H2)

and the unpublished master secret key is

msk = (p, q, d).

– Extract(ID): After receiving some user’s identity ID, the PKG performs
the following to generate the private key D of the corresponding user:



A New Attack against the Selvi-Vivek-Rangan IBS Schemes 153

• Compute g0 = H0(ID, 0) and g1 = H0(ID, 1).
• Compute d0 = (g0)

d mod n and d1 = (g1)
d mod n.

The private key sent to the corresponding user through a secure and authen-
ticated channel is

D = (d0, d1).

– Sign(m, ID,D): To generate a deterministic signature on a message m, the
user with identity ID does the following:
• Picks β ∈R {0, 1},
• Computes h1 = H1(m, ID, β) and h2 = H2(m, ID, β).
• Computes σ = (d0)

h1(d1)
h2 mod n.

Selvi et al. suggested picking β = PRF (D, ID,m), where PRF () is a private
random function (private to the signer). Thus, β is random from others’ view
but fixed with respect to the signer. Now the signature is

S = (σ, β).

– Verify(m, σ, β, ID): In order to verify the validity of a signature (σ, β)
with respect to the identity ID and message m, the verifier:
• Computes g0 = H0(ID, 0) and g1 = H0(ID, 1).
• Computes h≤1 = H1(m, ID, β) and h≤2 = H2(m, ID, β).
• Checks whether

σe mod n
?
= (g0)

h⊆
1(g1)

h⊆
2 mod n.

• If the above check holds, outputs ”Valid”, otherwise outputs ”Invalid”.

It is easy to see that the verification is correct since

σe = ((d0)
h⊆
1(d1)

h⊆
2)e = ((gd0)

h⊆
1(gd1)

h⊆
2)e = (g0)

h⊆
1(g1)

h⊆
2 mod n.

Based on the deterministic IBS scheme, Selvi et al. also proposed a determin-
istic full aggregation identity based signature scheme as below:

– AggregateSign: Given a set of t signatures {(σi, βi)}i=1 to t and the corre-
sponding message identity pair {(mi, IDi)}i=1 to t, such that (σi, βi) is the
valid signature on mi by IDi, the identity based aggregate signature on the
corresponding list of messages, identities is

(σagg =

t∏

i=1

σi mod n, {mi, IDi, βi}i=1 to t).

– AggregateVerify: To verify an aggregate signature, check whether

σe
agg =

t∏

i=1

((gi0)
h⊆
i1(gi1)

h⊆
i2) mod n

holds or not, where gi0 = H0(IDi, 0), gi1 = H0(IDi, 1), h
≤
i1=H1(mi, IDi, βi)

and h≤i2 = H2(mi, IDi, βi).



154 Y. Pan and Y. Deng

3.2 Security of the Selvi-Vivek-Rangan Schemes

Selvi et al. claimed that if the strong RSA problem is assumed to be hard in Z
∈
n,

where n = pq, and p, q, (p− 1)/2 and (q − 1)/2 are large prime numbers, then

– their identity based signature scheme (D-IBS) is secure in the random oracle
model under adaptive chosen message and adaptive chosen identity attack.

– their identity based aggregate signature scheme (IBAS) is secure in the ran-
dom oracle model under adaptive chosen message and adaptive chosen iden-
tity attack.

4 Our New Chosen Message Attack

In this section, we will present a new chosen message attack against the Selvi-
Vivek-Rangan identity based signature scheme and show that it is efficient for F
to forge a valid signature on any message. Hence the IBS scheme is not secure.
As a corollary, the corresponding identity based aggregate signature scheme is
not secure either.

4.1 Another Way to Sign

After challenger C runs the setup algorithm with parameter κ, generates

params = (κ, n, e,H0, H1, H2)

and secret msk, the forger F can do the following to forge a valid signature S∈

on any message m∈ with identity ID.
For every signing query in the training phase, F queries C with identity ID,

message mi (mi �= m∈) randomly uniformly independently chosen from Z
∈
n and

gets the corresponding valid signatures

Si = (σi, βi).

We denote
h
(i)
1 = H1(mi, ID, βi), h

(i)
2 = H2(mi, ID, βi).

F makes K signing queries until one can find a β∈ such that there are two
signatures with β = β∈, for simplicity,

S1 = (σ1, β
∈), S2 = (σ2, β

∈)

satisfying the corresponding matrix defined by
(
h
(1)
1 h

(2)
1

h
(1)
2 h

(2)
2

)

is invertible in Z
2×2
e , where e is contained in the public system parameters

params. We will show later for K polynomial in κ, such matrix can be found
with high probability.

Once the invertible matrix is obtained, F can forge a valid signature S∈ on
any message m∈ with identity ID efficiently.



A New Attack against the Selvi-Vivek-Rangan IBS Schemes 155

– For any m∈, F first computes

h∈1 = H1(m
∈, ID, β∈), h∈2 = H2(m

∈, ID, β∈).

Solving the following linear equation, F can easily find x1, x2 ∈ Z such that
(
h
(1)
1 h

(2)
1

h
(1)
2 h

(2)
2

)(
x1
x2

)
=

(
h∈1
h∈2

)
mod e,

since the matrix is invertible in Z
2×2
e . Moreover, F can also find w1, w2 ∈ Z

efficiently such that
{
x1h

(1)
1 + x2h

(2)
1 + ew1 = h∈1

x1h
(1)
2 + x2h

(2)
2 + ew2 = h∈2.

– F then computes

g0 = H0(ID, 0), g1 = H0(ID, 1),

and
σ∈ = σx1

1 σx2
2 gw1

0 gw2
1 mod n,

and finally outputs the signature on m∈ by ID

S∈ = (σ∈, β∈).

We next show that S∈ is a valid signature on m∈ by ID. To verify the validity
of the signature S∈, the verifier

– Computes g0 = H0(ID, 0) and g1 = H0(ID, 1).
– Computes h∈1 = H1(m

∈, ID, β∈) and h∈2 = H2(m
∈, ID, β∈).

– Checks whether

(σ∈)e mod n
?
= (g0)

h∗
1 (g1)

h∗
2 mod n.

Since S1 and S2 are valid signatures, we have
{
σe
1 = g

h
(1)
1

0 g
h
(1)
2

1 mod n,

σe
2 = g

h
(2)
1

0 g
h
(2)
2

1 mod n.

Hence,

(σ∈)e = (σx1
1 σx2

2 gw1
0 gw2

1 )e mod n

= σex1
1 σex2

2 gew1
0 gew2

1 mod n

= g
x1h

(1)
1

0 g
x1h

(1)
2

1 g
x2h

(2)
1

0 g
x2h

(2)
2

1 gew1
0 gew2

1 mod n

= g
x1h

(1)
1 +x2h

(2)
1 +ew1

0 g
x1h

(1)
2 +x2h

(2)
2 +ew2

1 mod n

= g
h∗
1

0 g
h∗
2

1 mod n

– Hence, F succeeds to construct a ”Valid” signature S∈ on m∈ with ID.

Remark 1. It is obvious that once the invertible matrix in Z
2×2
e is found, the

attack can succeed on any message m∈. Taking the procedures of finding the
invertible matrix and computing its inverse as precomputation, the attack can
be completed in O(κ3) regardless of the computation of the hash values.



156 Y. Pan and Y. Deng

4.2 A Theoretical Estimation on K

We next estimate the size of K, which is very important to analyze the time
complexity of the attack.

A Rough Bound. We first give a lemma to compute the probability that
a uniformly random matrix is invertible in Z

2×2
e . The proof can be found in

Appendix A.

Lemma 1. Given a positive integer e = ps11 p
s2
2 · · · pstt , where pi’s are different

primes, the probability that a matrix A uniformly randomly chosen from Z
2×2
e is

invertible is exactly

P (e) =
t∏

i=1

(1− 1

pi
)(1 − 1

p2i
).

As suggested in [14], e has κ/4 bits and is odd (since gcd(e, ϕ(n)) = 1). We next
give a lower bound of P (e).

Denote by p(k) the k-th prime, then p(1) = 2, p(2) = 3, p(3) = 5,· · · . Let ew
be the product of the first t primes except 2 , that is,

ew = 3 · 5 · 7 · · · p(t)

where t is the least number s.t.
∏t

i=2 p
(i) ≤ 2κ/4. By [1], we know that asymp-

totically,
ew = exp((1 + o(1))t log t).

Hence, for
t = κ/4− 1

with κ large enough, ew ≤ 2κ/4.
Notice that the function r(p) = (1− 1

p )(1− 1
p2 ) increases when prime p increases

and r(p) < 1 holds for every prime p. Together with the fact that P (e) is related
to the number of e’s distinct prime factors, it is easy to conclude that for any
odd e with κ/4 bits,

P (e) ≤P (ew)

=(1 − 1

3
)(1 − 1

9
) · (1 − 1

5
)(1 − 1

25
) · · · (1 − 1

p(t)
)(1 − 1

(p(t))2
)

>(1 − 1

3
)2 · (1− 1

5
)2 · · · (1 − 1

p(t)
)2

>((1 − 1

3
) · (1− 1

4
) · · · (1− 1

t+ 1
))2

=(
2

t+ 1
)2

=(
8

κ
)2.



A New Attack against the Selvi-Vivek-Rangan IBS Schemes 157

If we query the signing oracle for K = κ2

16 times, then there must exists β∈

such the number of signatures with β = β∈ is no less than K
2 = κ2

32 . Taking

every two signatures as a pair to generate a matrix in Z
2×2
e , we have K

4 = (κ8 )
2

corresponding matrices, then the probability of that there exists an invertible
matrix is greater than

1− (1− (
8

κ
)2)(

κ
8 )

2 ← 1− exp(−1) ← 0.6321,

which leads to

Proposition 1. Under the assumption that the outputs of the hash functions H1

and H2 are independently uniformly distributed over {0, 1}κ/2, when K = κ2

16 ,F will output a valid forged signature on m∈ by ID with probability greater
than 0.6321, and the total time complexity is bounded by O(κ4) regardless of the
computation of the hash values.

Exact Value of P (ew). In fact, the estimation of K above is very loose due
to the loose estimation of the lower bound of P (ew). We list the exact values of
P (ew) for κ from 512 to 4098 in Table 1. It can be easily concluded that even
for κ = 4096, we just query the signing oracle for at most 4 · ∅7.31⇒ = 32 times
to make sure the probability of success is greater than 0.6321.

Table 1. The Real P (ew)

κ 512 1024 1536 2048 2560 3072 3584 4096

t 27 45 61 76 91 105 119 132

p(t) 103 197 283 383 467 571 653 743

P (ew) 0.1916 0.1694 0.1586 0.1517 0.1465 0.1426 0.1394 0.1368
1

P (ew)
5.22 5.90 6.30 6.59 6.83 7.01 7.17 7.31

4.3 Experimental Results

We implemented the attack on an Inter(R)Core(TM) i7 Processor, 2.93 GHz
PC with Windows 7 operating system. We did not implement any concrete hash
functions, but randomly uniformly independently chose an integer in {0, 1}κ/2 as
the output of those hash functions. We either did not choose a random β ∈ {0, 1}
for every signing query but fixed a β∈. This would not affect the results since at
most 2u signatures contains u signatures with the same β∈. Notice that we did
not have to take every two signatures as a pair to generate a matrix in Z

2×2
e as in

the theoretical analysis, since the analysis asks the matrices to be independent
whereas the experiments did not need. In our experiments, we checked all the

possible K(K−1)
2 pairs for K signatures.



158 Y. Pan and Y. Deng

For every κ from 512 to 4096 by 512, we tested 100 instances. The attack al-
ways succeeded when an invertible matrix was found. We list the average number
of K for every κ in Table 2. It can be seen that the invertible matrix can be
found efficiently in the average case.

Table 2. The Average Number of K in Our Experiments

κ 512 1024 1536 2048 2560 3072 3584 4096

Average(K) 2.28 2.29 2.26 2.44 2.37 2.18 2.16 2.31

5 Why the Original Security Proof Is Incorrect?

To prove a signature scheme is secure in the random oracle model, every hash
function used in the scheme is always replaced by a random oracle. Although the
random oracle is often programmable, the distribution of its outputs must be,
at least extremely close to, uniform. When there are more random oracles than
one, it is reasonable to ask them to be independent and the joint distribution to
be uniform. However, we can show that the oracles provided by the challenger
in the original security proof are dependent and the joint distribution is far
from uniform. Hence, these oracles can be easily distinguished from the random
oracles, which implies the original security proof is not completed in a random
oracle model.

As seen in our attack, the key point is to find an invertible matrix over Z2×2
e

from some legally obtained signatures. However, such an invertible matrix can
never been found in the original security proof. More precisely, in the proof, the
challenger in the training phase will output a signature of mi with identity ID,
in which the two hash values are set to be:

h
(mi)
1 = v(mi) + s

(mi)
1 e+ t

(mi)
1 y

h
(mi)
2 = −v(mi)w + s

(mi)
2 e + t

(mi)
2 y

where y is a factor of e with κ/8 bits, w is a fixed κ/8 bits integer, and

v(mi), s
(mi)
1 , t

(mi)
1 , t

(mi)
2 ∈R {0, 1}κ/4.

For any two messages m1 and m2, the corresponding matrix in our attack
turns out to be

(
h
(m1)
1 h

(m2)
1

h
(m1)
2 h

(m2)
2

)
.



A New Attack against the Selvi-Vivek-Rangan IBS Schemes 159

Notice that the matrix can not be invertible in Z
2×2
e , since y is a factor of e and

det

(
h
(m1)
1 h

(m2)
1

h
(m1)
2 h

(m2)
2

)
mod y

=det

(
v(m1) + s

(m1)
1 e+ t

(m1)
1 y v(m2) + s

(m2)
1 e+ t

(m2)
1 y

−v(m1)w + s
(m1)
2 e+ t

(m1)
2 y −v(m2)w + s

(m2)
2 e+ t

(m2)
2 y

)
mod y

=det

(
v(m1) v(m2)

−v(m1)w −v(m2)w

)
mod y

=v(m1) · (−v(m2)w)− v(m2) · (−v(m1)w) mod y

=0 mod y.

This means that in their proof, although each individual hash value h
(mi)
1 and

h
(mi)
2 returned by the challenger seems random, the two values are never indepen-

dent again. Moreover, the distribution of (h
(mi)
1 , h

(mi)
2 ) over {0, 1}κ/2×{0, 1}κ/2

is far from uniform, since we have proved that an invertible matrix can be found
with very high probability for random oracles with the uniform distribution.
Hence, it is possible to distinguish the oracles provided by the challenger from
random oracles by checking whether such a matrix is invertible or not.

6 Conclusion

In this paper, we present a new universal chosen message attack against the
Selvi-Vivek-Rangan schemes to show that they are not secure both in theory
and practice. The new attack appears more simple, and easy to understand.
Moreover, due to our attack, the mistake in the original proof becomes possible
to understand.

Acknowledgement. We very thank the anonymous referees for their valuable
suggestions on how to improve the presentation of this paper.

References

1. Tom, M.: Apostol: Introduction to Analytic Number Theory. Springer (1976)
2. Bagherzandi, A., Jarecki, S.: Identity-Based Aggregate and Multi-Signature

Schemes Based on RSA. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS,
vol. 6056, pp. 480–498. Springer, Heidelberg (2010)

3. Barreto, P.S.L.M., Libert, B., McCullagh, N., Quisquater, J.-J.: Efficient and
Provably-Secure Identity-Based Signatures and Signcryption from Bilinear Maps.
In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 515–532. Springer,
Heidelberg (2005)

4. Boldyreva, A., Gentry, C., ONeill, A., Yum, D.H.: Ordered multisignatures and
identity-based sequential aggregate signatures, with applications to secure routing,
http://eprint.iacr.org/

http://eprint.iacr.org/


160 Y. Pan and Y. Deng

5. Cha, J.C., Cheon, J.H.: An Identity-Based Signature from Gap Diffie-Hellman
Groups. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 18–30. Springer,
Heidelberg (2002)

6. Cheng, X., Liu, J., Wang, X.: Identity-Based Aggregate and Verifiably Encrypted
Signatures from Bilinear Pairing. In: Gervasi, O., Gavrilova, M.L., Kumar, V.,
Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005, Part
IV. LNCS, vol. 3483, pp. 1046–1054. Springer, Heidelberg (2005)

7. Galindo, D., Garcia, F.D.: A Schnorr-Like Lightweight Identity-Based Signature
Scheme. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 135–148.
Springer, Heidelberg (2009)

8. Gentry, C., Ramzan, Z.: Identity-Based Aggregate Signatures. In: Yung, M., Dodis,
Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 257–273.
Springer, Heidelberg (2006)

9. Herranz, J.: Deterministic identity-based signatures for partial aggregation. The
Computer Journal 49(3), 322–330 (2006)

10. Hwang, J.Y., Lee, D.H., Yung, M.: Universal forgery of the identity-based se-
quential aggregate signature scheme. In: Computer and Communications Security,
ASIACCS 2009, pp. 157–160. ACM (2009)

11. Nose, P.: Security weaknesses of a signature scheme and authenticated key agree-
ment protocols. Information Processing Letters 114, 107–115 (2014)

12. Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing. In: The
2000 Symposium on Cryptography and Information Security, Okinawa, Japan,
pp. 135–148 (2000)

13. Sharmila Deva Selvi, S., Sree Vivek, S., Pandu Rangan, C.: Identity-Based Deter-
ministic Signature Scheme without Forking-Lemma. In: Iwata, T., Nishigaki, M.
(eds.) IWSEC 2011. LNCS, vol. 7038, pp. 79–95. Springer, Heidelberg (2011)

14. Sharmila Deva Selvi, S., Sree Vivek, S., Pandu Rangan, C.: Deterministic Identity
Based Signature Scheme and Its Application for Aggregate Signatures. In: Susilo,
W., Mu, Y., Seberry, J. (eds.) ACISP 2012. LNCS, vol. 7372, pp. 280–293. Springer,
Heidelberg (2012)

15. Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely,
G.R., Chaum, D. (eds.) Advances in Cryptology - CRYPT0 1984. LNCS, vol. 196,
pp. 47–53. Springer, Heidelberg (1985)

A Proof for Lemma 1

Lemma 1. Given a positive integer e = ps11 p
s2
2 · · · pstt , where pi’s are different

primes, the probability that a matrix A uniformly randomly chosen from Z
2×2
e is

invertible is exactly

P (e) =

t∏

i=1

(1− 1

pi
)(1 − 1

p2i
).

Proof. i) For e = p where p is a prime, there are p2 − 1 choices to pick the first
column of A to make A a candidate invertible matrix. After getting the first
column, we only have p2− p choices for the second column. So the probability is

P (e) =
(p2 − 1)(p2 − p)

p4
= (1− 1

p
)(1− 1

p2
).



A New Attack against the Selvi-Vivek-Rangan IBS Schemes 161

ii) For e = ps, notice that A ∈ GL(2,Zps) is equivalent to A ∈ GL(2,Zp) since
the determinant of A must be coprime with p. That is, A = A0+pB is invertible
in Z

2×2
pe is equivalent to A0 is invertible in Z

2×2
p . Hence, the probability becomes

P (e) =
(p2 − 1)(p2 − p)(p4(s−1))

p4s
= (1− 1

p
)(1− 1

p2
).

iii) For e = ps11 p
s2
2 · · · pstt , by the Chinese Remainder Theorem, it is easy to

conclude that the probability is

P (e) =
t∏

i=1

(1− 1

pi
)(1 − 1

p2i
).

So the lemma follows.



Further Research on N-1 Attack

against Exponentiation Algorithms

Zhaojing Ding1, Wei Guo1,2, Liangjian Su1, Jizeng Wei1, and Haihua Gu3

1 School of Computer Science and Technology,
Tianjin University, 300072 Tianjin, P.R. China

2 State Key Laboratory of Computer Architecture, Institute of Computing
Technology, Chinese Academy of Sciences, 100190 Beijing, P.R. China

{dingzhaojing,weiguo,weijizeng}@tju.edu.cn
3 Shanghai Huahong Integrated Circuit Co., Ltd., 201203 Shanghai, P.R. China

guhaihua@shhic.com

Abstract. In 2005, Yen et al. firstly proposed the N − 1 attack against
cryptosystems implemented based on BRIP and square-multiply-always
algorithms. This attack uses the input message N − 1 to obtain relevant
side-channel information from the attacked cryptosystem. In this paper
we conduct an in-depth study on the N − 1 attack and find that two
more special values taken as the input message also can be exploited
by an attacker. According to this, we present our chosen-message attack
against Boscher’s right-to-left exponentiation algorithm which is a side-
channel resistant exponentiation algorithm. Furthermore, immunity of
the Montgomery Powering Ladder against the N − 1 attack is investi-
gated. The result is that the Montgomery Powering Ladder is subjected
to the N − 1 attack. But a different approach to retrieve the key is used
which derives from the relative doubling attack. To validate our ideas,
we implement the two algorithms in hardware and carry out the attacks
on them. The experiment results show that our attacks are powerful at-
tacks against these two algorithms and can be easily implemented with
one power consumption curve.

Keywords: simple power analysis (SPA), N−1 attack, chosen-message
attack, modular exponentiation, power collision.

1 Introduction

Although most cryptosystems are theoretically secure, their implementation on
embedded devices, such as smart cards and Trusted PlatformModules, can easily
be attacked by using side-channel information. The information includes run-
time, power consumption, and electromagnetic radiation generated during data
processing, which are correlated with the secret key of the cryptosystem. This
kind of attack is called Side Channel Attacks (SCA).

The power analysis attacks are a powerful type of SCA. In 1999, Kocher
et al.[1] firstly proposed Simple Power Analysis (SPA) and Differential Power
Analysis (DPA). Considering modular exponentiation is the core operation of

W. Susilo and Y. Mu (Eds.): ACISP 2014, LNCS 8544, pp. 162–175, 2014.
c© Springer International Publishing Switzerland 2014



Further Research on N-1 Attack against Exponentiation Algorithms 163

many cryptosystems, such as the RSA scheme (for example, generating a digi-
tal signature or decrypting ciphertext) and the ElGamal encryption scheme, it
is necessary to defense it against the power analysis attacks. In the year 2002,
Joye and Yen[2] proposed a novel modular exponentiation algorithm which is
called Montgomery Powering Ladder. Due to its highly regular execution and no
redundant computation, it resists against the classical SPA and the safe-error
attacks. As more SCAs were discovered, a blinded Montgomery Powering Ladder
was proposed by Fumaroli and Vigilant [3]. This countermeasure will cost more
hardware and longer process time than the original Montgomery Powering Lad-
der. And later it was found that it is vulnerable to the Jacobi Symbol Attack[4].
Based on the blinded Montgomery Powering Ladder, Boscher et al.[5] introduced
a random value into the classical right-to-left binary exponentiation algorithm
and proposed a side-channel resistant exponentiation algorithm which resists to
SPA, DPA and DFA (Differential Fault Attack) at FDTC09. This algorithm is
also 33% faster than the blinded Montgomery Powering Ladder.

In order to recover secret information from SPA and some DPA resistant algo-
rithms, the SPA attacks with adaptively chosen messages which are categorized
as chosen-message SPA have been proposed recently. Adopting particular mes-
sage as input, some recognizable characteristics of power consumption that leak
the secret information in the execution can be observed. In addition, this type
of attacks uses a new power analysis technique to analyze the power traces. By
comparing two segments of power trace in one or two executions, this technique
can determine whether the data processed are the same. This is so called the
power collision. Compared with the classical DPA which uses statistical-based
techniques, the chosen-message SPA collects very few amounts of power traces
for analysis, thus is more cost-efficient in data acquisition and processing. One
of the simplest attacks of chosen-message SPA is the N − 1 attack proposed by
Yen et al.[6]. They use the particular message N − 1 as an input for modular ex-
ponentiation where N is the modulus. Theoretically, they defeat the left-to-right
square-multiply-always algorithm[7] and BRIP (Binary expansion with Random
Initial Point/value) algorithm[8] which both are in left-to-right form. In 2008,
Miyamoto et al.[9] implemented some RSA processors on an FPGA platform
and demonstrated that the N − 1 attack clearly reveals the secret key informa-
tion in the actual power waveforms. There are also some new development on
chosen-message power analysis recently [10][11][12][13].

The motivation of our study comes from the exploration of the N − 1 attack
on the Boscher’s right-to-left binary exponentiation algorithm and the widely
used Montgomery Powering Ladder algorithm in the embedded system due to
its simplicity. In this paper, we conduct an in-depth study on the N − 1 attack
proposed by Yen et al. and realize the attacks based on the N − 1 attack on
Boscher’s[5] right-to-left binary exponentiation algorithm and the Montgomery
Powering Ladder algorithm. The reminder of this paper is organized as follows:
Section 2 gives an overview of modular exponentiation algorithms and describes
the N−1 attack. Section 3 analyzes our attacks based on the N−1 attack against
Boscher’s right-to-left exponentiation algorithm and the Montgomery Powering



164 Z. Ding et al.

Ladder algorithm. Section 4 presents the practical experimental results using our
RSA hardware designs and software simulation. Finally, conclusions are given in
Section 5.

2 Preliminary

2.1 Modular Exponentiation Algorithm

Our focus is principally on the security problem of computing modular exponen-
tiation. The modular exponentiation is denoted as S = Md mod n. Here, M , d
and n denotes the input message, the secret key, and the modulus, respectively.
The exponent d can be written in its binary form as

∑m−1
i=0 di2

i where m indi-
cates the bit length of d. In addition, m is also the bit width of the multiplier in
embedded device. For embedded devices with limited computation and storage
capabilities, exponentiation operation is normally done by classical square-and-
multiply algorithm, which is the simplest among all the exponentiation methods
in the literature. It has two variations the left-to-right binary form and the right-
to-left binary form. The left-to-right form implementation is more widely used
since it requires only one variable.

2.2 N-1 Attack

The N − 1 attack was proposed by Yen et al. in 2005[6]. It was a type of chosen-
message SPA similar to the doubling attack. They are both based on the power
collision of two identical operations. For example, an attacker can detect the
power collision of two computations A2 mod n and B2 mod n if A = B, even
if he does not know the values of A and/or B. However, the N − 1 attack can
recover the secret key from a single power trace, while the doubling attack needs
at least two power traces of a modular exponentiation with the same secret key.
The left-to-right square-multiply-always algorithm and BRIP algorithm have
proven to be subjected to such attack. To simplify the explanation of the attack,
we take one of them (Algorithm 1) as an example below.

Algorithm 1. left-to-right Square-multiply-always algorithm

Input: M, d = (dm−1 · · · di)2, n
Output: Md mod n
1: R[2] = 1
2: for i from (m− 1) downto 0 do
3: R[0] = R[2]2 mod n
4: R[1] = R[0]×M mod n
5: R[2] = R[di]
6: return R[2]

The N − 1 attack is based on the observation that (n− 1)2 ∈ 1 (mod n).

This observation can be extended to obtain (n− 1)
j ∈ 1 (mod n) for any even



Further Research on N-1 Attack against Exponentiation Algorithms 165

integer j and (n− 1)k ∈ n− 1 (mod n) for any odd integer k. Given M = n− 1,

Algorithm 1 will have S = (n− 1)
(dm−1···di)2 mod n after step 5 of iteration i. If

S = 1, then (dm−1 · · · di)2 is an even integer and di = 0. Otherwise, S = n − 1
and (dm−1 · · · di)2 is an odd integer and di = 1. Given the two possible values of
S at the iteration i, there will be only two possible computations of the iteration
(i− 1) shown below.

– If di is equal to 0, step 3 of the iteration (i − 1) performs:
R[0] = 12 mod n,

– If di is equal to 1, step 3 of the iteration (i − 1) performs:

R[0] = (n− 1)2 mod n.

Only two possible private keys will be derived and a trial-and-error approach
can be used to select the correct d among the two possibilities. For example, if
the most significant bit (MSB) is assumed to be one, then one of the two possible

keys can be selected easily. For brevity, we write 12 mod n, (n− 1)
2
mod n, and

1 × (n − 1) mod n as 12, (n− 1)
2
and 1 × (n − 1) and denote them as S1, S2

and M respectively in the following.

p
o

w
e

r

1 0 0 1 1 0 1Secret key

S1: 1

S2: (n-1)

M : 1x(n-1)

2

2

S1 M S2 M M M S2 M S2 M M

Time

Benchmark

Collision Collision

S1

Collision

S1S1

Fig. 1. N − 1 attack on Algorithm 1 when M = n− 1

For a more detailed description of the N − 1 attack, an example against
Algorithm 1 is illustrated in Fig.1. Here, we assume M = n − 1 and d = 77 =
(1001101)2. In the figure, the power segment of the first S1 is recorded as a
benchmark. Actually, the S1 will always be calculated firstly in Algorithm 1
regardless of the value of MSB. Then if another S1 is detected in the remaining
power trace, the corresponding key bit can be determined as 0, otherwise, the
key bit is 1. Bit by bit, we can derive the whole key gradually except the least
significant bit (LSB). The LSB can be determined by detecting whether the
result of Md mod n is 1.

3 Proposed Attack

Previously, the N − 1 attack is only applied to left-to-right square-multiply-
always algorithm and BRIP algorithm. They are both the left-to-right form



166 Z. Ding et al.

modular exponentiations. In this section, we point out that the N − 1 attack is
not only applicable to the left-to-right form modular exponentiation algorithm
but also the right-to-left form modular exponentiation algorithm described in Al-
gorithm 2 and the high regular Montgomery Powering Ladder algorithm without
dummy or redundant operations described in Algorithm 3. To the authors’ best
knowledge, the attack proposed here is the first successful attempt to crack down
Algorithm 2.

3.1 Attack on Boscher’s Right-to-left Exponentiation Algorithm

At FDTC09, Boscher et al.[5] proposed a exponentiation method that is immune
to almost all the side channel attacks (SPA, DPA, and DFA) with high efficiency
described in Algorithm 2. They claimed in their paper that the N − 1 attack
and chosen-message attack that taking advantage of some specific values are
inefficient to their algorithm due to the randomization of the registers R[0] and
R[1]. However, we notice that if the algorithm is used in the embedded device
without any modification, it will be vulnerable to chosen-message SPA though
it resists against almost all the other side channel attacks.

Algorithm 2. Boscher’s right-to-left exponentiation algorithm

Input: M, d = (dm−1 · · · di)2, n
Output: Md mod n or “Error”
1: select a random integer r
2: R[0] = r
3: R[1] = r−1 mod n
4: R[2] = M
5: for i from 0 to (m− 1) do
6: R[1− di] = R[1− di]×R[2] mod n
7: R[2] = R[2]2 mod n
8: if (R[0]×R[1]×M = R[2]) then
9: return (r−1 ×R[0] mod n)
10: else
11: return (“Error”)

By observing Algorithm 2 we can find that the bit value of the private key is
only associated with the modular multiplication operation in step 6.

– If di is equal to 0, step 6 of the iteration (i) performs:
R[1] = R[1]×R[2] mod n,

– If di is equal to 1, step 6 of the iteration (i) performs:
R[0] = R[0]×R[2] mod n.

Therefore, the private key can be easily retrieved if we can distinguish which
operation is performed. Furthermore, one should notice that register R[1] and
R[0] are mutually independent. Consequently, their values do not affect each



Further Research on N-1 Attack against Exponentiation Algorithms 167

other and are only reused by themselves. Then, if R[2] is supposed to be 1 in the
iteration (i), register R[1] and R[0] will maintain the current value unchanged
in subsequent iterations, which is described below.

– If di is equal to 0, step 6 of the iterations from (i) to (m− 1)performs:
R[1] = R[1]× 1 mod n,
Here, R[1] is a fixed value, that is r−1 mod n when M = 1.

– If di is equal to 1, step 6 of the iterations from (i) to (m− 1)performs:
R[0] = R[0]× 1 mod n.
Here, R[0] is a fixed value, that is r when M = 1.

When these two patterns are found, it is easy to derive the secret key. To
begin with, a randomly chosen power segment of step 6 in a single power trace is
recorded as a benchmark. More accurately, this benchmark indicates the power
consumption of step 6 when the current key bit (either 0 or 1) is being processed.
Then we compare this benchmark with other power segments of step 6. If a no-
ticeable difference between the tested and the benchmark is observed, it verifies
that the key bit under test is different from the one in the benchmark. Otherwise,
it means these two key bits are exactly the same. After each power segment is
examined, the secret key is also retrieved bit by bit. One should notice that by
this way, two possible key candidates, d and its binary inverse d̄ are derived as
it is unable to confirm whether the benchmark we set is related to 1 or 0. Fi-
nally, a trial-and-error approach can be employed to find the correct d between
these two possibilities. For example, if d = (1001101)2, then d̄ = (0110010)2.

Table 1. Computation of Algorithm 2 when M = n− 1, M = 1 and M = n+ 1

i di Intermediate Steps
Collision Operations

M = n− 1 M = 1 M = n+ 1

0 1
R[0] = R[0]×R[2] r × (n− 1) r × 1 r × (n+ 1)

R[2] = R[2]2

1 0
R[1] = R[1]×R[2] r−1 × 1 r−1 × 1 r−1 × 1

R[2] = R[2]2

2 1
R[0] = R[0]×R[2] (r × (n− 1))× 1 r × 1 r × 1

R[2] = R[2]2

3 1
R[0] = R[0]×R[2] (r × (n− 1))× 1 r × 1 r × 1

R[2] = R[2]2

4 0
R[1] = R[1]×R[2] r−1 × 1 r−1 × 1 r−1 × 1

R[2] = R[2]2

5 0
R[1] = R[1]×R[2] r−1 × 1 r−1 × 1 r−1 × 1

R[2] = R[2]2

6 1
R[0] = R[0]×R[2] (r × (n− 1))× 1 r × 1 r × 1

R[2] = R[2]2



168 Z. Ding et al.

Obviously, the countermeasure by introducing a random r in Algorithm 2 does
not protect against our attack, worse still, it even facilitates the chance to reveal
the secret key.

Two methods would possibly be exploited to set register R[2] to 1. The first
method is to assign value 1 to R[2] at the initial time, in other words, to make
value 1 as the input message of Algorithm 2. The whole secret key can be derived
using this value. Another approach is to make the value of R[2]

2
mod n equal

to 1. We notice that (n− 1)2 mod n = 1 and (n+ 1)2 mod n = 1 (Usually, n is
m bit length and n+ 1 < 2m). If the input message of the Algorithm 2 is n− 1
or n + 1, the value of register R[2] will be equal to 1 after the first iteration.
Then, two patterns will be found and we can use the method mentioned above
to retrieve the secret key. However, using these two values all the secret key bits
can be derived except d0. When n − 1 is used as the input message, d0 can be
known by detecting whether the final result is Md = 1. When n+1 is used, four
candidates of the secret key must be tested through trial-and-error approach.

For a better understanding of the attack against Algorithm 2, its behavior
is illustrated in Table 1 when M is equal to 1, n − 1 or n + 1. Here, it is also
assumed that d = 77 = (1001101)2. Table 1 shows that the step 6 in the first
iteration is different from the other iterations when M = n− 1 and M = n+ 1.
As they have no collisions with other operations, d0 cannot be retrieved directly
as mentioned above. In addition, collision operations are shown in the table too.
The secret key can be retrieved easily using power collisions. Fig.2 shows our
attack on Algorithm 2 when M = 1. It is obvious that when M1 is calculated,
the current key bit is 1 and when M2 is calculated, the current key bit is 0.

p
o

w
e

r

1 0 1 1 0 0 1 Secret key

M1: rx1

M2: r  x1
-1

M1 S M2 S M1 S M1 S M2 S M2 S M1 S

Time

S : 1x1

Benchmark

Collision Collision

Fig. 2. Proposed attack on Algorithm 2 when M = 1

It is noted that some exponentiation algorithms perform a modular reduction
before exponentiation to ensure that M is between 0 and N , in which case N+1
would be reduced to 1 and the N+1 attack would be equivalent to the 1 attack.

3.2 Attack on Montgomery Powering Ladder Algorithm

Montgomery Powering Ladder described in Algorithm 3 was proposed by Joye
and Yen[2]. This algorithm can resist some side-channel attacks, such as clas-
sical SPA, timing attack and safe-error attacks. In this section, we show in the



Further Research on N-1 Attack against Exponentiation Algorithms 169

following this algorithm is vulnerable to the N − 1 attack and its extended ver-
sion. Here, a different approach to retrieve the key which derives from relative
doubling attack[14] is exploited.

Algorithm 3. Montgomery powering ladder algorithm

Input: M, d = (dm−1 · · · di)2, n
Output: Md mod n
1: R[0] = r
2: R[1] = M
3: for i from (m− 1) downto 0 do
4: b = ¬di
5: R[b] = R[b]×R[ki] mod n
6: R[ki] = R[ki]

2 mod n
7: return R[0]

Carefully observing Algorithm 3, we can find that it is different from the al-
gorithms mentioned earlier. It behaves very regularly without any padding. In
other words, a modular multiplication operation is always followed up by a mod-
ular squaring in one loop iteration and the two operations are both associated
with the secret key.

– If di is equal to 0, step 5 and step 6 of the iterations (i) performs:

R[1] = R[1]×R[0] mod n, R[0] = R[0]
2
mod n.

– If di is equal to 1, step 5 and step 6 of the iterations (i) performs:

R[0] = R[0]×R[1] mod n, R[1] = R[1]2 mod n.

It can be seen that if we can distinguish which modular squaring operation is
working on, the secret key will be retrieved easily. Observing the association we
find that if two consecutive secret key bits, di and di−1, are the same, the step 6
will take the result of step 6 in iteration i as the operand in iteration i− 1. That
is to say the value of register is reused. While if the two consecutive secret key
bits are different, the result of step 5 in iteration i will be taken as the operand
of step 6 in iteration i− 1. So if an attacker can judge when the operand of the
step 6 is changed, he can deduce that di is different from di−1. Otherwise, di
is the same as di−1. To retrieve the secret key, MSB (which is usually binary
one) of the secret key should be supposed as 1 or 0, and then the other bits
(except d0) can be deduced bit by bit using the characteristic mentioned before.
Similarly, d0 can be known by detecting whether the final result is Md = 1.
Finally, since the uncertainty of the MSB, two possible secret key can be got
and trial-and-error approach should be used to get the correct secret key.

In order to determine whether the operand of step 6 is changed, n − 1 can
be used as the input message. Then the characteristic described below can be
received (i ⊕= m− 1). If dm−1 = 1 or dm−1 = 0, the operation (n− 1)2 or 12 will
be calculated respectively.



170 Z. Ding et al.

– If di = di−1, step 6 of the iterations (i − 1) performs:12 mod n.

– If di ⊕= di−1, step 6 of the iterations (i − 1) performs:(n− 1)
2
mod n.

Furthermore, the extended method of N − 1 attack with two input messages
m1 and m2 = m1 × (n− 1) is also applicable to Algorithm 3. To carry out this
attack, two executions should be done. Then two patterns described below will
be obtained (i ⊕= m− 1).

– If di = di−1, step 6 of the iterations (i − 1) of two executions are the same.

– If di ⊕= di−1, step 6 of the iterations (i − 1) of two executions are different.

Table 2 shows the process to calculate Algorithm 3 and displays the collision
operations. In this example, it is assumed that M = n − 1 and d = 77 =
(1001101)2. It is obvious that when di is changed from 0 to 1 or 1 to 0, the

operation (n− 1)
2
has been calculated. When di is the same as di−1, i.e. (11)2

or (00)2, the operation 12 has been calculated. We described the attack when
M = n−1 in Fig. 3. The first S2 is chosen as the benchmark. It can be seen that
when S1 is calculated, the corresponding key bit is equal to previous one and
when collision operation S2 is calculated, the corresponding key bit is different
from the previous. The conversions are donated by arrows in Fig. 3.

Table 2. Computation of Md in the Algorithm 3

i di Intermediate Steps
Collision Operations

M = n− 1 M = m1 M = m1 × (n− 1)

6 1
R[0] = R[0]×R[1]

R[1] = R[1]2 (n− 1)2 m1
2 (m1 × (n− 1))2

5 0
R[1] = R[1]×R[0]

R[0] = R[0]2 (n− 1)2 m1
2 (m1 × (n− 1))2

4 0
R[1] = R[1]×R[0]

R[0] = R[0]2 12 (m1
2)

2
(m1

2)
2

3 1
R[0] = R[0]×R[1]

R[1] = R[1]2 (n− 1)2 (m1
5)

2
(m1

5 × (n− 1))
2

2 1
R[0] = R[0]×R[1]

R[1] = R[1]2 12 (m1
10)

2
(m1

10)
2

1 0
R[1] = R[1]×R[0]

R[0] = R[0]2 (n− 1)2 (m1
19)

2
(m1

19 × (n− 1))
2

0 1
R[0] = R[0]×R[1]

R[1] = R[1]2 (n− 1)2 (m1
39)

2
(m1

39 × (n− 1))
2



Further Research on N-1 Attack against Exponentiation Algorithms 171

p
o

w
e

r

1 0 0 1 1 0 1 Secret key

S1: 1 S2: (n-1) M : 1x(n-1)2 2

M S2 M M S1 M S2 M S1 M S2 M S2

Time

Benchmark

Collision

S2

Collision Collision Collision

Fig. 3. Proposed attack on Algorithm 3 when M = n− 1

4 Experiment Results

In order to verify the effectiveness of our attack, we designed two 1024-bit RSA
processors based on Algorithm 2 and Algorithm 3, respectively, using Verilog
HDL. The design was synthesized with 0.13 um CMOS standard cell library
by Synopsys Design Complier. Then the power consumption waveform was ob-
tained by simulation. And the waveform segments were aligned precisely using
the phase-based wave-form matching technique. Finally, the difference between
the waveforms was calculated to evaluate the equality of the operations.

The modular multiplication algorithm which we employed is the widely used
high-radix Montgomery multiplication called finely integrated operand scanning
(FIOS) method i.e. the Type-I algorithm[15]. The multiplier used is 64-bit. The
secret key and modulus are chosen randomly.

Given two integers x and y, Montgomery modular multiplication algorithm
computes:

MontMul(x, y, n) = x× y ×R−1 mod n (R = 2∈log2(n)≤)

Therefore, initialization of the values of registers should be done at the be-
ginning of modular exponentiation algorithms, to transform the operands into
the Montgomery form. And at the end of the modular exponentiation the re-
sult should also be converted into the normal form. Thus, the operations 12 and
(n− 1)

2
have been changed into R2 mod n and (n− 1)×R

2
mod n. Therefore,

the discrimination between the power traces of 12 and (n− 1)
2
which is described

in [10] are unable to be perceived by visual observation. Power collision method
can be used to determine whether two operations are the same or different. To
simplify the description, we will just intercept the power consumption of the first
12 bits of the key begins from MSB or LSB in the following.

Fig.4 shows a single power trace of Algorithm 2 using the chosen message
1. Its actual first 12 bits of the key are (101111101101)2. By observing the
figure, we cannot retrieve the secret key. The reason is that the power traces
of every operation are almost the same which cannot be distinguished just by
visual observation. Therefore, we chose the power segment of the first M2 as the



172 Z. Ding et al.

Fig. 4. Power trace of Algorithm 2

1 0 1 1 1 1 1 0 1 1 0 1

M1: rx1 M2: r  x1
-1

S: 1x1

M1 S M2 S M1 S M1 S M1 S M1 S M1 S M2 S M1 S M1 S M2 S M1 S

C
o

ll
is

io
n

C
o

ll
is

io
n

Benchmark

Fig. 5. Power collision result of Algorithm 2



Further Research on N-1 Attack against Exponentiation Algorithms 173

Fig. 6. Power trace of Algorithm 3

0 2000 4000 6000 8000 10000 12000 14000 16000
−0.02

−0.01

0

0.01

0.02

0.03

0.04

1 0 1 1 1 1 1 0 0 1 1 0

S1M S2 M S1M M S1M S1M S1MS2 M S2 M S2M S1M S2M

S1: 1 S2: (n-1) M : 1x(n-1)
2 2

Benchmark

S2

C
o

ll
is

io
n

C
o

ll
is

io
n

C
o

ll
is

io
n

C
o

ll
is

io
n

C
o

ll
is

io
n

Fig. 7. Power collision result of Algorithm 3



174 Z. Ding et al.

benchmark and obtained the differential power trace shown in Fig.5 using the
method described in section 3.1. From the figure we can identify which modular
multiplication are the same as the benchmark easily. Then we derived the correct
key (101111101101)2 easily regardless of the wrong one (010000010010)2 from
two possibilities.

Fig.6 shows a single power trace of Algorithm 3 using the chosen message
n − 1. Its actual first 12 bits of the key are (101111100110)2. Fig.7 shows the
power collision result of Algorithm 3 using the method described in section 3.2.
The benchmark is the power segment of the first S2. From the power colli-
sion result, two possible result can be obtained, which are (101111100110)2 and
(000101001100)2. A trial-and-error approach were used to select the correct key
(101111100110)2 by us finally.

5 Conclusions

The main contribution of this paper is that new value 1 and N +1 are exploited
and two more algorithms are proven to be vulnerable to the N − 1 attack. It
is previously believed that Boscher’s right-to-left exponentiation algorithm is an
effective countermeasure against SPA, DPA and DFA. However, we find that
this algorithm is vulnerable to our chosen-message attack which is based on the
N − 1 attack, though our attack is easy to defense. Simultaneously, the well-
known Montgomery Powering Ladder algorithm is shown insecure against the
N − 1 attack with a different approach to derive the secret key. This approach is
to use the relationship between two consecutive bits that di = di−1 or di ⊕= di−1.
Finally, we demonstrate the effectiveness of the attacks in experiments.

Future work will be done in two directions. The first is to investigate more spe-
cial values in general types of the chosen-message that have potential threats to
cryptographic systems. The second is to develop more effective defensive meth-
ods against chosen-message SPA.

Acknowledgements. This work is supported by the Open Project Program
of State Key Laboratory of Computer Architecture, the Institute of Computing
Technology, Chinese Academy of Sciences.

References

1. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

2. Joye, M., Yen, S.-M.: The montgomery powering ladder. In: Kaliski Jr, B.S.,
Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 291–302. Springer,
Heidelberg (2003)

3. Fumaroli, G., Vigilant, D.: Blinded fault resistant exponentiation. In: Breveglieri,
L., Koren, I., Naccache, D., Seifert, J.-P. (eds.) FDTC 2006. LNCS, vol. 4236,
pp. 62–70. Springer, Heidelberg (2006)



Further Research on N-1 Attack against Exponentiation Algorithms 175

4. Schmidt, J.-M., Medwed, M.: Fault attacks on the montgomery powering ladder.
In: Rhee, K.-H., Nyang, D. (eds.) ICISC 2010. LNCS, vol. 6829, pp. 396–406.
Springer, Heidelberg (2011)

5. Boscher, A., Handschuh, H., Trichina, E.: Blinded fault resistant exponentiation
revisited. In: Breveglieri, L., et al. (eds.) Fault Diagnosis and Tolerance in Cryp-
tography - FDTC 2009, pp. 3–9. IEEE Computer Society (2009)

6. Yen S.-M., Lien W.-C., Moon S., Ha J.: Power analysis by exploiting chosen
message and internal collisions-vulnerability of checking mechanism for RSA-
decryption. In: Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS, vol. 3715,
pp. 183-195. Springer, Heidelberg (2005)

7. Coron, J.-S.: Resistance against differential power analysis for elliptic curve cryp-
tosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302.
Springer, Heidelberg (1999)

8. Mamiya, H., Miyaji, A., Morimoto, H.: Efficient countermeasures against RPA,
DPA, and SPA. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156,
pp. 343–356. Springer, Heidelberg (2004)

9. Miyamoto, A., Homma, N., Aoki, T., Satoh, A.: Enhanced power analysis at-
tack using chosen message against RSA hardware implementations. In: ISCAS,
pp. 3282–3285 (2008)

10. Courrège, J.-C., Feix, B., Roussellet, M.: Simple power analysis on exponentiation
revisited. In: Gollmann, D., Lanet, J.-L., Iguchi-Cartigny, J. (eds.) CARDIS 2010.
LNCS, vol. 6035, pp. 65–79. Springer, Heidelberg (2010)

11. Homma, N., Miyamoto, A., Aoki, T., Satoh, A., Samir, A.: Comparative power anal-
ysis of modular exponentiation algorithms. IEEE Trans. Comput. 59(6), 795–807
(2010)

12. Clavier, C., Feix, B.: Updated recommendations for blinded exponentiation vs.
single trace analysis. In: Prouff, E. (ed.) COSADE 2013. LNCS, vol. 7864,
pp. 80–98. Springer, Heidelberg (2013)

13. Aidong, C., Sen, X., Yun, C., Zhiguang, Q.: Collision-based chosen-message simple
power clustering attack algorithm. Communications, China, 114–119 (2013)

14. Yen, S.-M., Ko, L.-C., Moon, S.-J., Ha, J.C.: Relative doubling attack against
montgomery ladder. In: Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935,
pp. 117–128. Springer, Heidelberg (2006)

15. Miyamoto, A., Homma, N., Aoki, T., Satoh, A.: Systematic design of RSA proces-
sors based on high-radix Montgomery multipliers. In: IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, pp. 1136–1146 (2011)



Cryptanalysis of RSA with Multiple Small

Secret Exponents

Atsushi Takayasu and Noboru Kunihiro

The University of Tokyo, Japan
{a-takayasu@it.,kunihiro@}k.u-tokyo.ac.jp

Abstract. In this paper, we study the security of RSA when there are
multiple public/secret exponents (e1, d1), . . . , (en, dn) with the same pub-
lic modulus N . We assume that all secret exponents are smaller than Nβ .
When n = 1, Boneh and Durfee proposed a polynomial time algorithm
to factor the public modulus N . The algorithm works provided that
β < 1− 1/

√
2. So far, several generalizations of the attacks for arbitrary

n have been proposed. However, these attacks do not achieve Boneh and
Durfee’s bound for n = 1. In this paper, we propose an algorithm which
is the exact generalization of Boneh and Durfee’s algorithm. Our algo-
rithm works when β < 1 − √

2/(3n + 1). Our bound is better than all
previous results for all n ≥ 2. We construct the lattices by collecting as
many helpful polynomials as possible. The collections reduce the volume
of the lattices and enable us to improve the bound.

Keywords: Cryptanalysis, RSA, Lattices, Coppersmith’s method.

1 Introduction

1.1 Background

Small Secret Exponent RSA. Small secret exponent RSA is efficient for its
low cost decryption and signature generation, but is known to be insecure. We
assume that decryption exponent is smaller than Nβ . Wiener [Wie90] proposed
the polynomial time algorithm to factor public modulus N . The algorithm works
when β < 0.25. The algorithm is constructed by computing the diophantine
approximation of rational number.

Boneh and Durfee [BD00] revisited the Wiener’s attack. They constucted
improved algorithm by using lattice based method to solve modular equations
proposed by Coppersmith [Cop96a]. At first, they constructed the lattices which
provide Wiener’s bound, β < 0.25. They improved the bound to β < (7 −
2
∈
7)/6 = 0.28474 · · · by adding some extra polynomials in the lattice bases.

Finally, they achieved the stronger bound β < 1 − 1/
∈
2 = 0.29289 · · · by ex-

tracting sublattices from the previous lattices. Though several papers revisited
the work [BM01, HM10, Kun11, KSI11, Kun12], none of them improved Boneh
and Durfee’s stronger bound. Boneh and Durfee’s attack has also been applied
to the variants of RSA [DN00, IKK08a, May04].

W. Susilo and Y. Mu (Eds.): ACISP 2014, LNCS 8544, pp. 176–191, 2014.
c© Springer International Publishing Switzerland 2014



Cryptanalysis of RSA with Multiple Small Secret Exponents 177

Multiple Small Secret Exponents RSA. Generalizations of small secret
exponent attack on RSA have also been considered when there are multiple
public/secret key pairs (e1, d1), . . . , (en, dn) for the same public modulus N . All
secret keys d1, . . . , dn are smaller than Nβ . Howgrave-Graham and Seifert [HS99]
generalized Wiener’s attack and achieved the bound

β <
(2n+ 1) · 2n − (2n+ 1)

(
n

n/2

)

(2n− 2) · 2n + (4n+ 2)
(

n
n/2

) when n is even,

β <
(2n+ 1) · 2n − 4n

(
n−1

(n−1)/2

)

(2n− 2) · 2n + 8n
(

n−1
(n−1)/2

) when n is odd.

The bound converges to full size secret exponents, β = 1.
Sarkar and Maitra [SM10b] used the Coppersmith’s method to find small

roots of polynomials over the integers [Cop96b] and improved the bound. They
constructed the lattices based on Jochemsz and May’s strategy [JM06]. The
algorithm works when

β <
3

4
− 1

n+ 1
.

The algorithm improved Howgrave-Graham and Seifert’s bound for 2 ⊕ n ⊕ 42.
In the same work [SM10b], Sarkar and Maitra achieved ad-hoc improvement,
β < 0.422 for n = 2. See also [SM10a].

Aono [Aon13] used the Coppersmith’s method to solve modular equations
[Cop96a] and improved the bound. Aono’s algorithm works when

β <
3

4
− 2

3n+ 1
.

The algorithm improved Sarkar and Maitra’s algorithm. The bound is better
than Howgrave-Graham and Seifert’s bound for 2 ⊕ n ⊕ 46. In the same work
[Aon13], Aono heurisically considered ad-hoc improvement for n ⊇ 3, though no
exact conditions are given.

All these algorithms run in polynomial time in logN and exponential in n. It
is clear that these algorithms have the room to be improved. All algorithms only
achieve Winer’s bound [Wie90] for n = 1. In addition, we should consider the
case when there are infinitely many public/secret key pairs. In this case, Aono
[Aon13] counted the number of solutions and claimed that public modulus N
can be factored with full size secret exponents. Howgrave-Graham and Seifert’s
bound [HS99] converges to β < 1. However, Sarkar and Maitra’s bound [SM10b]
and Aono’s bound [Aon13] converge to β < 3/4. Therefore, we should construct
the algorithm which achieves Boneh and Durfee’s bound [BD00] and converges
to β < 1.

Lattice Constructions for the Coppersmith’s Methods. At Eurocrypt
1996, Coppersmith introduced celebrated lattice based methods. One method
is to solve modular univariate equations which have small solutions [Cop96a].



178 A. Takayasu and N. Kunihiro

The other method is to find small roots of bivariate polynomials over the
integers [Cop96b]. Both methods can be heuristically generalized to more mul-
tivariate cases with reasonable assumption. The former method was reformu-
lated by Howgrave-Graham [How97], and the latter method was reformulated
by Coron [Cor04, Cor07]. The Coppersmith’s methods have been used to re-
veal the vulnerabilites of several cryptosystems, especially RSA cryptosystem
[Cop97, Cop01, NS01, May10].

The Coppersmith’s methods have improved several algorithms which compute
diophantine approximation of rational numbers. Boneh and Durfee [BD00] im-
provedWiner’s small secret exponent attack on RSA [Wie90]. Howgrave-Graham
[How01] considered approximate common divisor problems and constructed two
types of algorithms. The first algorithm computes diophantine approximation.
The second algorithm uses the Coppersmith’s method. Since the second algo-
rithm is better than the first algorithm, Howgrave-Graham’s results imply that
the Coppersmith’s method is superior to the other method. Therefore, Howgrave-
Graham and Seifert’s result [HS99] is expected to be improved by using the
Coppersmith’s method.

To maximize the solvable root bounds using the Coppersmith’s methods, we
should select appropriate lattice bases which reduce the volume. At Asiacrypt
2006, Jochemsz and May [JM06] proposed the strategy for lattice constructions.
The strategy can automatically decide the selections of lattice bases. The strat-
egy covers several former results [BD00, Weg02, May04, EJMW05], and later
some algorithms [JM07] have been proposed based on the strategy including
Sarkar and Maitra’s work [SM10a, SM10b]. However, it is widely known that
Jochemsz andMay’s strategy does not always select the appropriate lattice bases.
In fact, for small secret exponent attacks on RSA, we only obtain Boneh and
Durfee’s weaker bound β < (7 − 2

∈
7)/6 based on the strategy. The strategy

cannot tell us the selections of lattice bases which provide Boneh and Durfee’s
stronger bound [BD00]. Therefore, Sarkar and Maitra’s results [SM10a, SM10b]
are expected to be improved by selecting appropriate lattice bases.

For n ⊇ 2, Aono solved simultaneous modular equations. Each single equation
is the same one which Boneh and Durfee [BD00] solve. Aono combined Boneh
and Durfee’s n lattices based on Minkowski sum. However, Aono used Boneh
and Durfee’s lattices which only achieve Wiener’s bound β < 0.25. Therefore, it
is clear that the algorithm cannot achieve Boneh and Durfee’s stronger bound
for n = 1 and is expected to be improved.

What makes the problems difficult is that we should change the selections of
lattice bases with respect to the sizes of root bounds. Sarkar and Maitra’s ad-hoc
improvement [SM10b] for n = 2 is achieved based on the condition β < 1/2. They
selected extra polynomials in the lattice bases to reduce the volume. Boneh and
Durfee’s improvement [BD00] from the Wiener’s bound [Wie90] is also based on
the condition β < 1/2 by adding extra polynomials. Conversely, though heuristic,
Aono’s ad-hoc improvement [Aon13] for n ⊇ 3 is based on the fact that β > 1/2.
Aono claimed that some polynomials in the lattice bases should be eliminated to



Cryptanalysis of RSA with Multiple Small Secret Exponents 179

reduce the volume. Therefore, we should work out the selections of lattice bases
which take into account the sizes of root bounds in general.

Collecting Helpful Polynomials. Recently, Takayasu and Kunihiro [TK13]
proposed simple and useful strategy for lattice constructions. In their strategy,
the notion of helpful polynomials is essential. The notion was firstly noted by
May [May10]. Helpful polynomials can reduce the volume of the lattices and con-
tribute to the conditions for modular equations to be solved. If each polynomial
is helpful or not is decided by comparing the sizes of diagonals and the size of
modulus. Takayasu and Kunihiro claimed that as many helpful polynomials as
possible should be selected, and as few unhelpful polynomials as possible should
be selected in the lattice bases. Based on the strategy, they improved the algo-
rithms to solve two forms of modular multivariate linear equations [HM08, CH12]
when each root bound becomes extremely large or small.

1.2 Our Results

In this paper, we solve the same simultaneous modular equations as Aono
[Aon13]. However, we change the selections of lattice bases and improve the
previous bounds. Based on Takayasu and Kunihiro’s strategy for lattice con-
structions [TK13], we reveal that there are some helpful polynomials which were
not selected or there are some unhelpful polynomials which were selected in
Aono’s lattice bases. This analysis enables us to select as many helpful polyno-
mials as possible and as few unhelpful polynomials as possible. Our algorithm
works provided that

β < 1−
√

2

3n+ 1
.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  10  20  30  40  50  60

be
ta

n

Ours
Aon13
SM10
HS99

Fig. 1. The comparison of the recoverable sizes of secret exponents



180 A. Takayasu and N. Kunihiro

Table 1. Numerical data for the recoverable sizes of secret exponents

n Ours [Aon13] [SM10b] [HS99]

1 0.292893219 0.25 0.25 0.25
2 0.465477516 0.464285714 0.416666667 0.357142857
3 0.552786405 0.55 0.5 0.4
4 0.60776773 0.596153846 0.55 0.441176471
5 0.646446609 0.625 0.583333333 0.467741935
6 0.675557158 0.644736842 0.607142857 0.493103448
7 0.698488655 0.659090909 0.625 0.512048193
8 0.717157288 0.67 0.638888889 0.530181087
9 0.732738758 0.678571429 0.65 0.544740024
10 0.745999746 0.685483871 0.659090909 0.55872622
...

...
...

...
...

101 0.918889289 0.743421053 0.740196078 0.805167829
102 0.919286569 0.743485342 0.740291262 0.80595288
103 0.919678067 0.743548387 0.740384615 0.806723605
104 0.920063923 0.743610224 0.74047619 0.807488696
105 0.920444272 0.743670886 0.740566038 0.808240085
106 0.920819242 0.743730408 0.740654206 0.808986071
107 0.921188959 0.74378882 0.740740741 0.809718942
108 0.921553546 0.743846154 0.740825688 0.810446627
109 0.921913119 0.743902439 0.740909091 0.811161748
110 0.922267793 0.743957704 0.740990991 0.811871889

Our algorithm achieves Boneh and Durfee’s bound β < 1− 1/
∈
2 for n = 1, and

converges to β < 1 with infinitely many exponents. The bound1 is better than
all known algorithms [HS99, SM10a, SM10b, Aon13].

Figure 1 compares the recoverable sizes of secret exponents for n = 1, 2, . . . , 60.
For smaller n, our algorithm is slightly better than Aono’s algorithm [Aon13].
However, for larger n, our algorithm is much better than all other algorithms
[HS99, SM10b, Aon13].

Table 1 represents the numerical data for the recoverable sizes of secret expo-
nents for n = 1, 2, . . . , 10, and n = 101, 102, . . . , 110. For smaller n, though our
algorithm and Aono’s algorithm [Aon13] achieve almost the same bound, our
algorithm is always better. For larger n, our algorithm is still much better than
Howgrave-Graham and Seifert’s algorithm [HS99].

1 It is not obvious that our bound is better than Howgrave-Graham and Seifert’s

bound [HS99]. For large n, we approximate binomial coefficients as
(

n
n/2

) ≈
√

2
πn

2n

(see [OLBC10] in detail). The approximation suggests that our bound is better than
the previous bound. The detailed analysis is written in the full version.



Cryptanalysis of RSA with Multiple Small Secret Exponents 181

1.3 Organizations

In Section 2, we introduce the lattice based Coppersmith’s method to solve
modular equations [Cop96a], and the lattice construction strategy proposed by
Takayasu and Kunihiro [TK13]. In Section 3, we recall the Boneh and Durfee’s
algorithm [BD00] and Aono’s algorithm [Aon13]. In Section 4, we analyze the
previous lattice constructions [BD00, Aon13] based on Takayasu and Kunihiro’s
strategy [TK13]. In Section 5, we propose our improved algorithm. In Section
6, we discuss the security of multiple exponents RSA in partial key exposure
situations.

2 Preliminaries

In this section, we introduce the Coppersmith’s method to solve modular equa-
tions which have small solutions [Cop96a]. First, we explain Howgrave-Graham’s
reformulation of the method [How97], and the LLL algorithm [LLL82]. After
that, we introduce the strategy for lattice constructions proposed by Takayasu
and Kunihiro [TK13].

Consider the modular equations, h(x1, . . . , xn) = 0 (mod W ). All sizes of
the solutions (x̃1, . . . , x̃n) are bounded by X1, . . . , Xn. When

∏n
j=1Xj is much

smaller than W , the Coppersmith’s method can find all the solutions in polyno-
mial time. We write the norm of polynomials as ‖h(x1, . . . , xn)‖, which represents
the Euclidean norm of the coefficeint vector. The following Howgrave-Graham’s
Lemma reduces the modular equations into integer equations.

Lemma 1 (Howgrave-Graham’s Lemma [How97]). Let h̃(x1, . . . , xn) ≤
Z[x1, . . . , xn] be a polynomial with at most w monomials. Let m,W,X1, . . . , Xn

be positive integers. Consider the case when
1. h̃(x̃1, . . . , x̃n) = 0 (mod Wm), where |x̃1| < X1, . . . , |x̃n| < Xn,
2. ‖h̃(x1X1, . . . , xnXn)‖ < Wm/

∈
w.

Then h̃(x̃1, . . . , x̃n) = 0 holds over the integers.

To solve n-variate modular equations h(x1, . . . , xn) = 0 (mod W ), it is suffice to
find n new polynomials h̃1(x1, . . . , xn), . . . , h̃n(x1, . . . , xn) whose roots are the
same as the solutions (x̃1, . . . , x̃n) and whose norms are small enough to satisfy
Hograve-Graham’s Lemma.

To find such polynomials from the original polynomial h(x1, . . . , xn), lattices
and the LLL algorithm are often used. Lattices represent the integer linear com-
binations of the basis vectors. All vectors are row representation. For the basis
vectors b1, . . . ,bw, which are all v dimensional vectors in R

v, the lattice spanned
by these vectors is defined as

L(b1, . . . ,bw) := {
w∑

j=1

cjbj : cj ≤ Z for all j = 1, . . . , w}.

We also use the matrix representation for the basis. We define the basis matrix B
as w× v matrix which has the basis vectors b1, . . . ,bw in each row. In the same



182 A. Takayasu and N. Kunihiro

way, the lattice can be rewritten as L(B). We call the lattice full-rank when w =
v. The volume of the lattice vol(L(B)) is defined as the w-dimensional volume
of the parallelpiped P(B) := {xB : x ≤ R

w, 0 ⊕ xj < 1, for all j = 1, . . . , w}.
The volume can be computed as vol(L(B)) =

√
det(BBT ). It is clear that the

volume of full-rank lattice can be computed as vol(L(B)) = | det(B)|.
Lattice is used in many places in cryptography. See [NS01, nv10] in detail. In

cryptanalysis, it is very important to find non-zero short lattice vectors. In this
paper, we introduce the LLL algorithm [LLL82] which outputs non-zero short
lattice vectors in polynomial time.

Proposition 1 (LLL algorithm [LLL82]). Given basis vectors b1, . . . ,bw in
R

k, the LLL algorithm finds LLL-reduced bases b̃1, . . . , b̃w that satisfy

‖b̃n‖ ⊕ 2w(w−1)/4(w−n+1)(vol(L(B)))1/(w−n+1) for 1 ⊕ n ⊕ w,

in polynomial time in w, v, and the maximum input length.

Again, we consider how to solve modular equations h(x1, . . . , xn) = 0
(mod W ). First, we construct w polynomials h1(x1, . . . , xn), . . . , hw(x1, . . . , xn),
which have the roots (x̃1, . . . , x̃n) modulo Wm with positive integer m. We
convert these polynomials to the vectors b1, . . . ,bw in Z

v, and construct the
matrix B. The elements of each vector bj are the same as the coefficients of
hj(x1X1, . . . , xnXn). All i-th elements of the vectors b1, . . . ,bw are the coeffi-
cients of the same variables xi11 · · ·xinn for all 1 ⊕ i ⊕ k. The vectors can be
converted to the polynomials in the opposite way. We span the lattice L(B).
Since all the lattice vectors are the integer linear combinations of the basis
vectors, the polynomials which are conversions of the lattice vectors have the
roots (x̃1, . . . , x̃n) modulo Wm. We apply the LLL algorithm to the lattice bases
and obtain n LLL-reduced bases b̃1, . . . , b̃n. Finally, we can get the polyno-
mials h̃1(x1, . . . , xn), . . . , h̃n(x1, . . . , xn) by converting the LLL-reduced bases.
The norm of these polynomials are small. These polynomials satisfy Howgrave-
Graham’s Lemma provided that

(vol(L(B)))1/w < Wm.

We omit the small terms.
When we obtain the polynomials h̃1(x1, . . . , xn), . . . , h̃n(x1, . . . , xn), it is easy

to solve the modular equation h(x1, . . . , xn) = 0 (mod W ). What we should do
is to find the roots of the polynomials over the integers by computing resultant
or Gröbner basis. We should note that the method needs heuristic argument if
we consider multivariate problems. Since the polynomials h̃1(x1, . . . , xn), . . . ,
h̃n(x1, . . . , xn) have no assurance of algebraic independency. In this paper, we
assume that the polynomials are algebraic independence as the previous works
[BD00, SM10a, SM10b, Aon13]. In fact, there are few negative cases reported.

The solvable sizes of small solutions depend on the lattice constructions. To
maximize the sizes, we should select appropriate lattice bases which reduce the
volume. Recently, Takayasu and Kunihiro [TK13] proposed the strategy for the



Cryptanalysis of RSA with Multiple Small Secret Exponents 183

selections. To construct the triangular basis matrix, we define helpful polynomi-
als whose diagonals are smaller than the modulusWm. Since helpful polynomials
contribute to the conditions for modular equations to be solved, we should select
as many helpful polynomials as possible in the lattice bases. Conversely, unhelp-
ful polynomials whose diagonals are larger than the modulus do not contribute
to the conditions. We should select as few unhelpful polynomials as possible.
The selections should be done with the constraint for the basis matrix to be
triangular. The strategy clarifies which polynomials to be selected and which
polynomials not to be selected in the lattice bases. To improve the previous
bounds, we should add helpful polynomials or eliminate unhelpful polynomials
in the lattice bases. When we counstruct the basis matrix which is not triangu-
lar, we should transform the basis matrix to be triangular by using unravelled
linearization [HM09].

3 Previous Works

In this section, we introduce the lattice constructions in previous works
[BD00, Aon13], which used the Coppersmith’s method to solve modular equa-
tions [Cop96a, How97].

3.1 Boneh and Durfee’s Lattice Construction

We recall the RSA key generation,

ed = 1 + kφ(N), where φ(N) = (p− 1)(q − 1).

Boneh and Durfee [BD00] considered the modular polynomial

f(x, y) = 1 + x(N + y) (mod e).

The polynomial has the roots (x, y) = (k, 1 − p − q). The sizes of the roots are
bounded by X := Nβ , Y := 3N1/2. If we can find the roots, we can easily factor
RSA modulus N .

To solve the modular equation f(x, y) = 0, Boneh and Durfee constructed
the basis matrix with polynomials which have the roots (x, y) = (k, 1 − p − q)
modulo em. At first, Boneh and Durfee used the shift-polynomials,

xif(x, y)jem−j, with j = 0, 1, . . . ,m, i = 0, 1, . . . ,m− j,

in the lattice bases. The shift-polynomials modulo em have the roots (x, y) =
(k, 1 − p − q). The shift-polynomials generate the triangular basis matrix with
diagonals X i+jY jem−j for all i, j. Ignoring low order terms of m, we can com-
pute the dimension w = 1

2m
2 and the volume of the lattice vol(L(B)) =

X
1
3m

3

Y
1
6m

3

e
1
3m

3

. The lattice provides Wiener’s bound β < 0.25.
To improve the bound, Boneh and Durfee added extra shifts,

ylf(x, y)uem−u, with u = 0, 1, . . . ,m, l = 1, . . . , t,



184 A. Takayasu and N. Kunihiro

in the lattice bases. The shift-polynomials modulo em have the roots (x, y) =
(k, 1−p−q). We should optimize the parameter τ := t/u. Though the extra shifts
do not generate the tirangular basis matrix, we can transform it to be triangular
using unravelled linearization [HM09]. The detailed analysis is written in [HM10].
After the transformation, the sizes of the diagonals become XuY u+lem−u. Ig-
noring low order terms of m, we can compute the dimension w = (12 +

τ
2 )m

2 and

the volume of the lattice vol(L(B)) = X( 1
3+

τ
3 )m

3

Y ( 1
6+

τ
3 +

τ2

6 )m3

e(
1
3+

τ
6 )m

3

. We can
solve the modular equation f(x, y) = 0 provided that (vol(L(B)))1/w < em, that
is,

β(
1

3
+
τ

3
) +

1

2
(
1

6
+
τ

3
+
τ2

6
) +

1

3
+
τ

6
<

1

2
+
τ

2
.

To maximize the solvable bound β, we optimize τ = 1 − 2β and obtain the
stronger bound β < 1− 1/

∈
2.

3.2 Aono’s Lattice Construction

For the multiple key setting, the attackers have multiple public exponents
e1, . . . , en that satisfy

ejdj = 1 + kjφ(N), for j = 1, 2, . . . , n.

Aono [Aon13] considered n modular polynomials

fj(xj , y) = 1 + xj(N + y) (mod ej), for j = 1, 2, . . . , n.

The polynomials have the roots (x1, . . . , xn, y) = (k1, . . . , kn, 1−p−q). The sizes
of the roots are bounded by Xj := Nβ for j = 1, 2, . . . , n, Y := 3N1/2. We also
write X := Nβ for simplicity. If we can find the roots, we can easily factor RSA
modulus N .

To solve simultaneous modular equations fj(xj , y) = 0 for j = 1, 2, . . . , n,
Aono constructed the basis matrix with polynomials which have the same roots
as the solutions of the modular equation modulo (e1 · · · en)m. Aono combined
n lattices, each of which is the lattice to solve a single equation. To solve each
single equation, Aono selected the shift-polynoials

x
ij
j fj(xj , y)

uj e
m−uj

j , with uj = 0, 1, . . . ,m, ij = 0, 1, . . . ,m− uj ,

for j = 1, 2, . . . , n.

The selection for each single equation generates the triangular basis matrix. Aono
combined the n lattices based onMinkowski sum. Aono proved that the combined
lattices based on Minkowski sum are also triangular, if each basis matrix is trian-

gular. The combined basis matrix has diagonals X
i′1
1 · · ·X i′n

n Y u′
e
m−min{i′1,u′}
1 · · ·

e
m−min{i′n,u′}
n , for 0 ⊕ u∈ ⊕ ∑n

j=1 i
∈
j, 0 ⊕ i∈j ⊕ m for j = 1, 2, . . . , n. Each polyno-

mial of the row is the integer linear combination of shift-polynomials that have
the corresponding diagonals. This operation reduce the powers of e1, . . . , en. The
detailed discussion is written in [Aon13].



Cryptanalysis of RSA with Multiple Small Secret Exponents 185

Ignoring low order terms of m, we can compute the dimension w = n
2m

n+1,

and the volume of the lattice vol(L(B)) = X
sX1

1 · · ·XsXn
n Y sY e

se1
1 · · · esenn , where

sXj = (n4 + 1
12 )m

n+2, sY = (n
2

8 + n
24 )m

n+2, sej = (n4 + 1
12 )m

n+2, for j =
1, 2, . . . , n. The lattice provides the bound

β <
3

4
− 2

3n+ 1
.

4 Another Look at Previous Lattice Constructions

In this section, we analyze the previous lattice constructions [BD00, Aon13]
based on Takayasu and Kunihiro’s strategy [TK13]. What we should mention
is that if there are as many helpful polynomials as possible or as few unhelpful
polynomials as possible in the lattice bases.

4.1 The Analysis of Boneh and Durfee’s Lattices

We can rewrite the sizes of diagonals in Boneh and Durfee’s basis matrix as
X i′Y u′

em−min{i′,u′} for 0 ⊕ u∈ ⊕ 2(1 − β)i∈, 0 ⊕ i∈ ⊕ m. We consider the
shift-polynomials for i∈ < u∈ ⊕ 2(1 − β)i∈, 0 ⊕ i∈ ⊕ m. To examine if the shift-
polynomials are helpful or not, we compare the sizes of diagonals and the size
of the modulus em. For easy comparison, we rewrite the sizes as the powers of
N . The sizes of diagonals are Nβi′+ 1

2u
′+m−i′ , and the size of the modulus is

Nm. The shift-polynomials are helpful when βi∈ + 1
2u

∈ + m − i∈ ⊕ m, that is,
u∈ ⊕ 2(1−β)i∈. Therefore, the shift-polynomials which Boneh and Dufee selected
for i∈ < u∈ are all helpful polynomials. Moreover, the condition is tight. That
means when 2(1 − β)i∈ < u∈, all shift-polynomials are unhelpful. For the basis
matrix to be triangular, we have to select the shift-polynomials for 0 ⊕ u∈ ⊕
i∈, 0 ⊕ i∈ ⊕ m. This analysis implies that Boneh and Durfee selected as many
helpful polynomials as possible and as few unhelpful polynomials as possible.

4.2 The Analysis of Aono’s Lattices

Next, we consider the Aono’s lattices. We can rewrite the sizes of diagonals

in Aono’s basis matrix as X
i′1
1 · · ·X i′n

n Y u′
e
m−min{i′1,u′}
1 · · · em−min{i′n,u′}

n for 0 ⊕
u∈ ⊕ ∑n

j=1 i
∈
j, and 0 ⊕ i∈j ⊕ m for j = 1, 2, . . . , n. We show that Aono selected

unhelpful polynomials or the selections are not tight. To examine if the shift-
polynomials are helpful or not, we compare the sizes of diagonals and the size of
the modulus (e1 · · · en)m. We consider the diagonalXm

1 · · ·Xm
n Y nm, which is the

case i∈1 = · · · = i∈n = m,u∈ = nm. The size of the diagonal is (XY )nm. For easy
comparison, we rewrite the sizes as the powers of N . The sizes of the diagonal is
Nnmβ+nm

2 , and the size of the modulus is Nnm. The shift-polynomial is helpful
when nmβ + nm

2 ⊕ nm, that is, β ⊕ 1
2 . We recall that Aono’s lattice provides

the bound β < 3
4 − 2

3n+1 . Therefore, Aono selected unhelpful polynomials for
n ⊇ 3, and the selections are not tight for n = 1, 2.



186 A. Takayasu and N. Kunihiro

Aono also pointed out the issue in his paper [Aon13]. They proposed the
heuristic improvement in appendix of their paper. They claimed that to improve
the bound, some polynomials with highr powers of Y should be omit for n ⊇ 3.
However, no exact conditions are given in the paper.

5 Our Improvements

In this section, we show the improved lattice constructions. To improve
the bound, we select as many helpful polynomials as possible and as few
unhelpful polynomials as possible in the lattice bases. We consider the
same simultaneous modular equations as Aono [Aon13], fj(xj , y) = 1 +
xj(N + y) (mod ej) = 0, for j = 1, 2, . . . , n. We use shift-polynomials

x
ij
j fj(xj , y)

uj e
m−uj

j , yljfj(xj , y)
uje

m−uj

j for j = 1, 2, . . . , n. Aono’s analy-

sis suggests that we can construct the triangular basis matrix2 with di-

agonals X
i′1
1 · · ·X i′n

n Y u′
e
m−min{i′1,u′}
1 · · · em−min{i′n,u′}

n . We reveal the condition
when each lattice basis becomes helpful. We consider the polynomials with
max{i∈1, . . . , i∈n} ⊕ u∈. To examine if the shift-polynomials are helpful or not,
we compare the sizes of diagonals and the size of modulus (e1 · · · en)m. The

polynomials have the diagonals X
i′1
1 · · ·X i′n

n Y u′
e
m−i′1
1 · · · em−i′n

n . For easy com-
parison, we rewrite the sizes as the powers of N . The sizes of the diagonals

are Nβ
∑n

j=1 i′j+
u′
2 +nm−∑n

j=1 i′j , and the size of the modulus is Nnm. The shift-
polynomials are helpful when

β

n∑

j=1

i∈j +
u∈

2
+ nm−

n∑

j=1

i∈j ⊕ nm,

that is,

u∈ ⊕ 2(1− β)

n∑

j=1

i∈j .

Therefore,we select the shift-polynomialsx
ij
j fj(xj , y)

uje
m−uj

j , yljfj(xj , y)
uj e

m−uj

j

for j = 1, 2, . . . , n, which generate the diagonalsX
i′1
1 · · ·X i′n

n Y u′
e
m−min{i′1,u′}
1 · · ·

e
m−min{i′n,u′}
n for 0 ⊕ u∈ ⊕ 2(1 − β)

∑n
j=1 i

∈
j, 0 ⊕ i∈j ⊕ m for j = 1, 2, . . . , n. It

is clear that our selection becomes identical to Boneh and Durfee’s selection for
n = 1. The selection provides the better bound than previous works including
Aono’s heuristically improved lattices3.

2 For n = 1, 2 we should use unravelled linearization and transform the basis matrix
which is not triangular to be triangular. See [HM10] for n = 1 and the full version
of this paper for n = 2 in detail.

3 Compared with Aono’s heuristically improved lattice bases [Aon13], there are less un-
helpful polynomials and as many helpful polynomials in our lattice bases. See the full
version of this paper in detail.



Cryptanalysis of RSA with Multiple Small Secret Exponents 187

Ignoring low order terms of m, we can compute the dimension

w =

m∑

i′n=0

· · ·
m∑

i′1=0

≤2(1−β)(i′1+···+i′n)∗∑

u′=0

1 = n(1− β)mn+1,

and the volume of the lattice vol(L(B)) = X
sX1
1 · · ·XsXn

n Y sY e
se1
1 · · · esenn , where

sXj =
m∑

i′n=0

· · ·
m∑

i′1=0

∈2(1−β)(i′1+···+i′n)∪∑
u′=0

i′j =
(3n+ 1)(1− β)

6
mn+2,

sY =
m∑

i′n=0

· · ·
m∑

i′1=0

∈2(1−β)(i′1+···+i′n)∪∑
u′=0

u′ =
n(3n+ 1)

6
(1− β)2mn+2,

sej =

m∑
i′n=0

· · ·
m∑

i′1=0

∈2(1−β)(i′1+···+i′n)∪∑
u′=0

(m−min{u′, i′j}) = 1 + (3n− 1)(1− β)

6
mn+2.

We can solve the simultaneous modular equations fj(xj , y) = 1 + xj(N + y)
(mod ej) = 0, for j = 1, 2, . . . , n, when (vol(L(B)))1/w < (e1 · · · en)m,

nβ
(3n+ 1)(1− β)

6
+

1

2

n(3n+ 1)

6
(1− β)2 + n

1 + (3n− 1)(1 − β)

6
< n2(1 − β),

(3n+ 1)β2 − 2(3n+ 1)β + 3n− 1 > 0,

that is,

β < 1−
√

2

3n+ 1
.

The bound is superior to all known algorithms [HS99, SM10a, SM10b, Aon13].

6 Partial Key Exposure Attacks on RSA

In the context of the security evaluations of RSA, partial key exposure attacks
[BDF98, BM03, EJMW05, Aon09, SGM10] have been considered. In the par-
tial key exposure situaion, the attackers know the partial information of secret
exponent d. In the work [Aon13], Aono also considered partial key exposure at-
tacks on RSA with multiple key settings. In this case, the attackers know public
modulus N and multiple public exonents e1, . . . , en, whose corresponding secret
exponents d1, . . . , dn are smaller than Nβ, and the least significant δ logN bits
of secret exponents, d̃1, . . . , d̃n. Aono proposed the algorithm with Minkowski
sum based lattices, which works provided that

β <
δ

2
+

3

4
− 2

3n+ 1
.



188 A. Takayasu and N. Kunihiro

Based on Takayasu and Kunihiro’s strategy [TK13], we propose the improved
algorithm for partial key exposure attacks on RSA. Our algorithm works pro-
vided that

β < 1−
√

2(1− 2δ)

3n+ 1
, δ <

1

2
− 4

3n+ 1
.

Our algorithm is the same as Aono’s algorithm for n = 1, 2, and is superior to
Aono’s algorithm for n ⊇ 3. The detailed analysis is written in the full version
of the paper.

7 Concluding Remarks

In this paper, we analyzed the security of RSA when the attackers have multi-
ple public exponents e1, . . . , en for the same public modulus N . We proposed im-
proved algorithm for small secret exponent attacks.All secret exponents d1, . . . , dn
are smaller than Nβ. Our algorithm factors public modulus N provided that β <
1−√

2/(3n+ 1). To the best of our knowledge, this is the first result that covers

Boneh and Durfee’s bound β < 1 − 1/
∈
2 for n = 1, and converge to β < 1 for

infinitely large n, simultaneously. Our bound is better than all known previous
ones [HS99, SM10a, SM10b, Aon13].

Our lattice construction is based on Takayasu and Kunihiro’s strategy [TK13]
to collect helpful polynomials. The strategy enables us to determine the selections
of polynomials in the lattice bases while taking into account the sizes of root
bounds. That is the main difficulty in previous works [SM10b, Aon13].

Acknowledgement. This work was supported by JSPS KAKENHI Grant
Number 25280001.

References

[Aon09] Aono, Y.: A new lattice construction for partial key exposure attack for
RSA. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp.
34–53. Springer, Heidelberg (2009)

[Aon13] Aono, Y.: Minkowski Sum Based Lattice Construction for Multivariate Si-
multaneous Coppersmith’s Technique and Applications to RSA. In: Boyd,
C., Simpson, L. (eds.) ACISP. LNCS, vol. 7959, pp. 88–103. Springer,
Heidelberg (2013), http://eprint.iacr.org/2012/675

[BM01] Blömer, J., May, A.: Low secret exponent RSA revisited. In: Silverman,
J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 4–19. Springer, Heidelberg
(2001)

[BM03] Blömer, J., May, A.: New partial key exposure attacks on RSA. In: Boneh,
D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 27–43. Springer, Heidelberg
(2003)

http://eprint.iacr.org/2012/675


Cryptanalysis of RSA with Multiple Small Secret Exponents 189

[BD00] Boneh, D., Durfee, G.: Cryptanalysis of RSA with private key d less than
N0.292. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 1–11.
Springer, Heidelberg (1999)

[BDF98] Boneh, D., Durfee, G., Frankel, Y.: Exposing an RSA private key given
a small fraction of its bits. In: ASIACRYPT 1998. LNCS, vol. 1514,
pp. 25–34. Springer, Heidelberg (1998)

[CH12] Cohn, H., Heninger, N.: Approximate common divisors via lattices. In: 10th
Algorithmic Number Theory Symposium ANTS-X, 2012. Longer version
available as IACR Cryptology ePrint Archive, Report 2011/437 (2011),
http://eprint.iacr.org/2011/437

[Cop96a] Coppersmith, D.: Finding a Small Root of a univariate modular Equation.
In: Maurer, U.M. (ed.) Advances in Cryptology - EUROCRYPT 1996.
LNCS, vol. 1070, pp. 155–165. Springer, Heidelberg (1996)

[Cop96b] Coppersmith, D.: Finding a Small Root of a Bivariate Integer Equation;
Factoring with High Bits Known. In: Maurer, U. (ed.) Advances in Cryp-
tology - EUROCRYPT 1996. LNCS, vol. 1070, pp. 178–189. Springer,
Heidelberg (1996)

[Cop97] Coppersmith, D.: Small solutions to polynomial equations, and low expo-
nent RSA vulnerabilities. Journal of Cryptology 10(4), 233–260 (1997)

[Cop01] Coppersmith, D.: Finding small solutions to small degree polynomials. In:
Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 20–31. Springer,
Heidelberg (2001)

[Cor04] Coron, J.-S.: Finding Small Roots of Bivariate Integer Equations Revis-
ited. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 492–505. Springer, Heidelberg (2004)

[Cor07] Coron, J.-S.: Finding Small Roots of Bivariate Integer Equations: A Direct
Approach. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp.
379–394. Springer, Heidelberg (2007)

[DN00] Durfee, G., Nguyên, P.Q.: Cryptanalysis of the RSA Schemes with Short
Secret Exponent from Asiacrypt ’99. In: Okamoto, T. (ed.) ASIACRYPT
2000. LNCS, vol. 1976, pp. 14–29. Springer, Heidelberg (2000)

[EJMW05] Ernst, M., Jochemsz, E., May, A., de Weger, B.: Partial key exposure at-
tacks on RSA up to full size exponents. In: Cramer, R. (ed.) EUROCRYPT
2005. LNCS, vol. 3494, pp. 371–386. Springer, Heidelberg (2005)

[HM08] Herrmann, M., May, A.: Solving Linear Equations modulo Divisors: On
factoring given any bits. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS,
vol. 5350, pp. 406–424. Springer, Heidelberg (2008)

[HM09] Herrmann, M., May, A.: Attacking power generators using unravelled lin-
earization: When do we output too much? In: Matsui, M. (ed.) ASI-
ACRYPT 2009. LNCS, vol. 5912, pp. 487–504. Springer, Heidelberg (2009)

[HM10] Herrmann, M., May, A.: Maximizing Small Root Bounds by Lineariza-
tion and Applications to Small Secret Exponent RSA. In: Nguyen, P.Q.,
Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 53–69. Springer,
Heidelberg (2010)

[How97] Howgrave-Graham, N.: Finding small roots of univariate modular equa-
tions revisited. In: Darnell, M. (ed.) Cryptography and Coding 1997.
LNCS, vol. 1355, pp. 131–142. Springer, Heidelberg (1997)

[How01] Howgrave-Graham, N.: Approximate integer common divisors. In: Sil-
verman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 51–66. Springer,
Heidelberg (2001)

http://eprint.iacr.org/2011/437


190 A. Takayasu and N. Kunihiro

[HS99] Howgrave-Graham, N., Seifert, J.-P.: Extending Wiener’s attack in the
presence of many decrypting exponents. In: Baumgart, R. (ed.) CQRE
1999. LNCS, vol. 1740, pp. 153–166. Springer, Heidelberg (1999)

[IKK08a] Itoh, K., Kunihiro, N., Kurosawa, K.: Small Secret Key Attack on a Vari-
ant of RSA (due to Takagi). In: Malkin, T. (ed.) CT-RSA 2008. LNCS,
vol. 4964, pp. 387–406. Springer, Heidelberg (2008)

[IKK08b] Itoh, K., Kunihiro, N., Kurosawa, K.: Small Secret Key Attack on a Tak-
agi’s Variant of RSA. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sceiences E92-A(1), 33–41 (2008)

[JM06] Jochemsz, E., May, A.: A Strategy for Finding Roots of Multivariate Poly-
nomials. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 267–282. Springer, Heidelberg (2006)

[JM07] Jochemsz, E., May, A.: A Polynomial Time Attack on RSA with Private
CRT-Exponents Smaller Than N0.073 . In: Menezes, A. (ed.) CRYPTO
2007. LNCS, vol. 4622, pp. 395–411. Springer, Heidelberg (2007)

[Kun11] Kunihiro, N.: Solving Generalized Small Inverse Problems. In: Steinfeld,
R., Hawkes, P. (eds.) ACISP 2010. LNCS, vol. 6168, pp. 248–263. Springer,
Heidelberg (2010)

[Kun12] Kunihiro, N.: On Optimal Bounds of Small Inverse Problems and Approx-
imate GCD Problems with Higher Degree. In: Gollmann, D., Freiling, F.C.
(eds.) ISC 2012. LNCS, vol. 7483, pp. 55–69. Springer, Heidelberg (2012)

[KSI11] Kunihiro, N., Shinohara, N., Izu, T.: A Unified Framework for Small Secret
Exponent Attack on RSA. In: Miri, A., Vaudenay, S. (eds.) SAC 2011.
LNCS, vol. 7118, pp. 260–277. Springer, Heidelberg (2012)

[LLL82] Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with
rational coefficients. Mathematische Annalen 261, 515–534 (1982)

[May04] May, A.: Secret Exponent Attacks on RSA-type Schemes with Moduli N =
prq. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947,
pp. 218–230. Springer, Heidelberg (2004)

[May10] May, A.: Using LLL-reduction for solving RSA and factorization problems:
A survey. In: NV10 (2007), http://www.cits.rub.de/permonen/may.html

[MR09] May, A., Ritzenhofen, M.: Implicit Factoring: On Polynomial Time Fac-
toring Given Only an Implicit Hint. In: Jarecki, S., Tsudik, G. (eds.) PKC
2009. LNCS, vol. 5443, pp. 1–14. Springer, Heidelberg (2009)

[NS01] Nguyên, P.Q., Stern, J.: The Two Faces of Lattices in Cryptology. In:
Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 146–180. Springer,
Heidelberg (2001)

[nv10] Nguyen, P.Q., Vallée, B. (eds.): The LLL Algorithm: Survey and Applica-
tions. Information Security and Cryptography. Springer, Heidelberg (2007)

[OLBC10] Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W.: NIST handbook
of mathematical functions. Cambridge University Press, Cambridge (2010)

[SGM10] Sarkar, S., Sen Gupta, S., Maitra, S.: Partial Key Exposure Attack on RSA
- Improvements for Limited Lattice Dimensions. In: Gong, G., Gupta, K.C.
(eds.) INDOCRYPT 2010. LNCS, vol. 6498, pp. 2–16. Springer, Heidelberg
(2010)

[SM10a] Sarkar, S., Maitra, S.: Cryptanalysis of RSA with two decryption expo-
nents. Information Processing Letter 110, 178–181 (2010)

http://www.cits.rub.de/permonen/may.html


Cryptanalysis of RSA with Multiple Small Secret Exponents 191

[SM10b] Sarkar, S., Maitra, S.: Cryptanalysis of RSA with more than one decryption
exponents. Information Processing Letter 110, 336–340 (2010)

[TK13] Takayasu, A., Kunihiro, N.: Better Lattice Constructions for Solving Mul-
tivariate Linear Equations Modulo Unknown Divisors. In: Boyd, C., Simp-
son, L. (eds.) ACISP. LNCS, vol. 7959, pp. 118–135. Springer, Heidelberg
(2013)

[Weg02] de Weger, B.: Cryptanalysis of RSA with Small Prime Difference, Appli-
cable Algebra in Engineering. Communication and Computing 13, 17–28
(2002)

[Wie90] Wiener, M.J.: Cryptanalysis of Short RSA Secret Exponents. IEEE Trans-
actions on Information Theory 36(3), 553–558 (1990); Firstly appeared
In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS,
vol. 434, p. 372. Springer, Heidelberg (1990)



New Model and Construction of ABE:

Achieving Key Resilient-Leakage
and Attribute Direct-Revocation

Mingwu Zhang1,2,α

1 School of Computer Sciences, Hubei University of Technology,
Wuhan 430068, China

2 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing 100093, China

csmwzhang@gmail.com

Abstract. Attribute-Based Encryption allows for implementing fine-
grained decentralized access control based on properties or attributes
a user has, which has drawn attention for realizing decentralized access
control in large and dynamic networks such as Mesh network, Internet
of Things and cloud computing. However, in open networks, the attacker
can blow the concrete implementation of cryptosystems, and then gain
the internal secret states such as pseudo-random number, internal result
and secret key to break the system. In this work, we first model a fine-
grained attribute revocable (ciphertext-policy) attribute-based encryp-
tion in the presence of key leakage, and then give a concrete construction
with security and resilient-leakage performance analysis. Our scheme is
the first designing enjoying at the same time the following properties: (i)
Support attribute direct revocation that does not affect any other user’s
secret key. (ii) Tolerate the key of matching the challenge ciphertext to
be partially revealed. (iii) Provide a key update mechanism to support
continual leakage tolerance.

Keywords: Attribute-based encryption, key leakage, attribute revoca-
tion, leakage rate.

1 Introduction

Attribute-Based Encryption (ABE) [3,12,15,24] is a public-key cryptographic
primitive in resolving the exact issue of fine-grained access control on shared
data in one-to-many communications, which has drawn attention for realizing
decentralized access control in large and dynamic networks such as Mesh net-
work, Internet of Things (IoT), and cloud computing [13,25]. Being different
from an (hierarchical) identity-based encryption (H-/IBE) [9,18], ABE provides
a sound and flexible solution to securely encrypt a message for all users who hold
the required attributes, without any knowledge of their exact identities, which

β Supported by the National Natural Science Foundation of China (#61370224), the
Key Program of Natural Science Foundation of Hubei Province (#2013CFA046).

W. Susilo and Y. Mu (Eds.): ACISP 2014, LNCS 8544, pp. 192–208, 2014.
c© Springer International Publishing Switzerland 2014



New Model and Construction of ABE 193

provides fine-grained controls over the properties or attributes a user has [25].
Especially, in cryptographic operations, attributes map to users’ credential, i.e.,
the attributes represent components of the secret keys. Taking access control
in cloud computing as an example, ABE provides means for designing flexible
and scalable access control systems without the need of monitoring large access
control policies since it is inefficient to make access control rule for each user in
large scale cloud environments. For example, we may allow any user, who is an
adult and obtains a Phd degree (i.e., Policy � (age ∈ 18 AND Dpl = Phd)),
to gain access to the cloud data. In this case, ID card and doctoral diploma can
act as the elements of attribute set.

In ciphertext-policy ABE (CP-ABE), attributes are associated to the users’
secret keys and access policies are attached to the ciphertexts. Users are able
to decrypt a ciphertext if and only if their attributes satisfy the access policies
associated to the ciphertexts. An ABE scheme is secure against collusion attacks:
if multiple users collude, they can only decrypt the ciphertext those of them
can decrypt by himself. Nevertheless, in ABE systems, it needs a Private-Key
Generator (PKG) to produce and distribute the secret keys for all users. To
obtain a more secure ABE system, we consider the following two aspects:

– Secret key leakage. Traditional cryptographic technologies are faced
with an additional challenge that frequently arises in practical situations
in the side-channel attacks. In classical security models, an adversary has
access to only the inputs and outputs of cryptographic algorithms, but can
not gain any information about the secret keys or internal states. Can we
construct a secure ABE in the sense that an adversary is able to obtain
partial decryption keys?

– Attribute revocation. Attribute revocation is a challenge issue in ABE
systems, since each attribute is conceivably shared by multiple users. At-
tribute revocation of any single user would affect the others who share that
attribute. Especially in key leakage situation, a key associated with some
revocable attributes will lead to the key vulnerability of the others who have
the same attributes.

To withhold leakage attacks, we take into account the amount of leakage that
the scheme can tolerate. Typically, this is formalized by introducing a leakage
rate parameter χ (0 < χ < 1) or a leakage bound parameter L, i.e., χ = L

|SK| ,
where SK is the allowable leakage key. Key leakage attacks are formalized by
allowing the adversary to submit leakage functions to a leakage oracle with an
adaptive manner, that is, the adversary can choose different leakage functions
at different points according to its view and prior leakage knowledge.

Motivation and Challenge. In this work, we focus on the above two issues and design
a leakage-resilient secure ABE with fine-grained attribute revocation to achieve
the semantic security in the continual key leakage model. There are two kinds of
revocation techniques in ABEs: indirect revocation and direct revocation [5]. In-
direct revocation enforces revocation by the key authority who releases a key up-
date token periodically so that only non-revoked users can update their keys and
revoked keys are implicitly rendered useless. Direct revocation is launched by the



194 M. Zhang

encrypter who specifies the revocation list and embeds the list into the ciphertext.
Obviously, indirect revocation is less efficient than direct revocation. However, an
efficient direct revocation mechanism in ABE is a challenging issue, since an at-
tribute may distribute in multiple users and the revocation of an attribute will
impact all key holders of that attribute.

In an ABE system, there exists a PKG that create and distributes the keys
for all users. Thus, between PKG and every user there is always an assumption
of secure channels to perform the key distribution. However, this is very difficult
in large scale decentralized systems such as wireless sensor networks and cloud
computing. Traditionally, provable security will lose if any information about
the key is leaked. Recent research shows that such unintended leakages are eas-
ily obtained by side-channel attacks [2,8], and thus constructing schemes to resist
broad class of leakage attacks are very important in practical applications. We
must ensure that the semantic security should guarantee in the presence of com-
bining all key leakage corresponding to some attribute sets from different users.

Our Results and Approach. Our main result is a connection among attribute-
based encryption, attribute direct revocation mechanism and key leakage re-
silience. In particular, we show how to construct an attribute directly revocable
CP-ABE in the sense that the secret key might be partially revealed. We also
give the performance analysis such as leakage bound, leakage rate and allow-
able probability in the sense that the direct attribute revocation list is implicitly
embedded into the ciphertext.

To demonstrate the benefit of leakage-resilience, we show that in some cases
it can be used to obtain no more than L-bit leaked semantic security, even in
the presence of key leakage. Conceivably, no construction can provide meaningful
security unless one further restricts the leakage function. The restriction imposed
is that the overall size of the output of the leakage function f is upper bounded
by a leakage parameter. We have to limit the type of leakage functions that
the adversary provides. More concretely, the adversary is given access to the
bounded leak that performs the leakage attack defined in the output shrinking
model (OSM) [2,7,17,27].

In order to obtain leakage resilience in ABE systems, we allow the adversary
to handle all key extraction queries and key leakage queries. As there is no need
for a separate technique to achieve leakage resilience within the dual system en-
cryption (DSE) framework [17,15,27], we obtain the continual leakage tolerance
by allowing key leakage from multiple keys of decrypting the challenge cipher-
text. We also extend the semi-functional space to form multiple dimensional
vectors and achieve the leakage resilience to fitting the structure in Theorem 2.
Because the leakage function on the key must be provided before the production
of challenge ciphertext, an adversary whose leakage is suitably bounded can not
distinguish orthogonal vectors from uniformly random vectors.

A crucial ingredient in the scheme against continual leakage is designing a
mechanism for periodically refreshing the key, that is, replacing the secret key
by a new key while maintaining the same public key. We also employ a key
refresh algorithm and bound the leakage to provide continual leakage tolerance.



New Model and Construction of ABE 195

We demonstrate this by providing a leakage-resilient construction of ABE system
which retains all of the desirable features of DSE [18,15].

In order to guarantee that attribute revocation does not affect any other
user’s secret key, we construct the scheme that supports fine-grained attribute
revocation under direct revocation mechanism, in which in the key generation
algorithm a user’s identity is associated with a set of attributes, and in the
encryption procedure the valid receivers are associated with an access structure
σ and an additional revocation attribute set R. We employ the access structure
as a linear secret sharing scheme (an LSSS) that is explicitly described as (A, α),
in which function α associates rows of A to attributes.

In the security proof, different from the partition techniques [3], we use DSE
mechanism [17,18,27] to prove the security such that the simulator can construct
any key and any challenge ciphertext, in which there have two kinds of keys and
ciphertexts: normal and semi-functional. In the real construction, the key and
the ciphertext are normal, but they will be transformed into semi-functional in
the security proof. In the view of adversary, it only has a negligible advantage in
distinguishing these transformations. Finally, all keys and ciphertexts are semi-
functional, and we also prove that, even the adversary gains partial leakage
from the match key, s/he has a negligible advantage in decrypting the challenge
ciphertext. Thus the security is concluded by the incapable decryption between
a semi-functional key and a semi-functional challenge ciphertext.

Related Works. Sahai and Waters [21] first presented a notion of ABE, in which
the sender can specify access to the message as a boolean formula over a set of
attributes. Goyal, Pandey and Sahai et al. [12] formulated two complimentary
forms of ABE: key-policy ABE and ciphertext-policy ABE. To obtain the fine-
grained access, there have been a number of constructions for various classes of
functions [13,12,16,17,24,15]. In particular, Goyal, Pandey and Sahai et al. [12]
employed access tree to describe the access structure in ABE. Actually, an access
structure such as a boolean formula (or a tree structure) can be expressed in
terms of an LSSS [3,16,24]. Waters [24] proposed ABE constructions that can
work for any access policy in terms of LSSS. Lewko, Okamoto and Sahai et al.
[16] presented a (weak) fully secure ABE scheme by extending the dual system
encryption methodology in composite-order groups. Nevertheless, these schemes
do not support attribute revocation.

Attribute revocation is inevitable and also important in practice [22,23,25].
Boldyreva, Goyal and Kumar [6] proposed a revocable ABE scheme that is de-
rived from a revocable identity-based encryption, which is based on an indirect
revocation model that requires the authority to periodically re-issue the keys.
Later, Attrapadung and Imai [5] indicated that an ABE scheme can provide di-
rect revocation and indirect revocation. They summarized two modes which are
helpful for designing revocation in ABE, and gave two direct/indirect revocation
schemes. In [4], Attrapadung and Imai demonstrated that a directly revocable
ABE scheme can be converted from the combination of a broadcast encryption
mechanism and an ABE scheme.



196 M. Zhang

Akavia Goldwasser and Vaikuntanathan [2] and Naor and Segev [20] provided
the security definition against leakage attacks in the public key setting, respec-
tively. Naor and Segev [20] also showed that the variety of public key encryption
systems can support different leakage bound in different mathematical assump-
tion, for example, quadratic residuosity (QR) assumption, Paillier assumption,
Diffie-Hellman (DH) assumption, and the existence of hash-proof system (HPS).
Later, bounded leakage-resilient schemes are proposed in [9,10,17,26]. Chow,Dodis
and Rouselakis et al. [9] proposed three leakage-resilient identity-based encryp-
tions that are based on (identity-based) hash proof systems, but their schemes do
not allow key update and then do not support continual leakage [8,17]. Lewko,
Rouselakis and Waters [17] showed that a bounded leakage-resilient encryption
against memory leakage attacks can be constructed from the extension of dual
system mechanism in the extension of composite order bilinear groups. Zhang,
Shi and Wang et al. [26] gave two leakage-resilient ABE constructions in which
the access structures are encoded into their minimal sets.

2 Preliminaries

We let [d] denote the set {1, · · · , d} for any d ⊕ Z
+. For a finite set S, |S|

denotes the number of elements in S (i.e., cardinality). Let G be a finite group
of order p, we denote the bits of an element in G by ⊇G⊇ and denote the bits

of order p by ⊇p⊇. We let x be chosen uniformly from ZN denote by x
$←− ZN ,

and X ← Y denotes assignment. For a vector x = (x1, · · · , xd) ⊕ Z
d
N , we use

gx to denote the vector of group elements gx � (gx1 , · · · , gxd) ⊕ G
d, and denote

≤ρ,σ← as a scalar product of vectors ρ and σ, i.e., ≤ρ,σ← = ∑
i αiβi. Similarly,

≤gρ, gσ← = g
∑

i βiγi = g∈ρ,σ≤ and ê(gρ, gσ) = ê(g, g)∈ρ,σ≤. We use the term Xκ+k
3

to denote the vector X3 with τ + k elements.
In order to guarantee that, in case of obtaining no more than L-bit leakage

information of a key, the adversary gains enough key entropy, we use a statis-
tically indistinguishable theorem to specify the bounded leakage function. The
statistical distance between two random variables X and Y over a finite domain
Φ is defined as SD(X,Y ) � 1

2

∑
v∗χ |Pr[X = v] − Pr[Y = v]|. We say that

two variables are π-close if their statistical distance is at most π. We denote the
computational indistinguishability of two distributions X and Y by X ∅c Y .

The following theorems show that, given some sufficiently small leakage on
a random matrix, it is hard to distinguish the spanned random vectors from
uniformly random vectors [8,17].

Theorem 1. (Subspace Hiding with Leakage) [1] Let p be a prime, and let n ∈
d ∈ u, s be integers, S ⊕ Z

d×s
p be an arbitrary matrix and Leak: {0, 1}⊥ ⇒ {0, 1}L

be an arbitrary function with L-bit output. For randomly sampled A ← Z
n×d
p ,

V ← Z
n×u
p , we have (Leak(A),AS,V,AV) ∅c (Leak(A),AS,V,U), as long as

L ≈ (d− s− u) log p+ Σ(log Ω) and n = poly(Ω).

Theorem 2. [8] Let p be a prime, m, l, d ⊕ N, 2d ≈ l ≈ m. Let V
$←− Z

m×l
p ,

A
$←− Z

m×d
p , and T

$←− Rankd(Z
l×d
p ), where Rankd(Z

l×d
p ) denotes the set of l×d



New Model and Construction of ABE 197

matrices of rank d. For any map Leak : Zm×d
p ⇒ π, there exists SD((Leak(VT),V),

(Leak(A), V)) ≈ μ(p), as long as ⊇π⊇ ≈ 4(1− 1
p ) · pl−2d+1 · μ(p)2.

In particular, if the leakage Leak(VT) reveals bounded information V, then
(Leak(VT),V) and (Leak(A),V) are statistically close. In the latter pair, A is a
random vector and the leakage function reveals nothing about the subspace V.
We give the following Corollary to describe the statistical indistinguishability of
two-dimensional orthogonal vectors with arbitrary function outputs.

Corollary 1. Let p be a prime and m ∈ 3 be an integer. Let δ,υ
$←− Z

m
p and

υ′ be uniformly chosen from the set of vector in Z
m
p that are orthogonal to δ

under the dot product modulo p. For any function Leak : Zm
p ⇒ π, there exists

SD((Leak(υ), δ), (Leak(υ′), δ)) ≈ μ(p), as long as ⊇π⊇ ≈ 4pm−3(p− 1) · μ(p)2.
Definition 1. (Access Structure) Let P1, · · · , Pn be a set of parties. A collection
A ⇐ 2P1,··· ,Pn is monotonic if ∀B ⊕ A and B ⇐ C, then C ⊕ A. An access
structure (AS) is a collection A of non-empty subsets of {P1, · · · , Pn}, i.e., A ⇐
2P1,··· ,Pn\{φ}. The set in A is called authorized set, and the set not in A is called
unauthorized set.

Remark 1. In attribute-based encryption, the attributes will play the role of
parties and we will consider only monotonic access structure. Actually, it is also
possible to (inefficiently) realize general access structures using our techniques
by having the “not” of an attribute (non-monotonic attribute) as a separate
attribute altogether.

Definition 2. (Linear Secret-Sharing Scheme(LSSS)) A secret sharing scheme
over a set of parties P is called linear if

1. The share of each party forms a vector over Zp;
2. There exists a l×n matrix A. For all j = 1, · · · , l, the j-th row of A is labeled

by a party α(j). When we consider the column vector v = (s, r2, · · · , rn),
where s ⊕ Zp is the secret to be shared and r2, · · · , rn are randomly picked,
then Av is the vector of l shares of the secret s.

3. There is an efficient secret reconstruction algorithm. Let S be the authorized
set and I ⇐ {1, · · · , l} as I = {j|α(j) ⊕ S}, then the vector (1, 0, · · · , 0) is in
the span of rows of A indexed by I, and there exists constants {Σj ⊕ Zp}j∗I

such that, for any valid shares {λj} of a secret s, we have
∑

j∗I Σjλj = s.
For all unauthorized sets, no such constants {Σj} exists.

It is shown that these constants Σj can be found in time polynomial in the size
of the share-generating matrix A.

3 Model of ABE of Key Resilient-Leakage and Attribute
Direct-Revocation

3.1 Algorithm Definition

A directly revocable attribute-based encryption E resilient to leakage is comprised
of five probabilistic polynomial time algorithms ADR-lrABE � (Initialize, Extract,



198 M. Zhang

Encrypt, Decrypt, Update). We now present the ciphertext-policy attribute-based
encryption scheme that is resilient to leakage from many keys capable of decrypt-
ing the challenge ciphertext. Note that we additionally devise an update algorithm
to perform key refresh and then defeat the continual leakage attacks.

In this paper, we denote the term U as the universal attribute set, and denote
R as the attribute revocation set. We also use I to denote the identity set of the
user. We denote the term σ as the access structure described by an LSSS, i.e.,
σ = (A, α), and we use σ to denote the complementary set of σ , i.e., σ = U −σ .

Definition 3. (ADR-lrABE Algorithm) An attribute directly revocable attribute-
based encryption scheme resilient to key-leakage (ADR-lrABE) is defined as:

1. Initialize(1τ , L,U , I) The system initialization algorithm takes as input the
security parameter Ω , a leakage bound L, a universal attribute set U =
{1, 2, · · · ,m} and a user set I = {1, 2, · · · , n}, and outputs system public
key PP and master secret key MK.

2. Extract(MK, I,S) The key generation algorithm takes as input the master
key MK, and a user identity I ⊕ I and the associated attribute set S ⇐ U as
inputs, and outputs a secret key SKI,S . Note that a key implicitly contains
the attribute set S and the user identity I.

3. Encrypt(m, σ = (A, α),R ={Ri}i∗η ) The encryption algorithm takes as in-
put a message m, an access structure σ = (A, α) and a revocation user list
{Ri} for each attribute i ⊕ U , and outputs a ciphertext CTη . Note that a
ciphertext contains an access structure σ and the corresponding revocation
attribute set {Ri}i∗η .

4. Decrypt(SKI,S , CTη ) Let S ′ = {i|i ⊕ S ∩ σ , i �⊕ R}}. The decryption algo-
rithm takes as input a ciphertext CTη and a secret key SKS , and outputs a
message m if S ′ satisfies σ .

5. Update(SKS , I,S) The key update algorithm takes as input a key SKS and
outputs a refreshed key SK′S .

Remark 2. 1. The system public key is be used in all other algorithms, and all
algorithms take implicitly PP as input.

2. We note that an update key has the same decryption functionality as the
previous one.

3. In our model, we require that the scheme must be secure in the presence of
a key leaked under some bound L.

The robustness of algorithm ADR-lrABE will hold in the following conditions:
Let L be a leakage bound, U and I be a universal attribute set and a user
set respectively, and M be the message space. Let Leaki be any polynomial-
time computable function. For all correctly created PP and MK from the system
initialization algorithm, and SKI,S ← Extract(MK, I,S), CTη ← Encrypt(m, σ =
(A, α), {Ri}i∗η ), then Decrypt(CTη , SKS) = m with probability 1 if the user at-
tribute set (excluding the revocation attributes) S ′ satisfies the access structure
σ , where S ′ = {i|i ⊕ S ∩ σ, I �⊕ {Ri}}. That is,



New Model and Construction of ABE 199

Pr

⎛
⎝⎝⎝⎝⎝⎝⎝⎝⎝⎝⎝⎝⎝⎝⎨

(PP, MK) ⊕ Initialize(1φ , L,U , I)
m ≤ M, S ← U , I ≤ I

⊆i ≤ S , Γ (S) = 1
Leaki : {0, 1}∈ → {0, 1}o where o ≤ L

SKI,S ⊕ Extract(MK, I,S)
SK∪I,S ⊕ Update(SKI,S , I,S)⎩

i |Leaki(SKI,S , I,S)| ≤ L,⎩
i |Leaki(SK∪I,S , I,S)| ≤ L
CTκ ⊕ Encrypt(m, Γ = (A,ρ), {Ri}i∈κ )

m �= Decrypt(CTκ , SKI,S) �= Decrypt(CTκ , SK
∪
I,S)

⎫
⎞⎞⎞⎞⎞⎞⎞⎞⎞⎞⎞⎞⎞⎞⎠

≤ μ(τ )

As the system public key PP is fully published, we only consider the secret
key as the input of the leakage function Leak.

In the rest of this paper, we use a boolean functionMatch(σ,S, I,R) to denote
the output of the match of attribute set S of user I to satisfy an access structure
σ . i.e.,

σ (S) =
{
1 set S satisfies access structure σ
0 otherwise

and

Match(σ,S, I,R) =

{
1 σ (S ′)=1 for S ′ = {i|i ⊕ S ∩ σ , i �⊕ {Ri}}
0 otherwise

We have the computational indistinguishability relation between key/ciphertext
spaces and plaintext space, that is,

Decrypt(Encrypt(m, Γ,R),Update(Extract(MK, I,S))) = m ≈c Match(Γ,S , I,R) = 1

3.2 Security Definition

Semantic security of an encryption scheme requires that an adversary, with two
messages and a ciphertext encrypting one of them, must not be able to guess
which of the two messages is encrypted. But if we let the adversary learn ar-
bitrary functions of several secret keys, then it could ask for a function that
decrypts the challenge ciphertext and provides the output. We provide the secu-
rity of ADR-lrABE to be key-leakage resilient and fine-grained attribute revocable
in the sense that the semantic security still holds when any adversary can specify
any efficiently computable function and learns the bounded outputs of keys from
the function.

As a key may be leaked by leakage functions Leaki repeatedly, in our security
experiment, we devise the oracles for an adversary queries as: (i) key creation
oracle OC , (ii) key leak oracle OL, (iii) key update oracle OU and, (iv) key reveal
oracle OR. In order to model the leakage is bounded, we allow the adversary to



200 M. Zhang

get access to the leakage oracle OL on the secret key with only the constraint
that the amount outputs of the leakage can not get more than L bits per key.
For a key leak or reveal oracle, we first create the key from Extract algorithm
and store it in a queue L. A leakage oracle OL is parameterized by secret key
SKI,S and leakage bound L.

When an adversary requests a leakage query, we search the key in the queue
L and outputs the leakage from function Leaki(SK) if the amount output of SK
is less than L. For a key reveal query, we at first obtain the key in L, and return
the key directly (this simulates the traditional key extraction query in ABE). At
the same time, we will record the revealed key into another queue T since the
key can be updated and we should record all revealed keys.

We define the security experiment ExpE,A in the presence of the key leakage.
The ExpE,A that interacts between a challenger C and an adversaryA is formally
described as follows:

1. Prepare. The challenger C runs Initialize algorithm to create system parameter
PP and master key MK, and sends PP to adversaryA. Moreover, the challenger
C creates two initially empty queues L = ≤∝,S, I, SKI,S , lnum← and T = ≤∝
,S, I←, in which we use ∝ as a handle to associate the record and use lnum
to store the amount bits of key leakage.

2. Query-I. By adaptive manner, adversary A issues a number of queries to the
oracles as follows:
Create key oracle (OC(∝,S, I)): C first searches the record in L. If there

is no record found, C makes a call to Extract algorithm to obtain a secret
key SKI,S and adds (∝ +1,S, I, SKI,S , 0) into L.

Key leakage oracle (OL(∝, Leak)): A provides a leakage function Leak to
request a key leakage query. C first searches L to obtain the key SKI,S , an-
swers the query with Leak(SKI,S) if lnum+Leak(SKI,S) ≈ L, and updates
lnum with lnum+ Leak(SKI,S); C responds with φ otherwise.

Key update oracle (OU (∝, SKI,S)): C first search the key in L. If there is
no record found, C makes a call to OC to create a new key and store
it in L. Otherwise C calls Update to refresh the key and sets lnum = 0.
Finally, C answers the query with the key associated with handle ∝.

Key reveal oracle (OR(∝)): C searches L to find the record, adds the tuple
(∝,S, I) into T and answers the query with SKI,S .

3. Challenge. A provides the challenge: an access structure σ ⊥, a revocation list
R⊥ and two messages m⊥

0 and m⊥
1, with the restriction that (i) |m⊥

0| = |m⊥
1|,

(ii) for all tuples (S, I) ⊕ T , Match(σ ⊥, I,S,R⊥) = 0. C flips a random coin
ψ ⊕ {0, 1}, and encrypts mδ under access structure σ ⊥, receiver identity I
and attribute set S, and revocation list R⊥.

4. Query-II. This stage is the same as Query-I, with the restriction that the
query to the oraclesOC , OU and OR must satisfy (S, I) ⊕ T , Match(σ ⊥,S, I,
R⊥) = 0.

5. Output. A outputs a bit ψ̂.

A’s advantage in ExpE,A is defined as AdvE,A(Ω, L,U , I) � 2Pr[ψ̂ = ψ]− 1.



New Model and Construction of ABE 201

Definition 4. (Key-leakage resilient semantic security of ADR-lrABE) An
attribute-based encryption scheme ADR-lrABE is (Ω, L)-key leakage resilient and
attribute revocably secure if all probabilistic polynomial-time adversaries have at
most a negligible advantage AdvE,A(Ω, L,U , I) in the experiment ExpE,A.

Definition 5. (Continual key-leakage resilience of ADR-lrABE) If a leakage-
resilient encryption scheme is equipped with an update algorithm that takes in a
secret key as input and outputs a re-randomized key from the same distribution,
then the scheme is called continual-leakage resilient in different key periods.

4 Our Construction

Our ADR-lrABE scheme uses a composite order bilinear group of order N =
p1p2p3, where p1, p2, p3 are distinct primes. The main system resides in Gp1

while Gp2 subgroup acts for the semi-functional space. Gp3 subgroup provides
the additional randomness on keys to isolate keys in our hybrid games. Also,
we extend the composite-order group to multiple dimensional to tolerate the
possible leakage. We can convert our scheme to the construction in prime-order
group by using the translation technique in [11,14].

Secret Key Structure. Let S be a set of attributes of user I that satisfies an
access structure σ . A secret key of S = {S1, S2, · · · , Sk} has the form

SKI,S = ≤Ki,1,Kj,2,Kj,3←i∗[κ],j∗S

= ≤(gβi)i∗[κ], (gα
Ihj+β+tjrj−∈β,γ≤)j∗S , (grj )j∗S← ×Xκ+2k

3

where τ is a leakage resilience parameter and α, β ⊕ Z
κ
N . We note that (gtj )j∗U ,

(gα
j

)j∗[1,··· ,n,n+2,··· ,2n], (gγ)i∗[κ] are systempublic parameters and (α, β, hj, tj)j∗U
are system master keys.

We note that the components of SKI,S are the elements in Gp1p3 . Actually,
since we hide the generators Gp2 and N cannot factor, then from the view of
adversary the elements of secret key SKI,S is computationally indistinguishable
from the elements in G.

In our scheme, τ (τ ∈ 2) is a positive constant that determines the leakage-
resilient strength. The larger τ leads to a better leakage rate being tolerated,
and the smaller τ yields a smaller size of key and ciphertext. We can adjust the
system parameter to obtain a better leverage of security and efficiency.

Ciphertext Structure. The encryption algorithm takes as input an LSSS ac-
cess structure (A, α), in which the function α associates rows of matrix A to
attributes. In our construction, we limit α to be an injective function, that is,
an attribute is associated with at most one row of A. Let σ = (Al×k, α) be an
access structure that formally describes as an LSSS, and R = {Rβ(x)}x∗{1,2,··· ,l}
be an attribute revocation list. For each row x in matrix A, we let Ax denote
the x-th row vector of A. A ciphertext CTη has the following form:



202 M. Zhang

CTΓ = ∈C0, (Bx,i)i⊆[θ], {Cx,0, Cx,1, Cx,2, Cx,3, Cx,4}x⊆[l]≤
= ∈m · (gT )

s
, T

σis

ρ(x)
, g

λx , T
λx
ρ(x)

, g
ηx (Hρ(x)

∏

j⊆Sρ(x)

gn+1−j)
λx , g

sx , g
ηx (

∏

j⊆Rρ(x)

gn+1−j)
sx ≤

where v = (s, v2, · · · , vk) is picked from Z
k
N randomly, and λx = Ax · v and

Sβ(x) = U − Rβ(x). Note that we use components Cx,3 and Cx,4 to associate
with the list of attribute revocation. Here Tj and Hj are published, and we use
Tj to associate with authorized attribute and Hj to associate with revocation
attribute.

In our construction, we assume that there are m attributes in U and n users
in the system. The concrete construction is described as follows.

Initialize(1τ , L,U , I). On input a system security parameter 1τ ⊕ N, an allow-
able leakage bound L, a universal attribute set U and a user list I, this
algorithm creates system public key PP and master key MK as follows: Taking
as input a system security parameter 1τ to generate a description of bilinear
group P = (N = p1p2p3,G,Gt, ê), where p1, p2 and p3 are distinct primes of
size Ω1, Ω2, Ω3-bit, and for 1 ≈ i ≈ 3, 2τi−1 ≈ pi ≈ 2τi and Ωi = poly(Ω); Set

τ = 1+2ξ+L/log p2 where ξ is a constant and ν = p−ξ
2 is a negligible prob-

ability in guessing the secret key when obtaining the leakage;1 And then at
random pick g ⊕ Gp1 , X3 ⊕ Gp3 . Let U = {1, 2 · · · ,m} and I = {1, 2, · · · , n}.
For j ⊕ U , at random choose tj , hj ⊕ ZN and set Tj = gtj , Hj = ghj ;
At random select α, β ⊕ ZN , and for k ⊕ {1, 2, · · · , n, n + 2, · · · , 2n} set

gk = gα
k

; For i ⊕ [τ], choose αi, βi ⊕ ZN randomly, keep the master
key MK := (α, β, (αi)i∗[κ], (tj , hj)j∗U , X3), and set the system public key

PP := (P , g, (gγi)i∗[κ], (Tj, Hj)j∗U , (gk)k∗[2n]\{n+1}, gT = ê(g1, gn)
β).

Extract(MK, I,S). Let S ⇐ U , k = |S| and I ⊕ I. The key generation algorithm
creates a secret key SKI,S for user I of attribute set S as follows: Choose
X ⊕ G

κ+2k
p3

randomly. Note that a random element in Gp3 can be obtained
by raising X3 to a random exponent from ZN ; For j ⊕ S, at random select
rj ⊕ ZN . For i ⊕ [τ], j ⊕ S, select ϑi,j ⊕ ZN s.t. g∈β,γ≤ = g∈ϑj ,γ≤, and then
output the secret key SKI,S , where

SKI,S = ≤Ki,1,Kj,2,Kj,3←i∗[κ],j∗S

= ≤(gγi)i∗[κ], (g
αIhj+β+tjrj−∈ϑj ,γ≤)j∗S , (grj)j∗S← ×Xκ+2k

3 (1)

Encrypt(m, σ,R). Let σ = (Al×k, α) be the associated access structure and
R = {Rβ(x)}i∗[l] be the attribute revocation list. The encryption algorithm
proceeds as follows: At first select a random vector v = {s, v2, · · · , vk}, and
set C0 = m ·(gT )s = m · ê(g1, gn)βs, randomly; Let Ax denote the x-th row of
matrix A. For each row x in matrix A, set λx = Ax ·v and Sβ(x) = U − Rβ(x);
For each row x in A, pick ηx, sx ⊕ ZN randomly; Output the ciphertext CTη
along with Rβ(x), where

1 In elliptic curve cryptography (ECC), the order p2 is at least 160-bit, and thus ε is
negligible if ξ ≥ 1.



New Model and Construction of ABE 203

CTκ = 〈C0, {(Bx,i)i∈[γ], Cx,0, Cx,1, Cx,2, Cx,3, Cx,4}x∈[l]〉
= 〈m · (gT )s, (Tρ(x))

σis

i∈[γ]
, gλx , (Tρ(x))

λx , gηx(Hρ(x)

∏
j∈Sρ(x)

gn+1−j)
λx ,

gsx , gηx(
∏

j∈Rρ(x)

gn+1−j)
sx〉 (2)

Remark 3. Obviously, the key does not contain the attribute revocation list, but
only the ciphertext does. Thus, only the sender (encrypter) decides the receivers
that own the attribute set out of the revocation list.

Remark 4. Attribute direct revocation does not need to re-distribute the user
key in the system, and the system is very flexible in practice.

Decrypt(CTη , SKI,S). Let R = {x|α(x) ⊕ S, x �⊕ Rβ(x)} and S ′ = {α(x)}x∗R. If
Match(σ , S, I,R) = 1 then σ (S ′) = 1, and the decryption algorithm com-
putes

Dx,1 =
ê(Cx,0,Kρ(x),2 · ∏j⊆Sρ(x),j ∗=I

gn+1−j+I)

ê(Cx,1,Kρ(x),3)
, Dx,2 =

ê(Cx,4/Cx,2, gI)êω(Bx, K1)

ê(Cx,3,
∏

j⊆Rρ(x)
gn+1−j+I )

Compute constants Σx such that
∑

β(x)∗S ΣxAx = (1, 0, · · · , 0), and then

return m ← C0

∏
x∗R(Dx,1Dx,2)

ωx .

Update(SKI,S , I,S). On input a secret key SKI,S , the key update algorithm re-
randomizes and produces a same distributed secret key SK′I,S as follows:

Parse SKI,S as ≤K1,K2,K3←; At random select δ ⊕ Z
κ
N . For j ⊕ S, choose

ςj ⊕ Z
κ
N and zj ⊕ ZN s.t.

∑
j∗S ςi,j = δi for i = 1, · · · , τ; Select Z1, Z2, Z3 ⊕

G
κ
p3

×G
k
p3

×G
k
p3

randomly, where k = |S|; Output the key SK′I,S

SK
∪
I,S =


⎟

⎟

K1

K2

K3


×


⎟

gδ

T
zj
j g−〈ςj ,σ〉

gzj


×


⎟

Z1

Z2

Z3






= 〈(gρi+δi)i∈[γ], (gα
Ihj+β+tj(rj+zj)−〈ϑj+ςj ,σ〉)j∈S , (grj+zj )j∈S〉 ×Xγ+2k

3 (3)

It is easy to see that an updated key has the same distribution to the previous
key, since the fresh exponents are added by uniform randomness δi, ςj and zj ,
and the Gp3 part has the similar update. As all randomness in SKI,S will be
removed by the pairing operations in decryption procedure, the update key and
the old key have the same decryption ability.

5 Performance

We first analyze and discuss the leakage bound L and leakage probability ν. To
obtain a leakage tolerance in subspace hiding theorem, in Corollary 1, by setting



204 M. Zhang

τ = m − 1 and d = 1, and we have L = log2 ⊇π⊇ = 2 + (τ − 1 − 2ξ) log2 p2-bit,

where τ is a positive constant defined in Section 4. We can obtain ν(·) = p−ξ
2

is negligible if ξ ∈ 1 and p2 = poly(Ω). The leakage bound L is mainly decided
by the order of subgroup Gp2 . The sizes of system public key, secret key and
ciphertext are (τ + m + 2n)⊇G⊇ + ⊇G2⊇, (τ + 2k)⊇G⊇ and (τ + 4)l⊇G⊇ + ⊇G‖,
respectively, which are described in Tab.2.

Table 1. Size of public key, secret key and ciphertext

size remark

# of PP (θ +m+ 2n)‖G‖ + ‖G2‖ m: number of elements in universal attribute set
n: number of elements in user identity set

# of SK (θ + 2k)‖G‖ k: number of elements in attribute set S
# of CT (θ + 4)l‖G‖+ ‖G2‖ l: row of LSSS matrix A

θ: leakage parameter, ‖G‖: bits of an element of group G, ‖G2‖: bits of an element of
group G2.

We give the performance of leakage rate χ that describes the allowable leakage
of a key divided by the size of total key SK, more concretely, χ = L

‖SK‖ . As

discussed in Section 4, we suppose that p1, p2 and p3 are distinct primes of Ω1, Ω2
and Ω3 bits respectively, which are associated with the system security parameter
Ω . By ascertaining Ω1 = w1Ω , Ω2 = Ω and Ω3 = w3Ω where w1 and w3 are
positive, we can obtain the leakage rate of a secret key SKS is κ−1−2ξ

(1+w1+w3)(κ+2k) ∅
1

(1+w1+w3)(1+
2k
θ )

. Obviously, the larger w1 and w3 provide stronger security in

subgroups Gp1 and Gp3 , but will emerge lower leakage rate since the security
of these subgroups is determined by the parameter Ω1 or Ω3. We can obtain
the leverage of security and efficiency by choosing suitable factors w1 and w3.
Actually, we can set w1 = w3 = w to allow ⊇p1⊇ = ⊇p3⊇ since our construction
is only in Gp1p3 .

Table 2. Performance of leakage resilience

performance value

leakage bound L �(θ − 1− 2ξ) log p2�
leakage rate γ 1

1+2w
· 1− 1+2ξ

θ

1+ 2k
θ

≈ 1
1+2w

· 1

1+ 2k
θ

leakage probability ε p−ξ
2

ξ: a constant that decides the leakage probability, k: size of attribute set S
p2: order of subgroup Gp2 , θ: leakage parameter

We now give the practical evaluation of our scheme in 112-bit standard secu-
rity recommended by NIST, which can be securely used in practice in the next
twenty years [19]2. Our scheme is constructed in pairing-based cryptographic

2 From NIST recommendation, 112-bit standard is secure till year 2030.



New Model and Construction of ABE 205

system, in which G is an elliptic curve group. NIST shows that, elliptic curve
cryptography in pairing-based cryptography appears to be secure with shorter
keys than those needed by other asymmetric key algorithms, and elliptic curve
cryptography keys should be twice the length of equivalent strength symmet-
ric key algorithms [19]. For example, a 224-bit ECC key would have roughly
the same strength as a 112-bit symmetric key in AES. Meanwhile, we guaran-
tee that the factorization of N is hard, then we require N = 2048-bit under
112-bit security level. Thus an element of G is 2048-bit and an element of G2

is 4096-bit. In order to obtain better performance of leakage resilience, we set
⊇p1⊇ = ⊇p3⊇ = 224-bit and ⊇p2⊇ = 2048 − 2 ∗ 224 = 1600-bit. Thus, we can
calculate w = 224

2048 = 0.11, and then the allowable maximum leakage rate is
κ−1−2ξ

1.22⊥(κ+ 2k
θ )

∅ 1
1.22⊥(1+ 2k

θ )
. For an enough large leakage parameter τ, the extreme

value of leakage rate is 1/1.22 = 82%. The simulations of leakage bound and the
adversary’s possible attack probability are shown in Fig.1 and Fig.2.

Fig. 1. Leakage bound L (bits) Fig. 2. Leakage probability

6 Security

Intuitively, our scheme is equipped with an update algorithm that takes input
a secret key and outputs a re-randomized key from the same distribution, and
then we can obtain continual leakage tolerance in different key periods. We can
specify the leakage parameter L as the entropy loss that a secret key can tolerate,
and update the key when the entropy loss of that secret key will draw near the
threshold.

The semantic security is obtained via a hybrid argument over a series of games,
which employs DSE mechanism in [18,16,17]. At first we let Game0 denote the
real game as defined in Section 4 and its security model is defined in Section
3. Then we describe the remainder of games as the semi-functional versions in
ciphertext and keys, respectively. We prove that all these games are compu-
tationally indistinguishable. At the last game, we show that an adversary has
no advantage in outputting a successful guess ψ defined in security experiment
ExpE,A in Section 3.2. We have the following theorem.



206 M. Zhang

Theorem 3. Under the subgroup decisional assumptions hold in composite order
bilinear groups, the ADR-lrABE scheme defined in Section 4 achieves semantic se-
curity and key-leakage resilience in the presence of attribute direct revocation.

Proof. We only give the proof idea due to page limitation. We fist give the
construction of the semi-functional ciphertext and two types of semi-functional
keys by attaching the Gp2 parts in the corresponding ciphertext/key in Eq.(1)
and Eq.(2) respectively. The semi-functional ciphertext has the form ĈTη =
(Ĉ0, {(B̂xi)i∗[κ], Ĉx,1, Ĉx,2, Ĉx,3, Ĉx,4}x∗[l]), where Ĉ0 = C0, B̂x,i = BxiWx,i,

Ĉx,1 = Cx,1Yx,1, Ĉx,2 = Cx,2Yx,2, Ĉx,3 = Cx,3, Ĉx,4 = Cx,4 in which Wx,i, Yx,1
and Yx,2 are at random picked from Gp2 for i ⊕ [τ] and x ⊕ [l].

The semi-functional key has two forms: Type-1 form and Type-2 form. The
first form of semi-functional key is ŜKI,S = (K̂i,1, K̂j,2, K̂j,3)i∗[κ],j∗S , where

K̂i,1 = Ki,1Xi,1, K̂i,2 = Ki,2Xi,2 and K̂i,3 = Ki,3Xi,3 in which Xi,1, Xi,2 and
Xi,3 are picked from G2 randomly. In the second semi-functional key, only the

second component K̂i,2 has Gp2 part, that is SKI,S = (K̂i,1 = Ki,1, K̂i,2 =

Ki,2Xi,2, K̂i,2 = Ki,3)i∗[κ],j∗S .
By the DSE mechanism, we convert the challenge ciphertext into semi-

functional form and prove that this conversion is imperceptible for the adver-
sary. By turn, we convert the queried keys into semi-functional form, and prove
that these conversions are indistinguishable even the adversary saw the con-
verted normal/semi-functional challenge ciphertext/keys. Also, we prove that,
even the adversary has at most L bits leakage on every key, s/he also has only a
negligible advantage to decrypt the challenge ciphertext and break the security
experiment in ExpE,A, which is based on the theorem of subspace hiding with
leakage in Theorem 2. Finally, we achieve a series of indistinguishable games
between normal key and normal challenge ciphertext in real construction and
truly semi-functional key and ciphertext in last game. We use a series of games to
prove the leakage-resilient security. More concretely, we prove that these games
are computationally indistinguishable, and thus conclude the theorem.

7 Concluding Remarks

We presented the model of attribute-based encryption that supports both key
leakage resilience and attribute direct revocation, and then gave the concrete
construction and performance evaluation. We proved the security in the standard
model under the static subgroup decision assumptions, analyzed the leakage-
resilient performance, and showed that the scheme is semantically secure in the
presence of about (82+ o(1)) fraction of the bits of decryption key being leaked.
Our scheme can be used in secure data transmission and access control in large
scale open networks with potential noise attacks or side-channel attacks such as
public cloud computing, Internet of Things, smart grids, etc.

Acknowledgement. The author would like to thank the anonymous reviewers
for their valuable comments from ACISP 2014. In particular, the author would
like to express his thanks to Dr. Xinyi Huang for his suggestion and improvement
in this work.



New Model and Construction of ABE 207

References

1. Agrawal, S., Dodis, Y., Vaikuntanathan, V., Wichs, D.: On continual leakage of
discrete log representations. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part
II. LNCS, vol. 8270, pp. 401–420. Springer, Heidelberg (2013)

2. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and
cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 474–495. Springer, Heidelberg (2009)

3. Attrapadung, N., Herranz, J., Laguillaumie, F., Libert, B., et al.: Attribute-
based encryption schemes with constant-size ciphertexts. Theoretical Computer
Sciences 422, 15–38 (2012)

4. Attrapadung, N., Imai, H.: Conjunctive broadcast and attribute-based encryption.
In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 248–265.
Springer, Heidelberg (2009)

5. Attrapadung, N., Imai, H.: Attribute-based encryption supporting direct/indirect
revocation modes. In: Parker, M.G. (ed.) Cryptography and Coding 2009. LNCS,
vol. 5921, pp. 278–300. Springer, Heidelberg (2009)

6. Boldyreva, A., Goyal, V., Kumar, V.: Identity-based encryption with efficient re-
vocation. In: ACM-CCS 2008, pp. 417–426 (2008)

7. Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption
under subgroup indistinguishability. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 1–20. Springer, Heidelberg (2010)

8. Brakerski, Z., Kalai, Y.T., Katz, J., Vaikuntanathan, V.: Overcoming the hole
in the bucket: Publickey cryptography resilient to continual memory leakage. In:
FOCS 2010, pp. 501–510 (2010)

9. Chow, S., Dodis, Y., Rouselakis, Y., Waters, B.: Practical leakage-resilient identity-
based encryption from simple assumptions. In: ACM-CCS 2010, pp. 152–161 (2010)

10. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Efficient public-key cryptog-
raphy in the presence of key leakage. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 613–631. Springer, Heidelberg (2010)

11. Freeman, D.M.: Converting pairing-based cryptosystems from composite-order
groups to prime-order groups. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 44–61. Springer, Heidelberg (2010)

12. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. ACM-CCS 2006, pp. 89–98 (2006)

13. Han, J., Susilo, W., Mu, Y., Yan, J.: Attribute-based oblivious access control.
Computer Journal 55(10), 1202–1215 (2012)

14. Lewko, A.: Tools for simulating features of composite order bilinear groups in the
prime order setting. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 318–335. Springer, Heidelberg (2012)

15. Lewko, A., Waters, B.: New proof methods for attribute-based encryption: achiev-
ing full security through selective techniques. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012)

16. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure func-
tional encryption: attribute-based encryption and (hierarchical) inner product en-
cryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91.
Springer, Heidelberg (2010)

17. Lewko, A., Rouselakis, Y., Waters, B.: Achieving leakage resilience through dual
system encryption. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 70–88.
Springer, Heidelberg (2011)



208 M. Zhang

18. Lewko, A., Waters, B.: New techniques for dual system encryption and fully secure
hibe with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978,
pp. 455–479. Springer, Heidelberg (2010)

19. Polk, W.T., Dodson, D.F., Burr, W.E., Ferraiolo, H., Cooper, D.: Cryptographic
algorithms and key sizes for personal identity verification. NIST Special Publication
800-78-3 (2010),
csrc.nist.gov/publications/nistpubs/800-78-3/sp800-78-3.pdf

20. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi,
S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009)

21. Sahai, A., Waters, B.: Fuzzy identity based encryption. In: Cramer, R. (ed.) EU-
ROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

22. Wang, G., Liu, Q., Wu, J., Guo, M.: Hierarchical attribute-based encryption with
scalable user revocation for data sharing in cloud servers. Computer and Secu-
rity 30, 320–331 (2011)

23. Wang, P., Feng, D., Zhang, L.: Towards attribute revocation in key-policy attribute
based encryption. In: Lin, D., Tsudik, G., Wang, X. (eds.) CANS 2011. LNCS,
vol. 7092, pp. 272–291. Springer, Heidelberg (2011)

24. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011)

25. Yu, S., Wang, C., Ren, K., Lou, W.: Attribute based data sharing with attribute
revocation. In: ASIACCS 2010, pp. 261–270. ACM (2010)

26. Zhang, M., Shi, W., Wang, C., Chen, Z., Mu, Y.: Leakage-resilient attribute-based
encryption with fast decryption: models, analysis and constructions. In: Deng,
R.H., Feng, T. (eds.) ISPEC 2013. LNCS, vol. 7863, pp. 75–90. Springer, Heidelberg
(2013)

27. Zhang, M., Yang, B., Takagi, T.: Bounded leakage-resilient functional encryption
with hidden vector predicate. The Computer Journal 56(4), 464–477 (2013)

csrc.nist.gov/publications/nistpubs/800-78-3/sp800-78-3.pdf


Expressive Bandwidth-Efficient Attribute Based

Signature and Signcryption in Standard Model

Y. Sreenivasa Rao and Ratna Dutta

Indian Institute of Technology Kharagpur
Kharagpur-721302, India

{ysrao,ratna}@maths.iitkgp.ernet.in

Abstract. This paper proposes an efficient key-policy attribute based
signature (ABS) scheme with constant-size signature for expressive linear
secret-sharing scheme (LSSS)-realizable monotone access structures with
only 3 pairings for the verification algorithm, which is an affirmative
answer for one of the open problems left in Pairing 2012 by Gagné et
al. Our ABS provides signer privacy, and the existential unforgeability
is achieved in selective security model. We also propose a new attribute
based signcryption (ABSC) scheme for LSSS-realizable access structures
utilizing only 6 pairings and making the ciphertext size constant. Our
scheme is significantly more efficient than existing ABSC schemes. While
the secret key size increases by a factor of number of attributes used in
the system, the number of pairing evaluations is reduced to constant.
Our protocol achieves (a) ciphertext indistinguishability under adaptive
chosen ciphertext attacks assuming the hardness of decisional Bilinear
Diffie-Hellman Exponent problem, (b) existential unforgeability under
adaptive chosen message attack assuming the hardness of computational
Diffie-Hellman Exponent problem and (c) strong unforgeability against
insider adversary. The security proofs are in selective security model
without using any random oracle. In addition, our ABSC achieves public
verifiability of the ciphertext, enabling any party to verify the integrity
and validity of the ciphertext.

Keywords: attribute based signature, signcryption, public ciphertext
verifiability, signer privacy, LSSS-realizable access structure.

1 Introduction

Signcryption (SC) is an important cryptographic primitive for applications where
both confidentiality and authenticity are at prime concern. As encryption offers
confidentiality and signature provides authenticity, one can perform encryption
and signing sequentially to achieve this. However, the complexity of the resulting
framework is sum of the complexities of the individual primitives. Signcryption,
first introduced by Zheng [9], is a logical mixture of encryption and signature in
a single primitive, cost of which is significantly smaller than the cumulative cost
of encryption and signature.

W. Susilo and Y. Mu (Eds.): ACISP 2014, LNCS 8544, pp. 209–225, 2014.
c© Springer International Publishing Switzerland 2014



210 Y.S. Rao and R. Dutta

Attribute Based Signcryption (ABSC) which combines the functionalities of At-
tribute Based Encryption (ABE) [1–8] and Attribute Based Signature (ABS)
[10–13] are appropriate to ensure fine-grained data access control in large-scale
distributed environments like online social networks, cloud technology, etc. For
instance, in cloud technology, users can outsource their data to the clouds in
order to share their data efficiently with other users of their choice and also
access their data from any place through the Internet when required. In this
scenario, storing the information securely in the cloud may not be enough and
the users should also be able to prove their genuineness at the cloud servers, so
that illegal data storage can be avoided by the cloud. Designing efficient ABSC
scheme is not a trivial task and has received considerable attention to the recent
research community due to increasing demand of protecting sensitive data as
well as achieving authenticity of the data for fine-grained access control in large
distributed network.

Attribute Based Signature (ABS) introduced by Maji et al. [10] facilitates several
applications such as attribute based messaging, attribute based authentication,
trust-negotiation and leaking secrets. In ABS, messages are signed according to
some predicate of signer’s attributes and the verifier is assured that a signer
has endorsed the message with a set of attributes satisfying the signing predi-
cate. Especially, the signature exhibits no other attribute information about the
original signer. Later, a number of ABS schemes [11–14, 23, 24] are proposed.

Previous Work. The first ABSC was introduced by Gagné et al. [15] with
formal security models of message confidentiality and ciphertext unforgeability
for signcryption in attribute based setting. Following this, a number of ABSC
are proposed [16–19, 22]. To provide different rights for signature and decryp-
tion, signing attributes are separated from encryption/decryption attributes in
[15]. The ABSC scheme of [18] is dynamic in the sense that it allows updation
of signing access structures without re-issuing secret keys of users. Another in-
teresting feature exhibited by [18], in contrast to [15–17, 19, 22], is the public
ciphertext verifiability which allows any intermediate party (e.g., firewalls) to
check the ciphertext’s validity before sending to actual recipient. This reduces
unnecessary burden on the receiver for unsigncrypting invalid ciphertexts. While
[15, 18] achieve chosen ciphertext attack (CCA) security against message confi-
dentiality in standard model, [17] is chosen plaintext attack (CPA) secure and
[22] is CCA secure in random oracle model. The scheme of [16] has no formal
security proof for ciphertext unforgeability in existing security models and can
be shown to violate even the CPA security. The ABSC and its extension to
support traceability in [19] which are claimed to be CCA secure can be shown
incorrect (see Appendix B). The communication and computation overhead in
the existing ABSC schemes [15–19, 22] proliferates linearly with the number
of required attributes and none of these utilizes linear secret-sharing scheme
(LSSS)-realizable access structures. This motivates us to address the problem
of constructing ABSC with constant complexity (constant-size ciphertext and
constant computation cost) for more expressive access structure and featuring
public verifiability along with security in standard model.



Expressive Bandwidth-Efficient ABS and ABSC 211

1.1 Our Contributions

ABS with constant-size signature. To design an ABSC with the mentioned
objectives, we first construct a key-policy ABS scheme with constant-size signa-
ture for monotone LSSS-realizable access structure employing threshold public
key encryption framework of [20], where signature verification requires only 3
pairings. The existential unforgeability of this new ABS is reduced to computa-
tional Diffie-Hellman Exponent (cDHE) problem in standard model. Our ABS
construction preserves signer privacy which is one of the essential design goals
of the signature schemes in attribute based setting. The existing ABS schemes
[11–13, 23, 24] with constant-size signature admit only limited access structures
like threshold or AND-gate policies. Our ABS is the first LSSS-realizable ABS
construction with constant-size signature in key-policy setting, which is an affir-
mative answer for one of the open problems left in [13].

ABSCwith constant-size ciphertext.We then propose an ABSC scheme that
is a logical combination of the KP-ABE [8] and our proposed ABS. The main tech-
nical difficulty of designing signcryption is how to unify encryption and signature
primitives, so that the resulting signcryption is rich in functionality. We overcome
this by adapting the technique of ID based signcryption [21] and employing some
new technical ideas. Following are the silent features of our ABSC scheme:

• The proposed ABSC is proven to be CCA secure under the hardness of de-
cisional Bilinear Diffie-Hellman Exponent (dBDHE) problem [8] and achieves
existential unforgeability (EUF) under the hardness of cDHE problem [12], in
standard model against selective adversary. Our security definitions are more
general than the existing ones.

• The properties of strong unforgeability (sEUF) and public ciphertext verifia-
bility are achieved without using any strongly unforgeable one-time signature
scheme unlike [18] (this is the only existing scheme satisfying these two proper-
ties, see Table 2) to establish a connection between encryption and signature.
The proposed ABSC also provides insider security with respect to both con-
fidentiality and unforgeability as in [15].

• The ciphertext size in the proposed framework reduces to 6 group elements,
thereby more suitable for bandwidth limited applications (see Table 1).

• Moreover, the amount of computation required to generate ciphertexts and to
recover plaintexts is independent of the number of attributes involved in the
respective process unlike existing schemes (see Table 1). Precisely, the sign-
cryption process creates a ciphertext by performing 10 exponentiations. On
the other hand, the unsigncryption requires only 2 exponentiations and 6 pair-
ing evaluations to recover any message. We achieve this at the expense of large
secret key size that is quadratic in the number of attributes. However, storage
is much cheaper nowadays even for a large amount (e.g., smart phones [7]),
while the main concerns lie with low bandwidth and computation overhead.

• The proposed ABSC exploits more expressive monotone LSSS-realizable ac-
cess structures, whereas the existing key-policy ABSC schemes [15, 16, 19,
22] support only threshold access structures. We present the functionality
comparison in Table 2.



212 Y.S. Rao and R. Dutta

Table 1. Comparison of communication and computation costs of ABSC schemes

Secret Key (SK) Size Ciphertext Signcryption Cost Unsigncryption Cost
Scheme Signing SK Decryption SK Size Exp. Pair. Exp. Pair.

[15] 2Ls 3Le O(αs + we)O(αs + we) - O(αe) O(αs + αe)
[16] 2Ls 2Le O(αs + we)O(αs + we) - O(αe) O(αe)
[17] 2Ls + 1 2Le + 1 O(αs + we)O(αs + we) 1 O(αs + αe)O(αs + αe)
[18] 2Ls 2Le + 2vk + 1 O(Ls + ue)O(Ls + ue) - - O(Ls + ue)
[22] Ls + d − 1 Le + d− 1 O(αs + we)O(αs + we) - O(αe + we) O(αe)
[19] (Ls + d)2 2Le O(id+ we) O(id+ we) - O(αe) O(id+ αe)

[8] + [12] (2bs + 2)(bs + Ls) ueLe 7 O(bs) - O(bs) 9
Our ABSC usLs ueLe 6 10 - 2 6

Note that by size, we mean the number of involved group elements. We exclude the message
size from the ciphertext size in all the schemes listed in the table. Ls = number of signature
attributes annotated to a user’s signing secret key, bs = maximum size of the admitted signing
access structure, Le = number of decryption attributes annotated to a user’s decryption secret
key, αs = number of signature attributes involved in the signcryption, αe = minimum number of
decryption attributes required to recover a message, we = number of encryption attributes used
to encrypt a message, us = number of signature attributes in the signature attribute space Us,
ue = number of decryption attributes in the decryption attribute space Ue, vk = bit length of
verification key, d = threshold value of the system, id = length of user’s identity.

Table 2. Functionality comparison of ABSC schemes

KP/ Access Structure (AS) Security Hardness Assumption
Scheme CP Signature AS Decryption AS MC CU MC CU PV SM

[15] KP Threshold policyThreshold policyIND-CCA EUF-CMA dHmBDH cmDH No Yes
[16] KP Threshold policyThreshold policy insecure - - - No -
[17] CP Monotone tree Monotone tree IND-CPA EUF-CMA Generic group DHI No No
[18] CP Monotone tree AND-gate policyIND-CCAsEUF-CMA dBDH cDH YesYes
[22] KP Threshold policyThreshold policyIND-CCA EUF-CMA dBDH cDH No No
[19] KP Threshold policyThreshold policy IND-CPA EUF-CMA dBDH cDHE No No

[8] + [12] KP Threshold policy LSSS-realizable IND-CCA EUF-CMA dBDHE cDHE No Yes
Our KP LSSS-realizable LSSS-realizable IND-CCAsEUF-CMA dBDHE cDHE YesYes

Note that all the schemes listed in the table are selectively secure. MC = message confidentiality, CU
= ciphertext unforgeability, d(Hm)BDH = decisional (hashed modified) bilinear Diffie-Hellman,
c(m)DH = computational (modified) Diffie-Hellman, DHI = computational Diffie-Hellman inver-
sion, IND-CP(C)A = indistinguishability of ciphertexts under chosen plaintext (ciphertext) attack,
(s)EUF-CMA = (strongly) existential unforgeability under chosen message attack, KP/CP = key-
policy/ciphertext-policy, PV = Public Verifiability, SM = Standard Model.

The unsigncryption process in [CCA secure KP-ABE of [8]] + [our ABS]
requires 9 paring operations, while that for our ABSC is only 6. All other com-
plexities are almost identical for both the approaches. This in turn implies that
cost[our ABSC] < cost[CCA secure KP-ABE of [8]] + cost[our ABS]. In ad-
dition, the new ABSC outperforms all the existing ABSC schemes in terms
of communication and computation cost while realizing more expressive access
policies, namely LSSS-realizable access structures. One can obtain constant-size
ciphertext ABSC by merging KP-ABE of [7] and one of the existing constant-
size signature ABS schemes [11–13, 23, 24]. However, the computation cost (in
terms of exponentiations) during signcryption and unsigncryption grows linearly
with the number of encryption attributes used to signcrypt a message, and the
signing access structure is limited to either threshold or AND-gate policy.



Expressive Bandwidth-Efficient ABS and ABSC 213

2 Preliminaries

We use the following notations in the rest of the paper.

x ∈R X : operation of picking an element x uniformly at random from a set X
[n] : set {1, 2, . . . , n} of positive integers

In this section, we recall necessary background from [6, 8, 15].

Definition 1 (Access Structure). Let U be the universe of attributes and
P(U) be the collection of all subsets of U . Every non-empty subset A of P(U)\{⊕}
is called an access structure. The sets in A are called authorized sets and the sets
not in A are called unauthorized sets with respect to A. An access structure A is
said to be monotone access structure (MAS) if every superset of an authorized
set is again authorized in A, i.e., for any C ∈ P(U), with C ⊇ B where B ∈ A

implies C ∈ A. An attribute set L satisfies A (in other words, A accepts L) if
and only if L is an authorized set in A, i.e., L ∈ A.

Definition 2 (Linear Secret-Sharing Scheme (LSSS)). Let U be the uni-
verse of attributes. A secret-sharing scheme ΠA for the access structure A over
U is called linear (in Zp) if ΠA consists of the following two polynomial time
algorithms, where M is a matrix of size χ×k, called the share-generating matrix
for ΠA and σ : [χ] → IU is a row labeling function that maps each row of the
matrix M to an attribute in A, IU being the index set of U .
• Distribute(M, σ, α). This algorithm takes as input the share-generating matrix

M, row labeling function σ and a secret α ∈ Zp which is to be shared. It selects
z2, z3, . . . , zk ∈R Zp and sets v = (α, z2, z3, . . . , zk) ∈ Z

k
p. It outputs a set

{Mi · v : i ∈ [χ]} of χ shares, where Mi ∈ Z
k
p is the i-th row of the matrix M.

The share ββ(i) = Mi · v belongs to an attribute σ(i).
• Reconstruct(M, σ,W ). This algorithm will accept as input M, σ and a set of

attributes W ∈ A. Let I = {i ∈ [χ] : σ(i) ∈ IW }, where IW is the index set
of the attribute set W. It returns a set {τi : i ∈ I} of secret reconstruction
constants such that

∑
i∈I τiββ(i) = α, if {ββ(i) : i ∈ I} is a valid set of shares

of the secret α according to ΠA.

The target vector which is used to characterize access structures is (1, 0, . . . , 0),
i.e., a set W ∈ A iff (1, 0, . . . , 0) is in the linear span of the rows of M that are
indexed by W .

Lemma 1. [6] Let (M, σ) be a LSSS access structure realizing an access struc-
ture A over the universe U of attributes, where M is share-generating matrix of
size χ × k. For any W ≤ U such that W /∈ A, there exists a polynomial time
algorithm that outputs a vector w = (−1, w2, . . . , wk) ∈ Z

k
p such that Mi ·w = 0,

for each row i of M for which σ(i) ∈ IW , here IW is index set of attribute set W.

Bilinear Map. We use multiplicative cyclic groups G,GT of prime order p
with an efficiently computable mapping e : G × G → GT such that e(ua, vb) =
e(u, v)ab, ← u, v ∈ G, a, b ∈ Zp and e(u, v) ∅= 1GT whenever u, v ∅= 1G.



214 Y.S. Rao and R. Dutta

2.1 Attribute Based Signcryption (ABSC)

In this section, we define attribute based signcryption as a set of five algorithms
following [15] wherein Ue and Us respectively are disjoint universes of encryp-
tion/decryption attributes and signature attributes. A Central Authority (CA)
manages all the (encryption and signature) attributes and their public-secret key
pairs by executing Setup algorithm. When a decryptor requests a decryption
secret key, the CA creates a decryption access structure Ad over Ue according
to her role in the system and then computes the decryption secret key SKAd

by
running dExtract algorithm, and finally sends to the decryptor. Similarly, the
CA computes the signing secret key SKAs by executing sExtract algorithm with
the input a signing access structure As over Us and sends to the signcryptor.
While the decryption access structure enables what type of ciphertexts the user
can decrypt, the signing access structure is used to signcrypt a message.

When a signcryptor wants to signcrypt a message M , it selects a set We of
encryption attributes that decides a group of legitimate recipients and an autho-
rized signing attribute set Ws of its signing access structure As (i.e., Ws ∈ As),
and then executes Signcrypt algorithm with the input M, SKAs ,Ws,We. Here,
We is used to encrypt a message and Ws is used to sign a message. On receiving
the ciphertext CT(Ws,We) of some message M, the decryptor/recipient performs
Unsigncrypt algorithm with the input CT(Ws,We), SKAd

. The unsigncryption
will correctly returnedM only ifWe ∈ Ad and the ciphertext CT(Ws,We) contains
a valid signature with signing attributes Ws used in the ciphertext.

We denote this ABSC system as follows.

ΦABSC =

⎧

⎪⎪⎪⎪⎨

(PK,MK) = Setup(π,Ue,Us)
SKAs = sExtract(PK,MK,As)
SKAd

= dExtract(PK,MK,Ad)
CT(Ws,We) = Signcrypt(PK,M, SKAs ,Ws,We)
M or ⇒ = Unsigncrypt(PK,CT(Ws,We), SKAd

)

⎩

⎥⎥⎥⎥⎦

2.2 Security Definitions for ABSC

Following [15], the security definitions of message confidentiality and ciphertext
unforgeability for ABSC are given below.
Message Confidentiality. This security notion is defined on indistinguisha-
bility of ciphertexts under adaptive chosen ciphertext attack in the selective
attribute set model (IND-ABSC-sCCA) through the following game between a
challenger C and an adversary A.
Init. The adversary A outputs the target set W ≤

e of encryption attributes that
will be used to create the challenge ciphertext during Challenge Phase.

Setup. The challenger C executes Setup(π,Ue,Us), gives the public key PK to
A and keeps the master secret key MK to itself.

Query Phase 1. The adversary A is given access to the following oracles which
are simulated by C.



Expressive Bandwidth-Efficient ABS and ABSC 215

• sExtract oracle OsE(As): on input any signing access structure As over signa-
ture attributes, C runs sExtract(PK,MK,As) and returns SKAs to A.

• dExtract oracle OdE(Ad): on input a decryption access structure Ad over en-
cryption attributes such that W ≤

e /∈ Ad, C executes dExtract(PK,MK,Ad)
and sends SKAd

to the adversary A.
• Signcrypt oracle OSC(M,Ws,We): on input a message M , a signing attribute
set Ws and an encryption attribute set We, the challenger C samples a signing
access structure As such thatWs ∈ As and returns the ciphertext CT(Ws,We) =
Signcrypt(PK,M, SKAs ,Ws,We) to A, where SKAs= sExtract(PK,MK,As).

• Unsigncrypt oracle OUS(CT(Ws,We),Ad): on input CT(Ws,We) and a decryption
access structure Ad used to decrypt, C obtains SKAd

= dExtract(PK,MK,Ad)
and gives the output of Unsigncrypt(PK,CT(Ws,We), SKAd

) to the adversary.

Challenge. The adversary A outputs two equal length messages M≤
0 ,M

≤
1 and a

signing attribute set W ≤
s . The challenger C selects a signing access structure

A
≤
s such that W ≤

s ∈ A
≤
s and returns the challenge ciphertext CT≤

(W⊆
s ,W⊆

e ) to
the adversary A that is output of Signcrypt(PK,M≤

b , SKA⊆
s
,W ≤

s ,W
≤
e ), where

SKA⊆
s
= sExtract(PK,MK,A≤

s) and b ∈R {0, 1}.
Query Phase 2. The adversary A can continue adaptively to make queries
as in Query Phase 1 except the queries: OUS(CT

≤
(W⊆

s ,W⊆
e ),A

≤
d), for any A

≤
d with

W ≤
e ∈ A

≤
d.

Guess. The adversary A outputs a guess bit b∗ ∈ {0, 1} and wins the game if
b∗ = b.

The advantage of A in the above game is defined to be AdvIND−ABSC−sCCA
A =

|Pr[b∗ = b]− 1
2 |, where the probability is taken over all random coin tosses.

Remark 1. The adversary A is allowed to issue the queries OsE(As), for any
signing access structure As with W ≤

s ∈ As, during Query Phase 2. This provides
insider security, which means that A cannot get any additional advantage in the
foregoing game even though the signing secret key corresponding to the challenge
signing attribute set W ≤

s is revealed.

Definition 3. AnABSC scheme is said to be (T , qsE, qdE, qSC, qUS, Σ)-IND-ABSC-
sCCA secure if the advantage AdvIND−ABSC−sCCA

A ≈ Σ, for any PPT adversary A
running in time at most T that makes at most qsE sExtract queries, qdE dExtract
queries, qSC Signcrypt queries and qUS Unsigncrypt queries in the above game.

Ciphertext Unforgeability. This notion of security is defined on existential
unforgeability under adaptive chosen message attack in the selective attribute
set model (EUF-ABSC-sCMA) through the following game between a challenger
C and an adversary A.
Init. The adversary A outputs a set of signature attributes W ≤

s to C that will
be used to forge a signature.

Setup. The challenger C runs Setup(π,Ue,Us) and sends the public key PK to
the adversary A.

Query Phase. The adversary A is given access to the following oracles.



216 Y.S. Rao and R. Dutta

• sExtract oracle O∗
sE(As): on input a signing access structure As over signature

attributes such that W ≤
s /∈ As, the challenger C runs sExtract(PK,MK,As)

and returns SKAs to the adversary A.
• dExtract oracle O∗

dE(Ad): on input any decryption access structure Ad over
encryption attributes, the challenger C executes dExtract(PK,MK,Ad) and
sends SKAd

to the adversary A.
• Signcrypt oracle O∗

SC(M,Ws,We): on input a message M , a signing attribute
set Ws and an encryption attribute set We, the challenger C samples a signing
access structure As such thatWs ∈ As and returns the ciphertext CT(Ws,We) =
Signcrypt(PK,M, SKAs ,Ws,We) to A, where SKAs= sExtract(PK,MK,As).

• Unsigncrypt oracle O∗
US(CT(Ws,We),Ad): on input CT(Ws,We) and a decryption

access structure Ad used to decrypt, C obtains SKAd
= dExtract(PK,MK,Ad)

and forwards the output of Unsigncrypt(PK,CT(Ws,We), SKAd
) to the adver-

sary A.

Forgery Phase. The adversary A outputs a forgery CT≤
(W⊆

s ,W⊆
e ) for some mes-

sage M≤ with a decryption access structure A
≤
d.

A wins if the ciphertext CT≤
(W⊆

s ,W⊆
e ) is valid and is not obtained from Signcrypt

oracle, i.e., Unsigncrypt(PK,CT≤
(W⊆

s ,W⊆
e ),dExtract(PK,MK,A≤

d)) = M≤ ∅= ⇒
and A did not issue O∗

SC(M
≤,W ≤

s ,W
≤
e ).

The advantage of A in the above game is defined as AdvEUF−ABSC−sCMA
A =

Pr[A wins].

Remark 2. In this security model, A can query dExtract oracle for the receiver’s
decryption access structure to whom the forgery is created in the foregoing game
which captures the insider security model for signature unforgeability.

Definition 4. AnABSC scheme is said to be (T , qsE, qdE, qSC, qUS, Σ)-EUF-ABSC-
sCMA secure if the advantage AdvEUF−ABSC−sCMA

A ≈ Σ, for any PPT adversary A
running in time at most T that makes at most qsE sExtract queries, qdE dExtract
queries, qSC Signcrypt queries and qUS Unsigncrypt queries in the above game.

Strong Unforgeability. An ABSC system is said to be strongly unforgeable
if it is existentially unforgeable with the condition that given signcryptions on
some message M, the adversary cannot create a new signcryption on the same
message M. In the foregoing existential unforgeability model, if the adversary is
allowed to produce a forgery on a message M that has already queried to the
Signcrypt oracle with the restriction that the forged signcryption for M cannot
be the output of Signcrypt oracle for the same messageM with the same signing
and encryption attribute sets as the forgery, it is called as strongly existential
unforgeability under adaptive chosen message attack in the selective attribute
set model (sEUF-ABSC-sCMA).

Definition 5. An ABSC scheme is said to be (T , qsE, qdE, qSC, qUS, Σ)-sEUF-
ABSC-sCMAsecure ifAdvsEUF−ABSC−sCMA

A ≈ Σ, for anyPPT adversaryA running
in time at most T that makes at most qsE sExtract queries, qdE dExtract queries,
qSC Signcrypt queries and qUS Unsigncrypt queries in the above game.



Expressive Bandwidth-Efficient ABS and ABSC 217

3 Our Expressive ABS Scheme with Constant-Size
Signature

In this section, we present our ABS with constant-size signature that supports
any monotone LSSS-realizable access structure in key-policy setting as a tuple
ΦABS = (Setup, Extract, Sign, Verify) of the following four algorithms.
Setup(π,Us) :

Here, Us = {att∗x} is the universe of signing attributes used in the system.
Let {0, 1}≤ be the message space and let H : {0, 1}≤ → {0, 1}γ be a collision
resistant hash function, where χ is large enough that the hash function is collision
resistant. The CA generates multiplicative cyclic groups G,GT of prime order
p whose size is determined by the security parameter π. Let e : G × G → GT

be an efficiently computable bilinear mapping. It samples α ∈R Zp, g ∈R G and
sets Y = e(g, g)κ. It then selects T0, u0, u1, . . . , uγ ∈R G. For each attribute
att∗x ∈ Us, it chooses Tx ∈R G. The system’s master secret is MK = α and the
public key is PK = ⇐p, g, e, Y, T0, {Tx : att∗x ∈ Us}, u0, u1, . . . , uγ,H〉.
Extract(PK,MK, (S, σ)) :
The CA generates the secret key for signing LSSS access structure (S, σ) as
follows. Each row i of the signing share-generating matrix S of size χs × ks is
associated with an attribute att∗β(i). Execute Distribute(S, σ, α) and obtain a set
{ββ(i) = Si · v : i ∈ [χs]} of χs shares one for each row of the matrix, where Si is

the i-th row of S and v ∈R Z
ks
p such that v ·1 = α, 1 = (1, 0, . . . , 0) being a vec-

tor of length ks. For each row i ∈ [χs], choose ri ∈R Zp and compute Di =
gχρ(i)(T0Tβ(i))

ri , D∗
i = gri , D∗∗

i =
{
D∗∗

i,x : D∗∗
i,x = T ri

x , ← att∗x ∈ Us \ {att∗β(i)}
}
.

The signing secret key of (S, σ) is SK(S,β) = ⇐(S, σ), {Di, D
∗
i, D

∗∗
i : i ∈ [χs]}〉.

Sign(PK,M, SK(S,β),Ws) :

The signer with signing secret key SK(S,β) calculates the signature of a message
M ∈ {0, 1}≤ as follows.

• Choose an authorized signature attribute set Ws of the signing LSSS access
structure (S, σ) and obtain {τi : i ∈ Is} = Reconstruct(S, σ,Ws), here Is =
{i ∈ [χs] : att

∗
β(i) ∈ Ws}.

• Select Ω, ξ ∈R Zp.
• Compute δ1 = gθ, δ2 = gη

∏
i∈Is

(D∗
i)

δi , (m1,m2, . . . ,mγ) = H(M ||δ2||Ws),

δ3 =
∏

i∈Is

(
Di ·

∏
att∗x∈Ws,x ⊥=β(i)D

∗∗
i,x

⎛δi ·(T0

∏
att∗x∈Ws

Tx

⎛η ·(u0
∏

j∈[γ] u
mj

j

⎛θ
.

• The signature of a message M for the attribute set Ws is Γ = ⇐δ1, δ2, δ3〉 .
Note: This algorithm requires only 4 exponentiations if the access structure is
a boolean formula, since the exponents {τi} are 1 for boolean formulas [25].
Verify(PK,M, Γ,Ws) :
To check if Γ = ⇐δ1, δ2, δ3〉 is a signature of a message M for an attribute set
Ws, the verifier proceeds as follows.

• Compute (m1,m2, . . . ,mγ) = H(M ||δ2||Ws).

• Verify the equation e(δ3, g)
?
= Y · e(T0

∏
att∗x∈Ws

Tx, δ2
⎛ · e(u0

∏
j∈[γ] u

mj

j , δ1
⎛
.

If it is valid, output 1; otherwise, output 0.



218 Y.S. Rao and R. Dutta

The correctness of Verify algorithm follows from Correctness of Eq. (1) detailed
in Section 4.

Security. The existential unforgeability of the above ABS scheme against adap-
tive chosen message attack in the selective attribute set model (without random
oracles) follows from the proof of Theorem 3 (given in Section 5), assuming the
hardness of computational n-DHE problem [12]. (Due to page restriction, we
omit the proof.)

Signer Privacy. An ABS scheme is private if the distribution of the signature
is independent of the secret key that is used to generate the signature. That is,
no one can deduce any information about the access structure As = (S, σ) held
by the signer from a signature Γ = ⇐δ1, δ2, δ3〉 of a message M for the attribute
set Ws, other than the fact that Ws satisfies As.

Following [13], we formalize the signer privacy to key-policy ABS as follows.

Definition 6. A key-policy ABS is private if for any message M, all (PK,MK)
generated by Setup algorithm, all signing access structures As and A

∗
s, all signing

secret keys SKAs = Extract(PK,MK,As) and SKA∗
s
= Extract(PK,MK,A∗

s), all
attribute sets Ws such that Ws satisfies both As and A

∗
s, the distributions of

Sign(PK,M, SKAs ,Ws) and Sign(PK,M, SKA∗
s
,Ws) are equal.

Theorem 1. Our ABS scheme is private.

The proof will be given in Appendix A.

4 Proposed ABSC Construction with Constant-Size
Ciphertext

Let Ue = {atty} and Us = {att∗x} be the universes of encryption and signature
attributes, respectively. In our construction, both signing and decryption access
structures are LSSS-realizable. We denote a signing LSSS access structure by
(S, σ) and a decryption LSSS access structure by (D, λ). We describe now our
attribute based signcryption as a set of the following five algorithms.
Setup(π,Ue,Us):
To initialize the system the CA performs the following steps. Generate multi-
plicative cyclic groups G and GT of prime order p whose size is determined by the
security parameter π. Let g be a generator of the group G and e : G×G → GT be
an efficiently computable bilinear mapping. Choose α ∈R Zp,K0, T0, ψ1, ψ2 ∈R G

and set Y = e(g, g)κ. For each attribute att∗x ∈ Us (resp., atty ∈ Ue), se-
lect Tx ∈R G (resp., Ky ∈R G). Let {0, 1}γm be the message space, i.e., χm is
the length of each message sent. Sample four one-way, collision resistant crypto-
graphic hash functions H1 : GT ×G×{0, 1}γτ → {0, 1}γm, H2 : {0, 1}≤ → {0, 1}γ,
H3 : G → Zp and H4 : {0, 1}≤ → Zp from appropriate families of such functions,
where χ is large enough (a typical value of χ could be 256) so that the hash func-
tions are collision resistant and χτ ∩ 40. Pick u0, u1, . . . , uγ ∈R G. The master
secret key is MK = α and the public key is PK = ⇐p, g, e, Y, T0,K0, {Tx : att∗x ∈
Us}, {Ky : atty ∈ Ue}, ψ1, ψ2, u0, u1, . . . , uγ,H1,H2,H3,H4〉.



Expressive Bandwidth-Efficient ABS and ABSC 219

sExtract(PK,MK, (S, σ)):
The CA carries out the following steps and returns the signing secret key to a
legitimate signcryptor. Each row i of the signing share-generating matrix S of
size χs×ks is associated with an attribute att∗β(i). Execute Distribute(S, σ, α) and
obtain a set {ββ(i) = Si ·vs : i ∈ [χs]} of χs shares, where Si is the i-th row of S,

vs ∈R Z
ks
p such that vs · 1 = α, 1 = (1, 0, . . . , 0) being a vector of length ks. For

each row i ∈ [χs], choose ri ∈R Zp and compute Ds,i = gχρ(i)(T0Tβ(i))
ri , D∗

s,i =

gri , D∗∗
s,i =

{
D∗∗

s,i,x : D∗∗
s,i,x = T ri

x , ← att∗x ∈ Us \ {att∗β(i)}
}
. Return the signing

secret key as SK(S,β) = ⇐(S, σ), {Ds,i, D
∗
s,i, D

∗∗
s,i : i ∈ [χs]}〉.

dExtract(PK,MK, (D, λ)):
In order to issue the decryption secret key to a legitimate decryptor, the CA
executes as follows. Each row i of the decryption share-generating matrix D of
size χe×ke is associated with an attribute attα(i). Execute Distribute(D, λ, α) and
obtain a set {βα(i) = Di ·ve : i ∈ [χe]} of χe shares, where Di is the i-th row of D,

ve ∈R Z
ke
p such that ve · 1 = α, 1 = (1, 0, . . . , 0) being a vector of length ke. For

each row i ∈ [χe], choose τi ∈R Zp and compute De,i = gχφ(i)(K0Kα(i))
τi , D∗

e,i =

gτi , D∗∗
e,i =

{
D∗∗

e,i,y : D∗∗
e,i,y = Kτi

y , ← atty ∈ Ue \ {attα(i)}
}
. Return the secret de-

cryption key as SK(D,α) = ⇐(D, λ), {De,i, D
∗
e,i, D

∗∗
e,i : i ∈ [χe]}〉.

Signcrypt(PK,M, SK(S,β),Ws,We):

To signcrypt a message M ∈ {0, 1}γm, the signcryptor selects an authorized
signature attribute set Ws of the signing LSSS access structure (S, σ) held
by the signcryptor and chooses a set of encryption attributes We which de-
scribe the target recipients. Since Ws satisfies S, the signcryptor first runs
Reconstruct(S, σ,Ws) and obtains a set {τi : i ∈ Is} of reconstruction con-
stants, where Is = {i ∈ [χs] : att

∗
β(i) ∈ Ws} such that

∑
i∈Is

τiββ(i) = α (this
implicitly holds and we use this fact in correctness below). Note that the secret
shares {ββ(i)}i∈Is are not explicitly known to the signcryptor and hence so is α.
However, as (S, σ) accepts Ws, the secret α can correctly be embedded in the

exponent as g
∑

i∈Is
δiχρ(i) = gκ in the ciphertext component δ3 given below by

using the secret key components {Ds,i}i∈Is (see correctness described below for
details). Parse PK, SK(S,β) as above. The signcryptor then

• chooses Ω, ϑ ∈R Zp and computes C1 = gθ, C2 = (K0

∏
atty∈We

Ky)
θ, δ1 = gθϑ,

• encrypts the message as C3 = H1(Y
θ, δ1, τ)⊕M, where τ ∈R {0, 1}γτ ,

• picks ξ ∈R Zp and sets δ2 = gη
∏

i∈Is
(D∗

s,i)
δi ,

• calculates μ = H3(C1) and sets C4 = (ψμ1 ψ2)
θ,

• computes (m1,m2, . . . ,mγ) = H2(δ2||τ ||Ws||We),
β = H4(δ1||C2||C3||C4||Ws||We) and

δ3 =
⎜

i∈Is

⎝
Ds,i ·

⎜

att∗x∈Ws,x ⊥=β(i)

D∗∗
s,i,x

⎞δi ·
⎝
T0

⎜

att∗x∈Ws

Tx

⎞η

·
⎝
u0

⎜

j∈[γ]

u
mj

j

⎞θ

·Cξϑ
4 ,

where mi ∈ {0, 1} for all i ∈ [χ],
• sets δ4 = τ.



220 Y.S. Rao and R. Dutta

The signcryption of M is CT(Ws,We) = ⇐Ws,We, C1, C2, C3, C4, δ1, δ2, δ3, δ4〉 .
Unsigncrypt(PK,CT(Ws,We), SK(D,α)):

The secret decryption key SK(D,α) and the ciphertext CT(Ws,We) are parsed as
above. The decryptor

• computes μ = H3(C1), (m1,m2, . . . ,mγ) = H2(δ2||δ4||Ws||We),
β = H4(δ1||C2||C3||C4||Ws||We) and checks the validity of the ciphertext
CT(Ws,We) using the following equation as

e(δ3, g)
?
= Y · e

⎝
T0

⎜

att∗x∈Ws

Tx, δ2

⎞
· e
⎝
u0

⎜

j∈[γ]

u
mj

j , C1

⎞
· e((ψμ1 ψ2)ξ , δ1

⎛
, (1)

if it is invalid, outputs ⇒; otherwise, proceeds as follows
• obtains secret reconstruction constants {νi : i ∈ Ie} = Reconstruct(D, λ,We),
where Ie = {i ∈ [χe] : attα(i) ∈ We}

• computes E1 =
∏

i∈Ie

(
De,i ·

∏
atty∈We,y ⊥=α(i)D

∗∗
e,i,y

⎛ϑi
, E2 =

∏
i∈Ie

(D∗
e,i)

ϑi and

recovers Y θ by computing

Y θ = e(C1, E1)/e(C2, E2) (2)

• obtains the message M = C3 ⊕H1(Y
θ, δ1, δ4).

Note. As mentioned earlier, the exponents {τi} and {νi} are 1 for boolean for-
mulas. Hence, Signcrypt and Unsigncrypt algorithms require only 10 and 2 expo-
nentiations, respectively. For LSSS matrices over Zp, i.e., general LSSS monotone
access structures, Signcrypt performs O(λs) exponentiations, and Unsigncrypt
computes O(λe) exponentiations and 6 pairings, where λs = |Is| and λe = |Ie|.
Thus, we achieve low computation cost when compare with previous schemes
(see Table 1) even in case we use general LSSS access policies instead of boolean
formulas. In this case also, the size of ciphertext is constant.

Remark 3. We note here that the verification process stated in Eq. (1) is for-
mulated based on the public key parameters and the ciphertext components,
thereby any user who has access to the ciphertext can verify the integrity and
validity of the sender and the ciphertext. This provides the property of Public
Ciphertext Verifiability to our scheme.

The correctness of the unsigncryption process follows from the following
arguments.
Correctness of Eq. (1). Since Ws satisfies S, we have

∑
i∈Is

τiββ(i) = α.
Then,

⎜

i∈Is

⎝
Ds,i ·

⎜

att∗x∈Ws,x ⊥=β(i)

D∗∗
s,i,x

⎞δi

=
⎜

i∈Is

⎝
gχρ(i)(T0Tβ(i))

ri ·
⎜

att∗x∈Ws,x ⊥=β(i)

T ri
x

⎞δi

= g
∑

i∈Is
δiχρ(i)

⎜

i∈Is

⎝
T ri
0

⎜

att∗x∈Ws

T ri
x

⎞δi

= gκ
⎝
T0

⎜

att∗x∈Ws

Tx

⎞∑
i∈Is

riδi

,



Expressive Bandwidth-Efficient ABS and ABSC 221

δ3 = gκ
⎝
T0

⎜

att∗x∈Ws

Tx

⎞∑
i∈Is

riδi ·
⎝
T0

⎜

att∗x∈Ws

Tx

⎞η

·
⎝
u0

⎜

j∈[γ]

u
mj

j

⎞θ

· (ψμ1 ψ2)θξϑ.

Now, δ2 = gη
∏

i∈Is
(D∗

s,i)
δi = gηg

∑
i∈Is

riδi = gη+
∑

i∈Is
riδi . Hence,

e(δ3, g)

= e
⎝
gκ

(
T0

⎜

att∗x∈Ws

Tx

⎛∑
i∈Is

riδi · (T0

⎜

att∗x∈Ws

Tx

⎛η · (u0
⎜

j∈[γ]

u
mj

j )θ · (ψμ1 ψ2)θξϑ, g
⎞

= e(gκ, g) · e(T0

⎜

att∗x∈Ws

Tx, g
η+

∑
i∈Is

riδi
⎛ · e(u0

⎜

j∈[γ]

u
mj

j , gθ
⎛ · e((ψμ1 ψ2)ξ , gθϑ)

= Y · e(T0

⎜

att∗x∈Ws

Tx, δ2
⎛ · e(u0

⎜

j∈[γ]

u
mj

j , C1

⎛ · e((ψμ1 ψ2)ξ , δ1).

Correctness of Eq. (2). We have
∑

i∈Ie
νiβα(i) = α since We satisfies (D, λ).

Then,

E1 =
⎜

i∈Ie

⎝
gχφ(i)(K0Kα(i))

τi ·
⎜

atty∈We,y ⊥=α(i)

Kτi
y

⎞ϑi

= g
∑

i∈Ie
ϑiχφ(i)

⎜

i∈Ie

⎝
Kτi

0

⎜

atty∈We

Kτi
y

⎞ϑi
= gκ

(
K0

⎜

atty∈We

Ky

⎛∑
i∈Ie

τiϑi
,

E2 =
⎜

i∈Ie

(D∗
e,i)

ϑi =
⎜

i∈Ie

gτiϑi = g
∑

i∈Ie
τiϑi .

Therefore,
e
(
C1, E1)

e(C2, E2)
=
e(gθ, gκ(K0

∏
atty∈We

Ky)
∑

i∈Ie
τiϑi

⎛

e
(
(K0

∏
atty∈We

Ky)θ, g
∑

i∈Ie
τiϑi

⎛ = e(gθ, gκ) = Y θ.

5 Security Analysis

Theorem 2 (Indistinguishability). Assume the encryption attribute universe
Ue has n attributes and collision-resistant hash functions exist. Then our at-
tribute based signcryption scheme is (T , qsE, qdE, qSC, qUS, Σ)-IND-ABSC-sCCA
secure, assuming the decisional n-BDHE problem in (G,GT ) is (T ∗, Σ∗)-hard,
where T ∗ = T +O(|Us|2 · (qsE + qSC)+n2 · (qdE + qUS)

⎛ · Texp +O(qUS) · Tpair and
Σ∗ = Σ − (qUS/p). Here, Texp and Tpair denote the running time of one exponen-
tiation and one pairing computation, respectively.

Theorem 3 (Unforgeability). Assume the signing attribute universe Us has
n attributes and collision-resistant hash functions exist. Then our attribute based
signcryption scheme is (T , qsE, qdE, qSC, qUS, Σ)-sEUF-ABSC-sCMA secure, as-
suming that the computational n-DHE problem in G is (T ∗, Σ∗)-hard, where T ∗ =
T + O(

n2 · (qsE + qSC) + |Ue|2 · (qdE + qUS)
⎛ · Texp + O(qSC + qUS) · Tpair and

Σ∗ = Σ/(π(χm + 1)). Here, Texp and Tpair denote the running time of one expo-
nentiation and one pairing computation, respectively.

Due to page restriction, the proofs are omitted. These are available in the full
version of the paper at the eprint server maintained by IACR.



222 Y.S. Rao and R. Dutta

6 Some Extended Constructions

Traceable ABSC construction. We further extend our ABSC to support trace-
ability exploiting the technique used in [19]. The resulting traceable ABSC pre-
serves the same functionality as that of our ABSC and greatly improves upon
the existing one [19].

Non-monotone access structure (non-MAS) realization.We can extend our ABSC
to support negative attributes by treating the negation of an attribute as a sep-
arate attribute. This doubles the total number of attributes used in the system
[25]. However, the resulting non-MAS ABSC attains the same efficiency as that
of our monotone access structure ABSC.

Large attribute universe extension. It is also possible to extend our techniques
to construct large universe ABSC scheme, where the public parameters of at-
tributes are computed even after system setup by using a collision resistant hash
function. In this case, the size of ciphertext will be linear in the number of en-
cryption attributes and independent of the size of signing attribute set. Hence,
we can achieve short ciphertext-size (although not constant) when compare with
previous schemes. However, the number of pairing computations is still constant.

7 Conclusion

We present the first LSSS-realizable ABS scheme with constant-size signature
and 3 pairing computations for signature verification.We show that our ABS pro-
vides signer privacy. We further present the first constant-size ciphertext ABSC
for expressive LSSS-realizable access structures with constant computation cost.
Both ciphertext confidentiality and strong unfogeability against selective adver-
sary have been proven under decisional BDHE and computational DHE assump-
tions, respectively, in standard model. Additionally, it provides public ciphertext
verifiability property which allows any third party to check the integrity and va-
lidity of the ciphertext. The secret key size in our schemes increases by a factor
of number of attributes used in the system.

Acknowledgement. The authors would like to thank the anonymous reviewers
of this paper for their valuable comments and suggestions.

References

1. Sahai, A., Waters, B.: Fuzzy Identity-Based Encryption. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

2. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute Based Encryption for Fine-
Grained Access Control of Encrypted Data. In: ACM Conference on Computer and
Communications Security, pp. 89–98 (2006)

3. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-Policy Attribute-Based Encryp-
tion. In: IEEE Symposium on Security and Privacy, pp. 321–334 (2007)



Expressive Bandwidth-Efficient ABS and ABSC 223

4. Ostrovksy, R., Sahai, A., Waters, B.: Attribute Based Encryption with Non-
Monotonic Access Structures. In: ACM Conference on Computer and Commu-
nications Security, pp. 195–203 (2007)

5. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully Secure Func-
tional Encryption: Attribute-Based Encryption and (Hierarchical) Inner Product
Encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91.
Springer, Heidelberg (2010)

6. Waters, B.: Ciphertext-Policy Attribute-Based Encryption: An Expressive, Effi-
cient, and Provably Secure Realization. In: Catalano, D., Fazio, N., Gennaro, R.,
Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg
(2011)

7. Attrapadung, N., Herranz, J., Laguillaumie, F., Libert, B., de Panafieu, E., Ràfols,
C.: Attribute-Based Encryption Schemes with Constant-Size Ciphertexts. Theor.
Comput. Sci. 422, 15–38 (2012)

8. Rao, Y.S., Dutta, R.: Computationally Efficient Expressive Key-Policy Attribute
Based Encryption Schemes with Constant-Size Ciphertext. In: Qing, S., Zhou, J.,
Liu, D. (eds.) ICICS 2013. LNCS, vol. 8233, pp. 346–362. Springer, Heidelberg
(2013)

9. Zheng, Y.: Digital Signcryption or How to Achieve Cost(Signature & Encryption)
<< Cost(Signature) + Cost(Encryption). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997.
LNCS, vol. 1294, pp. 165–179. Springer, Heidelberg (1997)

10. Maji, H.K., Prabhakaran, M., Rosulek, M.: Attribute-Based signatures. In: Kiayias,
A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 376–392. Springer, Heidelberg (2011)

11. Ge, A., Ma, C., Zhang, Z.: Attribute-Based Signature Scheme with Constant Size
Signature in the Standard Model. IET Information Security 6(2), 1–8 (2012)

12. Herranz, J., Laguillaumie, F., Libert, B., Ràfols, C.: Short Attribute-Based Sig-
nature for Threshold Predicates. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS,
vol. 7178, pp. 51–67. Springer, Heidelberg (2012)

13. Gagné, M., Narayan, S., Safavi-Naini, R.: Short Pairing-Efficient Threshold-
Attribute-Based signature. In: Abdalla, M., Lange, T. (eds.) Pairing 2012. LNCS,
vol. 7708, pp. 295–313. Springer, Heidelberg (2013)

14. Li, J., Au, M.H., Susilo, W., Xie, D., Ren, K.: Attribute-based signature and its
application. In: ASIACCS 2010, pp. 60–69. ACM, New York (2010)

15. Gagné, M., Narayan, S., Safavi-Naini, R.: Threshold Attribute-Based Signcryption.
In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 154–171.
Springer, Heidelberg (2010)

16. Hu, C., Zhang, N., Li, H., Cheng, X., Liao, X.: Body Area Network Security: A
Fuzzy Attribute-based Signcryption Scheme. IEEE Journal on Selected Areas in
Communications 31(9), 37–46 (2013)

17. Wang, C., Huang, J.: Attribute-based Signcryption with Ciphertext-policy and
Claim-predicate Mechanism. In: CIS 2011, pp. 905–909 (2011)

18. Emura, K., Miyaji, A., Rahman, M.S.: Dynamic Attribute-Based Signcryption
without Random Oracles. Int. J. Applied Cryptography 2(3), 199–211

19. Wei, J., Hu, X., Liu, W.: Traceable attribute-based signcryption. Security Comm.
Networks (2013), doi:10.1002/sec.940

20. Qin, B., Wu, Q., Zhang, L., Domingo-Ferrer, J.: Threshold Public-Key Encryption
with Adaptive Security and Short Ciphertexts. In: Soriano, M., Qing, S., López,
J. (eds.) ICICS 2010. LNCS, vol. 6476, pp. 62–76. Springer, Heidelberg (2010)

21. Selvi, S.S.D., Vivek, S.S., Vinayagamurthy, D., Rangan, C.P.: ID Based Signcryp-
tion Scheme in Standard Model. In: Takagi, T., Wang, G., Qin, Z., Jiang, S., Yu,
Y. (eds.) ProvSec 2012. LNCS, vol. 7496, pp. 35–52. Springer, Heidelberg (2012)



224 Y.S. Rao and R. Dutta

22. Guo, Z., Li, M., Fan, X.: Attribute-based ring signcryption scheme. Security Comm.
Networks 6, 790–796 (2013), doi:10.1002/sec.614

23. Zeng, F., Xu, C., Li, Q., Zhang, X.: Attribute-based Signature Scheme with
Constant Size Signature. Journal of Computational Information Systems 8(7),
2875–2882 (2012)

24. Chen, C., Chen, J., Lim, H.W., Zhang, Z., Feng, D., Ling, S., Wang, H.: Fully
secure attribute-based systems with short ciphertexts/signatures and threshold
access structures. In: Dawson, E. (ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 50–67.
Springer, Heidelberg (2013)

25. Lewko, A., Waters, B.: Decentralizing attribute-based encryption. Cryptology
ePrint Archive, Report 2010/351 (2010), http://eprint.iacr.org/

A Proof of Theorem 1

Proof. A signature of a message M using an attribute set Ws is of the form
Γ = ⇐δ1, δ2, δ3〉 , where δ1 = gθ, δ2 = gη

∏
i∈Is

(D∗
i)

δi ,

δ3 =
∏

i∈Is

(
Di ·

∏
att∗x∈Ws,x ⊥=β(i)D

∗∗
i,x

⎛δi · (T0

∏
att∗x∈Ws

Tx

⎛η · (u0
∏

j∈[γ] u
mj

j

⎛θ
.

Here, Ω, ξ ∈R Zp and (m1,m2, . . . ,mγ) = H(M ||δ2||Ws). By simplification (as
in Correctness of Eq. (1) in Section 4), we have

δ3 = gκ·(T0

⎜

att∗x∈Ws

Tx

⎛η+∑
i∈Is

riδi ·(u0
⎜

j∈[γ]

u
mj

j

⎛θ
, δ2 = gη+

∑
i∈Is

riδi , δ1 = gθ.

Let ϑ = ξ +
∑

i∈Is
riτi. Then, ϑ is random since ξ is random and

δ3 = gκ · (T0

⎜

att∗x∈Ws

Tx

⎛γ · (u0
⎜

j∈[γ]

u
mj

j

⎛θ
, δ2 = gγ , δ1 = gθ,

where (m1,m2, . . . ,mγ) = H(M ||δ2||Ws) and ϑ, Ω are random exponents. Thus,
the distribution of the signature is clearly the same regardless of the secret key
that is used to compute it. ∗�

B Cryptanalysis of ABSC Schemes [16, 19]

Hu et al. [16] proved that their scheme is IND-CCA secure−given a ciphertext
for the message Mb randomly chosen from M0 and M1, no polynomial-time ad-
versary (with an access to unsigncrypt oracle) can determine from which message
M0 or M1 the ciphertext is computed, i.e., Mb = M0 or Mb = M1, with a non-
negligible advantage. But, the ABSC in [16] is not even IND-CPA secure, i.e.,
any adversary is able to decide wether Mb = M0 or Mb = M1 with certainty,
without accessing the unsigncrypt oracle. This follows from the argument that
the adversary first guessesMb =M0 and then performs the signature verification
test in unsigncryption process using public parameters and challenge ciphertext
components. If the test passes, Mb = M0; otherwise, Mb = M1. This violates
the IND-CPA security of the ABSC proposed in [16].

http://eprint.iacr.org/


Expressive Bandwidth-Efficient ABS and ABSC 225

Wei et al. [19] proposed an ABSC with identity, called ID-ABSC, and then ex-
tends this construction to support traceability, i.e., the authority can recover the
identity of the signcryptor when necessary. Wei et al. [19] claimed that ID-ABSC
is proven to have the security of IND-CCA in the random oracle model. However,
this conclusion does not hold from the following argument. The adversary obtains
the challenge ciphertext of Mb after submitting M0,M1 to the challenger that is
of the form CT≤ = [u,We, Γk,Ws(·), Ω∗, X, {Ei}i∈We , C, δ1, δ2, δ3, δ4]. Then the
adversary computes δ∗

1 = δ1 ·Rϑ and δ∗
3 = δ3 ·gϑ1 , where R is publicly computable

parameter1, ϑ is a random exponent and g1 is a public parameter, and sets
CT∗ = [u,We, Γk,Ws(·), Ω∗, X, {Ei}i∈We , C, δ

∗
1, δ2, δ

∗
3, δ4]. The adversary queries

the unsigncrypt oracle with CT∗ as input. This query is allowed since CT∗ ∅= CT≤.
Note that the adversary cannot query the unsigncrypt oracle with the challenge
ciphertext as input. Since the adversary randomizes only the signature terms δ1
and δ3, the unsigncrypt oracle can correctly recover the message Mb. Hence the
signature verification test will pass always without detecting the changes made
by the adversary because of the fact that the randomized terms are canceled
out automatically. Finally, the unsigncrypt oracle returns Mb. If Mb = M0, the
adversary knows that M0 is the plaintext of the challenge ciphertext CT≤. Oth-
erwise, if Mb = M1, he knows that M1 is the plaintext of CT≤. This violates the
IND-CCA security of ID-ABSC. In the manner described above, the traceable
ABSC proposed in [19] also cannot achieve IND-CCA security as it is a simple
extension of ID-ABSC.

1 Note that R = T0

∏
j∈Ws∪Ω∗ T2,j . Where T0, T2,j are public parameters for all j and

Ws, Ω
′ are in CT∗.



Incrementally Executable Signcryptions

Dan Yamamoto, Hisayoshi Sato, and Yasuko Fukuzawa

Hitachi, Ltd., Yokohama Research Laboratory, 292 Yoshida-cho,
Totsuka-ku, Yokohama, Kanagawa 244-0817, Japan

{dan.yamamoto.vx,hisayoshi.sato.th,yasuko.fukuzawa.pd}@hitachi.com

Abstract. We present the concept of incrementally executable signcryp-
tions, which is a generalization of traditional on-line/off-line signcryption
and facilitates optimizing the sender’s off-line computation. With an in-
crementally executable signcryption scheme, the sender can activate sign-
cryption process incrementally by its given sequential input: the sender’s
key pair, a recipient’s public key, and a plaintext message to be sent to
the recipient. Furthermore, we present an efficient generic construction
of incrementally executable signcryption scheme. In our construction,
the signing process can be done before being given the recipient’s public
key as well as the message to be sent. This feature enables us to accel-
erate the subsequent processes. Moreover, our construction achieves the
strongest security notions without relying on random oracles. In addi-
tion, it requires a weak assumption for the underlying signature scheme,
i.e., the underlying signature scheme is sufficient to be unforgeable under
generic chosen message attack. Furthermore, it supports the parallel un-
signcryption feature, which allows receivers to perform two potentially
expensive computations, i.e., the verification of off-line signature and the
key-decapsulation, in parallel.

Keywords: signcryption, on-line/off-line, insider security, multi-user set-
ting, generic construction.

1 Introduction

The concept of signcryption was introduced by Zheng [30] as a public-key cryp-
tographic primitive offering confidentiality and authenticity simultaneously. A
signcryption scheme performs the functions of both digital signature and public-
key encryption at the same time, which enables end-to-end secure message trans-
missions required in many applications such as e-mailing and e-commerce.

A large number of signcryption schemes have been proposed in the literature
(see, e.g., [30,2,3,23,12,18,11,4,26,22,31,8]). These schemes provide different se-
curity levels depending on the used security model. Chiba et al. [8] proposed two
generic constructions of signcryption, which are the first to achieve the strongest
confidentiality and authenticity properties, i.e., indistinguishability against in-
sider chosen ciphertext attacks in the dynamic multi-user model (dM-IND-iCCA)
and strong unforgeability against insider chosen message attacks in the dynamic
multi-user model (dM-sUF-iCMA), without relying on random oracles.

W. Susilo and Y. Mu (Eds.): ACISP 2014, LNCS 8544, pp. 226–241, 2014.
c© Springer International Publishing Switzerland 2014



Incrementally Executable Signcryptions 227

Although signcryption schemes are useful building blocks for end-to-end se-
cure message transmissions, they are not suitable for computationally-restricted
devices (e.g., RFID tags, mobile phones, and sensors) due to their signing and
public-key encryption parts that usually require expensive operations such as
exponentiation or pairing computation.

To overcome this difficulty, the notion of on-line/off-line signcryption were in-
troduced by An et al. [2]. As in the case of on-line/off-line signatures [13,24,16,7],
a on-line/off-line signcryption process (i.e., simultaneous signing and public-key
encryption) is split into two phases. The first phase is performed off-line, i.e.,
before the message to be signcrypted is given, and the second phase is performed
on-line, i.e., after the message to be signcrypted is given. The major computa-
tional overhead is shifted to the off-line phase, whereas the on-line phase requires
only a low computational overhead.

In [2], An et al. also presented the first generic construction of on-line/off-
line signcryption, which is an on-line/off-line variant of “commit-then-encrypt-
and-sign” composition (hereinafter referred to as OCtEaS). We point out that
OCtEaS has two drawbacks in terms of efficiency and security. First, the off-
line signing in the OCtEaS construction requires a recipient’s public key as an
additional input parameter, which is essential for their scheme to achieve the
unforgeability in the multi-user setting. This causes practical issues because a
sender cannot start expensive off-line signing until she determines who is her
target recipient, even if her device has enough idle time. Second, the OCtEaS
construction only achieves the weaker security notions than the above strong
notions of dM-IND-iCCA and dM-sUF-iCMA. More concretely, it only achieves the
indistinguishability against publicly detectable replayable CCA [6] and standard
(i.e., not strong) unforgeability notion.

1.1 Our Contribution

The above efficiency drawback of OCtEaS arises because the traditional two-
phase definition of off-line and on-line cannot capture the state transition of the
sender precisely. In other words, the syntax of the traditional off-line signcrypt
algorithm scoff(skS , pkS , pkR) is ambiguous as to whether its internal compu-
tations (e.g., expensive off-line signing) can be executed prior to knowing the
recipient’s public key pkR or not. To overcome this ambiguity, we split the tradi-
tional off-line phase in two, which results in the following three sequential phases:
� Phase 1 (Setup): The identity of the sender is determined. Specifically, the
sender generates (or securely obtains from a trusted authority) her own key pair
(skS , pkS). � Phase 2 (Handshake): The sender recognizes the target recipient
to whom she might send some messages. Specifically, the sender obtains the
receiver’s public key pkR. � Phase 3 (On-Line): The sender finally decides a
message m to be sent to the target recipient determined in the previous phase.

The essential point for efficiency is that the sender could have significant idle
time in the above setup phase as well as the handshake phase. For instance,
imagine a situation where the sender, say Alice, uses her mobile device to se-
curely communicate with her friends. After generating her key pair skS , pkS ,



228 D. Yamamoto, H. Sato, and Y. Fukuzawa

the device can execute sc1 as many times as possible and stores the results in
its secure storage. After a few seconds, minutes, hours, or days of the executions
of sc1, Alice decides to contact to one of her friends, say Bob. She chooses the
address of Bob from an address book on the device, then sc2 can be performed
as many times as possible by consuming the stored results of sc1. Finally, after
a few second or minute, she types some message for Bob and submit it, which
enables the device to run sc3 algorithm. Note that we can utilize these mean-
ingful intervals between these three algorithm invocations to perform as much
pre-computation as possible.

Incrementally Executable Signcryptions. Based on the above observation, we
present the concept of incrementally executable signcryptions, which consists
of three algorithms corresponding to the above three phases: sc1(skS , pkS),
sc2(pkR), and sc3(m), With an incrementally executable signcryption scheme,
the sender can activate signcryption process incrementally by its given sequen-
tial input: the sender’s key pair (skS , pkS), a recipient’s public key pkR, and a
plaintext message m to be sent to the recipient.

We notice that the incrementally executable signcryption helps the scheme
designer to pay more attention to the efficiency of the off-line computation. The
design principle of efficient signcryptions can be much simpler: Let as many
expensive computations move to the earlier phases as possible. This principle
is especially useful for applications like the mobile communication example we
mentioned earlier as well as MANETs (Mobile Ad-hoc Networks), in which the
sender has significant idle time to execute pre-computation not only in the hand-
shake phase (i.e., after knowing the neighbor node) but also in the setup phase
(i.e., prior to knowing the neighborhood). Pre-computations in the setup phase
save the computational resource in the handshake phase.

According to the concept of incrementally executable signcryptions, the lim-
itation of OCtEaS construction we mentioned earlier can be explained as the
disadvantage that the underlying signing procedure can be executed in the
handshake phase (i.e., in sc2(pkR)) but not in the earlier setup phase (i.e., in
sc1(skS , pkS)).

Generic Construction with Strong Security and Parallel Un-Signcryption. Fur-
thermore, we present an efficient generic construction of incrementally executable
signcryption scheme: GIESC. In our construction, the signing process can be done
in sc1(skS , pkS) computation. This feature enables us to accelerate the subse-
quent processes after the target recipient and message are decided. Moreover,
GIESC achieves the strong security notions of dM-IND-iCCA and dM-sUF-iCMA
without relying on random oracles. In addition, GIESC requires a weak assump-
tion for the underlying signature scheme, i.e., the underlying signature scheme is
sufficient to have standard (i.e., not strong) unforgeability under generic chosen
message attack (UF-GMA). Furthermore, it supports the parallel un-signcryption
feature, which allows receivers to perform two potentially expensive computa-
tions, i.e., the verification of off-line signature and the key-decapsulation, in
parallel. This feature results in efficiency improvements on parallel machines.



Incrementally Executable Signcryptions 229

1.2 Related Work

Although several on-line/off-line signcryption schemes have also been proposed
in the literature (see, e.g., [29,27]), none of them achieves the strong security
notions of dM-IND-iCCA and dM-sUF-iCMA without relying on random oracles.
Several hybrid signcryption schemes have been proposed (see, e.g., [11,10,5]),
where the research goal is rather establishing a hybrid paradigm for signcryp-
tion schemes than providing on-line/off-line feature. Several identity-based on-
line/off-line signcryption schemes have been proposed (see, e.g., [25,19]). In
particular, the construction in [19] has a desirable property that enables the
sender to perform all expensive computation before given the receiver’s identity.
However, this feature takes advantage of the ID-based setting, as ID-based on-
line/off-line encryption schemes [14,20,9] do. We cannot find a trivial application
of this technique to the non-ID-based (i.e., PKI) setting and leave it as an open
problem.

2 Preliminaries

We denote by x∈$ X the operation of selecting a random element x from a
set X and by x ∈ y the assignment of value y to x. We denote by [pred]
Boolean value of a predicate pred. For instance, [1 = 1] equals to 1 (true)
and [1 = 1 and 1 = 0] equals to 0 (false). We denote by ⊕x1 ⊇ . . . ⊇ xn〉 a
concatenate string encoding of x1, . . . , xn from which the latter are uniquely
recoverable. We write A.x to indicate explicitly that the algorithm x belongs
to the scheme A. Unless otherwise indicated, algorithms are randomized, i.e., it
takes a source of randomness to make random choices during execution. We write
z ∈ A(x, y, . . . ; oracle1, oracle2, . . .) to indicate the operation of a Turing
machine A with inputs x, y, . . . and access to oracles oracle1, oracle2, . . ., and
letting z be the output. In all the experiments (games), every number, set, and
bit string is implicitly initialized by 0, χ, and empty string, respectively.

2.1 Tag-Based Key Encapsulation Mechanism

A tag-based key encapsulation mechanism (TBKEM) is a KEM-analogue of
tag-based encryption (TBE) [21,17] 1. Its encapsulation and decapsulation algo-
rithms take an arbitrary string (tag) as an additional input.

A TBKEM TK consists of the following algorithms:

init() ≤ σ: The initialization algorithm. It outputs public parameters σ, which
includes a description of a key space TK.K. We will generally assume that
all algorithms take σ as an implicit input, even if it is not explicitly stated.

gen(σ) ≤ (sk, pk): The key generation algorithm. It generates a private/public
key pair (sk, pk) for decapsulation and encapsulation.

1 Note that the notion of TBKEM is different from the notion of tag-KEMs formalized
by Abe et al. [1]



230 D. Yamamoto, H. Sato, and Y. Fukuzawa

enc(σ, pk, α) ≤ (K,C): The encapsulation algorithm. It takes as input the pub-
lic key pk, and a tag α ← {0, 1}∈, and outputs a pair (K,C), whereK ← TK.K
is a generated key and C is an encapsulation of K.

dec(σ, sk, α, C) ≤ K: The (deterministic) decapsulation algorithm. It takes as
input the secret key sk, a tag α ← {0, 1}∈, and an encapsulation C, and
outputs either a key K ← TK.K or an error symbol ∅.

For correctness, we require that for all σ∈ init(), all (sk, pk) ∈ gen(σ), all tag
α ← {0, 1}∈, and all (K,C) ∈ enc(σ, pk, α), it must hold that dec(σ, sk, α, C) =
K.

We recall the security notion of indistinguishability against adaptive tag 2 and
adaptive chosen ciphertext attacks (IND-tag-CCA). The IND-tag-CCA-advantage
of A against TK is defined as

AdvIND-tag-CCA
TK (A) =

∣∣∣2Pr
[
ExpIND-tag-CCA

TK (A) = 1
]
− 1

∣∣∣ ,

where the experiment ExpIND-tag-CCA
TK is described in Algorithm 1. The adversary

A is given accesses to the oracles encap and decap. The challenge encapsulation
oracle encap can be queried only once. The decapsulation oracle decap can be
called multiple times. After interactions with encap and decap, adversary A
outputs a bit b∈. We say that TK is (t, qdecap, β)-IND-tag-CCA-secure if for any
adversary A that runs in time t and makes at most qdecap queries to the oracle
decap, the IND-tag-CCA-advantage of A against TK has an upper bound β, i.e.,
AdvIND-tag-CCA

TK (A) ⇒ β.

Game ExpIND-tag-CCA
TK (A):

b←$ {0, 1}; λ ← TK.init(); (sk∈, pk∈) ← TK.gen(λ)
b∈ ← A(λ, pk∈; encapb,pk⊆ , decapsk⊆ ); v∈ ← [b∈ = b]; return v∈

Oracle encapb,pk⊆ (τ
∈):

(K∈
1 , C

∈) ← TK.enc(λ, pk∈, τ∈); K∈
0 ←$ TK.K; return (K∈

b , C
∈)

Oracle decapsk⊆ (τ, C):

if (τ, C) = (τ∈, C∈) : return ⊥ else: return K ← TK.dec(λ, sk∈, τ, C)

Algorithm 1. Experiment for defining IND-tag-CCA security of TBKEM

2.2 Data Encapsulation Mechanism

A data encapsulation mechanism DEM consists of the following algorithms:

enc(K,m) ≤ C: The encryption algorithm. It takes as input the secret key K ←
DEM.K, and a message m from the associated message space, and outputs
a ciphertext C.

2 We need the adaptive-tag flavor of tag-based security, which is stronger than the
selective-tag security property used by Kiltz [17].



Incrementally Executable Signcryptions 231

dec(K,C) ≤ m: The (deterministic) decryption algorithm. It takes as input the
secret key K ← DEM.K, and a ciphertext C, and outputs either a message
m or an error symbol ∅.

For correctness, we require that for all K ← DEM.K and for all m in the
associated message space, it must hold that dec(K, enc(K,m)) = m.

A DEM is said to be one-to-one if for any K, C, and C≤, dec(K,C) =
dec(K,C≤) ≈= ∅ implies C = C≤. In other words, for any given K and m, there
is at most one ciphertext C such that dec(K,C) = m. As described in [8], this
property is quite natural for a large number of DEMs.

We recall the security notion of indistinguishability against one-time adap-
tive chosen ciphertext attacks (IND-OTCCA). The IND-OTCCA-advantage of A
against DEM is defined as

AdvIND-OTCCA
DEM (A) =

∣∣∣2Pr
[
ExpIND-OTCCA

DEM (A) = 1
]
− 1

∣∣∣ ,

where the experiment ExpIND-OTCCA
DEM is described in Algorithm 2. The challenge

encryption oracle enc can be queried only once. The decryption oracle dec can
be called multiple times. After interactions with these oracles, adversary A out-
puts a bit b∈. We say that DEM is (t, qdec, β)-IND-OTCCA-secure if for any ad-
versary A that runs in time t and makes at most qdec queries to the oracle
dec, the IND-OTCCA-advantage of A against DEM has an upper bound β, i.e.,
AdvIND-OTCCA

DEM (A) ⇒ β.

Game ExpIND-OTCCA
DEM (A):

b←$ {0, 1}; K∈ ←$ DEM.K; b∈ ← A(; encb,K⊆ , decK⊆ ); return [b∈ = b]

Oracle encb,K⊆ (m∈
0 , m

∈
1): // called only once; |m∈

0| = |m∈
1|

C∈ ← DEM.enc(K∈, m∈
b ); return C∈

Oracle decK⊆ (C):

if C = C∈ : return ⊥ else: return m ← DEM.dec(K∈, C)

Algorithm 2. Experiment for defining IND-OTCCA security of DEM.

2.3 Digital Signature

A digital signature scheme DS consists of the following algorithms:

init() ≤ σ: The initialization algorithm. It outputs public parameters σ. We will
generally assume that all algorithms take σ as an implicit input, even if it is
not explicitly stated.

gen(σ) ≤ (sk, pk): The key generation algorithm. It generates a private/public
key pair (sk, pk).

sign(σ, sk,m) ≤ τ: The signing algorithm. It takes as input the signer’s secret
key sk, and a message m from the associated message space, and outputs a
signature τ.



232 D. Yamamoto, H. Sato, and Y. Fukuzawa

ver(σ, pk,m, τ) ≤ v: The (deterministic) verification algorithm. It takes as in-
put the signer’s public key pk, a message m, and an alleged signature τ, and
outputs v ← {0, 1}.

For correctness, we require that for all σ ∈ init(), all (sk, pk) ∈ gen(σ),
and all m in the associated message space, it must hold that ver(σ, pk,m,
sign(σ, sk,m)) = 1.

We recall the security notion of strong and standard unforgeability against
chosen message attacks (sUF-CMA and UF-CMA) as well as generic chosen mes-
sage attacks (sUF-GMA and UF-GMA). For each X ← {sUF,UF}, the X-CMA-
advantage and X-GMA-advantage of A against DS is defined as

AdvX-CMA
DS (A) = Pr

[
ExpX-CMA

DS (A) = 1
]
, AdvX-GMA

DS,n (A) = Pr
[
ExpX-GMA

DS,n (A) = 1
]
,

where the experiments ExpX-CMA
DS and ExpX-GMA

DS,n are described in Algorithm 3. The
adversary A is given access to the signing oracle sign or gsign. Both oracles
can be called multiple times. After interactions with sign or gsign, adversary
A outputs an alleged forgery (m∈, τ∈). The messagem∈ should not be queried to
the signing oracle. In addition, in the strong unforgeability game, i.e., sUF-CMA
and sUF-GMA, the forged signature τ∈ should not be returned from the signing
oracle as a response ofm∈. For each X ← {sUF,UF}, we say that DS is (t, qsign, β)-
X-CMA-secure if for any adversaryA that runs in time t and makes at most qsign
queries to the oracle sign, the X-CMA-advantage of A against DS has an upper
bound β, i.e., AdvX-CMA

DS (A) ⇒ β. Similarly, for each X ← {sUF,UF}, we say that
DS is (t, n, β)-X-GMA-secure if for any adversaryA that runs in time t and makes
only one query to the oracle gsign, the X-GMA-advantage of A against DS has
an upper bound β, i.e., AdvX-GMA

DS,n (A) ⇒ β. The query to gsign consists of n
messages.

Both a (t, 1, β)-X-CMA-secure digital signature scheme and a (t, 1, β)-X-GMA-
secure digital signature scheme are called one-time. Roughly speaking, an one-
time digital signature scheme OTS can be used to securely sign a single message
per a signing/verification key pair.

3 Incrementally Executable Signcryptions

We define incrementally executable signcryptions by generalizing a syntactical
definition of standard signcryption schemes.

Definition 1 (Incrementally Executable Signcryptions). An incremen-
tally executable signcryption scheme IESC consists of the following algorithms:

init() ≤ σ: The initialization algorithm. It outputs public parameters σ. We will
generally assume that all algorithms take σ as an implicit input, even if it is
not explicitly stated.

genS(σ) ≤ (skS , pkS): The sender key generation algorithm. It generates a
private/public key pair (skS , pkS) for a sender.



Incrementally Executable Signcryptions 233

Game ExpX-CMA
DS (A):

λ ← DS.init(); (sk∈,pk∈) ← DS.gen(λ); (m∈, σ∈) ← A(λ, pk∈; signsk⊆ )

v∈ ← DS.ver(λ, pk∈,m∈, σ∈) ∧ [(m∈, σ∈ ) /∈ Q]; return v∈

Oracle signsk⊆ (m):

σ ← DS.sign(λ, sk∈,m); Q ← Q ∪ {(m, σ)}; return σ

Game ExpX-GMA
DS,n (A):

λ ← DS.init(); (m∈, σ∈) ← A(λ; gsign)

v∈ ← DS.ver(λ, pk∈,m∈, σ∈) ∧ [(m∈, σ∈ ) /∈ Q]; return v∈

Oracle gsign(m1, . . . , mn):

(sk∈,pk∈) ← DS.gen(λ)
for j ∈ {1, . . . , n} : σj ← DS.sign(λ, sk∈, mj); Q ← Q ∪ {(mj , σj)}
return (pk∈, σ1, . . . , σn)

Algorithm 3. Experiment for defining the unforgeability notions of digital signatures.
Boxed parts are evaluated only in sUF games.

genR(σ) ≤ (skR, pkR): The receiver key generation algorithm. It generates a pri-
vate/public key pair (skR, pkR) for a receiver.

sc1(σ, skS , pkS) ≤ st1: The signcryption algorithm partially executed with the
sender’s key pair. It takes as input the public parameters σ and the sender
S’s key pair (skS , pkS) to output an internal state st1, which must be secretly
stored and eventually used only once in the next algorithm sc2.

sc2(st1, pkR) ≤ st2: The signcryption algorithm partially executed with the re-
cipient’s public key. It takes as input the precomputed results st1 and the
receiver R’s public (encryption) key pkR, and outputs an internal state st2,
which must be secretly stored and eventually used only once in the next al-
gorithm sc3.

sc3(st2,m) ≤ Φ: The on-line signcryption algorithm. It takes as input the pre-
computed results st2 and a message m from the associated message space,
and outputs a ciphertext Φ.

unsc(σ, pkS , skR, pkR, Φ) ≤ m: The (deterministic) un-signcryption algorithm.
It takes as input the sender S’s public (verification) key pkS, the receiver
R’s key pair (skR, pkR), and a ciphertext Φ, and outputs either a message
m or an error symbol ∅.

For correctness, we require that for all σ ∈ init(), all (pkS , skS) ∈ genS(σ), all
(pkR, skR) ∈ genR(σ), and all m in the associated message space, it must hold
that unsc(σ, pkS , skR, pkR, sc3(sc2(sc1(σ, skS , pkS), pkR),m)) = m.

We adapt the strongest security notion of indistinguishability against insider
chosen ciphertext attacks in the dynamic multi-user model (dM-IND-iCCA) [22]
to our notion.

Definition 2 (Confidentiality). Let IESC be an incrementally executable sign-
cryption scheme and let A be an adversary. The dM-IND-iCCA-advantage of A
against IESC is defined as



234 D. Yamamoto, H. Sato, and Y. Fukuzawa

AdvdM-IND-iCCA
IESC (A) =

∣∣∣2Pr
[
ExpdM-IND-iCCA

IESC (A) = 1
]
− 1

∣∣∣ ,

where the experiment ExpdM-IND-iCCA
IESC is described in Algorithm 4. The adversary

A is given access to the oracles sc and unsc. The challenge signcryption oracle
sc can be queried only once, with a sender key pair (sk∈

S , pk
∈
S) and a message

pair m∈
0,m

∈
1 that are of the same length. We require that (sk∈

S , pk
∈
S) is a valid key

pair. The un-signcryption oracle unsc can be called multiple times, with a sender
key pkS and a ciphertext Φ. After interactions with sc and unsc, adversary A
outputs a bit b∈. We say that IESC is (t, qunsc, β)-dM-IND-iCCA-secure if for any
adversary A that runs in time t and makes at most qunsc queries to the oracle
unsc, the dM-IND-iCCA-advantage of A against IESC has an upper bound β, i.e.,
AdvdM-IND-iCCA

IESC (A) ⇒ β.

Game ExpdM-IND-iCCA
IESC (A):

b←$ {0, 1}; λ ← IESC.init(); (sk∈
R,pk∈

R) ← IESC.genR(λ)
b∈ ← A(λ, pk∈

R; scb,pk⊆R , unscsk⊆R,pk⊆R ); return [b∈ = b]

Oracle scb,pk⊆R (sk∈
S , pk

∈
S , m

∈
0, m

∈
1):

st∈1 ← IESC.sc1(λ, sk
∈
S ,pk

∈
S); st∈2 ← IESC.sc2(st∈1, pk

∈
R); returnΣ∈ ← IESC.sc3(st∈2, m

∈
b )

Oracle unscsk⊆
R
,pk⊆

R
(pkS , Σ):

if (pkS , Σ) = (pk∈
S , Σ

∈) : return ⊥ else: return m ← IESC.unsc(λ, pkS , sk
∈
R, pk∈

R, Σ)

Algorithm 4. Experiment for defining dM-IND-iCCA security.

For unforgeability, we also adapt the strongest security definition of strong
unforgeability against insider chosen message attacks in the dynamic multi-user
model (dM-sUF-iCMA) [22] to our notion.

Definition 3 (Unforgeability). Let IESC be an incrementally executable sign-
cryption scheme and let A be an adversary. The dM-sUF-iCMA-advantage of A
against IESC is defined as

AdvdM-sUF-iCMA
IESC (A) = Pr

[
ExpdM-sUF-iCMA

IESC (A) = 1
]
,

where the experiment ExpdM-sUF-iCMA
IESC is described in Algorithm 5. Adversary A is

given access to the signcryption oracle sc, which can be called multiple times with
a receiver public key pkR and a message m. After interactions with oracle sc,
adversary A outputs a receiver key pair (sk∈

R, pk
∈
R) and a forgery Φ∈. We require

that (sk∈
R, pk

∈
R) is a valid key pair. We say that IESC is (t, qsc, β)-dM-sUF-iCMA-

secure if for any adversary A that runs in time t and makes at most qsc queries
to the oracle sc, the dM-sUF-iCMA-advantage of A against IESC has an upper
bound β, i.e., AdvdM-sUF-iCMA

IESC (A) ⇒ β.



Incrementally Executable Signcryptions 235

Game ExpdM-sUF-iCMA
IESC (A):

λ ← IESC.init(); (sk∈
S ,pk

∈
S) ← IESC.genS(λ); (sk∈

R,pk∈
R, Σ∈) ← A(λ, pk∈

S ; scsk⊆S ,pk⊆S )

m∈ ← IESC.unsc(λ, pk∈
S , sk

∈
R,pk∈

R, Σ∈); return [m∈ �= ⊥] ∧ [(pk∈
R,m∈, Σ∈) /∈ Q]

Oracle scsk⊆S ,pk⊆S (pkR, m):

st1 ← IESC.sc1(λ, sk
∈
S , pk

∈
S); st2 ← IESC.sc2(st1,pkR); Σ ← IESC.sc3(st2,m)

Q ← Q∪ {(pkR,m,Σ)}; return Σ

Algorithm 5. Experiment for defining dM-sUF-iCMA security.

4 Generic Construction with Strong Security and Parallel
Un-Signcryption

In this section, we show a generic construction of incrementally executable sign-
cryption scheme that achieves the confidentiality and unforgeability notions
without relying on random oracles. Our construction is based on the TBKEM-
based composition methods from [8] (hereinafter referred to as CMSMtk) and the
signature transformation technique proposed by Huang et al. [16,15].

Let TK be a tag-based key encapsulation mechanism and DEM a data encap-
sulation mechanism, where their key spaces are identical, i.e., TK.K = DEM.K.
Let DS be a digital signature scheme and OTS an one-time digital signature
scheme. Then, our generic construction GIESC is defined as described in Al-
gorithm 6, respectively. The correctness properties of the schemes are easy to
verify.

init():

λS ← DS.init(); λK ← TK.init(); λO ← OTS.init(); return λ ← (λS , λK , λO)

genS(λ):

return (skS ,pkS) ← DS.gen(λS )

genR(λ):

return (skR,pkR) ← TK.gen(λK)

sc1(λ, skS ,pkS):

(osk, opk) ← OTS.gen(λO); σ1 ← DS.sign(skS , opk)
return st1 ← (λ, osk, opk,pkS , σ1)

sc2(st1,pkR):

(λ, osk, opk, pkS , σ1) ← st1; (K,C1)←TK.enc(pkR, 〈opk ‖ σ1 ‖ pkS〉)
return st2 ← (λ, osk, opk, σ1, pkR, K,C1)

sc3(st2,m):

(λ, osk, opk, σ1,pkR,K,C1) ← st2; σ2 ← OTS.sign(osk, 〈σ1 ‖ pkR ‖ C1 ‖m〉)
C2 ← DEM.enc(K, 〈σ2 ‖m〉); return Σ ← (opk, σ1, C1, C2)

unsc(pkS , skR, pkR, Σ):

(opk, σ1, C1, C2) ← Σ
K ← TK.dec(skR, 〈opk ‖ σ1 ‖ pkS〉, C1); v1 ← DS.ver(pkS , opk, σ1)
〈σ2 ‖m〉 ← DEM.dec(K,C2); v2 ← OTS.ver(opk, 〈σ1 ‖ pkR ‖ C1 ‖m〉, σ2)
if ¬v1 ∨ ¬v2 ∨ [K = ⊥] : return ⊥ else: return m

Algorithm 6. GIESC: Generic construction of incrementally executable signcryption.
Note that in unsc algorithm, DS.ver and TK.dec can be performed in parallel.



236 D. Yamamoto, H. Sato, and Y. Fukuzawa

We integrate the signature transformation paradigm from Huang et al. [16,15],
which weaken the underlying assumption, i.e., the underlying signature scheme is
sufficient to be not necessarily strong unforgeable under generic chosen message
attack. Furthermore, GIESC supports the parallel un-signcryption feature, which
allows receivers to perform two potentially expensive computations, i.e., the
verification of off-line signature and the key-decapsulation, in a parallel fashion.
For realizing this, we avoid encrypting opk and τ1 so that the receiver need not
wait for the decryption process to verify the validity of opk and τ1. In order
to preserve dM-IND-iCCA security, these two visible component opk and τ1 are
given into TK.enc as additional tags.

The following theorems guarantee the security of our construction.

Theorem 1 (Confidentiality of GIESC). If TK is (t≤, qdecap, βTK)-
IND-tag-CCA-secure and DEM is (t≤, qdec, βDEM)-IND-OTCCA-secure, then
GIESC is (t, qunsc, βIESC)-dM-IND-iCCA-secure, where t = t≤ − O(qunsc),
qunsc ⇒ min {qdecap, qdec}, and βIESC ⇐ 2βTK + βDEM.

Proof. Assume we have a t-time adversary A that makes at most qunsc queries
to unsc oracle in order to break the confidentiality of our GIESC. Then, we
construct two adversaries BA and CA that exploit A as a black-box. For any A
we will show the following equation holds:

AdvdM-IND-iCCA
GIESC (A) ⇒ 2AdvIND-tag-CCA

TK (BA) + AdvIND-OTCCA
DEM (CA). (1)

Combined Eq. (1) with the assumptions that TK is (t≤, qdecap, βTK)-IND-tag-CCA-
secure and DEM is (t≤, qdec, βDEM)-IND-OTCCA-secure, we have Adv

dM-IND-iCCA
GIESC (A)

⇒ 2βTK + βDEM, which implies that GIESC is (t, qunsc, βIESC)-dM-IND-iCCA-secure
for any βIESC ⇐ 2βTK + βDEM, as desired.

In order to prove Eq. (1), we define four games G0, G1, G0∗1, and G2 as well
as two adversaries BA and CA in Algorithm 7.

We briefly explain the game chain. � Game G0 is equivalent to the original
attack game played by A against GIESC. Hence, we have AdvdM-IND-iCCA

GIESC (A) =
Pr[G0(A) ⇒ 1] � Game G1 behaves just like game G0, except that we use a
random keyK∈

0 to compute the fourth component C∈
2 of the challenge ciphertext.

Moreover, The unsc oracle uses this K∈
0 to decrypt a ciphertext C2 when (⊕opk ⊇

τ1⊇pkS〉, C1) = (⊕opk∈⊇τ∈
1⊇pk∈

S〉, C∈
1 ) holds.� GameG0∗1 interpolates between

G0 and G1. This game behaves like game G1, except that we use additional
random bit b≤ ∈$ {0, 1} and call two oracles encap and decap instead of TK.enc
and TK.dec, respectively. Note that the specifications of encap and decap are
defined in the IND-tag-CCA game described in Algorithm 1.

Lemma 1 (G0 ≤ {G0∗1, G1}). From A’s viewpoint, game G0∗1 is equivalent
to G0 when b≤ = 1, and is equivalent to G1 otherwise. More specifically, we have
PrG0 [b

∈ = b] = PrG0∗1 [b
∈ = b | b≤ = 1] andPrG1 [b

∈ = b] = PrG0∗1 [b
∈=b | b≤ = 0].



Incrementally Executable Signcryptions 237

Using this lemma, we have

Pr[G0(A) ⇒ 1] = (PrG0 [b
∈ = b]− PrG1 [b

∈ = b]) + PrG1 [b
∈ = b]

= (PrG0∗1 [b
∈ = b | b≤ = 1]− PrG0∗1 [b

∈ = b | b≤ = 0]) + PrG1 [b
∈ = b]

= (2PrG0∗1 [[b
∈ = b] = b≤]− 1) + PrG1 [b

∈ = b]

= (2Pr[G0∗1(A) ⇒ 1]− 1) + Pr[G1(A) ⇒ 1] . (2)

From the description of game G0∗1, we construct an adversary BA as de-
scribed in Algorithm 7. Adversary BA exploits A to break the confidentiality
of TK, i.e., it plays ExpIND-tag-CCA

TK (BA). The adversary BA provides A with two
simulated oracles scb,pk⊆

R
and unscsk⊆

R,pk⊆
R
. When A queries these oracles, BA

replies to the query using its given oracle encap and decap, in the same manner
as G0∗1. The goal of BA is guessing a random bit b≤ embedded in encapb′,pk⊆

R
.

We can see that its running time satisfies t≤ = t+O(qunsc) since it takes in time
t to run A as a black-box and takes in time O(qunsc) to simulate unsc oracle for
at most at most qunsc times. Note that oracle encap is queried only once and
oracle decap is queried at most qunsc times.

Lemma 2 (G0∗1 ≤ BA). Game G0∗1(A) is equivalent to ExpIND-tag-CCA
TK (BA)

from A’s viewpoint. Specifically, we have

Pr[G0∗1(A) ⇒ 1] = Pr
[
ExpIND-tag-CCA

TK (BA) ⇒ 1
]
.

Now we transform game G1 into game G2, which uses two oracles enc and
dec instead of DEM.encrypt and DEM.decrypt, respectively. Note that enc and
dec are defined in the IND-CCA game described in Algorithm 2.

Lemma 3 (G1 ≤ G2). Game G2 is equivalent to G1 from A’s viewpoint. More
specifically, we have Pr[G1(A) ⇒ 1] = Pr[G2(A) ⇒ 1].

From the description of game G2, we construct an adversary CA as described
in Algorithm 7. Adversary CA exploits A to break the confidentiality of DEM,
i.e., it plays ExpIND-OTCCA

DEM (CA). The adversary CA provides A with two simulated
oracles scb,pk⊆

R
and unscsk⊆

R,pk⊆
R
. When A queries these oracles, CA replies to the

query using its given oracle enc and dec, in the same manner as G2. The goal of
CA is guessing a random bit b embedded in encb,K⊆ . We can see that its running
time satisfies t≤ = t+O(qunsc) since it takes in time t to run A as a black-box and
takes in time O(qunsc) to simulate unsc oracle for at most qunsc times. Note that
oracle enc is queried only once and oracle dec is queried at most qunsc times.

Lemma 4 (G2 ≤ CA). Game G2(A) is equivalent to ExpIND-CCA
DEM (CA) from A’s

viewpoint. More specifically, we have Pr[G2(A) ⇒ 1] = AdvIND-OTCCA
DEM (CA).

From Eq. (2) and each lemmas, we can obtain Eq. (1). ∩�
Theorem 2 (Unforgeability of GIESC). If DEM is one-to-one, DS is
(t≤, qsign, βDS)-UF-GMA-secure, and OTS is (t≤, 1, βOTS)-sUF-CMA-secure, then
GIESC is (t, qsc, βIESC)-dM-sUF-iCMA-secure, where t = t≤ − O(qsc), qsc ⇒ qsign,
and βIESC ⇐ βDS + qscβOTS.



238 D. Yamamoto, H. Sato, and Y. Fukuzawa

Game G0, G1, G0∪1, G2:

b←$ {0, 1}; b′ ←$ {0, 1} (G0∗1); K∈ ←$ DEM.K (G2)

λS ← DS.init(); λR ← TK.init(); λC ← OTS.init(); λ ← (λS , λR, λC)
(sk∈

R,pk∈
R) ← TK.gen(λR); b∈ ← A(λ, pk∈

R; scb,pk⊆R , unscsk⊆R,pk⊆R )

v∈ ← [b∈ = b] (G0, G1, G2); v∈ ← [[b∈ = b] = b′] (G0∗1); return v∈

Oracle scb,pk⊆
R
(sk∈

S , pk
∈
S , m

∈
0, m

∈
1):

(osk∈, opk∈) ← OTS.gen(λC); σ∈
1 ← DS.sign(sk∈

S , opk
∈)

(K∈
1 , C

∈
1 ) ← TK.enc(pk∈

R, 〈opk∈ ‖ σ∈
1 ‖ pk∈

S〉) (G0, G1, G2); K∈ ← K∈
1

(G0)

K∈
0 ←$ TK.K; K∈ ← K∈

0
(G1); (K∈, C∈

1 ) ← encapb′,pk⊆
R
(〈opk∈ ‖ σ∈

1 ‖ pk∈
S〉) (G0∗1)

σ∈
2 ← OTS.sign(osk∈, 〈σ∈

1 ‖ pk∈
R ‖ C∈

1 ‖m∈
b 〉) (G0, G0∗1, G1)

σ∈
2,0 ← OTS.sign(osk∈, 〈σ∈

1 ‖ pk∈
R ‖ C∈

1 ‖m∈
0〉) (G2)

σ∈
2,1 ← OTS.sign(osk∈, 〈σ∈

1 ‖ pk∈
R ‖ C∈

1 ‖m∈
1〉) (G2)

C∈
2 ← DEM.enc(K∈, 〈σ∈

2 ‖m∈
b 〉) (G0, G0∗1, G1)

C∈
2 ← encb,K⊆ (〈σ∈

2,0 ‖m∈
0〉, 〈σ∈

2,1 ‖m∈
1〉) (G2); return Σ∈ ← (opk∈, σ∈

1 , C
∈
1 , C

∈
2 )

Oracle unscsk⊆
R
,pk⊆

R
(pkS , Σ):

if (pkS , Σ) = (pk∈
S , Σ

∈) : return ⊥
(opk, σ1, C1, C2) ← Σ; v1 ← DS.ver(pkS , opk, σ1)

K ← TK.dec(sk∈
R, 〈opk ‖ σ1 ‖ pkS〉, C1); 〈σ2 ‖m〉 ← DEM.dec(K,C2) (G0, G1, G2)

if (〈opk ‖ σ1 ‖ pkS〉, C1) = (〈opk∈ ‖ σ∈
1 ‖ pk∈

S〉, C∈
1 ) :

K ← K∈; 〈σ2 ‖m〉 ← DEM.dec(K,C2) (G0∗1, G1)

if C2 = C∈
2 : return ⊥ else: 〈σ2 ‖m〉 ← decK⊆ (C2) (G2)

else:
K ← decapsk⊆

R
(〈opk ‖ σ1 ‖ pkS〉, C1); 〈σ2 ‖m〉 ← DEM.decrypt(K,C2) (G0∗1)

v2 ← OTS.ver(opk, 〈σ1 ‖ pkR ‖ C1 ‖m〉, σ2)
if ¬v1 ∨ ¬v2 ∨ [K = ⊥] : return ⊥ else: return m

Adversary BA(λR,pk∈
R; encapb′,pk⊆

R
, decapsk⊆

R
):

b←$ {0, 1}; λS ← DS.init(); λO ← OTS.init(); λ ← (λS , λK , λO)
b∈ ← A(λ, pk∈

R; scb,pk⊆
R
, unscsk⊆

R
,pk⊆

R
); return [b∈ = b]

// sc and unsc are the same as G0∪1

Adversary CA(DEM.K; encb,K⊆ , decK⊆ ):

λS ← DS.init(); λK ← TK.init(); λO ← OTS.init(); λ ← (λS , λK , λO)
(sk∈

R,pk∈
R) ← TK.gen(λK ); b∈ ← A(λ, pk∈

R; scb,pk⊆R , unscsk⊆R,pk⊆R ); return b∈

// sc and unsc are the same as G2

Algorithm 7. Experiments for proving dM-IND-iCCA security of GIESC. Boxed parts
are evaluated only in the game indicated as its superscript.

Due to space limitations, the proofs of Theorem 2 and the lemmas are given
in the full version [28].



Incrementally Executable Signcryptions 239

4.1 Comparison

We present in Table 1 a comparison of our GIESC construction with previous
signcryption constructions in various viewpoints. We consider only generic con-
structions not relying on random oracles.

From the second to the fourth row, we describe the building blocks computed
in sc1, sc2, and sc3. The computation with the dagger mark (†) is potentially
expensive process. Note that the expensive signing process DS.sign (underlined
parts in Table 1) can be performed even in sc1 (i.e., before being given the
recipient’s public key) with our construction, whereas it can be only in sc2 (i.e.,
after being given the recipient’s public key) with OCtEaS as well as in sc3 (i.e.,
after being given the message to be sent) with CMSMtk. The fifth row shows
whether the scheme achieves the strong security notions of dM-IND-iCCA and
dM-sUF-iCMA. The sixth row shows whether the scheme supports the parallel
un-signcryption feature. The seventh row shows the security assumption for the
underlying signature scheme DS to prove the strong security of each construction.
The eighth row shows the difference between the ciphertext size and the plaintext
size, where |C| denotes the size of the encapsulation generated by TBKEM.enc
or KEM.enc; |τ1| denotes the size of the signature generated by DS.sign; |c|
and |r| denote the size of commitment and randomness generated by trapdoor
commitment schemes; |opk| denotes the size of the public key generated by
OTS.gen; and |τ2| denotes the size of the signature generated by OTS.sign.

Table 1. Comparison of previous and our proposed signcryption schemes

CMSMtk[8] OCtEaS [2] Ours: GIESC

Setup Computation (sc1) - - DS.sign†

(with skS and pkS only)
Handshake Computation (sc2) TBKEM.enc† DS.sign† TBKEM.enc†

(with skS, pkS , and pkR) KEM.enc†

On-line Computation (sc3) DS.sign† TCMT.switch OTS.sign
DEM.enc DEM.enc DEM.enc

Strong Security yes no yes
Parallel Un-Signcryption no yes yes
Security Assumption for DS sUF-CMA sUF-CMA UF-GMA (weakest)
Ciphertext Overhead |C|+ |σ1| |C|+ |σ1| |C|+ |σ1|+ |opk|+ |σ2|

5 Conclusion

This paper presents the concept of incrementally executable signcryptions, which
is a generalization of traditional on-line/off-line signcryption and facilitates op-
timizing the sender’s off-line computation. With an incrementally executable
signcryption scheme, the sender can activate signcryption process incrementally
by its given sequential input: the sender’s key pair, a recipient’s public key, and
a plaintext message to be sent to the recipient. We defined the syntax of in-
crementally executable signcryptions and proposed formal security models for
confidentiality and unforgeability.



240 D. Yamamoto, H. Sato, and Y. Fukuzawa

Furthermore, we presented an generic construction of incrementally executable
signcryption scheme. In our construction, the signing process can be done before
being given the recipient’s public key as well as the message to be sent. This fea-
ture enables us to accelerate the subsequent processes. Moreover, we showed that
our construction achieves the strongest security notionswithout relying on random
oracles.We also showed that it requires a weak assumption for the underlying sig-
nature scheme and our construction supports the parallel un-signcryption feature,
which allows receivers to perform two potentially expensive computations, i.e., the
verification of off-line signature and the key-decapsulation, in parallel.

References

1. Abe, M., Gennaro, R., Kurosawa, K., Shoup, V.: Tag-kem/dem: A new framework
for hybrid encryption and a new analysis of kurosawa-desmedt kem. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 128–146. Springer, Heidelberg
(2005)

2. An, J.H., Dodis, Y., Rabin, T.: On the security of joint signature and encryption. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107. Springer,
Heidelberg (2002)

3. Baek, J., Steinfeld, R., Zheng, Y.: Formal proofs for the security of signcryption. In:
Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 80–98. Springer,
Heidelberg (2002)

4. Baek, J., Steinfeld, R., Zheng, Y.: Formal proofs for the security of signcryption.
Journal of Cryptology 20(2), 203–235 (2007)

5. Bjørstad, T.E., Dent, A.W.: Building better signcryption schemes with tag-kems.
In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958,
pp. 491–507. Springer, Heidelberg (2006)

6. Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing chosen-ciphertext security. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 565–582. Springer, Heidelberg
(2003)

7. Catalano, D., Di Raimondo, M., Fiore, D., Gennaro, R.: Off-line/on-line signa-
tures: theoretical aspects and experimental results. In: Cramer, R. (ed.) PKC 2008.
LNCS, vol. 4939, pp. 101–120. Springer, Heidelberg (2008)

8. Chiba, D., Matsuda, T., Schuldt, J.C.N., Matsuura, K.: Efficient generic construc-
tions of signcryption with insider security in the multi-user setting. In: Lopez, J.,
Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 220–237. Springer, Heidelberg
(2011)

9. Chow, S.S., Liu, J.K., Zhou, J.: Identity-based online/offline key encapsulation and
encryption. In: Proceedings of the 6th ACM Symposium on Information, Computer
and Communications Security, ASIACCS 2011, pp. 52–60. ACM (2011)

10. Dent, A.W.: Hybrid signcryption schemes with insider security. In: Boyd, C.,
González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 253–266. Springer,
Heidelberg (2005)

11. Dent, A.W.: Hybrid signcryption schemes with outsider security. In: Zhou, J.,
López, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp. 203–217.
Springer, Heidelberg (2005)

12. Dodis, Y., Freedman, M.J., Jarecki, S., Walfish, S.: Optimal signcryption from any
trapdoor permutation. Cryptology ePrint Archive, Report 2004/020 (2004),
http://eprint.iacr.org/

http://eprint.iacr.org/


Incrementally Executable Signcryptions 241

13. Even, S., Goldreich, O., Micali, S.: On-line/off-line digital signatures. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 263–275. Springer, Heidelberg (1990)

14. Guo, F., Mu, Y., Chen, Z.: Identity-based online/offline encryption. In: Tsudik, G.
(ed.) FC 2008. LNCS, vol. 5143, pp. 247–261. Springer, Heidelberg (2008)

15. Huang, Q., Wong, D.S., Li, J., Zhao, Y.M.: Generic transformation from weakly
to strongly unforgeable signatures. Journal of Computer Science and Technol-
ogy 23(2), 240–252 (2008)

16. Huang, Q., Wong, D.S., Zhao, Y.: Generic transformation to strongly unforgeable
signatures. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 1–17.
Springer, Heidelberg (2007)

17. Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Halevi, S., Ra-
bin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg (2006)

18. Libert, B., Quisquater, J.-J.: Efficient signcryption with key privacy from gap diffie-
hellman groups. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947,
pp. 187–200. Springer, Heidelberg (2004)

19. Liu, J.K., Baek, J., Zhou, J.: Online/offline identity-based signcryption revisited.
In: Lai, X., Yung, M., Lin, D. (eds.) Inscrypt 2010. LNCS, vol. 6584, pp. 36–51.
Springer, Heidelberg (2011)

20. Liu, J.K., Zhou, J.: An efficient identity-based online/offline encryption scheme.
In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009.
LNCS, vol. 5536, pp. 156–167. Springer, Heidelberg (2009)

21. MacKenzie, P.D., Reiter, M.K., Yang, K.: Alternatives to non-malleability: Def-
initions, constructions, and applications. In: Naor, M. (ed.) TCC 2004. LNCS,
vol. 2951, pp. 171–190. Springer, Heidelberg (2004)

22. Matsuda, T., Matsuura, K., Schuldt, J.C.N.: Efficient constructions of signcryp-
tion schemes and signcryption composability. In: Roy, B., Sendrier, N. (eds.)
INDOCRYPT 2009. LNCS, vol. 5922, pp. 321–342. Springer, Heidelberg (2009)

23. Pieprzyk, J., Pointcheval, D.: Parallel authentication and public-key encryption.
In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol. 2727, pp. 383–401.
Springer, Heidelberg (2003)

24. Shamir, A., Tauman, Y.: Improved online/offline signature schemes. In: Kilian, J.
(ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 355–367. Springer, Heidelberg (2001)

25. Sun, D., Mu, Y., Susilo, W.: A generic construction of identity-based online/offline
signcryption. In: International Symposium on Parallel and Distributed Processing
with Applications, ISPA 2008, pp. 707–712. IEEE (2008)

26. Tan, C.H.: Signcryption scheme in multi-user setting without random oracles.
In: Matsuura, K., Fujisaki, E. (eds.) IWSEC 2008. LNCS, vol. 5312, pp. 64–82.
Springer, Heidelberg (2008)

27. Xu, Z., Dai, G., Yang, D.: An efficient online/offline signcryption scheme for
MANET. In: 21st International Conference on Advanced Information Networking
and Applications Workshops, AINAW 2007, vol. 2, pp. 171–176. IEEE (2007)

28. Yamamoto, D., Sato, H., Fukuzawa, Y.: Incrementally executable signcryptions,
http://eprint.iacr.org/ (submitted)

29. Zhang, F., Mu, Y., Susilo, W.: Reducing security overhead for mobile networks.
In: Advanced Information Networking and Applications, AINA 2005, vol. 1, pp.
398–403. IEEE (2005)

30. Zheng, Y.: Digital signcryption or how to achieve cost (signature & encryption)
⊕ cost (signature) + cost (encryption). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997.
LNCS, vol. 1294, pp. 165–179. Springer, Heidelberg (1997)

31. Zheng, Y., Yung, M., Dent, A.W.: Practical signcryption. Springer (2010)

http://eprint.iacr.org/


Hierarchical Identity-Based Broadcast

Encryption

Weiran Liu1, Jianwei Liu1, Qianhong Wu2,1, and Bo Qin3

1 School of Electronic and Information Engineering, Beihang University,
XueYuan Road No.37, Haidian District, Beijing, China

liuweiran900217@gmail.com, liujianwei@buaa.edu.cn, qhwu@xidian.edu.cn
2 The Academy of Satellite Application, Beijing, 100086, China

3 School of Information, Renmin University of China,
ZhongGuanCun Street No. 59, Haidian District, Beijing, China

bo.qin@ruc.edu.cn

Abstract. We elaborate Hierarchical Identity-Based Encryption (HIBE)
with a new primitive referred to as Hierarchical Identity-Based Broad-
cast Encryption (HIBBE). Similar to HIBE, HIBBE organizes users in a
tree-like structure and users can delegate their decryption capability to
their subordinates, which mirrors hierarchical social organizations in the
real world. Unlike HIBE merely allowing a single decryption path, HI-
BBE enables encryption to any subset of the users and only the intended
users (and their supervisors) can decrypt. We define ciphertext indis-
tinguishability against adaptively chosen-identity-vector-set and chosen-
ciphertext attack (IND-CIVS-CCA2) which captures the most powerful
attacks on HIBBE in the real world. We construct an efficient HIBBE
scheme against chosen-identity-vector-set and chosen-plaintext attack
(IND-CIVS-CPA). The construction is built from composite order bi-
linear pairings and has constant size ciphertext. Analyses show that our
HIBBE is efficient in terms of communication and computation that is
suitable into practical usage.

Keywords: Hierarchical Identity-Based Broadcast Encryption, Hierar-
chical Identity-Based Encryption, Broadcast Encryption.

1 Introduction

Identity-Based Encryption (IBE), introduced by Shamir [22], allows one to se-
curely communicate with others if he/she knows their public identities. In IBE,
users’ recognizable identities such as their social security number, IP or email
address, are used as their public keys. A Private Key Generator (PKG) is em-
ployed to generate secret keys associated with the users’ public identities. One
can encrypt to any user by specifying the user’s identity and only the intended
user can decrypt.

Hierarchical IBE (HIBE) extends IBE to host a large number of users with a
delegation mechanism. HIBE [14] organizes users in a tree-like structure which
is consistent with the structure of many social organizations. PKG’s burden is

W. Susilo and Y. Mu (Eds.): ACISP 2014, LNCS 8544, pp. 242–257, 2014.
c© Springer International Publishing Switzerland 2014



Hierarchical Identity-Based Broadcast Encryption 243

shared by upper-level users who can delegate secret keys to their subordinates.
In the encryption process, the sender associates the ciphertext with an identity
vector, instead of the single identity in an IBE system. Then only the users whose
identities appearing in the specified identity vector can decrypt. For instance, to
securely communicate with a professor in a university, one just needs to encrypt
with a specified identity vector “university: XXX

∣∣ school: XXX
∣∣ laboratory:

XXX
∣∣ professor: XXX”, which is very convenient in practice.

In applications similar to the above, one may have to simultaneously commu-
nicate with multiple users in hierarchical organizations. For example, a company
may cooperate with a number of professors from different laboratories in a uni-
versity for developing a new software system. Trivially, the company can sepa-
rately encrypt to these professors by specifying their respective decryption paths.
However, this trivial solution incurs heavy encryption burden and long cipher-
texts. Another application comes from the IP-based multicast networks, in which
all nodes in the networks are organized in hierarchy. The nodes are identified by
their IP addresses and subnet masks. Since sensitive contents in such networks
can be easily intercepted by sniffer-like hack software, secure cryptographic sys-
tems are needed. Applying existing HIBE systems in multicast network would
be a possible solution. However, it becomes inefficient when the number of nodes
from different IP paths increases. We are interested in more practical solutions
to such applications.

1.1 Our Contributions

Motivated by the above scenarios, we propose a new cryptographic primitive re-
ferred to as Hierarchical Identity-Based Broadcast Encryption (HIBBE). Users
in a tree-like structure can delegate their decryption capabilities to their subor-
dinates, so that the burden of the PKG can be shared when the system hosts a
large number of users. One can encrypt to any subset of the users and only the
intended ones and their supervisors can decrypt.

We define ciphertext indistinguishability against adaptively chosen-identity-
vector-set and chosen-ciphertext attack (IND-CIVS-CCA2). In this notion, the
attacker is simultaneously allowed to adaptively query for the secret keys of users
recognized by identity vectors of its choice and to issue decryption queries for
receiver identity vector sets at will. Even such an attacker cannot distinguish
the encrypted messages, provided that the attacker does not query for the secret
keys of the target users or their supervisors. Clearly, this definition captures the
most powerful attacks on HIBBE in the real world.

We construct an HIBBE scheme with chosen-identity-vector-set and chosen-
plaintext security (IND-CIVS-CPA) in the standard model. This construction
is built from composite order bilinear pairings and has constant size ciphertext.
The encryption and decryption procedures are considerably efficient. Thorough
theoretical analyses show the feasibility and efficiency of our HIBBE in terms
of communication and computation. All of these features show the proposed
HIBBE is suitable for practical applications.



244 W. Liu et al.

1.2 Related Work

Identity-Based Encryption. Since the concept of Identity-Based Encryption (IBE)
was introduced by Shamir [22], it took long time for researchers to construct a
practical and fully functional scheme. In 2001, Boneh and Franklin [3] precisely
defined the security model of IBE systems and proposed the first practical IBE
construction by using bilinear pairings. In the Boneh-Franklin security model,
the adversary can adaptively request secret keys for the identities of its choice
and can choose the challenge identity it wants to attack at any point during
the key-requesting process, provided that the challenging identity is not queried.
The security of their systems [3] requires cryptographic hash functions to be
modeled as random oracles. Canetti et al. [7,8] formalized a slightly weaker se-
curity notion, called Selective-ID security, in which the adversary must disclose
the challenge identity before the public parameters are generated. They illus-
trated a Selective-ID secure IBE scheme without using random oracles. Since
then, more practical IBE schemes have been proposed that are shown to be se-
cure without random oracles in the selective-ID security model [1] or in the full
security model [23].

Broadcast Encryption. In Broadcast Encryption (BE) systems [12], a dealer
is employed to generate decryption keys for the users. A sender can encrypt to
a subset of the users and only the privileged ones can decrypt. Since the con-
cept of BE was introduced in 1994 [12], many BE schemes have been proposed to
gain more preferable properties. We mention just a few properties: “Stateless Re-
ceivers” (after getting the decryption keys, users do not need to update it) [9,17],
“Fully Collusion Resistant” (even if all users outside the receiver set collude, they
can obtain no information about the encrypted message) [5], “Dynamic” (the
dealer can dynamically recruit new members while the other members will not
be affected) [11], and “Anonymity” (a receiver does not need to know who are
the other receivers when decrypting the encrypted messages) [18].

Identity-Based Broadcast Encryption. Identity-Based Broadcast Encryption
(IBBE) incorporates the idea of BE into IBE and recognizes the users in a BE
scheme with their identities, instead of indexes assigned by the system. When one
needs to send confidential messages to multiple users, with IBE the sender has to
encrypt to the receivers separately, which is inefficient in practice. The sender in
IBBE can efficiently encrypt the message one time to multiple users and simply
broadcasts the resulting ciphertext. Fully functional IBBE was formalized and
realized by Delerablée with constant size ciphertext and secret key [10], although
it is only selective-ID secure in the random oracle model. The up-to-date IBBE
schemes [15,21] are shown to be secure in the full security model.

Hierarchical Identity-Based Encryption. Horwitz and Lynn [16] first proposed
the concept of HIBE and presented a two-level HIBE system in the same arti-
cle. The first fully functional HIBE construction was proposed by Gentry and
Silverberg [14]. The security relies on the Bilinear Diffie-Hellman assumption in
the random oracle model. Subsequently, Boneh and Boyen [1] introduced HIBE
schemes in the selective-ID model without using random oracles. Boneh, Boyen
and Goh [2] presented a selective-ID secure HIBE with constant size ciphertext.



Hierarchical Identity-Based Broadcast Encryption 245

Gentry and Halevi [13] constructed a fully secure HIBE that supports polyno-
mial depth of hierarchy. In 2009, Waters [24] proposed a new approach, called
Dual System, for proving full security in IBE and HIBE. This approach has
become a powerful security proof tool [19,20].

Generalized Identity-Based Encryption. Boneh and Hamburg [6] proposed a
general framework for constructing IBE systems, referred to as Generalized
Identity-Based Encryption (GIBE), to incorporate different properties in IBE
via a product rule. Their framework is rather general and can cover different
primitives, e.g., HIBE, inclusive IBE, co-inclusive IBE, in an identity-based like
settings. HIBBE can also be derived from GIBE. However, the HIBBE derived
from their GIBE only has selective security.

1.3 Paper Organization

The rest of the paper is organized as follows. In Section 2, we review composite
order bilinear groups and the assumptions used in our constructions. Section
3 formalizes HIBBE and its security definitions. We propose a IND-CIVS-CPA
secure HIBBE system in Section 4. Finally, we conclude the paper in Section 5.

2 Preliminaries

2.1 Composite Order Bilinear Groups

Composite order bilinear groups were first introduced in [4]. Let G be an algo-
rithm which takes a security parameter χ as input and outputs the description
of a bilinear group, (N,G,GT , e), where N = p1p2p3 is a composite integer with
three distinct large prime factors p1, p2 and p3, G and GT are cyclic groups of
order N , and a bilinear map e : G×G ∈ GT satisfying the following properties:

1. Bilinearity: for all g, h ⊕ G and a, b ⊕ ZN , e(ga, hb) = e(g, h)ab;
2. Non-degeneracy: there exists at least an element g ⊕ G such that e(g, g) has

order N in GT ;
3. Computability: There exists an efficient algorithm (in polynomial time with

respect to χ) to compute the bilinear pairing e(u, v) for all u, v ⊕ G.

Aside from these properties, the three subgroups of order p1, p2 and p3 in G

(we respectively denote them by Gp1 , Gp2 and Gp3) satisfy the orthogonality
property: ⊇hi ⊕ Gpi , hj ⊕ Gpj , if i �= j, then e(hi, hj) = 1. This property is
essential in our construction and the security proof.

2.2 Assumptions in Composite Order Bilinear Groups

We will use three static assumptions to prove the security of our HIBBE systems.
These three assumptions, which were first introduced by Lewko and Waters
[19], hold if it is hard to find a nontrivial factor of the group order. Let G
be a group generator algorithm that outputs a composite order bilinear group



246 W. Liu et al.

(N = p1p2p3,G,GT , e). For ease of description, we let Gpipj denote the subgroup
of order pipj in G.

Let g
R≤ Gp1 be a random generator of Gp1 and X3

R≤ Gp3 be a random
element in Gp3 . The Assumption 1 is to determine whether T is a random
element in Gp1p2 , or a random element in Gp1 by given D1 ≤ (g,X3) as input.
We define the advantage of an algorithm A that outputs b ⊕ {0, 1} in solving
the first assumption in G to be

Adv1A(χ) =
∣∣∣Pr

⎧
A
⎪
D1, T

R≤ Gp1p2

⎨
= 1

⎩
− Pr

⎧
A
⎪
D1, T

R≤ Gp1

⎨
= 1

⎩∣∣∣

Definition 1. Assumption 1 states that Adv1A(χ) is negligible for all polyno-
mial time algorithms A.

Let g
R≤ Gp1 be a random generator of Gp1 , choose random elements X1

R≤
Gp1 , X2, Y2

R≤ Gp2 and X3, Y3
R≤ Gp3 , the Assumption 2 is, given D2 =

(g,X1X2, X3, Y2Y3) as input, to determine whether T is a random element in G

or a random element in Gp1p3 . We define the advantage of an algorithm A that
outputs b ⊕ {0, 1} in solving the second assumption in G to be

Adv2A(χ) =
∣∣∣Pr

⎧
A
⎪
D2, T

R≤ G

⎨
= 1

⎩
− Pr

⎧
A
⎪
D2, T

R≤ Gp1p3

⎨
= 1

⎩∣∣∣

Definition 2. Assumption 2 states that Adv2A(χ) is negligible for all polyno-
mial time algorithms A.

Similarly, let g
R≤ Gp1 be a random generator of Gp1 , X2, Y2, Z2

R≤ Gp2 be

random elements in Gp2 , X3
R≤ Gp3 be a random element in Gp3 , σ, s

R≤ ZN

be random exponents chosen in ZN . The Assumption 3 states that, given
D3 = (g, gαX2, X3, g

sY2, Z2) as input, to determine whether T is e(g, g)αs, or a
random element in GT . We define the advantage of an algorithm A that outputs
b ⊕ {0, 1} in solving the third assumption in G to be

Adv3A(χ) =
∣∣∣Pr [A (D3, T ≤ e(g, g)αs) = 1]−

⎧
A
⎪
D3, T

R≤ GT

⎨⎩
= 1

∣∣∣

Definition 3. Assumption 3 states that Adv3A(χ) is negligible for all polyno-
mial time algorithms A.

3 Syntax

3.1 Terminologies and Notations

We introduce several notations to simplify the description of HIBBE systems.
Table 1 summarizes these notations and their corresponding meanings that will
be used in the paper.

We use [a, b] to denote integers in {a, a+1, · · · , b}. For a set S, its cardinality
is denoted by |S|. For an identity vector ID = (ID1, ID2, · · · , IDd), we define



Hierarchical Identity-Based Broadcast Encryption 247

Table 1. Notations

Notation Description Notation Description

λ Security Parameter PK Public Key
MSK Master Key CT Ciphertext
ID Identity ID Identity Vector
IID Identity Vector Position SKID Secret Key for Identity Vector
⊕ID⊕ Depth of ID SID Identity Set Associating with ID
V Identity Vector Set IV Identity Vector Set Position

⊕V⊕ Depth of V SV Identity Set Associating with V

←ID← = d as the depth of ID and SID = {ID1, · · · , IDd} as the identity set
associating with ID. The identity vector position of ID is defined by IID = {i :
IDi ⊕ SID}. Similarly, we define the maximal depth of an identity vector set
as ←V← = max{←ID← : ID ⊕ V}. The associating identity set SV of V and the
identity vector set position IV of V can be defined accordingly.

We slightly abuse the term prefix and define the prefix of an identity vec-
tor ID = (ID1, · · · , IDd) as an identity vector set denoted by Pref(ID) =
{(ID1, · · · , IDd′) : d∈ ∅ d}. Clearly, |Pref(ID)| = ←ID← = d. We similarly
define the prefix of an identity vector set V as Pref(V) =

⎥
ID≤V Pref(ID).

In practice, a user may have more than one identity or parent node. In this
case, we will treat them as different users with the same identity. Hence, without
loss of generality, we assume that each user has a unique identity vector and can
have at most one parent node.

Fig. 1. A Typical Example of an HIBBE System

For example, assume that the users are organized as in Figure 1. For the user
with identity vector ID = (ID1, ID3), we have that ←ID← = 2, SID = {ID1, ID3},
and IID = {1, 3}. The prefix of ID is Pref(ID) = {(ID1), (ID1, ID3)}. Sim-
ilarly, for the broadcast identity vector set V = {(ID1, ID3), (ID4, ID6, ID7)},
we have that ←V← = max{2, 3} = 3, SV = {ID1, ID3, ID4, ID6, ID7}, and IV =
{1, 3, 4, 6, 7}. The prefix of V is

Pref(V) = {(ID1), (ID1, ID3), (ID4), (ID4, ID6), (ID4, ID6, ID7)}



248 W. Liu et al.

3.2 Hierarchical Identity-Based Broadcast Encryption (HIBBE)

A (D,n)-HIBBE system consists of five polynomial time algorithms: Setup,
KeyGen, Delegate, Encrypt and Decrypt defined as follows:

– Setup(D, n, χ). The algorithm Setup takes as inputs the maximal depth
D of the hierarchy, the maximal size n of users, and the security parameter
χ. It outputs a masker key MSK and a public key PK.

– Encrypt(PK, M , V). The algorithm Encrypt takes as inputs the public
key PK, a message M ⊕ M, and a receiver identity vector set V. The
algorithm outputs the ciphertext CT for M .

– KeyGen(MSK, ID). The algorithm KeyGen takes as inputs the master
key MSK and an identity vector ID. It outputs a secret key SKID for the
user with identity vector ID.

– Delegate(SKID′ , ID). The algorithm Delegate takes as inputs a secret
key for a user with identity vector ID∈ of depth d and an identity ID. It
returns a secret key SKID for the user with identity ID = (ID∈, ID).

– Decrypt(V, CT , SKID). The algorithmDecrypt takes as inputs a receiver
identity vector set V, a ciphertext CT for a message M , and a secret key
SKID for a user with identity vector ID. If ID ⊕ Pref(V), it returns M .

An HIBBE system must satisfy the standard consistency constraint, namely for
allD ∅ n ⊕ N, all (PP ,MSK)≤ Setup(D, n, χ), all SKID ≤KeyGen(MSK,
ID) or SKID ≤ Delegate(SKID′ , ID) with ←ID← ∅ D, all M ⊕ M, and all
CT ≤ Encrypt(PP , M , V) with ←V← ∅ D and |SV| ∅ n, if ID ⊕ Pref(V),
then Decrypt(V, CT , SKID) = M .

We next define the indistinguishability against chosen-identity-vector-set and
chosen-ciphertext attacks (IND-CIVS-CCA2) in HIBBE. In this security model,
the adversary is allowed to obtain the secret keys associated with any identity
vectors ID of its choice and to issue decryption queries for its chosen cipher-
texts, provided that the adversary does not query for the secret keys of its
chosen receivers or their supervisors, or for the challenge ciphertext of one of its
chosen message. We require that even such an adversary cannot distinguish the
encrypted messages of its choice.

Formally, the IND-CIVS-CCA2 security is defined through a game played by
an adversary and a challenger. Both of them are given the parameters D,n and
χ as inputs.

– Setup. The challenger runs Setup algorithm to obtain the public key PK
and gives it to the adversary A.

– Phase 1. The adversary A adaptively issues two kinds of queries:
• Secret key query for an identity vector ID. The challenger generates a
secret key for ID and gives it to the adversary.

• Decryption query for the ciphertextCT with a receiver identity vector set
V. The challenger responds by running algorithm KeyGen to generate
a secret key SKID for identity vector ID satisfying ID ⊕ Pref(V). It
then runs algorithm Decrypt to decrypt the ciphertext CT and returns
the resulting message to the adversary.



Hierarchical Identity-Based Broadcast Encryption 249

– Challenge. When adversary A decides that Phase 1 is over, it outputs two
equal-length messages M0 and M1 on which it wishes to be challenged. Also,
adversary A outputs a challenge identity vector set V∗ in which contains all
the users that it wishes to attack. The identity vector set V∗ should satisfy
that for all the secret key queries for ID issued in Phase 1, ID /⊕ Pref(V∗).
The challenger flips a random coin b ⊕ {0, 1} and encrypts Mb under the
challenge identity vector set V∗. The challenger returns the resulting chal-
lenge ciphertext CT ∗ to A.

– Phase 2. The adversary A further adaptively issues two kinds of queries:
• Secret key query for identity vectors ID such that ID /⊕ Pref(V∗).
• Decryption query for the ciphertext CT such that CT �= CT ∗.

The challenger responds the same as in Phase 1.
– Guess. Finally, the adversary A outputs a guess b∈ ⊕ {0, 1} and wins in the

game if b = b∈.

The advantage of such an adversary A in attacking the (D,n)-HIBBE system
with security parameter χ is defined asAdvIND−CIV S−CCA2

A,D,n (χ)=
∣∣Pr[b∈=b]− 1

2

∣∣.

Definition 4. A (D,n)-HIBBE system is (α, q, qd, β)-secure if for any α-time
IND-CIVS-CCA2 adversary A that makes at most q secret key queries and qd
decryption queries, we have that AdvIND−CIV S−CCA2

A,D,n (χ) < β

As usual, we define chosen-identity-vector-set and chosen-plaintext (IND-
CIVS-CPA) security for an HIBBE system as in the preceding game, with the
constraint that the adversary is not allowed to issue any decryption query. The
adversary is still able to adaptively issue secret key queries.

Definition 5. A (D,n)-HIBBE system is (α, q, β)-secure if for any α-time IND-
CIVS-CPA adversary A that makes at most q secret key queries, we have that
AdvIND−CIV S−CPA

A,D,n (χ) < β.

It is challenging to achieve full (identity/identity-vector) security in BE and
(H)IBE, some weaker security notions have been proposed to bridge security
proofs or cater for special applications which require only moderate security
level. One useful security notion, called selective security, was firstly proposed
by Canetti, Halevi, and Katz [7,8] in IBE systems. In this notion, the adversary
should commits ahead of time to the challenge identity it will attack. Similar
security notions can also be found in HIBE systems [1] and IBBE systems [10].
A counterpart security notion can be naturally defined in HIBBE systems, by
requiring the adversary in HIBBE to submit a challenge identity vector set before
seeing the public parameters.

Another useful security notion, named semi-static security, can also be ex-
tended in HIBBE systems. This security notion was firstly defined by Gentry
and Waters [15] in BE systems. In this notion, the adversary must first commit
to a set S before Setup phase. The adversary cannot query for secret key of
any user in S, but it can attack any target set S∗ ⇒ S. This security notion is
weaker than full security but stronger than selective security, since the adversary



250 W. Liu et al.

can partly decide which set is allowed to query adaptively. In HIBBE systems,
a similar security notion can be defined by requiring the adversary to submit an
identity vector set V before Setup phase and later allowing the adversary to
challenge any identity vector set V∗ ⇒ Pref(V).

4 IND-CIVS-CPA Secure HIBBE with Constant Size
Ciphertext

In this section, we propose an IND-CIVS-CPA secure HIBBE with constant size
ciphertext over composite order bilinear groups of order N = p1p2p3. Our start-
ing point is the Lewko-Waters fully secure HIBE scheme [19] which was inspired
by Boneh-Boyen-Goh selective secure HIBE scheme [2]. To support broadcast,
every user in our system, instead of every depth of hierarchy in [2,19], is associ-
ated with a random element for blinding its own identity vector in their secret
keys. Since users’ identities have been randomized by different elements, users
cannot reveal any information for other users’ secret key from their own ones.

We realize the functionalities in Gp1 , while randomizing secret keys in Gp3 .
The Gp2 space, called semi-functional space, is only used in security proofs.

4.1 Our Construction

We first assume that the identity vectors ID = (ID1, · · · , IDk) at depth k are
vector elements in (ZN )k. We later extend the construction to identity vectors

over ({0, 1}∗)k by first hashing each component IDj ⊕ SID using a collision
resistant hash function H : {0, 1}∗ ∈ ZN . Similarly to HIBE systems, we also
assume that users’ positions in HIBBE are publicly known with the processing of
KeyGen, Delegate, Encrypt and Decrypt. Our (D,n)-HIBBE scheme works
as follows.

Setup(D, n, χ). Run (N,G,GT , e) ≤ G(1λ) to generate a composite in-
teger N = p1p2p3, two groups G, GT of order N , and a bilinear map

e : G × G ∈ GT . Then, select a random generator g
R≤ Gp1 , two ran-

dom elements h
R≤ Gp1 , X3

R≤ Gp3 , and a random exponent σ
R≤ ZN . Next,

pick random elements ui
R≤ Gp1 for all i ⊕ [1, n]. The public key PK includes

the description of (N,G,GT , e), as well as

(g, h, u1, · · · , un, X3, e(g, g)
α)

The master key is MSK ≤ gα.
KeyGen(MSK, ID). For an identity vector ID of depth d ∅ D, the key

generation algorithm picks a random exponent r
R≤ ZN and two random

elements A0, A1
R≤ Gp3 . It then chooses random elements Uj

R≤ Gp3 for all
j ⊕ [1, n]\IID and outputs

SKID ≤
⎦
gα

⎦
h ·

∏

i≤IID

uIDi

i

)r

A0, g
rA1,

{
urjUj

}
j≤[1,n]\IID

)



Hierarchical Identity-Based Broadcast Encryption 251

Delegate(SKID′ , ID). Given a secret key

SKID′ =

⎛

⎜⎝gα

⎛

⎝h ·
∏

i≤IID′

uIDi

i

⎞

⎠
r′

A∈
0, g

r′A∈
1,
{
ur

′
j U

∈
j

}

j≤[1,n]\IID′

⎞

⎟⎠

=
⎪
a0, a1, {bj}j≤[1,n]\IID′

⎨

the delegation algorithm generates a secret key for ID = (ID∈, ID) as follows.

It first picks a random exponent t
R≤ ZN , and also chooses two random

elements R0, R1
R≤ Gp3 . Next, for all j ⊕ [1, n]\IID, it chooses random

elements Tj
R≤ Gp3 . The algorithm outputs

SKID =

⎛

⎝a0
(
bIDi

)
i≤IID\IID′

⎦
h
∏

i≤IID

uIDi

i

)t

R0, a1g
tR1,

{
bju

t
jTj

}
j≤[1,n]\IID

⎞

⎠

Note that by implicitly setting r = r∈ + t ⊕ ZN , A0 = A∈
0U

∈
iR0 ⊕ Gp3 with

i ⊕ IID\IID′ , A1 = A∈
1R1 ⊕ Gp3 , and Uj = U ∈

jTj ⊕ Gp3 for all j ⊕ [1, n]\IID,
this delegated secret key can be written in the form

SKID ≤
⎦
gα

⎦
h ·

∏

i≤IID

uIDi

i

)r

A0, g
rA1,

{
urjUj

}
j≤[1,n]\IID

)

which is well-formed as if it were generated by the KeyGen algorithm.
Hence it is a properly distributed secret key for ID = (ID∈, ID).

Encrypt(PP , M , V). For the receiver identity vector set V the encryption

algorithm picks a random exponent τ
R≤ ZN and outputs the ciphertext

CT = (C0, C1, C2) =

⎛

⎝gβ ,

⎦
h ·

∏

i≤IV

uIDi

i

)β

, e(g, g)αβ ·M
⎞

⎠

Decrypt(V, CT , SKID). Given the ciphertext CT = (C0, C1, C2), any user
with identity vector ID ⊕ Pref(V) can use its secret key SKID =(
a0, a1, {bj}j≤[1,n]\IID

)
to compute

K = a0 ·
∏

j≤IV\IID
b
IDj

j

Then it outputs the message by calculating M = C2 · e(C1, a1)/e(K,C0).

Consistency. If the ciphertext CT = (C0, C1, C2) is well-formed, then we have

K = a0 ·
∏

j≤IV\IID
b
IDj

j = gα

⎦
h ·

∏

i≤IV

uIDi

i

)r

·
⎛

⎝A0

∏

j≤IV\IID
Uj

⎞

⎠



252 W. Liu et al.

Note that all random elements in Gp3 can be cancelled in the pairing operations
due to the orthogonality property. Therefore, for the blinding factor in C2, the
following equalities hold:

e(C1, a1)

e(K,C0)
=

e

⎛

⎝
⎦
h · ∏

i≤IV

uIDi

i

)β

, grA1

⎞

⎠

e

⎦
gα

⎦
h · ∏

i≤IV

uIDi

i

)r

·
⎦
A0

∏
j≤IV\IID

Uj

)
, gβ

)

=

e

⎛

⎝
⎦
h · ∏

i≤IV

uIDi

i

)β

, gr

⎞

⎠

e (gα, gβ) · e
⎦
h ·

⎦
∏

i≤IV

uIDi

i

)r

, gβ

) =
1

e (g, g)
αβ

It follows that C2 · e(C1, a1)/e(K,C0) =M · e(g, g)αβ/e(g, g)αβ = M .

4.2 A Toy Example of the Proposed HIBBE Scheme

To achieve intuition in our basic construction, we provide a toy example of the
proposal. Assume that the users are organized as in the right side of Figure 2
(same as in Figure 1). The secret keys for all users can be illustrated in the left
matrix, in which ri denotes the random exponent chosen for randomizing the
secret key of the identity vector IDi. For ease of illustration, all random elements
in Gp3 used for blinding secret keys are omitted in this matrix.

When an encryptor wants to broadcast a message M to an identity vector
set V = {ID3, ID7} = {(ID1, ID3), (ID4, ID6, ID7)}, it combines uID1

1 , uID3
3 ,

uID4
4 , uID6

6 , uID7
7 and randomizes them by the randomly choosing exponent

τ
R≤ ZN . The ciphertext is formed as

CT = (C1, C2, C3) =

(
gβ,

⎪
h · uID1

1 uID3
3 uID4

4 uID6
6 uID7

7

⎨β

, e(g, g)
αβ ·M

)

Fig. 2. The Illustration of our HIBBE construction



Hierarchical Identity-Based Broadcast Encryption 253

When decrypting, any user with identity vector ID ⊕ Pref(V) can compute

K = gα
⎪
h · uID1

1 uID3
3 uID4

4 uID6
6 uID7

7

⎨ri

Hence, the users defined by the receiver vectors can successfully recover the mes-

sage using the decryption algorithm by eliminating
⎪
huID1

1 uID3
3 uID4

4 uID6
6 uID7

7

⎨β

from the ciphertext. However, users who are not in the receiver identity vector
set cannot decrypt since their uIDi

i do not appear in the ciphertext but are
combined in the a0 component of their own secret keys. If they try to correctly

decrypt the ciphertext, they need to eliminate
⎪
uIDi

i

⎨ri
from their secret keys,

which is impossible without knowing the randomizing number ri.

4.3 Security Analysis

To prove the chosen-identity-vector-set and chosen-plaintext security of our
scheme, we apply the Dual System Encryption technique introduced by Wa-
ters [24] for obtaining adaptively secure IBE and HIBE schemes. This technique
has been shown a powerful tool for security proofs [19,20]. In a Dual System
Encryption system, the ciphertexts and keys can take one of two indistinguish-
able forms: normal and semi-functional. Normal keys can decrypt normal or
semi-functional ciphertexts, and semi-functional ciphertexts can be decrypted
by normal or semi-functional keys. However, decryption will fail when ones use
a semi-functional key to decrypt a semi-functional ciphertext. Since these two
kinds of keys and ciphertexts are indistinguishable, the simulator can replace
all normal ciphertexts and keys with semi-functional ones in the security game.
When all ciphertexts and keys are semi-functional, the adversary can obtain no
information about the challenge ciphertext as none of the given keys are useful
to decrypt the challenge ciphertext.

We first need to define the semi-functional key and the semi-functional cipher-

text. They will only be used in the security proof. Let g2
R≤ Gp2 be a random

generator of Gp2 , the semi-functional ciphertext and the semi-functional key are
defined as follows:

Semi-Functional Ciphertext. Run Encrypt algorithm to construct a normal

ciphertext CT = (C∈
0, C

∈
1, C

∈
2). Then, choose random exponents x, yc

R≤ ZN and
set C0 = C∈

0, C1 = C∈
1g

xyc

2 , C2 = C∈
2g

x
2 .

Semi-Functional Key. For an identity vector ID, run KeyGen algorithm
to generate its normal secret key SK = (a∈0, a

∈
1, {b∈j}j≤[1,n]\IID). Then, choose

random exponents Φ, yk ⊕ GN , zj ⊕ GN for all j ⊕ [1, n]\IID and set a0 =
a∈0g

γ
2 , a1 = a∈1g

γyk

2 , {bj = b∈jg
γzj
2 }j≤[1,n]\IID .

It can be seen that the Decrypt algorithm will correctly output the message
M when decrypting a semi-functional ciphertext using a normal key or a semi-
functional key since the added elements in Gp2 can be cancelled due to the



254 W. Liu et al.

orthogonality property. However, the blinding factor will be multiplied by the
additional term e(g2, g2)

xγ(yk−yc) when trying to decrypt the semi-functional
ciphertext using a semi-functional key, unless yk = yc with probability 1

N . In
this case, we call the key is nominally semi-functional.

We prove the security by using a sequence of games:

– GameReal. This game is the real HIBBE security game.
– GameRestricted. This game is identical with GameReal, except that in

Phase 2, the attacker cannot ask for any identity vector ID = (ID1, · · · , IDd)
satisfying that ≈ID∗ = (ID∗

1 , · · · , ID∗
d′) ⊕ Pref(V∗) with d∈ ∅ d, s.t. ⊇i ⊕

[1, d∈], IDi = ID∗
i mod p2, where V∗ is the challenge identity vector set.

– Gamek. Suppose that the adversary can make q secret key queries in Phase
1 and Phase 2. This game is identical with the GameRestricted, except that
the challenge ciphertext is semi-functional and the first k keys are semi-
functional, while the rest of the keys are normal. We note that in Game0,
only the challenge ciphertext is semi-functional; in Gameq, the ciphertext
and all keys are semi-functional.

– GameFinal. This game is the same as Gameq, except that the challenge
ciphertext is a semi-functional encryption for a random message in GT , not
one of the messages given by the adversary.

The security of our scheme is guaranteed by the following Theorem. In a
high level, the proof of our HIBBE system follows the proof framework of the
Lewko-Waters HIBE system [19], with an extra effort to generate ciphertexts
for supporting broadcast. The above games are indistinguishable and in the
final game the encrypted message is information-theoretically hidden from the
attacker. The details of the proof can be seen in the full version of this paper.

Theorem 1. Let G be a group (of composite order N) equipped with an efficient
bilinear map. Our HIBBE scheme is IND-CIVS-CPA secure if all the three as-
sumptions defined in Definition 1, Definition 2 and Definition 3 hold in G.

4.4 Efficiency Analysis

The public/secret key size in our HIBBE construction is linear with the maximal
number of active users n. For any subset of receivers, the ciphertext only has
three groups elements, which is preferable in broadcast encryption systems. The
Encrypt algorithm requires one pairing operation (which can be pre-computed).
The Decrypt algorithm only requires two pairing operations. Table 2 shows the
efficiency of the proposed HIBBE scheme in details. In Table 2, we denote αe as
one exponent operation time in G, αm as one multiplication operation time in
G, and αp as one pairing operation time in G. From Table 2, it can be seen that
our HIBBE system is efficient in practical usage.

4.5 HIBBE with Shorter Secret Keys

In our HIBBE scheme, while the ciphertext contains only three group elements,
the secret key for user at depth d contains n−d+2 elements. In some scenarios,



Hierarchical Identity-Based Broadcast Encryption 255

Table 2. Efficiency Analysis for Our (D,n)-HIBBE

(D, n)-HIBBE

Active Users n
Public Key Size n+ 4
Secret Key Size ≤ n+ 1
Ciphertext Size 3
Encryption Time (2 + |SV|) · (τe + τm)
Decryption Time ≤ (1 + |SV|) · (τe + τm) + 2τp

Fig. 3. Original HIBBE Fig. 4. Shorter Secret keys HIBBE

e.g., the storage capacity of the receivers are limited, one may expect an efficient
tradeoff between key size and ciphertext size. Note that users in an HIBBE sys-
tem are organized as a tree T with n nodes (PKG as the sink is not countered).
We divide T into T subtrees with ni nodes, where i ⊕ [1, T ]. To achieve better
balance, as shown in Figure 4, all the subtrees may be obtained in a way satis-
fying: (1) The number of nodes for each subtree is approximately equal. That
is, for the ith subtree with i ⊕ [1, T ], we have ni ⇐ n/T ; (2) All subtrees only
share necessarily minimum number of higher-level nodes.

We then implement independent HIBBE instances in each subtree. When
broadcasting, one encrypts the messages with each instance where the broadcast
subsets are the intersection of the original broadcast set and the subtrees. Each
receiver can decrypt the ciphertext component corresponding to its subtree. By
using this subtree method, the key size is O( n

T ) and the ciphertext size is O(T ).
By setting T =

√
n, both the key size and the ciphertext size are O(

√
n).

5 Conclusion

We formalized a new cryptographic primitive, referred to as Hierarchical Identity-
Based Broadcast Encryption (HIBBE) to cater for applications in which one
needs to encrypt to multiple receivers in a hierarchically organized organization.
We formalized IND-CIVS-CCA2 security to capture the realistic attacks against
HIBBE to be deployed in the real world. We presented an IND-CIVS-CPA se-
cure HIBBE scheme in the standard model. Theoretical analyses illustrate high
efficiency of our HIBBE in terms of communication and computation. All these
features show that our HIBBE is secure and practical.



256 W. Liu et al.

Acknowledgment. This paper is partially supported by the Natural Sci-
ence Foundation through projects 61272501, 61173154, 61370190 and 61003214,
by the National Key Basic Research Program (973 program) through project
2012CB315905, by the Beijing Natural Science Foundation through project
4132056, and by the Fundamental Research Funds for the Central Universities,
and the Research Funds(No.14XNLF02) of Renmin University of China and the
Open Research Fund of Beijing Key Laboratory of Trusted Computing.

References

1. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

2. Boneh, D., Boyen, X., Goh, E.J.: Hierarchical identity based encryption with con-
stant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 440–456. Springer, Heidelberg (2005)

3. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

4. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-dnf formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005)

5. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with
short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 258–275. Springer, Heidelberg (2005)

6. Boneh, D., Hamburg, M.: Generalized identity based and broadcast encryption
schemes. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 455–470.
Springer, Heidelberg (2008)

7. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer,
Heidelberg (2003)

8. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 207–222. Springer, Heidelberg (2004)

9. Dodis, Y., Fazio, N.: Public key broadcast encryption for stateless receivers. In:
Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 61–80. Springer, Heidelberg
(2003)

10. Delerablée, C.: Identity-based broadcast encryption with constant size ciphertexts
and private keys. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833,
pp. 200–215. Springer, Heidelberg (2007)

11. Delerablée, C., Paillier, P., Pointcheval, D.: Fully collusion secure dynamic broad-
cast encryption with constant-size ciphertexts or decryption keys. In: Takagi, T.,
Okamoto, T., Okamoto, E., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575,
pp. 39–59. Springer, Heidelberg (2007)

12. Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) Advances in
Cryptology - CRYPTO 1993. LNCS, vol. 773, pp. 480–491. Springer, Heidelberg
(1994)



Hierarchical Identity-Based Broadcast Encryption 257

13. Gentry, C., Halevi, S.: Hierarchical identity based encryption with polynomially
many levels. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 437–456.
Springer, Heidelberg (2009)

14. Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)

15. Gentry, C., Waters, B.: Adaptive security in broadcast encryption systems (with
short ciphertexts). In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479,
pp. 171–188. Springer, Heidelberg (2009)

16. Horwitz, J., Lynn, B.: Toward hierarchical identity-based encryption. In: Knudsen,
L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481. Springer, Heidelberg
(2002)

17. Halevy, D., Shamir, A.: The LSD broadcast encryption scheme. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 47–60. Springer, Heidelberg (2002)

18. Libert, B., Paterson, K.G., Quaglia, E.A.: Anonymous broadcast encryption: Adap-
tive security and efficient constructions in the standard model. In: Fischlin, M.,
Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 206–224.
Springer, Heidelberg (2012)

19. Lewko, A., Waters, B.: New techniques for dual system encryption and fully secure
HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978,
pp. 455–479. Springer, Heidelberg (2010)

20. Lewko, A., Waters, B.: New proof methods for attribute-based encryption: Achiev-
ing full security through selective techniques. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012)

21. Ren, Y., Gu, D.: Fully CCA2 secure identity based broadcast encryption without
random oracles. Information Processing Letters 109, 527–533 (2009)

22. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

23. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)

24. Waters, B.: Dual system encryption: Realizing fully secure IBE and HIBE under sim-
ple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636.
Springer, Heidelberg (2009)



Continuous After-the-Fact

Leakage-Resilient Key Exchange

Janaka Alawatugoda1, Colin Boyd3, and Douglas Stebila1,2

1 School of Electrical Engineering and Computer Science,
2 Mathematical Sciences School,

Queensland University of Technology, Brisbane, Australia
{janaka.alawatugoda,stebila}@qut.edu.au

3 Department of Telematics, Norwegian University of Science and Technology,
Trondheim, Norway

colin.boyd@item.ntnu.no

Abstract. Security models for two-party authenticated key exchange
(AKE) protocols have developed over time to provide security even when
the adversary learns certain secret keys. In this work, we advance the
modelling of AKE protocols by considering more granular, continuous
leakage of long-term secrets of protocol participants: the adversary can
adaptively request arbitrary leakage of long-term secrets even after the
test session is activated, with limits on the amount of leakage per query
but no bounds on the total leakage. We present a security model support-
ing continuous leakage even when the adversary learns certain ephemeral
secrets or session keys, and give a generic construction of a two-pass
leakage-resilient key exchange protocol that is secure in the model; our
protocol achieves continuous, after-the-fact leakage resilience with not
much more cost than a previous protocol with only bounded, non-after-
the-fact leakage.

Keywords: leakage resilience, key exchange, continuous leakage, after-
the-fact leakage, security models.

1 Introduction

In order to capture leakage (side-channel) attacks, the notion of leakage re-
silience has been developed. Examples of information considered by leakage or
side-channel attacks includes timing information [6,10,19], electromagnetic radi-
ation [16], and power consumption information [23]. Leakage may reveal infor-
mation about the secret parameters which have been used for computations in
cryptosystems. To abstractly model leakage attacks, cryptographers have pro-
posed the notion of leakage-resilient cryptography [1,4,9,13,14,18,17,22], where
the information that leaks is not fixed, but instead chosen adversarially. As au-
thenticated key exchange is one of the most important cryptographic primitives
in practice, it is important to construct key exchange protocols in a leakage-
resilient manner.

W. Susilo and Y. Mu (Eds.): ACISP 2014, LNCS 8544, pp. 258–273, 2014.
c© Springer International Publishing Switzerland 2014



Continuous After-the-Fact Leakage-Resilient Key Exchange 259

Earlier key exchange security models, such as the Bellare–Rogaway [5], Canetti–
Krawczyk [11], and extended Canetti–Krawczyk (eCK) [21] models, aim to cap-
ture security against an adversary who can fully compromise some, but not all
secret keys. For example, in the eCK model, a session key should be secure even
if the adversary has compromised either the long-term or ephemeral key at the
client, and either the long-term or ephemeral key at the server, but not all of
the values at one party. This is not a very granular form of leakage, and thus is
not fully suitable for modelling side-channel attacks.

This motivates the development of leakage-resilient key exchange security
models and protocols. Moriyama and Okamoto [25] and Alawatugoda, Stebila
and Boyd [3] proposed key exchange security models to analyze security of
leakage-resilient key exchange protocols, using a variant of the eCK model. There
are two central limitations in the Moriyama–Okamoto model. First, the total
amount of leakage allowed in the Moriyama–Okamoto model is bounded. Sec-
ond, the adversary cannot obtain any leakage information after the “test” session
is activated. The former restriction is troublesome because, in practice, ongoing
executions of a protocol may reveal a small amount of leakage each time, and
we would like to provide security against this “continuous” leakage. The latter
restriction is problematic because we would like to provide security of one ses-
sion, even if some leakage happens in subsequent sessions. Alawatugoda et al.
[3] overcome the limitations of the Moriyama-Okamoto model by proposing a
generic key exchange security model (ASB model), which can be instantiated
using either continuous leakage model or bounded leakage, both instantiations
allowing leakage after the “test” session is activated. Moreover, they proposed
a generic construction of a protocol which can be proven secure in their generic
model. However, concrete construction of their generic protocol with available
cryptographic primitives can only be proven in the ASB bounded leakage model,
because currently there exist no continuous leakage-resilient public-key cryp-
tosystems. In this paper, we aim to propose a generic protocol which provides
leakage resilience against continuous leakage, even after the “test” session is ac-
tivated. In order to prove the security of our protocol, we use a slightly weakened
variant of the ASB continuous leakage security model.

We now review few different approaches to modelling leakage. These leakage
models generally allow the adversary to adaptively choose the leakage function
that is evaluated against the long-term secret. The early leakage models gen-
erally did not allow leakage after a challenge had been issued, thus prevents
the adversary from using subsequent calls to the leakage function to trivially
solve the challenge. More recently, after-the-fact leakage schemes have been pro-
posed to remove that restriction. We will review these schemes, then describe
our contributions.

1.1 Leakage Models

In this section we review few leakage models, which have been widely used to
define leakage-resilient security of cryptographic schemes.



260 J. Alawatugoda, C. Boyd, and D. Stebila

Inspired by “cold boot” attacks, Akavia et al. [1] constructed a general frame-
work to model memory attacks for public-key cryptosystems. With the knowl-
edge of the public-key, the adversary can choose an efficiently computable arbi-
trary leakage function, f , and send it to the leakage oracle. The leakage oracle
gives f(sk) to the adversary where sk is the secret key. The only restriction here
is that the sum of output length of all the leakage functions that an adversary
can obtain is bounded by some parameter χ which is smaller than the size of sk.
This model is widely known as bounded leakage model.

In the work of Micali et al. [24], a general framework was introduced to model
the leakage that occurs during computation with secret parameters. This frame-
work relies on the assumption that only computation leaks information and that
leakage only occurs from the secret memory portions which are actively involved
in a computation. The adversary is allowed to obtain leakage from many com-
putations. Therefore, the overall leakage amount is unbounded and in particular
it can be larger than the size of the secret key.

Brakerski et al. [9] proposed a leakage model in which it is not assumed
that the information is only leaked from the secret memory portions involved in
computations. Instead it is assumed that leakage happens from the entire secret
memory, but the amount of leakage is bounded per occurrence. In this model,
number of leakage occurrences are allowed continuously. Therefore, the overall
leakage amount is arbitrarily large. This model is widely known as continuous
leakage model.

The above leakage models generally address the leakage which happens before
the challenge is given to the adversary. In security experiments for public-key
cryptosystems, the challenge is to distinguish the real plaintext corresponding
to a particular ciphertext from a random plaintext, whereas in key exchange
security models, the challenge is to identify the real session key of a chosen
session from a random session key.

After-the-fact Leakage. Leakage which happens after the challenge is given
to the adversary can be considered as after-the-fact leakage. In leakage models
for public-key cryptosystems, after-the-fact leakage is the leakage which happens
after the challenge ciphertext is given whereas in leakage security models for key
exchange protocols, after-the-fact leakage is the leakage which happens after the
test session is activated.

For leakage-resilient public-key encryption there are three properties which
may be important differentiators for the different models. One is whether the
model allows access to decryption of chosen ciphertexts before (CCA1) or after
(CCA2) the challenge is known. The second is whether the leakage allowed to the
adversary is continuous or bounded. The third is whether the leakage is allowed
only before the challenge ciphertext is known or also after the fact.

In earlier models, such as that of Naor et al. [26], it was expected that although
the adversary is given access to the decryption oracle (CCA2), the adversary can-
not be allowed to obtain leakage after the challenge ciphertext is given. This is
because the adversary can encode the decryption algorithm and challenge cipher-
text with the leakage function and by revealing a few bits of the decrypted value



Continuous After-the-Fact Leakage-Resilient Key Exchange 261

of the challenge ciphertext trivially win the challenge. Subsequently, Halevi et al.
[15] introduced chosen plaintext after-the-fact leakage-resilient security on public-
key cryptosystems. In their security experiment, the adversary is not allowed to
access the decryption oracle. Further, the total leakage amount is also bounded.

Dziembowski et al. [12] defined an adaptively chosen ciphertext attack (CCA2)
security experiment in which the adversary is allowed to obtain leakage infor-
mation even after the challenge ciphertext is given. Their security experiment
defines adaptively chosen ciphertext after-the-fact leakage (CCLA2) which can
be considered as the strongest security notion of public-key cryptosystems; it
allows the adversary adaptive access to the decryption oracle and leakage in-
formation even after the challenge ciphertext is given. Furthermore, they allow
continuous leakage so the total leakage amount is unbounded. This is achieved
by keeping the secret key in a split state, an idea earlier introduced by Kiltz et
al. [18], using the reasonable assumption that leakage occurs only when compu-
tation takes place, leakage is only bounded per invocation of the secret key while
the state is updated after each invocation.

Recall that in key exchange security models, the challenge to the adversary
is to distinguish the real session key of a chosen session from a random session
key. In the Moriyama–Okamoto [25] key exchange security model, the adversary
is not allowed to obtain leakage after the test session is activated, whereas in
the ASB model, the adversary is allowed to obtain leakage even after the test
session is activated. In the literature there are no key exchange protocols available
that are secure against continuous leakage after the test session is activated.
Alawatugoda et al. [3] proposed a generic construction of a key exchange protocol
which provides security against leakage after the test session is activated, but
when instantiated with available cryptographic primitives it does not provide
continuous leakage resilience.

1.2 Our Contribution

Alawatugoda et al. [3] mentioned that constructing a continuous after-the-fact
leakage-resilient key exchange protocol in the ASB continuous leakage model is
an open problem. In this paper, we aim to construct a continuous after-the-fact
leakage-resilient key exchange protocol using existing leakage-resilient crypto-
graphic primitives. In order to prove the security of our protocol, we use a weaker
variant of the generic ASB model’s continuous leakage instantiation. The mean-
ing of “weaker” is defined by means of the freshness condition. While weakening
a model is generally undesirable, introducing the restrictions allow us to actually
achieve the security definition, whereas no instantiation of the ASB continuous
leakage-resilient key exchange protocol is known. Thus, we begin by presenting
the continuous after-the-fact leakage model (CAFL model).

We summarize the adversarial powers of CAFL model in comparison with
the adversarial powers of CK model [11], eCK model [21], Moriyama–Okamoto
model (MO) [25] and the generic Alawatugoda–Stebila–Boyd model (ASB) [3]
in Table 1. There are four Corrupt–EphemeralKeyReveal query combinations
which do not trivially expose the session key. In the column “Combinations” of



262 J. Alawatugoda, C. Boyd, and D. Stebila

Table 1. Security models with combinations of allowed reveal and leakage queries

Security model SessionKey EphemeralKey Corrupt Combinations Leakage resilience

eCK [21] Yes Yes Yes 4/4 None
MO [25] Yes Yes Yes 4/4 Bounded, not after-the-fact
ASB [3] Yes Yes Yes 4/4 Bounded/Continuous, after-the-fact
CAFL (this paper) Yes Yes Yes 2/4 Continuous, after-the-fact

Table 2. Security and efficiency comparison of key exchange protocols

Protocol Initiator cost Responder cost Security model Proof model

NAXOS [21] 4 Exp 4 Exp eCK Random oracle
MO [25] 8 Exp 8 Exp MO Standard
ASB [3] 12 Exp 12 Exp ASB (Bounded) Standard
π instantiation 10 Exp 10 Exp CAFL Standard

Table 1, we mention how many of them are allowed in the corresponding security
model. We discuss more about query combinations in detail in Section 3.3.

We then construct a generic protocol σ which can be proven secure in this
model; the protocol is a “key agreement”-style protocol, and it relies on a public-
key cryptosystem that is secure against adaptively chosen ciphertext attacks
with after-the-fact leakage-resilience (abbreviated as CCLA2). In Table 2, we
compare an instantiation of the proposed generic protocol σ, with the NAXOS
protocol [21], the Moriyama-Okamoto (MO) protocol [25] and the generic ASB
protocol instantiation, by means of computation cost, security model and the
proof model. The protocol σ is instantiated using the CCLA2-secure public-key
cryptosystem of Dziembowski et al. [12].

Table 2 shows that the instantiation of protocol σ provides significant leakage
resilience properties for practically achievable computation costs, and thus σ
is a viable framework for construction of CAFL-secure protocols. The generic
protocol σ can be instantiated with any CCLA2-secure public-key cryptosystem.
Our proof shows that protocol σ can achieve the same leakage tolerance as
the underlying public-key cryptosystem tolerates. Moreover, protocol σ can be
instantiated with smaller computational cost by using cost effective CCLA2-
secure public-key encryption schemes.

2 Background

In this section we review the formal definitions of the tools we will use to con-
struct our protocol.

2.1 CCLA2-Secure Public-Key Cryptosystems

Dziembowski et al. [12] constructed an adaptively chosen ciphertext after-the-
fact leakage-resilient public-key cryptosystem which is secure against continuous
leakage.



Continuous After-the-Fact Leakage-Resilient Key Exchange 263

Definition 1 (Security Against Adaptively Chosen Ciphertext After-
the-fact Leakage Attacks (CCLA2)). Let k ∈ N be the security parameter.
A public-key cryptosystem PKE = (KG,Enc,Dec) is χ-CCLA2 secure if for any
probabilistic polynomial time adversary D, the advantage of winning the following
distinguishing game is negligible.

1. (sk, pk) ← KG(1k).

2. (m0,m1, state) ← DLeak(.),Dec(sk,.)(pk)
such that |m0| = |m1|.

3. b ← {0, 1}.
4. C ← Enc(pk,mb).

5. b′ ← DLeak(.),Dec⊆=C(sk,.)(C, state).

6. Output b′. D wins if b′ = b.

Decryption Oracle

Dec(sk, c) → (sk′,m) where m is the cor-

responding plaintext of the ciphertext c.

Update the secret state sk to sk′.
Leakage Oracle

For any adversary chosen efficiently com-

putable leakage function f , Leak(f) →
f(sk) whenever |f(sk)| ≤ λ. The Leak-

age Oracle is called whenever the De-

cryption Oracle is called.

In the Dziembowski et al. [12] public-key cryptosystem, the secret key sk =
(x1, x2) ∈ Z

2
p is split into two parts αsk, rsk such that αsk ← Z

n at random and
rsk ← Z

n×2 holding αsk · rsk = sk, where n is the statistical security parameter.
They proved their public-key cryptosystem is CCLA2 secure for χ = 0.15 ·
n · log p − 1. So if we consider n = 80 and log p to be 1024, we can allow
χ = 12276 bits of leakage. Considering only the most expensive computations,
the computation cost of Enc and Dec is 5Exp where Exp is the computational
cost of an exponentiation.

2.2 Key Derivation Functions

We review the definitions of key derivation functions proposed by Krawczyk [20].
Secure and efficient key derivation functions are available in the literature, for
example based on HMAC [20].

Definition 2 (Key Derivation Function). A key derivation function KDF
is an efficient algorithm that accepts as input four arguments: a value β sam-
pled from a source of keying material τ, a length value k and two additional
arguments, a salt value r defined over a set of possible salt values and a context
variable c, both of which are optional i.e., can be set to a null. The KDF output
is a string of k bits.

Definition 3 (Source of Key Material). A source of keying material τ is
a two-valued (β, Φ) probability distribution generated by an efficient probabilistic
algorithm, where β is the secret source key material to be input to the KDF and
Φ is some public knowledge about β or its distribution.

Definition 4 (Security of key derivation function with respect to a
source of key material). A key derivation function KDF is said to be secure
with respect to a source of key material τ if no feasible attacker B can win the
following distinguishing game with probability significantly better than 1/2:



264 J. Alawatugoda, C. Boyd, and D. Stebila

1. (β, Φ) ← τ. (Both the probability distribution as well as the generating algo-
rithm have been referred by τ)

2. A salt value r is chosen at random from the set of possible salt values defined
by KDF. (r may be set to a constant or a null value if so defined by KDF)

3. The attacker B is provided with Φ and r.
4. B chooses arbitrary value k and c.
5. A bit b ← {0, 1} is chosen at random. If b = 0, attacker B is provided with

the output of KDF(β, r, k, c) else B is given a random string of k bits.
6. B outputs a bit b∈ ← {0, 1}. B wins if b∈ = b.

2.3 Decision Diffie-Hellman Problem

The decision Diffie-Hellman (DDH) problem is a computational hardness as-
sumption based on discrete logarithms in a cyclic group [7]. Consider a cyclic
group G of order q, with a generator g. For a, b, c ∈ Zp, the DDH problem is to
distinguish the triple (ga, gb, gab) from the triple (ga, gb, gc).

3 Continuous After-the-Fact Leakage Model

A key agreement protocol is an interactive protocol executed between two parties
to establish a shared secret key. In this section we introduce the continuous after-
the-fact leakage model, (CAFL model), for key exchange. In the CAFL model,
the adversary is allowed to adaptively obtain partial leakage on the long-term
secret keys even after the test session is activated, as well as reveal session keys,
long-term keys, and ephemeral keys.

3.1 Protocol Execution

Parties and Long-term Keys. Let U = {U1, . . . , UNP } be a set of NP parties.
Each party Ui where i ∈ [1, NP ] has a pair of long-term public and secret keys,
(pkUi , skUi).

Sessions. Each party may run multiple instances of the protocol concurrently
or sequentially; we use the term principal to refer a party involved in a protocol
instance, and the term session to identify a protocol instance at a principal. The
notation πs

U,V represents the sth session at the owner principal U , with intended
partner principal V . The principal which sends the first protocol message of a
session is the initiator of the session, and the principal which responds to the
first protocol message is the responder of the session. A session πs

U,V enters an
accepted state when it computes a session key. Note that a session may terminate
without ever entering into the accepted state. The information of whether a
session has terminated with or without acceptance is public.



Continuous After-the-Fact Leakage-Resilient Key Exchange 265

Adversary Interaction. The adversary (a probabilistic algorithm) controls
all interaction and communication between parties. In particular, the adversary
initiates sessions at parties and delivers protocol messages; it can create, change,
delete, or reorder messages. The adversary can also compromise certain short-
term and long-term secrets. Notably, whenever the party performs an operation
using its long-term key, the adversary obtains some leakage information about
the long-term key.

The following query allows the adversary A to run the protocol, modelling
normal communication.

– Send(U, V, s,m, f) query: The oracle πs
U,V , computes the next protocol mes-

sage according to the protocol specification on receipt of m, and sends it to
the adversary A, along with the leakage f(skU ) as described in Section 3.2.
A can also use this query to activate a new protocol instance as an initiator
with blank m and f .

The following queries allow the adversary A to compromise certain session
specific ephemeral secrets and long-term secrets from the protocol principals.

– SessionKeyReveal(U, V, s) query: A is given the session key of the oracle
πs

U,V , if the oracle πs
U,V is in the accepted state.

– EphemeralKeyReveal(U, V, s) query: A is given the ephemeral keys of the
oracle πs

U,V .
– Corrupt(U) query: A is given the long-term secrets of the principal U . This

query does not reveal any session keys or ephemeral keys to A.

3.2 Modelling Leakage

In this key exchange security model we consider continuous leakage of the long-
term secret keys of protocol principals, because long-term secret keys are not
one-time secrets, but they last for multiple protocol sessions. Leakage of long-
term secret key from one session affects to the security of another session which
uses the same long-term secret key. Considering side-channel attacks which can
be mounted against key exchange protocols, the most realistic way to obtain the
leakage information of long-term secret keys is from the protocol computations
which use long-term secret keys. Hence, following the premise “only computation
leaks information” [24], we have modeled the leakage to occur where computa-
tion takes place using secret keys. By issuing a Send query, the adversary will
get a protocol message which is computed according to the normal protocol
computations. Therefore, the instance of a Send query would be the appropriate
instance to address the leakage occurs due to a computation which uses a long-
term secret key. Thus, sending an adversary-chosen leakage function, f , with the
Send query would reflect the premise “only computation leaks information”.

Further, we assume that the amount of leakage of a secret key is bounded by a
leakage parameter χ, per computation. The adversary is allowed to obtain leak-
age from many computations continuously. Hence, the overall leakage amount is
unbounded.



266 J. Alawatugoda, C. Boyd, and D. Stebila

Remark 1 (Corrupt query vs Leakage queries). By issuing a Corrupt query, the
adversary gets the party’s entire long-term secret key. Separately, by issuing
leakage queries (using leakage function f embedded with the Send query) the
adversary gets χ-bounded amount of leakage information about the long-term
secret key. It may seem paradoxical to consider Corrupt and Leakage queries at
the same time. But there are good reasons to consider both.

– A non-leakage version of CAFL model (Send query without f) addresses
KCI attacks, because the adversary is allowed to corrupt the owner of the
test session before the activation of the test session. In the CAFL model, we
allow the adversary to obtain leakage from the partner of the test session, in
addition to allowing the adversary to corrupt the owner of the test session.

– A non-leakage version of CAFL model (Send query without f) addresses
partial weak forward secrecy, because the adversary is allowed to corrupt
either of the protocol principals, but not both, after the test session is acti-
vated. In the CAFL model, we allow the adversary to obtain leakage from
the uncorrupted principal, in addition to allowing the adversary to corrupt
one of the protocol principals.

Hence, the CAFL model allows the adversary to obtain more information than
a non-leakage version of CAFL model.

3.3 Defining Security

In this section we give formal definitions for partner sessions, freshness of a
session and security in the CAFL model.

Definition 5 (Partner sessions in CAFL model). Two oracles πs
U,V and

πs∗
U ∗,V ∗ are said to be partners if:

1. πs
U,V and πs∗

U ∗,V ∗ have computed session keys and

2. Sent messages from πs
U,V = Received messages to πs∗

U ∗,V ∗ and

3. Sent messages from πs∗
U ∗,V ∗ = Received messages to πs

U,V and
4. U ∈ = V and V ∈ = U and
5. If U is the initiator then V is the responder, or vise versa.

A protocol is said to be correct if two partner oracles compute identical session
keys in the presence of a passive adversary. Once the oracle πs

U,V has accepted
a session key, asking the following query the adversary A attempt to distinguish
it from a random session key. The Test query is used to formalize the notion of
the semantic security of a key exchange protocol.

– Test(U, V, s) query: When A asks the Test query, the oracle πs
U,V first

chooses a random bit b ← {0, 1} and if b = 1 then the actual session key is
returned to A, otherwise a random string chosen from the same session key
space is returned to A. This query is only allowed to be asked once across
all sessions.



Continuous After-the-Fact Leakage-Resilient Key Exchange 267

We now define what it means for a session to be χ-CAFL-fresh in the CAFL
model.

Definition 6 (χ-CAFL-freshness). Let χ be the leakage bound per occurrence.
An oracle πs

U,V is said to be χ-CAFL-fresh if and only if:

1. The oracle πs
U,V or its partner, πs∗

V,U (if it exists) has not been asked a
SessionKeyReveal.

2. If the partner πs∗
V,U exists, none of the following combinations have been

asked:
(a) Corrupt(U) and Corrupt(V ).
(b) Corrupt(U) and EphemeralKeyReveal(U, V, s).
(c) Corrupt(V ) and EphemeralKeyReveal(V, U, s∈).
(d) EphemeralKeyReveal(U, V, s) and EphemeralKeyReveal(V, U, s∈).

3. If the partner πs∗
V,U does not exist, none of the following combinations have

been asked:
(a) Corrupt(V ).
(b) Corrupt(U) and EphemeralKeyReveal(U, V, s).

4. For each Send(·, U, ·, ·, f) query, the output of f is at most χ bits.
5. For each Send(·, V, ·, ·, f) query, the output of f is at most χ bits.

When the adversary asks EphemeralKeyReveal and Corrupt queries, there
are two Corrupt–EphemeralKeyReveal query combinations which trivially ex-
pose the session key of an oracle.

1. Corrupt(U) and EphemeralKeyReveal(U, V, s).
2. Corrupt(V ) and EphemeralKeyReveal(V, U, s∈).

As in the other models we have compared with [21,25,3] we do not allow above
combinations in the freshness condition, as they trivially expose the session key of
oraclesπs

U,V andπs∗
V,U . Differently, there are four Corrupt–EphemeralKeyReveal

query combinations which do not trivially expose the session key an oracle.

1. Corrupt(U) and Corrupt(V ).
2. Corrupt(U) and EphemeralKeyReveal(V, U, s).
3. Corrupt(V ) and EphemeralKeyReveal(U, V, s∈).
4. EphemeralKeyReveal(V, U, s) and EphemeralKeyReveal(U, V, s∈).

All the models we consider [21,25,3] allow above combinations in the freshness
condition, whereas our CAFL model does not allow the query combinations 1
and 4 in the freshness condition. In that sense the CAFL model is weaker than
the ASB continuous leakage model.

Security of a key exchange protocol in the CAFL model is defined using the
following security game, which is played by a probabilistic polynomial time ad-
versary A against the protocol challenger.

– Stage 1: A may ask any of Send, SessionKeyReveal, EphemeralKeyReveal
and Corrupt queries to any oracle at will.

– Stage 2: A chooses a χ-CAFL-fresh oracle and asks a Test query.



268 J. Alawatugoda, C. Boyd, and D. Stebila

– Stage 3:A continues asking Send, SessionKeyReveal, EphemeralKeyReveal
and Corrupt queries. A may not ask a query that violates the χ-CAFL-
freshness of the test session.

– Stage 4: Eventually, A outputs the bit b∈ ← {0, 1} which is its guess of the
value b on the test session. A wins if b∈ = b.

Succ(A) is the event that A wins the above security game. The definition of
security follows.

Definition 7 (χ-CAFL-security). A protocol σ is said to be χ-CAFL-secure
if there is no probabilistic polynomial time algorithm A that can win the above
game with non-negligible advantage. The advantage of an adversary A is defined
as AdvCAFL

π (A) = |2Pr(SuccA)− 1|.

3.4 Practical Interpretation of Security of CAFL Model

We review the relationship between the CAFL model and real world attack
scenarios.

– Active adversarial capabilities: Send queries address the powers of an
active adversary who can control the message flow over the network.

– Side-channel attacks: Leakage functions are embedded with the Send

query. Thus, a wide variety of side-channel attacks based on continuous
leakage of long-term secrets are addressed, assuming that the leakage
happens when computations take place in principals.

– Cold-boot attacks: Corrupt queries address situations which reveal the
long-term secret keys of protocol principals like in cold-boot attacks.

– Malware attacks: EphemeralKeyReveal queries cover the malware attacks
which steal stored ephemeral keys, given that the long-term keys may be
securely stored separately from the ephemeral keys in places such as smart
cards or hardware security modules. Separately, Corrupt queries address
malware attacks which steal the long-term secret keys of protocol principals.

– Weak random number generators: After knowing a previous set of ran-
domly generated ephemeral values the adversary may be able to identify
the statistical pattern of the random number generator and hence correctly
guess the next value with a high probability. EphemeralKeyReveal query
addresses situations where the adversary can get the ephemeral secrets.

– Known key attacks: SessionKeyReveal query covers the attacks which
can be mounted by knowing past session keys.

– Key compromise impersonation attacks: χ-CAFL-freshness allows the
adversary to corrupt the owner of the test session before the activation of
the test session. Hence, the CAFL model security protects against the key
compromise impersonation attacks.

– Partial weak forward secrecy: χ-CAFL-freshness allows the adversary to
corrupt either of the protocol principals, but not both, after the test session
is activated. Hence, the CAFL model addresses partial weak forward secrecy.



Continuous After-the-Fact Leakage-Resilient Key Exchange 269

Table 3. Protocol π. Underline denotes operations to which leakage functions apply

A (Initiator) B (Responder)

Initial Setup

skA, pkA ← KG(1k) skB, pkB ← KG(1k)

Protocol Execution

rA ← {0, 1}k rB ← {0, 1}k
CA ← Enc(pkB , rA)

A,CA−−−−→ (sk′
B, rA) ← Dec(skB, CA)

skB ← sk′
B

(sk′
A, rB) ← Dec(skA, CB)

B,CB←−−−− CB ← Enc(pkA, rB)
skA ← sk′

A

KAB ← KDF(A,B, rA, rB) KAB ← KDF(A,B, rA, rB)
KAB is the session key

Although our model is a weaker variant of the ASB continuous leakage model,
it addresses all the attack scenarios which are addressed by the ASB model,
except weak forward secrecy. Instead, our model addresses partial weak forward
secrecy. Hence, our model is very similar to the generic ASB model and interprets
most of real world attack scenarios.

4 Protocol π

In Table 3 we show the generic construction of protocol σ. Enc and Dec are
the encryption and decryption algorithms of the underlying adaptively chosen
ciphertext after-the-fact leakage (CCLA2) secure public-key cryptosystem, PKE.
KDF is a secure key derivation function which generates the session key of length
k. The protocol σ is a key agreement protocol, in which each of the principals
randomly chooses its ephemeral secret key, encrypts it with the public-key of
the intended partner principal using the encryption algorithm Enc, and sends
the encrypted message to the intended partner principal. After exchanging the
ephemeral secrets both principals compute the session key with ephemeral secrets
and identities of the two principals, using the key derivation function KDF. We
underlined the computations which could leak information about secret keys.

Theorem 1. The protocol σ is χ-CAFL-secure, whenever the underlying public-
key cryptosystem PKE is CCLA2 secure and the key derivation function KDF
is secure with respect to a uniformly random key material.

In order to formally prove the CAFL-security of the protocol σ we use the game
hopping technique [27]; define a sequence of games and relate the adversary’s
advantage of distinguishing each game from the previous game to the advantage
of breaking one of the underlying cryptographic primitive. The proof structure
is similar to Boyd et al. [8]. Following the proof sketch of Theorem 1 is presented
while the complete security proof is available in the full version of this paper [2].

Proof sketch. Assume that the adversary A can win the challenge against the
protocol σ challenger with non negligible advantage AdvCAFL

π (A). The proof is
split into two cases.



270 J. Alawatugoda, C. Boyd, and D. Stebila

Case 1: The owner of the test session is corrupted In this case we con-
sider the situation that A corrupts the owner of the test session but not the
partner.

Game 1: This game is the original game. When the Test query is asked, the
Game 1 challenger chooses a random bit b ← {0, 1}. If b = 1, the real session
key is given to A, otherwise a random value chosen from the same session key
space is given.

Game 2: Same as Game 1 with the following exception: before A begins, two
distinct random principals U≤, V ≤ ← {U1, . . . , UNP } are chosen and two random
numbers s≤, t≤ ← {1, . . . , Ns} are chosen, where NP is the number of protocol
principals and NS is the number of sessions on a principal. The oracle πs∗

U∗,V ∗

is chosen as the target session and the oracle πt∗
V ∗,U∗ is chosen as the partner to

the target session. If the test session is not the oracle πs∗
U∗,V ∗ or the partner to

the oracle is not πt∗
V ∗,U∗ , the Game 2 challenger aborts the game.

Game 3: Same as Game 2 with the following exception: the Game 3 challenger
chooses a random value r∈ ← {0, 1}k.
– If the test session is on the initiator, the challenger computes KU∗V ∗ ←

KDF(U≤, V ≤, r∈, rV ∗).
– If the test session is on the responder, the challenger computes KU∗V ∗ ←

KDF(V ≤, U≤, rV ∗ , r∈).

Game 4: Same as Game 3 with the following exception: the Game 4 challenger
randomly chooses K ← {0, 1}k and sends it to the adversary A as the answer to
the Test query.

Differences between Games

In this section the adversary’s advantage of distinguishing each game from the
previous game is investigated. SuccGame x(A) denotes the event that the adver-
sary A wins Game x, AdvGame x(A) denotes the advantage of the adversary A
of winning Game x.

Game 1 is the original game. Hence,

AdvGame 1(A) = AdvCAFL
π (A). (1)

Game 1 and Game 2. The probability of Game 2 to be halted due to incorrect
choice of the test session is 1− 1

N2
PN2

s
. Unless the incorrect choice happens, Game

2 is identical to Game 1. Hence,

AdvGame 2(A) =
1

NP
2N2

s

AdvGame 1(A). (2)



Continuous After-the-Fact Leakage-Resilient Key Exchange 271

Game 2 and Game 3. We introduce an algorithm D which is constructed using
the adversaryA. IfA can distinguish the difference between Game 2 and Game 3,
then D can be used against the CCLA2 challenger of underlying public-key cryp-
tosystem, PKE. The algorithmD uses the public-key of the CCLA2 challenger as
the public-key of the protocol principal V ≤ and generates public/secret key pairs
for all other protocol principals. D runs a copy of A and interacts with A, such
that it is interacting with either Game 2 or Game 3. D picks two random strings,
r∈0, r∈1 ← {0, 1}k and passes them to the CCLA2 challenger. From the CCLA2
challenger, D receives a challenge ciphertext C such that C ← Enc(pkV ∗ , r∈)
where r∈ = r∈0 or r∈ = r∈1. The procedure of answering queries is explained in
detail in full version of this paper [2].

If r∈1 is the decryption of C coming from the owner of the test session, U≤,
the simulation constructed by D is identical to Game 2 whereas if r∈0 is the
decryption of C, the simulation constructed by D is identical to Game 3. If A can
distinguish the difference between Game 2 and Game 3, then D can distinguish
whether C ← Enc(pkV ∗ , r∈0) or C ← Enc(pkV ∗ , r∈1).

The algorithm D plays the CCLA2 game against the public-key cryptosystem
PKE according to the Definition 1 since D does not ask the decryption of the
challenge ciphertext C. Hence,

|AdvGame 2(A) −AdvGame 3(A)| ≤ AdvPKE(D). (3)

Game 3 and Game 4. We introduce an algorithm B which is constructed using
the adversary A. If A can distinguish the difference between Game 3 and Game
4, then B can be used to distinguish whether the value K is computed using
KDF or randomly chosen. B receives K from the KDF challenger, such that K
is computed using the KDF or randomly chosen from the session key space. If
K is computed using the KDF, the simulation constructed by B is identical to
Game 3 whereas if K is randomly chosen, the simulation constructed by B is
identical to Game 4. If A can distinguish the difference between Game 3 and
Game 4, then B can distinguish whether the value K is computed using KDF
or randomly chosen. Hence,

|AdvGame 3(A) −AdvGame 4(A)| ≤ AdvKDF(B). (4)

Semantic security of the session key in Game 4. Since the session key K of
πs∗

U∗,V ∗ is chosen randomly and independently from all other values, A does not
have any advantage in Game 4. Hence,

AdvGame 4(A) = 0. (5)

Using equations (1)–(5) we find,

AdvCAFL
π (A) ≤ N2

PN
2
s

(
AdvPKE(D) +AdvKDF(B)). (6)



272 J. Alawatugoda, C. Boyd, and D. Stebila

Case 2: The owner of the test session is not corrupted In this case we
consider the situation that A corrupts the partner of the test session but not the
owner. The proof structure and games are similar to the previous case. The only
difference in this case is that the algorithm D uses the public-key of the CCLA2
challenger as the public-key of the protocol principal U≤. In this case we find,

AdvCAFL
π (A) ≤ N2

PN
2
s

(
AdvPKE(D) +AdvKDF(B)). (7)

Combining Case 1 and Case 2. In both cases we can see the adversary A’s
advantage of winning against the protocol σ challenger is

AdvCAFL
π (A) ≤ N2

PN
2
s

(
AdvPKE(D) +AdvKDF(B)).

5 Future Work

The challenge is to achieve a secure protocol in the ASB continuous leakage
model. The ASB continuous leakage model is a continuous leakage variant of
the eCK model. There are two main techniques for constructing (non-leakage-
resilient) eCK-secure protocols: use of the so-called “NAXOS trick”, in which the
long-term and ephemeral secret keys are hashed together to derive the ephemeral
Diffie–Hellman exponent, and MQV-style protocols, which algebraically combine
ephemeral and static Diffie–Hellman computations. Since the NAXOS trick in-
volves a calculation based on the secret key, adapting such a protocol requires
the use of a continuous leakage-resilient NAXOS trick. By using pair-generation-
indistinguishable continuous-after-the-fact-leakage-resilient public-key cryptosys-
tems, it would be possible to obtain a continuous leakage-resilient NAXOS trick
as shown in Alawatugoda et al. [3]. A leakage-resilient protocol based on MQV-
style computations is also an interesting open question.

References

1. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and
cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 474–495. Springer, Heidelberg (2009)

2. Alawatugoda,J.,Boyd,C.,Stebila,D.:Continuousafter-the-fact leakage-resilientkey
exchange (full version). IACR Cryptology ePrint Archive, Report 2014/264 (2014)

3. Alawatugoda, J., Stebila, D., Boyd, C.: Modelling after-the-fact leakage for key
exchange (full version). IACR Cryptology ePrint Archive, Report 2014/131 (2014)

4. Alwen, J., Dodis, Y., Wichs, D.: Leakage-resilient public-key cryptography in the
bounded-retrieval model. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
36–54. Springer, Heidelberg (2009)

5. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (1994)

6. Bernstein, D.J.: Cache-timing attacks on AES. Technical report (2005),
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf

http://cr.yp.to/antiforgery/cachetiming-20050414.pdf


Continuous After-the-Fact Leakage-Resilient Key Exchange 273

7. Boneh, D.: The decision Diffie-Hellman problem. In: Buhler, J.P. (ed.) ANTS 1998.
LNCS, vol. 1423, pp. 48–63. Springer, Heidelberg (1998)

8. Boyd, C., Cliff, Y., Nieto, J.M.G., Paterson, K.G.: One-round key exchange in the
standard model. International Journal of Advanced Computer Technology, 181–199
(2009)

9. Brakerski, Z., Kalai, Y.T., Katz, J., Vaikuntanathan, V.: Overcoming the hole in
the bucket: Public-key cryptography resilient to continual memory leakage. IACR
Cryptology ePrint Archive, Report 2010/278 (2010)

10. Brumley, D., Boneh, D.: Remote timing attacks are practical. In: USENIX Security
Symposium, pp. 1–14 (2003)

11. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 453–474. Springer, Heidelberg (2001)

12. Dziembowski, S., Faust, S.: Leakage-resilient cryptography from the inner-product
extractor. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp.
702–721. Springer, Heidelberg (2011)

13. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: IEEE Sympo-
sium on Foundations of Computer Science, pp. 293–302 (2008)

14. Faust, S., Kiltz, E., Pietrzak, K., Rothblum, G.N.: Leakage-resilient signatures.
IACR Cryptology ePrint Archive, Report 2009/282 (2009)

15. Halevi, S., Lin, H.: After-the-fact leakage in public-key encryption. In: Ishai, Y.
(ed.) TCC 2011. LNCS, vol. 6597, pp. 107–124. Springer, Heidelberg (2011)

16. Hutter, M., Mangard, S., Feldhofer, M.: Power and EM attacks on passive
13.56MHz RFID devices. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS,
vol. 4727, pp. 320–333. Springer, Heidelberg (2007)

17. Katz, J., Vaikuntanathan, V.: Signature schemes with bounded leakage resilience.
In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 703–720. Springer,
Heidelberg (2009)

18. Kiltz, E., Pietrzak, K.: Leakage resilient elgamal encryption. In: Abe, M. (ed.)
ASIACRYPT 2010. LNCS, vol. 6477, pp. 595–612. Springer, Heidelberg (2010)

19. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

20. Krawczyk, H.: On extract-then-expand key derivation functions and an HMAC-
based KDF (2008), http://webee.technion.ac.il/~hugo/kdf/kdf.pdf

21. LaMacchia, B.A., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1–16. Springer, Heidelberg (2007)

22. Malkin, T., Teranishi, I., Vahlis, Y., Yung, M.: Signatures resilient to contin-
ual leakage on memory and computation. In: Ishai, Y. (ed.) TCC 2011. LNCS,
vol. 6597, pp. 89–106. Springer, Heidelberg (2011)

23. Messerges, T., Dabbish, E., Sloan, R.: Examining smart-card security under the
threat of power analysis attacks. IEEE Transactions on Computers, 541–552 (2002)

24. Micali, S., Reyzin, L.: Physically observable cryptography (extended abstract). In:
Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004)

25. Moriyama, D., Okamoto, T.: Leakage resilient eCK-secure key exchange protocol
without random oracles. In: ASIACCS, pp. 441–447 (2011)

26. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi,
S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009)

27. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs.
IACR Cryptology ePrint Archive, Report 2004/332 (2004)

http://webee.technion.ac.il/~hugo/kdf/kdf.pdf


Sakai-Ohgishi-Kasahara Identity-Based

Non-Interactive Key Exchange Scheme,
Revisited

Yu Chen1, Qiong Huang2, and Zongyang Zhang3,4,α

1 State Key Laboratory of Information Security (SKLOIS),
Institute of Information Engineering, Chinese Academy of Sciences, China

chenyu@iie.ac.cn
2 College of Informatics, South China Agricultural University, China

csqhuang@gmail.com
3 National Institute of Advanced Industrial Science and Technology, Japan

4 Shanghai Jiao Tong University, China
zongyang.zhang@aist.go.jp

Abstract. Identity-based non-interactive key exchange (IB-NIKE) is a
powerful but a bit overlooked primitive in identity-based cryptography.
While identity-based encryption and signature have been extensively in-
vestigated over the past three decades, IB-NIKE has remained largely
unstudied. Currently, there are only few IB-NIKE schemes in the liter-
ature. Among them, Sakai-Ohgishi-Kasahara (SOK) scheme is the first
efficient and secure IB-NIKE scheme, which has great influence on follow-
up works. However, the SOK scheme required its identity mapping func-
tion to be modeled as a random oracle to prove security. Moreover, the
existing security proof heavily relies on the ability of programming the
random oracle. It is unknown whether such reliance is inherent.

In this work, we intensively revisit the SOK IB-NIKE scheme, and
present a series of possible and impossible results in the random or-
acle model and the standard model. In the random oracle model, we
first improve previous security analysis for the SOK IB-NIKE scheme
by giving a tighter reduction. We then use meta-reduction technique to
show that the SOK scheme is unlikely proven to be secure based on the
computational bilinear Diffie-Hellman (CBDH) assumption without pro-
gramming the random oracle. In the standard model, we show how to
instantiate the random oracle in the SOK scheme with a concrete hash
function from admissible hash functions (AHFs) and indistinguishability
obfuscation. The resulting scheme is fully adaptive-secure based on the
decisional bilinear Diffie-Hellman inversion (DBDHI) assumption. To the
best of our knowledge, this is first fully adaptive-secure IB-NIKE scheme
in the standard model that does not explicitly require multilinear maps.
Previous schemes in the standard model either have merely selective se-
curity or use multilinear maps as a key ingredient. Of particular interest,
we generalize the definition of AHFs, and propose a generic construction
which enables AHFs with previously unachieved parameters.

β Corresponding author.

W. Susilo and Y. Mu (Eds.): ACISP 2014, LNCS 8544, pp. 274–289, 2014.
c© Springer International Publishing Switzerland 2014



Sakai-Ohgishi-Kasahara IB-NIKE, Revisited 275

1 Introduction

Identity-based non-interactive key exchange (IB-NIKE) is a natural extension
of NIKE [11] in the identity-based setting, which enables any two parties regis-
tered in the same key generator center (KGC) to agree on a unique shared key
without any interaction. IB-NIKE has important applications in managing keys
and enabling secure communications in mobile ad hoc and sensor networks. The
advantages of IB-NIKE, in terms of reducing communication costs and latency
in a realistic adversarial environment, are demonstrated in [8].

In 2000, Sakai, Ohgishi and Kasahara [22] proposed the first efficient and
secure IB-NIKE scheme in the random oracle model, namely the SOK scheme
(with security models and formal proofs in follow up works [12, 20]). Despite
the appearing of IB-NIKE in this celebrated work on identity-based cryptogra-
phy, it had received less attention as a fundamental primitive in its own right
over the past decade. In the last year, we have seen remarkable progress on
this topic. Freire et al. [15] constructed (poly, 2)-programmable hash functions
(PHFs) from multilinear maps. By substituting the random oracle in the original
SOK scheme with (poly, 2)-PHFs, they obtained the first IB-NIKE scheme in the
standard model. Boneh and Waters [6] demonstrated that constrained pseudo-
random functions that support left/right predicate imply IB-NIKE. Particularly,
they constructed such specific constrained PRFs based on the decisional bilin-
ear Diffie-Hellman (DBDH) assumption, and the resulting IB-NIKE scheme (the
BW scheme) can be viewed as a variant of the SOK scheme, which is also only
proven secure in the random oracle model. Boneh and Zhandry [7] proposed a
construction of multiparty IB-NIKE from PRG, constrained PRFs, and indistin-
guishability obfuscation. However, their construction only has selective security.
Hnece, how to achieve fully adaptive security is left as an open problem.

1.1 Motivations

For a security reduction R that converts any adversary A with advantage AdvA
against some hard problem in running time TimeA to an algorithm B with ad-
vantage AdvB against the target cryptographic scheme in running time TimeB,
we say it is tight if AdvB/AdvA (advantage loose factor) is close to 1 and
TimeB −TimeA (time loose factor) is close to 0, and loose otherwise. It has been
well known that besides theoretical interest, a tighter reduction is of utmost
practical importance. To obtain the same security level, cryptographic schemes
with tighter reduction generally admits more efficient implementations [1]. The
exisiting proof [20] for the SOK scheme programs the random oracle H (acting
as the identity mapping function in the construction) with “all-but-one” tech-
nique to implement partitioning strategy.1 As a consequence, the advantage loose

1 In the case of IB-NIKE, the partitioning strategy is to partition the set of all identities
into “extractable” and “unextractable” ones. The reduction hopes that all identities
for which an adversary requests for a secret key are extractable, while the target
identities are unextractable.



276 Y. Chen, Q. Huang, and Z. Zhang

factor is around 1/2180, which is far from tight. It is interesting to know if we
can provide an alternative proof with tighter reduction.

Both the original security reduction [20] and our new security reduction (as
we will show in Section 3.1) for the SOK scheme exploit full programmability
of the random oracle model (ROM) to implement partitioning strategy. Such
property allows the reduction to program the random oracle (RO) arbitrarily as
long as the output distributes uniformly and independently over the range. This
full-fledged model is usually refereed as fully programming ROM (FPROM). Full
programmability is a strong property in that it does not quite match with the
features of cryptographic hash functions. Therefore, two weaker random oracle
models are proposed by constraining the ability of the reduction to program
the RO. The randomly programming ROM (RPROM) [14] allows the reduction
to program the RO with random instead of arbitrary values, while the non-
programming ROM (NPROM) forbids the reduction to program the RO. Since
the NPROM is the weakest one among the above three random oracle models
and is closest to the standard model, it is curious to know if the SOK scheme
could be proven secure in the NPROM.

As previously mentioned, Freire et al. [15] successfully instantiated the SOK
scheme in the standard model by substituting the random oracle H with (poly, 2)-
programmable hash functions (PHFs). However, the construction of (poly, 2)-
PHFs requires multilinear maps [16]. So far, we do not have candidates for
multilinear maps between groups with cryptographically hard problems. Instead,
we only have concrete candidate for an “approximation” of multilinear maps,
named graded encoding systems [16]. Hence, we are motivated to find an alter-
native approach of substituting the random oracle in the SOK scheme, with the
hope that the replacements are not explicitly involved with multilinear maps.
Recently, Hohenberger, Sahai and Waters [19] gave a way to instantiate the ran-
dom oracle with concrete hash functions from indistinguishability obfuscation2

in the “full domain hash” signatures. It is natural to ask if their approach can
extend to other applications, and in particular, the SOK scheme.

1.2 Our Results

In the remainder of this paper, we give negative or affirmative answers to the
above questions. We summarize our main results as below.

Being aware of the usage of “all-but-one” programming technique is the reason
that makes the original reduction loose, we are motivated to find an alternative
programming technique that admits tighter reduction. Observing the structural
similarities between the SOK IB-NIKE scheme and the Boneh-Franklin [4] IBE
scheme and the Boneh-Lynn-Shacham (BLS) [5] short signature, we are inspired
to program the random oracle H in the SOK scheme with the flipping coin tech-
nique developed in [10], which were successfully employed in the reductions for

2 Although currently the only known construction of indistinguishability obfuscation
(iO) is from multilinear maps [18], it is still possible that iO can be constructed
from other primitives.



Sakai-Ohgishi-Kasahara IB-NIKE, Revisited 277

the latter two well-known schemes. Roughly speaking, the flipping coin tech-
nique usually conducts as follows: to program H(x) (x is an identity in the IBC
setting or a message in the signature setting), the reduction flips a random coin
once, then programs H(x) according to the coin value in two different manners.
One allows the reduction to embed a trapdoor in order to extract a secret key or
produce a signature, while the other allows the reduction to embed some fixed
component of the challenge instance. However, this approach does not work well
in the case of the SOK scheme. This is because the reduction has to embed
two group elements g2 and g3 from the CBDH instance to H(id∈a) and H(id∈b)
respectively, where id∈a and id∈b are two target identities adaptively chosen by the
adversary. We overcome this difficulty by flipping random coins twice. Looking
ahead, to program H(x), the reduction first flips a random biased coin to de-
termine the partitioning, namely either embedding a trapdoor or embedding a
component from the CBDH instance. If the first round coin value indicates the
latter choice, then R further flips an independent and unbiased coin to deter-
mine which component is going to be embedded. As a result, we obtain a new
reduction with a loose factor around 1/2120, which significantly improves the
original result. The same technique can also be used to improve Boneh-Waters
constrained PRFs supporting left/right predicate [6], by minimizing the number
of RO and tightening the reduction.

Following the work of Fischlin and Fleischhacker [13], we use meta-reduction
technique to show that the SOK scheme is unlikely proven secure to be based
on the CBDH assumption in NPROM, assuming the hardness of an intractable
problem called one-more CBDH problem. We obtain this result by showing that
if there is a black-box reduction R basing the fully adaptive security of the
SOK IB-NIKE scheme on the CBDH assumption in NPROM, then there exists
a meta-reduction M breaking the one-more CBDH assumption. Our black-box
separation result holds with respect to single-instance reduction which invokes
only one instance of the adversary and can rewind it arbitrarily to the point
after sending over the master public key. Though single-instance reduction is
a slightly restricted type of reductions, it is still general enough to cover the
original reduction [20] and our new reduction shown in Section 3.1. Moreover,
our result holds even for selective semi-static one-way security.

Realizing the technical heart of Hohenberger-Sahai-Waters approach [19] is to
replace the programmable RO with a specific hash function H satisfying suitable
programmability, we successfully extend their approach in the case of IB-NIKE,
going beyond the “full domain hash” signatures. More precisely, we first create
a replacement hash function H for RO from puncturable PRFs. The result-
ing IB-NIKE scheme is selective-secure in the standard model. To attain fully
adaptive security, we hope to create a specific hash function H with (poly, 2)-
programmability from admissible hash functions (AHFs). This potentially re-
quires the AHF to be (poly, 2)-admissible, which is not met by current AHF
constructions. We circumvent this technical difficulty by giving a generic con-
struction of (poly, c)-AHF (c could be any constant integer) from any (poly, 1)-
AHF, which utilizes Cartesian product as the key mathematical tool. We note



278 Y. Chen, Q. Huang, and Z. Zhang

that beyond the usage in the above construction, (poly, c)-AHF may find more
important applications as a purely statistical cryptographic primitive.

2 Preliminaries and Definitions

Notations. For a distribution or random variable X , we write x
R∈− X to de-

note the operation of sampling a random x according to X . For a set X , we

use x
R∈− X to denote the operation of sampling x uniformly at random from

X , use UX to denote the uniform distribution over set X , and use |X | to de-
note its size. We write χ to denote the security parameter, and all algorithms
(including the adversary) are implicitly given χ as input. We write poly(χ) to
denote an arbitrary polynomial function in χ. We write negl(χ) to denote an
arbitrary negligible function in χ, one that vanishes faster than the inverse of
any polynomial. A probability is said to be overwhelming if it is 1−negl(χ), and
said to be noticeable if it is 1/poly(χ). A probabilistic polynomial-time (PPT)
algorithm is a randomized algorithm that runs in time poly(χ).

2.1 Cartesian Product and Power of Vectors

The Cartesian product of a m-dimension vector X = (x1, . . . , xm) and a n-
dimension vector Y = (y1, . . . , yn) over some finite set S is defined as:

X × Y = {zij := z(i−1)n+j = (xi, yj)}1≤i≤m,1≤j≤n,

where × denotes the Cartesian product operation. X × Y can be viewed as a
mn-dimension vector over S2 or a 2mn-dimension vector over S. The Cartesian
k-power of a m-dimension vector X = (x1, . . . , xn) over S is defined as:

Xk = X × · · · ×X︸ ⎧⎪ ⎨
k

,

where Xk can be viewed as a mk-dimension vector over Sk or a kmk-dimension
vector over S.

2.2 Bilinear Maps and Related Hardness Assumptions

A bilinear group system consists of two cyclic groups G and GT of prime order
p, with a bilinear map e : G×G ⊕ GT which satisfies the following properties:

– bilinear: ⊇g ∈ G and ⊇a, b ∈ Zp, we have e(ga, gb) = e(g, g)ab.

– non-degenerate: ⊇g ∈ G
∈, we have e(g, g) ≤= 1GT .

In the following, we write BLGroupGen to denote bilinear group system generator
which on input security parameter χ, output (p,G,GT , e).



Sakai-Ohgishi-Kasahara IB-NIKE, Revisited 279

Assumption 2.1. The computational bilinear Diffie-Hellman (CBDH) assump-
tion in bilinear group system (p,G,GT , e) ∈ BLGroupGen(χ) is that for any PPT
adversary A, it holds that:

Pr[A(g, gx, gy, gz) = e(g, g)xyz] ← negl(χ),

where the probability is taken over the choice of g
R∈− G, x, y, z

R∈− Zp. Hereafter,
we write −⊕v to denote a CBDH instance (g, gx, gy, gy) ∈ G

4. The
decisional bilinear Diffie-Hellman (DBDH) assumption is that the two distribu-
tions (g, gx, gy, gz, T0) and (g, gx, gy, gz, T1) are computationally indistinguish-

able, where T0
R∈− GT and T1 = e(g, g)xyz.

Assumption 2.2. The n-one-more CBDH (n-omCBDH) assumption in bilin-
ear group system (p,G,GT , e) ∈ BLGroupGen(χ) is that for any PPT adversary
A, it holds that:

Pr[ADLg(·)(g, {gxi, gyi, gzi}n+1
i=1 ) = ({e(g, g)xiyizi}n+1

i=1 )] ← negl(χ),

where the probability is taken over the choices of g
R∈− G, and xi, yi, zi

R∈− Zp for
i ∈ [n + 1]. To solve n + 1 CBDH instances, A is allowed to query DLg(·) at
most n times, where DLg(·) is a discrete logarithm oracle which outputs t ∈ Zp

on input h = gt. The hardness of the omCBDH problem is demonstrated by a
recent result [23].

Assumption 2.3. Then-decisional bilinearDiffie-Hellman inversion (n-DBDHI)
assumption in bilinear group system (p,G,GT , e) ∈ BLGroupGen(χ) is that for any
PPT adversary A, it holds that:

|Pr[A(g, gx, . . . , gx
n

, Tβ) = 1]− 1/2| ← negl(χ),

where T0
R∈− GT , T1 = e(g, g)1/x ∈ GT , and the probability is taken over the choices

of g
R∈− G, x

R∈− Zp, and σ
R∈− {0, 1}.

As observed in [2], the n-DBDHI assumption is equivalent to the n-DBDHI∈ as-
sumption, which is identical to the standard one except that T1 is set as e(g, g)

x2n+1

instead of e(g, g)1/x. We will, for notational convenience, base our proofs on the
n-DBDHI∈ assumption in this work.

2.3 Indistinguishability Obfuscation

We recall the definition of indistinguishability obfuscator from [17] as below.

Definition 1 (Indistinguishability Obfuscator (iO)). A uniform PPT ma-
chine iO is called an indistinguishability obfuscator for a circuit class {Cγ} if the
following properties satisfied:

– Functionality Preserving: For all security parameters χ ∈ N, for all C ∈
Cγ, for all inputs x, we have that:

Pr[C∗(x) = C(x) : C∗ ∈ iO(χ,C)] = 1



280 Y. Chen, Q. Huang, and Z. Zhang

– Indistinguishability Obfuscation: For any pairs of PPT adversaries
(S,D), there exists a negligible function α such that if Pr[⊇x,C0(x) = C1(x) :
(C0, C1, state) ∈ S(χ)] ∅ 1− α(χ), then we have:

|Pr[D(state, iO(χ,C0)) = 1]− Pr[D(state, iO(χ,C1)) = 1]| ← α(χ)

2.4 Puncturable PRFs

We then recall the notion of puncturable PRFs [19, 21], in which the key owner
is able to generate a constrained key for all but polynomial number of elements
in the domain.

Definition 2. A family of puncturable PRFs Fk : X ⊕ Y , where X and Y
may be parameterized by χ, is efficiently evaluable itself with secret key k. In
addition, it consists of three polynomial-time algorithms KeyGen, Puncture, and
Eval satisfying the following properties:

– Evaluable under puncturing: For any S ⇒ {0, 1}n (containing polynomial
number of punctured points), and any x ∈ X but x /∈ S, we have:

Pr[Eval(kS , x) = Fk(x) : kS ∈ Puncture(k, S)] = 1

– Pseudorandom at punctured points: For any PPT adversary A =
(A1,A2) such that A1(χ) outputs a set S ⇒ X and state β , we have:

|Pr[A2(β, kS , S,Fk(S)) = 1]− Pr[A2(β, kS , S, UY |S|) = 1]| ← negl(χ)

where S = {x1, . . . , xt} is the enumeration of the elements of S in lex-
icographic order, kS ∈ Puncture(k, S), Fk(S) denotes the concatenation
of Fk(x1), . . . ,Fk(xt). The probability is defined over the choice of k ∈
KeyGen(χ).

For ease of notation, sometimes we write FkS (x) to represent Eval(kS , x), and
write k(S) to represent the punctured key kS ∈ Puncture(k, S).

2.5 Non-Interactive Identity-Based Key Exchange

An non-interactive identity-based key exchange (IB-NIKE) scheme consists of
the following polynomial-time algorithms:

– Setup(χ): on input security parameter χ, output master public key mpk and
master secret key msk. Let I be the identity space and SHK be the shared
key space.

– Extract(msk, id): on input msk and identity id ∈ I, output a secret key skid
for id.

– Share(skida , idb): on input secret key skida for identity ida and another iden-
tity idb, output a shared key shk for (ida, idb).



Sakai-Ohgishi-Kasahara IB-NIKE, Revisited 281

Correctness: For any χ ∈ N, any (mpk,msk) ∈ Setup(χ), any pair of identities
(ida, idb), any skida ∈ Extract(msk, ida), skidb

∈ Extract(msk, idb), we have:

Share(skida , idb) = Share(skidb
, ida)

Security: Let A be an adversary against IB-NIKE and define its advantage as:

AdvA(χ) = Pr

⎩

⎥⎥⎥⎥⎦
σ = σ∗ :

(mpk,msk) ∈ Setup(χ);
(id∈a, id∈b) ∈ AOextract(·),Oreveal(·,·)(mpk);
shk∈0

R∈− SHK, shk∈1 ∈ Share(id∈a, id
∈
b);

σ
R∈− {0, 1};

σ∗ ∈ AOextract(·),Oreveal(·,·)(shk∈β);




− 1

2
,

where Oextract(id) = Extract(msk, id), Oreveal(ida, idb) = Share(skida , idb), and A
is not allowed to query Oextract(·) for the target identities id∈a and id∈b and query
Oreveal(·, ·) for (id∈a, id∈b) and (id∈b , id

∈
a). We say IB-NIKE is fully adaptive-secure

if no PPT adversary has non-negligible advantage in the above security experi-
ment. The fully adaptive security is the strongest security notion for IB-NIKE
so far. The selective security can be defined similarly as above by requiring the
adversary to commit the target identities (id∈a, id

∈
b) before it seeing mpk, while

the semi-static security can be defined similarly above by discarding Oreveal(·, ·).

3 Revisit Sakai-Ohgishi-Kasahara IB-NIKE

We begin this section by recalling the SOK IB-NIKE scheme [22], which is given
by the following three algorithms:

– Setup(χ): run BLGroupGen(χ) to generate (p,G,GT , e), pick x
R∈− Zp, set

h = gx; output mpk = (h,H,G) and msk = x, where H : I ⊕ G is the
identity mapping function and G : GT ⊕ {0, 1}n is the key mapping function.

– Extract(msk, id): on input msk = x and id ∈ I, output skid ∈ H(id)x.

– Share(skida , idb): on input skida and idb, output shk ∈ G(e(skida ,H(idb))).

3.1 An Improved Proof for the SOK IB-NIKE

The original reduction [20] for the SOK IB-NIKE lose a factor of 1/Q2
1Q2. In

this subsection, we show that the fully adaptive security for the SOK scheme
can be reduced to the CBDH problem with a tighter security reduction.

Theorem 1. The SOK IB-NIKE scheme is fully adaptive-secure in the random
oracle model assuming the CBDH assumption holds in bilinear group system
generated by BLGroupGen(χ). Suppose H and G are random oracles, for any
adversary A breaking the SOK IB-NIKE scheme with advantage AdvA(χ) that
makes at most Qe extraction queries and Qr reveal queries and Q2 random
oracle queries to G, there is an algorithm B that solves the CBDH problem with
advantage 4AdvA(χ)/e2(Qe +Qr)

2Q2, where e is the natural logarithm.

Due to space limitation, we defer the proof of Theorem 1 in the full version.



282 Y. Chen, Q. Huang, and Z. Zhang

3.2 SOK IB-NIKE Is Not Provably Secure under NPROM

We now show that the SOK IB-NIKE can not be proven secure without program-
ming the random oracle with respect to a slightly restricted type of reductions,
which is called single-instance reduction in [13]. In the case of identity-based
schemes (including IBE, IBS as well as IB-NIKE), the restrictions lie at such a
type of reductions can only invoke a single instance of the adversary and, can
not rewind the adversary to a point before it hands over mpk for the first time.
We have the following theorem whose proof appears in the full version.

Theorem 2 (Non-Programming Irreducibility for SOK IB-NIKE). As-
sume the 1-omCBDH assumption holds in bilinear group system generated by
BLGroupGen(χ), then there exists no non-programming single-instance fully-black-
box reduction that reduces the fully adaptive security of SOK IB-NIKE to the
CBDH problem. More precisely, assume there exists such a reduction R that
converts any adversary A against the SOK IB-NIKE into an algorithm against
the CBDH problem. Assume further that the reduction R has success probabil-
ity SuccCBDH

RA for given A and runtime TimeR(χ). Then, there exists a family
A of successful (but possibly inefficient) adversaries AR,a against fully adaptive
security of SOK IB-NIKE and a meta-reduction M that breaks the 1-omCBDH
assumption with success probability Succ1-omCBDH

M (χ) ∅ (SuccCBDH
RAR,a (χ))

2 for a
random AR,a ∈ A and runtime TimeM(χ) = 2 · TimeR(χ) + poly(χ).

4 IB-NIKE from Indistinguishability Obfuscation

4.1 Warmup: Selectively Secure IB-NIKE from iO
As a warmup, we show how to create a replacement for the RO H(·) in the SOK
scheme from puncturable PRFs and iO. The resulting scheme is selective-secure
in the standard model.

Selectively Secure Construction from iO
– Setup(χ): run BLGroupGen(χ) to generate (p,G,GT , e), pick x

R∈− Zp and

g
R∈− G

∈; pick a secret key k for puncturable PRF F : I ⊕ Zp; then create
an obfuscation of the program H shown in Fig. 1. The size of the program
is padded to be the maximum of itself and the program H∈ shown in Fig. 2.
We refer to the obfuscated program as the function H : I ⊕ G, which acts
as the random oracle type hash function in the SOK scheme. The msk is x,
whereas mpk is the hash function H(·).

– Algorithm Extract and Share are identical to that in the SOK scheme.

Theorem 3. The above IB-NIKE scheme is selective-secure if the obfuscation
scheme is indistinguishably secure, F is a secure punctured PRF, and the DBDH
assumption holds.

Due to space limitation, we defer the proof of Theorem 3 in the full version.



Sakai-Ohgishi-Kasahara IB-NIKE, Revisited 283

Selective Hash H

Constants: Punctured PRF key k, g ⊕ G
∗.

Input: Identity id.

1. Output gFk(id).

Fig. 1. Selective Hash H

Selective Hash H∗

Constants: Punctured PRF key k(S) for S = {id∗a, id∗b}, id∗a, id∗b ⊕ I , z∗1 , z
∗
2 ⊕ G,

g ⊕ G
∗.

Input: Identity id.

1. If id = id∗a output z∗1 and exit.

2. If id = id∗b output z∗2 and exit.

3. Else output gFk(S)(id).

Fig. 2. Selective Hash H∗

4.2 Main Result: Adaptively Secure IB-NIKE from iO
We now show how to create a replacement for the RO H(·) in the SOK IB-NIKE
scheme from (poly, 2)-AHF and iO to attain adaptive security in the standard
model. We first recap the definition of AHF and present a generic construction
of (poly, 2)-AHF.

Admissible Hash Functions. Our definition below is generalization of “ad-
missible hash function”(AHF) [3, 9, 15].

Definition 3 (AHF). Let τ, l, and Φ be efficiently computable univariate poly-
nomials of χ. For an efficiently computable function AHF : {0, 1}κ ⊕ {0, 1}l, de-
fine the predicate Pu : {0, 1}κ ⊕ {0, 1} for any u ∈ {0, 1,≈}l as Pu(x) = 0 ⇐⇒
⊇i : AHF(x)i ≤= ui, where AHF(x)i denotes the i-th component of AHF(x). We
say that AHF is (m,n)-admissible if there exists a PPT algorithm AdmSample
and a polynomial Φ(χ), such that for all x1, . . . , xm, z1, . . . , zn ∈ {0, 1}κ, where
xi ≤= zj for all 1 ← i ← m and 1 ← j ← n, we have that:

Pr[Pu(x1) = · · · = Pu(xm) = 1 ∩ Pu(z1) = · · · = Pu(zn) = 0] ∅ 1/Φ(χ) (1)

where the probability is over the choice of u ∈ AdmSample(χ). Particularly, we
say that AHF is (poly, n)-admissible if AHF is (q, n)-admissible for any polyno-
mial q = q(χ) and constant n > 0. Note that in the standard definition of AHF,
the second parameter n is fixed to 1. To show the existence of (q, n)-AHF for
n ∅ 1, we present the following theorem.



284 Y. Chen, Q. Huang, and Z. Zhang

Theorem 4. Let q = q(χ) be a polynomial, n be a constant, and AHF (with
AdmSample) be a (q, 1)-AHF from {0, 1}κ into {0, 1}l. Then AHF∗ with:

– AHF∗(x) = AHF(x)× · · · × AHF(x)︸ ⎧⎪ ⎨
n

.

– P ∗
u : {0, 1}κ ⊕ {0, 1} for any u ∈ {0, 1,≈}nln is defined as P ∗

u(x) = 0 ⇐⇒
⊇i : AHF∗(x)i ≤= ui, where AHF∗(x)i denotes the i-th component of AHF∗(x).

– AdmSample∗(χ): run AdmSample(χ) independently n times to generate u1,
. . . , un ∈ {0, 1}l, output u = u1 × · · · × un︸ ⎧⎪ ⎨

n

.

is a (q, n)-AHF from {0, 1}κ into {0, 1}nln. Here × denotes the Cartesian product
defined in Section 2.1. AHF∗(x) can be viewed as a nln-dimension vector over
{0, 1}, and u can be viewed as a nln-dimension vector over {0, 1,≈}.
Proof. We first note that the definition of P ∗

u for AHF∗ is compatible with that
of Pu for AHF. According the construction of AHF∗ and AdmSample∗(χ), we have
P ∗
u(x) = Pu1(x)∩· · ·∩Pun(x). Now fix q+n distinct elements x1, . . . , xq, z1, . . . , zn

∈ {0, 1}κ. For each i ∈ [n], define event Ai as: Pui(xj) = 1 for all 1 ← j ← q and
Pui(zi) = 0 (the predicate values on the rest n − 1 elements could be either 0
or 1). Define event A as: P ∗

u(xj) = 1 for all 1 ← j ← q and P ∗
u(zi) = 0 for all

1 ← i ← n. According to the definition of P ∗
u, we have: A ⊇ A1 ∩ · · · ∩An. Since

AHF is a (q, 1)-AHF, thus each event Ai happens independently with probability
at least 1/Φ(χ) (over the choice of ui ∈ AdmSample(χ)). Therefore, we have:
Pr[A] ∅ ∏n

i=1 Pr[Ai] ∅ 1/(Φ(χ))n, which indicates AHF∗ is a (q, n)-AHF. This
proves the theorem.

Adaptively Secure Construction from iO
– Setup(χ): run BLGroupGen(χ) to generate (p,G,GT , e), pick x

R∈− Zp and

g
R∈− G

∈; pick a secret key k for puncturable PRF F : I ⊕ Zp; pick uniformly
at random (c1,0, c1,1), . . . , (cn,0, cn,1) each from Zp; then create an obfus-
cation of the program H shown in Fig. 3, where the size of the program is
padded to be the maximum of itself and the program of H∈shown in Fig. 4.
The msk is x, whereas mpk is the hash function H(·).

– Algorithms Extract and Share are identical to that in the SOK IB-NIKE.

Theorem 5. The above IB-NIKE scheme is adaptively secure if the obfuscation
scheme is indistinguishable secure and the n-DBDHI assumption holds in bilinear
group system.

Proof. We proceed via a sequence of hybrid games, where the first game cor-
responds to the standard adaptive security game. We first prove that any two
successive games are computationally indistinguishable. We then show that any
PPT adversary in the final game that succeeds with non-negligible probability
can be used to break the n-DBDHI assumption.



Sakai-Ohgishi-Kasahara IB-NIKE, Revisited 285

Adaptive Hash H

Constants: g ⊕ G
∗, exponents ci,φ ⊕ Zp for i ⊕ [n] and α ⊕ {0, 1}.

Input: Identity id.

1. Compute w ≤ AHF(id).

2. Output g
∏n

i=1 ci,wi .

Fig. 3. Adaptive Hash H

Adaptive Hash H∗

Constants: g ⊕ G
∗, gx, . . . , gx

n ⊕ G for some x ⊕ Zp, exponents yi,φ ⊕ Zp for
i ⊕ [n] and α ⊕ {0, 1}, u ⊕ {0, 1,←}n.
Input: Identity id.

1. Compute w ≤ AHF(id).

2. Compute the set size |μ(w)|, where μ(w) is the set i such that wi ⊆= ui.

3. Output (gx
|μ(w)|

)
∏n

i=1 yi,wi .

Fig. 4. Adaptive Hash H∗

Game 0: This game is identical to standard adaptive security game played
between adversary A and challenger CH:

– Setup: CH runs BLGroupGen(χ) to generate (p,G,GT , e), picks x
R∈− Zp and

g
R∈− G

∈, then chooses exponents ci,χ uniformly at random Zp for i ∈ [n] and
α ∈ {0, 1}, creates the hash function H(·) as an obfuscation of the program
of H shown in Fig. 3, and pads its size to be the maximum of itself and the
program of H∈ shown in Fig. 4. CH sets msk = x and mpk = H.

– Phase 1: A can issue the following two types of queries:
• extraction query ∗id〉: CH responds with skid = H(id)x.

• reveal query ∗ida, idb〉: CH first extracts secret key skida for ida, then
responds with shk ∈ Share(skida , idb).

– Challenge: A submits id∈a and id∈b as the target identities with the restriction

that either id∈a or id∈b has not been queried for secret key. CH picks shk∈0
R∈−

SHK and computes shk∈1 ∈ Share(skid∗
a
, id∈b), then picks σ

R∈− {0, 1} and
sends shk∈β to A as the challenge.

– Phase 2:A can continue to issue the extraction queries and the reveal queries,
CH proceeds the same way as in Phase 1 except that the extraction queries
to id∈a or id∈b and reveal query for (id∈a, id

∈
b) are not allowed.

– Guess: A outputs its guess σ∗ and wins if σ = σ∗.

Game 1: same as Game 0 except that CH generates the exponents ci,χ as follows:
first samples u ∈ ({0, 1,≈})n via AdmSample(χ,Q), where Q is the upper bound



286 Y. Chen, Q. Huang, and Z. Zhang

on the number of queries made by A (including extraction queries and reveal

queries), then for i ∈ [n] and α ∈ {0, 1} chooses yi,χ
R∈− Zp, and sets:

ci,χ =

⎛
yi,χ if α = ui
x · yi,χ if α ≤= ui

Game 2: same as Game 1 except that CH creates the hash function H(·) as an
obfuscation of program H∈ shown in Fig. 4.

Lemma 1. Game 0 and Game 1 are statistically indistinguishable.

Proof. This lemma immediately follows from the facts: (1) in Game 1 the sam-
pling of u only determines the generation of ci,χ and it is independent of the
rest game; (2) the value of ci,χ distributes uniformly at random from Zp in both
Game 0 and Game 1.

Lemma 2. Game 1 and Game 2 are computationally indistinguishable if the
underlying obfuscation scheme is indistinguishability secure.

Proof. We prove this lemma by giving a reduction to the indistinguishability
security of the obfuscator. More precisely, suppose there is an PPT adversary A
can distinguish Game 1 and Game 2, then we can build algorithms (S,D) against
the indistinguishability of the obfuscator by interacting with A as follows.

Sample: S runs BLGroupGen(χ) to generate (p,G,GT , e), picks x
R∈− Zp and

g
R∈− G, prepares gx

i

for i ∈ [n], runs AdmSample(χ,Q) to obtain a string

u ∈ ({0, 1,≈})n, and for i ∈ [n] and α ∈ {0, 1} chooses yi,χ
R∈− Zp, then sets:

ci,χ =

⎛
yi,χ if α = ui
x · yi,χ if α ≤= ui

It sets β = (ci,χ, yi,χ, u) and builds C0 as the program of H, and C1 as the pro-
gram of H∈. Before describing D, we observe that by construction, the circuits C0

and C1 always behave identically on every input. To show program equivalence,
note that for all w ∈ {0, 1}n, we have that:

g
∏n

i ci,αi = gx
|μ(w)|·∏n

i yi,wi = (gx
|μ(w)|

)
∏n

i yi,wi

With suitable padding, both C0 and C1 have the same size. Thus, S satisfies
the conditions needed for invoking the indistinguishability property of the ob-
fuscator. Now, we can describe the algorithm D, which takes as input β as given
above, and the obfuscation of either C0 or C1.

Distinguish: D sets msk = x and builds mpk from Cβ , then invokes A in
the adaptive security game for IB-NIKE. When A issues extraction queries and
reveal queries, D responds with msk. If A wins, D outputs 1.

By construction, if D receives an obfuscation of C0, then the probability that D
outputs 1 is exactly the probability that A wins in Game 1. On the other hand,



Sakai-Ohgishi-Kasahara IB-NIKE, Revisited 287

if D receives an obfuscation of C1, then the probability that D outputs 1 is the
probability that A wins in Game 2. The indistinguishability of the obfuscator
implies Game 1 and Game 2 are computationally indistinguishable. The lemma
immediately follows.

Lemma 3. A’s advantage in Game 2 is negligible in χ.

Proof. We prove this lemma by showing that any adversaryA has non-negligible
advantage in Game 2 implies an algorithm B that has non-negligible advantage
against the n-DBDHI problem. Given a n-DBDHI instance (g, gx, . . . , gx

n

, Tβ),
B interacts with A as follows:

– Setup: B first runs AdmSample(χ,Q) to obtain u ∈ {0, 1,≈}n, where Q is
the sum of Qe (the maximum number of extraction queries) and Qr (the
maximum number of the reveal queries). For i ∈ [n] and α ∈ {0, 1}, B chooses
random yi,χ ∈ Zp, then creates the hash function H(·) as an obfuscation of
the program H∈ using the input DBDHI instance as well as yi,χ and u.

– Phase 1: A can issue the following two types of queries:
• extraction queries ∗id〉: If Pu(id) = 0, then B aborts and outputs a
random guess for σ. Else, B extracts the secret key from the input n-
DBDHI instance and the yi,χ values. B could to do so since Pu(id) = 1
implies there exists at least one i such that wi = ui. In this case H(id)
will contain a power of x that is strictly less than n.

• reveal queries ∗ida, idb〉: If Pu(ida) = 0 ∩ Pu(idb) = 0, then B aborts
and outputs a random guess for σ. Otherwise, either Pu(ida) = 1 or
Pu(idb) = 1. Therefore, B can at least extract a secret key for one identity
and then computes the shared key.

– Challenge:A outputs the target identities (id∈a, id∈b). If Pu(id
∈
a)=1∨Pu(id

∈
b) =

1, then B aborts and outputs a random guess for σ. Else, we have Pu(id
∈
a) =

0 ∩ Pu(id
∈
b ) = 0, which means AHF(id∈a)i ≤= ui and AHF(id∈b ) ≤= ui for all

i ∈ [n]. In this situation, both the hash values of id∈a and id∈b will be ga
n

raised to some known product of some yi,χ values. Denote the products by
y∈a and y∈b , respectively. B thus sends shk∈β = (Tβ)

y∗
ay

∗
b to A as the challenge.

It is easy to verify that if Tβ
R∈− GT then shk∈β also distributes uniformly

over GT , else if Tβ = e(g, g)x
2n+1

then shk∈β = e(H(id∈a),H(id
∈
b))

a.

– Phase 2: same as in Phase 1 except that the extraction queries ∗id∈a〉, ∗id∈b〉
and the reveal query ∗id∈a, id∈b〉 are not allowed.

– Guess: When A outputs its guess σ∗, B forwards σ∗ to its own challenger.

Since the choice of u ∈ AdmSample(χ,Q) determines whether or not B aborts
and it is independent of the rest of the interaction. We conclude that conditioned
on B does not abort, A’s view in the above game is identical to that in Game 2.
Let F be the event that B does not abort, we have AdvB(χ) = Pr[F ] · AdvA(χ).
In what follows, we estimate the low bound of Pr[F ]. Let {idi}1≤i≤Qe be Qe

distinct extraction queries, {(idj,1, idj,2)}1≤j≤Qr be Qr distinct reveal queries.
During the game, B will abort if one of the following events does not happen.



288 Y. Chen, Q. Huang, and Z. Zhang

F1 :
⎜Qe

i=1(P (idi) = 1)

F2 :
⎜Qr

j=1(P (idj,1) = 1 ∨ P (idj,2) = 1)

F3 : Pu(id
∈
1) = 0 ∩ Pu(id

∈
2) = 0

We have F = F1 ∩ F2 ∩ F3. Note that in each extraction query, there exists at
least one identity different from both id∈1 and id∈2. Suppose Qe + Qr ← Q, then
according to the fact that AHF is a (Q, 2)-AHF, we have Pr[F ] ∅ Φ(χ). The
lemma immediately follows.

Combining the above three lemma, our main theorem immediately follows.

Acknowledgement. We greatly thank Dennis Hofheinz for helpful clarifica-
tions on admissible hash functions. In particular, we thank Dennis for suggesting
the construction of (poly, c)-AHFs in Section 4.2. The first author is supported
the National Natural Science Foundation of China under Grant No. 61303257,
the Strategic Priority Research Program of CAS (Chinese Academy of Sciences)
under Grant No. XDA06010701, and the National 973 Program of China under
Grant No. 2011CB302400. The second author is supported by the National Nat-
ural Science Foundation of China under Grant No. 61103232, the Guangdong
Natural Science Foundation under Grant No. S2013010011859, and the Research
Fund for the Doctoral Program of Higher Education of China under Grant No.
20114404120027. The third author is an International Research Fellow of JSPS
and supported by the National Natural Science Foundation of China under Grant
No. 61303201.

References

1. Bellare, M., Ristenpart, T.: Simulation without the artificial abort: Simplified proof
and improved concrete security for waters’ ibe scheme. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 407–424. Springer, Heidelberg (2009)

2. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

3. Boneh, D., Boyen, X.: Secure identity based encryption without random oracles.
In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer,
Heidelberg (2004)

4. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

5. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Boyd,
C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg
(2001)

6. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applica-
tions. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270,
pp. 280–300. Springer, Heidelberg (2013)

7. Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and
more from indistinguishability obfuscation (2013),
http://eprint.iacr.org/2013/642

http://eprint.iacr.org/2013/642


Sakai-Ohgishi-Kasahara IB-NIKE, Revisited 289

8. Capar, C., Goeckel, D., Paterson, K.G., Quaglia, E.A., Towsley, D., Zafer, M.:
Signal-flow-based analysis of wireless security protocols. Information and Compu-
tation 226, 37–56 (2013)

9. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate
a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
523–552. Springer, Heidelberg (2010)

10. Coron, J.S.: On the exact security of full domain hash. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 229–235. Springer, Heidelberg (2000)

11. Diffie, W., Hellman, M.E.: New directions in cryptograpgy. IEEE Transactions on
Infomation Theory 22(6), 644–654 (1976)

12. Dupont, R., Enge, A.: Provably secure non-interactive key distribution based on
pairings. Discrete Applied Mathematics 154(2), 270–276 (2006)

13. Fischlin, M., Fleischhacker, N.: Limitations of the meta-reduction technique: The
case of schnorr signatures. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT
2013. LNCS, vol. 7881, pp. 444–460. Springer, Heidelberg (2013)

14. Fischlin, M., Lehmann, A., Ristenpart, T., Shrimpton, T., Stam, M., Tessaro, S.:
Random oracles with(out) programmability. In: Abe, M. (ed.) ASIACRYPT 2010.
LNCS, vol. 6477, pp. 303–320. Springer, Heidelberg (2010)

15. Freire, E.S.V., Hofheinz, D., Paterson, K.G., Striecks, C.: Programmable hash func-
tions in the multilinear setting. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part I. LNCS, vol. 8042, pp. 513–530. Springer, Heidelberg (2013)

16. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013)

17. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits (2013),
http://eprint.iacr.org/2013/451

18. Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based encryption
for circuits from multilinear maps. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013, Part II. LNCS, vol. 8043, pp. 479–499. Springer, Heidelberg (2013)

19. Hohenberger, S., Sahai, A., Waters, B.: Replacing a random oracle: Full domain
hash from indistinguishability obfuscation (2013),
http://eprint.iacr.org/2013/509

20. Paterson, K.G., Srinivasan, S.: On the relations between non-interactive key dis-
tribution, identity-based encryption and trapdoor discrete log groups. Des. Codes
Cryptography 52(2), 219–241 (2009)

21. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: Deniable en-
cryption, and more (2013), http://eprint.iacr.org/2013/454

22. Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing. In: The
2000 Symposium on Cryptography and Information Security, Japan, vol. 45, pp.
26–28 (2000)

23. Zhang, J., Zhang, Z., Chen, Y., Guo, Y., Zhang, Z.: Generalized “one-more” prob-
lems and black-box separations. In: CRYPTO 2014 (submitted, 2014)

http://eprint.iacr.org/2013/451
http://eprint.iacr.org/2013/509
http://eprint.iacr.org/2013/454


On the Impossibility of Proving Security

of Strong-RSA Signatures
via the RSA Assumption

Masayuki Fukumitsu1, Shingo Hasegawa2, Shuji Isobe2, and Hiroki Shizuya2

1 Faculty of Information Media, Hokkaido Information University,
Nishi-Nopporo 59-2 Ebetsu, Hokkaido, 069-8585 Japan

fukumitsu@do-johodai.ac.jp
2 Graduate School of Information Sciences, Tohoku University,

41 Kawauchi, Aoba-ku, Sendai, 980–8576 Japan
{hasegawa,iso,shizuya}@cite.tohoku.ac.jp

Abstract. We pose a question whether or not the standard RSA as-
sumption is sufficient to prove the security of the strong RSA-based
(SRSA-based, for short) signatures. In this paper, we show a negative
circumstantial evidence for the question. Namely, several SRSA-based
signatures cannot be proven to be sEUF-CMA, or even EUF-KOA, under
the RSA assumption as far as a modulus-preserving algebraic reduction
is concerned. Our result is obtained as an important application of the
adaptive pseudo-free group introduced by Catalano, Fiore and Warinschi
that can be regarded as an abstract framework of signatures. We in fact
show that the adaptive pseudo-freeness of the RSA group Z

×
N cannot be

proven from the RSA assumption via such reductions.

Keywords: Strong-RSA Signature Schemes, Pseudo-Free Groups,
Adaptive Pseudo-Free Groups, RSA Assumption, Algebraic Reduction.

1 Introduction

Gennaro, Halevi and Rabin [18] and Cramer and Shoup [12] independently pro-
posed digital signature schemes whose security is proven under the strong RSA
(SRSA, for short) assumption [5,16]. Their SRSA-based signatures are known as
one of secure and efficient signature schemes without random oracles [6]. Several
enhanced variants of their schemes were introduced by Fischlin [13], Camenisch
and Lysyanskaya [9], Zhu [37,38] and Hofheinz and Kiltz [22]. Joye [25] studied
some potential security flaws of CS-like signatures for the purpose of showing
the vulnerability of some specific SRSA-based signatures.

For security proofs, it is important that a reduction is tight in a sense that the
loss factor of the reduction is asymptotically small enough. Naccache, Pointcheval
and Stern [27], Chevallier-Mames and Joye [11] and Schäge [32] introduced
SRSA-based signatures that are proven to be secure by tight reductions, re-
spectively. Schäge [33] gave tight security proofs for the SRSA-based signatures
proposed by Cramer-Shoup, Fischlin, Camenisch-Lysyanskaya and Zhu.

W. Susilo and Y. Mu (Eds.): ACISP 2014, LNCS 8544, pp. 290–305, 2014.
c© Springer International Publishing Switzerland 2014



On the Impossibility of Proving Security of Strong-RSA Signatures 291

Another important issue on signatures is to prove their security under a weaker
cryptographic assumption. In this paper, we consider a question whether or not
SRSA-based signatures are secure under the RSA assumption rather than the
SRSA assumption. The difficulty of breaking RSA is that the exponent e of
ze ∈ y (mod N) is forced by a given RSA instance (N, e, y), whereas in the case
of SRSA, an adversary is allowed to conveniently choose such an exponent e so
that ze ∈ y (mod N) for a given SRSA instance (N, y). It is not known that
this question has been formally solved so far.

In this paper, we give a negative circumstantial evidence for this question.
We show that several SRSA-based signatures cannot be proven to be strongly
existentially unforgeable against the chosen message attack (sEUF-CMA, for
short) from the RSA assumption via some reasonably restricted reductions. This
result is obtained as an important application of the framework concerning the
adaptive pseudo-free group [10].

The notion of adaptive pseudo-free group is put forward by Catalano, Fiore
and Warinschi [10]. Intuitively, a computational group family {GN} is adaptive
pseudo-free if any PPT adversary A cannot find a new witness for distinguishing
the group GN from a free group, even though A is allowed to adaptively receive
such witnesses. In [10], they showed that the RSA group Z

×
N can be proven to be

adaptive pseudo-free from the SRSA assumption. They also proposed a generic
construction of secure signatures from adaptive pseudo-free groups. Applying
their construction to the adaptive pseudo-freeness of Z×

N , several SRSA-based
signatures given in [9,12,13,18,22,37] can be obtained.

We restrict ourselves in this paper to “CFW-type signatures”, namely SRSA-
based signatures yielded from their generic construction. Note that there are
some SRSA-based signatures that seem not to be CFW-type, for example
[11,27,32], and such signatures are excluded from our discussion. Our impos-
sibility result on CFW-type signatures is obtained by the following theorem.

Theorem 1 (Informal). It cannot be proven that Z×
N is adaptive pseudo-free

from the RSA assumption via modulus-preserving algebraic reductions.
More precisely, if there exists a modulus-preserving algebraic reduction algo-

rithm R that breaks RSA with black-box access to an adversary A violating the
adaptive pseudo-freeness of Z×

N , then the RSA assumption does not hold.

Moreover, we also show that if CFW-type signatures are sEUF-CMA, then Z
×
N is

adaptive pseudo-free. Combining this fact and Theorem 1, we show that CFW-
type signatures cannot be proven to be sEUF-CMA from the RSA assumption via
modulus-preserving algebraic reductions, as long as the RSA assumption holds.

Theorem 1 is proven by using the meta-reduction technique. This technique
has been employed in e.g. [1,2,7,8,17,20,28,30,34] to give impossibility results
on the security proofs of cryptographic schemes and relationships among cryp-
tographic assumptions. In Theorem 1, we only consider a modulus-preserving
algebraic reduction R. The modulus-preserving means that an RSA modulus N
submitted from R to the adversary A is the same as that of an RSA instance
(N, e, y) input to R. On the other hand, R is informally algebraic with respect
to a group G [28] if R performs only group operations for elements in G and its



292 M. Fukumitsu et al.

execution can be easily traced. Theorem 1 intuitively means that the adaptive
pseudo-freeness of Z×

N cannot be proven from the RSA assumption, as long as
the concerning reduction R is modulus-preserving and algebraic. We should note
that our setting that R is required to be modulus-preserving and algebraic is not
exceedingly restricted: in fact, most reductions concerning the pseudo-free groups
[10,24,26] and ordinary security proofs (e.g. [9,12]) are modulus-preserving and
algebraic. The algebraic condition has been employed in order to give impossi-
bility results for constructing security proofs of several cryptographic schemes
[1,2,17,20,34], and to investigate relationships among cryptographic assumptions
[8,36]. Note also that Theorem 1 does not exclude the possibility that there ex-
ists a non-modulus-preserving and/or non-algebraic reduction R that proves the
adaptive pseudo-freeness of Z×

N from the RSA assumption.
Especially, Theorem 1 can be shown even when an adversary A is restricted

to being static, namely A is not allowed to receive any witness. In the case of
signatures, such an adversary corresponds to a key only attacker rather than a
chosen message attacker. Therefore, our result actually means that CFW-type
signatures cannot be proven to be existentially unforgeable against even the key
only attack via modulus-preserving algebraic reductions, as long as the RSA
assumption holds.

Since Z
×
N is adaptive pseudo-free under the SRSA assumption [10], and the

reduction algorithm in [10] can be described as a modulus-preserving algebraic
one, Theorem 1 is regarded as a negative circumstantial evidence that the SRSA
assumption is not equivalent to the RSA assumption. For the relationship be-
tween the RSA assumption and the SRSA assumption, Aggarwal, Maurer and
Shparlinski [3] gave an opposite evidence. Namely they showed that the RSA
modulus N can be factored if SRSA is broken in some specific restricted model.
We should note that the Aggarwal-Maurer-Shparlinski’s result does not contra-
dict our result. This is because in our result, the operations of the reduction
algorithm are restricted, whereas in [3], they restricted the oracle operations.

2 Preliminaries

A prime P is safe if P = 2P ∈ + 1 for some prime P ∈. Let N
safe
RSA be the set of

all RSA composites N = PQ such that P and Q are distinct safe primes, and
let N

safe
RSA(k) be the set of all N = PQ ⊕ N

safe
RSA such that P and Q are distinct

primes of binary length k/2. It is widely believed that there are infinitely many
safe primes, e.g. [4]. For any N ⊕ N, we use ZN and Z

×
N to denote the residue

ring Z/NZ and its group of units, respectively. QRN designates the group of
quadratic residues mod N .

For any integers a ⊇ b, let [a, b] = {n ⊕ Z | a ⊇ n ⊇ b} and let (a, b) =
{n ⊕ Z | a < n < b}. We denote by x ⊕R S that the element x is randomly
chosen from the set S according to some specific probabilistic distribution. In
particular, we write x ⊕U S when a uniform distribution on S is designated.

A function χ(k) is negligible if for any polynomial p, there exists a constant
k0 such that χ(k) < 1/p(k) for any k ≥ k0. We denote by negl(k) any negligible



On the Impossibility of Proving Security of Strong-RSA Signatures 293

function in k. Let X be a probability distribution over a finite set S. For any
a ⊕ S, X(a) indicates the probability that a is chosen according to X . We
write Supp(X) to denote the support of X . Namely, Supp(X) is the set of all
elements a ⊕ S such that X(a) > 0. Let {XN}N≤N

and {UN}N≤N
be ensembles

of probability distributions, where for each N ⊕ N, XN is defined over a finite
set SN , and UN is the uniform distribution over SN . {XN} is said to be almost
uniform if the statistical distance 1/2 · ∑a≤SN

|XN (a)− UN (a)| between XN

and UN is negligible in the binary length of N .

2.1 Adaptive Pseudo-Free Groups

We describe the notion of adaptive pseudo-free groups introduced by Catalano,
Fiore and Warinschi [10]. It is a generalization of Rivest’s pseudo-freeness [31].
We now prepare the definition of computational groups and free (abelian) groups.

Computational Groups [26,31]. Let {GN}N≤N be a family of finite abelian groups
indexed by an index set N =

⋃
k∗0 N (k). We assume that each group index

N ⊕ N (k) and each element of GN (with N ⊕ N (k)) are expressed as a word
of polynomial length in k, respectively. Then, {GN}N≤N is said to be a family
of computational groups if its group operations such as the group law and the
sampling can be efficiently executed. Note that the sampling is not necessarily
uniform probability distribution. For the more formal definition, refer to [26,31].

Free Abelian Groups. We denote by F(A) the free abelian group generated
by a set A = {a1, a2, . . . , am} of distinct m symbols. (For the detail, refer to
[10,21,26,31].) Any element of F(A) is uniquely expressed by a word of the form∏m

i=1 a
si
i with some exponents s1, s2, . . . , sm ⊕ Z. We focus only on univariate

equations as in [10]. An equation in x with symbols in A is a pair σ = (w1, w2),
where w1 is a word of the form xE with some exponent E ⊕ N, and w2 is
an element

∏m
i=1 a

si
i ⊕ F(A). Then we express the equation σ = (w1, w2) as

xE =
∏m

i=1 a
si
i or the tuple (E, s) of exponents, where s = (s1, s2, . . . , sm).

Equations that have solutions in F(A) are trivial over F(A), others are nontriv-
ial over F(A).

Let G be any finite abelian group, and let α : A ≤ G be an assignment
map that interprets each symbol a ⊕ A to a group element α(a) ⊕ G. We
write σα for the equation σ : xE =

∏m
i=1 a

si
i interpreted over G via α, namely

σα is the equation xE =
∏m

i=1 α(ai)
si over G. β ⊕ G is a solution for σα if

βE =
∏m

i=1 α(ai)
si holds over G.

A pair (σ⊥, β⊥) is called a witness pair for distinguishing G from F(A), if σ⊥

is a nontrivial equation over F(A) and β⊥ is a solution over G of the interpreted
equation σ⊥α. Existence of such a pair (σ⊥, β⊥) witnesses that G is not a free
group, because σ⊥α should have no solution if G is indeed a free group.

Adaptive Pseudo-Freeness. Intuitively, a computational group family {GN} is
adaptive pseudo-free if any probabilistic polynomial-time (PPT, for short) ad-
versary cannot find a new witness pair (σ⊥, β⊥), even though the adversary is
allowed to adaptively receive such witnesses.

The formal definition is described by the following adaptive pseudo-free (APF,
for short) game [10]. It is played by a challenger C and an adversary A. Let k be



294 M. Fukumitsu et al.

a security parameter, and let A be a set of m = m(k) symbols. We suppose that
for each k and m, a class Ek,m of pairs (σ, r) of an equation σ and an auxiliary
string r is designated, and we provide a family τk,m = {τk,m(M)} of probabilistic
distributions τk,m(M) over Ek,m. We say that τ = {τk,m}k,m is a computational

parametric distribution if for any k, m and M , τk,m(M) is efficiently samplable,
and the description of τk,m(M) can be efficiently obtained. Given k and A, the
APF game proceeds as follows:

Setup. The challenger C chooses a random group index N ⊕U N (k). Then, C
specifies an assignment map α : A ≤ GN by independently choosing an element
α(a) ⊕R GN at random according to the designated sampling algorithm for each
a ⊕ A. The adversary A is given the game tuple (N,α, τk,m).

Equations queries. On t-th query, A chooses a parameter Mt for determining a
distribution τk,m(Mt), and hands it to C. Then, C chooses a pair

(
σ(t), rt

) ⊕
Ek,m of an equation σ(t) = (Et, st) and an auxiliary string rt according to the
distribution τk,m(Mt), and then returns the pair

(
σ(t), rt

)
and a solution βt ⊕

GN of the interpreted equation σ
(t)
α : xEt =

∏m
i=1 α(ai)

st,i to A.

Challenge. Eventually, A outputs a tuple ((σ⊥, r⊥), β⊥). Then C outputs 1 if (1)
σ⊥ is nontrivial with respect to Φ =

{(
σ(t), βt

)}
t
, (2) (σ⊥, r⊥) ⊕ Ek,m, and (3) β⊥

is a solution of σ⊥α, or 0 otherwise.

For the condition (1), the equation σ⊥ is intuitively said to be nontrivial with
respect to Φ if the equation σ⊥ cannot be efficiently derived from the queried
equations σ ⊕ Φ by using the group laws and the following fact: for any coprime
integer e to the order ord(GN ) of the group GN , if we

1 = we
2 over GN then

w1 = w2. In [10], the nontriviality of the adaptive case is formally defined. An
adversary A is said to win the APF game of the family G with respect to the
parametric distribution τ = {τk,m}k,m if the challenger C outputs 1 in the game
between C and A.

Definition 1 (Adaptive Pseudo-Free Groups w.r.t. τ [10]). Let k be a
security parameter, let m be a polynomial in k, and let τ = {τk,m}k,m be a com-

putational parametric distribution. A family G = {GN}N≤N of computational
groups is adaptive pseudo-free with respect to τ, if there exists no PPT adver-
sary A such that for any set A of m symbols, A wins the APF game of the
family G with respect to τ in nonnegligible probability in k, where the probability
is taken over the random choices of the index N ⊕U N (k), α(a) ⊕R GN for each
a ⊕ A and each pair

(
σ(t), rt

) ⊕R Ek,m, and the internal coin flips of A.

We say that an adversary A is static if A is not allowed to query in Equations
queries phase. A family G is adaptive pseudo-free with respect to a computational
parametric distribution τ against static adversaries if G is adaptive pseudo-free
with respect to τ even when an adversary is static. Note that the nontriviality
is exactly equivalent to that over F(A) when an APF adversary is static [10,14].
In such a case, the nontriviality can be verified by the following lemma.

Lemma 1 ([31]). An equation xE =
∏m

i=1 a
si
i is trivial over F(A) if and only

if E | si for any 1 ⊇ i ⊇ m.



On the Impossibility of Proving Security of Strong-RSA Signatures 295

KGen: on input
(
1k,m

)
, KGen chooses a game tuple (N,Δ, κk,m) as in Setup phase of

the APF game, and then outputs a public key pk := (N,Δ, κk,m) and a secret key
sk := ord(GN).

Sign: on input (pk, sk,M), Sign issues a signature in the following way. Sign chooses
a pair (χ, r) of an equation χ and a string r as in Equations queries phase of the
APF game, and then finds a solution Υ of the interpreted equation χβ by using
the secret key sk = ord(GN). It returns a signature ξ = (χ, r, Υ).

Verify: on input (pk,M, ξ), Verify outputs 1 if (χ, r) ∈ Supp(κk,m(M)) and Υ is actually
a solution of the interpreted equation χβ, or 0 otherwise.

Fig. 1. Construction of PFSigG,φ

2.2 Digital Signature Schemes

A signature scheme S consists of the following three polynomial-time algorithm
(KGen, Sign,Verify). KGen is a PPT algorithm that on input 1k, generates a public
key pk and a secret key sk. Sign is a PPT algorithm that on input (sk, pk,M),
issues a signature π on the message M . Verify is a deterministic algorithm that
on input (pk,M, π), outputs 1 if π is a signature on the message M under the
public key pk, or 0 otherwise. For the security, we consider strongly existentially
unforgeable security against the chosen message attack (sEUF-CMA security, for
short), and existentially unforgeable security against the key only attack (EUF-
KOA security, for short). For the formal definition, please refer to [19].

Catalano, Fiore and Warinschi [10] proposed a generic construction of a secure
signatures based on an adaptive pseudo-free group. Let G = {GN}N≤N be a
computational group family and let τ = {τk,m} be a computational parametric
distribution such that for any k, m and M , the membership of the support
Supp (τk,m(M)) of the distribution τk,m(M) can be efficiently verified. In Fig. 1,
we depict their signature PFSigG,β. In [10, Theorem 1], they showed that PFSigG,β
is sEUF-CMA provided that G is adaptive pseudo-free with respect to τ.

In order to give a negative circumstantial evidence on the security proof of
some SRSA-based signatures, we now show the converse of Theorem 1 of [10].
More specifically, we show that if there exists a winning APF adversary A
for the group G with respect to the parametric distribution τ, then one can
construct a forger violating the sEUF-CMA security of PFSigG,β. Our strat-
egy is to prove that a witness ((σ⊥, r⊥), β⊥) output from A can be regarded as
a forgery for PFSigG,β. However, A would not output a message M⊥ so that
(σ⊥, r⊥) ⊕ Supp(τk,m(M⊥)), whereas the forger is required to output such a mes-
sage. We therefore consider the following modification of the APF game: in Chal-
lenge phase, an adversaryA outputs a parameterM⊥ together with ((σ⊥, r⊥), β⊥)
such that (σ⊥, r⊥) ⊕ Supp(τk,m(M⊥)). It should be noted that this modification
does not affect the adaptive pseudo-freeness. Namely, if G is APF with respect
to τ, then it is so under this modified sense.

Lemma 2. Let G = {GN}N≤N be any computational group family, and let τ =
{τk,m} be any computational parametric distribution such that for any parameter



296 M. Fukumitsu et al.

M , the membership of Supp(τk,m(M)) can be efficiently verified. If PFSigG,β is
sEUF-CMA, then G is adaptive pseudo-free with respect to τ.

It should be noted in Lemma 2 that G is adaptive pseudo-free with respect to
τ against static adversaries provided that PFSigG,β is EUF-KOA. This is because
an adversary makes no query.

2.3 Algebraic Algorithms

The concept of the algebraic algorithm was introduced by Paillier and Vergnaud
[28]. Intuitively, an algorithm R is algebraic with respect to a computational
group G if R performs only the group operation for the elements in G and
the execution of R can be easily traced. In particular, on any input elements
y1, . . . , yn ⊕ G, any element g ⊕ G produced in the execution of R belongs to
the subgroup ←y1, . . . , yn∅ generated by the input elements, and moreover the
expression g =

∏n
i=1 y

ci
i should be easily retrieved.

We follow the formal definition given in [34]. An algorithm R is algebraic
for a computational group family {GN}N≤N , if the following algorithm Extract
is provided. Extract receives any tuple (N, y1, . . . , yn, aux, g, Σ) as input, where
N ⊕ N is a group index, y1, . . . , yn ⊕ GN are elements that are given to R as
input, aux is any word given to R as an auxiliary input, g ⊕ GN is a target group
element and Σ denotes a random coin used in R. Then Extract finds a tuple
(c1, . . . , cn) of exponents such that g =

∏n
i=1 y

ci
i , provided that g is actually

produced in the execution of R on the input tuple (N, y1, . . . , yn, aux) with the
random coin Σ. If there is no correct exponents (c1, . . . , cn), then Extract may
output any word. Extract is required to run in polynomial-time in the running
time of R. In particular, if R runs in polynomial-time in the security parameter
k, then Extract should run in polynomial-time in k.

We consider an algebraic algorithmR that has an access to an oracleA. In the
case where a target element g ⊕ G is produced after R has received an answer
for a u-th input to A, Extract correctly retrieves exponents (c1, . . . , cn) for the
given target g if besides the input tuple (N, y1, . . . , yn, aux), Extract is also given
all the u correct answers from the first input through the u-th input. Note that
if the target element g is produced before R invokes A on the first input, it is
not required to provide any additional inputs to Extract as in [8].

2.4 RSA Assumption

A key generator KGenRSA outputs a pair (N, e) ⊕ N
safe
RSA(γ) ×Z

×
κ(N) on each input

1k, where Ω is a polynomial in a security parameter k and ϕ is Euler’s function.

Definition 2 (RSA assumption). The RSA assumption holds if there exists
no PPT adversary R such that

Pr
[
ze ∈ y (mod N) : (N, e) ⇒ KGenRSA(1

k), y ⊕U QRN , z ⇒ R(N, e, y)
]

is nonnegligible in k, where the probability is taken over the coin flips of KGenRSA
and R, and the uniform random choice y from QRN .



On the Impossibility of Proving Security of Strong-RSA Signatures 297

We follow the setting of [23] that an RSA composite N is restricted to a
product of two safe primes. We also assume that y is restricted to a quadratic
residue mod N . Note that this is not an essential restriction, because breaking
RSA for y ⊕ QRN leads to breaking RSA for an arbitrary y ⊕ Z

×
N [26]. In our

main theorem, we employ the following lemma.

Lemma 3 ([35]). Let N ⊕ N with binary length k. Let e and E⊥ be any integers
of length at most polynomial in k, and let z⊥, y ⊕ Z

×
N such that (z⊥)e ∈ yE

⊆

(mod N). If gcd(e, E⊥) = 1, then the element z ⊕ Z
×
N such that ze ∈ y (mod N)

can be computed in polynomial-time in k on the input (N, e,E⊥, z⊥, y).

3 Impossibility Result on the Adaptive Pseudo-Freeness
of Z×

N under the RSA Assumption

Catalano, Fiore and Warinschi [10] presented a class DCFW of computational
parametric distributions so that the RSA group family

{
Z
×
N

}
can be proven to

be adaptive pseudo-free with respect to τ ⊕ DCFW from the SRSA assumption,
where

{
Z
×
N

}
stands for the RSA group family

{
Z
×
N

}
N≤N with N = N

safe
RSA.

The main purpose of this paper is to give a negative circumstantial evidence on
the security proof of CFW-type signatures under the RSA assumption, namely
signatures obtained by applying the generic construction PFSig

Z
×
N ,β to the RSA

group family
{
Z
×
N

}
with τ ⊕ DCFW. For the purpose, we show in this section

that if the RSA group family
{
Z
×
N

}
is proven to be adaptive pseudo-free with re-

spect to any parametric distribution τ ⊕ DCFW (against static adversaries) from
the RSA assumption via some restricted reductions, then the RSA assumption
does not hold. As a consequence of this impossibility result and Lemma 2, we
will show that if CFW-type signatures are proven to be EUF-KOA from the
RSA assumption via some restricted reductions, then the RSA assumption does
not hold. Recall that in Lemma 2, we require the modification on the adaptive
pseudo-freeness as described in Section 2.2. Hereafter, we focus on the modified
version of the adaptive pseudo-freeness. Note that the impossibility result on the
ordinary adaptive pseudo-freeness can also be proven in a similar manner.

We now describe the class DCFW. The set ECFW
k,m is defined in the following

manner. We fix any nonconstant polynomials Ωmsg = Ωmsg(k), Ωexp = Ωexp(k)
and Ωseed = Ωseed(k) such that Ωexp ⊇ Ω/2− 2, and any (single-valued) division-

intractable hash function H : {0, 1}γseed ≤ [
0, 2γexp − 1

]
. For each k and m, let

ECFW
k,m be the set of all pairs (σ, r) of an equation σ = (E, (s1, . . . , sm)) and a string

r ⊕ {0, 1}γseed such that E = H(r) ⊕ [
0, 2γexp − 1

]
, s1 = 1 and s2, . . . , sm ⊕ Z.

Then, DCFW is a class of computational parametric distributions τ = {τk,m}k,m
such that for each k and m, τk,m(M) ⊕ τk,m is a probabilistic distribution over

the set ECFW
k,m so that a string r is uniformly distributed over {0, 1}γseed . For a

single-valued division-intractable hash function, the following lemma holds.

Lemma 4. If H : {0, 1}γseed ≤ [
0, 2γexp − 1

]
is a division-intractable hash func-

tion, then for any integer E ⊕ [
0, 2γexp − 1

]
, Prr≤U{0,1}κseed [H(r) = E] = negl(k).



298 M. Fukumitsu et al.

It should be noted that we have described a lager class than the class actu-
ally proposed in [10] in a sense that elements s2, . . . , sm are not restricted to
belonging to ZE .

The Situation. We describe the situation that the RSA assumption implies the
adaptive pseudo-freeness of the RSA group family

{
Z
×
N

}
with respect to a com-

putational parametric distribution τ = {τk,m}k,m against static adversaries, and
then we write RSA ⊇ APFG

Z
×
N ,β to denote such a situation. We formalize this

statement by the following contrapositive setting as in [8,28]: there exist a PPT
algorithm R and a polynomialm such that R breaks RSA in nonnegligible prob-
ability with a black-box access to a static adversary A that wins the APF game
for the family

{
Z
×
N

}
with respect to τ = {τk,m}k,m in nonnegligible probability.

Through the black-box access, R would play the APF game with the adversary
A in which R is placed at the challenger’s position. For ease of explanation for
the proof, we now consider the case where R invokes A only once. Note that one
can extend our main theorem to cover the case where R invokes A polynomially
many times in a natural way. The detail will be given in the full version of this
paper.

Here, KGenRSA is forced to generate a good pair (N, e) with probability at
least 1/δGood for some polynomial δGood(k) for any sufficiently large k. The good
pair (N, e) means that e is a prime in Z

×
κ(N) and e ≥ 2γexp . Note that this

assumption on KGenRSA is not exceedingly strong. For instance, if e is (almost)
uniformly distributed over Z×

κ(N) with respect to each specific modulus N , then

our assumption holds. This fact can be proven as in [15, Lemma 5]. Throughout
this paper, we assume that a group index N ⊕ N (k) chosen by an APF challenger
is distributed according to N chosen by such a generator KGenRSA(1

k) for each
security parameter k. Moreover, following the setting in [10,14,26], we adopt
any sampling algorithm of the family

{
Z
×
N

}
which chooses an element g almost

uniformly at random over QRN . For example, such a sampling can be done [26,
Lemma 2] by choosing an exponent d ⊕U {0, 1, . . . , B − 1} with sufficiently large

B and then setting g := (y⊥)d, where y⊥ is any fixed generator of QRN . Note
that QRN is cyclic when N ⊕ N

safe
RSA [26].

Let (N, e, y⊥) be any RSA instance given to R. Following Setup phase of the
APF game,R sets a game tuple (N,α, τk,m), and then invokesA on (N,α, τk,m).
In this paper, we assume as in [10,14,26] that R is modulus-preserving in a
sense that the index N is always the same as the modulus N of the given RSA
instance. SinceR now plays the role of the challenger for the APF game of

{
Z
×
N

}
,

the assignment α is specified by selecting α(a) almost uniformly at random
from QRN for each a ⊕ A. Eventually, the game completes with A’s output: a
“winning” witness (M⊥, (σ⊥, r⊥), β⊥) of the APF game, or “losing” symbol ≈.
After the game, R would find a correct solution z⊥ for the given RSA instance
(N, e, y⊥) with nonnegligible probability ε0.

In this paper, we force the reduction R to be algebraic with respect to QRN .
Consequently, any element g ⊕ QRN produced in the execution of R(N, e, y⊥)
before R invokes A is generated by the given RSA ciphertext y⊥ ⊕ QRN and

the expression g = (y⊥)d is retrieved by the polynomial-time extractor Extract.



On the Impossibility of Proving Security of Strong-RSA Signatures 299

On each RSA instance (N, e, y), M proceeds as follows.

(M-1) M sets an integer E∗ := H(r∗) by choosing a string r∗ ∈U {0, 1}κseed .
(M-2) M aborts if E∗ ≤ 1, or proceeds to the following step otherwise.
(M-3) M chooses a random coin Ω of R, sets y∗ := yE⊆

, and then executes R on the
RSA instance (N, e, y∗) with Ω.

(M-4) When R invokes an APF adversary on a game tuple (N,Δ, κk,m) of the group
index N , an assignment Δ : A → QRN and the distribution family κk,m, M
operates as follows:

(a) M executes SimA on (N, Δ, κk,m) with using the auxiliary tuple (e, y, r∗, Ω);
(b) M receives a witness (M∗, (χ∗, r∗), Υ∗) from SimA; and
(c) M hands the tuple (M∗, (χ∗, r∗), Υ∗) to R as an adversary’s response.

(M-5) M receives a solution z∗ for the RSA instance (N, e, y∗) from R.
(M-6) M finds a solution z for the target RSA instance (N, e, y) by applying Lemma 3

to the tuple (N, e,E∗, z∗, y), and halts with output z.

Fig. 2. Configuration of M

We now ready to state our main theorem.

Theorem 1. Assume that KGenRSA outputs a good public key (N, e) with prob-
ability 1/δGood for sufficiently large k, where δGood is a polynomial in k. Let
τ ⊕ DCFW. If RSA ⊇ APFG

Z
×
N ,β, then the RSA assumption does not hold.

Proof. (Sketch) Assume that RSA ⊇ APFG
Z
×
N ,β. Then, there exist a PPT al-

gorithm R and a polynomial m such that R is algebraic with respect to QRN ,
and R breaks RSA in nonnegligible probability with a black-box access to any
static adversary A that wins the APF game of the family

{
Z
×
N

}
with respect

to τ = {τk,m}k,m in nonnegligible probability. This means that for any security
parameter k, R breaks RSA with at least nonnegligible probability ε0 for a given
RSA instance (N, e, y⊥), where (N, e) ⇒ KGenRSA(1

k) and y⊥ ⊕U QRN .

Construction of Meta-Reduction M. We shall construct a PPT algorithm M
that breaks RSA with no oracle access. As a subroutine of M, we shall provide
for the reduction R a simulator SimA that plays a role of a winning APF ad-
versary. In other words, from the R’s viewpoint, SimA looks like an adversary
that really wins the APF game with nonnegligible probability. If SimA behaves
as the adversary, then R breaks RSA via playing the game with SimA. Thus,
our meta-reduction M is constructed by involving R and SimA. If such an SimA
is provided, then M is constructed as depicted in Fig 2.

By using the following claims, we estimate the probability Pr [SuccM] that
M outputs a correct solution z for the target RSA instance (N, e, y) in (M-6),
where (N, e) ⇒ KGenRSA(1

k) and y ⊕U QRN .

Claim 1. M aborts in (M-2) with negligible probability in k.

This is a direct implication of Lemma 4.



300 M. Fukumitsu et al.

Claim 2. Assume that M does not abort in (M-2). For the target RSA instance
(N, e, y) and the natural number E⊥ chosen in (M-1), y⊥ = yE

⊆
is distributed

uniformly at random over QRN .

Proof. Let P and Q be distinct safe primes such that N = PQ, P = 2P ∈ + 1
and Q = 2Q∈ + 1 for some primes P ∈ and Q∈. We now assume that E⊥ ⊕ Z

×
P ∗Q∗ .

Then, we consider for the given RSA modulus N , a map BN,E⊆ that maps each
element y ⊕ QRN to yE

⊆
mod N ⊕ QRN . It follows from E⊥ ⊕ Z

×
P ∗Q∗ and QRN

of the order P ∈Q∈ that BN,E⊆ is bijective. Since the RSA ciphertext y given to
M is chosen uniformly at random from QRN , y⊥ = yE

⊆
is uniformly distributed

over QRN .
We now show that E⊥ = H(r⊥) ⊕ [

0, 2γexp − 1
]
set in (M-1) is in Z

×
P ∗Q∗ . Under

the assumption that M does not abort in (M-2), we have E⊥ > 1. On the other
hand, it follows from N = PQ ⊕ N

safe
RSA(γ), namely P,Q ⊕ (

2γ/2−1, 2γ/2
)
, that

P ∈ > 2γ/2−2− 1. The inequality Ωexp ⊇ Ω/2− 2 implies that 1 < E⊥ ⊇ 2γexp − 1 ⊇
2γ/2−2 − 1 < P ∈. In a similar manner, we also have 1 < E⊥ < Q∈. Since P ∈ and
Q∈ are prime, E⊥ ⊕ Z

×
P ∗Q∗ holds. ⇐�

Claim 3. Assume that the RSA public key (N, e) is good, and M does not abort
in (M-2). If R outputs a correct solution z⊥ for the RSA instance (N, e, y⊥) in
(M-5), M correctly finds a solution z for the RSA instance (N, e, y) in (M-6).

Proof. Assume that the given RSA public key (N, e) is good. Namely, e is a
prime and e ≥ 2γexp . On the other hand, the assumption that M does not
abort implies that E⊥ > 1. It therefore follows from E⊥ = H(r⊥) < 2γexp that
1 < E⊥ < 2γexp ⊇ e. Since e is prime, we have gcd(e, E⊥) = 1. Thus, if R outputs
a correct solution z⊥ for the RSA instance (N, e, y⊥), M correctly finds a solution
z for the target RSA instance (N, e, y) by Lemma 3. ⇐�

Note that it is shown in [26] that one can easily verify whether or not y⊥ = yE
⊆

is a generator of QRN , and the solution z⊥ of the RSA instance (N, e, y⊥) can
be efficiently found if y⊥ is not a generator. When y⊥ is not a generator, M
can therefore proceed to (M-6) without employing R and SimA. Hereafter, we
assume that y⊥ is a generator.

It follows from Claim 1 and Claim 2 that (N, e) ⇒ KGenRSA(1
k) and

y⊥ ⊕U QRN for the RSA instance (N, e, y⊥) submitted by M in (M-3). We
note that SimA will be constructed so that from the R’s viewpoint, its outcome
(M⊥, (σ⊥, r⊥), β⊥) in the step (c) of (M-4) is indeed a winning witness tuple on
the game tuple (N,α, τk,m). These imply that R outputs a correct solution z⊥

with nonnegligible probability ε0−negl(k) in (M-5). Therefore, by Claim 3, M
outputs a correct solution z for the target RSA instance (N, e, y) with probabil-
ity at least ε0 − negl(k) provided that the RSA public key (N, e) is good. Since
we now assume that for the polynomial δGood, KGenRSA outputs a good public
key (N, e) with probability 1/δGood for sufficiently large k, it holds that



On the Impossibility of Proving Security of Strong-RSA Signatures 301

On each game tuple (N,Δ, κk,m) with the auxiliary tuple (e, y, r∗, Ω), as in the step (a)
of (M-4), SimA proceeds as follows.

(A-1) SimA sets E∗ := H(r∗) and y∗ := yE⊆
, and then for each index i ∈ [1, m], SimA

retrieves an exponent di of the element Δ(ai) ∈ QRN such that Δ(ai) = (y∗)di

by executing Extract(N, e, y∗, Δ(ai), Ω).
(A-2) SimA chooses a random parameter M∗, chooses exponents s∗2, . . . , s

∗
m according

to the distribution κk,m(M∗), and then sets s∗ := (1, s∗2, . . . , s
∗
m).

(A-3) SimA sets χ∗ := (E∗, s∗) and sets Υ∗ := y
∑m

i=1 dis
⊆
i .

(A-4) SimA outputs the tuple (M∗, (χ∗, r∗), Υ∗), and then halts.

Fig. 3. Configuration of SimA

Pr [SuccM] ≥ Pr [SuccM ∩ (N, e) is good]

= Pr [(N, e) is good] Pr [SuccM | (N, e) is good]
≥ 1

δGood
ε0 − negl(k).

Thus, M can break RSA with nonnegligible probability.

Construction of SimA. In order to construct the algorithm M, it suffices to
construct the subroutine SimA of M. Since R is algebraic with respect to QRN ,
there exists a polynomial-time algorithm Extract that on a tuple (N, e, y⊥, g, Σ),
where g is a target element in QRN that is produced in the execution of R on
the input (N, e, y⊥) given from M with the random coin Σ, returns an exponent

d such that g = (y⊥)d. The algorithm SimA is depicted in Fig 3. Note that we

use the extractor Extract only to find the exponent di of α(ai) = (y⊥)di in (A-1).
For example if R has been constructed the assignment map α in a way that
α(ai) = (y⊥)di by choosing di ⊕U {0, 1, . . . , B − 1} for some sufficiently large B
with the generator y⊥, then it suffices to hand the exponent di to SimA.

We now show that SimA is a PPT simulator that wins the APF game with
probability 1 on each game tuple (N,α, τk,m). Because Extract is a polynomial-
time algorithm, SimA runs in polynomial-time. For the tuple (M⊥, (σ⊥, r⊥), β⊥),
the following claims hold.

Claim 4. The equation σ⊥ is nontrivial, and (σ⊥, r⊥) ⊕ Supp(τk,m(M⊥)).

Proof. We now show that the equation σ⊥ = (E⊥, s⊥) is nontrivial, where s⊥ =
(s1, s2, . . . , sm). Since SimA is static, the nontriviality is exactly equivalent to
that over F(A) as mentioned in Section 2.1. Hence, the nontriviality is deter-
mined by Lemma 1. Recall that the exponent E⊥ given to SimA is strictly greater
than 1 and the integer s⊥1 chosen in (A-2) is 1, This implies that E⊥

� s⊥1. It follows
from Lemma 1 that the equation σ⊥ is nontrivial.

In (M-1) of Fig. 2, the string r⊥ and the exponent E⊥ are chosen so that r⊥ ⊕U

{0, 1}γseed and E⊥ = H(r) ⊕ [
0, 2γexp − 1

]
. In (A-2), s⊥1, s

⊥
2, . . . , s

⊥
m are chosen

according to τk,m(M⊥). It therefore holds that (σ⊥, r⊥) ⊕ Supp(τk,m(M⊥)). ⇐�



302 M. Fukumitsu et al.

Claim 5. β⊥ is a correct solution of the interpreted equation σ⊥α.

Proof. It follows from y⊥ = yE
⊆
, α(ai) = (y⊥)di for each i ⊕ [1,m] and β⊥ =

y
∑m

i=1 dis
⊆
i that for the equation σ⊥ = (E⊥, (s⊥1, s

⊥
2, . . . , s

⊥
m)), in Z

×
N ,

(β⊥)E
⊆
=

(
y
∑m

i=1 dis
⊆
i

)E⊆

=

m∏

i=1

(
yE

⊆di

)s⊆i
=

m∏

i=1

α(ai)
s⊆i .

β⊥ is therefore a correct solution of the interpreted equation σ⊥. ⇐�
Thus, SimA always wins the APF game of

{
Z
×
N

}
with respect to the para-

metric distribution τ when R plays the role of a challenger. ⇐�
Recall that the SRSA assumption implies the adaptive pseudo-freeness of{

Z
×
N

}
with respect to τ ⊕ DCFW [10], and the reduction algorithm in [10] can be

described as a modulus-preserving algebraic one. Putting together with this fact
and Theorem 1, the following corollary is obtained as a negative circumstantial
evidence that the RSA assumption is not equivalent to the SRSA assumption.

Corollary 1. Assume that KGenRSA outputs a good public key (N, e) with prob-
ability 1/δGood for sufficiently large k, where δGood is a polynomial in k. If the
RSA assumption implies the SRSA assumption as far as a modulus-preserving
algebraic reduction is concerned, then the RSA assumption does not hold.

4 Impossibility Result on the Security Proofs of
SRSA-Based Signatures

We now give an impossibility result on the security proof of CFW-type signatures
under the RSA assumption. As such signatures, we cite several SRSA-based
signatures such as the Camenisch-Lysyanskaya (CL, for short) signature [9],
the Cramer-Shoup (CS, for short) signature [12], the Fischlin signature [13],
the Gennaro-Halevi-Rabin (GHR, for short) signature [18], the Hofheinz-Kiltz
(HK, for short) signature [22], and the Zhu signature [37,38]. In order to prove
the impossibility, we give the following lemma. This can be shown by applying
Theorem 1 and Lemma 2 to the RSA group family

{
Z
×
N

}
with any parametric

distribution τ ⊕ DCFW.

Lemma 5. Let τ = {τk,m} be a parametric distribution such that τ ⊕ DCFW

and for any k, m and M , the membership of Supp(τk,m(M)) can be efficiently
verified. Assume that KGenRSA outputs a good public key (N, e) with probability
1/δGood for sufficiently large k, where δGood is a polynomial in k. If PFSig

Z
×
N ,β

is proven to be sEUF-CMA (EUF-KOA, resp.) from the RSA assumption via
modulus-preserving algebraic reductions, then the RSA assumption does not hold.

By employing Lemma 5, we give the impossibility result on the SRSA-based
signatures. Catalano, Fiore andWarinschi [10] constructed a parametric distribu-

tion τCL =
{
τCLk,m

}

k,m
(τCS, τFis, τGHR, τHK and τZhu, resp.) so that PFSig

Z
×
N ,βCL



On the Impossibility of Proving Security of Strong-RSA Signatures 303

Let πmsg + 2 ≤ πexp, and let πparm be a polynomial in k. For each k and m, κCLk,m(M)
outputs a tuple ((E, s), r) by the following rules:

(1) choose r ∈U {0, 1}κseed , and then set E := HPRIMES(r), whereHPRIMES : {0, 1}κseed →(
2κexp−1, 2κexp

)
denotes a division-intractable prime-valued hash function; and

(2) for the vector s = (s1, s2, . . . , sm), set s1 := 1, s2 ∈U [0, 2κ+κmsg+κparm −1], s3 := M
and si := 0 for each i ∈ [4, m].

Fig. 4. The parametric distribution κCL for Camenisch-Lysyanskaya Signature [10]

coincides with the CL (CS, Fischlin, GHR, HK and Zhu, resp.) scheme. The
parametric distribution τCL is depicted in Fig. 4. The parametric distributions
for the other signatures can be obtained in a similar manner. For the detail,
refer to [10]. It follows that τCL, τFis, τHK, τZhu ⊕ DCFW. In fact, a pair (σ, r)
chosen according to each of these parametric distributions satisfies that r is uni-
formly distributed over {0, 1}γseed , E is computed by using a division-intractable
hash function, s1 = 1 and s2, . . . , sm ⊕ Z. Therefore, one can apply Lemma 5 to
PFSig

Z
×
N ,βCL (the CL signature), PFSig

Z
×
N ,βFis (the Fischlin signature), PFSig

Z
×
N ,βHK

(the HK signature) and PFSig
Z
×
N ,βZhu (the Zhu signature), respectively. Note that

Lemma 5 can be also applied to PFSig
Z
×
N ,βCS (the CS signature) and PFSig

Z
×
N ,βGHR

(the GHR signature) by slight modifications on SimA, respectively. We will elab-
orate on such modifications in the full version of this paper. Thus, the following
corollary can be shown.

Corollary 2. Assume that Ωseed = Ωmsg and Ωexp ⊇ Ω/2 − 2. Assume also that
KGenRSA outputs a good public key (N, e) with probability 1/δGood for sufficiently
large k. The CL scheme, the CS scheme, the Fischlin scheme, the GHR scheme,
the HK scheme and the Zhu scheme cannot be proven to be EUF-KOA under
the RSA assumption via modulus-preserving algebraic reductions, as long as the
RSA assumption holds.

References

1. Abe, M., Groth, J., Ohkubo, M.: Separating Short Structure-Preserving Signatures
from Non-Interactive Assumptions. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 628–646. Springer, Heidelberg (2011)

2. Abe, M., Haralambiev, K., Ohkubo, M.: Group to Group Commitments Do Not
Shrink. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 301–317. Springer, Heidelberg (2012)

3. Aggarwal, D., Maurer, U., Shparlinski, I.: The Equivalence of Strong RSA and
Factoring in the Generic Ring Model of Computation. In: Augot, D., Canteaut, A.
(eds.) WCC 2011, pp. 17–26 (2011)

4. Agrawal, M., Kayal, N., Saxena, N.: PRIMES Is in P. Annals of Mathematics 160(2),
781–793 (2004)

5. Barić, N., Pfitzmann, B.: Collision-Free Accumulators and Fail-Stop Signature
Schemes Without Trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233,
pp. 480–494. Springer, Heidelberg (1997)



304 M. Fukumitsu et al.

6. Bellare, M., Rogaway, P.: Random Oracles Are Practical: A Paradigm for Designing
Efficient Protocols. In: ACM CCS 1993, Fairfax, Virginia, USA, pp. 62–73. ACM
Press, New York (1993)

7. Boneh, D., Venkatesan, R.: Breaking RSA May Not Be Equivalent to Factoring.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 59–71. Springer,
Heidelberg (1998)

8. Bresson, E., Monnerat, J., Vergnaud, D.: Separation Results on the “One-More”
Computational Problems. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp.
71–87. Springer, Heidelberg (2008)

9. Camenisch, J., Lysyanskaya, A.: A Signature Scheme with Efficient Protocols. In:
Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289.
Springer, Heidelberg (2003)

10. Catalano, D., Fiore, D., Warinschi, B.: Adaptive Pseudo-Free Groups and Applica-
tions. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 207–223.
Springer, Heidelberg (2011)

11. Chevallier-Mames, B., Joye, M.: A Practical and Tightly Secure Signature Scheme
Without Hash Function. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp.
339–356. Springer, Heidelberg (2006)

12. Cramer, R., Shoup, V.: Signature Schemes Based on the Strong RSA Assumption.
In: ACM CCS 1999, Kent Ridge Digital Labs, Singapore, pp. 46–51. ACM Press,
New York (1999)

13. Fischlin, M.: The Cramer-Shoup Strong-RSA Signature Scheme Revisited. In:
Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 116–129. Springer, Hei-
delberg (2002)

14. Fukumitsu, M., Hasegawa, S., Isobe, S., Koizumi, E., Shizuya, H.: Toward Sepa-
rating the Strong Adaptive Pseudo-Freeness from the Strong RSA Assumption. In:
Boyd, C., Simpson, L. (eds.) ACISP 2013. LNCS, vol. 7959, pp. 72–87. Springer,
Heidelberg (2013)

15. Fukumitsu, M., Hasegawa, S., Isobe, S., Shizuya, H.: The RSA Group Is Adaptive
Pseudo-Free under the RSA Assumption. IEICE Trans. Fundamentals, Special
Section on Cryptography and Information Security E97-A(1), 200–214 (2014)

16. Fujisaki, E., Okamoto, T.: Statistical Zero Knowledge Protocols to Prove Modular
Polynomial Relations. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 16–30. Springer, Heidelberg (1997)

17. Garg, S., Bhaskar, R., Lokam, S.V.: Improved Bounds on Security Reductions
for Discrete Log Based Signatures. In: Wagner, D. (ed.) CRYPTO 2008. LNCS,
vol. 5157, pp. 93–107. Springer, Heidelberg (2008)

18. Gennaro, R., Halevi, S., Rabin, T.: Secure Hash-and-Sign Signatures Without
the Random Oracle. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592,
pp. 123–139. Springer, Heidelberg (1999)

19. Goldwasser, S., Micali, S., Rivest, R.L.: A Digital Signature Scheme Secure against
Adaptive Chosen-Message Attacks. SIAM Journal of Computing 17(2), 281–308
(1988)

20. Hanaoka, G., Matsuda, T., Schuldt, J.C.N.: On the Impossibility of Constructing
Efficient Key Encapsulation and Programmable Hash Functions in Prime Order
Groups. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417,
pp. 812–831. Springer, Heidelberg (2012)

21. Hasegawa, S., Isobe, S., Shizuya, H., Tashiro, K.: On the Pseudo-Freeness and
the CDH Assumption. International Journal of Information Security 8(5), 347–355
(2009)



On the Impossibility of Proving Security of Strong-RSA Signatures 305

22. Hofheinz, D., Kiltz, E.: Programmable Hash Functions and Their Applications. J.
Cryptology 25(3), 484–527 (2012)

23. Hohenberger, S., Waters, B.: Short and Stateless Signatures from the RSA Assump-
tion. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 654–670. Springer,
Heidelberg (2009)

24. Jhanwar, M.P., Barua, R.: Sampling from Signed Quadratic Residues: RSA Group
Is Pseudofree. In: Roy, B., Sendrier, N. (eds.) INDOCRYPT 2009. LNCS, vol. 5922,
pp. 233–247. Springer, Heidelberg (2009)

25. Joye, M.: How (Not) to Design Strong-RSA Signatures. Designs, Codes and Cryp-
tography 59(1-3), 169–182 (2011)

26. Micciancio, D.: The RSA Group is Pseudo-Free. J. Cryptology 23(2), 169–186
(2010)

27. Naccache, D., Pointcheval, D., Stern, J.: Twin Signatures: An Alternative to the
Hash-and-Sign Paradigm. In: ACM CCS 2001, Philadelphia, PA, USA, pp. 20–27.
ACM Press, New York (1993)

28. Paillier, P., Vergnaud, D.: Discrete-Log-Based Signatures May Not Be Equivalent
to Discrete Log. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 1–20.
Springer, Heidelberg (2005)

29. Paillier, P., Villar, J.L.: Trading One-Wayness Against Chosen-Ciphertext Security
in Factoring-Based Encryption. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006.
LNCS, vol. 4284, pp. 252–266. Springer, Heidelberg (2006)

30. Paillier, P.: Impossibility Proofs for RSA Signatures in the Standard Model. In:
Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 31–48. Springer, Heidelberg
(2006)

31. Rivest, R.L.: On the Notion of Pseudo-Free Groups. In: Naor, M. (ed.) TCC 2004.
LNCS, vol. 2951, pp. 505–521. Springer, Heidelberg (2004)

32. Schäge, S.: Twin Signature Schemes, Revisited. In: Pieprzyk, J., Zhang, F. (eds.)
ProvSec 2009. LNCS, vol. 5848, pp. 104–117. Springer, Heidelberg (2009)

33. Schäge, S.: Tight Proofs for Signature Schemes without Random Oracles. In: Pa-
terson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 189–206. Springer,
Heidelberg (2011)

34. Seurin, Y.: On the Exact Security of Schnorr-Type Signatures in the Random
Oracle Model. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 554–571. Springer, Heidelberg (2012)

35. Shamir, A.: On the Generation of Cryptographically Strong Pseudorandom Se-
quences. ACM Trans. on Computer Systems 1(1), 38–44 (1983)

36. Villar, J.L.: Optimal Reductions of Some Decisional Problems to the Rank Prob-
lem. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 80–97.
Springer, Heidelberg (2012)

37. Zhu, H.: New Digital Signature Scheme Attaining Immunity to Adaptive Chosen-
Message Attack. Chinese Journal of Electronics 10(4), 484–486 (2001)

38. Zhu, H.: A Formal Proof of Zhu’s Signature Scheme. Cryptology ePrint Archive,
Report 2003/155 (2003), http://eprint.iacr.org/

http://eprint.iacr.org/


ELmE: A Misuse Resistant Parallel

Authenticated Encryption

Nilanjan Datta and Mridul Nandi

Indian Statistical Institute, Kolkata, India
nilanjan isi jrf@yahoo.com, mridul.nandi@gmail.com

Abstract. The authenticated encryptions which resist misuse of initial
value (or nonce) at some desired level of privacy are two-pass or Mac-
then-Encrypt constructions (inherently inefficient but provide full pri-
vacy) and online constructions, e.g., McOE, sponge-type authenticated
encryptions (such as duplex) and COPA. Only the last one is almost
parallelizable with some bottleneck in processing associated data. In this
paper, we design a new online secure authenticated encryption, called
ELmE or Encrypt-Linear mix-Encrypt, which is completely (two-stage)
parallel (even in associated data) and pipeline implementable. It
also provides full privacy when associated data (which includes initial
value) is not repeated. The basic idea of our construction is based on
EME, an Encrypt-Mix-Encrypt type SPRP constructions (secure against
chosen plaintext and ciphertext). But unlike EME, we have used an on-
line computable efficient linear mixing instead of a non-linear mixing.
Our construction optionally supports intermediate tags which can be
verified faster with less buffer size. Intermediate tag provides security
against block-wise adversaries which is meaningful in low-end device im-
plementation.

Keywords: Authenticated Encryption, Privacy, Misuse Resistant, EME.

1 Introduction

The common application of cryptography is to implement a secure channel be-
tween two or more users and then exchanging information over that channel.
These users can initially set up their one-time shared key. Otherwise, a typical
implementation first calls a key-exchange protocol for establishing a shared key
or a session key (used only for the current session). Once the users have a shared
key, either through the initial key set-up or key-exchange, they use this key to au-
thenticate and encrypt the transmitted information using efficient symmetric-key
algorithms such as a message authentication code Mac(·) and (symmetric-key)
encryption Enc(·). The encryption provides privacy or confidentiality (hiding
the sensitive data M , we call it plaintext or message) resulting a ciphertext C,
whereas a message authentication code provides data-integrity (authenticating
the transmitted message M or the ciphertext C) resulting a tag T . An authen-
ticated encryption or AE is an integrated scheme which provides both privacy

W. Susilo and Y. Mu (Eds.): ACISP 2014, LNCS 8544, pp. 306–321, 2014.
c© Springer International Publishing Switzerland 2014



ELmE: A Misuse Resistant Parallel Authenticated Encryption 307

of plaintext and authenticity or data integrity of message or ciphertext. An au-
thenticated encryption scheme FK takes associated data D (which may include
initial value or nonce) and message M and produces tagged-ciphertext (C, T ).
Its inverse F−1

K returns ∈ for all those (D,C, T ) for which no such M exists,
otherwise it returns M . Note that the associated data D must be sent along
with tagged-ciphertext to decrypt correctly.

1.1 Examples of Authenticated Encryptions

So far, cryptography community put a lot of effort of designing different authen-
ticated encryptions. CAESAR [1], a competition for Authenticated Encryption
is going on, which will identify a portfolio of authenticated ciphers that offer
advantages over AES-GCM and are suitable for widespread adoption. We have
submitted ELmD v1.0 [1], a variant of ELmE (main difference is in the mask-
ing) in the competition and believe that it would be a strong candidate for
this competition. We quickly mention some of the popularly known competitive
constructions putting into different categories based on construction types.

Encrypt-and-MAC and Encrypt-then-MAC. It relies on non-repeating IV
(or nonce), e.g. CCM [16], EAX [4], GCM [35], CHM [17], Sarkar’s generic con-
struction [34] and dedicated Stream Ciphers like Grain [15], Zuc [2] etc. All these
constructions combine counter type encryption and a Mac.

MAC-then-Encrypt. It is a two-pass IV misuse resistant category e.g.,
SIV [33], BTM [19], HBS [18]. These compute a tag first and then based on
this tag, counter type encryption is used to encrypt.

Online Feed Back Encryption. It uses feedback type encryption, e.g.
IACBC [21], XCBC [8], CCFB [24], McOE [11], sponge-type constructions (Du-
plex [6]). These constructions have a bottleneck that they are not fully paral-
lelizable. Our construction ELmE and COPA [3] also fall in this category which
use basic structure of completely parallel EME, Encrypt-Mix-Encrypt construc-
tions [14] with linear mixing in the middle layer, and hence parallelizable.

Encrypt-then-Checksum. It uses IV-based block-wise encryption (non-
repeating IV is required) and then finally checksum is used to compute tag.
For example, different versions of OCB [5,30,22] and IAPM [21].

1.2 Encrypt Mix Encrypt

Encrypt Mix Encrypt or EME [14] is a block-cipher mode of operation, that turns
a block cipher into a tweakable enciphering scheme. The mode is parallelizable,
and as serial-efficient as the non-parallelizable mode CMC [13]. EME algorithm
entails two layers of ECB encryption and a non-linear mixing in between. In
the non-linear mixing, the blockcipher is again used. EME is proved to provide
SPRP [23] security in the standard, provable security model assuming that the
underlying block cipher is SPRP secure. Moreover, the designers of EME showed
a CCA-distinguisher if non-linear mixing is replaced by a binary linear mixing.



308 N. Datta and M. Nandi

1.3 Our Contribution

In this paper, we have observed that replacing non-linear mixing by an efficient
online linear mixing actually helps to have faster and parallel implementation
of the construction and gives online prp [23] security. (We know that, an
online function is a function whose ith block output is determined by the first
i blocks of input) the Based on this observation, we have designed an online
authenticated cipher ELmE based on Encrypt Mix Encrypt structure where
the non-linear mixing is replaced by efficient online linear mix. ELmE has the
following advantages over other popular authenticated schemes :

Nonce Misuse Resistant. Most of the IV based authenticated encryption
schemes [31] like all the versions of OCB [5], GCM [35] needed to ensure that
nonce must be distinct for every invocation of the tagged-encryption. Failure
to do so, leads easy attacks on the privacy of the scheme. In practice, it is
challenging to ensure that the nonce is never reused. For example, in lightweight
applications, it is quite challenging to generate distinct nonce as it either needs
to store a non-tamperable state or require some hardware source of randomness.
Apart from that, there are various issues like flawed implementations or bad
management by the user, for example where users with same key uses the same
nonce. Our construction ELmE does not have the distinct nonce requirement,
instead it generates an IV from the associated data. In section 4, we prove that,
ELmE provides online privacy under IV repeation and full privacy when
distinct IVs are used.

Fully Pipeline Implementable. Most of the popular online constructions
like McOE [11] (uses MHCBC [25], later generalized and called TC3 [32])
has a hardware bottleneck of not being fully pipelined (see the bottom layer
of McOE in Figure 1. It has CBC like structure, which is sequential and
hence can not be pipelined). Our construction ELmE has a Encrypt-Linear
mix-Decrypt type structure, making it fully parallel and pipeline implementable.

Efficient. Deterministic AE Schemes (for example : SIV, BTM, HBS)
doesn’t use any nonce. Instead it uses a derived IV using the message and the

� � �

EK

EKEK

EK

EK

EK

V

τ

M [1] M [l]

C1 Cl

0n

EK

EK

T

τ

EK EK EK

EK EK EK

M [l]M [2]M [1]

Δ1

Mix Function

C[1] C[2]

Δ2 Δl

Δ1
Δ2 Δl

� �

� �

C[l]

Fig. 1. (1) McOE-D construction : cannot be pipelined. (2) Encrypt-Mix-Encrypt :
completely parallel and pipeline implementable.



ELmE: A Misuse Resistant Parallel Authenticated Encryption 309

associated data, which ensures that it is distinct for each different associated
data-message tuples but such constructions are two passed, and hence not
efficient. Having Encrypt- Linear mix-Encrypt type layered design, makes our
construction single pass and efficient.

Minimized Area in Combined Implementation. The construction of
ELmE ensures that encryption and decryption behave almost in a similar
fashion (see figure 3 and remark 2 in section 3). This helps us to implement
both encryption and decryption in hardware with a smaller area. Nowadays in
all application environment, both encryption and decryption of blockciphers to
be implemented and hence we can share the architectures to have a compact
combined hardware implementation of it.

Secure against Block-wise Adaptive Adversaries. Due to limited
memory in some environment such as low end devices the decryption oracle
has to release a part of the plaintext before it authenticates. That raises some
attacks on popular constructions [20]. We consider similar advantages such as
privacy and authenticity, however the adversaries (called blockwise adaptive
adversary) would have access of partial decryption oracles for authenticity
security. To resist such attacks, intermediate tags can be used. In section 5,
we have shown that ELmE can be extended to incorporates intermediate tags,
hence it provides security against Block-wise adaptive adversaries.

2 Preliminaries

Definitions and Notation. By convention, B = {0, 1}n where n is the block
size of the underlying blockcipher. An χ-tuple x ⊕ B

α is denoted by (x[1], x[2],
. . ., x[χ]). We call χ := ⊇x⊇ block-length of x. For 0 ≤ a ≤ b < χ we denote
x[a..b] := (x[a], x[a+ 1], . . . , x[b]), x[..b] = x[1..b]. A plaintext P is represented
as a tuple (D,M) where M is the message and D is the associated data and the
corresponding ciphertext is represented as (C, T ) where C is the ciphertext and
T is the generated tag.

2.1 Full and Online Privacy

We give a particularly strong definition of privacy, one asserting indistinguisha-
bility from random strings. Consider an adversary A who has access of one
of two types of oracles: a “real” encryption oracle or an “ideal” authenticated
encryption oracle. A real authenticated encryption oracle, FK , takes as input
(D,M) and returns (C, T ) = FK(D,M). Whereas an ideal authenticated en-
cryption oracle $ returns a random string R with ⊇R⊇ = ⊇M⊇+1 for every fresh
pair (D,M). Given an adversary A (w.l.o.g. throughout the paper we assume
a deterministic adversary) and an authenticated encryption scheme F , we
define the (full) privacy-advantage of A by the distinguishing advantage of A
distinguishing F from $. More formally,



310 N. Datta and M. Nandi

Advpriv
F (A) := Adv$

F (A) = PrK [AFK = 1]− Pr$[A
$ = 1].

We include initial value IV as a part of associated data D and so for nonce-
respecting adversary A (never repeats a nonce or initial value and hence the
view obtained by the adversary is nonce-respecting) the response of ideal oracle
for every query is random as all queries are fresh. Similarly, we define online pri-
vacy for which the the ideal online authenticated encryption oracle $ol responses
random string keeping the online property. The online privacy advantage of an
adversary A against F is defined as Advopriv

F (A) := Adv$ol
F (A).

View and A-realizable. We define view of a deterministic adversary A in-
teracting with an oracle O by a tuple σ(AO) := (Q1, R1, . . . , Qq, Rq) where Qi

is the ith query and Ri is the response by O. It is also called O-view. A tuple
σ = (Q1, R1, . . . , Qq, Rq) is called A-realizable if it makes query Qi after obtain-
ing all previous responses R1, . . . , Ri−1. As A is assumed to be deterministic,
given R1, . . . , Rq, there is an unique q-tuple Q1, . . . , Qq for which the combined
tuple is A-realizable. Now we describe the popular coefficient H-technique [27]
which can be used to bound distinguish advantage. Suppose f and g are two
oracles and V denotes all possible A-realizable views while A interacts with f
or g (they have same input and output space).

Lemma 1 (Coefficient H Technique). If ≤v ⊕ Vgood ← V (as defined above),
Pr[σ(Ag(·)) = v] ∅ (1 − α)Pr[σ(Af (·)) = v], then the distinguishing advantage
Advf

g (A) of A is at most α+ Pr[σ(Af (·)) ⇒⊕ Vgood].

We skip the proof as it can be found in many papers, e.g. [27,36].

2.2 Authenticity

We say that an adversary A forges an authenticated encryption F if A outputs
(D,C, T ) where FK(D,C, T ) ⇒= ∈ (i.e. it accepts and returns a plaintext), and
A made no earlier query (D,M) for which the F -response is (C, T ). It can make
s attempts to forge after making q queries. We define that A forges if it makes
at least one forges in all s attempts and the authenticity-advantage of A by

Advauth
F (A) = PrK [AFK forges].

Suppose for any valid tuple of associate data and tagged ciphertext (D,C, T ), the
tag T can be computed from (D,C). We write T = TK(D,C). So (D,C, T ) is a
valid tagged ciphertext if and only if TK(D,C) = T . Almost all known authen-
ticated encryptions F (including those following encrypt-then-mac paradigm)
have this property for a suitably defined ciphertext C and tag function T . We
know that PRF implies Mac. We use similar concept to bound authenticity. More
formally, for any forgery B, there is a distinguisher A such that

Advauth
F (B) ≤ AdvO,$

(F,T )(A) +
s

2n
(1)

where O and $ are independent oracles and $ is a random function. This can be
easily seen by defining A as follows:



ELmE: A Misuse Resistant Parallel Authenticated Encryption 311

- A first makes the q many F -queries (Di,Mi) which are made by B and
obtains responses (Ci, Ti), 1 ≤ i ≤ q.

- Then it makes s many T -queries (Dj , Cj), q < j ≤ q+s where (Dj , Cj , Tj)’s
are returned by B.

- A returns 1 (interpreting that interacting with real) if and only if
T (Dj, Cj) = T ∈

j for some j.
The distinguishing advantage of A is clearly at least Pr[B forges]− s

2n and hence
our claim follows.

Trivial Queries. As F (D,M) = (C, T ) implies that T (D,C) = T , we call
such T -query (D,C) trivial (after obtaining response (C, T ) response of the F -
query (D,M)). The repetition of queries are also called trivial. Without loss of
generality, we assume that all adversaries A is deterministic and does not
make any trivial query. These assumptions are useful to simplify the analysis.

3 ELmE: An Online Authenticated Encryption Algorithm

In this section, we demonstrate our new construction ELmE. It is an online
authenticated encryption which takes an associated data D ⊕ B

d and a messages
M ⊕ B

e and returns a tagged-ciphertext C ⊕ B
e+1 for all integers d ∅ 1, e ∅ 1.

We assume associated data to be non-empty. The case when the associated data
is empty, is taken care in the remark 1. To process incomplete blocks, one can
either apply an injective padding rule (e.g., first pad 1 and then a sequence of
zeros to make the padded message or associate data size multiple of n) or some
standard methods (e.g., ciphertext stealing [9], the method used in Hash Counter
Hash type constructions [10], XLS [29] etc.). It uses Encrypt-Mix-Encrypt type
construction with a specified simple linear mixing (see in Algorithm 1) and a
keyed block cipher Ek : B ≈ B for the ECB layers. The ECB layers are masked
by separate keys L1 (for associated data), L2 (for the message) and L3 (for
the ciphertext) chosen uniformly from B. However, L1, L2, L3 can be simply
computed from Ek as EK(0) = L1, EK(1) = L2, Ek(2) = L3 and can be
preprocessed. The complete construction is described below in Algorithm 1 and
illustrated in Fig. 2 below.

Remark 1 (Case when Associated data is empty). Here we consider the case when
the associated data is non empty, using the initial value of the sequenceW [0] = 0,
one can have a trivial attack against the privacy of the construction : Query any
message M1 with M1[1] = 0. It produces the ciphertext with C1[1] = L2 + L3.
Now querying any message M2 with M2[1] = C1[1] will produce C2[1] = 0 with
probability 1.

Note that, Algorithm 1 is defined for non-empty associated data. One can en-
sure associated data to be non-empty by including a non-empty public message
number, in the first block of the associated data. Still, if we want to incorporate
empty associated data in our algorithm, we make a small modification and ini-
tialize the value W [0] to 1, to resist against any attack. The rest computations,
to generate the tagged ciphertext, are identical to the above algorithm.



312 N. Datta and M. Nandi

Input: (D,M) ⊕ B
d × B

e

Output: Z = (C, T ) ⊕ B
e × B

Algorithm ELmE(D,M) (Key: (L1, L2, L3,K))
parse D and M into n-length blocks.

1 D = D[1]≤ · · · ≤D[d]
2 M = M [1] ≤ M [2] ≤ · · · ≤ M [e]
3 W [0] = 0
4 M [e+ 1] = D[1] + · · ·+D[d] +M [1] + · · ·+M [e] (checksum)

process D
5 For all j = 1 to d

6 DD[j] = D[j] + Δj−1.L1 (Masking the associate data blocks)
7 Z[j] = EK(DD[j]) (Layer-I Encryption)
8 (Y ∈[j], W [j]) ← κ(Z[j], W [j − 1]) (Linear Mixing)

process M
9 For all j = 1 to e

10 MM [j] = M [j] + Δj−1.L2 (Masking the message blocks)
11 X[j] = EK(MM [j]) (Layer-I Encryption)
12 (Y [j], W [d+ j]) ← κ(X[j], W [d+ j − 1]) (Linear Mixing)

13 CC[j] = E−1
K (Y [j]) (Layer-II Encryption)

14 C[j] = CC[j] + Δj−1.L3 (Masking the ciphertext blocks)
Tag generation

15 MM [e + 1] = M [e+ 1] + Δe.L2

16 X[e+ 1] = EK(MM [e + 1])
17 (Y [e+ 1],W [d+ e+ 1]) ← κ(X[d+ e+ 1], W [d+ e])

18 TT = E−1
K (Y [e+ 1] + 0n−11)

19 T = TT + Δe.L3

20 Return (C = C[1] ≤ C[2] ≤ · · · ≤ C[e], T )

Subroutine κ(x,w) Onlinear Linear Mixing Function

21 y = x + (Δ+ 1) · w
22 w = x + Δ · w
23 Return (y,w)

Algorithm 1. ELmE Authenticated Encryption Algorithm. Here β is
a primitive element of the binary field (GF (2n),+, .).



ELmE: A Misuse Resistant Parallel Authenticated Encryption 313

�� �

EK
EK

ρ ρ

D[1] D[d]

C[1]

L1
αd−1L1

W [d− 1]
Z[1] Z[d]

EK

E
−1

K

ρ

E
−1

K

M [e]

C[e]

T = C[e+ 1]

αe−1L2

W [�− 1]
X[e]

Y [e]

W [�]
�

EK

E
−1

K

ρ

M [1]

L2

X[1]

Y [1]

Discarded

W [d+ 1]W [d]
�

0n
W [1]

L3

αe−1L3

αeL3

ρ

M [e + 1]

αeL2

X [e+ 1]

EK

Y [e + 1]

0n−11

�

Fig. 2. Construction of ELmE Authenticated Encryption

Remark 2 (Similarity in Encryption and Decryption). Observe that, the second
ECB layer is based on blockcipher decryption instead of encryption. Due to
this, both encryption and decryption behave almost in a similar fashion (only
with few changes in masking layers due to different keys and in linear mixing
which should be inverse of the forward mixing). This helps us to implement both
encryption and decryption in hardware with a smaller area.

Note that, from the definition of τ, we see that the following online linear
mixing has been performed :

When d is non-empty :

Y [i] = βd+i−2(β+ 1)Z[1] + · · ·+ βi−1(β+ 1)Z[d]

+βi−2(β+ 1)X [1] + βi−3(β + 1)X [2] + · · ·+ (β+ 1)X [i− 1] +X [i]

When d is empty :

Y [i]=Δi−2(Δ+1)X[1] + Δi−3(Δ+ 1)X[2] + · · ·+ (Δ+ 1)X[i − 1] +X[i] + Δi−1(Δ+ 1)

4 Privacy and Authenticity of ELmE

To prove the online Privacy of ELmE, let A be an adversary which makes at
most q queries {(Di,Mi)}1≤i≤q in order to distinguish it from an online func-
tion, with same domain and range size chosen uniformly at random. Assume
⊇Di⊇ = di, ⊇Mi⊇ = ei . Let Φpriv =

∑q
i=1(di + ei + 1) (the total number

of blocks processed). Let $perm denotes the random n-bit permutation and

πpriv := maxB Adv
$perm,$−1

perm

E,E−1 (B) denotes the maximum advantage over all ad-
versaries B making at most Φpriv queries and running in time T0 which is about
time of the adversary A plus some overhead which can be determined from the
hybrid technique. The advantage of A is given by,



314 N. Datta and M. Nandi

Theorem 1

Advopriv
ELmEΠ,L

(A) ≤ 5Φ2
priv

2n
, Advopriv

ELmEEK,L
(A) ≤ πpriv +

5Φ2
priv

2n
.

On the other hand, to show authenticity of the construction, let A be an ad-
versary which makes q queries {(Di,Mi)}1≤i≤q and tries to forge against the
construction at most s times with queries {(Di, Ci, Ti)}q+1≤i≤q+s. For all i, let

us denote ⊇Di⊇ = di, ⊇Mi⊇ = ⊇Ci⊇ = ei. Suppose Φauth =
∑q+s

i=1 (di + ei + 1).
The forging advantage of ELmE is given by:

Theorem 2

Advforge
ELmEΠ,L

(A) ≤ 9Φ2
auth

2n
+

s

2n
, Advforge

ELmEEK,L
(A) ≤ πauth +

9Φ2
auth

2n
+

s

2n
.

where πauth is exactly same to πpriv except that it can make atmost Φauth queries.

4.1 Proof of Theorem 1

First part of the theorem follows using the coefficient H technique (see Lemma
1) and following Propositions 1 and 2. Second part follows from the standard
hybrid argument.

Let us fix q message and associate data pairs P1 = (D1,M1), . . . , Pq =
(Dq,Mq) with ⊇Di⊇ = di, ⊇Mi⊇ = ei, χi = di + ei and Φ =

∑
i χi. We denote

(P1, . . . , Pq) by σin. We assume that all Pi’s are distinct.

Definition 1 (Good views). A tagged ciphertext tuple σout = (C1, . . . , Cq)
(also the complete view σ = (σin, σout)) is called good online view (belongs to
σgood) w.r.t. σin if (σin, σout) is an online view (i.e., it must be realized by an
online cipher, see section 2) and the following conditions hold:

1. Ci[j] = Ci⊆ [j] implies that Di = Di⊆ , Mi[..j] = Mi⊆ [..j] and
2. ≤ (i, li + 1) ⇒= (i∈, j∈), Ti ⇒= Ci⊆ [j

∈].

The first condition says that we can have collision of ciphertext blocks in a
position only if they are ciphertexts of two messages with same prefixes up to
that block. The second conditions says that all tag blocks are fresh as if these are
independently generated. It is easy to check that, in case of ideal online cipher,
generating a bad view (i.e. not a good view) has negligible probability:

Proposition 1 (Obtaining a Good view has high probability)

Pr[σ(A$ol ) /⊕ σgood] ≤ Φ2
priv

2n
.

We Now Fix a Good View σ = (σin, σout) as Mentioned above. The
tagged ciphertext of Pi is given by Ci which has ei + 1 blocks where the last
block Ti := Ci[ei + 1] denotes the tag. In the following result, we compute the
interpolation probability, i.e. Pr[σ(AF ) = σ ].



ELmE: A Misuse Resistant Parallel Authenticated Encryption 315

Proposition 2 (High interpolation probability of ELmE). ≤σ ⊕ Vgood,

Pr[σ(AELmEΠ,L) = σ ] ∅ (1− 4β2
priv

2n )× Pr[σ(A$ol ) = σ ].

Note that Pr[σ(A$ol ) = σ ] = 2−nP where P denotes the number of non-empty
prefixes of (Di,Mi), 1 ≤ i ≤ q as for every different prefixes, $ol assigns an
independent and uniform ciphertext blocks. Proof of the above proposition can
be found in the full version [7].

Remark 3. If associated datas are distinct for all the q messages, then P = Φpriv
and hence, we’ll have full privacy i.e. the construction becomes indistinguishable
from a random cipher with same domain and range.

4.2 Proof of Theorem 2

First part of theorem 2 follows using the coefficient H technique (see Lemma
1) and following Propositions 3 and 4 and then using equation 1. Second part
follows from the standard hybrid argument.

Let L = (L1, L2, L3) be the triple of masking keys and Σ be the uniform
random permutation. For notational simplicity, we write ELmEγ,L by F . Note
that for a valid tuple of associate data and tagged ciphertext (D,C, T ), the tag
T can be computed from C and the key. We write T = Tγ,L(D,C) := T (D,C).
So (D,C, T ) is a valid tagged ciphertext if and only if T (D,C) = T . As we have
observed in Eq. 1, we only need to show indistinguishability for which we apply
the coefficient H technique again. For this, we need to identify set of good views
for which we have high interpolation probability.

Good Forge View. A (F, T )-forge view of a distinguisher A is the pair
σ = (σF , σT ) where σF = (Di,Mi, Ci, Ti)1≤i≤q is an q-tuple of F -online view
and σF = (Dj , Cj , Tj)q<j≤q+s is an s-tuple non-trivial T -view. σ is called good
forge view (belongs to σgood) if σF is good (as defined in Definition 1) and
for all q < j ≤ q + s, Tj’s are fresh - distinct and different from all other Ti’s
and Ci[j]’s. We recall the notation |Mi| = ei, |Di| = di and χi = di + ei. Let
Φauth =

∑q+s
i=1 (χi+1). Since F is online function we consider pair of independent

oracles ($ol, $) where $ol denotes the random online function and $ is simply a
random function.

Proposition 3 (Obtaining a good forge view has high probability)

Pr[σ(A$ol ,$) ⊕ σgood] ≤ (q +
∑q

i=1 ei)
2

2n+1
+
s(q + s+

∑q+s
i=1 ei)

2n
≤ 2Φ2

auth

2n
.

The first summand takes care the collisions in Ci[j]’s (i.e., the bad view for σF
as in Proposition 1) and the second summand takes care the collision between
Ti’s (q < i ≤ q + s) and all other Ci[j]’s.

Now we fix a good view σ = (σF , σT ) as defined above (following same nota-
tions). It is easy to see that obtaining σ interacting with ($ol, $) has probability



316 N. Datta and M. Nandi

2−ns×2−nβpf = 2−n(s+βpf ) where Φpf denotes the number of non-empty prefixes
of (Ci, Ti), 1 ≤ i ≤ q (at those blocks random online function returns randomly).
Now, one can show the following result :

Proposition 4 (Good forge view has high interpolation probability).

For any good (F, T )-view σ and α∈ = 7β2
auth

2n , we have

Pr[F (Di,Mi) = (Ci, Ti), 1 ⊆ i ⊆ q, T (Dj , Cj) = Tj , q < j ⊆ q+s] → (1−χ∈)2−n(σpf+s).

Proof of this proposition can be found in the full version [7].

5 ELmE Incorporating Intermediate Tags

Intermediate tags can be used in authenticated encryption to provide quick re-
jection of invalid decryption queries. This also helps in low-end implementation
where the message has to be released depending on buffer size. If we have an
intermediate tag in appropriate positions so that we can reject before we release
some message blocks. Our construction can be easily extended to produce in-
termediate tags also, as described in the figure below. Suppose, we want ELmE
with intermediate tags generated after each k blocks. In this case, for a message
M ⊕ B

e, ELmE generates a ciphertext C ⊕ B
e and T ⊕ B

h where h = ⇐ e
k �.

Processing of D remains same. For Processing of M , the calculation of C[j] is

changed to CC[j] + βj−1+∗ j−1
k ⊥.L3. ≤ j < e s.t. k|j, the intermediate tags are

generated by T [ jk ] = E−1
K (W [d+j])+βj−1+� j−1

k �.L3. Final tag T [h] is generated
similar to the generation of T in the case of ELmE without intermediate tags
(Here βe+h−1L3 is used as the mask). Tag T is given by T [1] || T [2] || · · · || T [h].
For verification during decryption, each T [i] is verified and as soon as, a T [i]
doesn’t matched with it’s calculated value, the ciphertext gets rejected. Here,
we have used intermediate tags after processing of each k < n blocks of mes-
sage. Let F be our construction incorporating intermediate tags after each k < n
blocks. In the following subsection, we show the privacy and authenticity of F.

��

EK EK

ρ ρ

D[1] D[d]

C[1]

L1 αd−1L1

W [d− 1]
Z[1] Z[d]

EK

E
−1

K

ρ

M [e + 1]

T [h]

αeL2

W [�]

X[e+ 1]

H [h]

�

αh−1L3

�

EK

E
−1

K

ρ

M [1]

L2

X[1]

Y [1]
0n−11

Discarded

W [d]
0n

W [1]

L3

EK

E
−1

K

ρ

M [k]

αk−1L2

X[k]

Y [k]

W [d+ k]

C[k]

αk−1L3

��

E
−1

K

T [1]

αkL3

Int Tag

H [1]

Fig. 3. ELmE with intermediate tags



ELmE: A Misuse Resistant Parallel Authenticated Encryption 317

Remark 4. Sponge duplex [6], is another authenticated encryption that incorpo-
rates intermediate tags but the dependency is such that, during decryption, the
plaintext depends on the values of the intermediate tags. In our construction,
during decryption, the plaintext does not depend on the intermediate tags and
hence the extra computations required for the intermediate tags, can be skipped,
if intermediate verifications are not required.

5.1 Online Privacy and Authenticity of F

Let A be an adversary which makes q queries (Di,Mi) and obtains responses
(Ci, Ti), 1 ≤ i ≤ q. We denote ⊇Di⊇ = di, ⊇Mi⊇ = ⊇Ci⊇ = ei and ⊇Ti⊇ = hi. Let
Φpriv =

∑q
i=1(di + ei + hi) (the total number of ciphertext blocks with the tag

blocks). The online Privacy of F is given by:

Theorem 3

Advopriv
FΠ,L

(A) ≤ 5Φ2
priv

2n
, Advopriv

FEK,L
(A) ≤ πpriv +

5Φ2
priv

2n
.

On the other hand, let A be an adversary which makes q queries {(Di,Mi)}1≤i≤q

and tries to forge against the construction at most s times with queries
{(Di, Ci, Ti)}q+1≤i≤q+s. For all i, let us denote ⊇Di⊇ = di, ⊇Mi⊇ = ⊇Ci⊇ = ei and

⊇Ti⊇ = hi. Suppose Φauth =
∑q+s

i=1 (di + ei + hi) (the total number of ciphertext
blocks with the tag blocks). The forging advantage of F is given by:

Theorem 4

Advforge
FΠ,L

(A) ≤ 10Φ2
auth

2n
+

s

2n
, Advforge

FEK,L
(A) ≤ πauth +

10Φ2
auth

2n
+

s

2n
.

The proofs of Theorem 3 and 4 are skipped due to page limit and can be found
in the full version of the paper [7].

5.2 Including Intermediate Tags : Comparison with COPA

Intermediate tags are used to provide block-wise security. Suppose we consider
a construction with intermediate tag size of k blocks. At each k blocks, we
check the intermediate tag, hold the k block message and finally release the
k blocks of the message if the tag is verified. For that, we need to store all
the intermediate computations and the already computed messages in order to
perform the verification. As we are using low end device, we need to minimize
the buffer size.

Now, generating intermediate tags for COPA is not as straight forward as
ELmE as similar approach won’t provide any security because identical last two
blocks will produce same intermediate tag.

Moreover, we claim that even if intermediate tags are produced for COPA as
if the final tag, then it also has the disadvantage of requiring additional buffer
storage. Now we compare the 20 round pipeline implementations which is keeping



318 N. Datta and M. Nandi

Table 1. Comparative study on the performance of block-cipher based Authenticated
Encryptions. Here #BC AD, #BC M and #BC T denotes no. of block-cipher call per
associated data, message and tag block respectively.

Construction #BC AD #BC M #BC T speed up Misuse Bottleneck
Resistance

OCB 1 1 1 p No Nonce
Processing

McOE-D 1 2 2 2 Yes Lower level
Processing

CoPA 1 2 2 p Yes Associated data
Processing

ELmE 1 2 1 p Yes None

computing the messages even after intermediate tag to keep the pipeline full.
For each k block of intermediate tags, the pipelined implementation of 20 round
AES for COPA requires to store k block messages and in addition 20 blocks
of intermediate values for the subsequent ciphertext blocks. On the other hand
ELmE requires k blocks messages and 10 blocks of intermediate computation for
next 10 next subsequent ciphertext. We save 10 blocks in buffer mainly due to
faster verification (ELmE verifies after one layer, whereas COPA verifies after
two layers). It has great advantage for low-end devices (keeping in mind that,
block-wise adversaries are considered only when buffer size is limited implying
low-end device). Keeping the above benefits into consideration, we opt for the
linear mix τ function rather than using a simple xor operation, as used in COPA.

6 Conclusion and Future Works

In the following paragraph, we mainly provide theoretical comparisons of OCB3,
McOE-D, COPA and our construction ELmE. All the constructions have same
key size and similar number of random mask (which can be preprocessed) for
masking layers. The number of blockcipher calls for processing every message,
associate data and tag blocks are given in the Table 1. The speed up for OCB,
COPA and ELmE is p with parallel implementations by p processors as their
construction support parallel execution. Due to the sequential nature of the
lower level of McOE-D, the speed up factor can be at most 2.

Now, we briefly discuss bottlenecks issues of the other constructions, that our
construction overcome.

OCB versions are IV based constructions and require distinct nonce in each
invocation, hence not misuse resistant. Moreover OCB3 (which has minimum
bottleneck among all versions) has a bottleneck in the nonce processing. As
the encryption of the IV is needed in the masking of the messages, hence the
encryption of the messages can start only after the encryption of IV, hence has
the bottleneck of having additional clock cycles required for one block encryption.



ELmE: A Misuse Resistant Parallel Authenticated Encryption 319

As already mentioned in section 1, McOE-D uses TC3 type encryption and
it’s lower level has a CBC type structure which can not be executed in par-
allel implying the construction can not be pipelined. Hence it has a hardware
bottleneck.

COPA has the bottleneck during the processing of associated data, as the last
blockcipher input depends on the previous blockcipher outputs. Hence, the last
block cipher invocation must be done after the completion of all the block-cipher
invocations, making it sequential for one block-cipher invocation. So, complete
parallelization can not be achieved.

On the other hand, our construction ELmE is completely parallel with no such
bottleneck as described above. Moreover the construction treats the additional
data and message exactly in a similar way (except with different masking keys).
The encryption and decryption also behave similarly and hence ensures less chip
area in combined hardware implementation. Moreover, to resist against blockwise
adversaries, ELmE can incorporate intermediate tags very efficiently, which the
other constructions do not take care of and could be hard to generate.

Note that, the above comparison is given from theoretical point of view. Ex-
perimental measurements to support these claim is a possible future scope. We’ve
planned to implement a portable reference software implementation of our cipher
as well as include a reference hardware design in verilog.

Acknowledgement. This work is supported by the Centre of Excellence in
Cryptology (CoEC), Indian Statistical Institute, Kolkata.

References

1. (no editor), CAESAR: Competition for Authenticated Encryption: Security, Ap-
plicability, and Robustness, http://competitions.cr.yp.to/caesar.html, Cita-
tions in this document: §1.1, §1.1

2. (no editor), Specification of the 3GPP Confidentiality and Integrity Algorithms
128-EEA3 and 128-EIA3. Document 2: ZUC Specification. ETSI/SAGE Specifica-
tion, Version: 1.5 (2011), Citations in this document: §1.1

3. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Tischhauser, E., Yasuda,
K.: Parallelizable and authenticated online ciphers. In: Sako, K., Sarkar, P. (eds.)
ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 424–443. Springer, Heidelberg
(2013), Citations in this document: §1.1

4. Bellare, M., Rogaway, P., Wagner, D.: The EAX Mode of Operation. In: Roy, B.,
Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 389–407. Springer, Heidelberg
(2004), Citations in this document: §1.1

5. Bellare, M., Blake, J., Rogaway, P.: OCB: A Block-Cipher Mode of Operation for
Efficient Authenticated Encryption 6, 365–403 (2005), Citations in this document:
§1.3

6. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Duplexing the Sponge: Single
Pass Authenticated Encryption and Other Applications. In: Miri, A., Vaudenay,
S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 320–337. Springer, Heidelberg (2012),
Citations in this document: §1.1, §4

http://competitions.cr.yp.to/caesar.html


320 N. Datta and M. Nandi

7. Datta, N., Nandi, M.: Misuse Resistant Parallel Authenticated Encryptions, IACR
Cryptology ePrint Archive (2013), http://eprint.iacr.org/2013/767.pdf,
Citations in this document: §4.1, §4.2, §5.1

8. Gligor, V.D., Donescu, P.: Fast Encryption and Authentication: XCBC Encryption
and XECB Authentication Modes. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355,
pp. 92–108. Springer, Heidelberg (2002), Citations in this document: §1.1

9. Dworkin, M.: Recommendation for block cipher modes of operation: three variants
of ciphertext stealing for CBC mode. Addendum to NIST Special Publication
80038A (2010), Citations in this document: §3

10. Wang, P., Feng, D., Wu, W.: HCTR: A Variable-Input-Length Enciphering Mode.
In: Feng, D., Lin, D., Yung, M. (eds.) CISC 2005. LNCS, vol. 3822, pp. 175–188.
Springer, Heidelberg (2005), Citations in this document: §3

11. Fleischmann, E., Forler, C., Lucks, S.: McOE: A Family of Almost Foolproof On-
Line Authenticated Encryption Schemes. In: Canteaut, A. (ed.) FSE 2012. LNCS,
vol. 7549, pp. 196–215. Springer, Heidelberg (2012), Citations in this document:
§1.1, §1.3

12. Fouque, P.-A., Joux, A., Martinet, G., Valette, F.: Authenticated On-Line En-
cryption. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006,
pp. 145–159. Springer, Heidelberg (2004)

13. Halevi, S., Rogaway, P.: A Tweakable Enciphering Mode. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 482–499. Springer, Heidelberg (2003), Ci-
tations in this document: §1.2

14. Halevi, S., Rogaway, P.: A parallelizable enciphering mode. In: Okamoto, T. (ed.)
CT-RSA 2004. LNCS, vol. 2964, pp. 292–304. Springer, Heidelberg (2004), Cita-
tions in this document: §1.1, §1.2

15. Hell, M., Johansson, T., Maximov, A., Meier, W.: A Stream Cipher Proposal:
Grain-128, eSTREAM, ECRYPT Stream Cipher Project, Report 2006/071 (2005),
http://www.ecrypt.eu.org/stream , Citations in this document: §1.1

16. Housley, R., Whiting, D., Ferguson, N.: Counter with CBC-MAC, CCM, RFC 3610
(Informational) (2003), Citations in this document: §1.1

17. Iwata, T.: New blockcipher modes of operation with beyond the birthday bound
security. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 310–327. Springer,
Heidelberg (2006), Citations in this document: §1.1

18. Iwata, T., Yasuda, K.: HBS: A Single-Key mode of Operation for Deterministic
Authenticated Encryption. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665,
pp. 394–415. Springer, Heidelberg (2009), Citations in this document: §1.1

19. Iwata, T., Yasuda, K.: A Single-Key, Inverse-Cipher-Free Mode for Determinis-
tic Authenticated Encryption. In: Jacobson Jr., M.J., Rijmen, V., Safavi-Naini,
R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 313–330. Springer, Heidelberg (2009),
Citations in this document: §1.1

20. Joux, A., Martinet, G., Valette, F.: Blockwise-Adaptive Attackers: Revisiting the
(In)Security of Some Provably Secure Encryption Models: CBC, GEM, IACBC.
In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 17–30. Springer,
Heidelberg (2002), Citations in this document: §1.3

21. Jutla, C.S.: Encryption Modes with Almost Free Message Integrity. In: Pfitzmann,
B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 529–544. Springer, Heidelberg
(2001), Citations in this document: §1.1, §1.1

22. Krovetz, T., Rogaway, P.: The Software Performance of Authenticated-Encryption
Modes. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 306–327. Springer,
Heidelberg (2011)

http://eprint.iacr.org/2013/767.pdf
http://www.ecrypt.eu.org/stream


ELmE: A Misuse Resistant Parallel Authenticated Encryption 321

23. Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseu-
dorandom functions. SIAM Journal of Computing, 373–386 (1988), Citations in
this document: §1.2, §1.3

24. Lucks, S.: Two Pass Authenticated Encryption Faster than Generic Composition.
In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 284–298.
Springer, Heidelberg (2005), Citations in this document: §1.1

25. Nandi, M.: Two new efficient CCA-secure online ciphers: MHCBC and MCBC. In:
Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365,
pp. 350–362. Springer, Heidelberg (2008), Citations in this document: §1.3

26. Nandi, M.: A Generic Method to Extend Message Space of a Strong Pseudorandom
Permutation. Computacin y Sistemas 12 (2009)

27. Patarin, J.: The “Coefficients H” technique. In: Avanzi, R.M., Keliher, L., Sica,
F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 328–345. Springer, Heidelberg (2009),
Citations in this document: §2.1

28. Preneel, B., Wu, H.: AEGIS: A Fast Authenticated Encryption Algorithm, Cryp-
tology ePrint Archive: Report 2013/695

29. Ristenpart, T., Rogaway, P.: How to Enrich the Message Space of a Cipher. In:
Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 101–118. Springer, Heidelberg
(2007), Citations in this document: §3

30. Rogaway, P.: Efficient Instantiations of Tweakable Blockciphers and Refinements
to Modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329,
pp. 16–31. Springer, Heidelberg (2004)

31. Rogaway, P.: Nonce-based symmetric encryption. In: Roy, B., Meier, W. (eds.) FSE
2004. LNCS, vol. 3017, pp. 348–359. Springer, Heidelberg (2004), Citations in this
document: §1.3

32. Rogaway, P., Zhang, H.: Online Ciphers from Tweakable Blockciphers. In:
CT-RSA, pp. 237–249 (2011), Citations in this document: §1.3

33. Rogaway, P., Shrimpton, T.: A Provable-Security Treatment of the Key-Wrap Prob-
lem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390.
Springer, Heidelberg (2006), Citations in this document: §1.1

34. Sarkar, P.: On Authenticated Encryption Using Stream Ciphers Supporting an
Initialisation Vector. IACR Cryptology ePrint Archive, 299–299 (2011),
http://eprint.iacr.org/2011/299.pdf; capsulating Security Payload (ESP),
Citations in this document: §1.1

35. Viega, J., McGraw, D.: The use of Galois/Counter Mode (GCM) in IPsec En, RFC
4106 (2005), Citations in this document: §1.1, §1.3

36. Vaudenay, S.: Decorrelation: A Theory for Block Cipher Security. Journal of Cryp-
tology, 249–286 (2003)

http://eprint.iacr.org/2011/299.pdf


Lattice Decoding Attacks on Binary LWE

Shi Bai and Steven D. Galbraith

Department of Mathematics,
University of Auckland,

New Zealand
S.Bai@auckland.ac.nz,

S.Galbraith@math.auckland.ac.nz

Abstract. We consider the binary-LWE problem, which is the learning
with errors problem when the entries of the secret vector are chosen from
{0, 1} or {−1, 0, 1}. Our main result is an improved lattice decoding
algorithm for binary-LWE, by translating to the inhomogeneous short
integer solution (ISIS) problem, and then re-scaling the lattice. We also
discuss modulus switching as an approach to the problem. Our conclusion
is that binary-LWE is easier than general LWE. We give experimental
results, and theoretical estimates for parameters that achieve certain
security levels.

Keywords: lattice attacks, learning with errors, closest vector problem.

1 Introduction

The learning with errors problem is: Given an m × n matrix A and a vector
b ∈ As+e (mod q), where e ⊕ Z

m
q is a “short” error vector, to compute s ⊕ Z

n
q .

This is a computational problem of major current importance in cryptography.
Recently, Brakerski, Langlois, Peikert, Regev and Stehlé [7] and Micciancio and
Peikert [19] have considered variants of this problem where the secret vectors
are chosen uniformly from the set {0, 1}n (or {−1, 0, 1}n), rather than from Z

n
q .

These variants of the problem are called binary-LWE.
It is natural to expect that the binary-LWE problem is easier than the stan-

dard LWE problem, but it is an open question to determine how much easier.
Both papers [7, 19] give reductions that imply that binary-LWE is hard, but
those results require increasing the parameter n to approximately n log2(q) =
O(n log2(n)) (it is usually the case that q is a low-degree polynomial in n). An
interesting problem is to determine whether these results are optimal. As an ex-
ample, taking n = 256 for standard LWE would lead to a parameter of at least
n log2(n) = 2048 for binary LWE, which seems excessive.

Our goal is to develop and analyse improved algorithms for the binary-LWE
problem. We first translate the problem to a related problem called the inhomo-
geneous short integer solution problem (ISIS). Our main tool is to rescale the
lattice so that the standard lattice methods to solve the closest vector problem
are more effective. We also consider other approaches to the problem, such as

W. Susilo and Y. Mu (Eds.): ACISP 2014, LNCS 8544, pp. 322–337, 2014.
c© Springer International Publishing Switzerland 2014



Lattice Decoding Attacks on Binary LWE 323

modulus switching. We show that modulus switching is not a helpful tool in this
setting, which may be counter-intuitive. We also give theoretical and experimen-
tal analysis of the algorithm.

Experimental results with the new algorithm do confirm that the parameter
n needs to be increased when using binary-LWE. Returning to the example of
n = 256, our results suggest that a parameter around 440 may be sufficient to
achieve the same security level as standard LWE with parameter 256.

Our approaches are all based on lattice decoding attacks. There is another
class of algorithms for LWE that are more combinatorial, originating with Blum,
Kalai and Wasserman [5, 1]. However, these algorithms require an extremely
large number of samples from the LWE distribution, which may not be realistic
in certain applications.

The paper is organised as follows. Sections 2 and 3 give precise definitions for
the LWE and binary-LWE problems. Section 4 recalls the current state-of-the-art
for lattice attacks on LWE. Section 5 describes modulus switching and evaluates
its performance. Section 6 contains our algorithm and its analysis, specifically
the description of the rescaling in Section 6.1 and the discussion of why modulus
switching is unhelpful in Section 6.3. Some experimental results, that confirm
our improvement over previous methods, are given in Section 7.

2 LWE

Let χ ⊕ R>0. Define σσ(x) = exp(−x2/(2χ2)) and σσ(Z) = 1 + 2
∑∈

x=1 σσ(x).
The discrete Gaussian distribution Dσ on Z with standard deviation χ is the
distribution that associates to x ⊕ Z the probability σσ(x)/σσ(Z).

We fix parameters (n,m, q, χ). Typical choices of parameters are (n,m, q, χ) =
(256, 640, 4093, 32). Let A be a uniformly chosen m × n matrix with entries in
Zq. Let s and e be integer vectors of lengths n and m respectively whose entries
are sampled independently from the discrete Gaussian distribution with param-
eter χ (this is the case of LWE with secrets chosen from the error distribution,
which is no loss of generality [3]). We call s the “secret vector” and e the “error
vector”. The LWE distribution is the distribution on (Zm×n

q ,Zm
q ) induced by

pairs (A,b ∈ As + e (mod q)) sampled as above. The search-LWE problem is:
Given (A,b) chosen from the LWE distribution, to compute the pair (s, e). We
refer to [20–22] for further details of LWE.

The (m,n, q,B)-SIS problem is: Given an n × m integer matrix A≤ (where
typically m is much bigger than n) and an integer q to find a vector y ⊕ Z

m,
if it exists, such that A≤y ∈ 0 (mod q) and y ⊕ B. Here B is a set of vectors
that are “short” in some sense (e.g., B = {−1, 0, 1}m). One can also define an
inhomogeneous version of the SIS problem (ISIS): Given A≤ and v find y ⊕ B,
if it exists, such that A≤y ∈ v (mod q).

The LWE problem can be rephrased as inhomogenous-SIS: Given (A,b ∈
As+ e (mod q)) one can form the ISIS instance

(A|Im)

⎧
s
e

⎪
∈ b (mod q)



324 S. Bai and S.D. Galbraith

where Im is the m×m identity matrix. An alternative transformation of LWE to
ISIS is mentioned in Remark 1 of Section 4.3. Conversely, ISIS can be translated
to LWE, for details see Lemmas 9 and 10 of Micciancio and Mol [18].

2.1 Size of the Error Vector

Let Dσ be the discrete Gaussian distribution on Z with standard deviation χ.
Let e be sampled from Dm

σ , which means that e = (e1, . . . , em) is formed by
taking m independent samples from Dσ. We need to know the distribution of
⊇e⊇. If the entries ei were chosen from a true Gaussian with standard deviation
χ then ⊇e⊇2 comes from the chi-squared distribution, and so has mean mχ2.
Since our case is rather close, we assume that ⊇e⊇2 is also close to a chi-squared
distribution, and we further assume that the expected value of ⊇e⊇ is close to√
mχ. Lyubashevsky (Lemma 4.4(3) of the full version of [16]) shows that

Pr
⎨⊇e⊇ ≤ kχ

√
m
⎩ ← 1−

⎥
ke

1−k2

2

⎦m

for k > 0. This supports our assumption that ⊇e⊇ ∅ √
mχ. To achieve over-

whelming probability, we may use k ∅ 2. In practice, this bound is quite useful
for k � 1. In practice, we can easily estimate the expected value of ⊇e⊇ for any
fixed parameters by sampling.

3 Binary LWE and Related Work

We now restrict the LWE problem so that the secret vector s is chosen to lie in
a much smaller set. Fix (n,m, q, χ). To be compatible with Regev’s results (e.g.,
see Theorem 1.1 of [22]), we usually take χ ∅ 2

√
n. Let A be a uniformly chosen

m× n matrix with entries in Zq. Let s ⊕ Z
n have entries chosen independently

and uniformly from {0, 1}. Let e ⊕ Z
m have entries sampled independently

from the discrete Gaussian distribution on Z with standard deviation χ. The
binary-LWE distribution is the distribution on (Zm×n

q ,Zm
q ) induced by pairs

(A,b = As + e (mod q)) sampled as above. The search-binary-LWE problem
is: Given (A,b) chosen from the binary-LWE distribution, to compute the pair
(s, e). One can also consider a decisional problem, but in this paper we focus on
the search problem.

The binary-LWE problem (where secret vectors s are from {0, 1}n) has been
considered in work by Brakerski, Langlois, Peikert, Regev and Stehlé [7]. The
main focus of their paper is to prove hardness results for LWE in the classical
setting (i.e., without using quantum algorithms as in Regev’s original result).
Micciancio and Peikert [19] have considered the binary-LWE problem where
s ⊕ {−1, 0, 1}n. Their main result is a hardness result for the case where not only
the secrets are small but even the errors are small. Of course, due to the Arora-
Ge attack [4] this is only possible if one makes the (realistic) assumption that one
has access to a very restricted number of samples from the LWE distribution.



Lattice Decoding Attacks on Binary LWE 325

Both papers [7, 19] give reductions that imply that binary-LWE is hard, as-
suming certain other lattice problems are hard. Essentially, the papers relate
(n, q)-binary-LWE to (n/t, q)-LWE (where t = O(log(n)) = O(log(q))). In other
words, we can be confident that binary-LWE is hard as long as we increase the
parameter n by a factor of log(n). For example, taking n = 256 as a reasonably
hard case for standard LWE, we can be confident that binary-LWE is hard for
n = 256 log2(256) = 2048. Our feeling is that these reductions are too conserva-
tive, and that binary-LWE is harder than these results would suggest.

The main goal of our paper is to study the LWE problem where the secret
vector is binary, but the errors are still discrete Gaussians. We focus on the
case s ⊕ {−1, 0, 1}n, but our methods are immediately applicable to the case
s ⊕ {−B, . . . ,−1, 0, 1, . . . , B} for any B < χ.

4 Standard Lattice Attack on LWE

We recall the standard lattice decoding attack on LWE, and its analysis. Let
L = αq(A

T ) = {v ⊕ Z
m : v ∈ As (mod q), s ⊕ Z

n}. This is a lattice of rank m.
Typically the rank of A will be n, and so L has volume qm−n. Suppose one can
solve the closest vector problem (CVP) instance (L,b). Then one finds a vector
v ⊕ L such that ⊇b − v⊇ is small. Writing e = b − v and v ∈ As (mod q) for
some s ⊕ Z

n (it is easy to solve for s using linear algebra when m ← n), then

b ∈ As+ e (mod q).

Hence, if we can solve CVP then we have a chance to solve LWE.
The CVP instance can be solved using the embedding technique [12] (reducing

CVP to SVP in a lattice of dimension one larger) or an enumeration algorithm
(there are several such algorithms, but Liu and Nguyen [14] argue that all vari-
ants can be considered as cases of pruned enumeration algorithms). For the
complexity analysis here we use the embedding technique, so we recall this now.
Some discussions of enumeration algorithms will be given in Section 7.3.

Let L ⇒ Z
m be a lattice of rankm with (column) basis matrix B, and suppose

b ⊕ Z
m is a target vector. We wish to find v = Bu ⊕ L such that e = v − b =

Bu−b is a short vector. The idea is to consider the basis matrix, where M ⊕ N

is chosen appropriately (e.g., M ∅ √
mχ),

B≤ =
⎧
B b
0 M

⎪
. (1)

This is the basis for a lattice L≤ of rank d = m+ 1 and volume M · vol(L). Note
that

B≤
⎧

u
−1

⎪
=

⎧
Bu− b
−M

⎪
=

⎧
e

−M
⎪
.

Hence, the (column) lattice generated by B≤ contains a short vector giving a
potential solution to our problem. One therefore applies an SVP algorithm (e.g.,
LLL or BKZ lattice basis reduction).



326 S. Bai and S.D. Galbraith

Lyubashevsky and Micciancio (Theorem 1 of [15]) argue that the best choice
for M above is ⊇e⊇, which is approximately

√
mχ in our case. However, in our

experiments M = 1 worked fine (and leads to a more powerful attack [2] in
practice).

4.1 Unique-SVP

Gama and Nguyen [10] have given a heuristic approach to estimate the capability
of lattice basis reduction algorithms. Consider a lattice basis reduction algorithm
that takes as input a basis for a lattice L of dimension d, and outputs a list of
vectors b1, . . . ,bd. Gama and Nguyen define the root Hermite factor of such an
algorithm to be β ⊕ R such that

⊇b1⊇ ≤ βdvol(L)1/d

for all d and almost all lattices L.
The standard LLL algorithm corresponds to β = 1.021. The paper [10] argues

that β = 1.01 is about the limit of practical algorithms (i.e., variants of BKZ
using extreme pruning and large block size). Chen and Nguyen [9] extended this
analysis to algorithms with greater running time. Their heuristic argument is
that a Hermite factor corresponding to β = 1.006 might be reachable with an
algorithm performing around 2110 operations.

In Section 3.3 of [10], Gama and Nguyen turn their attention to the unique-
SVP problem. One seeks a short vector in a lattice L when one knows that
there is a large gap τ = Φ2(L)/Φ1(L), where Φi(L) denotes the i-th successive
minima of the lattice. The unique-SVP problem arises when solving CVP using
the embedding technique. The standard theoretical result is that if one is using
a lattice reduction algorithm with Hermite factor β, then the algorithm outputs
the shortest vector if the lattice gap satisfies τ > β2m. However, Gama and
Nguyen observe that practical algorithms will succeed as long as τ > cβm for
some small constant c (their paper gives c = 0.26 and c = 0.45 for different
families of lattices). Moreover, Luzzi, Stehlé and Ling [17] gave some theoretical
justification that the unique-SVP problem is easier to solve when the gap is
large.

4.2 Application to LWE

Consider running the embedding technique on an LWE instance, using the lattice
L≤ given by the matrix B≤ from equation (1). We have a good chance of getting
the right answer if the error vector e is very short compared with the second
shortest vector in the lattice L≤, which we assume to be the shortest vector in
the original lattice L.

The Gaussian heuristic suggests that the shortest vector in a lattice L of rank
d has Euclidean norm about 1∗

π
π (1 + d

2 )
1/dvol(L)1/d which is approximately

√
d

2πevol(L)
1/d. In lattice L (of rank m), this is

√
m
2πeq

(m−n)/m. Note also that



Lattice Decoding Attacks on Binary LWE 327

our lattices contain known vectors of Euclidean length equal to q. Hence, our
estimate of the Euclidean length of known short vectors is

Φ2(L
≤) ∅ Φ1(L) ∅ min

{
q,

√
m

2Σe
q

m−n
m

⎛
.

In contrast, the vector e has Euclidean length around
√
mχ on average (see

Section 2.1), and so the vector ( e
M ) has length approximately

√
2mχ when M =√

mχ. In our experiments we take M = 1 and so assume that Φ1(L
≤) ∅ √

mχ.
Hence the gap is

τ(m) =
Φ2(L

≤)
Φ1(L≤)

∅
min{q, 1∗

π
π (1 + m

2 )
1/mq

m−n
m }

√
mχ

∅ min{q,√ m
2πeq

m−n
m }√

mχ
. (2)

For a successful attack we want this gap to be large, so we will need

χ ≈ q
m−n
m <

q√
m
.

To determine whether an LWE instance can be solved using the embedding
technique and a lattice reduction algorithm with a given (root) Hermite factor
β, one can choose a suitable subdimension m and verify that the corresponding
gap satisfies the condition τ = τ(m) > cβm for a suitable value c. Since the
constant c is unknown, we can maximize min{q, q(m−n)/m}/βm for fixed n, q, β
to get the “optimal” sub-dimension (which maximizes the success probability of
the algorithm) to be

m =

⎜
n log(q)

log(β)
, (3)

where β is the Hermite factor of the lattice basis reduction algorithm used.
Furthermore, we may assume c is upper bounded by 1 according to the ex-

perimental results of Gama and Nguyen [10]. For fixed n, q, χ = 2
√
n, we can

easily compute values (m, β) satisfying the constraint τ1/m ← β and such that β
is maximal. These values have lattice dimension m as in equation (3). By doing
this we obtained Table 1 (for n ← 160 the length of the second shortest vector
is taken to be q and this leads to very large dimensions; enlarging q to around
13000 in the case n = 300 leads to m = 1258 and β ∅ 1.002). The last row
consists of the estimated time

log(TBKZ) =
1.8

log2(β)
− 110 (4)

for running the BKZ lattice basis reduction algorithm, based on Lindner and
Peikert’s work [13].

The running times and values for β in Table 1 are worse than those reported
in some other papers on LWE. This is because we consider rather large values
χ = 2

√
n for the error distribution, instead of very small values like χ = 3. Since

LWE can always be reduced to the case where the secrets are chosen from the
error distribution, the question of the hardness of binary-LWE is most interesting
when the error distribution itself is not very small.



328 S. Bai and S.D. Galbraith

Table 1. Theoretical prediction of (optimal) root Hermite factor δ and running time
T of the standard embedding technique algorithm using BKZ for LWE instances with
q = 4093, σ = 2

√
n for the given values for n. The lattice dimension d = m + 1 is

calculated using equation (3) and the running time T is estimated using equation (4).

n 30 40 50 60 70 100 150 200 250 300

d 110 151 194 239 284 425 673 1144 1919 3962
δ ≈ 1.0208 1.0147 1.0111 1.0088 1.0072 1.0046 1.0028 1.0013 1.0006 1.0002

log(T ) ≈ 0 0 3 33 63 161 343 872 2100 7739

4.3 How to Solve ISIS

Recall the inhomogeneous-SIS (ISIS) problem: Given (A≤,v) to find a short
vector y ⊕ Z

m such that v ∈ A≤y (mod q). It is standard that ISIS is also
attacked by reducing to CVP: One considers the lattice L≤ = α⊥

q (A
≤) = {y ⊕

Z
m : A≤y ∈ 0 (mod q)}, finds any vector (not necessarily short) w ⊕ Z

m such
that A≤w ∈ v (mod q), then solves CVP for (L≤,w) to find some y close to w
and so returns w− y as the ISIS solution.

We sketch the details of solving LWE (in the case of short secrets) by reducing
to ISIS and then solving by CVP (more details are given in Section 6). Given
(A,b) we define A≤ = (A|Im) to get an ISIS instance (A≤,b). Choose any vector
w ⊕ Z

n+m such that A≤w ∈ b (mod q). Then the lattice L≤ = α⊥
q (A

≤) = {y ⊕
Z
n+m : A≤y ∈ 0 (mod q)} is seen to have rank m≤ = n+m and (assuming the

rank of A≤ is n) determinant qm = qm
⊆−n (the determinant condition can be

seen by considering the index of the subgroup qZn+m in the additive group L≤).
The condition for success in the algorithm is χ ≈ qm/(n+m). Writing m≤ = n+m
this is q(m

⊆−n)/m⊆
, which is the same as the LWE condition above.

Remark 1. We can also reduce LWE to ISIS using the approach of Micciancio

and Mol [18]. In particular, one can construct a matrix A⊥ ⊕ Z
(m−n)×m
q such

that A⊥A ∈ 0 (mod q). The LWE problem (A,b) is therefore transformed into
the ISIS instance (A⊥,A⊥b ∈ A⊥e (mod q)). It follows that a solution to the
ISIS problem gives a value for e and hence solves the LWE problem. It is easy
to see that this approach is equivalent to the previous one in the case where
the secret vector s is chosen from the error distribution. However, since this
reduction eliminates the vector s, we are no longer able to take advantage of the
“smallness” of s compared with e, as we will do in the following sections. So we
do not consider this approach further.

5 Modulus Switching

Modulus switching was first proposed by Brakerski and Vaikuntanathan [6], in
the context of homomorphic encryption. Write the LWE instance (A,b ∈ As+e
(mod q)) as

b = As+ e+ qu



Lattice Decoding Attacks on Binary LWE 329

for some u ⊕ Z
m. Now suppose q≤ is another integer and define A≤ = [ q

⊆
q A] and

b≤ = [ q
⊆

q b], where the operation [ ] applied to a vector or matrix means rounding

each entry to the nearest integer. Write A≤ = q⊆

q A+W and b≤ = q⊆

q b+w where

W is an m × n matrix with entries in [−1/2, 1/2] and w is a length m vector
with entries in [−1/2, 1/2]. One can now verify that

b≤ −A≤s = q⊆

q b+w− ( q
⊆

q A+W)s

= q⊆
q (As+ e+ qu−As) +w−Ws

= q⊆

q e+w−Ws+ q≤u.

One sees that (A≤,b≤) is an LWE instance modulo q≤, with the same secret vector,
and that the “error vector” has length

⊇ q⊆

q e+w−Ws⊇ ≤ q⊆

q ⊇e⊇+ ⊇w⊇+ ⊇Ws⊇.

Note that the final term ⊇Ws⊇ has the potential to be small only when s has
small entries, as is the case for binary LWE. The term ⊇w⊇ is bounded by 1

2

√
m.

The term ⊇Ws⊇ is easily bounded, but it is more useful to determine its expected
value. Each entry of the vectorWs is a sum of n (or around n/2 in the case where
s ⊕ {0, 1}n) rational numbers in the interval [−1/2, 1/2]. Assuming the entries of
W are uniformly distributed then the central limit theorem suggests that each
entry of Ws has absolute value roughly 1

4

√
n/2. Hence, it seems plausible to

think that ⊇Ws⊇ can be as small as 1
4

√
nm.

Modulus switching was originally proposed to control the growth of the noise
under homomorphic operations. The standard scenario is that if ⊇e⊇ becomes
too large then, by taking q≤ much smaller than q, one can reduce the noise by

the factor q⊆

q while only adding a relatively small additional noise. However, the
idea is also interesting for cryptanalysis: One can perform a modulus switching
to make the error terms smaller and hence the scheme more easily attacked. We
will consider such an attack in the case of binary LWE in the next section.

We now give a back-of-the-envelope calculation that shows modulus switch-
ing can be a useful way to improve lattice attacks on LWE. Note that modulus

switching reduces the error vector by a factor of q⊆

q , as long as the other terms

(dominated by 1
4

√
nm) introduced into the noise are smaller than q⊆

q χ
√
m. How-

ever, note that the volume of the lattice is also reduced, since it goes from

q(m−n)/m to q≤(m−n)/m. Let us write Ω for the reduction factor q⊆

q . All other pa-

rameters remaining the same, the lattice gap τ = Φ2/Φ1 ∅ q(m−n)/m/(χ
√
2Σe)

changes to

τ≤ ∅ (Ωq)(m−n)/m/(Ωχ
√
2Σe) = (Ω1−n/m/Ω)τ = Ω−n/mτ. (5)

Now, 0 < Ω < 1 and so this is a positive improvement to the lattice gap (and
hence the Hermite factor).



330 S. Bai and S.D. Galbraith

For LWE we usually have errors chosen from a discrete Gaussian with stan-
dard deviation at most 2

√
n, and so ⊇e⊇ is typically O(

√
mn). As discussed

above, the additional noise introduced by performing modulus reduction (from
the Ws term) will typically be around 1

4

√
nm. Hence, it seems the best we can

hope for is q≤/q ∅ 1
8 giving an error vector of norm reduced by a factor of ap-

proximately 1
4 (from 2

√
mn to

√
mn/2). This does give a modest improvement

to the performance of lattice decoding algorithms for LWE.

6 New Attacks on Binary-LWE

We now present our original work.We want to exploit the fact that s is small. The
standard lattice attack on LWE (reducing to CVP) cannot use this information.
However, going via ISIS seems more appropriate.

6.1 Reducing Binary-LWE to ISIS and then Rescaling

Let (A,b) be the (n,m, q, χ)-LWE instance. We may discard rows to reduce the
value for m. We write m≤ = n+m. Write A≤ = (A|Im), being an m×m≤ matrix,
and consider the ISIS instance

b ∈ A≤( se) (mod q)

where the target short vector is ( se ).
The next step is to reduce this ISIS instance to CVP in a lattice. So define

the vector w = (0,bT )T . Clearly A≤w ∈ b (mod q). We now construct a basis
matrix B for the lattice L≤ = {v ⊕ Z

m⊆
: A≤v ∈ 0 (mod q)}. This can be done

as follows: The columns of the (n+m)× (m+ 2n) matrix

M =

⎝

⎞
In

qIn+m

−A

⎠



span the space of all vectors v such that A≤v ∈ 0 (mod q). Computing the
column Hermite normal form of M gives an m≤ ×m≤ matrix B whose columns
generate the lattice L≤.

One can confirm that det(B) = qm = qm
⊆−n. As before, we seek a vector

v ⊕ Z
m⊆

such that Bv ∈ 0 (mod q) and v ∅ w. We hope that w− v = ( se ) and
so v = ( s∗ ), where ⇐ is actually going to be b− e. Our main observation is that
⊇s⊇ ≈ ⊇e⊇ and so the CVP algorithm is trying to find an unbalanced solution.
It makes sense to try to rebalance things.

Our proposal is to multiply the first n rows of B by χ (or some other appropri-
ate scaling factor). This increases the volume of the lattice, without significantly
increasing the norm of the error vector in the CVP instance. As a result, the
Hermite factor of the problem is increased and hence the range of the lattice
attack for a given security level is increased.



Lattice Decoding Attacks on Binary LWE 331

A further trick, when s ⊕ {0, 1}n, is to rebalance s so that it is symmetric
around zero. In this case we rescale by multiplying the first n rows of B by 2χ
and then subtract (χ, . . . , χ, 0, . . . , 0)T from w. Now the difference w − v is of
the form

(±χ, . . . ,±χ, e1, . . . , em)T

which is more balanced.

6.2 Gap in the Unique-SVP

The determinant has been increased by a factor of χn (or (2χ)n in the {0, 1}
case). So the gap in the re-scaled lattice is expected to be larger compared
to the original lattice. In the embedded lattice formed by the standard attack,
Φ1(L

≤) ∅ √
m·χ and Φ2(L

≤) ∅ q(m−n)/m
√

m
2πe wherem is the subdimension being

used. In the embedded lattice formed by the new attack, Φ1(L
≤) ∅ √

m+ n · χ
and Φ2(L

≤) ∅ (qmχn)1/(m+n)
√

m+n
2πe where m is the number of LWE samples

being used. Hence the new lattice gap is τ = Φ2(L
≤)/Φ1(L≤) and so we will need

to use lattice reduction algorithms with Hermite factor β ≤ τ1/(m+n).

Lemma 1. Let q, n, χ and β be fixed. Let m≤ ∅ m + n be the dimension of the
embedded lattice in the new attack. For a given Hermite factor β, the optimal
value for m≤ is approximately

⎜
n(log q − log χ)

log β
. (6)

Proof. The goal is to choosem≤ (and hencem) to minimize the function f(m≤) =
q(m

⊆−n)/m⊆
χn/m⊆

β−m⊆
. It suffices to find a minimum for the function F (x) =

log(f(x)) = ((x − n)/x) log(q) + (n/x) log(χ) − x log(β). Differentiating gives
n(log(q)− log(χ)) = x2 log(β) and the result follows.

Table 2. Theoretical prediction of (optimal) root Hermite factor δ and running time
T of embedding technique for rescaled binary-LWE instances s ∈ {−1, 0, 1}n with
q = 4093, σ = 2

√
n for the given values for n. The lattice dimension d′ (≈ m′) is

calculated using equation (6) and the running time T is estimated using equation (4).

n 30 40 50 60 70 100 150 200 250 300

d′ 78 105 132 160 187 271 414 558 799 1144
δ 1.0296 1.0212 1.0164 1.0132 1.0111 1.0073 1.0045 1.0032 1.0019 1.0011

log(T ) 0 0 0 0 3 63 169 280 545 1031

Given n, q and χ, we use Lemma 1 to obtain Table 2 of optimal subdimensions
m≤ and values for β. Comparing this table with Table 1 one sees that the lattice
dimensions m≤ and the Hermite factors β are all much improved.



332 S. Bai and S.D. Galbraith

0

50

100

150

200

250

1.002 1.004 1.006 1.008 1.01

n

δ

New attack
Standard attack

Fig. 1. Theoretical prediction of the largest binary-LWE parameter n that can be
solved using an algorithm with the given root Hermite factor

By fixing a lattice reduction algorithm that has the ability to produce some
fixed Hermite factor β, we can compare the maximum n that this algorithm can
attack, based on the standard attack or our new attack. Figure 1 indicates that,
for instance, the binary LWE with secret in {−1, 0, 1} and n ∅ 100 provides
approximately the same security as the regular LWE with n ∅ 70.

6.3 Using Modulus Switching

It is natural to consider applying modulus switching before performing the im-
proved lattice attack. We now explain that this is not a good idea in general.

As discussed in Section 5, the best we can try to do is to have q≤/q ∅ 1/8
and the error vector is reduced in size from elements of standard deviation χ to
elements of standard deviation approximately χ/4.

Consider the desired Hermite factor β = τ1/m
⊆
to attack a lattice with gap

τ = (χn/m⊆
q(m

⊆−n)/m⊆
/(χ

√
2Σe))1/m

⊆

as in our improved lattice attack using rescaling. Applying this attack to the
lattice after modulus switching gives Hermite factor

⎥
(14χ)

n/m⊆
(18q)

(m⊆−n)/m⊆
/(14χ

√
2Σe)

⎦1/m⊆

= β

⎧
1

2(m⊆−n)/m⊆

⎪1/m⊆

(7)

which is strictly smaller than β. Hence, the instance after modulus switching
is harder than the instance before modulus switching. Intuitively, the problem
is this: Modulus switching reduces the size of q and also the size of the error.



Lattice Decoding Attacks on Binary LWE 333

But it reduces q by a larger factor than it reduces the size of the error (due to
the additional error arising from the modulus switching process). When we do
the rescaling, we are also rescaling by a smaller factor relative to q. Hence, the
crucial lattice gap property is weakened by modulus switching.

7 Experiments

Our theoretical analysis (Figure 1) indicates that our new algorithm is superior
to previous methods when solving CVP using the embedding technique. In this
section we give experimental evidence that confirms these theoretical predictions.
However, the state-of-the-art for solving CVP is not to use the embedding tech-
nique, but to use enumeration methods with suitable pruning strategies. Hence,
in this section we also report some predictions based on experiments of using
enumeration algorithms to solve binary-LWE using the standard method and our
new method. For full details on enumeration algorithms in lattices see [9–11].

The binary LWE problem considered in this section has secret vectors s ⊕
{−1, 0, 1}n (i.e., it follows Micciancio and Peikert’s definition [19]). Thus our
results are more conservative compared to the case where s ⊕ {0, 1}n. In the
experiments, we fix parameters q = 4093 and vary n ⊕ [30, 80]. We use χ = 2

√
n.

7.1 Embedding

We first consider the embedding technique with M = 1 to solve the CVP prob-
lems (we used fplll [8] on a 2.4G desktop). In Tables 1 and 2, we have deter-
mined the optimal (root) Hermite factor and subdimension that maximize the
success probability using the embedding technique. However, when (the Her-
mite factor of) a lattice reduction algorithm is fixed (call it β), the optimal
subdimension m is the one that minimizes the running time while satisfying the
lattice gap argument: τ(m) > cβm for some constant c (where τ(m) is defined
in equation (2)).

For a successful attack we want the lattice gap τ(m) to be larger than βm

which is to assume c is upper bounded by 1. As long as this condition is satisfied,
we can reduce m in order to minimize the running time.

In the meantime, we want to maintain a certain success probability. In the
LWE problem, the norm of the error vector is unknown to the attacker, so we
guess that its value is equal to the average norm of 104 randomly sampled vectors
from the error distribution. We choose a bound for the norm of the error vector
so that the expected success probability is ← 1/2. In this way, we can decide an
optimal m. Also in our experiments, we restrict to m ← n. On the other hand,
if τ(m) < βm for all m, we set m ∅ √

n log q/ log β which maximizes τ(m)/βm

for given β. Of course, the reduction algorithm is likely to fail in such cases.
In Table 3, we use BKZ-60 with pruned enumeration [10]. To decide the

optimal subdimension as described above, we assume the Hermite factor β �
1.011. This is verified experimentally in Table 3 and in [10]. Note that using a
smaller dimension than the “optimum” may be slightly faster. In the standard



334 S. Bai and S.D. Galbraith

Table 3. Results of the embedding technique using BKZ for binary-LWE using the
standard approach and the new lattice rescaling (with and without modulus switching).
The columns mi are the number of LWE samples used for the experiments (the value
in parenthesis is the theoretical value for mi from equation (3) or equation (6) as
appropriate). The lattice dimensions are d1 = m1 + 1, d2 = m2 + n + 1 and d3 =
m3 + n + 1. The lattice gap γi is estimated as in equation (2) and the corresponding

Hermite factor is δi = γ
1/di
i . Column Succ is the success probability observed from 10

trials (where − denotes no success at all).

Standard embedding attack New attack
New attack with modulus
switching

n m1 γ
1/d1
1 Succ Time m2 γ

1/d2
2 Succ Time m3 γ

1/d3
3 Succ Time

30 68 (151) 1.013 1.0 0.83s 30 (97) 1.027 1.0 0.32s 53(90) 1.023 1.0 3.76s

40 105 (174) 1.012 1.0 6.70s 40 (105) 1.019 1.0 1.30s 67(96) 1.018 1.0 6.29s

50 195 (195) 1.011 0.5 61.71s 50 (111) 1.015 1.0 3.61s 84(101) 1.014 1.0 10.58s

60 214 (214) 1.009 − 90.20s 115 (115) 1.013 1.0 27.83s 104(104) 1.011 0.4 17.17s

70 231 (231) 1.007 − 127.82s 117 (117) 1.011 0.5 42.41s 105(105) 1.010 − 29.11s

80 247 (247) 1.005 − 189.25s 119 (119) 1.009 − 56.54s 106(106) 1.009 − 43.88s

attack, the optimal subdimension is m1 and the lattice dimension is d1 = m1+1.
In the new attack, the re-scaled lattice has dimension d2 = m2 + n + 1. We
record the average running time for ten instances. The values for τi = Φ2/Φ1 are
computed by assuming Φ1 is the length of the error vector and that Φ2 is given
by the Gaussian heuristic. The success probability reflects the fact that we are
using BKZ for the embedding technique, and so for larger n the shortest vector
in the reduced basis is not the desired target vector. To get a higher success
probability one uses enumeration, as discussed in Section 7.3.

7.2 Modulus Switching

We also experimented with modulus switching for the new algorithm. We confirm
our theoretical analysis that the performance is worse. As mentioned in Section 5,
the best choice for modulus switching is to use q≤ such that q≤/q ∅ 1/8. The
third block in Table 3 records the running time and success probability of the
new attack based on modulus switching. Note that we use q≤ = 512. The table
shows that the success probability is worse than the new attack without modulus
switching.

7.3 Enumeration

When solving CVP for practical parameters the state of the art method [13, 14]
is to use BKZ pre-processing of the lattice basis followed by pruned enumeration.
This is organised so that the time spent on pre-processing and enumeration is
roughly equal. We consider these algorithms here. Note that one can expect a
similar speedup from our lattice rescaling for the binary-LWE problem, since the
volume of the lattice is increased, which creates an easier CVP instance.



Lattice Decoding Attacks on Binary LWE 335

We give predictions of the running time for larger parameters using Chen, Liu
and Nguyen’s methods [9, 14]: we first preprocess the CVP basis by BKZ-β for
some large β and then enumerate on the reduced basis.

Write β(β) for the Hermite factor achieved by BKZ with blocks of size β. Given
a target β(β) and dimension m, Chen and Nguyen [9] described an algorithm
to estimate the BKZ time. It is observed that a small number of calls to the
enumeration routine (for each block reduction in the BKZ-β) is often sufficient to
achieve the targeted β. It boils down to estimating the enumeration time (either
for the local basis within BKZ or the full enumeration later), which depends on
the number of nodes visited in the enumeration. We use the approach of [9, 14]
to estimate the enumeration time, which assumes the Gaussian heuristic and the
Geometric Series Assumption (GSA) [23]. Following this approach, and under
those assumptions, we estimate the running time for solving binary-LWE with
n = 128, q = 4093 in Table 4.

Table 4. Predictions of the running time for solving binary-LWE with (n, q, σ) =
(128, 4093, 22.6) using BKZ lattice reduction followed by pruned enumeration. Columns
di are the lattice dimensions. The BKZ reduction (preprocessing) achieves the targeted
Hermite factor δi. Column TRed is an estimate of the BKZ reduction time (in seconds).
Column #E denotes the estimated number of nodes in the enumeration. Column T
denotes the estimated total running-time in seconds.

Standard attack New attack

δ1 d1 log(TRed) log(#E) log(T ) δ2 d2 log(TRed) log(#E) log(T )

1.008 366 42.94 197.96 175 1.009 273 29.35 57.22 34
1.007 391 59.13 152.99 130 1.0085 280 34.27 48.07 35
1.0065 405 76.82 129.54 107 1.008 289 42.61 39.19 43
1.006 422 93.04 105.71 94 1.007 309 58.74 23.09 59

8 Conclusion

We have given theoretical and experimental results that confirm the benefit of
our lattice rescaling approach to the binary-LWE problem. These results are
most interesting when the standard deviation of the error distribution is large.

Figure 2 plots (the comparison of) the running time of our attack (using the
embedding technique) for binary LWE and standard LWE. This graph should
only be interpreted as a very rough approximation to the truth, but it allows us
to compare the relative security. The papers [7, 19] have shown that to match the
hardness of standard LWE for parameter n one can use binary-LWE with param-
eter n log(n). Figure 2 suggests that this is overkill and that even n log(log(n))
may be more than sufficient. However, it seems to be not sufficient to take pa-
rameter cn where c is a constant.



336 S. Bai and S.D. Galbraith

0

100

200

300

400

0 1000 2000 3000 4000 5000

n

log2 (T )

Binary LWE
Standard LWE

Fig. 2. Plot of predicted running time with respect to LWE parameter n for embedding
attack on standard LWE and binary LWE

Acknowledgements. The authors are grateful to Chris Peikert for suggesting
the lattice re-scaling idea. The authors would also like to thank Robert Fitz-
patrick, Mingjie Liu, Phong Q. Nguyen and the Program Chairs for helpful
comments and discussions.

The authors wish to acknowledge NeSI (New Zealand eScience Infrastructure)
and the Centre for eResearch at the University of Auckland for providing CPU
hours and support.

References

1. Albrecht, M.R., Cid, C., Faugère, J.-C., Fitzpatrick, R., Perret, L.: On the Com-
plexity of the BKW Algorithm on LWE. In: Designs, Codes and Cryptography
(Published online July 19, 2013) (to appear)

2. Albrecht, M.R., Fitzpatrick, R., Göpfert, F.: On the Efficacy of Solving LWE by
Reduction to Unique-SVP. In: Proceedings of 2013 International Conference on
Information Security and Cryptology (2013) (to appear)

3. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast Cryptographic Primitives
and Circular-Secure Encryption Based on Hard Learning Problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009)

4. Arora, S., Ge, R.: New Algorithms for Learning in Presence of Errors. In: Aceto, L.,
Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 403–415.
Springer, Heidelberg (2011)

5. Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem,
and the statistical query model. Journal of ACM 50(4), 506–519 (2003)

6. Brakerski, Z., Vaikuntanathan, V.: Efficient Fully Homomorphic Encryption from
(Standard) LWE. In: Ostrovsky, R. (ed.) IEEE FOCS 2011, pp. 97–106 (2011)



Lattice Decoding Attacks on Binary LWE 337

7. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of
learning with errors. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) ACM
STOC 2013, pp. 575–584 (2013)

8. Cadé, D., Pujol, X., Stehlé, D.: FPLLL (2013),
http://perso.ens-lyon.fr/damien.stehle/fplll

9. Chen, Y., Nguyen, P.Q.: BKZ 2.0: Better Lattice Security Estimates. In: Lee,
D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer,
Heidelberg (2011)

10. Gama, N., Nguyen, P.Q.: Predicting Lattice Reduction. In: Smart, N.P. (ed.) EU-
ROCRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008)

11. Gama, N., Nguyen, P.Q., Regev, O.: Lattice enumeration using extreme pruning.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 257–278. Springer,
Heidelberg (2010)

12. Kannan, R.: Minkowski’s convex body theorem and integer programming. Mathe-
matics of Operations Research 12(3), 415–440 (1987)

13. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryp-
tion. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer,
Heidelberg (2011)

14. Liu, M., Nguyen, P.Q.: Solving BDD by Enumeration: An Update. In: Dawson, E.
(ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 293–309. Springer, Heidelberg (2013)

15. Lyubashevsky, V., Micciancio, D.: On Bounded Distance Decoding, Unique Short-
est Vectors, and the Minimum Distance Problem. In: Halevi, S. (ed.) CRYPTO
2009. LNCS, vol. 5677, pp. 577–594. Springer, Heidelberg (2009)

16. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D., Jo-
hansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012)

17. Luzzi, L., Stehlé, D., Ling, C.: Decoding by Embedding: Correct Decoding Radius
and DMT Optimality. IEEE Transactions on Information Theory 59(5), 2960–2973
(2013)

18. Micciancio, D., Mol, P.: Pseudorandom Knapsacks and the Sample Complexity of
LWE Search-to-Decision Reductions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 465–484. Springer, Heidelberg (2011)

19. Micciancio, D., Peikert, C.: Hardness of SIS and LWE with Small Parameters. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 21–39.
Springer, Heidelberg (2013)

20. Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J., Buch-
mann, J., Dahmen, E. (eds.) Post Quantum Cryptography, pp. 147–191. Springer
(2009)

21. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) STOC 2005, pp. 84–93. ACM (2005)

22. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. Journal of the ACM 56(6), article 34 (2009)

23. Schnorr, C.P.: Lattice reduction by random sampling and birthday methods. In:
Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 145–156. Springer,
Heidelberg (2003)

http://perso.ens-lyon.fr/damien.stehle/fplll


Privacy-Preserving Wildcards Pattern Matching

Using Symmetric Somewhat Homomorphic
Encryption

Masaya Yasuda1, Takeshi Shimoyama1, Jun Kogure1,
Kazuhiro Yokoyama2, and Takeshi Koshiba3

1 FUJITSU Laboratories Ltd.,
1-1, Kamikodanaka 4-chome, Nakahara-ku, Kawasaki, 211-8588, Japan

{yasuda.masaya,shimo-shimo,kogure}@jp.fujitsu.com
2 Department of Mathematics, Rikkyo University,

Nishi-Ikebukuro, Tokyo 171-8501, Japan
kazuhiro@rikkyo.ac.jp

3 Division of Mathematics, Electronics and Informatics,
Graduate School of Science and Engineering, Saitama University,

255 Shimo-Okubo, Sakura, Saitama, 338-8570, Japan
koshiba@mail.saitama-u.ac.jp

Abstract. The basic pattern matching problem is to find the locations
where a pattern occurs in a text. We give several computations enabling
a client to obtain matching results from a database so that the database
can not learn any information about client’s queried pattern. For such
computations, we apply the symmetric-key variant scheme of somewhat
homomorphic encryption proposed by Brakerski and Vaikuntanathan
(CRYPTO 2011), which can support a limited number of both poly-
nomial additions and multiplications on encrypted data. We also utilize
the packing method introduced by Yasuda et al. (CCSW 2013) for effi-
ciency. While they deal with only basic problems for binary vectors, we
address more complex problems such as the approximate and wildcards
pattern matching for non-binary vectors. To demonstrate the efficiency
of our method, we implemented the encryption scheme for secure wild-
cards pattern matching of DNA sequences. Our implementation shows
that a client can privately search real-world genomes of length 16,500 in
under one second on a general-purpose PC.

1 Introduction

Pattern matching is an essential tool in computer science and it can be applied to
various applications such as text processing, image recognition, database search,
computational biology, and network security. Given an alphabet χ and a text
T ∈ χk of length k. Assume that χ is represented as a set of positive inte-
gers (e.g., the DNA alphabet χ = {A,C,G, T } can be represented as the set
{1, 2, 3, 4}). The exact pattern matching is the most basic, and its problem is to
find all the occurrence of a given pattern P of length σ ⊕ k in T . In addition to

W. Susilo and Y. Mu (Eds.): ACISP 2014, LNCS 8544, pp. 338–353, 2014.
c© Springer International Publishing Switzerland 2014



Privacy-Preserving Wildcards Matching by Homomorphic Encryption 339

the exact version problem, the following problems are required in wider retrieval
applications (see [9, Section 3.1] for details):

(a) The approximate pattern matching problem is to find the locations where
the Hamming distance between P and substrings of T of length σ is less than
a pre-defined threshold α . Sometimes, this problem is called the substring or
the threshold pattern matching.

(b) Let “β” ⊇∈ χ denote a special character, called the wildcard character, that
matches any “single-character” of χ (the wildcard character is usually repre-
sented as 0). Then the problem of pattern matching with wildcards is to find

all the occurrence of a pattern P ∈ (χ ∪ {β})α in a text T ∈ (χ ∪{β})k. For
example, the pattern “TAβ” matches any texts including “TAA”, “TAC”,
“TAG”, and “TAT ” when we use the DNA alphabet.

Recently, pattern matching with preserving a pattern P and/or a text T has been
received much attention in various areas such as privacy-preserving matching of
DNA sequences [2,17,29], secure Hamming distance based biometric authentica-
tion [5,26], and anomaly detection in RFID [18].

1.1 Application Scenario Using Homomorphic Encryption

As an application scenario, we consider the following private search problem; A
server (Bob) has a text T and a client (Alice) has a pattern P . Then Alice wants
to find the locations where her pattern P (approximately) occurs in Bob’s text
T , but she does not want to reveal her queried pattern to Bob. On the other
hand, Bob can not bring his text outside (i.e., we assume that Alice can not
search his text locally), but he has powerful computational resources to search.
In this scenario, Alice wants to know only the matching results, and also wants
to securely outsource expensive matching computations to Bob. Then we apply
the privacy homomorphism approach [28], in which we make use of homomor-
phic encryption supporting meaningful operations on encrypted data without
decryption. Since current homomorphic encryption (e.g., fully homomorphic en-
cryption) can support any targeted operation or circuit on encrypted data, we
can “theoretically” construct the following protocol:

1. Alice generates keys of homomorphic encryption. Then she encrypts the
pattern P , and sends the encrypted pattern to Bob for private search (note
that only Alice knows the secret key).

2. Bob performs pattern matching computations between T and P on en-
crypted data, and sends encrypted computation results back to Alice.

3. Using her own secret key, Alice decrypts data sent from Bob to obtain her
desired matching results.

As long as the secret key is privately managed by Alice herself, Bob can not learn
any information about both her queried pattern and desired matching results.



340 M. Yasuda et al.

Typical Applications. In the real world, an application example of the above
protocol is privately searching of DNA sequences in a genome database such
as GenBank (see http://www.ncbi.nlm.nih.gov/genbank/), which is a typi-
cal database containing publicly available DNA sequences. In addition, the de-
scription in [16] tells that the Human Mitochondrial Genome Database (shortly,
mtDB) has provided a comprehensive database of complete human mitochon-
drial genome collected from GenBank since early 2000. The mtDB gives an online
repository for mitochondrial DNA sequences and it will provide both medical
and human population genetic researchers with access to a common resource for
future studies. In studying with such databases, it is obliviously important to
prevent leakage of queried DNA sequences because it may indicate pre-exposure
of certain health risks. At present, any researcher can bring DNA sequences in
the mtDB locally for studying, but in this paper we assume the restrictive case
where the DNA sequences can not be brought outside (e.g., for privacy regu-
lation), and then we try to apply our homomorphic encryption technology to
search in the mtDB (see §4.3 below). We believe that the above protocol would
be useful for many researchers to securely and privately search in such DNA
databases under strong regulation on privacy of DNA sequences.

1.2 Our Contributions

In evaluating a certain function by homomorphic encryption,performance and
the size of encrypted data are main issues for practical usage. As in [31], we ap-
ply the somewhat homomorphic encryption (SHE) scheme proposed by Brakerski
and Vaikuntanathan [7] to evaluate several matching computations homomor-
phically. Their scheme can be used as a building block for the construction of
a fully homomorphic encryption (FHE) scheme, and it can support only a lim-
ited number of both additions and multiplications but it is much more practical
than FHE1. The authors in [31] also introduced a new method in the scheme
to pack a vector of certain length into a single ciphertext, and gave efficient
matching computations over packed ciphertexts. In the following, we summarize
our contributions;

– The authors in [31] used the public-key scheme of [7, Section 3.2], whereas we
apply the symmetric-key scheme of [7, Section 3.1], which is more suitable
for our scenario of §1.1 and gives more practical performance (see Remark
1 in §4.2). In addition, while the authors in [31] dealt with only basic pat-
tern matching problems for binary vectors, we utilize their packing method
for efficient computations of various matching problems (e.g., the wildcards
matching) for non-binary vectors (see §3). Our method can be applied in the
public-key scheme, and hence this work gives an extension of [31].

– Our main contribution is rather to give informative implementation results
for secure wildcards pattern matching of DNA sequences (see §4.2 and Table

1 We clarify the difference between FHE and SHE; FHE can support any operation or
circuit, while SHE should be designed to evaluate a targeted operation or circuit so
as to avoid the decryption failure (e.g., see §4.1 below for choosing SHE parameters).

http://www.ncbi.nlm.nih.gov/genbank/


Privacy-Preserving Wildcards Matching by Homomorphic Encryption 341

2). These results show how practically our method can applied to a real-world
genome database such as the mtDB (see §4.3).

Notation. The symbols Z, Q, and R denote the ring of integers, the field of
rational numbers, and the field of real numbers, respectively. For a prime number
p, the finite field with p elements is denoted by Fp. For two integers z and d, let
[z]d denote the reduction of z modulo d included in the interval [−d/2, d/2) (the
reduction of z modulo d included in the interval [0, d) is denoted by z mod d as
usual). For a vector A = (a0, a1, . . . , an−1) ∈ R

n, let ||A||∈ denote the ≤-norm
defined by maxi |ai|. Let ←A,B∅ denote the inner product between two vectors
A and B. We let lg(q) denote the logarithm value of an integer q with base 2.

2 Symmetric Encryption Scheme

In this section, we review the construction and the correctness of the symmetric
SHE scheme proposed by Brakerski and Vaikuntanathan [7].

2.1 Construction of the Scheme

The following four parameters are required for the construction;

– n: an integer of 2-power, which defines the base ring R = Z[x]/(f(x)) with
the cyclotomic polynomial f(x) = xn + 1 of degree n. The parameter n is
often called the lattice dimension.

– q: a prime number with q ⇒ 1 mod 2n, which defines the base ring Rq =
R/qR = Fq[x]/(f(x)) of a ciphertext space.

– t: an integer with t < q to determine a plaintext spaceRt = (Z/tZ)[x]/(f(x)).
– τ: the parameter to define a discrete Gaussian error distribution Φ = DZn,β

with the standard deviation τ.

An element in the ring Rq (resp. the ring Rt) can be represented as a polyno-
mial of degree (n−1) with coefficients in {0, 1, . . . , q−1} (resp. {0, 1, . . . , t−1}).
The security of the scheme constructed below relies on the following polyno-
mial learning with errors (LWE) assumption PLWEn,q,γ [7, Section 2] (note that
it does not depend on the parameter t), which is a simplified version of the
ring-LWE assumption of [21] (see also [22, Section 2.4]);

Definition 1 (Polynomial LWE). Given (n, q, τ) with Φ = DZn,β, the poly-
nomial LWE assumption PLWEn,q,γ (in the Hermite normal form) is that it is
infeasible to distinguish the following two distributions (with a polynomial num-
ber of samples);

– One samples (ai, bi) uniformly from (Rq)
2.

– One first draws s ≈ Φ = DZn,β uniformly and then samples (ai, bi) ∈ (Rq)
2

by sampling ai ≈ Rq uniformly, ei ≈ Φ and setting bi = ais+ ei.



342 M. Yasuda et al.

• Key Generation. Choose an element R ⇐ s ≈ Φ as the secret key sk.
• Encryption. For a plaintext m ∈ Rt and sk = s, the encryption first samples

a ≈ Rq and e ≈ Φ, and then compute the “fresh” ciphertext given by

Enc(m, sk) = (c0, c1) = (as+ te+m,−a) ∈ (Rq)
2,

where m ∈ Rt is regarded as an element of Rq in the natural way due to the
condition t < q (cf. the public-key scheme of [7, Section 3.2]).

• Homomorphic Operations. Here we only consider homomorphic opera-
tions between a fresh ciphertext ct = (c0, c1) ∈ (Rq)

2 and a plaintextm≤ ∈ Rt

(in general, homomorphic operations are defined between any two cipher-
texts). The homomorphic addition “�” and multiplication “∗” are respec-
tively given by {

ct�m≤ = (c0 +m≤, c1)
ct ∗m≤ = (c0 ·m≤, c1 ·m≤)

where m≤ is regarded as an element of Rq as in the above encryption proce-
dure. Similarly, the homomorphic subtraction is computed by (c0 −m≤, c1).
Note that the above homomorphic operations do not increase the length of
the original ciphertext (cf. as mentioned in [7, Section 3], the homomorphic
multiplication between two fresh ciphertexts gives a ciphertext with three
elements in Rq).

• Decryption. For a fresh or homomorphically operated ciphertext ct =
(c0, c1) ∈ (Rq)

2, the decryption with the secret key sk = s is computed
by

Dec(ct, sk) = [m̃]q mod t ∈ Rt,

where m̃ = c0 + c1s ∈ Rq. For the secret key vector s = (1, s) of length 2,
we can rewrite Dec(ct, sk) = [←ct, s∅]q mod t.

2.2 Correctness of the Scheme

By correctness, we mean that the decryption can recover the operated result
over plaintexts after certain homomorphic operations over ciphertexts. It follows
from the description in [7, Section 1.1] that we have

{
Dec(ct�m≤) = m+m≤

Dec(ct ∗m≤) = m ·m≤ (1)

for a ciphertext ct corresponding m ∈ Rt and a plaintext m≤ ∈ Rt. In this paper,
we use the correctness (1) for our application scenario of §1.1. We note that the
encryption scheme constructed in §2.1 merely gives an SHE scheme (not an FHE
scheme), and its correctness holds under the following condition:

Lemma 1 (Condition for successful decryption). For a ciphertext ct, the
decryption Dec(ct, sk) recovers the correct result if ←ct, s∅ ∈ Rq does not wrap
around mod q, namely, if the condition ||←ct, s∅||∈ < q

2 is satisfied, where let

||a||∈ = max |ai| for an element a =
⎧n−1

i=0 aix
i ∈ Rq.



Privacy-Preserving Wildcards Matching by Homomorphic Encryption 343

3 Secure Pattern Matching Computations

In this section, we introduce a method to homomorphically evaluate various
pattern matching computations (e.g., exact, approximate, and wildcards pattern
matching introduced in §1) in the symmetric SHE scheme of §2. For simplicity,
we here assume that χ ∩ N and the wildcard character β ⊇∈ χ is represented as
0, and let χ0 = χ ∪ {0} denote the alphabet with the wildcard character.

3.1 Review of Packing Method

A certain special message encoding can considerably reduce performance and
the ciphertext size in performing several meaningful computations on encrypted
data. In this paper, we make use of the packing method proposed in [31]. Its
packing method transforms a vector of length less than n into a certain polyno-
mial of the plaintext space Rt, and then packs it into a single ciphertext. This
idea is fundamentally based on the encoding techniques introduced in [19], which
gives efficient sums and products over large integers such as 128-bit integers. The
main extension of [31] is to give two types of polynomials, and it enables to effi-
ciently compute “multiple inner products” between two vectors. We begin with
the definition of two types of polynomials in the packing method of [31];

Definition 2. Let n be the lattice dimension parameter. For a vector A =
(a0, a1, . . . , am−1) ∈ Z

m of length m ⊕ n, we define two types of polynomials
in the ring R = Z[x]/(xn + 1) as follows:

(I) pm1(A) =
m−1⎪

i=0

aix
i ∈ R,

(II) pm2(A) = −
m−1⎪

i=0

aix
n−i = a0 −

m−1⎪

i=1

aix
n−i ∈ R.

The following property gives us a fundamental idea to obtain efficient multiple
inner products; Let A = (a0, a1, . . . , ak−1) and B = (b0, b1, . . . , bα−1) with σ ⊕
k ⊕ n. Since xn = −1 in the ring R, the polynomial multiplication between
pm1(A) and pm2(B) is equal to

⎨
k−1⎪

i=0

aix
i

⎩
×
⎥

⎦−
α−1⎪

j=0

bjx
n−j



=−
α−1⎪

j=0

k−j−1⎪

h=−j

ah+j · bjxn+h (take h = i− j)

=
k−α⎪

h=0

←A(h),B∅xh + terms of deg.≥k−σ+1, (2)

where A(h) denotes the h-th subvector (ah, ah+1, . . . , ah+α−1) of length σ for 0 ⊕
h ⊕ k−σ. The expression (2) tells us that only one time polynomial multiplication
between pm1(A) and pm2(B) gives multiple inner products ←A(h),B∅ for 0 ⊕
h ⊕ k − σ simultaneously.



344 M. Yasuda et al.

For our application scenario of §1.1, we only need to consider the encryption
of the queried pattern P of length σ which Alice holds. For simplicity, we assume
σ ⊕ n, and encrypt the pattern P with the secret key sk as

ct2 (P) := Enc (pm2(P), sk) ∈ (Rq)
2, (3)

where we consider the polynomial pm2(P) ∈ R as an element of the plaintext
space Rt for sufficiently large t (in this paper, we only use the second type for
the encryption of P , but we can use the first type similarly). The property (2)
and the correctness (1) of the symmetric SHE scheme give the following result
on secure multiple inner products (cf. [31, Proposition 1]):

Proposition 1. We assume σ ⊕ k ⊕ n and let T = (t0, t1, . . . , tk−1) ∈ χk
0 be

a text of length k. For a pattern P = (p0, p1, . . . , pα−1) ∈ χα
0 of length σ, let

ct2 (P) be its ciphertext given by (3). Then, under the condition of Lemma 1,
the decryption of the homomorphic multiplication

pm1(T ) ∗ ct2 (P) ∈ (Rq)
2

gives a polynomial of Rt with the xi-th coefficient equal to ←T (i),P∅ =
α−1⎪

j=0

ti+j ·pj
for 0 ⊕ i ⊕ k − σ modulo t. In other words, for sufficiently large t, the homo-
morphic multiplication of pm1(T ) and ct2 (P) simultaneously computes multiple
inner products ←T (i),P∅ for each 0 ⊕ i ⊕ k − σ on encrypted data.

3.2 Exact and Approximate Pattern Matching

Set T = (t0, t1, . . . , tk−1) ∈ χk, P = (p0, p1, . . . , pα−1) ∈ χα with σ ⊕ k (we here
do not consider the wildcard character). For the exact and approximate pattern
matching problems (see the first paragraph in §1 for the problems), we consider
the squared Euclidean distance between T (i) and P given by

α−1⎪

j=0

(pj − ti+j)
2
=

α−1⎪

j=0

(
p2j − 2pj · ti+j + t2i+j

)
(4)

for each 0 ⊕ i ⊕ k − σ. A simple observation shows that for fixed i, the pattern
P occurs at the i-th position in T if and only if the distance (4) is equal to
zero. Therefore the computation (4) tells us an answer of the exact pattern
matching problem. Moreover, for binary vectors T and P , the computation (4)
is just the Hamming distance, and hence it also gives the approximate pattern
matching computation. On the other hand, for non-binary vectors T and P ,
we need to transform T and P to unary encoded vectors, that is, each entry
ti, pj ∈ χ can be encoded as t≤i, p

≤
j ∈ {0, 1}|κ| with all 0s except for a single

1 in the place representing ti, pj lexicographically. Note that if ti ⊇= pj, then
the computation (4) between two vectors t≤i, p

≤
j ∈ {0, 1}|κ| gives the Hamming

distance 2 instead of 1. Therefore the computation (4) between unary encoded



Privacy-Preserving Wildcards Matching by Homomorphic Encryption 345

vectors T ≤ = (t≤0, . . . , t
≤
k−1) and P ≤ = (p≤0, . . . , p

≤
α−1) gives 2dH(T (i),P), where let

dH denote the Hamming distance between two strings.
To homomorphically evaluate multiple distance values (4) for 0 ⊕ i ⊕ k − σ

in the symmetric SHE scheme, we define the following notation; For a positive
integer m, let vm denote the vector (1, 1, . . . , 1) of length m. Furthermore, for a
vectorA = (a0, a1, . . . , ak), its component-wisem-power vector (am0 , a

m
1 , . . . , a

m
k )

is denoted by Am. Then we obtain the following result on secure exact and
approximate pattern matching computations:

Theorem 1. Under the condition of Lemma 1, the linear combination of ho-
momorphic operations

pm1(T 2) ∗ pm2(vα)� pm1(vk) ∗ ct2(P2)� (−2pm1(T )) ∗ ct2 (P) (5)

simultaneously computes multiple values (4) for 0 ⊕ i ⊕ k− σ on encrypted data.
Concretely, the homomorphic operation (5) gives a polynomial of Rt with the
xi-coefficient equal to the value (4) for each 0 ⊕ i ⊕ k − σ on encrypted data.

Proof. The property (2) shows that each xi-coefficient of pm1(T 2) ∗ pm2(vα) is
equal to the sum

(t2i , t
2
i+1, . . . , t

2
i+α−1) · (1, 1, . . . , 1)T =

α−1⎪

j=0

t2i+j for 0 ⊕ i ⊕ k − σ,

where AT denotes the transpose of a vector A. In addition, Proposition 1 tells
that the homomorphic multiplication pm1(vk) ∗ ct2(P2) (resp. (−2pm1(T )) ∗
ct2 (P)) computes a polynomial with the xi-coefficient equal to the sum

α−1⎪

j=0

p2j

⎥

⎦resp. − 2

α−1⎪

j=0

pj · ti+j





for each 0 ⊕ i ⊕ k − σ on encrypted data. Finally, by the correctness (1), the
homomorphic operation (5) computes a polynomial of Rt with the xi-coefficient
equal to the value (4) for each 0 ⊕ i ⊕ k− σ on encrypted data, which completes
the proof. ∗�

3.3 Wildcards Pattern Matching

Set T = (t0, t1, . . . , tk−1) ∈ χk
0 , P = (p0, p1, . . . , pα−1) ∈ χα

0 with σ ⊕ k (unlike
in §3.2, we consider the alphabet χ0 with the wild character). According to [30],
for each 0 ⊕ i ⊕ k − σ, we need to consider the sum

α−1⎪

j=0

pj · ti+j (pj − ti+j)
2 =

α−1⎪

j=0

(
p3j · ti+j − 2p2j · t2i+j + pj · t3i+j

)
(6)

for wildcards pattern matching (see the problem (b) in §1). Note that if pj or
ti+j is a wildcard, the j-th term in the sum equals to 0. Similarly, if pj = ti+j ,



346 M. Yasuda et al.

Alice (a pattern P ∈ Δβ
0) Bob (a text T ∈ Δk

0 )

1. Generate the secret key sk of the sym-
metric SHE scheme, and encrypt P ,P2,P3

as (3), and generate ct2(P), ct2(P2), ct2(P3) ct2(P), ct2(P2), ct2(P3)
−−−−−−−−−−−−−−−−−−−→ 2. Generate pm1(T ), pm1(T 2), pm1(T 3),

and compute the homomorphic operation
3. Decrypt ctspm to obtain her desired ←−−−−−−−−−−−−−−−−−−− ctspm given by (7) in Theorem 2
polynomial f(x) ∈ Rt (ctspm, k)
4. Output 0 ≤ i ≤ k − κ such that the xi-
coefficient of f(x) equals to 0, then she can
know all matching locations by Theorem 2

Fig. 1. Our protocol of secure wildcards pattern matching, which preserves the privacy
of a queried pattern and matching results from Bob (assume κ ≤ k ≤ n for the packing
method described in §3.1)

the j-th term is also equal to 0. Thus the entire sum equals to 0 if and only
if the pattern P matches the i-th substring T (i). Hence, for wildcards pattern
matching, it is enough to compute the sum (6) for all 0 ⊕ i ⊕ k − σ. Here we
give the following result on evaluation of multiple values (6) for 0 ⊕ i ⊕ k− σ in
the symmetric SHE scheme;

Theorem 2. Under the condition of Lemma 1, the linear combination of ho-
momorphic operations

pm1(T ) ∗ ct2(P3)� pm1(T 3) ∗ ct2(P)�
(−2pm1(T 2)

) ∗ ct2
(P2

)
(7)

simultaneously computes multiple values (6) for 0 ⊕ i ⊕ k− σ on encrypted data.
As in Theorem 1, the computation (7) gives a polynomial of Rt such that the
xi-coefficient is equal to the value (6) for each 0 ⊕ i ⊕ k − σ on encrypted data.

Proof. The proof is almost the same as that of Theorem 1. In particular, we
remark that three homomorphic multiplications pm1(T ) ∗ ct2(P3), pm1(T 3) ∗
ct2(P), and −2pm1(T 2) ∗ ct2(P2) respectively correspond to three sums

α−1⎪

j=0

p3j · ti+j ,

α−1⎪

j=0

pj · t3i+j , and − 2

α−1⎪

j=0

p2j · t2i+j

on the plaintext space by Proposition 1. ∗�
By (5) and (7), we can perform a variety of secure pattern matching computa-

tions by combinations of only a few homomorphic additions and multiplications.
In particular, for secure wildcards pattern matching, we give the detailed pro-
tocol flow in Figure 1 (as noted in §1.1, as long as the secret key sk is managed
by Alice herself, Bob cannot learn any information about both her queried pat-
tern and matching results). The protocol is secure under the assumption that
Bob is semi-honest (also known as honest-but-curious), i.e., he always follows
the protocol but tries to learn information from the protocol. Furthermore, note
that the security of the protocol holds under the polynomial LWE assumption
PLWEn,q,γ, on which the security of the symmetric SHE scheme relies.



Privacy-Preserving Wildcards Matching by Homomorphic Encryption 347

As in [31], our protocol gives a decryptor (i.e., Alice in this paper) more
information than desired matching positions, but there is no problem in our
application because Alice wants to search in a database only with preserving the
confidentiality of her queried pattern. However, more useful applications would
be required to compute the minimum Hamming distance between a pattern and
string texts, and in such applications, this work only gives a building block for
secure pattern matching. For such complex applications, other techniques such
as zero-knowledge protocols and oblivious transfer would be necessary (e.g., see
the survey paper [9]).

4 Experimental Evaluation

In this section, we give informative implementation results to demonstrate the
efficiency of our method. Specifically, we implemented the protocol shown in
Figure 1 for the application scenario of §1.1 on the private search problem with
wildcards. For simplicity, we assume χ = {1, 2, 3, 4}, which can be typically used
as a representation of the DNA alphabet (i.e., χ0 = {0, 1, 2, 3, 4}).

4.1 Chosen Parameters of Symmetric SHE Scheme

In the protocol of Figure 1, we need to evaluate the computation (7). Our method
to choose suitable parameters is based on the methodology in [19], which is also
based on [20]. For simplicity, we assume n ≥ k ≥ σ ≥ 1, which condition enables
to handle each vector of a text T ∈ χk

0 and a pattern P ∈ χα
0 as only one block

(if n < k, the packing method of §3.1 enforces to divide T into ∨n/k� blocks of
length less than n, and it causes difficulty of handling boundary of blocks).

Correctness Side. For the correctness of the ciphertext ctspm given by the
equation (7), it requires the condition of Lemma 1. The homomorphic property
of the symmetric SHE scheme shows that the element ←ctspm, s∅ is equal to

pm1(T ) · ←ct2(P3), s∅+ pm1(T 3) · ←ct2(P), s∅ − 2pm1(T 2) · ←ct2(P2), s∅
in the ring Rq (see also the proof of [19, Lemma 3.3]). Note that we clearly have
||pm1(T m)||∈ ⊕ 4m for m ≥ 1 by the assumption of χ0 = {0, 1, 2, 3, 4} and
T ∈ χk

0 . Set U to be an upper bound of the ≤-norm size ||←ct, s∅||∈ for any
fresh ciphertext ct ∈ (Rq)

2. Then we have an inequality

||←ctspm, s∅||∈ ⊕ 4nU + 43nU + 2 · 42nU ⊕ 27nU (8)

by ||←ct2(Pm), s∅||∈ ⊕ U for m = 1, 2, 3 and the fact [19, Lemma 3.2] that we
have ||a + b||∈ ⊕ ||a||∈ + ||b||∈ and ||a · b||∈ ⊕ n · ||a||∈ · ||b||∈ for any two
elements a, b ∈ Rq. For a fresh ciphertext ct, the size ||←ct, s∅||∈ is approximately
equal to t · ||e||∈ with e ≈ Φ = DZn,β from the encryption procedure in §2.1.
Here we assume ||e||∈ ⊕ 8τ for any noises e ≈ Φ since the value erfc(8) ≈
2−96 of complementary error function is sufficiently small (cf. erfc(2) ≈ 2−8



348 M. Yasuda et al.

and erfc(4) ≈ 2−26). Then we set U = 8tτ for the successful correctness with
overwhelming probability 1 − 2−96. Then, by the inequality (8) and Lemma 1,
we estimate that the correctness of the ciphertext ctspm holds if

27n · 8tτ = 210ntτ <
q

2
⇐⇒ 211ntτ < q, (9)

which condition gives a lower bound of the prime q.

Security Side. As noted in §2.1, the security of the symmetric SHE scheme
relies on the polynomial LWE assumption PLWEn,q,γ. In this work, we follow
the methodology of Lindner and Peikert [20] for the security analysis of the
more general LWE problem. According to their work, there are two efficient
attacks against the LWE problem, namely, the distinguishing attack proposed
in [23], and the decoding attack proposed in [20]. Although the analysis in [20]
shows that the decoding attack is always stronger than the distinguishing one,
the two attacks have a similar performance for practical advantages such as
π = 2−32 and 2−64. Therefore, as in [19], we consider the security against only the
distinguishing attack. The security of the distinguishing attack can be measured
by so called the root Hermite factor, which was firstly introduced in [11] (as
the root Hermite factor is smaller, the security is higher). For given parameters
(n, q, t, τ) of the symmetric SHE scheme, the analysis of [20] gives us the relation

c · q/τ = 22
√

n·lg(q)·lg(χ) (10)

between n, q and Σ, where c is the constant determined by the attack advantage
π, and we here assume c = 3.758 corresponding to π = 2−64 for higher security
than [19], in which π = 2−32 is considered (c = 2.657 in this case).

Chosen Parameters and Their Security Level. Set τ = 8 to make the
scheme secure against combinatorial style attacks as noted in [13, Appendix
D]. Since the sum of the equation (6) is included in the range [0, 28σ], we set
t = 28n ≥ 28σ in order to avoid the carry operation. We also consider five lattice
dimensions n = 2048 ∼ 32768 in order to correspond various applications. For
each lattice dimension, the prime parameter q is determined by the condition
(9), and then the root Hermite factor Σ can be calculated by the relation (10).
In Table 1, we show our chosen five parameters (i)-(v).

According to the state-of-the-art security analysis of Chen and Nguyen [8]
for lattice-based cryptography, a root Hermite factor smaller than Σ = 1.0050 is
estimated to have much more than 80-bit security (note that lattice dimensions
less than n = 2048 have the root Hermite factor larger than 1.0050, and hence
such dimensions do not give the enough security). Therefore all parameters in
Table 1 are estimated to have 80-bit security level with an enough margin against
the distinguishing attack with advantage π = 2−64, and also against the more
powerful decoding attack (as the lattice dimension n is larger, the security level
becomes higher). Different from [8], the authors in [20] simply estimate the
running time from NTL implementation experiments of the BKZ algorithm,



Privacy-Preserving Wildcards Matching by Homomorphic Encryption 349

Table 1. Chosen parameters (n, q, t, χ) of the symmetric SHE scheme for the protocol
of Figure 1 (see Appendix A for the root Hermite factor Υ and the “roughly” estimated
running time lg(tAdv) of the distinguishing attack)

n q t χ Υ lg(tAdv)

(i) 2048 45-bit 28n 8 1.00363 234
(ii) 4096 47-bit 28n 8 1.00190 547
(iii) 8192 49-bit 28n 8 1.00099 1150
(iv) 16384 51-bit 28n 8 1.00052 2290
(v) 32768 53-bit 28n 8 1.00027 4530

which is one of the most practical attacks against lattice problems. In [20], they
also derive a relation of the expected running time tAdv of the distinguishing
attack with the root Hermite factor Σ given by

lg(tAdv) =
1.8

lg(Σ)
− 110. (11)

For chosen parameters (i)-(v) in Table 1, the expected running time tAdv by the
above relation is also given in the same table. We remark that their security
analysis seems no longer state-of-the-art due to the old NTL implementation,
and hence the expected running time in Table 1 is just at the reference level.
However, their analysis tells us a rough standard of the security level of each
parameter. According to the values lg(tAdv) in Table 1, all our chosen parameters
are estimated to have much more than 80-bit security level as noted in the first
paragraph. In particular, three parameters (iii)-(v) are estimated to have more
than 1000-bit security level.

4.2 Implementation Details

For five parameters (i)-(v) in Table 1, we implemented the symmetric SHE
scheme for our protocol of secure wildcards pattern matching shown in Fig-
ure 1. Our experiments ran on an Intel Xeon X3480 at 3.07 GHz with 16 GB
memory, and we used our software library using inline assembly language x86 64
in C programs for all computations in the base ring Rq = Fq[x]/(x

n + 1) of
the ciphertext space. Our C code was complied using gcc 4.6.0 on Linux. In
particular, we used the Montgomery reduction algorithm and the FFT (Fast
Fourier Transform) method for efficient multiplication in the ring Rq (in our im-
plementation, the FFT method gives the faster performance than the Karatsuba
multiplication algorithm). In Table 2, we summarize the performance and the
bandwidth of the protocol of Figure 1 for DNA sequences. As described in Figure
1, for a fixed lattice dimension n, our protocol can pack a queried pattern vector
P of length less than n into three ciphertexts ct2(P), ct2(P2), ct2(P3), and the
homomorphic operation (7) in Theorem 2 enables to perform secure wildcards
pattern matching for DNA sequences of length less than n. In the following, we
give details of the performances and the sizes only for the parameter (i) with



350 M. Yasuda et al.

n = 2048 in Table 1 (due to our optimized implementation, our performance is
faster than [19, Table 2], in which the computer algebra system Magma is used);

– The size of the key sk = s ∈ Rq of the scheme is n · lg(q) ≈ 11.5 KB. A fresh
ciphertext has two elements in the ring Rq, and hence its size is 2n·lg(q) ≈ 23
KB. Therefore the size of three packed ciphertexts ct2(P), ct2(P2), ct2(P3)
is about 3 × 23 = 69 KB. Furthermore, the ciphertext ctspm given by the
homomorphic operation (7) has only two ring elements in Rq as well as a
fresh ciphertext, and its size is about 23 KB.

– The packed encryption for three vectors P ,P2,P3 of length less than n =
2048 took about 3×3.498 ≈ 10.49 milliseconds (ms) to generate three packed
ciphertexts ct2(P), ct2(P2), ct2(P3), the secure wildcards pattern matching
computation (7) took about 18.33 ms, and finally the decryption took about
5.99 ms. Hence the total time is about 34.92 ms for secure wildcards pattern
matching for DNA sequences of length less than n = 2048.

Remark 1. Our platform and implementation level are almost the same as in
[31]. In particular, as well as in [31], our software library with assembly-level
optimizations give the fast performance of the 64-bit × 64-bit → 128-bit multi-
plication, which needs only about 4 clocks on our platform. When we implement
the same operations in standard C programs without assembly-level optimiza-
tions, it needs about 4 × 4 = 16 clocks and hence our performance results in
Table 2 would be 4 ∼ 5 times slower.

Although we implemented the symmetric scheme in this paper, the perfor-
mance of our protocol for each lattice dimension n in Table 2 is slower than [31,
Table 3], in which the public-key scheme is used. The main reason is that our
secure computation (7) is more complex than the matching computation in [31,
Theorem 1] in order to perform the wildcards matching, and our parameters are
chosen to handle DNA sequences (cf. only the exact and approximate matching
computations for binary vectors can be performed in [31]). Specifically, when we
evaluate the secure computation (7) homomorphically in the public-key scheme
as in [31], larger q must be chosen for the correctness. For example, we estimate
that it needs to set q > 64-bit (q ≈ 70-bit is sufficient) for the case n = 32768
(cf. it needs q < 64-bit for the parameter (v) in Table 1). Therefore, in this case,
we need to compute the 128-bit × 128-bit → 256-bit multiplication for efficient
multiplication in the base ring Rq of the ciphertext space, and hence the perfor-
mance of the secure computation (7) in the public-key scheme is estimated to
be at least 2 ∼ 3 times slower (in fact, it would be 5 ∼ 10 times slower) than
our performance shown in Table 2 (v).

4.3 Use Case: Application to the mtDB

As introduced in §1.1, the mtDB [16] is a database in which anyone can search for
comprehensive information on human mitochondrial genome. According to [16],
a full mitochondrial DNA sequence in the mtDB has at most 16,500 characters in
length, and any user can input up to 10 DNA characters including the wildcards



Privacy-Preserving Wildcards Matching by Homomorphic Encryption 351

Table 2. Performance and bandwidth of the protocol of Figure 1 (the secure matching
computation (7) in Theorem 2 enables to perform secure wildcards pattern matching
for DNA sequences of length less than n)

Parameters
Performance (ms) Bandwidth (KB)

in Table 1
Packed enc. Secure match

Decryption
Total time of Alice Bob

for P ,P2,P3 comp. (7) the protocol to Bob to Alice

(i) 10.49 18.33 5.99 34.92 69 23

(ii) 22.72 39.88 13.07 75.90 144 48

(iii) 50.90 90.10 29.59 171.03 300 100

(iv) 118.31 212.06 69.79 404.05 627 209

(v) 257.76 467.51 152.99 880.04 1302 434

character as a queried pattern (see http://www.mtdb.igp.uu.se/ for the web
page of searching in the mtDB). In applying our protocol of Figure 1 to the
mtDB, the parameter (i) in Table 1 with n = 2048 enforces us to divide a DNA
sequence of length 16,500 into at least 8 ≈ 16500/2048 blocks of length 2048. On
the other hand, the parameter (v) with n = 32768 is sufficient to handle a DNA
sequence in the mtDB as “only one block”, and hence it can release difficulty
of handing boundary of blocks for privacy-preserving matching computations
in the mtDB. Moreover, according to Table 2, the parameter (v) enables to
perform secure wildcards pattern matching in about 880.04 ms, which would
be sufficiently practical in real life. In 2013, Beck and Kerschbaum [4] proposed
a privacy-preserving string matching protocol using encrypted Bloom filters by
the additively homomorphic encryption scheme proposed by Naccache and Stern
[25]. As well as in this paper, they reported in [4, Section VI] that in applying
their protocol to the mtDB, it took about 286 seconds on a Linux laptop with
an Intel Core2 Duo T9600 at 2.8 GHz, which is much slower than ours (though
platforms and implementation levels are quite different). This gives an evidence
in support of the claim that our protocol has the considerably fast performance
for privacy-preserving pattern matching of DNA sequences in the setting of §1.1.
In addition, our protocol has the much lower bandwidth than their protocol.
Specifically, while their protocol for DNA sequences of length 12,800 requires
18636 KB bandwidth for transmission from Alice to Bob, and 123 KB from
Bob to Alice (see [4, Table 1] for the bandwidth of their protocol), our protocol
requires only 1,302 KB from Alice to Bob, and 434 KB from Bob to Alice in
using the parameter (v) (see the bandwidth of our protocol shown in Table 2).

5 Conclusions

We utilized the packing method of [31] in the symmetric-key variant of SHE
scheme of [7] to obtain practical secure computations of various pattern match-
ing problems. In this paper, we implemented several parameters of the encryption
scheme with n = 2048 ∼ 32768 in order to correspond various applications. Our
implementation showed that our protocol of secure wildcards pattern matching

http://www.mtdb.igp.uu.se/


352 M. Yasuda et al.

computation for DNA sequences has both faster performance and lower commu-
nication cost than the state-of-the-art work. In particular, we showed that the
lattice dimension n = 32768 can be practically applied to a private search in the
mtDB [16] including DNA sequences of length up to 16,500.

References

1. Atallah, M.J., Frikken, K.B.: Securely outsourcing linear algebra computations.
In: ACM Symposium on Information, Computer and Communication Security,
ASIACCS 2010, pp. 48–59. ACM Press, New York (2010)

2. Baldi, P., Baronio, R., De Crisofaro, E., Gasti, P., Tsudik, G.: Countering gattaca:
efficient and secure testing of fully-sequenced human genomes. In: ACM Conference
on Computer and Communications Security, CCS 2011, pp. 691–702. ACM (2011)

3. Baron, J., El Defrawy, K., Minkovich, K., Ostrovsky, R., Tressler, E.: 5PM: secure
pattern matching. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485,
pp. 222–240. Springer, Heidelberg (2012),
http://eprint.iacr.org/2012/698.pdf

4. Beck, M., Kerschbaum, F.: Approximate two-party privacy-preserving string
matching with linear complexity. In: IEEE International Congress on Big Data,
pp. 31–37. IEEE (2013)

5. Blanton, M., Gasti, P.: Secure and efficient protocols for iris and fingerprint
identification. In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879,
pp. 190–209. Springer, Heidelberg (2011)

6. Boneh, D., Gentry, C., Halevi, S., Wang, F., Wu, D.J.: Private database queries
using somewhat homomorphic encryption. In: Jacobson, M., Locasto, M., Mohas-
sel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 102–118. Springer,
Heidelberg (2013)

7. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE
and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011)

8. Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee,
D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer,
Heidelberg (2011)

9. El Defrawy, K., Faber, S.: Blindfolded searching of data via secure pattern match-
ing. IEEE Computer Magazine’s Special Issue (2013) (to appear)

10. Frikken, K.B.: Practical private DNA string searching and matching through ef-
ficient oblivious automata evaluation. In: Gudes, E., Vaidya, J. (eds.) Data and
Applications Security XXIII. LNCS, vol. 5645, pp. 81–94. Springer, Heidelberg
(2009)

11. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N.P. (ed.)
EUROCRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008)

12. Gennaro, R., Hazay, C., Sorensen, J.S.: Text search protocols with simulation based
security. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp.
332–350. Springer, Heidelberg (2010)

13. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867.
Springer, Heidelberg (2012)

14. Hazay, C., Lindell, Y.: Efficient protocols for set intersection and pattern matching
with security against malicious and convert adversaries. In: Canetti, R. (ed.) TCC
2008. LNCS, vol. 4948, pp. 155–175. Springer, Heidelberg (2008)

http://eprint.iacr.org/2012/698.pdf


Privacy-Preserving Wildcards Matching by Homomorphic Encryption 353

15. Hazay, C., Toft, T.: Computationally secure pattern matching in the presence of
malicious adversaries. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp.
195–212. Springer, Heidelberg (2010)

16. Ingman, M., Gyllensten, U.: mtDB: Human Mitochondrial Genome Database, a
resource for population genetics and medical sciences. Nucleic Acids Research 34,
749–751 (2006)

17. Katz, J., Malka, L.: Secure text processing with applications to private DNAmatch-
ing. In: ACM Conference on Computer and Communication Security, CCS 2010,
pp. 485–492. ACM (2010)

18. Kerschbaum, F., Oertel, N.: Privacy-preserving pattern matching for anomaly de-
tection in RFID anti-counterfeiting. In: Ors Yalcin, S.B. (ed.) RFIDSec 2010.
LNCS, vol. 6370, pp. 124–137. Springer, Heidelberg (2010)

19. Lauter, K., Naehrig, M., Vaikuntanathan, V.: Can homomorphic encryption be
practical? In: ACM Workshop on Cloud Computing Security Workshop, CCSW
2011, pp. 113–124. ACM (2011)

20. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryp-
tion. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer,
Heidelberg (2011)

21. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010)

22. Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptography.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
35–54. Springer, Heidelberg (2013)

23. Micciancio, D., Regev, O.: Worst-case to average-case reduction based on gaussian
measures. SIAM J. Computing 37(1), 267–302 (2007)

24. Mohassel, P., Niksefat, S., Sadeghian, S., Sadeghiyan, B.: An efficient protocol for
oblivious DFA evaluation and applications. In: Dunkelman, O. (ed.) CT-RSA 2012.
LNCS, vol. 7178, pp. 398–415. Springer, Heidelberg (2012)

25. Naccache, D., Stern, J.: A new cryptosystem based on higher residues. In: ACM
Conference on Computer and Communication Security, CCS 1998, pp. 59–66 (1998)

26. Osadchy, M., Pinkas, B., Jarrous, A., Moskovich, B.: SCiFI - a system for secure
face recognition. In: IEEE Security and Privacy, pp. 239–254. IEEE (2010)

27. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

28. Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomor-
phism. Foundations of Secure Computation, 169–177 (1978)

29. Troncoso-Pastoriza, J.R., Katzenbeisser, S., Celik, M.: Privacy preserving error re-
silient DNA searching through oblivious automata. In: ACM Conference on Com-
puter and Communications Security, CCS 2007, pp. 519–528. ACM (2007)

30. Vergnaud, D.: Efficient and secure generalized pattern matching via fast fourier
transform. In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 2011. LNCS,
vol. 6737, pp. 41–58. Springer, Heidelberg (2011)

31. Yasuda, M., Shimoyama, T., Kogure, J., Yokoyama, K., Koshiba, T.: Secure pattern
matching using somewhat homomorphic encryption. In: ACM Workshop on Cloud
Computing Security Workshop, CCSW 2013, pp. 65–76. ACM (2013)



Once Root Always a Threat:

Analyzing the Security Threats
of Android Permission System�

Zhongwen Zhang1,2,3, Yuewu Wang1,2, Jiwu Jing1,2,
Qiongxiao Wang1,2, and Lingguang Lei1,2

1 Data Assurance and Communication Security Research Center, Beijing, China
2 State Key Laboratory of Information Security,

Institute of Information Engineering, CAS, Beijing, China
3 University of Chinese Academy of Sciences, Beijing, China

{zwzhang,ywwang,jing,qxwang,lglei}@lois.cn

Abstract. Android permission system enforces access control to those
privacy-related resources in Android phones. Unfortunately, the permis-
sion system could be bypassed when the phone is rooted. On a rooted
phone, processes can run with root privilege and can arbitrarily access
any resources without permission. Many people are willing to root their
Android phones to uninstall pre-installed applications, flash third party
ROMs, backup their phones and so on. People use rootkit tools to root
their phones. The mainstream rootkit tools in China are provided by
some well-known security vendors. Besides root, these vendors also pro-
vide the one-click-unroot function to unroot a phone. The unroot process
gives users a feeling that their phones will roll back to the original safe
state. In this paper, we present the security threats analysis of permission
system on phones rooted once and unrooted later. On these phones, two
categories of attacks: tampering data files attack and tampering code
files attack are carried out. Also, the attacks’ detection rate, damage
degree, influence range, and survivability in the real word are analyzed.
Analysis result shows even under Antivirus’ monitoring, these attacks
towards permission system can still be carried out and survive after the
phone is unrooted. Therefore, the permission system faces a long-term
compromise. The potential defense solutions are also discussed.

Keywords: Android, Permission System, Rooted Time Window.

1 Introduction

Android permission system is one of the most important security mechanism for
protecting critical system resources on Android phones. Android phones con-
tain numerous privacy-related system resources, such as various sensors, sensi-
tive data, and important communication modules. Abusing these resources will

� The work is supported by a grant from the National Basic Research Program of
China (973 Program, No. 2013CB338001).

W. Susilo and Y. Mu (Eds.): ACISP 2014, LNCS 8544, pp. 354–369, 2014.
c© Springer International Publishing Switzerland 2014



Once Root Always a Threat 355

result in serious leakage of users’ private data and even financial loss. To pre-
vent the privacy-related resources from being abused, permission system ensures
only the applications (apps) granted certain permissions can access correspond-
ing resources. Otherwise, the access request will be rejected. In Android sys-
tem, permissions that an app possesses represent the app’s capability to access
resources.

Besides permissions, root privilege is another resource access capability. Nowa-
days, it is common for users to root Android phones. According to [23], 23%
Android phones are rooted at least one time in China mainland by the first half
of 2012. After a phone is rooted, users can fully control it. For example, they
can remove the disliked pre-installed apps, custom personalized system, backup
their phones, and flash third party ROMs.

Getting root privilege is a big challenge to permission system. With root priv-
ilege, the highest privilege in user mode, malware can access sensitive database
files (e.g. SMS and Contact databases files) and hardware interfaces (e.g. Cam-
era, Microphone) without getting corresponding permissions beforehand. In this
kind of resource accessing, permission system does not play any role. That is
to say, the permission system can be bypassed. We call this kind of attacks as
bypass attacks. Moreover, YaJin Zhou et al.’s work [33] reveals 36.7% malware
leveraged root-level exploits to fully compromise the Android security. As the
threats brought by root become more and more serious, users are motivated to
unroot their Android phones. Besides, the mainstream rootkits in China main-
land provide the one-click-unroot function, which makes unroot process easy to
be carried out. For example, the unroot process of Baidu, Tencent, and 360 takes
less than 1 minute. For convenience of description, we call the time between root
and unroot as a rooted time window.

Will unroot prevent Android system from suffering security threat? Unrooting
a phone will make malware lose root privilege. For the bypass attacks, without
root privilege, malware cannot access system resources any more. Also, that the
permissions system is bypassed not means it is compromised. When malware
lose root privilege, they subject to the permission system’s access control again.
Therefore, unroot can defend the bypass attack towards permission system. How-
ever, we wonder if there are other attacks happened in rooted time window and
cannot be defended by unroot. To answer this question, we analyzed the imple-
mentation of permission system.

Permission system is composed of data files and code files. Data files include a
metadata file named packages.xml and installation files (apk files). Both of them
contain app’s permissions, and they are protected by nothing but the UNIX file
system access control mechanism. By tampering the packages.xml file or the apk
files with root privilege, we carry out 3 kinds of attacks to escalate permissions.
By doing this, even after a phone is unrooted, the escalated permissions still
open a backdoor for malware to abuse system resources. What is more, we also
explore the feasibility of removing access control of permission system by tam-
pering its code files. The feasibility of this attack is verified on Galaxy Nexus,



356 Z. Zhang et al.

which is a phone supporting Android Open Source Project. This way could fully
compromise the permission system and open a backdoor for all apps.

To evaluate the practical effectiveness of these attacks, we run our demo mal-
ware under Antivirus’ (AV) monitoring at the rooted time window. The result
shows these attacks have a 100% rate to evade detection of AVs in China and
80% abroad. To permission escalation attacks, more than one half of escalated
permissions can hide from permission list provided by AVs. Besides this, damage
degree, influence range, and survivability after unroot are also analyzed.

The main contributions of this paper are listed as follows:

– To the best of our knowledge, we primarily analyzed the implementation of
permission system and illustrated 4 attack models from the perspective of
tampering data files or tampering code files of permission system.

– We evaluated the attacks in the aspects of evasion rate, damage degree,
influence range, and survivability. The analysis result indicates that even
under AVs’ monitoring, attacks can be carried out at rooted time window
and survive after the phone is unrooted.

The remaining part of this paper is organized as follows. Section 2 describes
the problem statement; Section 3 shows tampering data files attacks; Section 4
describes tampering code files attacks; Section 5 evaluates the attacks; Section 6
discusses potential defenses solutions, Section 7 discusses the related work, and
Section 8 shows our conclusion.

2 Problem Statement

Android gives each app a distinct Linux user ID (UID) at installation time.
Normally, the UID given to each app is bigger than 10000. Once the UID is given,
it cannot be changed on the same phone. Each app is regarded as an unique
Linux user and runs in its own process space. The systemserver is the most
important process in Android system. Many significant system services, such as
PackageManager service, ActivityManager service, are running as a thread of
the systemserver process. Many system resources, such as GPS, Bluetooth, are
managed by the systemserver process. The systemserver also has an independent
process space, whose UID is set as 1000. When the phone is rooted, an app could
change its UID to 0, which is the UID of root. The UID of the systemserver is
not affected, which is still 1000.

Users can use rootkit tools to root their phones. The mainstream rootkit tools
in China are provided by Baidu, Tencent, LBE, and 360 etc. These tools pro-
vide not only the one-click-root function but also the one-click-unroot function.
When a user wants to root his phone, he only needs to push the one-click-root
button. After several minutes, the rooting process is finished and his phone is
rooted. During the rooting process, the rootkit tool first exploits Linux vulnera-
bilities [10] to temporarily get root privilege. The Linux vulnerabilities could be:
ASHMEM, Exploid, Gingerbeak, Levitator, Mempodroid, RageAgainstTheCage,
Wunderbar, ZergRush, and Zimperlich. Next, the tool places a customized “su”



Once Root Always a Threat 357

binary file into /system/bin or /system/xbin directory. At last, the tool sets the s
attribute to the “su” binary file. With s attribute, the “su” binary file could run
with root privilege. If the user pushes the one-click-unroot button, the added
“su” file will be deleted, which means the phone is unrooted. The unrooting
process takes less than 1 minute.

Several reasons attract people to root their phones. After the phone is rooted,
they can uninstall the disliked system apps, which cannot be uninstalled before.
Besides this, the user also could flash a third party ROM to his phone, backup
his phone, customize Android system and so on. The website [20] lists 10 reasons
attracting users to root their phones, let alone those mobile forums. According
to [23], 23% Android phones had been rooted at least once in China mainland
by the first half of 2012.

Taking advantage of the rooted phone vulnerability, many attacks can be car-
ried out. After a phone is rooted, attackers could do anything using a malware,
which is in the form of an app. For example, with root privilege, the malware
could directly call libgps.so to access GPS location without using the system-
server process. Moreover, YaJin Zhou et al.’s work [33] reveals 36.7% malware
leveraged root-level exploits to fully compromise the Android security. The mal-
ware DroidKungFu [22] is a typical example. As the security threats on a rooted
phone become more and more serious, users want to unroot their phones as soon
as possible.

We assume that the attacker’s malware can get root privilege on a rooted
phone. Since users want to unroot their phones as soon as possible, the malware
will quickly lose root privilege. We suppose the attacker’s goal is stealing users’
private data such as GPS location, photos, and SMS. These data are frequently
updated. Hence, the attacker wants to steal the private data all the time re-
gardless the phone is unrooted or not. For example, the attacker would keep an
eye on users’ GPS location all the time. Moreover, some private data may be
created after the phone is unrooted, such as a newly applied credit card account.
The attacker may want to steal these new data as well. Therefore, the malware
should keep working even the phone is unrooted. The attacker knows after a
phone is unrooted, his malware will lose root privilege. So, the malware should
not rely on root privilege all the time.

An effective way to make the malware keep working after the phone is un-
rooted is opening a backdoor during the rooted time window. In this way, two
kinds of attacks can be carried out. The first kind is tampering data files to es-
calate required permissions. For example, tampering the packages.xml file to es-
calate the “android.permission.ACCESS FINE LOCATION” permission to get
GPS location. This way enables malware to pass the access control checks of
permission system all the time. The other one is tampering the code files of
permission system to remove the access control. This way makes private data
freely accessible to all apps. Therefore, even if the phone is unrooted, the above
attacks open a backdoor for malware.



358 Z. Zhang et al.

3 Tampering Data Files Attack

3.1 Inserting Permissions into the packages.xml File

The heart of permission system is a system service named PackageManager ser-
vice (PMS). After an app is installed, PMS writes its permissions into the pack-
ages.xml file. At the next system boot time, PMS directly grants the permissions
preserved in the packages.xml file to each app. Therefore, adding permissions into
the packages.xml file is one way to escalate apps’ permission.

The packages.xml file is only protected by the user-based UNIX file system
access control mechanism. Normally, the file belongs to the systemserver, and
other users (processes) cannot access it. However, as long as a malware gets
root privilege, it becomes a superuser. Superuser can read and write any files in
file system. Furthermore, Android supports the Java APIs of executing external
command. Through the Java APIs, malware could execute the “su” command
to gain root privilege on a rooted phone. The attack flow is shown as Figure 1.

Check 
TamperedTag s 

value

Gained root 
privilege?

Add permission 
strings

Gained the 
added 

permissions?

Steal private 
data

Wait for system 
reboot

0Y

Modify success Reboot

Modify
TamperedTag=0

1

Y

N

Modify
TamperedTag=1 Modify success

Fig. 1. The attack flow of escalating permissions by modifying the packages.xml file

The attack flow can be divided into two parts: tampering the packages.xml
file to add permission and starting attack based on the added permission. To
control the attack flow, we introduce a flag TamperedTag, whose value 1 or 0
indicates that the packages.xml file has or has not been tampered.

The demo app first checks the TamperedTag’s value. If its value is 0, which
means that the packages.xml file has not been tampered, the demo app will
take a further step to check whether the phone has been rooted. One way of
doing this is executing the “su” command, and then see the execution result. If
the command is successfully executed, the demo app can get root privilege and
do the following steps of the attack. Otherwise, the demo app will do nothing
but wait for the system reboot (see Figure 1). With root privilege, the demo
app adds, for example, the android.permission.READ SMS permission into the
packages.xml file for itself. Once added, the value of TamperedTag should be
changed to 1.



Once Root Always a Threat 359

If the TamperedTag’s value is 1, which means that the packages.xml file
has successfully been modified, the demo app checks if it has indeed got the
READ SMS permission. If yes, the demo app could read and steal SMS. Other-
wise, the demo app changes the TamperedTag’s value to 0 to restart the attack.
This step increases the robustness of the attack.

The demo app has less than 430 lines of code and can successfully run on any
rooted Android phones. Furthermore, the demo app can be extended to escalate
any permission in the real world.

3.2 Bypassing Signature Verification to Share UID with High
Privileged Apps

By default, each app has a distinct UID and runs as an independent Linux
user. For these independently running apps, Android has no restriction on their
certificates. Android also allows different apps to share the same UID. For the
apps running with the same UID, Android enforces that they must be signed by
the same certificate.

Apps with the same UID can run with the same permission set and access each
other’s data and, if desired, run in the same process. Some system apps share
the same high privileged UID. For example, SystemUI and SettingsProvider
share the UID: android.uid.system. This UID has a bunch of privacy-related
permissions such as READ CONTACTS, CALL PHONE; and many hardware-
related permissions such as INTERNET, BLUETOOTH.

Normally, malware cannot share the same UID with other apps because their
signatures are mismatched. However, if an app satisfies the following optimiza-
tion terms, PMS will not verify the app’s signature.

1) The package setting info of the app, denoted as a <package> node, exists
in the packages.xml file;

2) The path of the app is consistent with that preserved in the <package>
node;

3) The last modification time of the app is the same as the timestamp pre-
served in the <package> node;

4) The <sig> sub-node of the <package> node exists;
5) The certificate value exists in the <sig> sub-node.

By satisfying the above terms, malware can escape the signature verification
step enforced by the permission system. As a result, the malware can break the
certificate restriction of sharing UID, and shares UID with any privileged app.
A demo attack flow can be described as follows.

We use a cover app and shadow app model to illustrate how to start an
attack. The cover app does not contain malicious code of stealing private data,
but contains the code of loading the shadow app into Android system. The
shadow app contains malicious code to steal private data as well as necessary
permissions to access the private data. To start an attack, the attacker should
develop a cover app first. The cover app is not over privileged that can escape
detection tools based on permission analysis like Kirin [13], Stowaway [14], and



360 Z. Zhang et al.

Pscout [2]. Then, following the cover app, the attacker develops a shadow app.
For concealment considerations, they should have the similar appearance. The
shadow app can be loaded into Android system as the cover app’s payload or by
remote downloading. These ways of loading malicious code are widely used [33].

In this attack, the attacker should set the value of the shadow app’s an-
droid:sharedUserId attribute to the UID that it wants to share. The UID could
be an app’s package name or a shared user’s name defined by Android system
such as android.uid.system. The android:sharedUserId attribute is defined in the
shadow app’s AndroidManifest.xml file (manifest file). Every Android app has
a manifest file to declare the desired permissions, assign the desired UIDs, and
list its components, etc. To meet the optimization requirement, the cover app
can modify either the attribute of the shadow app’s apk file or the content of
the packages.xml file to make the value of path and ft matched. The ft is the
timestamp of the last modified time of the apk file.

Then, the cover app traverses the packages.xml file to get the shared UID’s
certificate info (preserved in <sig> sub-node), and uses that info to replace
the cover app’s <sig> sub-node. At last, the cover app uses the shadow app’s
apk file to replace the cover app’s apk file (stays in the /data/app directory).
After reboot, the shadow app can turn into a shared user running with a higher
privileged permission set and can access other shared users’ data.

This kind of attack not only extends malware’s permissions but also extends
the influence from one app to multiple apps. The feasibility of the attack is
verified on Nexus S, Nexus 4g, Galaxy Nexus, and Sony LT29i.

3.3 Escalating Permission by Silent Update

The permissions escalated using the way described in Section 3.1 and 3.2 are fully
depend on the packages.xml file. When the file is deleted, the escalated permis-
sions will be gone. In this section, we will discuss another way of permission
escalating that is not depend on the packages.xml file.

All the installed apps including system and non-system apps will be reinstalled
at system boot time. During the re-installation, the permissions will be re-parsed
from each app’s manifest file. After the re-installation is done, PMS will update
each app’s permissions based on the following policy. For system apps, PMS up-
dates each system app’s permissions to those declared in its manifest file. While
for non-system apps, PMS will not update any permission, except the permissions
updated byAndroid platform, which is rarely happened. Therefore, the actual per-
missions of a system app is a union of the permissions declared in the manifest file
and the permissions stored in the packages.xml file, while the actual permissions
of a non-system app are only the permissions stored in the packages.xml file.

Attacks towards Non-system Apps. Normally, non-system apps cannot be
given more permissions than those stored in the packages.xml file. However,
when the <package> node of an app is removed from the file, PMS will grant
all permissions declared in the app’s manifest file to this app. Malware can use
this way to escalate permissions, which could be called as silent update.



Once Root Always a Threat 361

The attack flow is described as follows. With root privilege, the cover app
remounts the data directory to be writable. Then, it moves the shadow app
into /data/app directory to replace the cover app’s apk file. Next, the cover app
should delete its <package> node or delete the entire packages.xml file. At the
next system boot time, PMS will recover the cover app’s permissions from its
manifest file, which is contained in the apk file. As the cover app’s apk file is
replaced with the shadow app’s, the permissions are actually recovered from the
shadow app’s manifest file. And, the permission info will be written into the
packages.xml file. Finally, the cover app is updated to a malicious one silently.
A typical example in the real world is the BaseBridge [28], which exploits root
privilege to silently install apps without user intervention [33].

The attacker can use the same way to replace any installed apps with malicious
ones as long as he can remove the target app’s <package> node. After the node
is removed, the target app is actually regarded as uninstalled, and the malicious
one will be installed as a new app. Android adopts self-signed mechanism, and
the signature of the shadow app is verified by self-signed certificate, so there is
no need for the shadow app to be signed with the same certificate as the target
app.

We validated the feasibility of the attack on Nexus S, Nexus 4g, Galaxy Nexus,
and Sony LT29i.

Attacks towards System Apps. Android regards apps in the /system/app
directory as system apps. Also, Android pre-installs several system apps to pro-
vide the basic phone functions. For example, the pre-installed Phone.apk is used
to place phone call, the Mms.apk is used to send multimedia message, and the
Contact.apk is used to manage contacts. Compared to non-system apps, system
apps play a more important role in Android system. However, there is no special
requirement for the system apps’ certificate. The system apps also apply to the
self-signed certificate mechanism. Therefore, malware can also replace system
apps with malicious ones.

The attack flow is similar to that of the non-system apps’, while this one is
much easier. The only thing that the cover app needs to do is replacing the
target system app with a shadow app. There is no need to remove the target
app’s <package> node. That is because, when the shadow app is put into the
/system/app directory, it will be regarded as a system app. According to the
update policy, system apps could gain full permissions declared in the manifest
file directly. The shadow app can be developed by re-packing or re-coding since
Android is open-source.

Besides replacing original system apps, malware can also disguise as a system
app and gain full permissions declared in the manifest file. Simply, the cover app
places the shadow app into /system/app directory and deletes the original apk
file from the /data/app directory.

We verified the feasibility and effectiveness of this attack on Nexus S, Nexus
4g, Galaxy Nexus, but not Sony LT29i. That is because, this phone has blocked
modification to the system partition. The /system/app directory belongs to this



362 Z. Zhang et al.

partition. When the system partition is modified, the phone will reboot auto-
matically, which makes all modifications fail to go into effect.

Compared to the above two attacks described in Section 3.1 and 3.2, the
permissions escalated by silence update do not depend on the packages.xml file.
No matter what happened to the packages.xml file, the permission escalated in
this way will not disappear.

4 Tampering Code Files Attack

All system code are stored as files in the file system. With root privilege, attackers
can also tamper the code file of permission system to fully compromise it.

Permission system carries out the access control by checking whether an app
has certain permission strings. The check function is provided by Android APIs
such as checkPermission, checkCallingPermission, and checkCallingUriPermis-
sion. The difference between them is they taking different parameters. Taking
checkPermission as an example, it takes a permission name and a package name
of an app as the parameters. When the method is called, it first checks whether
the app (identified by the package name) is a shared user. If yes, the method
checks the shared user’s grantedPermissions field. Otherwise, it checks the app’s
grantedPermissions field. The grantedPermissions field exists in a data struc-
ture (PackageSetting), which stores all info of an app needed to run. If the field
contains the required permission string, the checkPermission API will return
PERMISSION GRANTED, or else it will return PERMISSION DENIED.

An available way to compromise permission system is tampering the return
value of those APIs. A typical compromise example is tampering the checkper-
mission API to return PERMISSION GRANTED always.

The source code of permission system are compiled into a file named ser-
vices.jar, which is located in the /system/framework directory. Provide that the
malware is designed as adaptive, it needs to analyze the construction of the jar
file and identify the exact point to tamper. However, we doubt the feasibility
of automatic analysis without manual intervention. Therefore, we assume that
the attacker would temper the code files in the way of replacing the original
services.jar with a malicious one prepared ahead.

Two ways can be used to create a malicious services.jar file. The first one
is decompiling and recompiling the target phone’s services.jar or services.odex
file using tools such as baksmali, smali, and dex2jar. The services.odex file is
an optimized version of the services.jar file. Some vendors shipped their phones
with odex version of code files in order to increase the phones’ performance. The
other one is exploiting Android Open Source Project (AOSP). Several phones,
such as the Nexus series phones published by Google, support AOSP. By fetching
the source code of these phones, the attacker can customize his own permission
system, let alone modify the return value of an Android API.

Even the attacker successfully gets a customized services.jar file, he cannot
directly use it to replace the original one. Some issues should be overcome. The
first one is optimization. In the real world, most vendors such as Samsung, Sony,



Once Root Always a Threat 363

HTC optimize the jar file to the odex file in their factory image. The optimization
is hardware-related. Even the source code is identical, the odex file generated
on a phone cannot run on a different versions of phone. Only the same odex
file running on the same version of phone is allowed. The other issue that the
attacker should overcome is signature. During the system boot time, the Dalvik
Virtual Machine (DVM) will load all Java classes into memory to create the
runtime for Android system. In this process, the DVM verifies the dex or odex
files’ signature and the dependencies with other dex or odex files.

There are two ways can be used to overcome the signature issue. The first
way is tampering the code file of the DVM to remove the piece of code doing
the verification work. The DVM is compiled into a file called libdvm.so. Android
has no signature restriction to so files. Therefore, replacing a so file does not
face the signature issue. However, decompiling a so file to modify the code is
difficult. An optional way to remove the verification code is getting the source
code of the target phone. This way only fits attacking phones supporting AOSP.

The second way is extracting signature from the original odex file and using
it to replace the malicious one’s signature. After analyzing the odex file’s con-
struction, we find that the signature has a 20-bytes length and has a 52-bytes
offset from the file header. To obtain the signature value, we use the dd com-
mand: dd if=services.odex of=myservices.odex bs=1 count=20 skip=52 seek=52
The whole command means that reads 20 bytes (signature) from the original
service.odex file, and writes the 20 bytes (signature) to the myservices.odex file.
Both reading and writing should skip 52 bytes from the header.

Based on the second way to overcome the signature issue, a demo attack is
carried out on a Galaxy Nexus phone running 4.1.2 code version. This phone
supports AOSP and runs odex version of code files. Using this phone, we suc-
cessfully replace the original odex file provided by Google’s factory image with
the one we generated from Android source code.

5 Attack Evaluation

5.1 Evasion Rate Evaluation

We implement all attacks on one demo malware. To understand the attacks’
efficacy in the real world, we evaluate the demo malware’s evading detection
rate and permission hidden rate under Antivirus’ (AVs) monitoring. We select
the top 5 AVs in China and abroad, respectively. In China, we download the
top 5 popular AVs on Google Play, which are 360, LBE, Tencent, Kingsoft, and
Anguanjia. At abroad, according to [29], we select the top 5 free AVs, which are
Lookout, McAfee, Kaspersky, ESET, and Trend.

As AVs do a scanning when apps are installed, we test whether the malware
can evade detection at installation time. We first install 10 AVs on our test
phones, then install the demo malware and waiting for the 10 AVs’ scanning
result. The result shows that 9 of 10 AVs assert it is clean, only 1 AV detects it out
but mistakenly classify the threat as “Exploit.Android.RageAgainstTheCage.a”,
which we have not exploited. Then, we run the demo malware under the 10



364 Z. Zhang et al.

AVs’ monitoring to see if the malware could evade detection at runtime. The
result is, none of the AVs detect the malware out when it is running. Therefore,
these attacks can evade 100% AV’s detection in China and 80% AV’s detection
at abroad at installation time and evade 100% AV’s detection at runtime. Since
rooting a phone mainly happens in China mainland, evading AVs in this area is
the main goal of our attacks, which has been achieved.

Towards attacks of tampering data files to escalate permissions, we test
whether the escalated permission can hide from the permission list provided by
the 10 AVs. Permissions escalated by silence update are not necessary to test,
as they exist in both the manifest file and the packages.xml file. What worth
testing are those escalated by the attacks of tampering the packages.xml file,
which are described in section 3.1 and 3.2. We only checked permissions listed
by AVs in China except 360, as 360 and the AVs abroad do not offer the func-
tion of listing permissions when this paper is written. The demo malware used
to launch the two attacks do not apply any permission in its manifest file. For
testing the attacks described in Section 3.1 (denoted as InsertPerm attack), the
demo malware inserts 5 different permissions into the packages.xml file. While
for the attacks described in Section 3.2 (denoted as ShareUID attack), the demo
malware shares UID with an app possesses 24 permissions. The test result is
shown in table 1. It should be mentioned that Kingsoft relies on Android system
to list permissions.

Table 1. Permission detection rate

AVs LBE Tencent
Kingsoft

(Android system)
Anguanjia Android system

Avg. Dtc.
Rate

InsertPerm 3/5 0/5 0/5 3/5 0/5 24%

ShareUID 4/24 0/24 24/24 6/24 24/24 48.3%

The result shows that the 4 AVs have an average detection rate of 24% and
48.3% towards the two attacks, respectively. Most escalated permissions are not
detected out. The InsertPerm attack completely cheated 3 in 5 AVs, while the
ShareUID attack completely cheated 1 due to the effectiveness of Android system
in listing shared user’s permissions.

5.2 Damage Degree Analysis

The two kinds of attacks have a different damage degree.
Tampering data files attack only makes the malware itself pass permission

checking process, while other apps’ permissions are still constrained by the per-
mission system. Therefore, this type of attack only opens a backdoor for the
malware itself, and the extent of damage is limited in the malware.

Tampering code files is an extreme damage to the permission system. Section
4 shows a demo attack that removes the resource access control of permission



Once Root Always a Threat 365

system, which makes apps freely access private data such as SMS, Contact. While
the hardware resources cannot be freely accessed, as the access control towards
these resources are based on UNIX groups rather than permission strings. How-
ever, in the real world, attackers can modify any part of the permission system.
To address the hardware access issue, they can modify permission system to
automatically set an app as a member of all UNIX groups. For example, the at-
tacker could tamper permission system to set an app as a member of groups like
camera, radio, net admin. Then, all apps could take pictures, place phone calls,
and access the Internet without applying permissions. By doing this, permission
system will comprehensively loss its efficacy and all resources could be freely
accessed. This type of attack opens a backdoor for all apps. Obviously, attacks
of tampering code files are a disaster to Android security. However, this kind of
attack has a quite limited range, which will be discussed in the next section.

5.3 Influence Range Analysis

Another dimension to analyze an attack is the influence range. The two kinds of
attacks have a different damage degree as well as a different influence range.

Regarding the tampering data files attack, malware only require the read and
write ability towards data files. The package.xml file and non-system apk files
are placed in the userdata partition. This partition will be frequently written by
Android system. For example, installing and uninstalling an app should write the
userdata partition. Therefore, this partition is designed as modifiable. Attacks
writing this partition can be carried out on all rooted devices. However, system
apk files stay in /system/app directory, which belongs to the system partition.
This partition is used to store system code, which should never be modified;
therefore it is designed as read only. Some vendors such as Sony restrict mod-
ifying this partition even with root privilege. On these phones, the attacks of
tampering system apps cannot be carried out. The influence range of replacing
or disguising as a system app depends on the phone’s version.

Regarding the tampering code files attack, there are three limitations. First,
as different vendors make different modifications to Android source code to cus-
tomize their own system, the code of permission system may differ from each
phone version. Therefore, one tampering way may only fit one phone version.
Second, the code of permission system on most phones is optimized into odex
files. The optimization is hardware-related, which makes the odex file hardware-
related as well. Even the source code is the same, the odex file generated on a
phone cannot run on another version of phone, which makes the attack not only
limited by source code but also limited by phone version. Third, as described
above, some vendors block the system partition from being written. Take a
rooted Sony LT 29i phone as an example, when we try to write the system parti-
tion, the phone automatically reboots. Vendor’s constrain is another limitation.
Therefore, the influence of tampering code files attacks has a rather limited
range. Based on our experience, those phones supporting AOSP are particularly
vulnerable to this kind of attack.



366 Z. Zhang et al.

5.4 Survivability Analysis

Both tampering data files to escalate permissions and tampering code files to
compromise permission system cannot be blocked by unroot.

As we illustrated in section 2, unroot is deleting the “su” file. Without “su”
file, the “su” command cannot be executed. As a result, the root privilege cannot
be obtained. However, the attacks described in this paper do not depend on root
privilege all the time. The truth is, once the attacks are carried out at the rooted
time window, the root privilege is no longer needed any more. Blocking the usage
of root privilege has no effect on the attacks. First, the escalated permissions
open a backdoor for malware to abuse system resources. Second, tampering code
files attack makes permission system compromised, which is irreversible. Even
unroot cannot make permission system roll back to the normal state.

Therefore, although the phone is unrooted, these attacks can survive and make
permission system suffer a long-term threat.

6 Potential Solution Discussion

6.1 SEAndroid

Google has officially merged SEAndroid [27] onto the 4.3 version of AOSP to
mitigate security issues brought by root exploits. It constrains the read and
write ability of some root-privileged processes such as init and can confine apps
running with root privilege. By introducing SEAndroid, the packages.xml file
and the system, userdata partitions cannot be freely read/written by super users
any more. Therefore, malware even with root privilege cannot launch the attacks
mentioned in this paper.

However, although SEAndroid [27] does a great job in mitigating root ex-
ploits, as the authors mentioned in their paper, it cannot mitigate all kernel
root exploits. Further, Pau Oliva shows the other two weakness of SEAndroid
and gives out 4 ways to bypass SEAndroid [31]. Since SEAndroid has been in-
troduced into Android not long ago, there are some imperfections, and it still
has a long way to go to be widespread.

6.2 Our Proposal

SEAndroid has done a lot of work from the perspective of protecting the ex-
isting Android system. Unlike SEAndroid, we provide some proposals from the
perspective of improving the implementation of permission system to confront
the permission escalation attacks mentioned in this paper.

Firstly, removing the packages.xml file from disk immediately after it has been
successfully loaded and re-generate the file after all apps have been shut down.
Since the packages.xml file is only loaded at system boot time and never be
loaded till next boot. There is no need to keep the file on disk always. As the
file cannot be accessed by malware, attacks exploiting the packages.xml file can
be blocked. Secondly, for non-system apps, only installing the ones recorded in



Once Root Always a Threat 367

the packages.xml file at system boot time. If the file does not exist at this time,
Android system should warn users there may be an attack and offer users some
options such as letting users re-grant permissions to each app. Thirdly, for system
apps, using certificate to identify their identification rather than directory. In
this way, malware cannot disguise as system apps as they cannot pass identity
authentication.

These proposals can work together with SEAndroid to provide a better secu-
rity protection to Android. Even if SEAndroid is bypassed, these proposals can
combat the permission escalation attacks mentioned in this paper.

7 Related Work

7.1 Defence against Privilege Escalation Attack

The tampering data files attack is a type of privilege escalation attack. Priv-
ilege escalation attacks have drawn much attention these years. These works
[12][18][26] show that the privilege escalation attack is a serious threat to users’
privacy.

A number of detection tools [5] [14] [2] [16] [13] have been proposed mainly
aiming to detect whether an app has unprotected interface that can induce priv-
ilege escalation attacks. These static analysis tools are likely to be incomplete,
because they cannot completely predict the confused deputy attack that will oc-
cur at runtime. Confused deputy attack is a kind of privilege escalation attack.
Some enhanced frameworks [15] [9] [4] [17] [3] have been proposed to confront
this kind of attack at runtime. But all these works cannot confront the privilege
escalation attacks mentioned in this paper. It is because that, these attacks do
not depend on other apps to start attacks. Malware in these attacks have all
required permissions themselves.

Some framework security extension solutions [21] [34] [25] [6] enforce runtime
permission control to restrict app’s permission at runtime. However, these works
do not consider the situation that malware get root privilege. Although these
works can control an app’s permission at runtime, all of them rely on policy
database files and lack of protection to the file. When malware get root privilege,
the policy file could be tampered or deleted. Once the policy file is tampered or
deleted, the solution loses its effectiveness.

7.2 Protections towards System Code

Some solutions aim at protecting the integrity of system code, which could be
used to confront the tampering code files attack mentioned in this paper.

One way to protect the integrity of system code is making sure that the phone
is trustily booted. Some techniques, like Mobile Trusted Module (MTM) [30]
and TrustZone [1], can be used to ensure that the system is booted in a trusted
manner. Based on MTM, paper [8] and [19] implement two different secure-boot
prototypes; patent [24] and [11] give out two different secure-boot architecture



368 Z. Zhang et al.

reference designs. In addition, paper [32] outlines an approach to merge MTM
with TrustZone technology to build a trusted computing platform, on which the
secure-boot process can be provided by TrustZone.

Another way of protecting system code is making sure that the system code
is correctly executed at runtime. MoCFI [7] provides a general countermeasure
against runtime attacks on smartphone platforms,which canbe applied toAndroid
platform and ensures that the Android software stack can be correctly executed.

8 Conclusion

To the best of our knowledge, this paper is the first work focusing on analyzing
the security threat faced by permission system at rooted time window. At rooted
time window, two kinds of attacks can be carried out. The first kind attack is
tampering data files managed by permission system to gain stable resource access
capabilities, which still hold even if system is unrooted. Tampering code files is
another attack way that can be carried out on rooted time window and influences
forever. This way is more destructive than the former one, but its influence range
is limited by the phone’s version. Even under AV’s monitoring, these attacks can
be carried out and make permission system suffer a long-term threat.

References

1. Alves, T., Felton, D.: Trustzone: Integrated hardware and software security. ARM
White Paper 3(4) (2004)

2. Au, K.W.Y., Zhou, Y.F., Huang, Z., Lie, D.: Pscout: analyzing the android per-
mission specification. In: ACM CCS (2012)

3. Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Sadeghi, A.R.: XMandroid: a new
android evolution to mitigate privilege escalation attacks. Technische Universität
Darmstadt, Technical Report TR-2011-04 (2011)

4. Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Sadeghi, A.R., Shastry, B.: To-
wards taming privilege-escalation attacks on android. In: 19th NDSS (2012)

5. Chin, E., Felt, A.P., Greenwood, K., Wagner, D.: Analyzing inter-application com-
munication in android. In: 9th MobiSys (2011)

6. Conti, M., Nguyen, V.T.N., Crispo, B.: Crepe: Context-related policy enforcement
for android. In: Burmester, M., Tsudik, G., Magliveras, S., Ilić, I. (eds.) ISC 2010.
LNCS, vol. 6531, pp. 331–345. Springer, Heidelberg (2011)

7. Davi, L., Dmitrienko, A., Egele, M., Fischer, T., Holz, T., Hund, R., Nürnberger,
S., Sadeghi, A.R.: Mocfi: A framework to mitigate control-flow attacks on smart-
phones. In: NDSS (2012)

8. Dietrich, K., Winter, J.: Secure boot revisited. In: ICYCS (2008)
9. Dietz, M., Shekhar, S., Pisetsky, Y., Shu, A., Wallach, D.S.: Quire: Lightweight

provenance for smart phone operating systems. In: USENIX Security (2011)
10. Duo Security: X-ray for Android (2012), http://www.xray.io/
11. Ekberg, J.E.: Secure boot with trusted computing group platform registers, US

Patent US20120297175 A1 (November 22, 2012)
12. Enck, W., Ongtang, M., McDaniel, P.: Mitigating android software misuse before

it happens. Technical Report NAS-TR-0094-2008 (September 2008)

http://www.xray.io/


Once Root Always a Threat 369

13. Enck, W., Ongtang, M., McDaniel, P.: On lightweight mobile phone application
certification. In: 16th ACM CCS (2009)

14. Felt, A.P., Chin, E., Hanna, S., Song, D., Wagner, D.: Android permissions demys-
tified. In: 18th ACM CCS (2011)

15. Felt, A.P., Wang, H.J., Moshchuk, A., Hanna, S., Chin, E.: Permission re-
delegation: Attacks and defenses. In: USENIX Security Symposium (2011)

16. Fuchs, A.P., Chaudhuri, A., Foster, J.S.: Scandroid: Automated security certifica-
tion of android applications. Univ. of Maryland (2009) (manuscript)

17. Grace, M., Zhou, Y., Wang, Z., Jiang, X.: Systematic detection of capability leaks
in stock android smartphones. In: Proceedings of the 19th NDSS (2012)

18. Hornyack, P., Han, S., Jung, J., Schechter, S., Wetherall, D.: These aren’t the droids
you’re looking for: retrofitting android to protect data from imperious applications.
In: 18th ACM CCS (2011)

19. Kai, T., Xin, X., Guo, C.: The secure boot of embedded system based on mobile
trusted module. In: ISDEA (2012)

20. LifeHacker: Top 10 reasons to root your android phone, http://lifehacker.com/
top-10-reasons-to-root-your-android-phone-1079161983

21. Nauman, M., Khan, S., Zhang, X.: Apex: extending android permission model and
enforcement with user-defined runtime constraints. In: 5th ACM CCS (2010)

22. NC State University: Security alert: New sophisticated android malware droid-
kungfu found in alternative chinese app markets (2011),
http://www.csc.ncsu.edu/faculty/jiang/DroidKungFu.html

23. NetQin: 2012 moblie phone security report (2012),
http://cn.nq.com/neirong/2012shang.pdf

24. Nicolson, K.A.: Secure boot with optional components method, US Patent
US20100318781 A1 (December 16, 2010)

25. Ongtang, M., McLaughlin, S., Enck, W., McDaniel, P.: Semantically rich
application-centric security in android. In: SCN (2012)

26. Schlegel, R., Zhang, K., Zhou, X.Y., Intwala, M., Kapadia, A., Wang, X.: Sound-
comber: A stealthy and context-aware sound trojan for smartphones. In: NDSS
(2011)

27. Smalley, S., Craig, R.: Security Enhanced (SE) Android: Bringing Flexible MAC
to Android. In: NDSS (2013)

28. Symantec: Android.basebridge (2011), http://www.symantec.com/
security response/writeup.jsp?docid=2011-060915-4938-99

29. Toptenreviews: 2014 Best Mobile Security Software Comparisons and Reviews
(2014), http://mobile-security-software-review.toptenreviews.com/

30. Trusted Computing Group (TCG): Mobile Phone Work Group Mobile Trusted
Module Specification (2010),
http://www.trustedcomputinggroup.org/developers/mobile/specifications

31. viaForensics: Defeating SEAndroid C DEFCON 21 Presentation,
http://viaforensics.com/mobile-security/implementing-seandroid//

-defcon-21-presentation.html (March 8, 2013)
32. Winter, J.: Trusted computing building blocks for embedded linux-based arm trust-

zone platforms. In: 3rd ACM Workshop on Scalable Trusted Computing (2008)
33. Zhou, Y., Jiang, X.: Dissecting android malware: Characterization and evolution.

In: Security and Privacy (SP), pp. 95–109. IEEE (2012)
34. Zhou, Y., Zhang, X., Jiang, X., Freeh, V.W.: Taming information-stealing smart-

phone applications (on android). In: McCune, J.M., Balacheff, B., Perrig, A.,
Sadeghi, A.-R., Sasse, A., Beres, Y. (eds.) Trust 2011. LNCS, vol. 6740, pp. 93–107.
Springer, Heidelberg (2011)

http://lifehacker.com/top-10-reasons-to-root-your-android-phone-1079161983
http://lifehacker.com/top-10-reasons-to-root-your-android-phone-1079161983
http://www.csc.ncsu.edu/faculty/jiang/DroidKungFu.html
http://cn.nq.com/neirong/2012shang.pdf
http://www.symantec.com/security_response/writeup.jsp?docid=2011-060915-4938-99
http://www.symantec.com/security_response/writeup.jsp?docid=2011-060915-4938-99
http://mobile-security-software-review.toptenreviews.com/
http://www.trustedcomputinggroup.org/developers/mobile/specifications
http://viaforensics.com/mobile-security/implementing-seandroid//-defcon-21-presentation.html
http://viaforensics.com/mobile-security/implementing-seandroid//-defcon-21-presentation.html


A High-Throughput Unrolled ZUC Core

for 100Gbps Data Transmission�

Qinglong Zhang1,2,3, Zongbin Liu1,2,αα, Miao Li1,2, Ji Xiang1,2,
and Jiwu Jing1,2

1 Data Assurance and Communication Security Research Center, Beijing, China
2 State Key Laboratory of Information Security,

Institute of Information Engineering, CAS, Beijing, China
3 University of Chinese Academy of Sciences, Beijing, China

{qlzhang,zbliu,limiao12,jixiang,jing}@is.ac.cn

Abstract. In this paper, we propose a high-throughput encryption and
decryption IP core based on ZUC, in order to satisfy the demand of
confidentiality and data integrity in modern multi-gigabit communica-
tion system. Till now, a popular method for improvement of hardware
implementation on ZUC is to apply pipeline technology to promote the
design’s performance. At the same time, there is another method to
take advantage of the unrolling technology into hardware implementa-
tion. However, we find that the existing unrolled architecture on ZUC
cannot improve the performance efficiently, even may reduce the per-
formance. In this paper, we present our novel optimization techniques:
computation rescheduling and single-feedback initialization for improv-
ing throughput. Combining these techniques, we propose two unrolled
architectures: x2-ZUC and x3-ZUC, both of which significantly improve
the performance both on FPGA and ASIC. The performance of our
new unrolled architecture on FPGA in Virtex-5 is at least 63.5% higher
than the previous design. Meanwhile, on ASIC of 65 nm technology the
best performance of our architecture is up to 100 Gbps, which achieves
the highest throughput for the hardware implementation of ZUC. The
evaluation result suggests that our novel unrolled architecture with the
high throughput is suitable for the high-speed and high-throughput data
transmissions at a bandwidth of 100 Gbps.

Keywords: ZUC, unrolling technology, FPGA, high throughput, ASIC,
100 Gbps.

1 Introduction

ZUC [1–4] is an LFSR (Linear-Feedback Shift Register) based word oriented
stream cipher, selected as one of the security algorithms for 3GPP LTE-Advanced

� The work is supported by a grant from the National High Technology Research and
Development Program of China (863 Program, No.2013AA01A214) and the National
Basic Research Program of China (973 Program, No. 2013CB338001).

�� Corresponding author.

W. Susilo and Y. Mu (Eds.): ACISP 2014, LNCS 8544, pp. 370–385, 2014.
c© Springer International Publishing Switzerland 2014



A High-Throughput Unrolled ZUC Core for 100Gbps Data Transmission 371

which is the leading candidate for 4G mobile services. With the development of
4G network, the demand of confidentiality and data integrity in high-speed and
high-throughput data transmission is growing rapidly. Furthermore, since the
IEEE 802.3ba Ethernet Standard was proposed in June 2010, data transmission
at a bandwidth of 100 Gbps has been widely used. Therefore, it is significant to
design a high-throughput encryption and decryption ZUC core with the purpose
of providing efficient data protection for high-throughput data transmission.

FPGA (Field-Programmable Gate Array) and ASIC (Application-Specific In-
tegrated Circuit) are two common hardware devices for cryptographic imple-
mentations. Up to now, there are several academic researches which proposed
some hardware implementations of ZUC both on FPGA and ASIC aiming at
throughput promotion. One popular method for improvement of the hardware
implementation on ZUC is to apply pipeline in order to shorten the timing-
critical path. The other method is to employ unrolling technology in a design
which can output a keystream of 64 bits or 96 bits.

On FPGA, [5–8] focus on shortening the timing-critical path in the hardware
implementation of ZUC to increase their design’s throughput. Liu et al [6] pro-
pose a four-stage pipeline architecture on ZUC, but the design is just applied
in the working stage. On ASIC, in order to design a full implementation on
ZUC and promote throughput, Gupta et al [9] propose a three-stage pipeline
architecture whose performance is 29.4 Gbps. Recently, Liu et al [10] propose
a mixed two-stage pipeline architecture on ASIC to solve the problem of the
lengthy timing-critical path in the initialization stage. The performance of the
mixed two-stage pipeline design is 80 Gbps, but the frequency of the design is
almost 2.5 GHz, which is too high to lead the design’s instability since the stable
frequency in 65 nm technology is about 1500 MHz and the max clock output of
a normal PLL in 65 nm technology is 1500 MHz. Therefore if the frequency of a
design is increased to 2.5 GHz, the designer should make many changes to avoid
the signal interference in the architecture and need a special PLL whose output
can be as high as 2.5 GHz. All these changes may bring down the performance
of the design.

On FPGA, there are no results for the implementation of ZUC through un-
rolling technology. On ASIC, Gupta et al [9] propose Unrolled ZUC with the
primary purpose of improving throughput. However, in [9], the result of ZUC
is that the performance of ZUC is 29.4 Gbps and the performance of Unrolled
ZUC is 27.2 Gbps. Thus Gupta et al [9] conclude that there is no throughput
increase in Unrolled ZUC due to the long timing-critical path via self-feedback
loop in the final pipeline stage.

Contribution. In this paper, we present our novel optimization techniques:
computation rescheduling and single-feedback initialization for improving
throughput. Combining these techniques, we propose our new unrolled archi-
tectures: x2-ZUC and x3-ZUC. Both of them can improve the throughput effi-
ciently.

Computation rescheduling can efficiently shorten the long path to compute
the self-feedback variables and can reduce the number of mod 231 − 1 adders.



372 Q. Zhang et al.

Single-feedback initialization architecture can avoid the long timing-critical path
via self-feedback loop in the previous design.

Furthermore, the performance of our new architecture in Virtex-5 is at least
63.5% higher than that of the previous full implementations on FPGA. The
best performance of our architecture on ASIC of 65 nm technology is up to
100Gbps, 25% higher than that of the previous fastest implementation. More-
over, the frequency is 1045 MHz and it is stable in 65 nm technology. The new
unrolled architecture will be competent for the demand of the high-speed and
high-throughput data protection in the modern multi-gigabit communication
system.

2 Preliminaries: ZUC Algorithm

The word-oriented stream cipher [1–4] is designed by the Data Assurance and
Communication Security Research Center of the Chinese Academy of Science
(DACAS). General structure of ZUC has three logical layers. The top layer is a
linear feedback shift register (LFSR), having 16 blocks, each of length 31 bits,
and the LFSR has an update function which is based on a series of modulo
(231 - 1) multiplications and additions (231 - 1 is a prime). The middle layer
is bit-reorganization (BR), consisting of 4 32-bit registers X0, X1, X2 and X3
which are updated using 128-bit from LFSR. The bottom layer is a nonlinear
filter with memory, which takes three 32-bit words from the LFSR as inputs and
outputs a 32-bit word as well.

Fig. 1. The architecture of ZUC

2.1 The Linear Feedback Shift Register (LFSR)

The LFSR has two modes of operations: the initialization mode and the working
mode. In the initialization mode, firstly, the LFSR receives a 128 bit key and a



A High-Throughput Unrolled ZUC Core for 100Gbps Data Transmission 373

128 bit IV to initialize the 16 blocks, then in the first 32 iterations, the update
function of LFSR has a 31-bit input word u which is changed from the 32-bit
output W of the nonlinear function F by removing the rightmost bit. The fol-
lowing is the computations of the LFSR in the initialization mode.

LFSRWithInitialisationMode (u)
{

1. v = {215S15 + 217S13 + 221S10 + 220S4 + (1 + 28)S0} (mod 231 − 1)
2. S16 = v + u (mod 231 − 1)
3. If S16 = 0 then set S16 = 231 − 1
4. (S1, S2, . . . , S15, S16) ∈ (S0, S1, . . . , S14, S15)

}

In the working mode, the LFSR does not receive any input, and it works as
follows,

LFSRWithWorkMode()
{

1. S16 = {215S15 + 217S13 + 221S10 + 220S4 + (1 + 28)S0} (mod 231 − 1)
2. If S16 = 0 then set S16 = 231 − 1
3. (S1, S2, . . . , S15, S16) ∈ (S0, S1, . . . , S14, S15)

}

2.2 The Bit-Reorganization

The middle layer of the algorithm is the bit-reorganization. It extracts 128 bits
from the state of the LFSR and forms 4 32-bits words, X0,X1,X2, and X3. The
first three words will be used by the nonlinear function F in the bottom layer,
and the last word will be involved in producing the keystream.

Bitreorganization()
{

1. X0 = S15H ⊕ S14L

2. X1 = S11L ⊕ S9H

3. X2 = S7L ⊕ S5H

4. X3 = S2L ⊕ S0H

}

S15H denotes the leftmost 16 bits of integer S15. S14L denotes the rightmost
16 bits of integer S14. S15H ⊕ S14L, denotes the concatenation of strings S15H

and S14L. A detail specification can be found in [1].



374 Q. Zhang et al.

2.3 The Nonlinear Filter F

The nonlinear filter F has two 32-bit memory cells R1 and R2. Let the inputs of
F be X0, X1, X2, which come from the outputs of the bit-reorganization. Then
the filter F outputs a 32-bit word W. The detailed process of F is as follows:

F(X0, X1, X2)
{

1. W = (X0 ⊇R1)�R2

2. W1 = R1 �X1

3. W2 = R2 �X2

4. R1 = S(L1(W1L ⊕ W2H ))
5. R2 = S(L2(W2L ⊕ W1H ))

}

⊕ denotes the concatenation of strings. ⊇ denotes the bit-wise exclusive-OR
operation of integers. � denotes the modulo 232 addition . In step 4 and 5, S
is a 32 × 32 S-box which is composed of four 8 × 8 S-boxes, and L1 and L2 are
linear transformations, which are defined as follows:

L1(X) = X ⊇ (X ∝ 2)⊇ (X ∝ 10)⊇ (X ∝ 18)⊇ (X ∝ 24) (1)

L2(X) = X ⊇ (X ∝ 8)⊇ (X ∝ 14)⊇ (X ∝ 22)⊇ (X ∝ 30) (2)

2.4 The Execution of ZUC

Key Loading. The key loading procedure will expand the initial key and the
initial vector into 16 31-bit integers as the initial state of the LFSR. Let the
128-bit initial key k and the 128-bit initial vector iv be:

k = k0⊕k1⊕k2⊕ · · · ⊕k15

iv = iv0⊕iv1⊕iv2⊕ · · · ⊕iv15

Let D be a 240-bit long constant string composed of 16 substrings, each of which
is 15 bits:

D = d0⊕d1⊕ · · · ⊕d15

For 0 ≤ i ≤ 15, let si = ki⊕di⊕ivi

The Initialization Stage. During the initialization stage, the algorithm calls
the key procedure to load the 128-bit initial key k and the 128-bit initial vector
iv into the LFSR, and sets the 32-bit memory cells R1 and R2 to be all 0. Then
the cipher runs the following operations 32 times.



A High-Throughput Unrolled ZUC Core for 100Gbps Data Transmission 375

1. Bitreorganization();
2. W = F(X0, X1, X2);
3. LFSRWithInitializationMode(W ∝ 1);

The Working Stage. After the initialization stage, the algorithm moves into
the working stage. At the working stage, the algorithm executes the following
operations once, and discards the output W of F:

1. Bitreorganization();
2. F(X0, X1, X2);
3. LFSRWithWorkMode();

Then the algorithm goes into the stage of producing keystream, i.e., for each
iteration, the following operations are executed once, and a 32-bit word Z is
produced as an output:

1. Bitreorganization();
2. Z = F(X0, X1, X2)

⊕
X3;

3. LFSRWithWorkMode();

3 Proposed x2-ZUC Architecture

3.1 The Selection of Modulo 231 − 1 Adder in x2-ZUC

In the implementation of ZUC algorithm, modulo 231−1 adder is the most time-
consuming and resource-consuming component. In this section, we first give three
basic adders, then give an efficient way to compute the sum of more than three
numbers. The algorithm to compute (a + b) (mod 231 − 1) is as follows:
Let a, b ≤ GF (231 − 1), the computation of v = (a + b) (mod 231 − 1) can be
done by computing v = a+ b, then check the carry bit:

carry = 1, set v = a+ b+ 1.

carry = 0, set v = a+ b.

Basic Adder 1
Basic adder 1 is the original adder prescribed in [6]. This is a direct hardware
implementation of modulo 231 − 1 adder as the algorithm described as above.
This architecture contains two 31-bit adders and a multiplexer, and its delay is
mainly that of two 31-bit adders.

Basic Adder 2
Basic adder 2 is used by Gupta [11]. Compared to the basic adder 1, it slightly
reduces the delay of modulo 231 − 1 adder by cutting down the multiplexer.
However, its delay is also equal to that of two 31-bit adders.



376 Q. Zhang et al.

Fig. 2. The architecture of Modulo 231 − 1 Adder

Basic Adder 3
Basic adder 3 is proposed by Liu [6] in order to give a low-delay modulo 231 − 1
adder. As shown in Fig 2, the main idea is to calculate a+ b and a+ b+1 at the
same time. So a, b, 1 are set to be three inputs of an adder, and a, b are set to be
two inputs of another adder, then the result is selected by the carry-bit of a+ b.
The delay of this modulo 231 − 1 adder is just about that of one 31-bit adder.

3.2 An Efficient Way to Use the Modulo 231 − 1 Adder

In general, when there are more than three numbers to be added modulo 231−1,
we will need two or more modulo 231 − 1 adders. If there are three numbers, we
may need two modulo 231 − 1 adders, and if there are four numbers, we may
need three modulo 231 − 1 adders. Liu in [10] proposed an efficient way to add
more than three numbers just using one modulo 231 − 1 adder. When we add
three numbers A,B,D together, we firstly use a CSA ( carry save adder ) to get
two new numbers C, S and then add the two numbers by one modulo 231 − 1
adder. The procedure of the three numbers addition is as follows:

1. C = (A&B)|(A&D)|(B&D)

2. S = A⊇B ⊇D

3. C ← 2 (mod 231 − 1) = C ∝ 1

4. CC = C ∝ 1

5. CC + S = A+B +D

In the same way, we can use two CSAs and one modulo 231 − 1 adder to
add four numbers. The architecture is shown in Fig 3. Because the delay of a
CSA is very short, so if we apply this CSA architecture to calculate modulo
231 − 1 addition, the delay of the modulo 231 − 1 addition will be shorter and
the area will also be smaller. So in our paper, we use basic adder 3 and the CSA
architecture in our design.



A High-Throughput Unrolled ZUC Core for 100Gbps Data Transmission 377

Fig. 3. The CSA architecture

3.3 Single-Feedback Initialization

Gupta et al [9] propose a structure of unrolled ZUC, and Gupta showed that
the long timing-critical path via self-feedback loop of s16 and s17 remains in
the final pipeline stage at the initialization mode. Because the result of s16 has
to be fed back to compute s17, Gupta wanted to compute s16 and s17 in the
same clock cycle. The path is two 32-bit adders and two ‘Basic adder 2’ and
some logic gates. The timing-critial path was so long that the frequency of the
Gupta’s unrolled ZUC was 425 MHz. In this section, we propose a new struc-
ture of unrolled ZUC (namely, x2-ZUC) whose critical path will not lie in the
initialization mode. One optimization technique is single-feedback initialization.
There are two kinds of ways to shift the registers in the LFSR of x2-ZUC. In
the initialization stage of x2-ZUC, in order to shorten the long data path, the
feedback variable in LFSR is just s16. Then s17 will be computed in the next
clock cycle. From Fig 4, there are one more 31-bit register s−1 in x2-ZUC. In
the initialization stage, due to single-feedback initialization, x2-ZUC only needs
to compute s16 in a clock cycle, and the way to shift the registers in LFSR is as
follows.

(S16, S15, S14, . . . , S2, S1, S−1) ∈ (S15, S14, S13, . . . , S1, S0, S−1)

The loop in the initialization stage of x2-ZUC has 32 steps as the same as general
ZUC algorithm. Then in the working stage, x2-ZUC can compute the feedback
variable s16, s17 in the same clock cycle, because in the working stage, the data
path will not have the 32-bit adders and the parallel computation of s16, s17 will
not result in the timing-critical path based on our computation rescheduling
technique. The way to shift the registers at the working stage is as follows.

(S17, S16, S15, . . . , S3, S2, S1) ∈ (S15, S14, S13, . . . , S1, S0, S−1)

3.4 Computation Rescheduling

In order to increase the throughput of our design and to achieve a high and sta-
ble operating frequency in our design, we propose the computation rescheduling
techniques in x2-ZUC. Although in the initialization stage x2-ZUC just needs
to compute s16, in the working stage x2-ZUC needs to compute s16, s17 in the
same clock cycle. Computation rescheduling which is based on the CSA trees



378 Q. Zhang et al.

Fig. 4. The architecture of x2-ZUC

architecture can efficiently guarantee that the self-feedback loop will not be the
timing-critical path in the design and also can save some resource. Because the
path to compute the self-feedback variables s16, s17 both cost some CSAs and
one mod 231 − 1 adder. As is shown in Fig 4, part0 mod 231 − 1 is the update
function in LFSR to compute s16, and unrolled part mod 231 − 1 is the update
function to compute s17. Due to the dependency between the computation of s16
and s17, part0 has some numbers to be fed back to unrolled part. As we know,
in the working stage, the common procedure of computing s16, s17 is as follows:

1. S16 = {215S15 + 217S13 + 221S10 + 220S4 + (1 + 28)S0} (mod 231 − 1)

2. If S16 = 0 then set S16 = 231 − 1

3. S17 = {215S16 + 217S14 + 221S11 + 220S5 + (1 + 28)S1} (mod 231 − 1)

4. If S17 = 0 then set S17 = 231 − 1

5. (S17, S16, . . . , S3, S2, S1) ∈ (S15, S14, . . . , S1, S0, S−1)

Table 1 below shows the details of computation rescheduling, and the archi-
tecture of part0 and unrolled part are shown in Fig 5. From Fig 5, we can note
that in the working stage, the data path to compute s16 consists of four CSAs
and one modulo 231 − 1 adder and the data path to compute s17 consists of six
CSAs and one modulo 231 − 1 adder.



A High-Throughput Unrolled ZUC Core for 100Gbps Data Transmission 379

Table 1. computation rescheduling in the update function of x2-ZUC

number Computation

1

S16 = 215S15 + 217S13 + 221S10 + 220S4 + 28S0 + S0

S17 = 215S16 + 217S14 + 221S11 + 220S5 + 28S1 + S1

= 215(215S15 + 217S13 + 221S10 + 220S4 + 28S0 + S0)
+ 217S14 + 221S11 + 220S5 + 28S1 + S1

2

S18 = 215S17 + 217S15 + 221S12 + 220S6 + 28S2 + S2

S19 = 215S18 + 217S16 + 221S13 + 220S7 + 28S3 + S3

= 215(215S17 + 217S15 + 221S12 + 220S6 + 28S2 + S2)
+ 217S16 + 221S13 + 220S7 + 28S3 + S3

3 · · · · · ·

Fig. 5. The architecture of update functions in x2-ZUC

3.5 The Unrolled Architecture in FSM

The key stream of ZUC is computed from LFSR and the value of registers R1

and R2. As the ZUC algorithm described above, we know that registers R1 and
R2 are updated every clock cycle and the values of the registers R1 and R2 in
next clock cycle have dependency with that in current clock cycle. So if we want
to get a keystream of 64-bit, we need to unroll the update of registers R1 and
R2. In the architecture of x2-ZUC, there are four registers R1, R2, Ur-R1 and
Ur-R2. The arithmetic operations between the four registers are as follows:



380 Q. Zhang et al.

1. Ur-W1 = R1� Ur-X1

2. Ur-W2 = R2� Ur-X2

3. Ur-R1 = S(L1(Ur-W1L ⊕ Ur-W2H))

4. Ur-R2 = S(L2(Ur-W2L ⊕ Ur-W1H))

5. W1 =Ur-R1 �X1

6. W2 =Ur-R2 �X2

7. R1 = S(L1(W1L ⊕ W2H))

8. R2 = S(L1(W2L ⊕ W1H))

From the arithmetic operations, we can find that the timing-critical path in
FSM is two 32-bit adders and two S-boxes(8 bit). Because of the fact that the
timing-critical path here is longer than that in LFSR, so the operation frequency
of x2-ZUC is determined by the path here. In x2-ZUC, when we get the value of
the four registers, we can compute the outputs of FSM and a 64-bit keystream
as follows:

1. OW1 = (X0

⊕
R1)�R2

2. OW2 =(Ur-X0

⊕
Ur-R1)� Ur-R2

3. Z1 = OW1

⊕
X3

4. Z2 = OW2

⊕
Ur-X3

Due to the unrolled architecture, we can get 64-bit keystream per clock cycle.
Furthermore, we may get 96-bit keystream per clock cycle. In next section, we
present such a 96-bit variant and compare both unrolled architectures.

3.6 x2-ZUC and x3-ZUC

When we apply the unrolled technology in our design, there comes a question
that can we increase the degree of parallelism unlimitedly. So we propose a
new unrolled implementation of ZUC (namely, x3-ZUC) which can output a
keystream of 96-bit per clock cycle, then we will compare x2-ZUC with x3-ZUC.
The architecture of x3-ZUC is shown in Fig 6. The initialization stage of x2-
ZUC and x3-ZUC is the same, and both of them are based on single-feedback
initialization. The main differences between them are the unrolled architectures
in the update functions of LFSR and FSM. Because in the x3-ZUC we can get
a keystream of 96-bit, there are three parts in the update function in LFSR. In
x3-ZUC, there are also two kinds of ways to shift the registers in LFSR. The Fig
7 shows the computation rescheduling applied in the update functions of LFSR
in x3-ZUC.



A High-Throughput Unrolled ZUC Core for 100Gbps Data Transmission 381

Fig. 6. The architecture of x3-ZUC

From Fig 6, the unrolled architecture of x3-ZUC is more complicated than that
of x2-ZUC. In the FSM of x3-ZUC, there are six registersR1,R2, Ur1-R1, Ur1-R2,
Ur2-R1 and Ur2-R2. The arithmetic operations between them are as follows:

1. Ur1-W1 = R1� Ur1-X1

2. Ur1-W2 = R2� Ur1-X2

3. Ur1-R1 = S(L1(Ur1-W1L ⊕ Ur1-W2H))

4. Ur1-R2 = S(L2(Ur1-W2L ⊕ Ur1-W1H))

5. Ur2-W1 =Ur1-R1� Ur2-X1

6. Ur2-W2 =Ur1-R2� Ur2-X2

7. Ur2-R1 = S(L1(Ur2-W1L ⊕ Ur2-W2H))

8. Ur2-R2 = S(L1(Ur2-W2L ⊕ Ur2-W1H))

9. W1 =Ur2-R1 �X1

10.W2 =Ur2-R2 �X2

11.R1 = S(L1(W1L ⊕ W2H))

12.R2 = S(L1(W2L ⊕ W1H))



382 Q. Zhang et al.

From the arithmetic operations, we can find that the longest data path of FSM
is three 32-bit adders and three S-boxes(8 bit). The longest data path of LFSR in
x3-ZUC is eight CSAs and one modulo 231−1 adder. So the operation frequency
of x3-ZUC is decided by the path of FSM. In order to give some comparisons of
the unrolled designs, we use Synopsys Design Compiler Version G-2012.06-SP5
with TMSC 65nm technology library to carry out the gate-level synthesis of
these designs. The synthesis results are presented in Table 2. Then, we will give
the comparison of the two design through frequency, area and throughput. The
area results are reported using equivalent 2-input NAND gates.

Through the synthesis results, we note that with the increase of the degree of
parallelism, the Throughput/Area becomes smaller and the frequency becomes
lower. So we can not increase the degree of parallelism unlimitedly. We should
trade off between the stable frequency, throughput and area. Given the fact that
the stable operation frequency in 65 nm technology is about 1500 MHz, if the
design’s operation frequency is more than 1500 MHz, the design needs many
complicated changes to avoid the signal interference in the design. As a result,
the x3-ZUC is a good trade-off. Especially, the implementation of x3-ZUC can
satisfy the demand of data protection for the 100G system since the throughput
of x3-ZUC is up to 100Gbps.

Table 2. Comparison of x2-ZUC and x3-ZUC in 65nm technology

Implementation Technology
Max.Freq
(MHz)

Area
(KGates)

Throughput
(Gbps)

x2-ZUC TSMC 65nm 1495 22.69 95.68

x3-ZUC TSMC 65nm 1045 33.16 100.32

4 Evaluation and Analysis

Through the above description, the timing-critical path in our unrolled design
lies in FSM. The timing-critical path in x2-ZUC consists of two 32-bit adders,
two s-boxes(8bit) and some logic gates. The timing-critical path in x3-ZUC is
three 32-bit adders, three s-boxes(8bit) and some logic gates. In the initializa-
tion stage of our unrolled design, based on single-feedback initialization and two
kinds of shift modes, we can avoid the long data path in the initialization mode.
Meanwhile in our unrolled architecture, the data path of the update functions
in LFSR becomes shorter by using computation rescheduling to compute the
self-feedback variables. Firstly, in order to verify our unrolled design’s correct-
ness, we implement our architectures in Virtex-5 XC5VLX110T-3 and Virtex-6
XC6VLX75t-3 FPGA platform. The synthesis tool is ISE 13.2, and the synthesis
result is given in Table 3. From Table 3, the performance of our new unrolled
architecture is at least 8.99 Gbps, which is 63.5 % faster than the previous full
implementations on FPGA.

Then, compared with the existing designs in ASIC, Liu et al [10] propose
the mixed two-stage pipeline design, Gupta in [9] give an three-stage pipeline
architecture and a kind of unrolled ZUC, and in the commercial area, both IP



A High-Throughput Unrolled ZUC Core for 100Gbps Data Transmission 383

Fig. 7. The architecture of update functions in x3-ZUC

Table 3. Synthesis result of unrolled designs on FPGA

Implementation Technology
Max.Freq
(MHz)

Area
(Slice)

Throughput
(Gbps)

x2-ZUC Virtex-5 XC5VLX110T-3 140.47 649 8.99

x2-ZUC Virtex-6 XC6VLX75T-3 188.45 564 12.06

x3-ZUC Virtex-5 XC5VLX110T-3 98.07 827 9.41

x3-ZUC Virtex-6 XC6VLX75T-3 131.24 803 12.6

Kitsos et al [12] Virtex 5 65 385 2.08

Wang et al [7] Virtex-5 XC5VLX110T-3 108 356 3.46

Zhang et al [8] Virtex-5 XC5VLX110T-3 172 395 5.50

Cores Inc [13] and Elliptic Tech Inc [14] proposed their ZUC IP cores in 65nm
technology. In Table 4, we list the performance of these designs.

From Table 4, in the previous designs, the throughput of Liu-ZUC is 80 Gbps,
but the frequency of Liu-ZUC is 2500 MHz, which is too high to result in the
design’s instability. The best performance of x3-ZUC achieves 100 Gbps, 25%
higher than the previous fastest implementation, and the design frequency of
x3-ZUC is 1045 MHz, which is stable in 65 nm technology. Also the throughput
of x3-ZUC is 2.5 times higher than the previous unrolled architecture.



384 Q. Zhang et al.

Table 4. Performance of different designs of ZUC in 65nm technology

Implementation Technology
Max.Freq
(MHz)

Area
(KGates)

Throughput
(Gbps)

x2-ZUC TSMC 65nm 1495 22.69 95.68

x3-ZUC TSMC 65nm 1045 33.16 100.32

Liu-ZUC in [10] TSMC 65nm 2500∗ 12.5 80

Unrolled ZUC in [9] 65nm 425 27.69 27.2

ZUC in [9] 65nm 920 20.6 29.4

Elliptic Tech Inc in [14] 65nm 500 10-13 16

IP Core Inc in [13] TSMC 65nm - - 40

*In general, 2500 MHz is not stable in 65 nm technology.

Furthermore, in the pipeline architecture, the challenges that the high fre-
quency leads to the design’s complexity and instability will be more difficult in
advanced ASIC technology like 40 nm or 28 nm technology. However, our un-
rolled architecture has good scalability to take full use of the advanced ASIC
technology, further to improve the throughput.

5 Conclusion

In this paper, we propose two optimization techniques: computation reschedul-
ing and single feedback initialization. Based on these two techniques, we propose
two unrolled architecture of ZUC: x2-ZUC and x3-ZUC. The two optimization
techniques can solve the problem that the data path is too long in the initial-
ization stage in the previous unrolled designs. Implementation results clearly
indicate that our new unrolled architecture can improve throughput efficiently
both on FPGA and ASIC. The best performance of x3-ZUC is up to 100Gbps.
As far as we know, it is the fastest encryption and decryption ZUC IP core by
now. With the challenge of the security of data transmission at a bandwidth
of 100Gbps in the future, we hope this new architecture will be a standard for
hardware implementation of ZUC.

References

1. Specification of the 3GPP Confidentiality and Integrity Algorithms 128-EEA3 &
128-EIA3. Document 2: ZUC Specification version: 1.6 (2011)

2. Specification of the 3GPP Confidentiality and Integrity Algorithms 128-EEA3 &
128-EIA3.Document 1: 128-EEA3 and 128-EIA3 Specificationversion: 1.6 (2011)

3. Specification of the 3GPP Confidentiality and Integrity Algorithms 128-EEA3 &
128-EIA3.Document 3: Implementors Test Dataversion: 1.6 (2011)

4. Specification of the 3GPP Confidentiality and Integrity Algorithms 128-EEA3 &
128-EIA3. Document 4: Design and Evaluation Report version: 1.6 (2011)

5. Kitsos, P., Sklavos, N., Skodras, A.: An FPGA Implementation of the ZUC Stream
Cipher. In: 2011 14th Euromicro Conference on Digital System Design (DSD),
pp. 814–817. IEEE (2011)



A High-Throughput Unrolled ZUC Core for 100Gbps Data Transmission 385

6. Liu, Z., Zhang, L., Jing, J., Pan, W.: Efficient Pipelined Stream Cipher ZUC
Algorithm in FPGA. In: The First International Workshop on ZUC Algorithm,
pp. 2–3 (December)

7. Wang, L., Jing, J., Liu, Z., Zhang, L., Pan, W.: Evaluating Optimized Implementa-
tions of Stream Cipher ZUC Algorithm on FPGA. In: Qing, S., Susilo, W., Wang,
G., Liu, D. (eds.) ICICS 2011. LNCS, vol. 7043, pp. 202–215. Springer, Heidelberg
(2011)

8. Zhang, L., Xia, L., Liu, Z., Jing, J., Ma, Y.: Evaluating the optimized implemen-
tations of snow3g and zuc on FPGA. In: 2012 IEEE 11th International Conference
on Trust, Security and Privacy in Computing and Communications (TrustCom),
pp. 436–442. IEEE (2012)

9. Gupta, S.S., Chattopadhyay, A., Khalid, A.: Designing integrated accelerator
for stream ciphers with structural similarities. Cryptography and Communica-
tions 5(1), 19–47 (2013)

10. Liu, Z., Gao, N., Jing, J., Liu, P.: Hpaz: a high-throughput pipeline architecture
of zuc in hardware (2013), http://eprint.iacr.org/

11. Sen Gupta, S., Chattopadhyay, A., Khalid, A.: HiPAcc-LTE: An Integrated High
Performance Accelerator for 3GPP LTE Stream Ciphers. In: Bernstein, D.J., Chat-
terjee, S. (eds.) INDOCRYPT 2011. LNCS, vol. 7107, pp. 196–215. Springer,
Heidelberg (2011)

12. Kitsos, P., Kostopoulos, G., Sklavos, N., Koufopavlou, O.: Hardware implementa-
tion of the RC4 stream cipher. In: 2003 IEEE International Symposium on Micro-
NanoMechatronics and Human Science, vol. 3, pp. 1363–1366. IEEE (2005)

13. ZUC1 Ultra-Compact 3GPP Cipher Core, tech. rep., IP Cores Inc. (2012)
http://ipcores.com/ZUC$_$cipher$_$IP$_$core.htm (retrieved on February 5,
2012)

14. ZUC1 KEY STREAM GENERATOR, tech. rep., Elliptic Tech Inc. (2012),
http://elliptictech.com/zh/products-a-solutions/hardware/

cryptographic-engines/clp-410 (retrieved on February 5, 2012)

http://eprint.iacr.org/
http://ipcores.com/ZUC$_$cipher$_$IP$_$core.htm
http://elliptictech.com/zh/products-a-solutions/hardware/cryptographic-engines/clp-410
http://elliptictech.com/zh/products-a-solutions/hardware/cryptographic-engines/clp-410


Another Look at Privacy Threats

in 3G Mobile Telephony

Mohammed Shafiul Alam Khan� and Chris J. Mitchell

Information Security Group, Royal Holloway, University of London
Egham, Surrey TW20 0EX, United Kingdom

shafiulalam@gmail.com, me@chrismitchell.net

Abstract. Arapinis et al. [1] have recently proposed modifications to
the operation of 3G mobile phone security in order to address newly
identified threats to user privacy. In this paper we critically examine
these modifications. This analysis reveals that the proposed modifica-
tions are impractical in a variety of ways; not only are there security
and implementation issues, but the necessary changes to the operation
of the system are very significant and much greater than is envisaged.
In fact, some of the privacy issues appear almost impossible to address
without a complete redesign of the security system. The shortcomings
of the proposed ‘fixes’ exist despite the fact that the modifications have
been verified using a logic-based modeling tool, suggesting that such tools
need to be used with great care.

1 Introduction

The 3GPP/ETSI 3G standards, which incorporate a range of security features
[2,3], are the basis for a large part of the world’s mobile telephony. As a result,
any security or privacy flaws identified in these standards potentially have major
implications.

We are primarily concerned with one particular feature of 3G security, namely
the service known as user identity confidentiality. This service seeks to minimise
the exposure of the mobile phone’s long term identity (actually the long term
identity of the USIM within the phone) on the air interface, i.e. the radio path
between the phone and the network. The main security feature incorporated into
the 3G system designed to provide this service is the use of frequently changing
temporary identities, which act as pseudonyms.

A recently published paper by Arapinis et al. [1] describes two novel attacks
on this service, which enable user device anonymity to be compromised. As well
as describing the two attacks, modifications (‘fixes’) to the protocol are described
which aim to prevent the attacks, and verifications of these fixes using ProVerif
are also outlined.

� The first author would like to acknowledge the generous support of the Common-
wealth Scholarship Commission.

W. Susilo and Y. Mu (Eds.): ACISP 2014, LNCS 8544, pp. 386–396, 2014.
c© Springer International Publishing Switzerland 2014



Another Look at Privacy Threats in 3G Mobile Telephony 387

This paper has the following main objectives. Firstly, the proposed fixes are
re-examined, and are found to have significant shortcomings. Secondly, possi-
ble alternative approaches to some of the modifications are noted. Thirdly, it is
argued that some of the weaknesses in user identity confidentiality are impossi-
ble to fix, meaning that making significant system changes to address some of
them are unlikely to be worth the effort. Finally, conclusions are drawn about
the effectiveness of tools such as ProVerif if not used with appropriate care,
and in particular if used without a detailed understanding of the cryptographic
primitives being used.

The remainder of the paper is structured as follows. In section 2 the key
features of the 3G security architecture are briefly reviewed. The attacks of
Arapinis et al. are then summarised in section 3, together with a description of
their proposed fixes. Sections 4 and 5 provide an analysis of the ‘fixes’. Finally,
the findings of the paper are summarised and conclusions are drawn in section 6.

2 Relevant 3G Security Features

The purpose of this section is to introduce those 3G security features of relevance
to this paper. Our description follows Niemi and Nyberg [3], and we use their
notation.

2.1 The AKA Protocol

At the core of 3G air interface security is a mutual authentication and authen-
ticated key establishment protocol known as AKA (Authentication and Key
Agreement). This is regularly performed between the visited network and the
mobile phone (the user equipment (UE)). It involves the network sending an
user authentication request to the UE. The UE checks the validity of this request
(thereby authenticating the network), and then sends a user authentication re-
sponse. The network checks this response to authenticate the UE. As a result, if
successful, the two parties have authenticated each other, and at the same time
they establish two shared secret keys.

In order to participate in the protocol, the UE — in fact the User Subscriber
Identity Module (USIM) installed inside the UE — must possess two values:

– a long term secret key K, known only to the USIM and to the USIM’s ‘home
network’, and

– a sequence number SQN maintained by both the USIM and the home net-
work.

The key K never leaves the USIM, and the values of K and SQN are protected
by the USIM’s physical security features.

The 48-bit sequence number SQN is used to enable the UE to verify the
‘freshness’ of the user authentication request. More specifically, the request mes-
sage contains two values: RAND and AUTN, where RAND is a 128-bit random
number generated by the home network, and the 128-bit AUTN consists of the



388 M.S.A. Khan and C.J. Mitchell

concatenation of three values: SQN⊕AK (48 bits), AMF (16 bits), and MAC
(64 bits). The value AMF is not relevant to our discussions here, and we do
not discuss it further. The MAC is a Message Authentication Code (or tag)
computed as a function of RAND, SQN, AMF, and the long term secret key K,
using a MAC algorithm known as f 1. The value AK, computed as a function of
K and RAND, essentially functions as a means of encrypting SQN ; this is nec-
essary since, if sent in cleartext, the SQN value would potentially compromise
user identity confidentiality, given that the value of SQN is USIM-specific.

On receipt of these two values, the USIM uses the received RAND, along with
its stored value of K, to regenerate the value of AK, which it can then use to
recover SQN . It next uses its stored key K, together with the received values
of RAND and SQN, in function f1 to regenerate the MAC value; if the newly
computed value agrees with the value received in AUTN then the first stage of
authentication has succeeded. The USIM next checks that SQN is a ‘new’ value;
if so it updates its stored SQN value and the network has been authenticated.

If authentication succeeds, then the USIM computes another message authen-
tication code, called RES, from K and RAND using another function f 2, and
sends it to the network as part of the user authentication response. If this RES
agrees with the value expected by the network then the UE is deemed authen-
ticated.

We note that if the authentication process fails for some reason, then the
UE sends an error code (a Failure Case Code) as part of an Authentication
failure report, sent instead of a user authentication response ([2], section 6.3.6).
In particular, distinct error codes are sent to indicate an incorrect MAC and
an incorrect SQN, i.e. depending whether the authentication process fails at the
first or second stage.

Finally observe that the security properties of the AKA protocol itself have
been proven to hold [4] — the problems we consider here arise from exchanges
not actually part of the AKA protocol. This makes clear the necessity to consider
the entirety of a system if robust results about security and privacy are to be
achieved.

2.2 Session Keys

As part of a successful AKA procedure, the network and the USIM generate a
pair of session keys, known as IK, the integrity key, and CK, the ciphering key.
Both these keys are a function of K and RAND. The USIM exports these two
keys to the UE. The IK is used for integrity protection of signalling messages
sent across the radio path, and the CK is used for encryption of data sent across
the air interface, using a stream ciphering technique.

2.3 User Identity Confidentiality

As mentioned previously, user identity confidentiality is provided by the use of
temporary identities. Every USIM has a unique International Mobile Subscriber
Identity (IMSI). If this was routinely sent across the network then the UE,



Another Look at Privacy Threats in 3G Mobile Telephony 389

and hence its owner, could be traced. As a result, every UE also possesses a
Temporary Mobile Subscriber Identifier (TMSI) which is sent instead.

The value of the TMSI, which is chosen by the network the UE is visiting, is
changed regularly. A new TMSI is sent by the network to the UE in encrypted
form, protected using the CK.

3 Privacy Threats and Fixes

3.1 The Attacks

Arapinis et al. [1] describe two apparently novel attacks that breach user identity
confidentiality in 3G mobile telephony. These two threats operate as follows (for
further details see [1]).

– IMSI Paging Attack. This attack exploits a specific type of signalling message
known as a Paging message (or, more formally, a PAGING TYPE 1 message
— see 8.1.2 of ETSI TS 125 331 [5]). Such messages are sent from the network
to all mobile devices in a particular area, and can contain either an IMSI or
a TMSI. If a UE detects such a message containing its IMSI or its current
TMSI then it responds with a message containing its current TMSI. Most
importantly, paging messages are not integrity protected (see 6.5.1 of ETSI
TS 133 102 [2]), and hence a malicious third party can introduce spurious
paging messages into the network. This can be used to both detect the
presence of a UE with a specific IMSI, and also to learn the current TMSI
for this device. This poses a threat to mobile identity privacy.

– AKA Error Message Attack. This attack exploits the error messages incor-
porated into the AKA protocol, as described in section 2.1 above. Suppose
an attacker has intercepted a genuine (RAND, AUTN ) pair sent to a partic-
ular UE. If these values are relayed to a specific UE, two possible outcomes
will arise. If the recipient UE is the device to which the (RAND, AUTN )
pair was originally sent then it will respond with an Authentication failure
report containing an error code indicating a failed SQN, i.e. to indicate that
the pair has been received previously. Otherwise, the UE will respond with
a failure report containing an error code indicating an incorrect MAC value.
That is, the error code can be used to distinguish between UEs, and this is
clearly another means of breaching user identity confidentiality.

3.2 Observations

We start by observing that the first threat, whilst apparently novel, is closely
related to another threat to user identity privacy. As described in section 6.2
of ETSI TS 133 102 [2], ‘when the user registers for the first time in a serving
network, or when the serving network cannot retrieve the IMSI from the TMSI by
which the user identifies itself on the radio path’, the serving network must obtain
the IMSI from the UE — this is performed using a User identity request/User
identity response message pair, where the latter message contains the IMSI. ‘This



390 M.S.A. Khan and C.J. Mitchell

represents a breach in the provision of user identity confidentiality’. This attack,
called user identity catching (or IMSI catching), is further mentioned in A.1 of
ETSI TS 121 133 [6], and is also noted by Arapinis et al. ([1], section 2.2).

Given that this attack exists, i.e. an active attacker can obtain the IMSI of
any UE by impersonating the network, neither of the new attacks appear to
significantly weaken the user privacy service any further. That is, neither of the
new attacks appear to be any easier to launch than the IMSI catching attack —
in particular, they both require active impersonation of the network.

Most interestingly, the second attack seems to be an issue that has not previ-
ously been discussed in the literature. It is just one example of a very broad class
of threats arising from poorly designed error messages that reveal information
of value to an attacker — see, for example, Vaudenay [7].

3.3 The Fixes

As well as describing the two privacy issues, Arapinis et al. [1] give three separate
modifications to the operation of 3G mobile telephony designed to fix the two
newly identified problems as well as the well known user identity catching attack.
We next briefly describe these proposed modifications.

– Fixing the IMSI Paging Attack. This modification is not described in com-
plete detail ([1], section 5.2), and as a result some suppositions need to be
made. It involves cryptographically protecting the paging message using a
secret key UK known only to the network and the UE. Like the CK and IK,
this additional key is generated as a function of the RAND and K during
the AKA protocol.

The paging message format is modified to incorporate two additional
fields, namely a sequence number SQN and a random challenge CHALL.
It is not clear whether SQN is in the same ‘series’ as the SQN sent in the
AUTN of whether this is a distinct sequence number used for this purpose
only. This issue is discussed further in section 4 below.

The entire paging message is then encrypted using UK . However, the
method of encryption is not specified. This issue is also discussed further in
section 4 below.

Since this message is broadcast, it is received by all UEs currently at-
tached to a base station. Each UE must use its current UK to decrypt the
message. By some (unspecified) means the recipient UE decides whether the
decrypted message is intended for it or not — Arapinis et al. simply state
([1], section 5.2) that each UE ‘has to decrypt and check all the received IMSI
paging to determine if it is the recipient’ (sic). If it is the intended recipient,
then the UE checks the SQN against its stored value to verify its freshness
(as in AKA). If it is fresh then the USIM updates its stored SQN, and sends
a paging response containing the TMSI and the received value of CHALL;
otherwise, if the freshness check fails, the paging message is ignored.

– Fixing the AKA Error Message Attack. This fix involves leaving the ‘normal’
operation of AKA unchanged; the only modification is to require (asymmet-
ric) encryption of authentication failure report messages, thereby hiding the



Another Look at Privacy Threats in 3G Mobile Telephony 391

nature of the embedded error message. This encryption is performed using a
public encryption key belonging to the visited network. Providing a reliable
copy of this key to the UE requires the pre-establishment of a Public Key
Infrastructure (PKI) involving all the 3G network operators, in which each
network operator has an asymmetric encryption key pair and a signature
key pair. Each operator must use its private signature key to create a cer-
tificate for every other network’s public encryption key. Every USIM must
be equipped with the public signature verification key of the issuing (home)
network.

In order for the UE to obtain a trusted copy of the appropriate pub-
lic encryption key, the visited network must send a copy of a certificate
for its public encryption key, signed using the private signature key of the
USIM’s home network (this could be achieved by modifying an existing sig-
nalling message or by introducing a new such message). The USIM exports
its trusted copy of the public verification key of its home network to the
phone, and the phone can use this to verify the certificate, thereby obtain-
ing the required trusted public encryption key. The phone can perform the
encryption of the failure report message, obviating the need for the USIM to
perform any computationally complex asymmetric encryption operations.

A further modification to the failure report message is proposed by Ara-
pinis et al. [1], namely to include the USIM’s current value of SQN . This
change is designed to enable resynchronisation of this value by the network,
but is not explained further.

– Fixing User Identity Catching. Finally, Arapinis et al. [1] also propose mod-
ifying the procedure by which a UE identifies itself when first joining a
network. They propose that the UE asymmetrically encrypts the User iden-
tity response message containing the IMSI. As in the previous modification,
this encryption is performed using the public encryption key of the visited
network.

4 IMSI Paging Re-examined

There are a number of significant issues with the fix proposed to mitigate IMSI
paging attacks. We enumerate some of the most serious.

1. Introducing a new type of session key, i.e. the UK, has major ramifications.
To see why we first need to consider some issues surrounding the use of
AKA. The long term K is not passed to a visited network. Instead, the
home network of the USIM will generate, on request, sets of authentication
vectors, i.e. 5-tuples (RAND, XRES, CK, IK, AUTN ), which are passed
to the visited network. Each 5-tuple contains a random RAND value and a
distinct SQN value embedded in the AUTN . Note that several such 5-tuples
will be passed to the visited network at the same time (to reduce the number
of inter-network signalling messages), and the visited network must use them
in the correct order, i.e. in ascending order of SQN values.



392 M.S.A. Khan and C.J. Mitchell

When it wishes to authenticate a UE, the visited network sends the
(RAND, AUTN ) pair from the ‘next’ authentication vector, and receives
back RES, which it compares with the XRES value from the authentication
vector (the ‘expected value of RES ) to authenticate the UE. Introducing
an additional key type means that the authentication vectors will need to
become 6-tuples to include the UK value, which will involve changing the
formats of messages sent between networks (this is, in itself, a significant
change).

2. As noted in section 3.3 above, there are two possible ways in which the
SQN might be generated and managed. It could be generated and verified
using the same mechanism as employed for the AKA protocol, or a separate
sequence number scheme could be involved. Unfortunately, there are major
implementation difficulties with both options.
(a) Using the same SQN values as are used in the AKA protocol is prob-

lematic. The visited network does not have a means of finding out these
values, as they are not included in the authentication vectors sent to the
visited network. Even if the current SQN value was sent as part of the
authentication vector (which would affect the inter-network signalling in-
frastructure), two major problems remain. Firstly, if the visited network
is permitted to generate new SQN values and have them accepted by
the USIM, then this means that the visited network is able to modify the
SQN value stored by the USIM. This could have the effect of invalidat-
ing any unused authentication vectors that the visited network retains
for the UE. Secondly, giving the visited network the power to change
the SQN value held by the USIM is a major change in the current trust
model, and would give the visited network the power to deliberately or
accidentally completely block the operation of the USIM by sending it a
very large SQN value.

(b) Using a different SQN value also raises major issues, as there is no obvi-
ous mechanism to keep multiple networks aware of the current value of
the SQN for a particular UE. This would require the home network to
maintain the current value, and for visited networks to exchange mes-
sages with the home network to maintain synchronisation between the
value held by the USIM and the home network.

3. The ‘encryption’ of the paging message appears to be intended to provide
two distinct security services: (a) guarantees to the recipient regarding the
origin and integrity of the message, and (b) confidentiality of the contents
so that passive interceptors cannot observe the link between an IMSI and a
TMSI. It is well known that simple encryption cannot guarantee property
(a), especially if that means use of a stream cipher (see, for example, section
9.6.5 of Menezes, van Oorschot and Vanstone [8]). However, stream cipher
encryption is the only encryption primitive available in the current 3G se-
curity architecture. Clearly what is really required is the application of an
authenticated encryption technique [9], which would provide the necessary
security guarantees. However, this is never made explicit by Arapinis et al.
[1]. Their success in proving the security of the modification using ProVerif



Another Look at Privacy Threats in 3G Mobile Telephony 393

suggests that their input to ProVerif implicitly assumed the provision of
properties (a) and (b), whereas their description of the necessary modifica-
tions to the system did not make these requirements explicit. This shows the
danger of not carefully considering and making explicit all the properties of
the cryptographic primitives being employed.

Of course, the visited network and UE share a pair of keys (CK and IK )
designed explicitly for confidentiality and integrity protection of data and
signalling messages. A much simpler solution, which achieves precisely the
same objectives, would be to first encrypt the paging message using CK and
then generate an accompanying MAC using IK . This would both achieve the
security objectives and avoid the need to introduce an additional key type.

4. Finally, we note that, even if it could somehow be repaired, the fix imposes
very significant burdens on the system. As stated by the authors (final sen-
tence of 5.2 of [1]) the overheads of the proposed modification are non-trivial.
This is because every UE that receives a paging message is required to de-
crypt it and somehow verify whether or not it is intended for them.

In conclusion, the number and seriousness of the issues identified with the
fix, especially relating to the use of the SQN sequence number, suggest that it
cannot work in practice. Moreover, finding an alternative fix without completely
redesigning the 3G system appears highly problematic. As a result it would
appear that accepting that user identity confidentiality is imperfect seems in-
evitable, a point we return to below.

5 Addressing the Error Message and Identity Catching
Attacks

In evaluating the fix proposed to address the AKA error message attack, we
start by considering the practicality of introducing a brand new PKI. Whilst
the required PKI is relatively small scale, involving only the network operators,
introducing such a PKI would nevertheless involve significant changes to the
operation of the system. In particular, over and above requiring changes to all
phones, all USIMs and all networks, every USIM would need to be equipped with
a public key, every network would need to exchange public keys and certificates
with every other network, certificates (potentially quite large) would need to be
routinely sent across the air interface, and the USIM would need to routinely
transfer a public key to its host phone (across a smart card interface with a
very limited data transfer capability). That is, whilst the PKI itself might be
relatively small-scale, the changes to the air interface protocol to allow its use
would require fundamental changes to the system infrastructure. It is not even
clear how a phased deployment could be undertaken, and changing the entire
system (including all mobile phones) at a single point in time is clearly infeasible.

It is interesting to note that the difficulty of providing robust identity privacy
without asymmetric cryptography has long been known — see, for example,
Mitchell ([10], section 4.1). Indeed, this point is also made by Arapinis et al.
([1], section 5.5) who make similar remarks. This suggests that modifications



394 M.S.A. Khan and C.J. Mitchell

analogous to the proposed fix have been considered in the past, and rejected for
reasons of complexity and low pay off (a point we return to below).

Moreover, deploying the required PKI requires all networks to possess two key
pairs, one for encryption/decryption and one for signature generation and verifi-
cation. This is because, in general, the widely accepted principle of key separation
(see, for example, 13.5.1 of Menezes, van Oorschot and Vanstone [8]) requires
that different keys are used for different purposes. However, if sufficient care is
taken, sometimes the same key pair can be securely used for both encryption
and signature, although this is not without risks (see, for example, Degabriele
et al. [11]).

We further note that if the private decryption key of any network is ever
compromised, then security is compromised. The usual solution in a PKI is
to deploy a revocation system, e.g. in the form of Certificate Revocation Lists
(CRLs). However, deploying CRLs on the scale necessary would appear to be
very challenging in a 3G system. Indeed, the difficulties of deploying CRLs across
large networks are well-established, [12,13].

One alternative to the proposed solution would simply be to remove the error
code from the error message, or, to minimise protocol modifications, to program
mobile phones to always return the same error message regardless of how AKA
actually fails. This is, in any case, clearly best practice for any security protocol,
i.e. if an authentication procedure fails then the only information that should be
provided is that the process has failed, and not how.

Finally we note that implementing the proposed fix to mitigate IMSI catching
is problematic. Requiring a UE to encrypt the IMSI it sends to the network
requires the phone to have a reliable copy of the network’s public key. This will,
in turn, require the network to send the UE a certificate — but which one? The
UE will only be able to verify a certificate signed by the USIM’s home network,
but the visited network will not know what this is until it has seen the IMSI.
That is, the UE will not be able to encrypt the IMSI for transmission to the
network until the network knows the IMSI, and hence we have a classic ‘chicken
and egg’ problem.

6 Summary and Conclusions

It would appear that the modifications proposed to address the identified privacy
threats either do not work or impose a very major overhead on the network,
over and above the huge cost in modifying all the network infrastructure. Very
interestingly, the failures in the fixes arise despite a detailed analysis using formal
techniques.

Of course, making significant changes to a protocol as widely deployed as
the 3G air interface protocol is unlikely to be feasible, so the discussion here is
perhaps rather moot. However, even where the fixes appear to work, in two cases
significantly simpler approaches appear to have been ignored. That is, removing
the error messages would mitigate the AKA error message attack (and would
also conform to good practice), and it would appear that the introduction of a



Another Look at Privacy Threats in 3G Mobile Telephony 395

new key UK is unnecessary. If changes are to be made, then it is vital to try to
minimise their impact on the operations of the system.

Most significantly in any discussion of whether it might be worth trying to
implement ‘fixed up’ versions of the fixes, there exist ‘passive’ attacks on user
identity confidentiality other than those discussed thus far. For example, a ma-
licious party wishing to discover whether or not a particular phone is present
in a cell could simply inaugurate a call to the phone or send it an SMS, si-
multaneously monitoring messages sent across the network. If such a procedure
is repeated a few times, then it seems likely to be sufficient to reveal with high
probability whether a particular phone is present, especially if the network is rel-
atively ‘quiet’. Such an attack only requires passive observation of the network,
and hence would be simpler to launch than attacks requiring a false base station
(which is the case for all the attacks we have discussed previously). Moreover,
addressing such an attack would be almost impossible.

We can thus conclude that not only are the proposed fixes highly problem-
atic, but providing a robust form of user identity confidentiality is essentially
impossible in practice. That is, if robust identity confidentiality is not achiev-
able, then it is very unlikely to be worth the huge cost of making changes of the
type proposed. The ‘pay off’ in mitigating some threats but not others is small
relative to the overall cost of implementing them.

Finally, the practical and security issues encountered in considering the de-
tailed implementation of the proposed modifications suggests that the use of
formal tools to try to guarantee security and privacy properties should be used
with great care. In particular, any such analysis should always be accompanied
by an analysis of the practical working environment for the security protocol.

References

1. Arapinis, M., Mancini, L., Ritter, E., Ryan, M., Golde, N., Redon, K., Borgaonkar,
R.: New privacy issues in mobile telephony: Fix and verification. In: Yu, T.,
Danezis, G., Gligor, V.D. (eds.) ACM Conference on Computer and Communi-
cations Security, CCS 2012, Raleigh, NC, USA, October 16-18, pp. 205–216. ACM
(2012)

2. European Telecommunications Standards Institute (ETSI): ETSI TS 133 102
V11.5.1 (2013-07): Digital cellular telecommunications system (Phase 2+); Uni-
versal Mobile Telecommunications System (UMTS); 3G Security; Security archi-
tecture (3GPP TS 33.102 version 11.5.1 Release 11) (2013)

3. Niemi, V., Nyberg, K.: UMTS Security. John Wiley and Sons, Chichester (2003)
4. Lee, M.F., Smart, N.P., Warinschi, B., Watson, G.J.: Anonymity guarantees of the

UMTS/LTE authentication and connection protocol. Cryptology ePrint Archive:
Report 2013/27 (2013)

5. European Telecommunications Standards Institute (ETSI): ETSI TS 125 331
V11.6.0 (2013-07): Universal Mobile Telecommunications System (UMTS); Radio
Resource Control (RRC); Protocol specification (3GPP TS 25.331 version 11.6.0
Release 11) (2013)



396 M.S.A. Khan and C.J. Mitchell

6. European Telecommunications Standards Institute (ETSI): ETSI TS 121 133
V4.1.0 (2001-12): Universal Mobile Telecommunications System (UMTS); 3G Se-
curity; Security threats and requirements (3GPP TS 21.133 version 4.1.0 Release
4) (2001)

7. Vaudenay, S.: Security flaws induced by CBC padding - applications to SSL,
IPSEC, WTLS... In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 534–545. Springer, Heidelberg (2002)

8. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-
raphy. CRC Press, Boca Raton (1997)

9. International Organization for Standardization Genève, Switzerland: ISO/IEC
19772:2009, Information technology — Security techniques — Authenticated en-
cryption mechanisms (2009)

10. Mitchell, C.J.: The security of the GSM air interface protocol. Technical Report
RHUL-MA-2001-3, Mathematics Department, Royal Holloway, University of Lon-
don, Egham, Surrey TW20 0EX, UK (2001),
http://www.ma.rhul.ac.uk/techreports

11. Degabriele, J.P., Lehmann, A., Paterson, K.G., Smart, N.P., Strefler, M.: On
the joint security of encruption and signature in EMV. In: Dunkelman, O. (ed.)
CT-RSA 2012. LNCS, vol. 7178, pp. 116–135. Springer, Heidelberg (2012)

12. Kocher, P.C.: On certificate revocation and validation. In: Hirschfeld, R. (ed.) FC
1998. LNCS, vol. 1465, pp. 172–177. Springer, Heidelberg (1998)

13. Myers, M.D.: Revocation: Options and challenges. In: Hirschfeld, R. (ed.) FC 1998.
LNCS, vol. 1465, pp. 165–171. Springer, Heidelberg (1998)

http://www.ma.rhul.ac.uk/techreports


ExBLACR: Extending BLACR System

Weijin Wang, Dengguo Feng, Yu Qin, Jianxiong Shao, Li Xi, and Xiaobo Chu

Trusted Computing and Information Assurance Laboratory,
Institute of Software, Chinese Academy of Sciences, Beijing, China

{wangweijin,feng,qin yu,shaojianxiong,xili,chuxiaobo}@tca.iscas.ac.cn

Abstract. Reputation-based anonymous blacklisting systems allow
users to anonymously authenticate their identities with a service provider
(SP) directly, while enabling the service provider to score users’ misbe-
haviour and deny access from users with insufficient reputation, without
the assistance of a Trusted Third Party (TTP). Au, Kapadia and Susilo’s
reputation-based anonymous blacklisting system BLACR is an elegant
solution except for the linear computational overhead in the size of the
reputation list. Therefore, they proposed a more practical strategy for
BLACR that allows active users to authenticate in the express lane.
However, the strategy disables BLACR’s ability to perform unblacklist-
ing since removing entries from the blacklist invalidates the reputation
proofs of express lane tokens. Another problem of BLACR is that the ex-
press lane tokens can be reused (replay attack). In this paper, we propose
ExBLACR, which provides a solution to the above problems. Our con-
struction directly builds from BLACR and we present an improvement of
weighted-score adjusting protocol (GWS−Adj) to support unblacklisting
when BLACR employs the express lane authentication. We also make a
minor change to the express lane tokens to resist replay attack.

Keywords: anonymousblacklisting, unblacklisting, revocation,BLACR,
replay attack.

1 Introduction

Nowadays people are becoming increasingly concerned about their privacy mat-
ters during the use of web applications. For example, without the protection of
privacy, users would not be willing to submit sensitive contents on Wikipedia,
or express their real views on online forums due to being afraid of the conse-
quences that might be faced from censorship. A trivial solution to protecting
privacy on web applications is to use some kind of anonymous communications
networks, such as Tor [12]. Nevertheless, anonymous communications networks
cause another problem: misbehaved users will not be accountable for their bad
actions. Given this situation, plenty of work has been done for permitting service
providers (SPs) to blacklist misbehaved users while keeping their anonymity.

Anonymous Blacklisting Systems with TTP. These approaches allow a SP
to blacklist a user in cooperation with a TTP, which can identify the user and link

W. Susilo and Y. Mu (Eds.): ACISP 2014, LNCS 8544, pp. 397–412, 2014.
c© Springer International Publishing Switzerland 2014



398 W. Wang et al.

the user’s accesses. Two separate categories can be taken into account in the early
literature. The first one is the pseudonym systems based on private credentials
[11,21], blind signatures [13,1], and group signatures [10,24]. The other one is
the Nymble-like systems [28,14,18,19]. Nonetheless, having a TTP capable of
deanonymizing or linking a user’s accesses is dangerous in that when the TTP is
compromised, legitimate users’ privacy will not be guaranteed. Recognizing this
threat, the elimination of such TTP is desired.

Anonymous Blacklisting Systems without TTP. To eliminate the partic-
ipation of TTPs, Tsang et al. proposed Blacklistable Anonymous Credentials
(BLAC) [25,27]. In BLAC, a user proves in zero-knowledge that he holds a valid
credential and the credential is not listed in the blacklist. At the same time,
Brickll and Li proposed Enhanced Privacy ID (EPID) [7]. EPID is similar in
spirit to BLAC, but is specially designed to enable a TPM device. However, the
amount of computation that the SP requires for authentication in the BLAC
and EPID is linear in the size L of the blacklist (O(L)). This drawback makes
them impractical in practice due to the growing size of the blacklist. After that,
Au et al. (some of them are the authors of BLAC) proposed BLACR [5], which
stands for BLAC with reputation. In BLACR, the SP can score each entry with a
positive or negative score on the reputation list (meritlist/blacklist) along with a
category identifier. A user can be allowed to access the SP only if their reputation
(or score) of each category is above a certain level. BLACR also implements the
concept of ‘express lane authentication’ to improve performance. The original
one can be called as ‘normal lane authentication’. However, this improvement
disables BLACR’s ability to unblacklist forgiven misbehaviors since removing
entries invalidates the reputation proofs of the express lane tokens. The ‘normal
lane authentication’ does not have this problem because the user generates the
reputation proof for the whole blacklist in the normal lane authentication, thus
removing entries does not have an impact on the correctness of the reputation
proof.

Tsang et al. also proposed a more practical TTP-Free scheme, PEREA [26],
and Au et al. extended it in [3]. PEREA is an anonymous blacklisting scheme in
which the time complexity of authentication at the SP is linearly independent
of the size L of the blacklist. Instead, the amount of computation is linear in
the size K of the revocation window (K << L). Nevertheless, a misbehaved
user must be caught during his subsequent K (5 ∈ K ∈ 15) authentications,
or he will escape from punishment. Vulnerability of the non-membership proof
scheme in [17] has been presented by [23], which in turn breaks the security of
PEREA. Another problem of PEREA is that the “naughtiness” extension can
only capture the most recent K sessions. Yu et al. added a built-in positive
reputation system and proposed PE(AR)2 to fix these problems in [29]. How-
ever, a new vulnerability arises that a user may redeem again the score of a
ticket that has been redeemed by another user if his initial set of tickets includes
this ticket. Concurrently Au et al. did an excellent job to extend PEREA with



ExBLACR: Extending BLACR System 399

memory called PERM [6] and solved these problems too, except the misbehavior
must be scored within a revocation window (users are not willing to voluntar-
ily upgrade negative reputation outside of this window). PERM takes a more
efficient authentication at the user side than PEREA and PE(AR)2.

Other practical schemes to eliminate TTPs include FAUST [20], which is
based on Chaum’s blind signature scheme [9]. FAUST alleviates the computa-
tion problem, but offers an even more limited form of reputation than PEREA.
Recently, Henry and Goldberg [16] presented BLACRONYM to improve the per-
formance of BLAC and its variants by incorporating novel batch zero-knowledge
proof and verification techniques. However, these techniques can not deal with
the “weighted” version of BLACR.

Problems with BLACR and Our Contribution. The major drawback of
BLACR is that it has the same linear dependence of BLAC. BLACR improves the
performance via express lane authentication, but unblacklisting will not work-
ing because unblacklisting invalidates the reputation proofs of the express lane
tokens. For the purpose of supporting unblacklisting while enabling the express
lane authentication, we propose ExBLACR that is directly built from BLACR.
Two difficulties must be solved: (1) When some entries are removed from the
a meritlist/blacklist, the “express lane tokens” must still be usable. (2) After
removing the entries from a meritlist/blacklist, the weighted scores must be ad-
justed correctly. In our paper, ExBLACR fixes these difficulties by introducing
an demeritlist/unblacklist U corresponding to a meritlist/blacklist L. Entries
removed from L are added in the U and a new protocol is presented to adjust
weighted scores. The time complexity of our scheme remains the same order of
magnitude as BLACR except the constant factor is a little higher.

Another problem of BLACR is that the express lane tokens can be reused
(replay attack). Consider the following attack scenario: in time period Ti, a user
gets an express lane token tki. After j time periods, that is, in time period
Ti+j , the user gets a new token tki+j . Assume that during the time Ti+j − Ti,
the user achieves sufficient punishment while not have been revoked. At some
point of time period Ti+j+1, the user wants to authenticate using tki+j in the
express lane, but he/she finds that he/she cannot satisfy the policy. Thanks to
the vulnerability of the express lane tokens, which do not consist of any labels to
distinguish different time periods, the user can use the token tki at this point of
the time period Ti+j+1 to escape from the punishment during the time Ti+j−Ti.
The solution to resist this attack is to append a timestamp for every signature
of tokens.

2 Preliminaries

Zero Knowledge Proofs of Knowledge (ZKPoK). In a ZKPoK proto-
col, a prover convinces to a verifier that some statement is true while the verifier
learns nothing except the validity of the statement. We use the standard notation



400 W. Wang et al.

SPK{(x) : y = gx}(M) due to Camenisch and Stadler [8] to denote a proof
knowledge of x where y = gx, where M is a random challenge (message) to be
signed.

Commitment Scheme. We use the commitment scheme proposed by Pedersen
[22]. The commitment scheme is a triplet of algorithms (S, T ,R):

– T : on input 1k, outputs a common reference string crs = (q, g, h), where q
is prime order of a cyclic group G and g, h is the independent generators of
G.

– S: on input crs and x ⊕ Zq, choses a random value r ⊕ Zq and outputs a
commitment CMT (x) = gxhr in commit phase, then outputs (r, x) in reveal
phase.

– R: on input crs, CMT (x) and (r, x), outputs accept if CMT (x) = gxhr.

BBS+ Signature. We employ the signature scheme proposed by Au et al. [2].
Let (G1,G2) be a pair of groups of prime order q and ê be a pairing defined
over (G1,G2). Let g, g0, g1, ..., gk, gk+1 be generators of G1 and h be a generator
of G2 such that g = χ(h), where χ is a computable isomorphism. The BBS+
signature scheme can be demonstrated as follow:

– KeyGen. Randomly chooses σ ⊕ Zq and computes w = hγ , outputs the public
key w.

– Sign. On input messages (m0,m1, ...,mk), chooses e, y ⊕R Zq, computes

A = (ggm0
0 gm1

1 · · · gmk

k gyk+1)
1

e+κ and outputs (A, e, y) as the signature on
message (m0,m1, ...,mk).

– Verify. To verify the signature (A, e, y), checks if ê(A,whe) = ê(ggm0
0 gm1

1 ·
· · gmk

k gyk+1, h).

3 Review of BLACR

In this session, we review the construction of BLACR in brief. We recommend
the readers to obtain more details of BLACR in [4,5], such as the definition of
policy, the α-Approach and the details of some useful protocols.

3.1 Protocols Used in BLACR

Protocol GIss(C0, C1, ..., Ck) : allows a user to obtain a credential BBS+ sig-
nature β = (A, e, y) from the signer on values (m0,m1, ...,mk) committed in
(C0, C1, ..., Ck).

Protocol GSig(C0, C1, ..., Ck) : allows a prover to convince a verifier that he
knows a credential signature β = (A, e, y) on messages (m0,m1, ...,mk) com-
mitted in (C0, C1, ..., Ck).

Protocol Gx(Cx, t, g) : allows a prover to assure the verifier the value loggt is
committed in Cx = CMT (x).



ExBLACR: Extending BLACR System 401

Protocol GWS−Adj(Cx, Cs, Cn, Cc/ ⊇,L,D) : allows a user to convince any
verifier that the value s committed in Cs is the weighted score of the user
with secret value x committed in Cx with respect to the list L, a set of
adjusting factor D, given a value n = Cnt(L, x) committed in Cn, where
Cnt(L, x) = |{τ : (τ, ·) ⊕ L}| is the number of times this user has been put
on L and τ stands for a ticket this user used in the authentication.

Protocol GPol(Pol, C1, C2, ..., Cm): allows a prover to convince a verifier the
set of reputation values committed in (C1, C2, ..., Cm) would satisfy the au-
thentication policy Pol :

⎧z
j=1(

⎪m
i=1(¬)Pji), where Pji has the form (ci, nji)

which requires the authenticating user to have a reputation equal or higher
than a threshold nji in category ci.

3.2 Initialization

1. Let q (|q| = Φ) be a prime order of groups G,G1,G2 and GT . Let ê : G1 ×
G2 = GT be a bilinear pairing and χ : G2 → G1 be an efficiently computable
isomorphism. Let g0, g1, g2 ⊕ G1 and h0 ⊕ G2 be the generators of G1 and
G2 respectively such that g0 = χ(h0). Let H0 : {0, 1}∈ → G be a collision-
resistant hash function.

2. GM generates BBS+ signature key pair (gsk, gpk) = (σ ⊕R Zq, w = hγ0 ) for
issuing credentials.

3. Let m be number of categories and sid be the unique identity of SP. Each
SP publishes a set of generators gsid, gsid,0, gsid,1, ..., gsid,m, gsid,m+1 ⊕ G1,
hsid ⊕ G2 such that gsid = χ(hsid) and generates a key pair (gsksid, gpksid) =
(σsid ⊕R Zq, wsid = hγsid

sid ) for issuing the express lane tokens. SP initializes
a meritlist L+

i and blacklist L−
i for each category ci, as well as the set of

adjusting factors D+
i and D−

i for each category ci.

3.3 Registration

A user picks a secret key x and computes the commitment Cx = CMT (x). Then
the user get a credential signature (A, e, y) on x via executing protocol GIss(Cx)
with GM. The user stores the credential (A, e, x, y).

3.4 Authentication

In the authentication phase, the user must convince to a SP in zero-knowledge
that he holds the following two properties.

Property 1. The user in possess of a secret value x holds a valid credential
(A, e, x, y) and the ticket τ is formed by (b,H0(b||sid)x), where b ⊕R {0, 1}λ.

Property 2. The user computesm categories of reputation values correctly and
the authentication policy Pol evaluates to 1 with respect to these reputation
values.



402 W. Wang et al.

Let tp be the current time period and s≤i be the weighted score of the user
with respect to L≤

i in category ci, where ≤ ⊕ {+,−}. The authentication phase
(both Normal Lane Authentication and Express Lane Authentication)
can be summarised in high level as follow.

1. The SP sends to user the lists for each category, the adjusting factors, a
random challenge M and the policy Pol.

2. The user computes the reputation Ri = s+i −s−i for each catogory and checks
if it satisfies the policy Pol. If not, the user returns as failure.

3. If the user is not revoked, he/she generates a zero-knowledge proof π to
convince SP that Property 1 and Property 2 are satisfied. Then the user
sends the π to SP, together with other parameters, including the ticket τ .

4. On receiving the proof π , SP checks this proof. If the proof π is a valid
proof, the SP outputs success. Then the user will obtain an express pass tktp
with the assistance of SP for the express-lane authentication.

3.5 List Management

The blacklisting operation Add(L, (τ, s)) adds tuple (τ, s) to meritlist/blacklist
L. There is not unblacklisting operation due to the express lane authentication.

4 A Extended Scheme: ExBLACR

4.1 Category

The category method in ExBLACR is a bit different from BLACR. In BLACR,
SP employs different scoring schemes in each category. But in ExBLACR, SP
employs the same scoring scheme in each category and gives each category a base
score. For examples, in BLACR, the SP can use different scoring schemes in the
category of comments (e.g., vulgar language: -2, defamation: -5 and racism: -10).
Instead, in ExBLACR, the SP can use three categories, each of which corresponds
with a scoring scheme (category of vulgar language comments : -2, category of
defamation comments : -5 and category of racism comments : -10).

4.2 Our Improvement to BLACR

Basic Ideal of Unblacklisting. To support unblacklisting, ExBLACR addi-
tionally introduces a demeritlist U+

i and unblacklist U−
i corresponding to a mer-

itlist L+
i and blacklist L−

i respectively for each category ci. An entry in the L≤
i

that has to be demeritlisted/unblacklisted will be added (copied) to U≤
i , where

≤ ⊕ {+,−}. The weighted score si of a user in category ci would be adjusted
like this: subtracting the “most severity” score. For instance, let sci be the base
score of category ci and Di = {Σ1 = 1, Σ2 = 2, ..., Σk = k} be the adjust-
ing factors. Without loss of generality, we assume the entries in the blacklist
only belong to this user in this example. Suppose a blacklist L−

i of category ci



ExBLACR: Extending BLACR System 403

is {(τ1, sci), (τ2, sci), (τ3, sci), (τ4, sci), (τ5, sci)}, then n = |L−
i | = 5 and si = 1×

sci+2×sci+3×sci+4×sci+5×sci. In principle, after a entry (τ3, sci) has been un-
blacklisted, the remaining entries would be {(τ1, sci), (τ2, sci), (τ4, sci), (τ5, sci)}.
And value si is equal to 1 × sci + 2 × sci + 3 × sci + 4 × sci , in which the
“most severity” score is gone. However, BLACR cannot directly remove the en-
tries from L−

i since it will invalidate the express lane authentication. Therefore,
we take an equivalent way in ExBLACR. When the enty (τ3, sci) has to been
unblacklisted, SP adds it into the unblacklist U−

i while L−
i remain unchanged.

Then U−
i = {(τ3, sci)} and l = |U−

i | = 1. The weighted score si can be computed
as

⎨n
j=1Σjsci −

⎨n
j=n−l+1Σjsci = 1× sci +2× sci +3× sci +4× sci , which is

equal to the original one. The following protocol implements this functionality.

Protocol. G∗
WS−Adj(Cx, Cs, Cn, Cl, Cc, Cd,L,U ,D) : List L and D may be the

sub-sequence of any longer list Li = Li−1 +L and Ui = Ui−1 +U . Value s is the
weighted score of a user with a secret value x with respect to the sub-sequence L
and U . We mark the values n = Cnt(Li−1, x), l = Cnt(Ui−1, x), c = Cnt(L, x)
and d = Cnt(U , x). The adjusting factors D can be parsed as (i,Σi, βi)

D
i=1.

Protocal G∗
WS−Adj allows a user to convince any verifier that the value s

committed in Cs is the weight score of the user with secret value x committed
in Cx with respect to the list L and U , the set of adjusting factors D, and the
value n, l, c and d committed in Cn, Cl, Cc and Cd respectively.

1. The prover picks additional inputs x, rx, s, rs, n, rn, l, rl, c, rc, d, rd such that
Cx = gx1g

rx
2 , Cs = gs1g

rs
2 , Cn = gn1 g

rn
2 , Cl = gl1g

rl
2 , Cc = gc1g

rc
2 , Cd = gd1g

rd
2 . let

I : {ı|(bı, tı, sı) ⊕ L, b̂xı = tı}, J : {Ω|(bj, tj, sj) ⊕ U , b̂xj = tj},

where b̂ı = H0(bı||sid). For all ı ⊕ I, let

kı = |{j : 1 ∈ j ∈ ı ← tj = b̂xj }|+ (n− l).

For all Ω ⊕ J , let

�j = |{i : 1 ∈ i ∈ Ω ← ti = b̂xi }|+ (n+ c)− (l + d).

2. The prover produces two auxiliary commitments: aux1(C
s
1 , C

n
1 , ..., C

s
L, C

n
L)

for each score on the list L and aux2(C
s⊆
1 , C

l
1, ..., C

s⊆
L , C

l
U ) for each score

on the list U . Let sL, sU be the base score of L,U respectively (Therefore,
sL = sU). He randomly generates aı, bı ⊕R Zp for 1 ∈ ı ∈ L and fj, hj ⊕R Zp

for 1 ∈ Ω ∈ U , then computes:

(Cs
ı , C

n
ı ) =

⎩
(g

Δkı sL
1 gaı

2 , g1g
bı
2 ) for ı ⊕ I

(gaı
2 , gbı2 ) for ı ⊕ [L]\I

(Cs⊆
j , C

l
j) =

⎩
(g

Δ�φsU
1 g

fφ
2 , g1g

hφ

2 ) for Ω ⊕ J
(g

fφ
2 , g

hφ

2 ) for Ω ⊕ [U ]\J



404 W. Wang et al.

3. Let M be the random challenge. The prover generates a proof π1 to demon-
strate the correctness of aux1 (here δı =

⎨ı
j=1 bj + rn − rl).

Δ1 = SPK

⎛⎝⎝⎝⎝⎝⎝⎝⎝⎝⎨
⎝⎝⎝⎝⎝⎝⎝⎝⎝⎩

(x, rx, {κkı ,χkı , kı, Υı, aı, bı}Lı=1) :⎫
⎞⎞⎞⎞⎞⎞⎞⎠

⎫
⎞⎞⎠

Cx = gx1g
rx
2 ⊕

tı ≤= b̂xı ⊕
Cs

ı = gaı
2 ⊕

Cn
ı = gbı2


⎟⎟ ←

⎫
⎞⎞⎞⎞⎞⎞⎞⎠

Cx = gx1g
rx
2 ⊕

tı = b̂xı ⊕
Cn

ı = g1g
bı
2 ⊕

Cn
Cl

·∏ı
j=1 C

n
j = gkı

1 gβı
2 ⊕

1 = Verify(κkı , kı,χkı)⊕
Cs

ı = g
φkısı
1 gaı

2


⎟⎟⎟⎟⎟⎟⎟


⎟⎟⎟⎟⎟⎟⎟

L

ı=1

⎝⎝⎝⎝⎝⎝⎝⎝⎝
⎝⎝⎝⎝⎝⎝⎝⎝⎝

(M)

4. The prover generates a proof π2 to demonstrate the correctness of aux2
(here σj =

⎨j
i=1 hi + rn − rl + rc − rd).

Δ2 = SPK

⎛⎝⎝⎝⎝⎝⎝⎝⎝⎝⎝⎨
⎝⎝⎝⎝⎝⎝⎝⎝⎝⎝⎩

(x, rx, {κκφ ,χlφ , lγ, ξγ, fγ, hγ}Uγ=1) :⎫
⎞⎞⎞⎞⎞⎞⎞⎞⎠

⎫
⎞⎞⎞⎠

Cx = gx1g
rx
2 ⊕

tγ ≤= b̂xγ⊕
Cs⊆

γ = g
fφ
2 ⊕

Cl
γ = g

hφ

2


⎟⎟⎟ ←

⎫
⎞⎞⎞⎞⎞⎞⎞⎞⎠

Cx = gx1 g
rx
2 ⊕

tγ = b̂xγ⊕
Cl

γ = g1g
hφ

2 ⊕
CnCc
ClCd

·∏γ
i=1 C

l
i = g

κφ
1 g

ρφ
2 ⊕

1 = Verify(κκφ , Ωγ,χκφ)⊕
Cs⊆

γ = g
φ�φs

⊆
φ

1 g
fφ
2


⎟⎟⎟⎟⎟⎟⎟⎟


⎟⎟⎟⎟⎟⎟⎟⎟

U

γ=1

⎝⎝⎝⎝⎝⎝⎝⎝⎝⎝
⎝⎝⎝⎝⎝⎝⎝⎝⎝⎝

(M)

5. The prover computes

C∗
s =

L⎥

i=1

Cs
i −

U⎥

j=1

Cs⊆
j , r∗s =

L⎦

i=1

ai −
U⎦

j=1

fj ,

C∗
c =

L⎥

i=1

Cn
i , r∗c =

L⎦

i=1

bi , C∗
d =

U⎥

j=1

Cl
j , r∗d =

U⎦

j=1

hj

and produces a proof π3 to demonstrate the correctness of Cs, Cc, Cd with
respect to list L and U .

π3 = SPK






(s, rs, r
∗
s, c, rc, r

∗
c, d, rd, r

∗
d) :

Cs = gs1g
rs
2 ← C∗

s = gs1g
r⊆s
2 ←

Cc = gc1g
rc
2 ← C∗

c = gc1g
r⊆c
2 ←

Cd = gd1g
rd
2 ← C∗

d = gd1g
r⊆d
2

⎛
⎜

⎝
(M)

6. The proof outputsPWS-Adj as (π1, π2, π3, aux1, aux2) and sends (PWS-Adj,M)
to the verifier.

7. The verifier outputs accept if π1, π2 and π3 are both valid proofs.

Token Revise. In BLACR, the express lane token can be expressed as
tktp = (βx, s

+
1,tp, n

+
1,tp, s

−
1,tp, n

−
1,tp, ..., s

+
m,tp, n

+
m,tp, s

−
m,tp, n

−
m,tp) in the time period



ExBLACR: Extending BLACR System 405

tp, where βx ∅ GIss(Cx, C
s+

1,tp, C
n+

1,tp, C
s−
1,tp, C

n−
1,tp, ..., C

s+

m,tp, C
n+

m,tp, C
s−
m,tp, C

n−
m,tp).

As we mentioned in the beginning, the signature βx can be verified suc-
cessfully in any time periods using protocol GSig, which results in re-
play attack in some time period later. We revise the token as tktp =
(βx, tp + 1, s+1,tp, n

+
1,tp, s

−
1,tp, n

−
1,tp, ..., s

+
m,tp, n

+
m,tp, s

−
m,tp, n

−
m,tp), where βx ∅

GIss(Ctp+1, Cx, C
s+

1,tp, C
n+

1,tp, C
s−
1,tp, C

n−
1,tp, ..., C

s+

m,tp, C
n+

m,tp, C
s−
m,tp, C

n−
m,tp), in which

Ctp+1 = CMT (tp + 1). Then the token tktp has to be used in the time pe-
riod tp + 1 since in any other time periods the signature βx cannot be verified
successfully.

4.3 Our Construction

The construction process is similar to BLACR [5], we detail the ExBLACR in the
difference with BLACR. We focus on the lists’ initialization and management,
the normal lane authentication and express lane authentication. The readers can
also achieve the processes of initialization and registration in section 3.

SP Initialization. Because we revised the express lane token via adding a
timestamp tp, SP must additionally initial a generator gtp,sid ⊕ G1 for issuing a
signature by protocol GIss.

List Initialization. Additionally, ExBLACR initials a demeritlist U+
i and a

unblacklist U−
i for each category ci more than a meritlist L+

i and a blacklist L−
i .

Authentication. Similar to BLACR, the time is divided into time periods in
ExBLACR. Let tp be the current time period and L≤

i , U≤
i be the current lists of

category ci. The list L≤
i can be parsed as L≤

i,tp ⇒ α≤,∈
i,tp, where L≤

i,tp is the list up

to the beginning of time period tp (or the end of time period tp− 1), α≤,∈
i,tp is the

set of new entries between the beginning of time period tp and the time when
the user is authenticating in the time period tp. L≤

i,tp can be further parsed
as L≤

i,tp−1 ⇒ α≤
i,tp−1, where α≤

i,tp−1 is the set of entries during the time period

tp−1. Similar to the list L≤
i , the list U≤

i can be parsed as U≤
i,tp⇒ð

≤,∈
i,tp and further

U≤
i,tp = U≤

i,tp−1 ⇒ ð
≤
i,tp−1. A user who has authenticated in the time period tp− 1

will get an express lane token tktp−1 with respect to the list L≤
i,tp−1 and U≤

i,tp−1.
When the user authenticates in the time period tp, he/she can use the tktp−1

and execute protocol G∗
WS−Adj with respect to α≤

i,tp−1⇒α≤,∈
i,tp and ð

≤
i,tp−1⇒ð

≤,∈
i,tp in

express lane authentication. Otherwise, if the user has not been in possession of a
token tktp−1, he/she must execute protocol G∗

WS−Adj with respect to L≤
i,tp⇒α≤,∈

i,tp

and U≤
i,tp⇒ð

≤,∈
i,tp in normal lane authentication. In the end of both authentication,

the user will achieve a new express lane token tktp with respect to the list L≤
i,tp.

The normal lane authentication and express lane authentication are described
in the following.



406 W. Wang et al.

Normal Lane Authentication. The user parses each list as L≤
i = L≤

i,tp⇒α≤,∈
i,tp,

U≤
i = U≤

i,tp ⇒ ð
≤,∈
i,tp and the weighted score as s≤i = s≤i,tp + s≤i,∂∗

tp
, s∗≤i = s∗≤i,tp +

s∗≤i,ð∗
tp
, where s≤i,tp, s

≤
i,∂∗

tp
, s∗≤i,tp, s∗

≤
i,ð∗

tp
is the weighted-score with respect to list

L≤
i,tp, α

≤,∈
i,tp,U≤

i,tp, ð
≤,∈
i,tp respectively. Let s̄≤i,tp = s≤i,tp − s∗≤i,tp, s̄

≤
i,∂∗

tp\ð∗
tp

= s≤i,∂∗
tp

−
s∗≤i,ð∗

tp
and for i = 1 to m computes the commitments:

Cx = CMT (x), C s̄�
i,tp = CMT (s̄≤i,tp), C s̄�

i,∂∗
tp\ð∗

tp
= CMT (s̄≤i,∂∗

tp\ð∗
tp
)

Cn�
i,tp = CMT (n≤

i,tp), Cl�
i,tp = CMT (l≤i,tp),

Cn�
i,∂∗

tp
= CMT (n≤

i,∂∗
tp
), Cl�

i,ð∗
tp

= CMT (l≤i,ð∗
tp
)

where n≤
i,tp = Cnt(x,L≤

i,tp), l
≤
i,tp = Cnt(x,U≤

i,tp), n
≤
i,∂∗

tp
= Cnt(x, α≤,∈

i,tp), l
≤
i,ð∗

tp
=

Cnt(x, ð≤,∈i,tp). The user also picks a random value b and computes a ticket τ =

(b, t = H0(b||sid)x). Then the user sends (Cx, {C s̄�
i,tp, C

s̄�
i,∂∗

tp\ð∗
tp
, Cn�

i,tp, C
l�
i,tp, C

n�
i,∂∗

tp
,

Cl�
i,ð∗

tp
}mi=1, τ), along with a proof π to convince that two properties mentioned

above are met. The proof π is constructed as follows:

– (Property 1)

• Execute protocol GSig(Cx) to assure the SP that the user holds a valid
credential (A, e, x, y).

• Execute protocol Gx(Cx, t,H0(b||sid)) to assure the SP that the second
component of ticket is formed correctly.

– (Property 2)

• For i = 1 tom, execute protocolG∗
WS−Adj(Cx, C

s̄�
i,tp, 1, 1, C

n�
i,tp, C

l�
i,tp,L≤

i,tp,

U≤
i,tp,D≤

i ) to assure the SP that all C s̄�
i,tp, C

n�
i,tp, C

l�
i,tp are correctly formed.

• For i = 1 to m, execute protocol G∗
WS−Adj(Cx, C

s̄�
i,∂∗

tp\ð∗
tp
, Cn�

i,tp,

Cl�
i,tp, C

c�
i,∂∗

tp
, Cd�

i,ð∗
tp
, α≤,∈

i,tp, ð
≤,∈
i,tp,D≤

i ) to assure the SP all C s̄�
i,∂∗

tp\ð∗
tp
, Cc�

i,∂∗
tp
,

Cd�
i,ð∗

tp
are correctly formed.

• Given above, it can be proved that the reputation of each category com-

mitted in Ci =
C s̄+

i,tpC
s̄+

i,∂∗
tp\ð∗

tp

C s̄−
i,tpC

s̄−
i,∂∗

tp\ð∗
tp

(1 ∈ i ∈ m) is computed correctly.

• Execute protocolGPol(C1, C2, ..., Cm) to ensure the SP the Pol evaluates
to 1 with respect to m categories of reputation values committed in
(C1, C2, ..., Cm).

If the proof π is a valid proof, the SP issues a signature βx on values
(tp+1, x, s̄+1,tp, n

+
1,tp, l

+
1,tp, s̄

−
1,tp, n

−
1,tp, l

−
1,tp, ..., s̄

+
m,tp, n

+
m,tp, l

+
m,tp, s̄

−
m,tp, n

−
m,tp, l

−
m,tp)

by executing protocol GIss(Ctp+1, Cx, C
s̄+

1,tp, C
n+

1,tp, C
l+

1,tp, C
s̄−
1,tp, C

n−
1,tp, C

l−
1,tp, ...,

C s̄+

m,tp, C
n+

m,tp, C
l+

m,tp, C
s̄−
m,tp, C

n−
m,tp, C

l−
m,tp) with the user. The user stores (βx, tp+

1, s̄+1,tp, n
+
1,tp, l

+
1,tp, s̄

−
1,tp, n

−
1,tp, l

−
1,tp, ..., s̄

+
m,tp, n

+
m,tp, l

+
m,tp, s̄

−
m,tp, n

−
m,tp, l

−
m,tp) as her

express pass tkpd.



ExBLACR: Extending BLACR System 407

Express Lane Authentication. The user parses each list as L≤
i = L≤

i,tp−1 ⇒
α≤
i,tp−1 ⇒ α≤,∈

i,tp, U≤
i = U≤

i,tp−1 ⇒ ð
≤
i,tp−1 ⇒ ð

≤,∈
i,tp and the weighted score as s≤i =

s≤i,tp−1+s
≤
i,∂tp−1

+s≤i,∂∗
tp
, s∗≤i = s∗≤i,tp−1+s

∗≤
i,ðtp−1

+s∗≤i,ð∗
tp
respectively. Let s̄≤i,tp−1 =

s≤i,tp−1−s∗≤i,tp−1, s̄
≤
i,∂tp−1\ðtp−1

= s≤i,∂tp−1
−s∗≤i,ðtp−1

and s̄≤i,∂∗
tp\ð∗

tp
= s≤i,∂∗

tp
−s∗≤i,ð∗

tp
.

Let L≤
i,tp = L≤

i,tp−1 ⇒ α≤
i,tp−1 and U≤

i,tp = U≤
i,tp−1 ⇒ ð

≤
i,tp−1. For i = 1 to m, the

user computes the commitments:

Cx = CMT (x), C s̄�
i,tp−1 = CMT (s̄≤i,tp−1),

C s̄�
i,∂tp−1\ðtp−1

= CMT (s̄≤i,∂tp−1\ðtp−1
), C s̄�

i,∂∗
tp\ð∗

tp
= CMT (s̄≤i,∂∗

tp\ð∗
tp
),

Cn�
i,tp−1 = CMT (n≤

i,tp−1), Cl�
i,tp−1 = CMT (l≤i,tp−1),

Cn�
i,∂tp−1 = CMT (n≤

i,∂tp−1), Cl�
i,ðtp−1 = CMT (l≤i,ðtp−1),

Cn�
i,∂∗

tp
= CMT (n≤

i,∂∗
tp
), Cl�

i,ð∗
tp

= CMT (l≤i,ð∗
tp
)

where n≤
i,tp−1/∂tp−1/∂∗

tp
= Cnt(x,L≤

i,tp−1/α
≤
i,tp−1/α

≤,∈
i,tp), l

≤
i,tp−1/ðtp−1/ð∗

tp
=

Cnt(x,U≤
i,tp−1/ð

≤
i,tp−1/ð

≤,∈
i,tp). The user also picks a random value b and computes

a ticket τ = (b, t = H0(b||sid)x). Then the user sends (Cx, {C s̄�
i,tp−1, C

s̄�
i,∂tp−1\ðtp−1

,

C s̄�
i,∂∗

tp\ð∗
tp
, Cn�

i,tp−1, C
l�
i,tp−1, C

n�
i,∂tp−1, C

l�
i,ðtp−1, C

n�
i,∂∗

tp
, Cl�

i,ð∗
tp
}mi=1, τ), along with a

proof π to convince that two properties mentioned above are met. The proof π
is constructed as follows:

– (Property 1) The same as normal lane.
– (Property 2)

• Execute protocolGSig(Ctp, Cx, C
s̄+

1,tp−1, C
n+

1,tp−1, C
l+

1,tp−1, C
s̄−
1,tp−1, C

n−
1,tp−1,

Cl−
1,tp−1, ... , C

s̄+

m,tp−1, C
n+

m,tp−1, C
l+

m,tp−1, C
s̄−
m,tp−1, C

n−
m,tp−1, C

l−
m,tp−1) to as-

sure SP that the user holds an express pass tktp−1, which in turns to con-
vince that C s̄�

i,tp−1, C
n�
i,tp−1, C

l�
i,tp−1 for 1 ∈ i ∈ m are correctly formed.

• For i = 1 to m, execute protocol G∗
WS−Adj(Cx, C

s̄�
i,∂tp−1\ðtp−1

, Cn�
i,tp−1,

Cl�
i,tp−1, C

n�
i,∂tp−1

, Cl�
i,∂tp−1

, α≤
i,tp−1, ð

≤
i,tp−1,D≤

i ) to assure the SP all

C s̄�
i,∂tp−1\ðtp−1

, Cn�
i,∂tp−1

, Cl�
i,∂tp−1

are correctly formed.

• Given above, it can be asserted that Cn�
i,tp = Cn�

i,tp−1C
n�
i,∂tp−1

and Cl�
i,tp =

Cl�
i,tp−1C

l�
i,∂tp−1

are correctly computed and formed.

• For i = 1 to m, execute protocol G∗
WS−Adj(Cx, C

s̄�
i,∂∗

tp\ð∗
tp
, Cn�

i,tp, C
l�
i,tp,

Cn�
i,∂∗

tp
, Cl�

i,ð∗
tp
, α≤,∈

i,tp, ð
≤,∈
i,tp,D≤

i ) to assure the SP all C s̄�
i,∂∗

tp\ð∗
tp
, Cn�

i,∂∗
tp
, Cl�

i,ð∗
tp

are correctly formed.
• Given above all, it can be proved that the reputation of each category

committed in Ci =
C s̄+

i,tp−1C
s̄+

i,∂tp−1\ðtp−1
C s̄+

i,∂∗
tp\ð∗

tp

C s̄−
i,tp−1C

s̄−
i,∂tp−1\ðtp−1

C s̄−
i,∂∗

tp\ð∗
tp

(1 ∈ i ∈ m) are com-

puted correctly.



408 W. Wang et al.

• Execute protocolGPol(C1, C2, ..., Cm) to ensure the SP the Pol evaluates
to 1 with respect to m categories of reputation values committed in
(C1, C2, ..., Cm).

Given C s̄�
i,tp = C s̄�

i,tp−1C
s̄�
i,∂tp−1\ðtp−1

, the new express pass tkpd can be computed

as the normal lane authentication if the proof π is a valid proof.

ListManagement. Additionally, we add an unblacklisting operationUnblackli-
st(L, (τ, s),U), which appends a tuple (τ, s) ⊕ blacklist/meritlist L to correspond-
ing unblacklist/demeritlist U .

4.4 Security Goals and Analysis

Security Goals. We informally define the security goals of ExBLACR. As de-
scribed in [15], a violation of any one goal in the following may have a significant
effect on user privacy or the ability to blacklist abusive users. In other words,
if an anonymous blacklisting system holds all of the goals, then it satisfies the
properties we desire.

1. Correctness: An honest SP will always accept any authentication from a
non-revoked user, if the protocols are generated correctly.

2. Revocability(Authenticity): In the presence of dishonest SPs and users, a user
can successfully authenticate to an honest SP only if the user satisfies the
authentication policy. Otherwise, the user has been revoked.

3. Revocation Auditability: Prior to authentication, a user must have the ability
to check her revocation status in the SP.

4. Backward Anonymity: An attacker, who has controlled GM and some dis-
honest SPs and users, cannot determine an honest user’s identity of an au-
thentication transaction.

5. Unlinkability: An attacker, who has controlled GM and some dishonest SPs
and users, cannot link two distinct authentications belonging to an honest
user.

6. Non-frameability: With overwhelming probability, an attacker with the abil-
ity of controlling the GM and some dishonest SPs and users, cannot prevent
an honest user who satisfies the authentication policy from authenticating
successfully to an honest SP.

7. Mis-authentication Resistance: With overwhelming probability, an unregis-
tered user cannot successfully authenticate to an honest SP.

Note that the notions of revocation auditability, backward anonymity, unlinka-
bility are also called as anonymity in BLACR [5].

Security Analysis. ExBLACR achieves these security goals as BLACR except
for some addition. We describe the security analysis in the appendix A.



ExBLACR: Extending BLACR System 409

5 Evaluation

5.1 Complexity Analysis

Let K be the size of revocation window and ΣL be the numbers of entries added
to blacklist since previous authentication in PEREA/PERM. Let |U| = U and
L = |L| in BLACR/ExBLACR.

As showed in Table 1, generating the proof takes O(KΣL) times for the
user in PEREA-Naughtiness as each of K witnesses must be updated ΣL times
and takes O(K) times in PERM as the transaction identifiers in K windows
must be decided whether they have be judged. Verifying the proof in PEREA-
Naughtiness/PERM for SP takes onlyO(K) times. Comparing with BLACR, the
computation complexity of ExBLACR-Normal/ExBLACR-Express is O(L) +
O(U) /O(|αtp−1|+|α∈

tp|)+O(|ðtp−1|+|ð∈tp| respectively since the user additionally
proves that if each of U / |ðtp−1| + |ð∈tp| entries in U is belong to him/her or
not. Similarly, the communication complexity of ExBLACR is increasing since
the user must additionally downloads/uploads the list U or a portion of U .

Note that it is reasonable to assume that very few of entries in the L should
be unblacklisted (added to the U ⊕ L), thus U << L. That is why we claim
that the time complexity of ExBLACR remains same order of magnitude with
BLACR except constant factor is a little higher in the beginning.

5.2 Efficiency Analysis

Compared with BLACR, the main factor to affect the efficiency of ExBLACR is
that ExBLACR has to additionally prove whether the current ticket is a member
of list U . It seems that the efficiency of ExBLACR will be significantly affected
if the size of list U is large. Objectively speaking, controversial behaviors, which
is required to be unblacklisted, occupy a very small percentage in the blacklist.
We think that five percent of the total is a reasonable proportion, which means
the size of U is small enough that it can not have a significant impact to the
efficiency. Based on this understanding, the efficiency of ExBLACR-Normal is
close to the efficiency of BLACR-Normal.

The situation of ExBLACR-Express would be more complex since it may take
place that |ΣL| ∈ |ΣU | in time period tp (ΣL = αtp−1 ⇒ α∈

tp, ΣU = ðtp−1 ⇒ ð
∈
tp).

Nonetheless, the amount of these situations occur in a whole execution are at

Table 1. Complexity analysis of authentication

Scheme
Communication Computation

Downlink Uplink User(Prove) SP(Verify)

PEREA-Naughtiness O(L) O(K) O(KΔL) O(K)

PERM O(L) O(K) O(K) O(K)

BLACR-Normal O(L) O(L) O(L) O(L)

BLACR-Express O(|∂∗
tp |) O(|∂tp−1 | + |∂∗

tp|) O(|∂tp−1 | + |∂∗
tp|) O(|∂tp−1 | + |∂∗

tp|)
ExBLACR-Normal O(L) + O(U) O(L) + O(U) O(L) + O(U) O(L) + O(U)

ExBLACR-Express O(|∂∗
tp|) + O(|ð∗

tp |) O(|∂tp−1 | + |∂∗
tp|)+ O(|∂tp−1 | + |∂∗

tp|)+ O(|∂tp−1 | + |∂∗
tp|)+

O(|ðtp−1 | + |ð∗
tp|) O(|ðtp−1 | + |ð∗

tp|) O(|ðtp−1 | + |ð∗
tp|)



410 W. Wang et al.

most one or more due to the rarity of total entries in the U . From a global
perspective, the overall efficiency of the ExBLACR-Express is not significantly
affected.

6 Conclusions

In this paper, we presented ExBLACR, which not only preserves the same anony-
mous authentication functionalities of BLACR but also extends the BLACR with
the functionality of unblacklisting when BLACR employs express lane authenti-
cation. Furthermore, we found it would be under the threat of replay attack when
users are permitted to use express lane token. We fixed this flaw by introducing
a timestamp when the SP generates an authentication lane token. Additionally,
we pointed out that compared with BLACR, the efficiency of ExBLACR is not
significantly reduced in that the size of unblacklist/demeritlist U is much less
than the size of blacklist/meritlist L.

Acknowledgments. The research presented in this paper is supported by the
National Grand Fundamental Research 973 Program of China under Grant No.
2013CB338003 and the National Natural Science Foundation of China under
Grant Nos. 91118006, 61202414. We also thank the anonymous reviewers for
their comments.

References

1. Abbott, R.S., van der Horst, T.W., Seamons, K.E.: CPG: Closed Pseudonymous
Groups. In: Proceedings of WPES 2008, pp. 55–64. ACM (2008)

2. Au, M.H., Susilo, W., Mu, Y.: Constant-size dynamic k-TAA. In: De Prisco, R.,
Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 111–125. Springer, Heidelberg
(2006)

3. Au, M.H., Tsang, P.P., Kapadia, A.: PEREA: Practical TTP-free revocation of
repeatedly misbehaving anonymous users. ACM Transactions on Information and
System Security 14(4), 29 (2011)

4. Au, M.H., Tsang, P.P., Kapadia, A., Susilo, W.: BLACR: TTP-Free Blacklistable
Anonymous Credentials with Reputation. Technical Report TR695, Indiana Uni-
versity Bloomington (2011)

5. Au, M.H., Kapadia, A., Susilo, W.: BLACR: TTP-free blacklistable anonymous
credentials with reputation. In: Proceedings of NDSS 2012, ISOC (2012)

6. Au, M.H., Kapadia, A.: PERM: Practical reputation-based blacklisting without
TTPs. In: Proceedings of CCS 2012, pp. 929–940. ACM (2012)

7. Brickell, E., Li, J.: Enhanced Privacy ID: A Direct Anonymous Attestation Scheme
with Enhanced Revocation Capabilities. IEEE Transactions on Dependable and
Secure Computing 9(3), 345–360 (2012)

8. Camenisch, J.L., Stadler, M.A.: Efficient group signature schemes for large groups
(extended abstract). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 410–424. Springer, Heidelberg (1997)

9. Chaum, D.: Security Without Identification: Transaction Systems to Make Big
Brother Obsolete. Communications of the ACM 28(10), 1030–1044 (1985)



ExBLACR: Extending BLACR System 411

10. Chaum, D., van Heyst, E.: Group Signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)

11. Chen, L.: Access with Pseudonyms. In: Dawson, E.P., Golić, J.D. (eds.) Cryp-
tography: Policy and Algorithms 1995. LNCS, vol. 1029, pp. 232–243. Springer,
Heidelberg (1996)

12. Dingledine, R., Mathewson, N., Syverson, P.F.: Tor: The Second-Generation Onion
Router. In: Proceedings of USENIX Security 2004, SSYM 2004, vol. 12, p. 21.
USENIX (2004)

13. Holt, J.E., Seamons, K.E.: Nym: Practical Pseudonymity for Anonymous Networks.
Internet Security Research Lab, BYU, Technical Report 2006-4 (2006)

14. Henry, R., Henry, K., Goldberg, I.: Making a Nymbler Nymble using VERBS.
In: Atallah, M.J., Hopper, N.J. (eds.) PETS 2010. LNCS, vol. 6205, pp. 111–129.
Springer, Heidelberg (2010)

15. Henry, R., Goldberg, I.: Formalizing anonymous blacklisting systems. In: Proceed-
ings of IEEE S&P, pp. 81–95 (2011)

16. Henry, R., Goldberg, I.: Thinking Inside the BLAC Box: Smarter protocols Faster
Anonymous Blacklisting. In: Proceedings of WPES 2013, pp. 71–82. ACM (2013)

17. Li, J., Li, N., Xue, R.: Universal Accumulators with Efficient Nonmembership
Proofs. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 253–269.
Springer, Heidelberg (2007)

18. Lin, Z., Hopper, N.: Jack: Scalable Accumulator-based Nymble System. In: Pro-
ceedings of WPES 2010, pp. 53–62. ACM (2010)

19. Lofgren, P., Hopper, N.: BNymble: More Anonymous Blacklisting at Almost No
Cost (A Short Paper). In: Danezis, G. (ed.) FC 2011. LNCS, vol. 7035, pp. 268–275.
Springer, Heidelberg (2012)

20. Lofgren, P., Hopper, N.: FAUST: Efficient, TTP-Free Abuse Prevention by Anony-
mous Whitelisting. In: Proceedings of the Workshop on Privacy in the Electronic
Society (WPES 2011), pp. 125–130. ACM (2011)

21. Lysyanskaya, A.: Pseudonym Systems, Master’s thesis. Department of Electrical
Engineering and Computer Science. MIT (1999)

22. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992)

23. Peng, K., Bao, F.: Vulnerability of a Non-membership Proof Scheme. In: SE-
CRYPT, pp. 419–422. SciTePress (2010)

24. Schwartz, E.J., Brumley, D., McCune, J.M.: A Contractual Anonymity System.
In: Proceedings of NDSS 2010, ISOC (2010)

25. Tsang, P.P., Au, M.H., Kapadia, A., Smith, S.W.: Blacklistable Anonymous Cre-
dentials: Blocking Misbehaving Users Without TTPs. In: Proceedings of CCS 2007,
pp. 72–81. ACM (2007)

26. Tsang, P.P., Au, M.H., Kapadia, A., Smith, S.W.: PEREA: Towards practical
TTP-free revocation in anonymous authentication. In: Proceedings of CCS 2008,
pp. 333–344. ACM (2008)

27. Tsang, P.P., Au, M.H., Kapadia, A., Smith, S.W.: BLAC: Revoking Repeatedly
Misbehaving Anonymous Users without Relying on TTPs. ACM Transactions on
Information and System Security (TISSEC) 13(4) (2010)

28. Tsang, P.P., Kapadia, A., Cornelius, C., Smith, S.W.: Nymble: Blocking Misbe-
having Users in Anonymizing Networks. IEEE Transactions on Dependable and
Secure Computing (TDSC) 8(2), 256–269 (2011)



412 W. Wang et al.

29. Yu, K.Y., Yuen, T.H., Chow, S.S.M., Yiu, S.M., Hui, L.C.K.: PE(AR)2: Privacy-
Enhanced Anonymous Authentication with Reputation and Revocation. In:
Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS 2012. LNCS, vol. 7459, pp.
679–696. Springer, Heidelberg (2012)

A Security Analysis

We also use a simulation-based approach to analyze the security goals as [4,5].
We would not like to do the repetitive job in the [5] since we just added a
functionality to enable unblacklisting. Thus, in the following we just demonstrate
the necessary and additive part.

Let ε be the environment, T be a trusted party. Additively, we define a security
model of unblacklisting as follow.

• Unblacklist(j,L≤
i ,U≤

i ). ε instructs the SP j to alter the list U≤
i with the

tickets from the corresponding blacklist/meritlist L≤
i .

≈ Real world. SP j adds the tickets that will be unblacklisted in the L≤
i to

the corresponding unblacklist/demeritlist U≤
i .

≈ Ideal world. SP j sends the request to T , who checks if the unblacklisted
ticket is in the list L≤

i and replies the result of the check. According to
the result, SP j adds the ticket to U≤

i or reject.

Specifically, ExBLACR is secure if for any real world adversary A and en-
vironment ε, there exists an ideal world simulator S who has blackbox access
to A, such that ε cannot distinguish the situation that it is running in the real
world interacting with A from the situation that it is running in the ideal world
interacting with S.

The construction of the ideal world simulator S is also same as [5], together
with additionally simulating the unblacklisting. Whether the GM is honest or
not, S can simulate the unblacklisting as follow.

• Unblacklist(j,L≤
i ,U≤

i ).
≈ Representing honest SP. S checks if the unblacklisted ticket τ ⊕ L≤

i and
adds the ticket to the corresponding unblacklist/demeritlist U≤

i .
≈ Representing dishonest SP to T . S sends the request to T and waits for
the reply whether τ ⊕ L≤

i from T . if T replies that the check is successful,
S adds the ticket to the corresponding unblacklist/demeritlist U≤

i .

Based on the construction of simulator S, we can prove that ExBLACR is
secure due to the zero-knowledgeness of protocols GIss, GSig , Gx, G

∗
WS−Adj and

GPol, as well as the DDH assumption. Note that although protocol G∗
WS−Adj is

some different with protocol GWS−Adj in the implementation inside, they have
the same functionality.



W. Susilo and Y. Mu (Eds.): ACISP 2014, LNCS 8544, pp. 413–421, 2014. 
© Springer International Publishing Switzerland 2014 

A Semantics-Aware Classification Approach  
for Data Leakage Prevention 

Sultan Alneyadi, Elankayer Sithirasenan, and Vallipuram Muthukkumarasamy  

School of Information and Communication Technology 
Griffith University, Gold Coast Campus, Australia  

sultan.alneyadi2@griffithuni.edu.au,  
{e.sithirasenan,v.muthu}@griffith.edu.au 

Abstract. Data leakage prevention (DLP) is an emerging subject in the field of 
information security. It deals with tools working under a central policy, which 
analyze networked environments to detect sensitive data, prevent unauthorized 
access to it and block channels associated with data leak. This requires special 
data classification capabilities to distinguish between sensitive and normal data. 
Not only this task needs prior knowledge of the sensitive data, but also requires 
knowledge of potentially evolved and unknown data. Most current DLPs use 
content-based analysis in order to detect sensitive data. This mainly involves 
the use of regular expressions and data fingerprinting. Although these content 
analysis techniques are robust in detecting known unmodified data, they usually 
become ineffective if the sensitive data is not known before or largely modified. 
In this paper we study the effectiveness of using N-gram based statistical 
analysis, fostered by the use of stem words, in classifying documents according 
to their topics. The results are promising with an overall classification accuracy 
of 92%. Also we discuss classification deterioration when the text is exposed to 
multiple spins that simulate data modification.  

Keywords: Data leakage prevention, N-grams, category profiles, X-counts. 

1 Introduction 

Protection of sensitive information from unauthorized disclosure is increasingly achieved 
through “Data Leakage Prevention Systems” or DLPs. These systems perform various 
types of analysis, for data in transit, in use and in store. They differ from conventional 
security controls such as firewalls, VPNs and IDSs in terms of dedication and proactivity. 
Conventional security controls have less dedication towards the actual data content, as 
they mainly focus on the metadata (context) such as size, timing, source and destination, 
rather than the sensitivity of the content. Also, they lack proactive actions as they 
normally work under predefined rules. This can be a major drawback when working in a 
rapidly changing environment. DLPs on the other hand mainly focus on the data content, 
since it is more logical to focus on the protection of the data itself rather than the 
metadata. Further, the state-of-the-art techniques used in DLPs are based on text 
statistical analysis and group communication analysis [1]. A typical content-based DLP 



414 S. Alneyadi, E. Sithirasenan, and V. Muthukkumarasamy 

works by monitoring sensitive data in their repositories or on the go, mainly by using 
regular expressions, data fingerprinting and statistical analysis. Regular expressions are 
normally used under a certain rule like detecting social security numbers and credit card 
numbers. The problem with DLPs using regular expressions analysis is that they offer 
limited data protection with high false positive rates [2]. For example, it is an easy task to 
detect and prevent the leakage of a “project name” through emails, by using a rule that 
prevents emails containing that specific name from being sent. But it is difficult to 
prevent the leakage of the project’s vast details. Also, if the rule is active, a regular email 
can be blocked if the same project name is used in another context.  

DLPs using data fingerprints have better coverage for sensitive data as they have 
the ability to detect and prevent the leakage of a whole document or parts of a 
document. However, traditional fingerprinting can lose track when the sensitive data 
is altered or modified. This happens because traditional hashes that are used to 
generate data fingerprints such as MD5 and SHA1 [3] have the property where a tiny 
change to the data being hashed results in totally different fingerprint. This can lead to 
data bypassing the DLPs, thus data can be leaked. This problem can be partially 
solved by using multiple data hashing, where the original data is divided into smaller 
parts i.e. paragraphs and sentences, and each part is hashed separately [4]. This can 
ensure that parts of the original data fingerprints are retrievable. But these smaller 
fingerprints are also susceptible to change and a tiniest change can make the method 
ineffective. More advanced approaches try to overcome this problem by using 
similarity digests [5], Rabin fingerprinting [6] and piecewise hashing [7]. However, 
these solutions can be easily affected by various text obfuscation.  

Although not widely used in DLPs, statistical analysis as a technique can work in a 
fuzzy environment, where the sensitive data is not well structured and the data 
semantic is distributed over a large corpus. The main advantage of such techniques is 
the ability to identify sensitive documents even after extreme modification using 
machine learning algorithms or Bayesian probability. Also, it can use text clustering 
techniques to construct scattered traces of sensitive data. In our research we focus on 
using statistical analysis techniques to classify documents into different categories. 
Our main aim is to distinguish between documents with sensitive information and 
others, in order to prevent important documents from being leaked. This classification 
task consists of calculating the distance between frequency-sorted N-grams, produced 
from documents and corresponding categories. In addition, we investigate the effect 
of using stemmed N-grams on the overall classification by using well-known Porter 
stemmer. Moreover, we test the ability of statistical analysis to classify documents 
under the correct category after exposing documents to a series of spins. Document 
spinning is conducted to simulate documents alteration, where N-grams are replaced 
by its synonyms. 

This paper is divided as follows: Section 2 discusses related work. Section 3 
outlines the stemmed N-gram classification methodology. The experiments are 
discussed in Section 4. Section 5 gives a detailed analysis of the findings. Section 6 
concludes the paper. 



 A Semantics-Aware Classification Approach for Data Leakage Prevention 415 

2 Related Work 

There is little research conducted which addresses the prevention of data leakage 
through statistical content analysis. Only a few examples are available in the literature 
like in [8] and [9], where ideas were introduced to quantify and limit the leakage of 
private data. However, these approaches were based on contextual analysis rather than 
exact sensitive content analysis.  Therefore, the detection and protection of a specific 
piece of information is not guaranteed. A more dedicated approach was discussed in 
[10] where a DLP system based on Support Vector Machines (SVM) was used to 
classify enterprise documents as: Enterprise private, Enterprise public and Non-
Enterprise. The processed data was represented by the most frequent binary weighted 
N-grams, i.e. words, found across all corpora. This approach was able to detect 97% 
of data leaks with a false-negative rate of 3.0%. One drawback of this method is that 
the data was classified either as public or private; ignoring more flexible classification 
levels like top secret, secret and restricted.  

Moreover, an approach that uses the advantages of data retrieval functions was 
presented in [11]. In this paper an extension –Cut Once- to the publically available 
email client “Mozilla Thunderbird” was introduced. The extension was built with 
capabilities to recommend trustworthy recipients and predict potential leaks through 
wrongly addressed emails. The Cut Once extension ranks email addresses intended to 
receive the new message according to the calculated TFIDF scores. Email address -
i.e. contacts- with high scores, indicate existing exchanged messages with similar 
topics. Lower scores indicate wrong recipients or unrecognised new topic. 
Unfortunately, the detection of the email leaks was totally subjective, since it was up 
to the users to select appropriate recipients. Additionally, this approach may introduce 
high level of false positives, since it requires existing messages in the sent folder. 

3 Stemmed N-gram Classification 

The classification method introduced in this research is inspired by the benefits of 
using word frequencies and how they reflect the semantic weight of a document. 
According to Zipf’s law [12], the frequency of a word reflects its importance within a 
document. This is true when ignoring stop words like the, is, in, at etc. Moreover, 
unlike [13] which uses character N-grams, we use a single word N-gram in our 
classification. Character N-grams which might include two letters, three letters or 
more, can affect the semantics of the document by splitting words apart. Moreover, 
according to studies conducted for more than 20 years the use of a single term (word) 
gives better classification results than using two words or more [14] [15]. 

3.1 Stemmed N-gram Profiles Generation 

We gathered 360 articles from various online sources like PC magazine, SC magazine 
etc. These articles represent our dataset and our aim is to classify each document 
under one of the following six categories: Antivirus, Data Leakage Prevention, 
Encryption, Firewall, Intrusion Detection Systems and Virtual Private Networks. 
There are 60 documents assigned to every category and we need to correctly classify 
all the documents under the correct category to ensure 100% classification accuracy. 



416 S. Alneyadi, E. Sithirasenan, and V. Muthukkumarasamy 

In addition, we gathered additional 30 documents to create the category profile. It is 
not mandatory to gather this number of articles to create a category profile, in fact a 
single document which contains variety of words and discussing one topic (like a 
“frequently asked questions” page or a “Wikipedia” article) [13] [10] can produce a 
suitable category profile. We intentionally picked a large number of articles to create 
the category profile because we need to make sure that the category profile is 
comprehensive. It does not matter how big the resulting category profile is, since only 
the top frequency-sorted N-grams are considered for the distance calculation process. 
The selection of the optimum category profile size is discussed later section 4. Stop 
words were also removed from the profiles. According to the Oxford English Corpus 
(OEC), the most common stop words in the English language are: the, be, to, of, and, 
a, in, that, have, and I and they account for 25% of the written English language. 
Removing these words from the profiles can help in avoiding the excess distance 
when performing document classification. 

The second step in the profiles generation was word stemming.  Word stemming is 
the process of stripping words from their suffix to bring them back to the original 
root. Not only can this reduces the total number of terms processed by a data 
classification method but also improves words’ representation. Therefore we are using 
an online stemming tool called Peter Holme's word stemmer version 1.1.2 [16], which 
is based on the famous “snowball” stemming algorithm developed by Dr. M. F. Porter 
[17]. The mentioned algorithm is designed to recognize terms with common stem, 
such as (connect, connected, connecting, connection, connections). Removing suffix: 
(ed, ing, ion, ions) can result in a single stem connect.  

3.2 Distance Calculation 

After the creation of 360 document profiles and six category profiles representing the 
six topics, we applied a simple Taxicab geometry to calculate distances and classify 
documents. This approach was introduced in [13] as calculating “out of place” 
distance; which is calculating the rank difference between N-grams in the document 
profile and the corresponding N-grams in the category profiles. The sum of all rank 
differences plus the total “X-count” values gives the overall distance. X-count refers 
to the absence of an N-gram in the category profile; therefore this term is denoting the 
maximum distance which is the total number of N-grams in the document profile. 
This process is repeated until all N-grams in the document profile are processed. The 
overall distance is calculated using the following equation: (X-counts × number of N-
grams in Doc) + “out of place” distance. This process is repeated six times for each 
document and an overall distance is reported. Then a document is classified under the 
category with the smallest distance. This is discussed in details in [18]. 

3.3 Document Spinning 

There are many reasons why data may be altered or modified including deliberate 
adversary action or business requirements.  In both cases, classical DLPs detection 
techniques like regular expression and data fingerprinting may face great challenges 
in identifying sensitive data. It is difficult to predict the type and the amount of 
change a document might receive to avoid detection; therefore it is hard to simulate 
document modification scenarios. However, in reality there are some tools used to 



 A Semantics-Aware Classification Approach for Data Leakage Prevention 417 

modify documents and articles in a way that makes them difficult to be recognized. 
These tools are called “article spinners” and they are normally used to avoid 
plagiarism detection and copy right penalties by replacing words with synonyms. 

Table 1. An example of word spintax from category "vpn" 

 

To test the reliability of our classification approach, we use BFSpro v1.0 spinner 
available from http://bestfreespinner.com/ to modify our documents. Changing words 
to their synonyms can change the document’s metadata like the size in kilobits and 
the terms frequency, but the documents’ semantics should be kept intact. Table 1 
gives an example of spintax of N-grams found in the VPN category. 

4 Experiments and Results 

4.1 Optimum Category Profile Size 

It is important to define an optimum size for the category profiles because using an 
undefined size will result in unbalanced figures. A document can be classified under a 
wrong category if the correct category profile is noticeably bigger than the rest. This 
makes the calculated distance grow exponentially. One option was to use length 
normalization for the calculated distance; however this will not solve the problem of 
lower ranked N-grams which lie on the bottom of the category profiles. These low 
rank N-grams do not reflect the category topic and keeping them will affect the purity 
of the category profile. Therefore it is better to consider only the top N-grams which 
are better reflecting the category. 

Table 2. Category profile sizes performance in the overall classification 

Category 
Profile Size 

Correct 
Classification Percentage 

25 295 81.94% 
50 322 89.44% 
75 326 90.55% 

100 329 91.39% 
125 322 89.44% 
150 319 88.61% 
175 319 88.61% 
200 314 87.22% 

Original Word Spintax
vpn vpn

connect {connect|link|hook up|join|be connected}
network {network|system|community|multilevel|circle}
server server
access {access|entry|accessibility|gain access to|admittance}
secure {secure|safe|protected|risk-free|safeguarded}
remote {remote|remote control|distant|rural|out of the way}
internet {internet|web|world wide web|net|world-wide-web}



418 S. Alneyadi, E. Sithirasenan, and V. Muthukkumarasamy 

We ran our experiments on 360 document profiles using a scale of category profile 
sizes. This scale includes: 25, 50, 75, 100, 125, 150, 175 and 200 top N-grams in each 
category. The profile size with the most correct classification was “100” with 91.3% 
accuracy. Table 2 shows the results of using different profile sizes and the effect on 
the overall classification. It was noticed that too small category profiles resulted in 
lower accuracy like size “25” as it scores 81.9%. Also, larger category profiles sizes 
caused accuracy deterioration like in the case of size “200” scoring 87.2%.  

4.2 Overall Classification Using Optimum Category Profile Size 

By using the optimum category profile size “100” we examined the overall 
classification of each category profile. Table 3 shows individual categories scoring 
and the overall classification results. Categories Antivirus, DLP, IDS and VPN scored 
classification accuracy of 95% and above.  The worst classification result was 75% 
and it was scored by Encryption category. These results make an overall classification 
average of 91.39%. Comparing to previous work [15] the proposed method has slight 
improvement in accuracy of 7%. 

Table 3. Overall classification results of 360 documents using category profile size "100" 

Categories AV DLP Encrypt. Firewall IDS VPN 
Antivirus 57 0 0 2 1 0 

DLP 0 59 12 2 0 0 
Encryption 0 0 45 0 0 1 

Firewall 0 0 2 53 2 1 
IDS 3 1 1 3 57 0 
VPN 0 0 0 0 0 58 

Correct 57 59 45 53 57 58 

Percentage 95.0% 98.3% 75.0% 88.3% 95.0% 96.6% 

Overall 91.39% 

4.3 Document Spinning 

To test the reliability of our classification method against document modification we 
tested the 360 documents again after multilevel spins. Table 4 shows the classification 
results after multilevel spinning. The overall classification accuracy was affected by 
the spinning process. Spinning every possible word resulted in the worst 
classification, as only 83% of the documents were correctly classified. The minimum 
spinning level was spinning every forth word, and resulted in 88.3%. Comparing to 
the overall classification results without document spinning, the most deteriorated 
classification results were when every possible word was spun. 

 



 A Semantics-Aware Classification Approach for Data Leakage Prevention 419 

Table 4. Documents spinning results compared to the non-spun documents 

Categories 
Every 

Possible 
Every 
Other 

Every 
3rd 

Every 
4th 

No Spins 

Antivirus 56 56 57 58 57 
DLP 57 58 59 59 59 

Encryption 36 39 41 39 45 
Firewall 52 51 52 53 53 

IDS 41 47 50 49 57 
VPN 57 57 56 60 58 

Total 299 308 315 318 329 

Percentage 83.06% 85.56% 87.50% 88.33% 91.39% 
Deterioration 8.33% 5.83% 3.89% 3.06%  

8.3% of the correctly classified document could not be classified under the correct 
category. In conclusion, the deeper the spinning levels the worse the classification 
will be. However, comparing to fingerprinting or regular expression methods with full 
or partial data matching the proposed method is more efficient. 

5 Analysis 

5.1 Precision, Recall and F1 Measures  

To evaluate our method we use precision and recall measures in our analysis. Precision is 
the ratio between correct classifications and the number of all classifications under one 
category. While, recall is the ratio between correct classifications and the number of 
desired correct classification. We also use F1 measure, which is the harmonic average of 
both precision and recall. All the results are shown in Table 5. All the six categories 
scored a precision higher than 0.8, which means that our method tends to classify 
relevant documents and ignore non-relevant ones. On the other hand, all the categories’ 
recall scores were above 0.8 except for Encryption, which scored only 0.7. This is 
because Encryption is a vast topic by itself and it may contain N-grams that are shared 
among other categories. 

Table 5. Precision and recall scores for every category 

Category Precision Recall 
Antivirus 0.950 0.950 

DLP 0.808 0.983 
Encryption 0.978 0.750 

Firewall 0.914 0.883 
IDS 0.877 0.950 
VPN 1.000 0.967 

Average 0.914 0.914 



420 S. Alneyadi, E. Sithirasenan, and V. Muthukkumarasamy 

According to results in Table 3, there were 12 documents from category E 
classified under category D. this makes lower recall results for E and lower precision 
results for DLP. The average precision and recall scores for the six categories indicate 
that our method has relatively high accuracy. Precisely, our method scored an average 
of 0.92 precision and 0.91 recall.  

Table 6. F1 measure for every category profile size 

Profile 
Size 

25 50 75 100 125 150 175 200 

F1 
Measure 

0.832 0.899 0.912 0.918 0.901 0.893 0.89 0.877 

In addition, to view both precision and recall in a harmonic average, we calculated 
the F1 score and compared the results across the category profile scale. F1 can 
indicate how good a classification method is by combining the benefits of both the 
precision and the recall measures. Table 6 shows the F1 measures scored by each 
category profile. The highest precision and recall was achieved by size “100” 
category profile. This is an indication that 91.8% of the processed documents were 
both correctly classified and relevant. 

6 Conclusion and Future Work 

In this paper we proposed the use of N-gram statistical analysis to classify documents 
to overcome the drawbacks in DLPs’ analysis techniques such as data fingerprinting 
and regular expression. We showed that using word stemming along with fixed 
category profile sizes can improve the overall classification comparing with previous 
works [13] [15]. We also studied the effects of data modification on the overall 
classification and showed that even with extreme modification our proposed method 
can provide acceptable accuracy. As a future we propose using term weighting 
methods which can be more flexible than raw frequency used in this research. 

References 

[1] Raman, P., Kayacık, H.G., Somayaji, A.: Understanding Data Leak Prevention. In: 6th 
Annual Symposium on Information Assurance (ASIA 2011), p. 27 (2011) 

[2] Mogull, R.: Understanding and Selecting a Data Loss Prevention Solution, https:// 
securosis.com/assets/library/reports/DLP-Whitepaper.pdf 

[3] Shapira, Y., Shapira, B., Shabtai, A.: Content-based data leakage detection using extended 
fingerprinting. arXiv preprint arXiv:1302.2028 (2013) 

[4] Kantor, A., Antebi, L., Kirsch, Y., Bialik, U.: Methods for document-to-template 
matching for data-leak prevention. USA Patent US20100254615 A1 (2009) 

[5] Roussev, V.: Data fingerprinting with similarity digests. In: Chow, K.-P., Shenoi, S. (eds.) 
Advances in Digital ForensicsVI. IFIPAICT, vol. 337, pp. 207–226. Springer, Heidelberg 
(2010) 



 A Semantics-Aware Classification Approach for Data Leakage Prevention 421 

[6] Shu, X., Yao, D. D.: Data leak detection as a service. In: Keromytis, A.D., Di Pietro, R. 
(eds.) SecureComm 2012. LNICST, vol. 106, pp. 222–240. Springer, Heidelberg (2013) 

[7] Kornblum, J.: Identifying almost identical files using context triggered piecewise hashing. 
Digital Investigation 3, 91–97 (2006) 

[8] Borders, K., Prakash, A.: Quantifying information leaks in outbound web traffic. In: 30th 
IEEE Symposium 2009 Security and Privacy, pp. 129–140 (2009) 

[9] Clark, D., Hunt, S., Malacaria, P.: Quantitative analysis of the leakage of confidential 
data. Electronic Notes in Theoretical Computer Science 59 (2002) 

[10] Hart, M., Manadhata, P., Johnson, R.: Text classification for data loss prevention. In: 
Fischer-Hübner, S., Hopper, N. (eds.) PETS 2011. LNCS, vol. 6794, pp. 18–37. Springer, 
Heidelberg (2011) 

[11] Carvalho, V.R., Balasubramanyan, R., Cohen, W.W.: Information Leaks and Suggestions: 
A Case Study using Mozilla Thunderbird. In: Proc. of 6th Conf. on Email and Antispam 
(2009) 

[12] Zipf, G.K.: Human behavior and the principle of least effort. Addison Wesley, 
Massachusetts (1949) 

[13] Cavnar, W.B., Trenkle, J.M.: N-gram-based text categorization. Presented at the Ann 
Arbor MI (1994) 

[14] Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. 
Information Processing & Management 24, 513–523 (1988) 

[15] Alneyadi, S., Sithirasenan, E., Muthukkumarasamy, V.: Word N-gram Based 
Classification for Data Leakage Prevention. In: TrustCom, Melbourne (2013) 

[16] Holme, P.: Peter Holme’s word stemmer (2011), http://holme.se/stem/ 
[17] Porter, M.F.: An algorithm for suffix stripping. Program: Electronic Library and 

Information Systems 14, 130–137 (1980) 
[18] Alneyadi, S., Sithirasenan, E., Muthukkumarasamy, V.: Adaptable N-gram Classification 

Model for Data Leakage Prevention. Presented at the ICSPCS, Gold Coast, 
Australia(2013) 

 
 



Route 66: Passively Breaking All GSM Channels

Philip S. Vejre and Andrey Bogdanov

Technical University of Denmark

Abstract. The A5/2 stream cipher used for encryption in the GSM
mobile phone standard has previously been shown to have serious weak-
nesses. Due to a lack of key separation and flaws in the security proto-
cols, these vulnerabilities can also compromise the stronger GSM ciphers
A5/1 and A5/3. Despite GSM’s huge impact in the field, only a small
selection of its channels have been analyzed. In this paper, we perform a
complete practical-complexity, ciphertext-only cryptanalysis of all 66 en-
coded GSM channels. Moreover, we present a new passive attack which
recovers the encryption key by exploiting the location updating proce-
dure of the GSM protocol. This update is performed automatically even
when the phone is not actively used. Interestingly, the attack potentially
enables eavesdropping of future calls.

1 Introduction

The first standard for digital mobile phone communication, GSM (Global Sys-
tem for Mobile Communication), was introduced in the late 1980s. GSM brought
cryptographic security to mobile communication with the aim of a security level
equivalent to that of wired telephony. The purpose was twofold: protect the
confidentially of messages (through encryption), and protect the network from
unauthorized access (through authentication). In 2008, GSM had 3 billion con-
nections worldwide [1].

GSM uses 66 communication channels with error-correction encoding and a
single one without. The purpose of each channel varies, as does the amount
of data carried and the preprocessing techniques used. The result of the pre-
processing, however, is sent to the same encryption unit, independent of the
channel type [2]. One of four encryption ciphers is used in GSM: A5/0 (no en-
cryption), A5/1, A5/2, or A5/3. A5/2 was deployed in Europe due to export
restrictions [3]. A5/1 and A5/2 had secret designs, but they were both reverse
engineered in 1999 [4]. In 2002, A5/3 was added to the standard. This cipher is
based on the peer-reviewed block cipher KASUMI, and its design was published.

Shortly after the reverse engineering of A5/2, several known-plaintext at-
tacks were presented [5,6]. In 2007 Barkan, Biham, and Keller [3][7] presented
a ciphertext-only attack on A5/2 which utilizes that error correction in GSM
is applied before encryption. The attack recovers the encryption key K, has a
complexity of 244 XOR operations, and precomputations are used to make the
real-time part of the attack instant. Additionally, several attacks on A5/1 and
A5/3 have been presented [8,9,10,11,12].

W. Susilo and Y. Mu (Eds.): ACISP 2014, LNCS 8544, pp. 422–429, 2014.
c© Springer International Publishing Switzerland 2014



Route 66: Passively Breaking All GSM Channels 423

These results show that the GSM standard is rather insecure. Nevertheless,
the standard is still widely used. Due to a lack of key separation and sometimes
key renewal, even breaking the weaker A5/2 can compromise communication
encrypted with A5/1 and A5/3. Hence, it is still of interest to find more effi-
cient, practical attacks against A5/2 that do not use lengthy precomputations
or specialized hardware [13]. Furthermore, previous attacks have only focused
on some of the GSM channels, leaving it unclear how efficiently the remaining
channels can be attacked.

In this paper we generalize the ciphertext only attack from [3] to a channel en-
coded with a general linear code. Using M4R (The Method of Four Russians) [14]
we improve the complexity of this attack by a factor of 8. We realize this attack
in software without precomputations and break A5/2 in 12 seconds. Dedicated
hardware, such as the design from [13], is much faster, but the cost of such an
attack is much higher than ours. While some of the GSM channels have previ-
ously been analyzed [3][13], this article presents a full theoretical, ciphertext-only
cryptanalysis of all 66 GSM channels which use error correction. The analysis
shows that it is possible to attack any type of GSM traffic, and that less than
400 bytes of data collected in under 130 ms is sufficient for most channels.

We present a new ciphertext-only attack on the GSM protocol which passively
recovers the A5/2 encryption key, i.e. without the user noticing any activity on
the phone. The attack exploits the periodic location updating procedure of GSM
– a procedure performed automatically without direct user interaction. Due to
flaws in the GSM security protocols, the attack allows possible eavesdropping of
future calls, and can even compromise the security of the stronger GSM ciphers
A5/1 and A5/3 [3][15].

2 Description of A5/2 and GSM

The A5/2 stream cipher takes a 64-bit key K and a 22-bit initialization value
f as input and produces a 228-bit keystream S. The internal structure of A5/2
consists of four Linear Feedback Shift Registers of maximal length: R1, R2, R3,
and R4. They have a size of 19, 22, 23, and 17 bits, respectively [3]. If we view
an n-bit register as a vector over F2 (with the LSB first), a single clocking can
be described by multiplication with the square matrix

L =

(
tn−1 · · · t0
I 0

⎧
, (1)

where I is an identity matrix, 0 is an all zero column, and ti ∈ F2 is 1 if the i’th
bit is tapped and 0 otherwise.

Let xi be the i’th bit of the bit vector x, with i = 0 being the LSB. Denote
the clocking matrix of register Ri by Li. Then the value of the internal state is
initialized during the key setup, defined for each register by

Ri =

63⎪

n=0

(Li)
85−nKn ⊕

21⎪

n=0

(Li)
21−nfn ⊕ σ , (2)



424 P.S. Vejre and A. Bogdanov

where Kn is a vector whose first element is Kn and all other elements are 0
(similarly for fn), and σ is a vector that sets the values R15

1 = R16
2 = R18

3 =
R10

4 = 1. Thus, we can describe the initial value of each register as

R1 =
⎨
α0 ⊕ ϕ0, . . . , α14 ⊕ ϕ14, 1, α16 ⊕ ϕ16, . . . , α18 ⊕ ϕ18

⎩
,

R2 =
⎨
β0 ⊕ ξ0, . . . , β15 ⊕ ξ15, 1, β17 ⊕ ξ17, . . . , β21 ⊕ ξ21

⎩
,

R3 =
⎨
γ0 ⊕ ψ0, . . . , γ17 ⊕ ψ17, 1, γ19 ⊕ ψ19, . . . , γ22 ⊕ ψ22

⎩
,

R4 =
⎨
δ0 ⊕ ω0, . . . , δ9 ⊕ ω9, 1, δ11 ⊕ ω11, . . . , δ16 ⊕ ω16

⎩
, (3)

where αi, βi, γi, δi ∈ span(K0, . . . ,K63) and ϕi, ξi, ψi, ωi ∈ span(f0, . . . , f21)
[13]. Note that these linear combinations are known and are described by (2).

At the start of each cycle of A5/2 the majority M = maj(R3
4, R

7
4, R

10
4 ) is

calculated. Then, R1 is clocked iff R10
4 = M . Similarly, the clocking of R2 and

R3 are controlled by R3
4 and R7

4, respectively. After this, R4 is also clocked and
a single stream bit s is produced, defined by

s =maj
⎨
R12

1 , R14
1 ⊕ 1, R15

1

⎩⊕maj
⎨
R9

2, R
13
2 , R16

2 ⊕ 1
⎩

⊕maj
⎨
R13

3 ⊕ 1, R16
3 , R18

3

⎩⊕R18
1 ⊕R21

2 ⊕R22
3 . (4)

The first 99 generated bits are discarded, and the following 228 bits are used as
the keystream which is XOR’ed with the plaintext. The first 114 bits are used
to encrypt the downlink, and the last 114 bits are used to encrypt the uplink.

Communication in the GSM standard is split into 114 bit blocks, referred to
as a frame. Each frame has assigned a publicly known frame number [16]. Using
the frame number as the initialization value f , each frame is encrypted by A5/2
as described above [15]. Before encryption, the raw communication is subject
to error correction and interleaving. The error correction in GSM is done via a
convolutional encoder [2]. Each GSM channel has an individual encoder which
takes n-bit blocks as input and produces m-bit output blocks. After i+ 1 input
blocks have been encoded, the i+1 coded blocks are interleaved with each other,
producing j+1 114-bit frames. The frames are then encrypted with j+1 different
A5/2 keystreams and transmitted. The full expression for the ciphertext blocks
C0, . . . , Cj therefore becomes

⎥

⎦
C0

...
Cj



 = ING

⎥

⎦
D0

...
Di



⊕

⎥

⎦
S0

...
Sj



 , (5)

where D0, . . . , Di are the input blocks, G is the generator matrix for the code, IN
is a permutation matrix describing the interleaving, and S0, · · · , Sj are
keystreams belonging to different frame numbers.

We can describe the values of the registers in the i’th cycle of A5/2 as

R
(i)
1 =

⎨
A0

i ⊕ Φ0
i , . . . , A

18
i ⊕ Φ18

i

⎩
, R

(i)
2 =

⎨
B0

i ⊕ Ξ0
i , . . . , B

21
i ⊕ Ξ21

i

⎩
,

R
(i)
3 =

⎨
Γ 0
i ⊕ Ψ0

i , . . . , Γ
22
i ⊕ Ψ22

i

⎩
, R

(i)
4 =

⎨
Δ0

i ⊕Ω0
i , . . . , Δ

16
i ⊕Ω16

i

⎩
. (6)



Route 66: Passively Breaking All GSM Channels 425

Here, Aj
i ∈ span(αk | k ⊇= 15) and Φj

i ∈ span(ϕk, 1 | k ⊇= 15). The remaining

variables are defined similarly. For Δj
i and Ωj

i these linear combinations are

known, since R4 is always regularly clocked, so R
(i)
4 = (L4)

iR4. The other linear
combinations, however, depend on δj and ωj, and therefore on K and f . Using
this, the i’th bit of the stream S can be described similarly to the expression in
(4), where R12

1 = A12
i ⊕ Φ12

i , etc. Since the majority function is quadratic, we
can rewrite this as a more general quadratic equation over α, β, and γ:

Si =
⎪

0∈m,n∈18
m,n≤=15

am,nα
mαn⊕

⎪

0∈m,n∈21
m,n≤=16

bm,nβ
mβn⊕

⎪

0∈m,n∈22
m,n≤=18

cm,nγ
mγn⊕d , (7)

for some am,n, bm,n, cm,n, d ∈ F2 which depend on K and f . The coefficients
am,n, bm,n, and cm,n depend on how the three registers are clocked. Since this
depends on the majority function, these coefficients must therefore be at least
quadratic terms in the bits of K, and (7) is at least quartic in the bits K.

3 Attacking All GSM Channels

The idea of the attack is to determine the α, β, and γ variables, and use their
known linear expressions over the bits of K, to fully determine K [3]. Recall that
the value of R4 right after the key setup can be described by (3). Since we know
f , we also know the value of each ω variable. We now guess the value of the δ

variables, thus fully determining R
(i)
4 for any i. Since R4 determines when the

other three registers are clocked, we now also know the linear combinations that
define A, B, and Γ , and the exact values of Φ, Ξ, and Ψ . Thus, for any cycle i of
A5/2, the stream bit Si can be expressed using only known linear combinations
of α, β, and γ, i.e. we can determine the coefficients of (7).

Now, let H be the parity check matrix for the generator matrix G. Since I−1
N

exists and HG = 0, we can rewrite (5) as

HI−1
N

⎥

⎦
C0

...
Cj



 = HI−1
N

⎥

⎦
S0

...
Sj



 . (8)

Thus, we have a linear system of equations over the bits of S0, . . . , Sj . Ex-
pressing these bits as quadratic equations using (7), we get a quadratic system
of equations over the α, β, and γ variables. Note here that even though we
consider streams from different frames, we are still dealing with the same α, β,
and γ variables, as these depend only on K. The quadratic system of equations
defining each stream will, however, be different, since the Φ, Ξ, and Ψ variables
depend on f .

We proceed by solving this quadratic system via linearization. From (7) we
see that we get a linear system of equations over 655 variables plus a constant.
In order to have enough equations to solve the system, we need to consider an
appropriate number of frames. Thus, the number j in (8) is determined by how



426 P.S. Vejre and A. Bogdanov

many equations we get from each frame, which in turn depends on the encoder.
Note, however, that it is enough to solve the original 61 α, β, and γ variables.
Once this is done, we can solve (2) for the bits of K. It is interesting to note
that this attack on A5/2 would not work if the convolutional encoding had been
performed after the encryption.

We need to guess the value of the 16 δ variables, and so we need to make
216 guesses, and solve a linear system of equations for each guess. Using M4R
presented in [14], each system can be solved with a complexity of n3/ log(n).
The complexity of the attack is therefore approximately 241 XOR operations,
making it 8 times faster than the attack in [3].

We implemented the attack on the TCH/HS channel in software. The mul-
tithreaded implementation was written in C++ and tested on a desktop with
a quad core processor clocked to 4 GHz. 12 ciphertext frames were required to
recover the key in 12.08 seconds on this channel with a success rate of 100%.

In theory the complexity of generating the equation systems is negligible. In
practice, however, this part of the attack contributes to about half of the running
time, even though we use specialized techniques to generate the equation systems
quickly. Hence, the equation generator is an obvious target for improvements.

If the encoder for a single input block is defined by an m× n matrix G, then
H is an (m− n)×m matrix. Therefore, for each frame we get m− n equations.
Although the equations from one frame are linearly independent, equations from
different frames need not be. While analyzing the TCH/HS and SACCH channels
we found that 360 linearly independent equations were always enough to recover
K. We estimate that about 600 (not necessarily linearly independent) equations
should be enough to recover K for any channel. Based on this estimate, we have
made a complete theoretical cryptanalysis of all GSM channels, which can be
found in Table 1. The table shows the number of frames j required to recover
K, and the time needed to acquire j consecutive frames. It is important to
remember, however, that the frames used for the attack need not be consecutive.
Indeed, we could mix frames from different channels, as long as we can set up
enough equations.

The fastest channels to attack (in terms of time taken to acquire data) are the
SCH, CTSBCH-SB, CTSARCH and CSCH channels. The channel that has the
largest number of required frames is the PDTCH/MCS-4 channel, which needs
76 ciphertext frames for the downlink and 60 frames for the uplink. The reason
for this is that we can only extract equations from the extra header data this
channel uses.

As explained above, our estimate of 600 equations might be conservative for
most channels. In [3] the SACCH channel (and similar channels) was attacked
using only 8 frames, TCH/EFS and TCH/FS were attacked using only 16 frames
in [13], and we have attacked TCH/HS using only 12 frames. On the other hand,
properties of a specific channel might require more than 600 equations. Indeed,
our findings suggest that the more frames we use, the fewer linearly independent
equations are added per frame. Therefore, it might be hard to gather sufficient
data if the number of equations per input block is low to begin with.



Route 66: Passively Breaking All GSM Channels 427

T
a
b
le

1
.
O
v
er
v
ie
w

o
f
a
tt
a
ck

d
et
a
il
s
fo
r
a
ll
6
6
G
S
M

ch
a
n
n
el
s.

T
h
e
n
o
.
o
f
in
p
u
t/
o
u
tp
u
t
b
lo
ck
s
a
re

d
en

o
te
d
b
y
i
a
n
d
j,

re
sp

ec
ti
v
el
y.

C
h
a
n
n
el

n
a
m
e

E
q
n
s/

b
lo
ck

i
j

N
o
.
o
f

eq
n
s

T
im

e
to

a
cq

u
ir
e
[m

s]
C
h
a
n
n
el

n
a
m
e

E
q
n
s/

b
lo
ck

i
j

N
o
.
o
f

eq
n
s

T
im

e
to

a
cq

u
ir
e
[m

s]

T
C
H
/
E
F
S

T
C
H
/
F
S

1
8
9

4
2
0

7
5
6

9
2
.3

P
R
A
C
H

C
P
R
A
C
H

3
6

1
7

1
6

6
1
2

7
3
.8

T
C
H
/
H
S

1
0
7

6
1
4

6
4
2

6
4
.6

P
D
T
C
H
/
M
C
S
-1

1
2
0
8
/
2
1
7

3
1
2

6
2
4
/
6
5
1

5
5
.4

T
C
H
/
A
F
S
1
2
.1
2

1
9
8

4
2
0

7
9
2

9
2
.3

P
D
T
C
H
/
M
C
S
-2

1
1
6
0
/
1
6
9

4
1
6

6
4
0
/
6
7
6

7
3
.8

T
C
H
/
A
F
S
1
0
.2

2
3
8

3
1
6

7
1
4

7
3
.8

P
D
T
C
H
/
M
C
S
-3

1
8
8
/
9
7

7
2
8

6
1
6
/
6
7
9

1
2
9
.2

T
C
H
/
A
F
S
7
.9
5

2
8
3

3
1
6

8
4
9

7
3
.8

P
D
T
C
H
/
M
C
S
-4

1
3
2
/
4
1

1
9
/
1
5

7
6
/
6
0

6
0
8
/
6
1
5

3
5
0
.8
/
2
7
6
.9

T
C
H
/
A
F
S
7
.4

2
9
4

3
1
6

8
8
2

7
3
.8

P
D
T
C
H
/
M
C
S
-5

1
8
4
6
/
8
7
1

1
?2

8
4
6
/
8
7
1

?2

T
C
H
/
A
F
S
6
.7

3
0
8

2
1
2

6
1
6

5
5
.4

P
D
T
C
H
/
M
C
S
-6

1
7
0
3
/
7
2
7

1
?2

7
0
3
/
7
2
7

?2

T
C
H
/
A
F
S
5
.9

3
2
4

2
1
2

6
4
8

5
5
.4

P
D
T
C
H
/
M
C
S
-7

1
3
6
7
/
3
9
4

2
?2

7
3
4
/
7
8
8

?2

T
C
H
/
A
F
S
5
.1
5

3
3
9

2
1
2

6
7
8

5
5
.4

P
D
T
C
H
/
M
C
S
-8

1
1
7
5
/
2
0
2

4
/
3

?2
7
0
0
/
6
0
6

?2

T
C
H
/
A
F
S
4
.7
5

3
4
7

2
1
2

6
9
4

5
5
.4

P
D
T
C
H
/
M
C
S
-9

1
7
9
/
1
0
6

8
/
6

?2
6
3
2
/
6
3
6

?2

T
C
H
/
A
H
S
7
.9
5

5
9

1
1

2
4

6
4
9

1
1
0
.8

P
D
T
C
H
/
C
S
-2

1
6
2

4
1
6

6
4
8

7
3
.8

T
C
H
/
A
H
S
7
.4

6
2

1
0

2
2

6
2
0

1
0
1
.5

P
D
T
C
H
/
C
S
-3

1
1
8

6
2
4

7
0
8

1
1
0
.8

T
C
H
/
A
H
S
6
.7

7
2

9
2
0

6
4
8

9
2
.3

P
D
T
C
H
/
C
S
-4

N
o
co
n
v
o
lu
ti
o
n
a
l
co
d
es

a
re

a
p
p
li
ed

T
C
H
/
A
H
S
5
.9

8
0

8
1
8

6
4
0

8
3
.1

F
A
C
C
H
/
F

2
2
8

3
1
6

6
8
4

7
3
.8

T
C
H
/
A
H
S
5
.1
5

9
1

7
1
6

6
3
7

7
3
.8

F
A
C
C
H
/
H

2
2
8

3
1
4

6
8
4

6
4
.6

T
C
H
/
A
H
S
4
.7
5

9
9

7
1
6

6
9
3

7
3
.8

R
A
C
H

3
6

1
7

1
7

6
1
2

7
8

E
-T

C
H
/
F
4
3
.2

4
9
2

2
2
6

9
8
4

1
2
0

S
A
C
C
H

3
2
2
8

3
1
2

6
8
4

5
5
.4

E
-T

C
H
/
F
3
2
.0

6
2
6

1
2
2

6
2
6

1
0
1
.5

T
C
H
/
F
2
.4

3
8
0

2
1
2

7
6
0

5
5
.4

E
-T

C
H
/
F
2
8
.8

6
8
2

1
2
2

6
8
2

1
0
1
.5

T
C
H
/
F
1
4
.4

1
6
2

4
3
4

6
4
8

1
5
6
.9

T
C
H
/
F
9
.6

&
H
4
.8

2
1
2

3
3
0

6
3
6

1
3
8
.5

T
C
H
/
F
4
.8

&
H
2
.4

3
0
4

2
2
6

6
0
8

1
2
0

S
C
H

C
T
S
B
C
H
-S
B

7
8

8
8

6
2
4

3
6
.9

C
T
S
A
R
C
H

C
S
C
H

7
8

8
8

6
2
4

3
6
.9

1
T
h
e
n
u
m
b
e
rs

sp
e
c
if
y
u
p
lo
a
d
/
d
o
w
n
lo
a
d
v
a
ri
a
n
ts

o
f
th

e
ch

a
n
n
e
ls
.

2
D
u
e
to

u
n
c
le
a
r
sp

e
c
ifi
c
a
ti
o
n
s
in

[2
],

w
e
c
o
u
ld

n
o
t
d
e
te
rm

in
e
h
o
w

m
a
n
y
c
ip
h
e
rt
e
x
t
fr
a
m
e
s
a
re

n
e
e
d
e
d
fo
r
th

e
a
tt
a
ck

.
3
A
ls
o

in
c
lu
d
e
s
si
m
il
a
r
ch

a
n
n
e
ls
:
E
-F
A
C
C
H
/
F
,
S
D
C
C
H
,
B
C
C
H
,
P
C
H
,
A
G
C
H
,
C
B
C
H
,
C
T
S
P
C
H
,
C
T
S
A
G
C
H
,
P
A
C
C
H
,
P
B
C
C
H
,
P
A
G
C
H
,
P
P
C
H
,

P
N
C
H
,
P
T
C
C
H
,
C
P
A
G
C
H
,
C
P
B
C
C
H
,
C
P
N
C
H
,
C
P
P
C
H
,
a
n
d

P
D
T
C
H
/
C
S
-1
.



428 P.S. Vejre and A. Bogdanov

4 Passive Attack on the GSM Location Update

While results for the SACCH and SDCCH are known [3], our results for the
FACCH/F and FACCH/H channels are new. These results allow us to present
a new attack that exploits the GSM location updating procedure to recover K.

There are two ways for the network to identify a certain phone: the Interna-
tional Mobile Subscriber Identity (IMSI) and the Temporary Mobile Subscriber
Identity (TMSI). The IMSI is the unique identification of a phone on the net-
work. In order to transmit the IMSI as infrequently as possible, the TMSI is
used, which is an identification specific to the phone’s current physical location.
The network can recover the IMSI by using the current TMSI and the Location
Area Identifier (LAI) of the phone’s current location. Because of this, the TMSI
needs to be updated every time to phone physically moves. This is done via the
location updating procedure [17]. A normal location update is triggered when
the phone physically moves, and a periodic location update is triggered when a
timer on the phone expires. Periodic updates can be turned off, but usually the
timer holds a value between 6 minutes and 25.5 hours.

The location updating procedure happens in six stages. In the first stage,
connection establishment, the phone requests and is assigned a channel. Here,
two messages are transmitted on the RACH channel [17, p. 227]. During the
remaining stages, all messages are transmitted on the main DCCH, which is
either the SACCH, the SDCCH, or one of the FACCHs [17, p. 38]. During the
next stage, the service request stage, the phone starts the location updating
procedure with a location updating request message. This message contains the
current LAI and TMSI.

The next two stages, authentication and cipher mode setting, are optional [15].
If the stages are performed, the phone is first authenticated to the network,
and a cipher for encryption is agreed upon. No matter which cipher is chosen,
the encryption happens under the same key K. The cipher mode setting stage
is ended with a cipher mode complete message, which is encrypted. After this
message, all future messages are encrypted. For more details on these two stages,
see [3]. If these two stages are not performed the network relies on the fact that
the phone knows the K of the last conversation, implicitly authenticating the
phone via its ability to read encrypted messages. Note that it is not a guarantee
that K is different from conversation to conversation [3].

The location update stage itself now starts. First, the network sends an en-
crypted location updating accept message, which contains the new TSMI and
LAI. The phone then updates its SIM card with the new information and sends
a TSMI reallocation complete message to the network. More messages can be
sent, but we can assume that the network ends the conversation with the con-
nection release stage, in which it sends a channel release message to the phone.

From the above we see that at least three encrypted blocks are transmitted on
the DCCH channel during a successful location update. Assuming A5/2 was used
for encryption, we therefore have enough data to recoverK, cf. Table 1. This way
of recovering K is completely undetectable – all the attacker has to do is wait
for a location update to take place. The victim’s phone never rings, and there is



Route 66: Passively Breaking All GSM Channels 429

no suspicious communication or delays. Thanks to the optional authentication
and reuse of keys, recovering K from a location update could enable immediate
wire-tapping during the next call. If we need to target a specific phone, or if
A5/2 was not used for encryption, the attack is still possible using the methods
presented in [3]. We stress that even if we need to apply these methods, the
attack is still passive in the sense that the victim never sees any activity on the
phone or interacts with it – except for physically moving it.

References

1. Association, G.: Brief History of GSM and the GSMA (May 5, 2011),
gsmworld.com, http://www.webcitation.org/5yRQRGPgH

2. ETSI: Digital cellular telecommunications system (Phase 2+); Channel coding
(GSM 05.03). Technical report, ETSI (1999)

3. Barkan, E., Biham, E., Keller, N.: Instant Ciphertex-Only Cryptanalysis of GSM
Encrypted Communication. Journal of Cryptology 21, 392–429 (2008)

4. Briceno, M., Goldberg, I., Wagner, D.: A pedagogical implementation of the GSM
A5/1 and A5/2 ‘voice privacy’ encryption algorithms (1999),
http://cryptome.org/gsm-a512.htm

5. Goldberg, I., Wagner, D., Green, L.: The (Real-Time) Cryptanalysis of A5/2. Pre-
sented at the Rump Session of Crypto 1999 (1999)

6. Petrovic, S., Fster-Sabater, A.: Cryptanalysis of the A5/2 Algorithm. Cryptology
ePrint Archive, Report 2000/052 (2000), http://eprint.iacr.org/

7. Barkan, E., Biham, E., Keller, N.: Instant Ciphertext-Only Cryptanalysis of GSM
Encrypted Communication. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729,
pp. 600–616. Springer, Heidelberg (2003)

8. Golić, J.D.: Cryptanalysis of Alleged A5 Stream Cipher. In: Fumy, W. (ed.) EU-
ROCRYPT 1997. LNCS, vol. 1233, pp. 239–255. Springer, Heidelberg (1997)

9. Barkan, E., Biham, E.: Conditional Estimators: An Effective Attack on A5/1. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 1–19. Springer,
Heidelberg (2006)

10. Biham, E., Dunkelman, O.: Cryptanalysis of the A5/1 GSM Stream Cipher. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 1–19. Springer,
Heidelberg (2006)

11. Biryukov, A., Shamir, A., Wagner, D.: Real Time Cryptanalysis of A5/1 on a PC.
In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, p. 1. Springer, Heidelberg (2001)

12. Dunkelman, O., Keller, N., Shamir, A.: A Practical-time Related-key Attack on
the KASUMI Cryptosystem Used in GSM and 3G Telephony. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 393–410. Springer, Heidelberg (2010)

13. Bogdanov, A., Eisenbarth, T., Rupp, A.: A Hardware-Assisted Realtime Attack
on A5/2 Without Precomputations. In: Paillier, P., Verbauwhede, I. (eds.) CHES
2007. LNCS, vol. 4727, pp. 394–412. Springer, Heidelberg (2007)

14. Albrecht, M.R., Pernet, C.: Efficient Dense Gaussian Elimination over the Finite
Field with Two Elements. arXiv:1111.6549v1 (November 2011)

15. ETSI: Digital cellular telecommunications system (Phase 2+); Security related
network functions (GSM 03.20). Technical report, ETSI (1998)

16. ETSI: Digital cellular telecommunications system (Phase 2+); Physical layer on
the radio path; General description (GSM 05.01). Technical report, ETSI (1997)

17. ETSI: Digital cellular telecommunications system (Phase 2+); Mobile radio inter-
face layer 3 specification (GSM 04.08). Technical report, ETSI (1998)

gsmworld.com
http://www.webcitation.org/5yRQRGPgH
http://cryptome.org/gsm-a512.htm
http://eprint.iacr.org/


An Analysis of Tracking Settings in Blackberry

10 and Windows Phone 8 Smartphones

Yogachandran Rahulamathavan1, Veelasha Moonsamy2, Lynn Batten2,
Su Shunliang3, and Muttukrishnan Rajarajan1

1 School of Engineering and Mathematical Sciences, City University London,
London, U.K.

{yogachandran.rahulamathavan.1,r.muttukrishnan}@city.ac.uk
2 School of Information Technology, Deakin University,

Melbourne, Australia
{v.moonsamy@research.deakin.edu.au,lynn.batten@deakin.edu.au}
3 Multimedia Information Technology, City University of Hong Kong,

Kowloon, Hong Kong
{shunlsu2-c@my.cityu.edu.hk}

Abstract. The use of tracking settings in smartphones facilitates the
provision of tailored services to users by allowing service providers ac-
cess to unique identifiers stored on the smartphones. In this paper, we
investigate the ‘tracking off’ settings on the Blackberry 10 and Windows

Phone 8 platforms. To determine if they work as claimed, we set up a
test bed suitable for both operating systems to capture traffic between
the smartphone and external servers. We dynamically execute a set of
similar Blackberry 10 and Windows Phone 8 applications, downloaded
from their respective official markets. Our results indicate that even if
users turn off tracking settings in their smartphones, some applications
leak unique identifiers without their knowledge.

1 Introduction

Many service providers offer tailored services to their customers based on data
gathered from the users’ smartphones. Advertisements embedded within applica-
tions can be used to notify users of promotional offers in their nearby surround-
ings; however, several existing papers have shown that sensitive information such
as the device’s unique identifier and user’s physical location are often leaked via
advertising libraries without the device owner’s consent [1]. In general, smart-
phone users are given the option to control the following two tracking services:
location services and advertising. There are several papers in the literature ana-
lyzing these settings in Android and iOS based smartphones [2–6]. Some of this
work indicates that information can be leaked through advertising.

In this paper, we ask the question: If tracking settings are turned off on
BlackBerry 10 and Windows Phone 8 smartphones, is it possible that the de-
vices are still tracked? On both of these platforms, to our knowledge, the default
options that are provided by the smartphones have not been tested in any prior
work. We test them in this paper by addressing the following specific questions:

W. Susilo and Y. Mu (Eds.): ACISP 2014, LNCS 8544, pp. 430–437, 2014.
c© Springer International Publishing Switzerland 2014



An Analysis of Tracking Settings in Blackberry 10 431

– Can we verify if applications leak the location information of the smartphone
when we turn off the location services and advertising tracking settings?

– Does any application access the smartphone’s unique identifiers when we
revoke the application’s permission to access information?

The contributions of this work can be summarized as follows:

1. We implement a real-time traffic monitoring platform and demonstrate how
to capture communication on Wi-Fi enabled smartphones.

2. We determine how well the tracking settings for location services and ad-
vertising work when they are turned off on a sample of BlackBerry 10 and
Windows Phone 8 applications.

3. In the event where the settings fail to operate properly, we provide rec-
ommendations on how users can ensure that attackers do not compromise
communications due to improper implementation1 of Secure Sockets Layer
(SSL) in applications.

The rest of the paper is organized as follows: Section 2 summarizes existing
work and Section 3 provides background on tracking services. In Section 4 we
explain our experimental work, followed by an analysis of our empirical results
in Section 5. In Section 6, we conclude the paper and provide some recommen-
dations.

2 Related Work

2.1 BlackBerry

The BlackBerry 10 OS offers developers a list of permissions which can allow
users to control the resources accessible to the applications once installed on the
device. Unlike Android [5], many Blackberry permissions can be unchecked,
prompted or revoked from application permissions settings on the BlackBerry

10 devices. If an application tries to perform an action for which it does not
have the required permission, the user is given a prompt. This often leads users
to accept all permissions by default. BlackBerry reminds developers to have a
highly visible privacy policy of their own, and ensure that they comply with
local internet privacy legislation. This frees the Blackberry official applica-
tions site, BlackBerry App World, of any responsibility for privacy breaches by
applications.

2.2 Windows Phone

The permission system on the Windows Phone platform bears many similarities
to that of the Android OS. However, Microsoft’s smartphone OS offers about 20
permissions for its application developers to which the users have to grant full
access upon installation of the application.

Even though many publications have been written about the Android and iOS

OS, to the best of our knowledge, there is little work in the literature analysing
any versions of the BlackBerry and Windows Phone OS.

1 http://heartbleed.com/

http://heartbleed.com/


432 Y. Rahulamathavan et al.

3 Tracking Services

We establish an experiment to determine if turning off tracking service settings
actually prevents tracking. If we capture leaked information when the setting is
‘off’, it is not working as it should. Since no data capture when the setting is ‘on’
does not necessarily indicate a malfunction, we do not test the ‘on’ settings. We
divide the tracking services into the following two categories: location services
and advertising.

3.1 Tracking Services on BlackBerry 10

Location services can be accessed under the Settings option of a BlackBerry

device. By default, the assumption is that whenever the setting for location
services is turned off, applications should not have access to the user’s location.
To verify if this stands true, we monitor access to the following three pieces
of information which are unique to the device and its user: (i) Media Access
Control (MAC), a 12-character unique device identifier, (ii) Internet Protocol
(IP) address and (iii) Global Positioning System (GPS) coordinates.

In order to test whether the tracking setting for advertising leaks any infor-
mation when it is turned off, we monitor the use of two device identifiers that
are unique to a Blackberry smartphone: (i) International Mobile Equipment
Identity (IMEI), a 15-digit identifier and (ii) Hardware Personal Identification
Number (PIN), an 8 alphanumeric identifier. These distinct codes are highly
sought after by advertising companies for efficient user-profiling and to target
advertisements.

3.2 Tracking Services on Windows Phone 8

We follow a similar rationale as described in Section 3.1. To test whether the
Windows Phone 8 device leaks location-related information when the location
services setting is turned off, we observe the use of MAC address, IP address
and GPS coordinates by installed applications. On the Windows Phone platform,
users can switch off Location under the Settings option to deter access to location
information.

As for advertising, users do not have any option on the actual device to
regulate access to advertisements. Instead, they have to use their Microsoft ac-
count and visit the online ‘opt out page’2 to opt out of receiving personalized
advertisements and prevent applications from sending unique device identifiers
to 3rd parties. We survey the usage of the IMEI and Device Identifier (ID),
an alphanumeric string, by installed applications after a user has opted out of
communicating this information to external servers.

2 http://tinyurl.com/l2x8dyv

http://tinyurl.com/l2x8dyv


An Analysis of Tracking Settings in Blackberry 10 433

4 Experiment

4.1 Dataset Collection

The experiment was conducted using applications downloaded from the official
markets of BlackBerry 10 and Windows Phone 8 OS. To ensure that the ex-
periment was consistent, we only considered applications which were developed
by the same developer or the same company for both platforms. Since developer
profiles cannot be publicly accessed on the application markets, we manually
checked the developer’s information for each application for both of the OS be-
fore including it in our dataset. Due to this constraint, we conducted our study
with a small dataset of 40 BlackBerry and 40 Windows Phone applications.

4.2 Experimental Work

We set up a traffic monitoring test bed, as in [7], which is suitable for capturing
information from any device using Wi-Fi connectivity as shown in Fig. 1. We
used a BlackBerry Z10 smartphone (contributed by BlackBerry) running on
the BlackBerry 10 OS and a Nokia Lumia 520 smartphone running on the
Windows Phone 8 OS to test our dataset. The traffic sniffing tool, Mallory, was
installed in a VM which was running on Ubuntu version 12.04. The Mallory
tool was developed by the firm Intrepidus Group3 and is capable of capturing
traffic packets to and from the smartphones. We chose this tool as it facilitates
the interception of SSL traffic and acts as a MiTM proxy to capture packets in
real-time communication.

We faced the issue of unstable network connections at the beginning of the
experiment, and, because traffic was being relayed through Mallory, we experi-
enced lengthy delays which often resulted in IP addresses being reset. To counter
this problem, we set up a dedicated mini Wi-Fi modem which allowed us to con-
nect all our devices on the same network. The VM hosting the Mallory tool
was allowed to connect to the Internet. In order to relay traffic between the
smartphones and Mallory, with the Blackberry phone, we were able to set up a
VPN, while at the time of the experiment, Microsoft had not yet implemented
the VPN option on their smartphone OS. To bypass this issue, we used a Wi-
Fi USB adapter which allowed us to carry out packet injections. This ensured
that Mallory could piggyback on the traffic being sent to and from the Windows
Phone 8.

As the smartphones and Mallory both share the same Internet connection,
any Internet-based traffic on the smartphones can be captured by Mallory (see
Fig. 1). The communication from smartphone to server is referred to as “c2s”
and server to smartphone as “s2c”; the Mallory tool captures both. This infor-
mation is then recorded in an SQL database which was later exported for further
analysis. Since the aim of this experiment is to monitor information leaked by the
smartphones when tracking services are turned off, we ignored the “s2c” com-
munications and instead focused on the “c2s” ones as they are more likely to

3 http://intrepidusgroup.com/insight/mallory/

http://intrepidusgroup.com/insight/mallory/


434 Y. Rahulamathavan et al.

Fig. 1. Overview of Our Experimental Setup

reveal whether the applications on the smartphones are sending out information
without the user’s knowledge.

As explained in Section 3, we began by turning off all the tracking settings
on our experimental devices and then analyzed our dataset by installing one
application at a time. Each application was tested for two minutes. During the
execution, we dynamically executed the application by checking all its features
and clicking on advertisements. Once the execution time was over, we stopped
Mallory from recording further traffic and uninstalled the application. We re-
peated these steps for each of the 40 BlackBerry and 40 Windows Phone appli-
cations. Once the experiment was concluded, we exported all traffic logs outside
the VM and searched for the keywords mentioned in Section 3.

5 Analysis of Results

5.1 Presentation of Results

For each application in our dataset, we present our empirical results in two parts:
Location Services and Advertising. The results for BlackBerry and Windows

Phone are listed in Table 1 where the symbol ✕ means that one or more keyword
items were leaked; alternatively, �is placed to demonstrate that the application
did not leak any information when tracking settings were turned off.

Recall that in our choice of application, we specifically chose ones for each
OS by the same developer and with the same name, therefore appearing to
have identical functionality. However, Table 1 indicates that this is not the case.
For instance, the 2nd and 23rd applications, namely Tube Map and Poynt
from Table 1 are considered to be consistent as the results on both OS are
identical. Conversely, the 1st and 3rd applications - BBC iPlayer and Bible



An Analysis of Tracking Settings in Blackberry 10 435

Table 1. BlackBerry and Windows Phone Applications with Tracking Setting Off
(�= Not leaked and ✕ = Leaked)

BlackBerry
Application Name

Windows Phone
Location Services Advertising Location Services Advertising

� � 1.BBC iPlayer ✕ �
� � 2.Tube Map � �
✕ � 3.Bible � ✕

� ✕ 4.Carrefour � �
� � 5.To Do List � �
� � 6.Combo Pic � ✕

✕ � 7.Copter � ✕

� � 8.Jetpack � �
� � 9.Wizards Choice � ✕

� � 10.Economic Times � �
✕ � 11.Falldown � ✕

� � 12.Real FootBall2013 � �
� � 13.Flashlight � �
� � 14.Hangman � ✕

� � 15.HDFC Bank � �
� � 16.Kompass � �
✕ � 17.Lega De Fulbol � �
� � 18.Logo Quiz � ✕

� � 19.Millionaire � ✕

� � 20.Nu NL � �
� � 21.OK Magazine � ✕

✕ � 22.PGA Tour ✕ �
✕ � 23.Poynt ✕ �
� � 24.QR Code � �
� � 25.Robotek ✕ �
� � 26.Skyscanner � �
� � 27.Texas Holdem P. � �
� � 28.Top Gear � �
� ✕ 29.Tuding � �
� � 30.Tune in Radio � �
✕ � 31.Wikipedia � �
✕ � 32.WWE � �
✕ � 33.XE Currency � �
� � 34.Avianca � �
� � 35.Chelsea FC NEWS � ✕

� � 36.Daily Express UK � �
� � 37.USA Today � �
� � 38.Money Control � �
� � 39.Toshl Finance � �
� � 40.Park Mobile � �

respectively, are inconsistent as despite being the same applications executed on
two different platforms, the results are different. In fact, there are 18 applications
in our dataset that produced inconsistent results4.

We believe there might be several reasons behind this discrepancy. During
the experiment, each application was executed for a period of two minutes.
Although this time constraint was applied to both BlackBerry and Windows

Phone platforms, there is no guarantee that the execution patterns on each OS
were identical. Moreover, despite the fact that all the applications in our dataset
are available on both the BlackBerry and Windows Phone official application

4 Application numbers 1,3,4,6,7,9,11,14,17-19,21,25,29,31-33,35 from Table 1.



436 Y. Rahulamathavan et al.

markets and share application developers, we did not verify if the applications
also make use of the same third party libraries. Different advertising libraries
can appear in several posted versions of the same initial application because the
business model of smartphones encourages developers to embed multiple third
party libraries in order to increase revenue from advertising.

5.2 Information Leaks When Tracking Setting Is Off

Out of 40 applications executed on the BlackBerry platform, 10% (4) leaked
either the GPS coordinates or IP address despite the setting for location services
being off. These 4 applications are also part of the subset of 18 applications which
produced inconsistent results, as described in Section 5.1. However, the results
for advertising are far better as only 2 applications, Carrefour and Tuding
leaked information about the Hardware PIN to advertisers when the tracking
setting was turned off. It is also worth mentioning that none of the Blackberry

applications leaked the IMEI or MAC address.
As for the Windows Phone platform, 35% (14) leaked information related to

either location services or advertising. Whilst none of the 40 Windows Phone

applications sent out GPS coordinates, the following four applications leaked
either the MAC address or IP address: BBC iPlayer, Robotek, PGA Tour
and Poynt. Unlike on the BlackBerry platform, the last 2 applications do not
appear in the subset of 18 applications mentioned in Section 5.1. In terms of
advertising related information leaked when the tracking setting was off, 10%
of the Windows Phone applications sent out the Device ID information and the
IMEI identifier was not divulged at all.

6 Conclusion

In this paper, we empirically analyzed 40 Blackberry and 40 Windows Phone ap-
plications. We tested whether tracking service settings for location services and
advertising leak information when their tracking is turned off. We found that
some applications still leak the user’s location and device related information to
third parties. Additionally, we observed that if an application does not leak any
information on one particular smartphone OS, for instance BlackBerry, there is
no guarantee that the same application will behave in a similar way on a differ-
ent platform, (here for example, Windows Phone). Finally, we recommend some
actions to overcome the issues we highlighted based on our empirical results.

6.1 Recommendations

Application developers earn revenue from in-application advertisements which is
why many offer their applications free of charge. Advertising is very important
for the smartphone application ecosystem as it is a major factor in the business
model of the smartphone platform. Generally, the applications are required to
send the smartphone’s unique identifiers to advertizing agencies and in return,



An Analysis of Tracking Settings in Blackberry 10 437

the application developers earn a revenue for using that agency’s advertizing
library. Hence, there is a trade-off between convenience and user privacy. There-
fore, we recommend the following:

1. Smartphone users should have easy access to adequate functionalities on
their devices that will help protect their private information. As such, we
recommend that Microsoft implements a setting on their smartphones to
allow users to easily opt out of advertising, instead of doing so via the web.

2. Application developers should be obliged to list the names and owners of
third party advertising libraries that are used in their applications. Users
should be made aware upfront of the advertising companies that have access
to their information.

3. Smartphone OS providers should ensure that when location services is turned
off, no location-related information is revealed to third parties. This could
either take the form of an additional check that is conducted when a new
application is uploaded on the application market or after the fact, fines
could be issued to deter application developers from unethically accessing
such information.

References

1. Moonsamy, V., Alazab, M., Batten, L.: Towards an understanding of the impact
of advertising on data leaks. International Journal of Security and Networks 7(3),
181–193 (2012)

2. Han, J., Owusu, E., Nguyen, L., Perrig, A., Zhang, J.: ACComplice: Location infer-
ence using accelerometers on smartphones. In: Proceedings of the 4th International
Conference on Communication Systems and Networks (COMSNETS 2012), Banga-
lore, India, pp. 1–9 (January 2012)

3. Mann, C., Starostin, A.: A framework for static detection of privacy leaks in an-
droid applications. In: Proceedings of the 27th Annual ACM Symposium on Applied
Computing (SAC 2012), pp. 1457–1462 (March 2012)

4. Micinski, K., Phelps, P., Foster, J.S.: An Empirical Study of Location Truncation
on Android. In: Proceedings of the 2013 Mobile Security Technologies Conference
(MoST 2013), San Francisco, CA, pp. 1–10 (May 2013)

5. Shekhar, S., Dietz, M., Wallach, D.: Adsplit: Separating smartphone advertis-
ing from applications. In: Proceedings of the 20th USENIX Security Symposium
(USENIX Security 2012), Bellevue, USA, pp. 1–15 (August 2012)

6. Zhao, Z., Osono, F.: TrustDroid: Preventing the use of Smartphones for information
leaking in corporate networks through the use of static analysis taint tracking.
In: Proceedings of the 7th International Conference on Malicious and Unwanted
Software (MALWARE 2012), Puerto Rico, USA, pp. 135–143 (October 2012)

7. Moonsamy, V., Batten, L., Shore, M.: Can Smartphone Users Turn Off Track-
ing Service Settings? In: Proceedings of the 11th International Conference on Ad-
vances in Mobile Computing & Multimedia (MoMM 2013), Vienna, Austria, pp. 1–9
(December 2013)



W. Susilo and Y. Mu (Eds.): ACISP 2014, LNCS 8544, pp. 438–445, 2014. 
© Springer International Publishing Switzerland 2014 

Running Multiple Androids on One ARM Platform 

Zhijiao Zhang, Lei Zhang, Yu Chen, and Yuanchun Shi 

Department of Computer Science and Technology, Tsinghua University, Beijing, China 
{acer.zhang,sosilent.lzh}@gmail.com,  

{yuchen,shiyc}@tsinghua.edu.cn 

Abstract. Smartphones are widely used nowadays. Many users want to separate 
work and personal use of smartphones for security and privacy consideration, 
but it is very inconvenient to carry multiple smartphones. Multi-boot and virtua-
lization are two existing techniques used to solve this problem. In this paper, we 
present a prototype on which multiple Android instances can time-share one 
ARM platform by using suspend and resume mechanism. We describe the de-
sign and implementation of our prototype and evaluate its performance. The 
performance result shows that our implementation imposes negligible time 
overhead, and the switching speed is much faster than the multi-boot approach. 
We also avoid a huge number of modified code lines, considerable memory oc-
cupation and significant performance penalty of the virtualization solution. 

Keywords: Android, Mobile Device, Security and Privacy, OS Switching. 

1 Introduction 

Nowadays, smart mobile devices such as smartphones and tablets are widely used, 
and mobile users can download more than 700,000 different applications in various 
online APP stores [1]. Unfortunately, the open environment of mobile device make 
mobile users be vulnerable to attacks launched by malicious programs. For this rea-
son, some enterprises and government agencies enforce their employees to use a 
locked OS with preinstalled applications, and it cannot be used for personal purpose. 
Besides carrying two or more mobile devices to meet the demand for both work use 
and personal use, an effective way to resolve this problem is to provide multiple OS 
instances on one device for the mobile user. Virtualization and OS switching are two 
main approaches to accomplish this task. 

Virtualization can offer multiple virtual machines on one physical machine. Gener-
ally, a program called hypervisor controls all resources of the physical machine (CPU, 
memory, disk, bandwidth, etc.) and allocates them among virtual machines. Each 
virtual machine runs a separate guest OS instance, and they are well isolated; moreo-
ver, because the number of virtual machines as well as resources for each virtual ma-
chine can be manually profiled, virtualization technology provides a great deal of 
flexibility and scalability. However, for mobile users, we must consider the available 
hardware platform in the first place. In smartphone market, the proportion of ARM 
(Advanced RISC Machines) architecture CPUs is about 90% [2]. Unfortunately, 
ARM CPUs are not virtualizable, thus paravirtualization technique is used in each 



 Running Multiple Androids on One ARM Platform 439 

case [3, 4, 5, 12, 13, 14], which requires not only a considerable hypervisor, but a 
great quantity of modifications to source code of the OS kernel and device driver [5, 
6], thus the virtualization layer itself may pose a security risk to the mobile device 
[11]. Another drawback of virtualization is the intolerable performance degradation. 
Experiment results show that the average latency of common OS services in paravir-
tualized Linux running on a virtual machine is twice the value of which in native Li-
nux running on bare hardware [5]. 

OS switching [9] is derived from Multi-boot [10]. In brief, Multi-boot installs sev-
eral different OS instances in different disk/flash partitions. A boot loader program 
runs first when a machine starts up. It requests the user to choose a booting OS and 
then loads and transfers control to the OS kernel, in turn the kernel initializes the en-
tire system [7]. When the user wants to switch among different OSes, he must exit 
from the current OS and reboot the machine. Comparing with multi-boot, OS switch-
ing not only installs several OS instances on the same machine, but saves the state of 
the running OS instance. It means that when switching between OS instances, the 
necessary states of the machine (e.g., CPU, memory, I/O devices) are saved by the 
current running OS. Then this OS instance suspends and passes control to the incom-
ing OS instance. Next time the user switches back to the former OS instance, all the 
states saved for it will be resumed, so it can run immediately without a reboot. 

The main difference between virtualization and OS switching is that in OS switch-
ing, at any time only one OS instance is permitted to run actively, so it has less flex-
ibility. However, the usage model of mobile devices is that at all times only one  
application can occupy the touch screen and interact with the user [8], so we can 
make the foreground OS instance as the active OS instance, and let other OS instances 
wait until the user activates one of them. 

Although suspend/resume is not a new technique, as far as we are concerned, this 
paper is the first to introduce how to implement multiple Androids on one mobile 
device by this means. The remainder of this paper is structured as follows: Section 2 
introduces suspend and resume mechanism of Linux and Android. Section 3 presents 
design and implementation. Section 4 demonstrates evaluation results. Finally, we 
summarize this paper with a conclusion in Section 5. 

2 Suspend and Resume Mechanism 

2.1 Linux Suspend and Resume Mechanism 

As a modern operating system, Linux supports suspend and resume mechanism. The 
main purpose of suspend is to save power. Linux kernel has three suspend states: 
Standby, Suspend-to-RAM, and Suspend-to-Disk (hibernation) [16]. Standby has the 
minimal wakeup latency, but it does not save much power, nor does it save system 
and device states before machine sleeps. Hibernation has minimum power consump-
tion, but it needs a relatively long time to wake-up [18]. Generally, Suspend-to-RAM 
state has the same time latency as Standby state, and supports saving system states. In 
this paper, the term suspend refers to Suspend-to-RAM state. 

 



440 Z. Zhang et al. 

Suspend course can be roughly divided into 3 major steps: Firstly, freezing all ker-
nel tasks and user space processes. In this step, OS kernel must save the context of 
each process, and free unnecessary memory. Secondly, calling all drivers’ callback 
functions. These functions will save some certain information, stop services, and 
power off the related devices. Finally, saving all registers’ contents to RAM and sus-
pending the CPU. Obviously, this part of RAM will be powered on from beginning to 
end. After these steps, the OS enters in the wait-for-interrupt state. 

Resume course is the reverse of suspend course. It is initialed by some pre-defined 
interrupt or event, and the entire system will return to the state it was before the sus-
pend course started. Figure 1 shows an overview of suspend/resume course of Linux. 

 

Fig. 1. Overview of Linux Suspend and Resume Course 

Though the original purpose of suspend is to pause the entire system and save 
power, in theory, the state of an OS instance can be detached from the state of the 
hardware. That means, when an OS instance suspends, the hardware platform can run 
another OS instance. 

2.2 Android Wakelocks 

Android is running on top of Linux kernel which is modified from the standard ver-
sion. Android uses wakelocks to perform power management. Both kernel tasks and 
user processes can apply for and hold wakelocks. Skipping wakelocks before sus-
pending will lead devices to an uncertain state, so before the OS suspends, it must 
wait until all wakelocks are released. 

Running

1. Freezing all tasks and processes.

2. Calling drivers’ callback functions.

3. Saving registers’ content to RAM.

Waiting for interrupt

Suspending

Running

Start

Interrupt

1. Restoring registers.

2. Resuming devices.

3. Waking up tasks and processes.

Resuming



 Running Multiple Androids on One ARM Platform 441 

3 Design and Implementation 

3.1 Design Principle 

We must comply with some design principles to meet mobile users’ requirements: 

1. Security and privacy: We must ensure all OS instances are isolated from each oth-
er. That is, any application running on one OS instance cannot access or damage 
data of other instances. We also need to ensure when an OS instance crashes, other 
instances can run normally. 

2. Small additional overhead: As the main shortage of the mobile device is the limited 
hardware resources, our implementation cannot add large overhead, and at the 
same time the response time of the system must be almost unaffected. 

3. Software compatibility: The user’s applications can run on our platform without 
any modification; moreover, all applications can read or write data as normal. 

4. Fast switch: Our implementation must provide acceptable switching time for the 
impatient mobile user. 

3.2 Implementation 

Our implementation is based on an OMAP4460 Pandaboard ES platform (1.2 GHz 
Dual-core Cortex-A9 CPU, 1 GB RAM, PowerVR SGX540 GPU, DVI-D or HDMI 
display), running two Linaro Android 12.06 instances (The Android version is 4.0.4). 
The Linux kernel version is 3.4.0, and we choose u-boot 2012.04 as the boot loader 
program. We use a 32GB SD card to store OS kernel images, Android file systems 
and all application files. 

In the first place, we modified u-boot, letting it load two kernel images into differ-
ent RAM blocks which cannot overlap each other. Then we reserved a little of RAM 
(about 4K), and split the remained memory into two separate parts, each part is about 
500MB, which is enough to host kernel and userspace for Android 4.0 [17]. Though 
the memory used for one OS instance can be used for the other, we let the two OS 
instances use different memory areas. We have two reasons: One is that frequent oc-
currence of page faults may lead to a considerable passive impact on the OS’s running 
speed. The other is for security. Because an OS instance can only access the memory 
area exclusively allocated for it, neither the running OS instance nor the suspending 
OS instance knows anything about each other. 

Afterwards, we changed the suspend process of both OS instances. When switch-
ing occurs, the outgoing OS instance will enter the wait-for-interrupt state after the 
normal steps of suspend course. Normally core0 will be in a low-power state and wait 
for an interrupt, while other cores will be powered off. We changed the suspend route, 
lead core0 execute the incoming OS instance’s instructions, and there are two situa-
tions: If the incoming OS instance has not been started up, the outgoing OS instance 
will jump to the boot loader program (u-boot), and u-boot will boot up the incoming 
OS instance. In other cases, the incoming OS instance will have been in suspend state, 
and core0 will perform its resume course (see Figure 2). 

 



442 Z. Zhang et al. 

In normal path of the suspend course, it is OS saves context information from reg-
isters to SAR (Suspend and Resume) RAM before the CPU is powered off and  
registers are invalid. This part of RAM will not be powered off. Then in resume 
course, OS restores registers from SAR RAM. In our implementation, saving context 
information for the outgoing OS instance will destroy SAR RAM content of the in-
coming OS instance, so we need copy SAR RAM content (about 4K) to another place 
before this step. This is why we reserved a part of RAM before. 

 

Fig. 2. Running 2 OS instances with Suspend/Resume Mechanism 

Though these steps sound very simple, we must consider some problems: 

─ Firstly, we must think about the influence of MMU. Because each OS kernel uses 
virtual address and has its own page table, before we jump from one OS instance to 
the other, we must turn off MMU. Since turning off MMU is also a set of instruc-
tions, to ensure the CPU to execute the same section of code before and after turn-
ing off MMU, we must create a page table by which the CPU can use physical  
address to access the right location in RAM. This can be done after the outgoing 
OS instance has been suspended. Similarly, before the incoming OS instance is re-
sumed, we will turn on MMU and load the new page table address. 

─ Secondly, influence of multi-core will also be considered. When the CPU suspends 
the entire system, only one core (it ought to be the core0) will execute relative in-
structions. It must wait until other cores complete their work, and ensure memory 
accessing of other cores has been finished. Similarly, when the CPU resumes the 
system, core0 needs to prepare the context before waking up other cores. 

─ Thirdly, by default the CPU prefetches a number of instructions before it actually 
executes them, and before the ARM CPU reaches a branch, it will prefetch instruc-
tions either at the branch target or following the branch. This is known as branch 
prediction [15, 19]. In normal circumstance, branch prediction can reduce CPU  
circles and enhance execution performance. When OS switching occurs, after we 
disable the MMU, the CPU should access physical address, but it prefetches in-
structions in logical address, and the number of prefetched instructions is various 
dynamically, so we cannot know how many instructions to be discarded. There-
fore, we ought to invalidate branch prediction before turning on or off MMU. 

Running

Suspending

Start Resuming

Outgoing OS Incoming OS

Running

Resuming

Running

Suspending



 Running Multiple Androids on One ARM Platform 443 

4 Evaluation 

In this section we present a measurement evaluation. All experiments were performed 
on the OMAP4460 Pandaboard ES platform (see Section 3). We ran the original An-
droid OS on the platform at first. Then we ran the two modified Android instances 
(we named them OS1 and OS2) simultaneously on the same platform. 

We tested suspend and resume time cost of each OS instance, and compare the re-
sults to see the influence of our implementation. Figure 3 and Figure 4 show the re-
sult. In each case, we tested for 10 times. 

 

Fig. 3. Suspend time cost of each OS instance 

 

Fig. 4. Resume time cost of each OS instance 

Figure 3 shows that the suspend time in each case varies from 6 seconds to 12 
seconds. But in Figure 4, the resume time is almost the same. This is likely due to the 
influence of Android wakelock. If some task holds a wakelock and doesn’t release it 
in time, the OS will wait before it suspends.  

Table 1. shows the average suspend and resume time of each OS instance. Note 
that we need to choose a booting OS instance manually when running multi-OS in-
stances, so we only calculated average reboot time when running single OS instance. 

Table 1. Compare of suspend and resume time 

OS instance 
Average 

Suspend time (s) 
Average 

Resume time (s) 
Average 

Reboot time (s) 
Original OS 9.00 0.6919 21.64 

Modified OS1 9.34 0.7246  
Modified OS2 9.69 0.7084  

 

     
                  (a) Original OS                     (b) Modified OS1                      (c) Modified OS2 

0.00
2.00
4.00
6.00
8.00

10.00
12.00
14.00

0.00
2.00
4.00
6.00
8.00

10.00
12.00

    
                 (a) Original OS                (b) Modified OS1               (c) Modified OS2 

0.00

0.20

0.40

0.60

0.80

0.00
0.20
0.40
0.60
0.80
1.00

0.00
0.20
0.40
0.60
0.80
1.00



444 Z. Zhang et al. 

From Table 1 we can see that the suspend time cost of the modified OS instances is 
a little higher than that of the original standard OS instance. It is mainly because we 
copy the 4k SAR RAM contents to reserved RAM when switching from one OS in-
stance to the other. However, the additional time cost is unnoticeable for the user; 
besides, there is no obvious difference between resume time cost of the modified OS 
instances and the standard OS instance. We can also see that the total time cost of 
suspend and resume course is about 10 seconds. It’s an acceptable value comparing to 
more than 20 seconds which is needed to reboot the entire system. 

To see if our implementation will produce performance degradation, we run some 
benchmarks in each OS instance. There is no other additional workload in each test. 
The evaluation result is shown in Figure 5. 

 

Fig. 5. Normalized benchmark result 

The first four benchmarks are scientific and numerical computing benchmarks used 
to measure integer and floating point performance of the CPU. The result shows that 
the difference of CPU performance in all cases is less than 3.5%, which proves our 
modification on each OS instance does not add any extra performance overhead. The 
2D Draw Text and 3D OpenGL Blending benchmark result shows that time over-
heads in all cases are almost the same, which indicates that the modified OS instances 
can also achieve full graphics acceleration performance. 

5 Conclusion 

In this paper we propose an approach which supports multiple Androids time-share 
the same mobile device by using suspend and resume mechanism. Our approach 
avoids huge performance degradation and considerable source code modification of 
the virtualization technology, overcomes inflexibility of the multi-boot solution, pro-
vides native performance and whole hardware access, and fulfills the security request 
of the mobile user. We believe multiple OS running on one mobile device is very 
useful in many scenarios, and our implementation is a good choice for mobile users. 

Acknowledgements. This work is supported in part by the Natural Science Founda-
tion of China under Grant No. 61170050, National Science and Technology Major 
Project of China（2012ZX01039-004）. The authors would also like to thank ano-
nymous reviewers who have helped us to improve the quality of this paper. 

0.00
0.20
0.40
0.60
0.80
1.00
1.20

Standard OS Modified OS1 Modified OS2



 Running Multiple Androids on One ARM Platform 445 

References 

1. Android (operating system),  
http://en.wikipedia.org/wiki/Android_(operating_system) 

2. http://en.wikipedia.org/wiki/ARM_architecture 
3. Dall, C., Nieh, J.: KVM for ARM. In: Proceedings of the Ottawa Linux Symposium,  

Ottawa, Canada (2010) 
4. Barr, K., Bungale, P., Deasy, S., Gyuris, V., Hung, P., Newell, C., Tuch, H., Zoppis, B.: 

The VMware Mobile Virtualization Platform: Is That a Hypervisor in Your Pocket? ACM 
SIGOPS Operating Systems Review 44, 124–135 (2010) 

5. Hwang, J., Suh, S., Heo, S., Park, C., Ryu, J., Park, S., Kim, C.: Xen on ARM: System 
Virtualization using Xen Hypervisor for ARM-based Secure Mobile Phones. In: Proceed-
ings of the 5th Consumer Communications and Newtork Conference, Las Vegas, NV 
(January 2008) 

6. Xen Hypervisor Project, http://www.xen.org/products/xenhyp.html 
7. GNU Grub Project, http://www.gnu.org/software/grub/. 
8. Andrus, J., Dall, C., Van’t Hof, A., Laadan, O., Nieh, J.: Cells: A Virtual Mobile Smart-

phone Architecture. In: Proceedings of the 23rd ACM Symposium on Operating Systems 
Principles (SOSP) (2011) 

9. Sun, J., Zhou, D., Longerbeam, S.: Supporting Multiple OSes with OS Switching.  
In: USENIX Annual Technical Conference, pp. 357–362 (2007) 

10. Multi-boot specification,  
http://www.gnu.org/software/grub/manual/multiboot/ 
multiboot.html 

11. Keller, E., Szefer, J., Rexford, J., Lee, R.B.: NoHype: Virtualized cloud infrastructure 
without the virtualization. In: Proceedings of the 37th Annual International Symposium on 
Computer Architecture, Saint-Malo, France, June 19-23 (2010) 

12. Open Kernel Labs. OK: Android,  
http://www.ok-labs.com/products/ok-android 

13. Iqbal, A., Sadeque, N., Mutia, R.I.: An Overview of Microkernel, Hypervisor and Micro-
visor VirtualizationApproaches for Embedded Systems. Technical Report, Lund Universi-
ty, Lund (2009) 

14. Bylund, M.: Evaluation of OKL4. Bachelor Thesis in Computer Science, Mlardalens Uni-
versity (2009) 

15. OMAP4460 Multimedia Device Silicon Revision 1.x. Technical Reference Manual. Ver-
sion Q. Texas Instruments (2012), http://www.ti.com/product/omap4460 

16. Kaminaga, H.: Improving Linux Startup Time Using Software Resume (and other tech-
niques). In: Linux Symposium (2006) 

17. Android 4.0 Compatibility Definition Document,  
http://source.android.com/compatibility/4.0/ 
android-4.0-cdd.pdf 

18. Brown, A.L., Wysocki, R.J.: Suspend-to-RAM in Linux. In: Linux Symposium (2008) 
19. ARM Architecture Reference Manual,  

http://infocenter.arm.com/help/index.jsp?topic=/ 
com.arm.doc.subset.architecture.reference/index.html 



CoChecker: Detecting Capability and Sensitive

Data Leaks from Component Chains in Android

Xingmin Cui1, Da Yu2, Patrick Chan1,
Lucas C.K. Hui1, S.M. Yiu1,α, and Sihan Qing2

1 Department of Computer Science, The University of Hong Kong,
Pokfulam, Hong Kong

{xmcui,pfchan,hui,smyiu}@cs.hku.hk
2 School of Software and Microelectronics, Peking University, Beijing, China

dyu@pku.edu.cn, qsihan@ss.pku.edu.cn

Abstract. Studies show that malicious applications can obtain sensitive
data from and perform protected operations in a mobile phone using an
authorised yet vulnerable application as a deputy (referred to as privi-
lege escalation attack). Thus it is desirable to have a checker that can
help developers check whether their applications are vulnerable to these
attacks. In this paper, we introduce our tool, CoChecker, to identify
the leak paths (chains of components) that would lead to privilege es-
calation attacks using static taint analysis. We propose to build a call
graph to model the execution of multiple entry points in a component
and eliminate the false negatives due to the Android‘s event-driven pro-
gramming paradigm. We further carry out inter-component communica-
tion through intent-tracing and formulate the call graph of the analyzed
app. The evaluation of CoChecker on the state-of-the-art test suit Droid-
Bench and randomly downloaded apps shows that it is both efficient and
effective.

Keywords: Android security, Privilege escalation attack, Static taint
analysis.

1 Introduction

The most recent data from IDC shows that in Q4 of 2013 Android made up
78.1% of devices shipped[1]. With Android devices being prevalent, their security
becomes a major concern. Android relies on the use of sandbox and permission
mechanism to control data access and application execution.

In spite of all kinds of security mechanisms, recent research[2] discovered priv-
ilege escalation attack (or confused deputy attack) in Android applications. The
idea is that an application with less permissions can gain access to the compo-
nents of a more privileged application. To prevent this attack, an application
must enforce additional checks to protect the permissions it has been granted.
However, since most Android application developers are not security experts,

� Corresponding author.

W. Susilo and Y. Mu (Eds.): ACISP 2014, LNCS 8544, pp. 446–453, 2014.
c© Springer International Publishing Switzerland 2014



Detecting Capability and Sensitive Data Leaks in Android Apps 447

there is a need to have a checker that can help them check whether their appli-
cations are vulnerable to such kind of attack.

Both dynamic and static analysis have been used to detect privilege leak paths.
In dynamic analysis, sink methods are monitored by some hooked functions to
track the flow of sensitive data in third-party apps[3] or regulate communica-
tions between applications[4][5]. However, these solutions either have limited
usage scenario or large overhead to use practically. Static analysis checks the
vulnerabilities in Android apps before installation. Examples are ScanDroid[6],
DroidChecker[7], CHEX[8], Flowdroid[9], Epicc[10]. But these tools either work
on the user side or on the market side. Besides, these tools either do not perform
inter-component communication analysis or fail to consider Android‘s event-
driven programming paradigm.

We use static taint analysis to help developers check whether their developed
applications are safe. In previous studies, there does not exist a systematic study
on classifying leak paths. In this paper, we propose to classify leak paths into
two types based on the nature of Android API calls: capability leak paths and
sensitive data leak paths. Capability leak paths start from an entry point of the
vulnerable app and end at an action call which is protected by permissions. By
utilizing this vulnerable app, an unauthorised app can also perform protected
actions. Sensitive data leak paths start from retrieving sensitive data by invoking
a permission protected data call and end at a sink through which the retrieved
data can be leaked to the unauthorised app.

We propose a tool, CoChecker, to automatically identify capability leaks and
sensitive data leaks in Android apps. Both types of leak paths can cross multi-
ple components, therefore inter-component communication analysis is essential.
CoChecker constructs invoking chains to connect different components in the
analyzed app. We propose to construct a call graph to model the execution
of multiple entry points in an Android component and get a complete set of
tainted variables. We further combine the call graph of each component to for-
mulate the call graph of the analyzed app using the information in the invoking
chains. This models the inter-component interactions and enables us to achieve
a higher precision of analysis.

2 Analysis Challenges

2.1 Challenge One: Inter-Component Communication Analysis

Analyzing the inter-component communication in an Android app is prerequisite
to find all potential leak paths. On one hand, the source and sink methods of
a leak path can reside in different components. On the other hand, without
parsing the sender and receiver components of an intent, we cannot get the set
of components that can be accessed and exploited by external malicious apps.

CoChecker performs inter-component analysis and constructs invoking chains
for the analyzed app. An invoking chain starts from an entry point of the app
(exported components that require no permission from other component to in-
teract with them) and is extended to include all components that are reachable



448 X. Cui et al.

from this entry point using intents. CoChecker only raises an alarm when source
and sink methods reside in these components to make sure the leak paths are
exploitable. At the beginning CoChecker builds an invoking chain for each en-
try point of the app and starts the analysis from these entry points. When
CoChecker encounters an intent, it will parse the parameters to find the target
receiver components and add them to the corresponding invoking chain.

2.2 Challenge Two: Entry Points and Their Order of Execution

Android applications are composed of components whose lifecycle is managed by
the Android framework in an event-driven manner. Besides, Android provides
Event Listener interfaces for developers to implement and override the callback
methods in these interfaces in react to users’ UI interaction or system state
change (eg. locationUpdate). Therefore unlike traditional Java programs which
use a single main method as the entry point, Android components can have
many entry points, including Android lifecycle methods and user-defined event
handlers. These methods are invoked by the Android framework at runtime and
cannot pre-determine their order of execution.

CoChecker adopts static taint analysis to detect leak paths. In taint analysis,
we need to get a complete set of tainted variables and check whether these
variables can reach the sink methods. If any tainted variables can reach a sink
method, an alarm will be raised to indicate a leak. In an Android component, the
taint status of the globally accessible variables can be different given different
execution sequences of multiple entry points. Therefore, we need to consider
the taint status under all possible execution sequences in order to get a safe
approximation of the tainted variable set. We propose to construct a call graph
for each component to emulate the execution of multiple entry points and get a
complete tainted variable list. Details will be given in the system design section.

3 System Design

We provide a tool, CoChecker, to detect capabilities and sensitive data leaks in
Android applications. CoChecker aims to help Android application developers
better regulate their apps to avoid privilege escalation attacks, therefore we
choose the source code as our analysis target.

CoChecker will perform the following procedures: (1)Parse the Manifest file
and layout XML file to extract the list of components contained in the app, the
entry points to the app, intent-filter list and callbacks registered in the layout file.
(2)Construct the abstract syntax tree(AST) of each component and build the
control flow graph (CFG) of the methods in each component. In the CFG of each
method, nodes represent the statements in this method and edges represent the
control flow. (3)By traversing the AST of each component, CoChecker discovers
the intents sent by them and builds up the invoking chain. (4)Distinguish the
entry points of each component, including the lifecycle methods and user-defined
event handlers. (5)Construct the call graph of each component. (6)Construct the
call graph of whole app. (7)Traverse the call graph of the app to detect leak paths.



Detecting Capability and Sensitive Data Leaks in Android Apps 449

Steps (1) and (2) are trivial. Step (3) has been mentioned in Section 2. Next
we will introduce steps (4)-(7) in detail.

3.1 Construction of the Call Graph

The Call Graph of Each Component. CoChecker builds a call graph for each
component to model the execution of multiple entry points in this component.
The nodes denote the entry points of this component and the edges indicate
their order of execution. The call graph is constructed incrementally with the
identification of every entry point.

For each component declared in the Manifest file, CoChecker firstly extracts
its Abstract Syntax Tree(AST) and constructs the Control Flow Graph (CFG)
of each method in it. After that CoChecker traverses the AST of each component
to distinguish the lifecycle methods and user-defined event handlers by matching
with an input file. This file contains a list of lifecycle methods and Event Lis-
tener interfaces (eg. LocationListener, onClickListener, etc) extracted from the
Android documentation. When a lifecycle method is found,CoChecker inserts
a corresponding node to the call graph according to the pre-defined execution
order of lifecycle methods in the Android documentation. CoChecker retrieves
a list of user-defined event handlers by looking for the corresponding overrid-
den callback methods declared in the classes which implement the input Event
Listener interfaces. These registered callback methods will be invoked by the
Android framework when there is UI interaction or system state change. Since
their order of execution can be arbitrary, we assume that they can be executed
in any order and represent them in parallel between a pair of ParBegin and
parEnd nodes in the call graph when the component is running.

The Call Graph of the Analyzed App. After constructing the call graph of
each component, the call graph of the whole app can be easily derived. A com-
ponent usually starts another component using component interaction methods
such as startActivity. During the construction of the invoking chain, CoChecker
records the location of the interaction methods. By adding an edge pointing from
this interaction method to the Begin node of the call graph of the invoked com-
ponent, CoChecker simulates what happens during execution. The call graph of
the analyzed app is constructed by traversing all invoking chains and linking the
call graphs of related components.

3.2 Taint Propagation and Leak Paths Detection

After constructing the call graph of the checked application, CoChecker traverses
the CFG of each method in accordance with their order in the call graph to
check whether data can flow from source methods to sink methods. Next we
will introduce the taint propagation principle and leak path detection policy in
detail.



450 X. Cui et al.

The taint information at a program point p is a tuple {GTV,LTV,CTV,
CSink} consisiting of:

GTV :the set of current Tainted Global Variables. This list is effective during
the checking of all methods of the current component and is passed on from one
method to another. CoChecker raises an alarm and reports a leak path if any
variables in this list reach a sink.

LTV : the set of current Tainted Local Variables. It is only effective within the
scope of the current method and CoChecker also raises an alarm and reports a
leak path if any variables in this list reach a sink.

CTV : the set of Conditional Tainted Variables. It stores the list of variables
that may become tainted because of the interference of other methods. Here
we consider two situations: if a variable is assigned to the value of a global
variable or a parameter, it is put into the CTV list because this global variable
or parameter may become tainted in other methods and in turn makes this
variable tainted. This list is backfilled after collecting the taint status of global
variables in methods that may happen before the current method.

CSink: the set of Conditional Sinks. It stores the list of sink methods whose
parameters are in the CTV list. If any parameters actually get tainted after
backfilling the CTV list, CoChecker will raise an alarm and report the leak
path.

The effect of a method M on the tuple is defined by a transform function F.

F{GTV,LTV,CTV,CSink}= {GTV ∈, LTV ∈, CTV ∈, CSink∈} (1)

where:
GTV ∈ = GTV ∪ genGM − killGM , CTV ∈ = genCM ,

LTV ∈ = genLM − killLM , CSink∈ = genCSinkM

(2)

Here genGM and killGM represent the set of generated and killed global vari-
ables in method M while genLM and killLM represent the set of generated and
killed local variables. We differentiate local variables and global variables be-
cause one method can only influence the taint status of the global variables in
another method. genLM and killLM are only effective within the scope of M.

We traverse every node in the CFG of method M to calculate the gen and kill
set. In the taint propagation process, we consider assignment statements in the
form “v = expr” or variable declaration statements in the form “type v = expr”.
If expr contains source methods or tainted variables, v is added to the genGTV

or genLTV set depending on it is a global or local variable. Otherwise, if expr
contains global variables or parameters whose taint status is not determined
at the moment, v is added to the genCTV set. Otherwise, v is added to the
kill set. We consider an object to be tainted if any of its member attribute is
tainted. A set of data is tainted if any of the contained data is tainted. We
also consider some pre-set propagation functions such as Bundle.putString and
Intent.putExtra. Whether the caller instance should be put into the gen set or
kill set depends on the taint status of its parameters.



Detecting Capability and Sensitive Data Leaks in Android Apps 451

For the nodes between ParBegin and ParEnd, the situation is different.
Without loss of generality, we assume that there are n user-defined event handlers
between a pair of ParBegin and ParEnd nodes. For event handler Mi (i =
1, ..., n), all other event handlers may happen before it. Therefore for this parallel
part we adopt a two-round checking policy. We use GTVMir and GTVMir

∈ to
denote the incoming and outgoing set of global tainted variables of method Mi

in the r-th round (r = 1, 2). Therefore GTVMi1 is the GTV list at the exit point
of the preceding method. After traversing the CFG of Mi in the first round, we
get the set

GTVMi1

∈ = GTVMi1 ∪ genGMi
− killGMi

(3)

In order to take into account the set of variables that may become tainted if
other event handlers execute first, we introduce a set I, which represents the
taint status of global variables after the execution of other event handlers. So:

Ii =
⋃

j≤[1,n],j ∗=i

GTV ∈
Mj1

(4)

In the second round, at the entry of Mi, GTVMi2 = GTVMi1 ∪ Ii. This way
we have considered the maxim set of tainted variables before the execution of
Mi and reduced the false negatives to the minimum.

During the second round traversal, CoChecker checks the CTV list to backfill
the potential tainted variables. Besides, it checks the CSink list to see whether
the potential tainted parameters can actually get tainted or not.

For the nodes that have two or more precedent nodes, a similar strategy
is adopted. CoChecker backfills the CTV and CSink lists after checking all
precedent nodes. In this way, CoChecker ensures the completeness of the tainted
variable list and the accuracy of the checking.

4 Implementation and Evaluation

4.1 Implementation

The entire system of CoChecker consists of around 5,000 lines of JAVA code.
We designed and implemented our own static taint analysis tool instead of using
Soot or WALA because we want to combine the inter-component analysis and
build a customised taint analysis tool. The system runs under Linux Ubuntu
13.04 on a computer with Intel Core I5 3.4GHz CPU and 4GB RAM.

4.2 Evaluation

Evaluation on DroidBench. We evaluated our system using 21 test cases
in the the state-of-the-art Android analysis benchmark suite DroidBench[11].
These test cases covered Android-specific challenges including callbacks, inter-
app communication and lifecycle. Among these 21 test cases, CoChecker found
16 out of 19 leak paths.



452 X. Cui et al.

10 potential leaks exist in the 12 test cases related to callbacks. CoChecker
identified 8 of them with no false positive. The 2 false negatives reside in test
case MethodOverried1 and RegisterGlobal1. CoChecker fails to find the leak in
MethodOverride1 because it does not consider method overrides except in pre-
extracted interfaces. In RegisterGlobal1, both source and sink are in a subclass
of Application which are invoked when the application is initially launched.
CoChecker fails to detect this leak because it does not parse the android:name
attribute of the Application tag to find out whether a subclass of Application
is defined to customize the Application launch process. CoChecker can be easily
adjusted to enclose this situation. CoChecker discovered all of the 3 leak paths in
test cases related to inter-app communication. 5 out of 6 leak paths were found
by CoChecker among the cases related to Android lifecycle. The false negative
is also because CoChecker fails to consider class inheritance.

Evaluation on Downloaded Apps. Apart from the evaluation on Droid-
Bench, we also used CoChecker to scan 1123 Android applications downloaded
from Android Freeware[12]. The downloaded apk files are first decompiled to
JAVA code using dex2jar. Then the configuration files and source files are input
into CoChecker. CoChecker finished checking all applications in about an hour.
Our tool is efficient because it did not use the Soot or WALA framework which
need to convert the input to their intermediate representation. CoChecker raised
117 alarms for potential leak paths among which 84 are capability leak paths
and 33 are sensitive data leak paths. For the same test set, DroidChecker[7] only
raised 23 alarms among which 8 are true alarms.

We manually analyzed these alarms to search for leak paths. We regard an
alarm as a true alarm only when an exploitable leak path is found in the appli-
cation. For the 84 type 1 alarms, 77 of them are true alarms. For the 33 type
2 alarms, 30 of them are true alarms. We manually analyzed their source files
that raise true alarms and confirmed the leak paths identified by CoChecker1.
For the 10 false alarms, 6 of them are because CoChecker fails to deal with ob-
ject sensitivity and 4 are caused by nonexistent path that CoChecker mistakenly
found. This is resulted from the reverse engineering process.

5 Conclusions and Future Work

In this paper, we aim at checking whether an Android application is vulnerable
to privilege escalation attacks by detecting two types of leak paths: capability
leak paths and sensitive data leak paths. We rely on static taint analysis to
detect these leak paths. We designed and implemented a checker, CoChecker, to
automatically detect the leak paths in Android apps. We evaluated our system
on the state-of-the-art bench suite DroidBench and 1123 randomly downloaded
apps. The result shows CoChecker is effective and efficient.

1 Please refer to our full paper for the sample attacks exploiting the detected leak
paths.



Detecting Capability and Sensitive Data Leaks in Android Apps 453

For future research, we aim to improve our system to achieve a higher precision
by enclosing more properties such as object-sensitivity, point-to analysis, etc.
Besides, currently we only checked privilege escalation vulnerabilities caused by
Activity, Service and BroadcastReceiver. Operations on Content Providers may
also cause privilege escalation problems which need our further exploration.

Acknowlegement. This research is in part supported by the National Natural
Science Foundation of China under Grant No. 61170282 and the NSFC/RGC
Joint Research Grant (N HKU 729/13).

References

1. Android and iOS Continue to Dominate the Worldwide Smartphone Market
with Android Shipments Just Shy of 800 Million in 2013, According to IDC,
http://www.idc.com/getdoc.jsp?containerId=prUS24676414

2. Davi, L., Dmitrienko, A., Sadeghi, A.-R., Winandy, M.: Privilege escalation attacks
on android. In: Burmester, M., Tsudik, G., Magliveras, S., Ilić, I. (eds.) ISC 2010.
LNCS, vol. 6531, pp. 346–360. Springer, Heidelberg (2011)

3. Enck, W., Gilbert, P., Chun, B.-G., Cox, L.P., Jung, J., McDaniel, P., Sheth, A.N.:
TaintDroid: an information-flow tracking system for realtime privacy monitoring
on smartphones. In: Proceedings of the 9th USENIX Conference on Operating
Systems Design and Implementation (2010)

4. Felt, A.P., Wang, H.J., Moshchuk, A., Hanna, S., Chin, E.: Permission Re-
delegation: Attacks and Defenses. In: Proceedings of the 20th USENIX Conference
on Security, SEC 2011, San Francisco, CA (2011)

5. Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Sadeghi, A.R., Shastry, B.: To-
wards Taming Privilege-Escalation Attacks on Android. In: 19th Annual Network
and Distributed System Security Symposium (NDSS) (2012)

6. Fuchs, A.P., Chaudhuri, A., Foster, J.S.: SCanDroid: Automated security certifi-
cation of Android applications, Univ. of Maryland (2009) (manuscript),
http://www.cs.umd.edu/~avik/projects/scandroidascaa

7. Chan, P.P., Hui, L.C., Yiu, S.-M.: Droidchecker: analyzing android applications
for capability leak. In: Proceedings of the Fifth ACM Conference on Security and
Privacy in Wireless and Mobile Networks, pp. 125–136 (2012)

8. Felt, A.P., Chin, E., Hanna, S., Song, D., Wagner, D.: Chex: Statically vetting
android apps for component hijacking vulnerabilities. In: Proceedings of the 2012
ACM Conference on Computer and Communications Security, CCS 2012, NY, USA
(2012)

9. Christian, F., Steven, A., Siegfried, R., Eric, B., Alexandre, B., Jacques, K., Yves
le, T., Damien, O., Patrick, M.: Highly Precise Taint Analysis for Android Appli-
cations. Ec spride technical report tud-cs-2013-0113 (2013)

10. Octeau, D., McDaniel, P., Jha, S., Bartel, A., Bodden, E., Klein, J.: Jacques and
Y.Le Traon: Effective inter-component communication mapping in android with
epicc: An essential step towards holistic security analysis. In: Proceedings of the
22nd USENIX Security Symposium (2013)

11. DroidBench, EC SPRIDE,
https://github.com/secure-software-engineering/DroidBench

12. Freeware Lover, Best and Free software for Android mobile platform,
http://www.freewarelovers.com/android

http://www.idc.com/getdoc.jsp?containerId=prUS24676414
http://www.cs.umd.edu/~avik/projects/scandroidascaa
https://github.com/secure-software-engineering/DroidBench
http://www.freewarelovers.com/android


Integral Zero-Correlation Distinguisher for ARX

Block Cipher, with Application to SHACAL-2�

Long Wen and Meiqin Wangαα

Key Laboratory of Cryptologic Technology and Information Security,
Ministry of Education, Shandong University, Jinan 250100, China

longwen@mail.sdu.edu.cn, mqwang@sdu.edu.cn

Abstract. At ASIACRYPT’12, Bogdanov et al. revealed the identity of
integral distinguishers and zero-correlation linear approximations where
the mask consists of two parts: one part should take any non-zero value
and the other part should be fixed to zero. For zero-correlation linear ap-
proximations of some ARX block ciphers, one bit of input mask usually
is fixed to one, which do not conform to zero-correlation linear approxi-
mations considered by Bogdanov et al.. Can they also be converted to an
integral distinguisher? In this paper, we show that such zero-correlation
linear approximations can be transformed to an integral distinguisher
too. As an application, we give the attack on SHACAL-2 which is one of
the four selected block ciphers by NESSIE. Namely, a attack on 32-round
SHACAL-2 is reported. As an integral attack, our attack is much bet-
ter than the previous integral attack on 28-round SHACAL-2 in terms of
the number of rounds. In the classical single-key setting, our attack could
break as many rounds as the previous best attack, but with significant
improvements in data complexity and memory complexity.

Keywords: zero-correlation, integral, SHACAL-2, ARX block cipher.

1 Introduction

Integral distinguisher is originally proposed by Knudsen as a dedicated attack
against Square [7], so it is commonly known as Square attack. Afterwards, vari-
ants of integral distinguishers have been proposed, including saturation distin-
guisher [8] and multiset distinguisher [1]. Integral distinguisher uses sets or mul-
tisets of chosen plaintexts where one part is held constant and the other part
varies through all possibilities, and as a result the XOR sum of the corresponding
sets of ciphertexts is zero.

Zero-correlation linear cryptanalysis proposed by Bogdanov and Rijmen in [2]
has its theoretical foundation in the availability of numerous key-independent
unbiased linear approximations with correlation zero for many ciphers. And it

β This work has been partially supported by 973 Program (No. 2013CB834205), NSFC
Project (No. 61133013, 61103237), Program for New Century Excellent Talents in
University of China (NCET-13-0350), as well as Interdisciplinary Research Founda-
tion of Shandong University (No. 2012JC018).

ββ Corresponding author.

W. Susilo and Y. Mu (Eds.): ACISP 2014, LNCS 8544, pp. 454–461, 2014.
c© Springer International Publishing Switzerland 2014



Integral Zero-Correlation Distinguisher for ARX Block Cipher 455

has been developed a lot in [3,4]. At ASIACRYPT’12, Bogdanov et al. revealed
fundamental links of integral distinguishers to zero-correlation linear approxi-
mations [4]. To be specific, consider a zero-correlation distinguisher for an n-bit
block cipher, w.l.o.g suppose the last s-bit of input mask is zero and the last
n− t-bit of the output mask is zero. The zero-correlation distinguisher is equiva-
lent to an integral distinguisher where fixing the first n−s bits in the input leads
to a balanced function when only the first t bits of the output are considered.

However, one bit of input mask of zero-correlation linear approximations for
some ARX block ciphers is usually fixed to one. That is the input mask consists
of three parts: some bits that can take any value, one bit fixed to 1, and the
other bits that are fixed to zero. For example, the zero-correlation linear approx-
imations for TEA, XTEA, HIGHT have such form [3,12]. Apparently, the input
mask for this kind of zero-correlation linear approximations does not conform to
the style in [4]. It is interesting to see if they can be transformed to an integral
distinguisher.

1.1 Our Contributions

Zero-Correlation and Integral Distinguisher for ARX Block Cipher.
We show that in ARX block ciphers zero-correlation distinguisher also imply
an integral distinguisher. More precisely, we proved in Section 3 that zero-
correlation linear approximations a ∈ b over (part of) n-bit ARX block cipher
H ∈ can be converted to an integral distinguisher, where the input mask is con-
sisted of three parts: r bits that can take any value, one bit fixed to 1, and
s = n − r − 1 bits that are fixed to zero, and the output mask is composed of
two parts: t bits that can be any non-zero value and n − t bits fixed to zero.
The derived integral distinguisher uses the set where r input bits are fixed as
constant and traverse all possible values for one input bit (with mask value 1)
and the s input bits (with mask value 0), to compute the XOR sum of t output
bits with non-zero mask value, then the obtained XOR sum is zero.

Table 1. Summary of Single-Key Attacks on SHACAL-2

Attack Type Rounds Data Time Memory Source
Ens. Bytes

Saturation 28 464 · 232CPs 2494.1 245.9 [9]
Imp. Diff 30 744 CPs 2495.1 214.5 [6]
Diff-Linear 32 243.4CPs 2504.2 248.4 [9]

Zero-Integral 32 28CCs 2508.2 210.8 Sect. 4.2

CPs: Chosen Plaintexts, CCs: Chosen Ciphertexts

Integral Zero-Correlation Attack on 32-Round SHACAL-2. SHACAL-2
has received some attention from cryptanalysts in recent years. In the single-key
setting, the impossible differential attack on 30 rounds of SHACAL-2 is given
in [6], the differential-linear attack on 32 rounds of SHACAL-2 along with the
saturation attack on 28 rounds of SHACAL-2 has been proposed in [9].



456 L. Wen and M. Wang

In this paper, we present integral zero-correlation attack on 32 rounds of
SHACAL-2. As an integral attack, our attacks are much better than the previous
saturation attack on 28 rounds of SHACAL-2 in terms of the number of rounds.
We can break as many as rounds as the previous best attacks, namely 32 rounds,
with significantly reduced data complexity and memory complexity, while keep-
ing the time complexity virtually unchanged. The attacks are given in Section 4.
Our improvements upon the state-of-the-art cryptanalysis for SHACAL-2 under
single-key are summarized in Table 1.

2 Preliminaries

2.1 Notation

– ¬: the complement operation
– �: the addition modulo 232 operation
– �: the substraction modulo 232 operation
– ⊕: concatenation of two binary strings
– P,C: 256-bit plaintext and ciphertext, respectively
– A,B,C,D,E, F,G,H : eight 32-bit words, corresponding to eight branches
– P r: 256-bit input of the rth round, P r = Ar⊕Br⊕Cr⊕Dr⊕Er⊕F r⊕Gr⊕Hr

– Kr,W r: r-th round key and round constant, respectively

2.2 Description of SHACAL-2

SHACAL-2 [5] is a 256-bit block cipher introduced by Handschuch and Naccache
and has been selected as one of the four block ciphers by NESSIE. It is composed
of 64 rounds and the round function is based on the compression function of the
hash function SHA-2 [10]. SHACAL-2 supports variable key length up to 512
bits, yet it should not be used with a key shorter than 128 bits.

A B C ED F G

A B C ED F G

H

H

ChMaj 10

W

K

r r r r r r r r

r+1 r+1 r+1 r+1 r+1 r+1 r+1 r+1

r

r

Fig. 1. The r-th round of SHACAL-2

According to the notations in Section 2.1, the 256-bit plaintext P is divided
into eight 32-bit words A0⊕B0⊕C0⊕D0⊕E0⊕F 0⊕G0⊕H0 and the output value of
the 63th round A64⊕B64⊕C64⊕D64⊕E64⊕F 64⊕G64⊕H64 is the ciphertext C. Fig-
ure 1 illustrates the details of the r-th round encryption.

The functions used in the round function are defined as follows, where Si(X)
means the right rotation of 32-bit word X by i-bit position.



Integral Zero-Correlation Distinguisher for ARX Block Cipher 457

Ch(X,Y, Z) = (X&Y )⊇ (¬X&Z)

Maj(X,Y, Z) = (X&Y )⊇ (X&Z)⊇ (Y&Z)
∑

0(X) = S2(X)⊇ S13(X)⊇ S22(X)
∑

1(X) = S6(X)⊇ S11(X)⊇ S25(X)

3 Integral Zero-Correlation Distinguisher for ARX Block
Ciphers

3.1 Decomposition of the Target Cipher

Assume thatH : Fn
2 ∈ F

n
2 is (part of) a cipher. To simplify notation and without

loss of generality, H could be split into two subfunctions H : Fr
2 ×F

s
2 ∈ F

t
2 ×F

u
2

H(x, y) =

(
H1(x, y)
H2(x, y)

)

Furthermore we define function Tβ : Fs
2 ∈ F

t
2 as Tβ(y) = H1(x, y). The function

Tβ is the function H when the first r bits of its input are fixed to λ and only
the first t bits of the output are taken into account. The decomposition for H is
used in [4].

Moreover, for an ARX cipher H ∈, split the inputs into three parts and the
outputs into two parts H ∈ : Fr

2 ×F2 ×F
s
2 ∈ F

t
2 ×F

u
2 .

H ∈(x, y, z) =
(
H ∈

1(x, y, z)
H ∈

2(x, y, z)

)

Function Tβ≤β′ : Fs
2 ∈ F

t
2 is defined as Tβ≤β′(z) = H ∈

1(λ, λ
∈, z). Function Tβ≤β′ is

the function H ∈ when the first r bits and the (r+1)-th bit of its input are fixed
to λ and λ∈ respectively and only the first t bits of the output are considered.
We will consider this decomposition for H ∈ in this paper.

3.2 Convert Zero-Correlation to Integral Distinguisher

At ASIACRYPT’12, Bogdanov et al. showed that any zero-correlation linear
approximation corresponds to an integral distinguisher. More precisely, consider
a zero-correlation distinguisher for an n-bit block cipher where for each non-
zero input mask with zeros in s bits and each non-zero output mask with zeros
in n − t bits, the corresponding linear approximations have a zero correlation.
They prove that the zero-correlation distinguisher is equivalent to an integral
distinguisher where fixing the first n − s bits in the input leads to a balanced
function when only the first t bits of the output are considered. This conclusion
comes from the following proposition.

Proposition 1. [2, Subsection 3.1] If the input and output linear masks a and
b are independent, the approximation b�H(x)⊇a�x has correlation zero for any
a = (a1, 0) and any b = (b1, 0) ≤= 0 (zero-correlation) if and only if the function
Tβ is balanced for any λ (integral).



458 L. Wen and M. Wang

For ARX ciphers, one bit of input mask of zero-correlation linear approxima-
tions is usually fixed to one, i.e. the input mask is consisted of three parts: r bits
that can take any value, one bit fixed to 1, and s = n− r− 1 bits that are fixed
to zero. Apparently, such kind of zero-correlation linear approximations do not
conform to the form in [4]. Here we show that such zero-correlation linear ap-
proximations imply an integral distinguisher which is concluded in the following
proposition. The proof of Proposition 2 will be shown in the full version of this
paper [11].

Proposition 2. If the input and output linear masks a and b are independent
and the approximation for H ∈ has correlation zero for any a = (a1⊕1, 0), a1 ← F

r
2

and any b = (b1, 0), b1 ≤= 0, b1 ← F
t
2 , the sum of XOR of the function H ∈

1(x, y, z)
is zero for any λ,

⊕
y≤zH

∈
1(λ, y, z) = 0, which means an integral distinguisher.

4 Integral Zero-Correlation Attack on 32-Round
SHACAL-2

4.1 Integral Zero-Correlation Distinguisher for SHACAL-2

If the mask value of a 32-bit word is zero or undetermined for all 32 bits, we sim-
ply denote it correspondingly with ‘0’ or ‘?’. Otherwise, the bit positions having
nonzero or undetermined mask values are listed in the subscripts of ‘1’ or ‘?’, re-
spectively. The mask value of those bits not involved in the subscripts is zero. For
example, 125,22?21−0 means a mask value: 0000001001??????????????????????.

According to the propagation property of linear masks, we can construct zero-
correlation linear approximations over 12-round SHACAL-2 as described in The-
orem 1.

Theorem 1. If the input mask is a = (?, ?, ?, ?, ?, ?, , 131?30−0) and the output
mask after 12 rounds of decryption for SHACAL-2 is b = (10, 0, 0, 0, 0, 0, 0, 0),

then any linear approximation a
12r−−∈ b has correlation zero.

With Proposition 2, the zero-correlation linear approximations over 12-round
SHACAL-2 can be transformed to an integral distinguisher. We can vary the
most significant bit of H12 and fix the other 511 bits of P 12 as constants,
the XOR sum of the corresponding input bit A0

0 is zero. The distinguisher
can be further expressed as: for the decryption of 12-round SHACAL-2, de-
crypting 2 ciphertexts C = (A12, B12, C12, D12, E12, F 12, G12, H12

31 |H12
30−0) and

C∈ = (A12, B12, C12, D12, E12, F 12, G12, H12
31 ⊇1|H12

30−0), then the corresponding
plaintexts have the relation A0

0 ⊇A∈0
0 = 0.

4.2 Key Recovery Attack on 32-Round SHACAL-2

By adding 17 rounds before and appending 3 rounds after the 12-round inte-
gral distinguisher of SHACAL-2, we can attack 32-round SHACAL-2. The dis-
tinguisher can be summarized as given two message pairs (P,C) and (P ∈, C∈)



Integral Zero-Correlation Distinguisher for ARX Block Cipher 459

satisfying the condition that the intermediate state value P 29 and P ∈29 differs
only at the most significant bit of H28 and H ∈28, then the XOR of the inter-
mediate value obtained under the right key A17

0 and A∈17
0 is zero, see Figure 2

and Figure 3. To mount the key recovery attack, we start with choosing proper
message pairs.

ChMaj 10

ChMaj 10

A0

ChMaj 10

A22,16,2,0 B0 C0 E25,11,6,0 F0 G0 H0
16161616161616

B22-0 E31-0C22-0 D25-0 F25-0 G25-0 H25-0A31-0
1515151515151515

B31-0 E31-0C31-0 D31-0 F31-0 G31-0 H31-0A31-0
1414141414141414

K31-0

W31-0
14

14

K25-0

W25-0
15

15

W0

K0

16

16

17

Fig. 2. Partial encryption from 14th round to 16th round

ChMaj 10

ChMaj 10

∆H31
29

K29

W29

K29

K30

W30

∆A31
30 ∆E31

30

30F31=G31
30

ChMaj 10
W31

K31

K30

K31
B30 C30 D30 F30

X

H31

G30

Fig. 3. Last three rounds of the attack on 32-round SHACAL-2

Choose Message Pairs. The modulo addition with subkeys in the last three
rounds is equivalently moved, see Figure 3. The single bit nonzero difference
between P 29 and P ∈29 could be regarded as a nonzero difference ΔH29

31 , which
can be guaranteed by only two bits’ nonzero differences ΔA30

31 and ΔE30
31 . If we

randomly choose P 29 and P ∈29 and try to compute the corresponding ciphertexts,
the value of K31 needs to be guessed. To scale down the effect of K31, we choose
values for A30, B30, C30, D30, E30, F 30, X and H31, with which the ciphertext
could be computed without guessing any key values, see Figure 3.

For the sake of simplicity, we’d like to eliminate any nonzero difference
that might occur between X and X ∈ due to the nonzero difference ΔE30

31 of
Ch(E30, F 30, G30). As Ch(E30, F 30, G30) = (E30&F 30)⊇ (¬E30&G30), to elim-
inate the possible output difference of Ch(E30, F 30, G30), we need to guar-
antee that F 30

31 = G30
31. G

30 = H31 � K31, by setting H31 = 0xffffffff



460 L. Wen and M. Wang

we can wipe off the effective of borrow bit of modulo subtraction and make
sure that F 30

31 = 1 − K31
31 . Thus the value of K31

31 matters in how we choos-
ing message pairs and we need to choose proper message pairs for the case of
K31

31 = 0 and for the case of K31
31 = 1 independently. Generate random values for

A30, B30, C30, D30, E30, F 30, X , set H31 = 0xffffffff and set F 30
31 = 1, then

from Y and Y ∈:

Y = A30⊕B30⊕C30⊕D30⊕E30⊕F 30⊕X⊕H31,

Y ∈ = A30 ⊇ 0x80000000⊕B30⊕C30⊕D30⊕E30 ⊇ 0x80000000⊕F 30⊕X⊕H31,

we can obtain proper ciphertext pairs for the case of K31
31 = 0. If we set F 30

31 = 0,
we can obtain proper ciphertext pairs for the case of K31

31 = 1. At last, ask for
the corresponding plaintexts for the ciphertexts we chose in both cases.

Key Recovery. We partially encrypt plaintext pairs through the first 17 rounds
to get the value of A17

0 and A∈17
0 by guessing 15 ∅ 32 + 26 + 1 = 507 key bits,

see Figure 2. Suppose that we have obtained N messages pairs for each of the
two cases (K31

31 = 1 and K31
31 = 0). We firstly proceed the following steps, Step

1 to Step 3, with N message pairs acquired with K31
31 = 1, the attack stops if

the right key is recovered. Otherwise, we then proceed Step 1 to Step 3 with the
other N message pairs obtained when K31

31 = 0.

1. Guess K0, . . . ,K14 and partially encrypt N plaintext pairs (P, P ∈) to get N
pairs of intermediate state pairs (P 15, P ∈15).

2. Guess K15
25−0 and K16

0 and partially encrypt N pairs of (P 15, P ∈15) to get
(A17

0 , A∈17
0 ).

3. If A17
0 ⊇A∈17

0 = 0 for all N pairs of (P, P ∈) under guessed key value, then this
is a right key candidate. Exhaustively search the right key for all possible
right key candidates.

Complexity Estimation. The time complexities of Step 1 and Step 2 are
215∗32 · N · 2 · 15/32 ⇒ N · 2479.9 and 2507 ·N · 2 · 2/32 ⇒ N · 2504 encryptions,
respectively. The time complexity of the exhaustive search phase, Step 3, is
about 2512−N encryptions because with N message pairs we can filter out 2−N

wrong key guesses. Then, the time complexity of Step 1 to Step 3 is about
N · 2479.9 + N · 2504 + 2512−N encryptions. If we failed to recover the right key
after Step 3, we need to re-proceed these steps with the other N message pairs.
Thus, in the worst case, the total time complexity of our attack on 32-round
SHACAL-2 is about 2·(N ·2479.9+N ·2504+2512−N ) encryptions. If we set N = 7,
then the time complexity of the whole key recovery is about 2508.2 encryptions
and the data complexity is 28 chosen ciphertexts. The memory requirements are
about 2 · 7 · 2 · 512/8 ⇒ 210.8 bytes to store (P,C) pairs and intermediate values.



Integral Zero-Correlation Distinguisher for ARX Block Cipher 461

5 Conclusion

In this paper, we extend the work of integral zero-correlation distinguisher for
ARX block ciphers. For some ARX block ciphers, zero-correlation linear approx-
imations do not conform to those which have been transformed to an integral
distinguisher in [4]. We show that such zero-correlation linear approximations
also imply an integral distinguisher. With the zero-correlation integral distin-
guisher, we improve upon the state-of-the-art cryptanalysis for one NESSIE al-
gorithm SHACAL-2 by reducing attack complexities for the previous attack on
the highest number of rounds in the classical single-key setting.

References

1. Biryukov, A., Shamir, A.: Structural Cryptanalysis of SASAS. In: Pfitzmann, B.
(ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 394–405. Springer, Heidelberg
(2001)

2. Bogdanov, A., Rijmen, V.: Linear Hulls with Correlation Zero and Linear Crypt-
analysis of Block Ciphers. Designs, Codes and Cryptography 70(3), 369–383 (2014)

3. Bogdanov, A., Wang, M.: Zero Correlation Linear Cryptanalysis with Reduced
Data Complexity. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 29–48.
Springer, Heidelberg (2012)

4. Bogdanov, A., Leander, G., Nyberg, K., Wang, M.: Integral and Multidimensional
Linear Distinguishers with Correlation Zero. In: Wang, X., Sako, K. (eds.) ASI-
ACRYPT 2012. LNCS, vol. 7658, pp. 244–261. Springer, Heidelberg (2012)

5. Handschuh, H., Naccache, D.: SHACAL: A Family of Block Ciphers. Submission
to the NESSIE project (2002)

6. Hong, S.H., Kim, J.-S., Kim, G., Sung, J., Lee, C.-H., Lee, S.-J.: Impossible Dif-
ferential Attack on 30-Round SHACAL-2. In: Johansson, T., Maitra, S. (eds.)
INDOCRYPT 2003. LNCS, vol. 2904, pp. 97–106. Springer, Heidelberg (2003)

7. Knudsen, L.R., Wagner, D.: Integral Cryptanalysis. In: Daemen, J., Rijmen, V.
(eds.) FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002)

8. Lucks, S.: The Saturation Attack–A Bait for Twofish. In: Matsui, M. (ed.) FSE
2001. LNCS, vol. 2355, pp. 1–15. Springer, Heidelberg (2002)

9. Shin, Y., Kim, J.-S., Kim, G., Hong, S.H., Lee, S.-J.: Differential-Linear Type At-
tack on Reduced Rounds of SHACAL-2. In: Wang, H., Pieprzyk, J., Varadharajan,
V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 110–122. Springer, Heidelberg (2004)

10. U.S. Department of Commerce.FIPS 180-2: Secure Hash Standard, Federal Infor-
mation Processing Standards Publication, N.I.S.T (2002)

11. Wen, L., Wang, M.: Integral Zero-Correlation Distinguisher for ARX Block Cipher,
with Application to SHACAL-2. IACR ePrint Archive report (2014)

12. Wen, L., Wang, M., Bogdanov, A., Chen, H.: Multidimensional Zero-Correlation
Attacks on Lightweight Block Cipher HIGHT: Improved Cryptanalysis of an ISO
Standard. Information Processing Letters 114(6), 322–330 (2014)



Author Index

Alawatugoda, Janaka 258
Alneyadi, Sultan 413
Aoki, Kazumaro 17

Bai, Shi 322
Banik, Subhadeep 34
Batten, Lynn 430
Bogdanov, Andrey 422
Boyd, Colin 258

Chan, Patrick 446
Chen, Xiaofeng 82, 115
Chen, Yu 274, 438
Chu, Xiaobo 397
Cui, Xingmin 446

Datta, Nilanjan 306
Datta, Pratish 98
Deng, Yingpu 148
Ding, Zhaojing 162
Dutta, Ratna 98, 209

Feng, Dengguo 397
Fukumitsu, Masayuki 290
Fukuzawa, Yasuko 226

Galbraith, Steven D. 322
Gu, Haihua 162
Guo, Wei 162

Hasegawa, Shingo 290
Huang, Qiong 274
Hui, Lucas C.K. 446

Isobe, Shuji 290

Jia, Chunfu 115
Jing, Jiwu 354, 370

Khan, Mohammed Shafiul Alam 386
Kogure, Jun 338
Koshiba, Takeshi 338
Kunihiro, Noboru 176

Lei, Lingguang 354
Li, Jin 115
Li, Miao 370
Liu, Jianwei 242
Liu, Liang 82
Liu, Weiran 242
Liu, Zheli 115
Liu, Zongbin 370
Lou, Wenjing 82

Mitchell, Chris J. 386
Moonsamy, Veelasha 430
Moriai, Shiho 17
Mukhopadhyay, Sourav 98
Muthukkumarasamy, Vallipuram 413

Nandi, Mridul 306

Pan, Yanbin 148

Qin, Bo 242
Qin, Yu 397
Qing, Sihan 446

Rahulamathavan, Yogachandran 430
Rajarajan, Muttukrishnan 430
Rao, Y. Sreenivasa 209

Sato, Hisayoshi 226
Sepehrdad, Pouyan 50
Shao, Jianxiong 397
Shi, Yuanchun 438
Shimoyama, Takeshi 338
Shizuya, Hiroki 290
Shunliang, Su 430
Sithirasenan, Elankayer 413
Stebila, Douglas 258
Su, Liangjian 162
Sušil, Petr 50

Taga, Bungo 17
Takayasu, Atsushi 176
Tanaka, Keisuke 66

Vaudenay, Serge 50
Vejre, Philip S. 422



464 Author Index

Wang, Meiqin 454
Wang, Mingsheng 131
Wang, Qiongxiao 354
Wang, Weijin 397
Wang, Yanfeng 1
Wang, Yuewu 354
Wang, Yuyu 66
Wei, Jizeng 162
Wen, Long 454
Wu, Qianhong 242
Wu, Shengbao 131
Wu, Wenling 1

Xi, Li 397
Xiang, Ji 370

Yamamoto, Dan 226
Yang, Jun 115
Yasuda, Masaya 338
Yiu, S.M. 446
Yokoyama, Kazuhiro 338
Yu, Da 446

Zhang, Bin 131
Zhang, Lei 438
Zhang, Mingwu 192
Zhang, Qinglong 370
Zhang, Zhijiao 438
Zhang, Zhongwen 354
Zhang, Zongyang 274
Zhong, Xiao 131


	Preface
	Organization
	Table of Contents
	Cryptanalysis
	Improved Multidimensional Zero-CorrelationLinear Cryptanalysis and Applicationsto LBlock and TWINE
	1 Introduction
	2 Notations and Preliminaries
	2.1 Zero-Correlation Linear Approximations
	2.2 Multidimensional Zero-Correlation Linear Cryptanalysis

	3 Improved Multidimensional Zero-Correlation Linear Cryptanalysis
	4 Application to LBlock
	4.1 A Brief Description of LBlock
	4.2 Zero-Correlation Linear Approximations of 14-Round LBlock
	4.3 Key Recovery for 23-Round LBlock

	5 Application to TWINE
	5.1 A Brief Description of TWINE
	5.2 Zero-Correlation Linear Approximations of 14-Round TWINE
	5.3 Key Recovery for 23-Round TWINE-80
	5.4 Key Recovery for 25-Round TWINE-128

	6 Conclusion
	References

	Differential and Impossible DifferentialRelated-Key Attacks on Hierocrypt-L1
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Description of Hierocrypt-L1
	2.3 Related-Key Attacks
	2.4 Impossible Differential Attacks

	3 Analysis of Key Scheduling of Hierocrypt-L1 – Key Scheduling Differential Characteristics with Probability 1
	4 Construction of Related-Key Differentials and Impossible Differentials
	4.1 Truncated Differentials
	4.2 New Type of Impossible Differentials

	5 Related-Key Attacks on Hierocrypt-L1
	5.1 Related-Key Differential Attack
	5.2 Related-Key Impossible Differential Attack

	6 Conclusion
	References

	Some Insights into Differential Cryptanalysisof Grain v1
	1 Introduction
	1.1 Description of Grain v1

	2 Knellwolf’s Attack on Grain v1
	3 The Differential Engine ΔGrainKSA
	3.1 Generalized Grain Cipher
	3.2 ΔGrainKSA

	4 Proving the Biases
	4.1 Δφ-GrainKSA with Overrides
	4.2 Computing Pr[z97 ⊕ z�97 = 0]
	4.3 Biases in the Other Sets

	5 Conclusion and Open Problems
	References

	On Selection of Samples in Algebraic Attacksand a New Technique to Find Hidden LowDegree Equations
	1 Introduction
	2 The ElimLin Algorithm
	3 On the Selection of Samples
	3.1 Characterization of Systems when ElimLin Succeeds
	3.2 A Selection Strategy for Plaintexts in ElimLin
	3.3 Cube Attack
	3.4 Selection of Plaintexts
	3.5 ElimLin and Cube Attacks

	4 Optimizing ElimLin
	5 Universal Proning: Recovering Linear Polynomials notfound by ElimLin
	6 Selection of Samples in KATAN32
	7 Final Remarks on ElimLin 
	8 Conclusion
	References


	Cryptographic Protocols
	Strongly Simulation-ExtractableLeakage-Resilient NIZK
	1 Introduction
	1.1 Background
	1.2 Our Results

	2 Preliminaries
	2.1 NIZK Proof System
	2.2 Leakage Resilient NIZK
	2.3 Encryption with Pseudorandom Ciphertexts
	2.4 Simulation-Sound Trapdoor Commitment

	3 sSE-LR-NIZK
	3.1 Definition
	3.2 NIZK Proof for Circuit Satisfiability
	3.3 Construction of sSE-LR-NIZK Proof System

	4 sFLR Signature
	References

	A Secure Three-Party Computational Protocol for Triangle Area
	1 Introduction
	2 Preliminaries
	3 Evaluating the Area of a Triangle While Preserving the Coordinate Privacy
	3.1 Protocol Intuition
	3.2 Formal Specification of Our Protocol Π
	3.3 Correctness

	4 Proof of Security
	4.1 Definition of the Original Game
	4.2 Proof Intuition
	4.3 Security Games
	4.4 Indistinguishability of Gamei and Gamei+1

	5 Related Work
	6 Conclusion
	References
	Appendix

	Universally Composable Efficient PricedOblivious Transfer from a Flexible MembershipEncryption
	1 Introduction
	2 Preliminaries
	2.1 Bilinear Maps and Complexity Assumptions
	2.2 Non-interactive Zero-Knowledge Proofs of Knowledge of [11]
	2.3 P-Signature Scheme of [3]
	2.4 Non-Interactive Range Proof of [13]

	3 Our Membership Encryption
	4 Our Priced Oblivious Transfer
	5 Extending Our Priced Oblivious Transfer to Subscription Setting
	6 Conclusion
	References

	TMDS: Thin-Model Data Sharing SchemeSupporting Keyword Search in Cloud Storage
	1 Introduction
	2 Related Works
	2.1 Data Sharing Scheme
	2.2 Searchable Encryption

	3 Preliminaries
	3.1 Bilinear Maps
	3.2 Complexity Assumptions

	4 System Model
	4.1 Role Definitions
	4.2 Design Goals

	5 The Proposed Scheme: TMDS
	5.1 Scheme Description
	5.2 Concrete Data Sharing System
	5.3 Security Analysis

	6 Performance Evaluation
	6.1 Implementation Details
	6.2 Evaluation

	7 Conclusion
	References


	Cryptanalysis
	Low Data Complexity Inversion Attackson Stream Ciphers via TruncatedCompressed Preimage Sets
	1 Introduction
	2 Preliminaries
	2.1 Brief Description of the LFSR-Based Keystream Generator with Nonlinear Filter
	2.2 Algebraic Attack and Inversion Attack

	3 k-th Truncated Compressed Preimage Sets
	4 Low Data Complexity Inversion Attack to Recover the Initial LFSR State via the k-th ATCP Sets
	5 Analysis on a Keystream Generator with a Filter Boolean Function of Optimum Algebraic Immunity
	6 Low Data Complexity Attack on LILI-128 via the k-th TCP Sets
	7 Conclusion
	References
	A Appendix: 9-variable Carlet-Feng Boolean Function

	A New Attack against the Selvi-Vivek-RanganDeterministic Identity Based SignatureScheme from ACISP 2012
	1 Introduction
	2 Preliminaries
	2.1 Computational Assumption
	2.2 Generic Framework
	2.3 Security Model

	3 Description of the Selvi-Vivek-Rangan Schemes
	3.1 A Simple Description of the Selvi-Vivek-Rangan Schemes
	3.2 Security of the Selvi-Vivek-Rangan Schemes

	4 Our New Chosen Message Attack
	4.1 Another Way to Sign
	4.2 A Theoretical Estimation on K
	4.3 Experimental Results

	5 Why the Original Security Proof Is Incorrect?
	6 Conclusion
	References

	Further Research on N-1 Attackagainst Exponentiation Algorithms
	1 Introduction
	2 Preliminary
	2.1 Modular Exponentiation Algorithm
	2.2 N-1 Attack

	3 Proposed Attack
	3.1 Attack on Boscher’s Right-to-left Exponentiation Algorithm
	3.2 Attack on Montgomery Powering Ladder Algorithm

	4 Experiment Results
	5 Conclusions
	References

	Cryptanalysis of RSA with Multiple SmallSecret Exponents
	1 Introduction
	1.1 Background
	1.2 Our Results
	1.3 Organizations

	2 Preliminaries
	3 Previous Works
	3.1 Boneh and Durfee’s Lattice Construction
	3.2 Aono’s Lattice Construction

	4 Another Look at Previous Lattice Constructions
	4.1 The Analysis of Boneh and Durfee’s Lattices
	4.2 The Analysis of Aono’s Lattices

	5 Our Improvements
	6 Partial Key Exposure Attacks on RSA
	7 Concluding Remarks
	References


	Fine-grain Cryptographic Protocols
	New Model and Construction of ABE:Achieving Key Resilient-Leakageand Attribute Direct-Revocation
	1 Introduction
	2 Preliminaries
	3 Model of ABE of Key Resilient-Leakage and Attribute Direct-Revocation
	3.1 Algorithm Definition
	3.2 Security Definition

	4 Our Construction
	5 Performance
	6 Security
	7 Concluding Remarks
	References

	Expressive Bandwidth-Efficient Attribute BasedSignature and Signcryption in Standard Model
	1 Introduction
	1.1 Our Contributions

	2 Preliminaries
	2.1 Attribute Based Signcryption (ABSC)
	2.2 Security Definitions for ABSC

	3 Our Expressive ABS Scheme with Constant-Size Signature
	4 Proposed ABSC Construction with Constant-Size Ciphertext
	5 Security Analysis
	6 Some Extended Constructions
	7 Conclusion
	References

	Incrementally Executable Signcryptions
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work

	2 Preliminaries
	2.1 Tag-Based Key Encapsulation Mechanism
	2.2 Data Encapsulation Mechanism
	2.3 Digital Signature

	3 Incrementally Executable Signcryptions
	4 Generic Construction with Strong Security and Parallel Un-Signcryption
	4.1 Comparison

	5 Conclusion
	References

	Hierarchical Identity-Based BroadcastEncryption
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work
	1.3 Paper Organization

	2 Preliminaries
	2.1 Composite Order Bilinear Groups
	2.2 Assumptions in Composite Order Bilinear Groups

	3 Syntax
	3.1 Terminologies and Notations
	3.2 Hierarchical Identity-Based Broadcast Encryption (HIBBE)

	4 IND-CIVS-CPA Secure HIBBE with Constant Size Ciphertext
	4.1 Our Construction
	4.2 A Toy Example of the Proposed HIBBE Scheme
	4.3 Security Analysis
	4.4 Efficiency Analysis
	4.5 HIBBE with Shorter Secret Keys

	5 Conclusion
	References


	Key Exchange
	Continuous After-the-FactLeakage-Resilient Key Exchange
	1 Introduction
	1.1 Leakage Models
	1.2 Our Contribution

	2 Background
	2.1 CCLA2-Secure Public-Key Cryptosystems
	2.2 Key Derivation Functions
	2.3 Decision Diffie-Hellman Problem

	3 Continuous After-the-Fact Leakage Model
	3.1 Protocol Execution
	3.2 Modelling Leakage
	3.3 Defining Security
	3.4 Practical Interpretation of Security of CAFL Model

	4 Protocol π
	5 Future Work
	References

	Sakai-Ohgishi-Kasahara Identity-BasedNon-Interactive Key Exchange Scheme,Revisited
	1 Introduction
	1.1 Motivations
	1.2 Our Results

	2 Preliminaries and Definitions
	2.1 Cartesian Product and Power of Vectors
	2.2 Bilinear Maps and Related Hardness Assumptions
	2.3 Indistinguishability Obfuscation
	2.4 Puncturable PRFs
	2.5 Non-Interactive Identity-Based Key Exchange

	3 Revisit Sakai-Ohgishi-Kasahara IB-NIKE
	3.1 An Improved Proof for the SOK IB-NIKE
	3.2 SOK IB-NIKE Is Not Provably Secure under NPROM

	4 IB-NIKE from Indistinguishability Obfuscation
	4.1 Warmup: Selectively Secure IB-NIKE from iO
	4.2 Main Result: Adaptively Secure IB-NIKE from iO

	References


	Fundamentals
	On the Impossibility of Proving Securityof Strong-RSA Signaturesvia the RSA Assumption
	1 Introduction
	2 Preliminaries
	2.1 Adaptive Pseudo-Free Groups
	2.2 Digital Signature Schemes
	2.3 Algebraic Algorithms
	2.4 RSA Assumption

	3 Impossibility Result on the Adaptive Pseudo-Freenessof Z×N under the RSA Assumption
	4 Impossibility Result on the Security Proofs of SRSA-Based Signatures
	References

	ELmE: A Misuse Resistant ParallelAuthenticated Encryption
	1 Introduction
	1.1 Examples of Authenticated Encryptions
	1.2 Encrypt Mix Encrypt
	1.3 Our Contribution

	2 Preliminaries
	2.1 Full and Online Privacy
	2.2 Authenticity

	3 ELmE: An Online Authenticated Encryption Algorithm�
	4 Privacy and Authenticity of ELmE
	4.1 Proof of Theorem 1
	4.2 Proof of Theorem 2

	5 ELmE Incorporating Intermediate Tags
	5.1 Online Privacy and Authenticity of F
	5.2 Including Intermediate Tags : Comparison with COPA

	6 Conclusion and Future Works
	References


	Lattices and Homomorphic Encryption
	Lattice Decoding Attacks on Binary LWE
	1 Introduction
	2 LWE
	2.1 Size of the Error Vector

	3 Binary LWE and Related Work
	4 Standard Lattice Attack on LWE
	4.1 Unique-SVP
	4.2 Application to LWE
	4.3 How to Solve ISIS

	5 Modulus Switching
	6 New Attacks on Binary-LWE
	6.1 Reducing Binary-LWE to ISIS and then Rescaling
	6.2 Gap in the Unique-SVP
	6.3 Using Modulus Switching

	7 Experiments
	7.1 Embedding
	7.2 Modulus Switching
	7.3 Enumeration

	8 Conclusion
	References

	Privacy-Preserving Wildcards Pattern MatchingUsing Symmetric Somewhat HomomorphicEncryption
	1 Introduction
	1.1 Application Scenario Using Homomorphic Encryption
	1.2 Our Contributions

	2 Symmetric Encryption Scheme
	2.1 Construction of the Scheme
	2.2 Correctness of the Scheme

	3 Secure Pattern Matching Computations
	3.1 Review of Packing Method
	3.2 Exact and Approximate Pattern Matching
	3.3 Wildcards Pattern Matching

	4 Experimental Evaluation
	4.1 Chosen Parameters of Symmetric SHE Scheme
	4.2 Implementation Details
	4.3 Use Case: Application to the mtDB

	5 Conclusions
	References


	Applications
	Once Root Always a Threat: Analyzing the Security Threats of Android Permission System
	1 Introduction
	2 Problem Statement
	3 Tampering Data Files Attack
	3.1 Inserting Permissions into the packages.xml File
	3.2 Bypassing Signature Verification to Share UID with High Privileged Apps
	3.3 Escalating Permission by Silent Update

	4 Tampering Code Files Attack
	5 Attack Evaluation
	5.1 Evasion Rate Evaluation
	5.2 Damage Degree Analysis
	5.3 Influence Range Analysis
	5.4 Survivability Analysis

	6 Potential Solution Discussion
	6.1 SEAndroid
	6.2 Our Proposal

	7 Related Work
	7.1 Defence against Privilege Escalation Attack
	7.2 Protections towards System Code

	8 Conclusion
	References

	A High-Throughput Unrolled ZUC Corefor 100Gbps Data Transmission
	1 Introduction
	2 Preliminaries: ZUC Algorithm
	2.1 The Linear Feedback Shift Register (LFSR)
	2.2 The Bit-Reorganization
	2.3 The Nonlinear Filter F
	2.4 The Execution of ZUC

	3 Proposed x2-ZUC Architecture
	3.1 The Selection of Modulo 231 − 1 Adder in x2-ZUC
	3.2 An Efficient Way to Use the Modulo 231 − 1 Adder
	3.3 Single-Feedback Initialization
	3.4 Computation Rescheduling
	3.5 The Unrolled Architecture in FSM
	3.6 x2-ZUC and x3-ZUC

	4 Evaluation and Analysis
	5 Conclusion
	References

	Another Look at Privacy Threatsin 3G Mobile Telephony
	1 Introduction
	2 Relevant 3G Security Features
	2.1 The AKA Protocol
	2.2 Session Keys
	2.3 User Identity Confidentiality

	3 Privacy Threats and Fixes
	3.1 The Attacks
	3.2 Observations
	3.3 The Fixes

	4 IMSI Paging Re-examined
	5 Addressing the Error Message and Identity Catching Attacks
	6 Summary and Conclusions
	References

	ExBLACR: Extending BLACR System
	1 Introduction
	2 Preliminaries
	3 Review of BLACR
	3.1 Protocols Used in BLACR
	3.2 Initialization
	3.3 Registration
	3.4 Authentication
	3.5 List Management

	4 A Extended Scheme: ExBLACR
	4.1 Category
	4.2 Our Improvement to BLACR
	4.3 Our Construction
	4.4 Security Goals and Analysis

	5 Evaluation
	5.1 Complexity Analysis
	5.2 Efficiency Analysis

	6 Conclusions
	References


	Short Papers
	A Semantics-Aware Classification Approach for Data Leakage Prevention
	1 Introduction
	2 Related Work
	3 Stemmed N-gram Classification
	3.1 Stemmed N-gram Profiles Generation
	3.2 Distance Calculation
	3.3 Document Spinning

	4 Experiments and Results
	4.1 Optimum Category Profile Size
	4.2 Overall Classification Using Optimum Category Profile Size
	4.3 Document Spinning

	5 Analysis
	5.1 Precision, Recall and F1 Measures

	6 Conclusion and Future Work
	References

	Route 66: Passively Breaking All GSM Channels
	1 Introduction
	2 Description of A5/2 and GSM
	3 Attacking All GSM Channels
	4 Passive Attack on the GSM Location Update
	References

	An Analysis of Tracking Settings in Blackberry10 and Windows Phone 8 Smartphones
	1 Introduction
	2 Related Work
	2.1 BlackBerry
	2.2 Windows Phone

	3 Tracking Services
	3.1 Tracking Services on BlackBerry 10
	3.2 Tracking Services on Windows Phone 8

	4 Experiment
	4.1 Dataset Collection
	4.2 Experimental Work

	5 Analysis of Results
	5.1 Presentation of Results
	5.2 Information Leaks When Tracking Setting Is Off

	6 Conclusion
	6.1 Recommendations

	References

	Running Multiple Androids on One ARM Platform
	1 Introduction
	2 Suspend and Resume Mechanism
	2.1 Linux Suspend and Resume Mechanism
	2.2 Android Wakelocks

	3 Design and Implementation
	3.1 Design Principle
	3.2 Implementation

	4 Evaluation
	5 Conclusion
	References

	CoChecker: Detecting Capability and SensitiveData Leaks from Component Chains in Android
	1 Introduction
	2 Analysis Challenges
	2.1 Challenge One: Inter-Component Communication Analysis
	2.2 Challenge Two: Entry Points and Their Order of Execution

	3 System Design
	3.1 Construction of the Call Graph
	3.2 Taint Propagation and Leak Paths Detection

	4 Implementation and Evaluation
	4.1 Implementation
	4.2 Evaluation

	5 Conclusions and Future Work
	References

	Integral Zero-Correlation Distinguisher for ARXBlock Cipher, with Application to SHACAL-2
	1 Introduction
	1.1 Our Contributions

	2 Preliminaries
	2.1 Notation
	2.2 Description of SHACAL-2

	3 Integral Zero-Correlation Distinguisher for ARX Block Ciphers
	3.1 Decomposition of the Target Cipher
	3.2 Convert Zero-Correlation to Integral Distinguisher

	4 Integral Zero-Correlation Attack on 32-Round SHACAL-2
	4.1 Integral Zero-Correlation Distinguisher for SHACAL-2
	4.2 Key Recovery Attack on 32-Round SHACAL-2

	5 Conclusion
	References


	Author Index



