
3D Object Recognition Using Convolutional
Neural Networks with Transfer Learning
Between Input Channels

Luís A. Alexandre

Abstract RGB-D data is getting ever more interest from the research community
as both cheap cameras appear in the market and the applications of this type of
data become more common. A current trend in processing image data is the use of
convolutional neural networks (CNNs) that have consistently beat competition in
most benchmark data sets. In this paper, we investigate the possibility of transfer-
ring knowledge between CNNs when processing RGB-D data with the goal of both
improving accuracy and reducing training time. We present experiments that show
that our proposed approach can achieve both these goals.

Keywords 3D object recognition · Transfer learning · Convolutional neural
networks

1 Introduction

The use of RGB plus depth (RGB-D) data has been increasing recently due to the
availability of cheap cameras that produce this type of data. The possible applications
of RGB-D data are multiple, but among the many possibilities we can cite the use
for robotic vision as a means to allow a robot to better perceive its surrounding
environment, recognizing both the type of environment [1] it is currently located in
and the objects [2] that are within it.

Deep learning [3] has also receive strong attention lately due to its capacity
to create multilevel representations of the data and allowing for a possibly more
efficient way to solve some problems [4]. Several approaches have been put for-
ward in this area: deep belief networks [5], stacked (denoising) autoencoders [6] and
convolutional neural networks (CNNs) [7, 8] are among some of these.

L.A. Alexandre (B)

Department of Informatics and Instituto de Telecomunicações,
University of Beira Interior, Covilhã, Portugal
e-mail: luis.alexandre@ubi.pt

© Springer International Publishing Switzerland 2016
E. Menegatti et al. (eds.), Intelligent Autonomous Systems 13,
Advances in Intelligent Systems and Computing 302,
DOI 10.1007/978-3-319-08338-4_64

889



890 L.A. Alexandre

CNNs have been shown to be particularly adapted to process image data, since
they are inspired in the way the human visual system works [9] and have shown
these capabilities by winning several international competitions involving object
recognition [8].

In this paper, we investigate the possibility of making transfer learning while
training CNNs for solving object recognition tasks using RGB-D data. The main
idea is to use four independent CNNs, one for each channel, instead of using a single
CNN receiving the four input channels, and train these four independent CNNs in a
sequence, instead of training them in parallel, and using the weights of a trained CNN
as starting point to train the other CNNs that will process the remaining channels.
We compare this approach against training four CNNs in parallel and also against
a single CNN that processes the four input channels simultaneously and conclude
that our proposal not only saves training time but it also increases the recognition
accuracy.

The paper is organized as follows: the next section presents some related work;
Sect. 3 contains the detailed explanation of our proposal; Sect. 4 presents the exper-
iments and the last section lists our conclusions.

2 Related Work

2.1 Convolutional Neural Networks

ACNN is a type of deep neural network (DNN) inspired in the human visual system,
used for processing images. These were originally proposed by Fukushima [10] and
latter also developed by LeCun [7]. A CNN has several stages (typically two or
three), each composed of two layers: the first layer does a convolution of the input
image with a filter and the second layer downsamples the result of the first layer,
using a pooling operation. These stages build increasingly abstract representations
of the input pattern: the first might be sensitive to edges, the second to corners, and
intersections and so on. The idea is that these representations become both more
abstract and more invariant as the pattern data goes through the CNN. The output of
the last stage is usually a vector (not an image) that is fed to a multilayer perceptron
(MLP) that produces the final network output, usually a class label.

The possibility of using CNNs for processing RGB-D data was investigated in
[11]. In that paper, the authors combined both a CNNwith a recursive neural network
and obtained state-of-the-art results on an RGB-D data set.



3D Object Recognition Using Convolutional Neural Networks … 891

2.2 Transfer Learning with CNNs

Transfer learning (TL) consists in the use of knowledge acquired solving a source
problem to facilitate the resolution of a target problem. This can take many different
forms [12]. In the case of neural networks, one way to do TL is to reuse layers from
the source problem to solve the target problem. These layers can be reused as they
are or they can be fine-tuned.

The possibility of doing transfer learning on DNNs has been investigated before.
In [13], the authors proposed to train a DNN on a given problem and reuse it by
fine-tuning only the last layer, while keeping the remaining weights unchanged.
They compare the results against randomly initialized DNNs and also against fine-
tuning the last 2 layers, last 3, and so on. They focused on character recognition
and concluded that transfer learning is viable in this task, since it allows for faster
training and smaller classification errors.

In [14], the authors addressed the transfer learning between deep networks used as
classifiers of digit images. They considered cases where only the set of class labels,
or only the data distribution, changed from source to target problem. They concluded
that reusing networks trained for a different label set led to better results than reusing
networks trained for a different data distribution. In particular, reusing a network
trained for more classes on a problem with less classes was beneficial for virtually
any amount of training data.

While these previous studies showed that in general one can achieve some im-
provement in terms of accuracy and/or overall processing time for different configu-
rations of both learning architectures and data sets by transfer learning, none of these
approaches considers the possibility put forward in the current paper of transferring
learned networks between channels while processing RGB-D data.

3 Our Proposal

The straightforward way to apply a CNN to RGB-D data is simply to train it to
process images with four channels (three color + one depth).

An alternative (which we will also investigate in the experiments section) is to
use one CNN to process each channel independently and then combine the decisions
of each network to obtain the final classification result. This combination can be
done in many different ways and we will explore two common possibilities in the
experiments.

When training one CNN for each channel, it is obvious that the task each of
these networks is learning to perform is very similar (specially among the three color
channels). In this paper, we propose to take advantage of the similarity of tasks that
are performed on each input channel during training and avoid starting to train a
CNN from scratch for each channel given that we can reuse the trained weights from



892 L.A. Alexandre

one initial trained channel to become the starting point for training the remaining
networks that will process the other channels.

Formally, consider a color image I (x, y) that is composed of three color channels,
such that I (x, y) = (R(x, y),G(x, y), B(x, y)) and each channel is a mapping from
the set of image coordinates to the set Dc = {0, . . . , 255}.

The RGB-D data adds to the color image a depth image, that is usually a 16
bit gray-scale image, D(x, y), that maps the image coordinates to the set Dd =
{0, . . . , 216 − 1}.

A CNN trained on one of these channels is learning a function from Dm
c or Dm

d ,
where m is the number of pixels, to the set of class labels, y = {0, 1, . . . ,C − 1},
for a C-class classification problem.

Some of the approaches that we test imply a combination of the outputs of several
CNNs. For this, we used two combination methods, that we now describe. Let us
represent the output of neuron j of network k by y j,k , and consider n classifiers and
a problem with C classes. The decision of a CNN k corresponds to the output with
largest value: dk = argmax j=1,...,C y j,k . The combination using the majority vote is
given by:

i = arg max
j=1,...,C

n∑

k=1

1{dk= j}

where i is the class label obtained through the combination and1{dk= j} is the indicator
function that gives 1 when dk is equal to j and zero otherwise.

The second combination method is the maximum of the mean of the outputs
produced by each CNN. The decision using this approach is the class

i = arg max
j=1,...,C

1

n

n∑

k=1

y j,k = arg max
j=1,...,C

n∑

k=1

y j,k

4 Experiments

We used an open source CNN implementation, cuda-convnet1, that takes ad-
vantage of graphics processing units (GPUs). All experiments were run on Fedora
17, using a nVidia GeForce 680 GPU.

4.1 The Data Set

We used a subset of the large data set of 3D point clouds from [15]. The original
data set contains 300 objects from 51 different categories captured on a turntable

1http://code.google.com/p/cuda-convnet.

http://code.google.com/p/cuda-convnet


3D Object Recognition Using Convolutional Neural Networks … 893

from three different camera poses. We used 48 objects representing 10 categories.
The training data contain clouds captured from two different camera views, and the
validation and test data contains clouds captured using a third different view.

The training set has a total of 946 clouds, the validation set has 240 clouds and
the test set contains 475 clouds. The data used to train consisted on two 2D images
per point cloud, one with the RGB data and another with the depth information
(16 bit data). These images were re-scaled to squares with 64 pixel sides. Figure1
shows someexample images of the dataset objects andFig. 2 shows the corresponding
depth maps. It is easy to understand from these examples that a CNN that uses only
the depth maps will have a more difficult task than a CNN using a color channel.

Fig. 1 One sample RGB image of each of the 10 object categories used in the experiments. Note
that in each category, there are usually more than 3 or 4 different objects that can differ significantly
between each other

Fig. 2 One sample depth image (equalized for display purposes) of each of the 10 object categories
used in the experiments. These sample images correspond to the RGB images presented in Fig. 1



894 L.A. Alexandre

4.2 Network Architecture and Training

All networks use three stages (three convolution plus subsampling layers) plus a final
one hidden layer MLP. The convolution layers use 32 filters and the subsampling
layers use the relu function. Full description of all parameters can be found in the
configuration files available online.2

The starting value of the learning rates of the convolution layers and MLP layer
and some of the other meta-parameters (L2 weight decay for convolutional andMLP
layers) were obtained by doing a grid search using the depth data (the one that had
worst performance) and were kept for all channels. Other parameters (number and
sizes of convolutional filters, initial values on the weights and bias, momentum, etc.)
used the default values. This grid search used only the data from the training and
validation sets.

The training of all networks was done according to the following algorithm:

1. restart = 0
2. while restart < 3 do

(a) train for 10 epochs
(b) evaluate the validation error, VE
(c) if VE increased for two consecutive evaluations:

• restart = restart + 1
• divide the value of the learning rate of the convolution layers by 10
• go back to the weights of the network used 20 epochs before

3. evaluate the test error and stop.

Note that the goal of these experiments was not to obtain the best possible result in
this dataset but to illustrate other possible ways to train a CNN to deal with RGB-D
data, namely, using transfer learning. Even so, the presented results are comparable
with the color descriptor results obtained in [2], and are better than the results obtained
with the gray-scale descriptors. Note also that in that paper, the validation set was not
used since for themethods presented there, nometa-parameter searchwas performed.

4.3 Two Baselines

We consider two baseline results against which we compare the transfer learning
proposal.

For the first baseline, named RGBD in Table1, we consider a single CNN that
receives all four channels as input.

2Since there are too many parameters to present here, the configuration files used can be obtained
online: www.di.ubi.pt/~lfbaa/pubs/IAS-13.zip. The lists with the names of the files used in the
training, validation, and test sets are also there. This allows for our experiments to be reproduced.

www.di.ubi.pt/~lfbaa/pubs/IAS-13.zip


3D Object Recognition Using Convolutional Neural Networks … 895

Table 1 Average (and standard deviation) of the error and time used on 10 repetitions for each of
the evaluated approaches

Approach Error (%) Time (s)

RGBD 29.87 (3.30) 714.60 (191.95)

Channel R 32.15 (3.17) 136.50 (36.05)

Channel G 44.02 (2.40) 131.60 (41.79)

Channel B 55.62 (5.58) 110.10 (24.83)

Channel D 65.85 (0.77) 126.30 (17.16)

R,G,B,D maj 36.72 (4.31) 504.50 (119.83)

R,G,B,D mean 29.58 (1.66) 504.50 (119.83)

Channel G + TL 37.47 (0.00) 166.60 (0.70)

Channel B + TL 43.58 (0.00) 95.10 (0.57)

Channel D + TL 66.32 (0.00) 157.70 (0.67)

R,G+TL,B+TL,D+TL maj 33.45 (0.75) 555.90 (37.99)

R,G+TL,B+TL,D+TL mean 28.80 (0.61) 555.90 (37.99)

R,G+TL,B+TL,D maj 32.63 (0.79) 524.50 (54.48)

R,G+TL,B+TL,D mean 29.01 (0.63) 524.50 (54.48)

The best results for error and time spent are in bold

As a second baseline, we consider four independent CNNs, each one processing
one of the input channels. The output of these four networks is then combined through
simple majority vote (marked with ‘maj’ in Table1) and also through the maximum
of the mean value of the output of the last layer of the CNNs (marked with ‘mean’
in Table1), to yield the final decision.

4.4 Transferring Learned Networks

We train, as in baseline 2, four networks, one for each input channel. But in this case
we will transfer the weights from the network that had the smallest error among the
40 trained with individual channels. These weights are used as a starting point for
the training (fine-tuning) of the networks from the other three channels. This is done
instead of using random weights. The individual decisions are then combined by the
same two approaches used in baseline 2.

Since the data used in theCNNthat processes the depth data is different in its nature
(different range of values and also different type of underlying data distribution) from
the color channels, we also tested the combination of the channel that had smallest
error (R) with the G and B channels learned with TL and the depth channel without
transfer learning, since the weights transferred from a color channel network could
be inadequate to serve as a starting point to train the depth channel CNN. The outputs
of these networks are also combined with the same two approaches as before.



896 L.A. Alexandre

4.5 Discussion

The results obtained in the experiments are presented in Table1.
Regarding the error rates, we see that the best result was obtained with a transfer

learning approach (R,G+TL,B+TL,D+TL mean), reducing by 1.07% in 29.87%
(a 3.6% reduction) the error obtained with the RGBD approach (single CNN, first
row of Table1) and also being faster than the RGBD approach by more than 22%.

When training individual CNNs for each channel we found that the best results
were obtained using channel R. So we transferred the weights of the network trained
with only the R channel data that achieved the smallest error (as we trained 10
networks for each channel) to be used as a starting point to train new networks for
the other three remaining channels. These are listed in Table1, with a + TL in front
of the channel name.

These networks, that used the weights of the best R channel network, achieved
better results than the originally trained networks for the case of the two remaining
color channels (B andG) and slightlyworst results for the depth channel. The standard
deviations of their errors show that they all produced very similar final results.

In the three combination settings, the decision obtained with the maximum of
the mean was always better than the decision obtained with majority voting. These
decision fusion approaches using the maximum of the mean were also always better
than using a single CNN to process the four channels, both in terms of error rates
and in terms of the time spent.

The combination of the channel that had smallest error (R) with the G and B
channels learned with TL and the depth channel without transfer learning (R,G+TL,
B+TL,D mean) did not outperform the R,G+TL,B+TL,D+TL mean, showing that
even if the original CNN trained for the depth channel without transfer learning was
used (that had smaller error than the D + TL CNN), the combination performance
did not beat the combination using the R channel plus the other three TL networks.

The best overall time was obtained when fusing the four independently trained
CNNs without using TL: an improvement of more than 29% over the single CNN.

Regarding the time, this approach can be use in real-time applications. The fastest
time was around 500s, but this includes training, validation, and testing for 10 rep-
etitions of the experiment. Even if we consider this to be the time for testing only
and since we used near 500 point clouds in the test set, this gives around 0.1 s per
point cloud. But note that the training time is much longer than the test time, so if
the networks were to be trained off line, the test speed would be substantially higher
than this value.



3D Object Recognition Using Convolutional Neural Networks … 897

5 Conclusions

In this paper, we studied alternative approaches to train a CNN with RGB-D data.
First, we proposed the use of four independently trained CNNs, one for each

channel that were then combined to produce a decision by two different methods.
We concluded that using one of the combination methods we can obtain both smaller
error and faster training time than using the single CNN for all channels.

Then, we proposed the use of transfer learning between the CNNs trained on each
channel. This again showed better results than the original single CNN approach,
both in terms of error and time, and also better than in the first combination proposal
in terms of error but not in terms of time.

So we conclude that it is advantageous to split RGB-D data into four separate
data sets, train CNNs on each channel and fuse their results. Better results in terms
of error rates can even be achieved if one transfers the weights from the CNN with
smallest error and uses them as a starting point for the training of the CNNs of the
remaining channels, implementing a transfer learning approach.

Acknowledgments This work was partially financed by FEDER funds through the “Programa
Operacional Factores de Competitividade—COMPETE” and by Portuguese funds through “FCT—
Fundação para a Ciência e a Tecnologia” in the framework of the project PTDC/EIA-EIA/119004/
2010 and PEst-OE/EEI/LA0008/2013.

References

1. Pronobis, A., Mozos, O.M., Caputo, B., Jensfelt, P.: Multi-modal semantic place classification.
I. J. Robotic Res. 29(2–3) (2010) 298–320.

2. Alexandre, L.A.: 3D descriptors for object and category recognition: a comparative evalua-
tion. In: Workshop on Color-Depth Camera Fusion in Robotics at the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Vilamoura, Portugal (October 2012).

3. Bengio, Y.: Learning deep architectures for AI. Foundations and Trends in Machine Learning
2(1) (2009) 1–127.

4. Le Roux, N., Bengio, Y.: Deep belief networks are compact universal approximators. Neural
computation 22(8) (2010) 2192–2207.

5. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural
computation 18(7) (2006) 1527–1554.

6. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing robust
features with denoising autoencoders. In: Machine Learning, Proceedings of the Twenty-Fifth
International Conference (ICML 2008), Helsinki, Finland, June 5–9, 2008. (2008) 1096–1103.

7. LeCun, Y., Bengio, Y.: Convolutional networks for images, speech, and time-series. In Arbib,
M.A., ed.: The Handbook of Brain Theory and Neural Networks, MIT Press (1995).

8. Ciresan, D.C., Meier, U., Schmidhuber, J.: Multi-column deep neural networks for image clas-
sification. In: 2012 IEEEConference onComputerVision and PatternRecognition, Providence,
RI, USA (June 2012) 3642–3649.

9. Filipe, S., Alexandre, L.A.: From the human visual system to the computational models of
visual attention: A survey. Artificial Intelligence Review (January 2013) 1–47.

10. Fukushima, K.: Neocognitron: A self-organizing neural network model for a mechanism of
pattern recognition unaffected by shift in position. Biological Cybernetics 36(4) (1980) 193–
202.



898 L.A. Alexandre

11. Socher, R., Huval, B., Bath, B., Manning, C., Ng, A.: Convolutional-recursive deep learning
for 3d object classification. In Bartlett, P., Pereira, F., Burges, C., Bottou, L., Weinberger, K.,
eds.: Advances in Neural Information Processing Systems 25. (2012) 665–673.

12. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Transactions on Knowledge and Data
Engineering 22(10) (2010) 1345–1359.

13. Ciresan, D.C., Meier, U., Schmidhuber, J.: Transfer learning for latin and chinese characters
with deep neural networks. In: The 2012 International Joint Conference on Neural Networks,
Brisbane, Australia (June 2012) 1301–1306.

14. Amaral, T., Sá, J., Silva, L., Alexandre, L.A., Santos, J.: Improving performance on problems
with few labelled data by reusing stacked auto-encoders. In: submitted. (2014).

15. Lai, K., Bo, L., Ren, X., Fox, D.: A Large-Scale hierarchicalMulti-ViewRGB-D object dataset.
In: Proc. of the IEEE International Conference on Robotics & Automation (ICRA). (2011).


	3D Object Recognition Using Convolutional Neural Networks with Transfer Learning Between Input Channels
	1 Introduction
	2 Related Work
	2.1 Convolutional Neural Networks
	2.2 Transfer Learning with CNNs

	3 Our Proposal
	4 Experiments
	4.1 The Data Set
	4.2 Network Architecture and Training
	4.3 Two Baselines
	4.4 Transferring Learned Networks
	4.5 Discussion

	5 Conclusions
	References


