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Abstract In this paper, we propose a framework for unsupervised range image
segmentation and object recognition that exploits feature similarity and proximity as
leading criteria in the processing steps. Feature vectors are distinctive traits like color,
texture and shape of the regions of the scene; proximity of similar features enforces
classification and association decisions. Segmentation is performed by dividing the
input point cloud into voxels, by extracting and clustering features from each voxel,
and by refining such segmentation through Markov Random Field model. Candi-
date objects are selected from the resulting regions of interest and compared with
the models contained in a dataset. Object recognition is performed by aligning the
models with the refined point cloud clusters. Experiments show the consistency of
the segmentation algorithm as well as the potential for recognition even when partial
views of the object are available.

1 Introduction

The diffusion of cheap and relatively accurate 3D sensors has popularized scene
interpretation and point cloud processing.Motion planning, human-robot interaction,
manipulation and grasping [1] have taken advantage from these advancements in
perception. In particular, identification of objects in a scene is a fundamental task
when the robot operates in unpredictable human-populated environments.

Different formulations of this problem depend on the availability of shape or
color data as well as on specific prior knowledge about the setup or the object.
Object detection and recognition are commonly achieved by extracting features that
represent a signature for a point neighborhood. We can roughly distinguish between
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point feature descriptors [2–6] and simple geometric or visual features extracted from
local patches [7]. The classification of point neighborhoods (e.g. to label the point
neighborhoods belonging to the same object)may take into account both their relative
position in space and the similarity of their features. The similarity of two feature
vectors is measured by their distance, and accordingly two point neighborhoods
are similar if their corresponding features are close in feature space. Thus, feature
similarity and proximity in Euclidean space are the two leading criteria in scene
interpretation problems.

Graphical model frameworks have been used to encode neighborhood relations
and to label nodes through potential functions in 3D object detection problems
[8–11]. Each node of a graphical model corresponds to a point neighborhood, which
may correspond in turn to a voxel, another type of cell, or a patch. The classification
of each node is initially based only on its features and then refined by weighting the
results of neighbor cells. These techniques produce a satisfactory segmentation of
the scene when the chosen label set is consistent with the observation. For example
a label should be defined for every region of interest (ROI) with homogeneous fea-
tures each roughly corresponding to an object or a class of objects. In many works
the initial classification is performed by supervised classifiers that associate features
to labels defined a priori. Unsupervised detection algorithms are more general, but
the label set must be assessed from feature distribution so that candidate objects can
be distinguished avoiding over segmentation. However, labels are usually computed
according to a single criterion, either by clustering items in feature space (similar-
ity) or by region growing from a randomly chosen seed to the similar neighbors
(proximity).

In this paper, we present a complete system that performs unsupervised range
image segmentation and object recognition by jointly exploiting feature similarity
and proximity. Figure1 provides an outline of the algorithm steps. The point cloud
representing the observed scene is divided and indexed by octree voxel cells; features
related to color, texture and shape are extracted from each voxel. An original contri-
bution of this work is a region growing algorithm that estimates the number of feature
classes by visiting neighbor voxels. All the voxels are visited starting from a seed
recursively expanding over unvisited neighbors; then the algorithm builds a set of
centroids in feature space. A new centroid in feature space is added only if a very dif-
ferent feature is found. The k-means algorithm initializedwith these centroids detects
clusters in feature space and is applied to attach a label to each voxel. Since the initial
centroids of k-means algorithm have been chosen according to both feature similarity
and spatial adjacency, the spatial distribution of the resulting labels is concentrated
into groups even before the application of a graphical model method. The Markov
Random Field method further reduces segmentation discontinuities. Each connected
cluster of points with the same label is a potential candidate object. Clusters are
further refined by splitting weakly connected regions and then may be merged and
selected as candidate objects according to their size or relative position in the scene.
Finally, clusters representing candidate objects are compared with a model dataset
of point clouds corresponding to objects to be recognized. Object recognition is per-
formed through alignment. An initial alignment is achieved by matching Fast Point
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Fig. 1 The steps of the range image segmentation and object recognition algorithm: the original
image (a) and the corresponding point cloud (b), the segmented cloud before (c) and after Markov
Random Field optimization (d), the selected cluster (e) and the alignment with the best matching
model (f)

Feature Histogram features between the candidate object and eachmodel. Alignment
is refined by iterative closest point (ICP) technique. The distance between the two
aligned point clouds is measured by the percentage of matching points between two
point clouds.

The paper is organized as follows. Section2 reviews the state of the art in range
sensing for object detection and recognition focusing on tridimensional features and
graphical models for segmentation. Section3 illustrates the algorithms for range
image segmentation, candidate object selection and object recognition. Section4
presents the experiments performed to assess the effectiveness of the approach, and
Sect. 5 discusses the results.

2 Related Works

Scene interpretation has been addressed operating on different scale and environ-
ments (outdoor, room-level indoor, etc.), setups (manipulators, mobile robots, etc.),
input sensor data (images, RGBD data, point cloud, etc.). Feature extraction is a
preliminary operation common to most detection and recognition techniques and is
often applied to achieve segmentation, object detection and recognition.

Several 3D features to be extracted from point clouds or other representations
have been proposed during the years. Spherical harmonic invariants [2] are com-
puted on parametrized surfaces as values invariant to translation and rotation of such
surfaces. Spin images [3] are obtained by projecting and binning the object surface
vertices on the frame defined by an oriented point on the surface. Curvature map
method [4] computes a signature based on curvature in the neighborhood of each
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vertex. More recently, point feature descriptors like Point Feature Histogram (PFH)
and Fast Point Feature Histogram (FPFH) [5] have been proposed. FPFH are com-
puted as histograms of the angle between the normal of a point and the normals of the
points in its neighborhood. Several features have been proposed and implemented in
Point Cloud Library (PCL) [6]. These methods usually provide a parameter vector
that describes the local shape. Such descriptors allow object recognition of known
objects by matching a model and the observed point cloud.

Other algorithms operate on patches or voxels of the point cloud instead of extract-
ing local descriptors in the neighborhood of each point [12]. Straight scene seg-
mentation may be achieved either by investigating 3D points distribution [13] or
using simple features like color, planarity, etc. from each cell or voxel. The method
described in [14] detects smooth surface patches in the range image and combines
these low-level segments into high-level object segments.

A graphical model framework is usually applied to refine the labels or to improve
classification under the hypothesis that spatial neighbors in the dataset tend to have
similar labels. The graphical model category includes Conditional Random Fields
(CRF), Associative Markov Networks (AMN) and Markov Random Fields (MRF).
In [8] segmentation and classification are performed simultaneously on laser range
data using AMN. The minimization of an energy function generates uniform labels
among neighbors and enables the estimation of best separating hyperplanes in fea-
ture space for classification. The clusterization method proposed in [15] is based on
features andMRF. This method associates a label for each point and defines theMRF
graph on the neighborhood obtained from the mesh built from the point cloud. A
minor similarity with our work lies in the update procedure of the centroids after the
fusion of an incoming cloud with the cumulated one. Graphical models may also be
used to learnmodels from feature point descriptors as shown in [9]. The segmentation
method described in [10] uses local classifiers that operate on shape signature and
spin images and MRF to improve local consistency. Herbst et al. perform object dis-
covery using the images collected from several views and applyingMRF [16]. Object
detection may also be performed using classifiers trained to recognize an object from
a specific view and MRF to enforce dependency among neighbor voxels [11].

3 Object Detection and Recognition

This section illustrates the algorithms developed in this work to detect and recognize
objects in a depth image. The depth image is initially partitioned into voxels and
each voxel is described by a feature vector. Feature vectors are partitioned into
clusters (each associated to a label) according to their similarity, but also taking
into account the spatial distribution of the corresponding cells. The principle that
spatial neighbors are likely to belong to the same cluster is exploited to refine the
labels with MRF. Objects are selected from the cluster labels according to cluster
description and attention-based criteria. Finally, the system checks whether each
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selected object corresponds to a target object belonging to a given dataset. All these
steps are discussed in the next sections.

3.1 Scene Segmentation

The segmentation algorithm is designed to detect homogeneous regions of interest
(ROI) of the point cloud. These regions correspond to candidate objects or other
recognizable background entities. The cloud is partitioned into voxels whose size
is a trade-off between resolution and information content of each voxel. Each voxel
corresponds to a cell of the space grid subdivision. A large voxel size corresponds
to a coarse subdivision of the range image, but each voxel contains more points and
several descriptive features. In the experiments reported in the paper, the voxel side
length is 2cm.

Formally, let P be the input point cloud and V ⊂ 2P be the set of the cells.
V is a partition of P , i.e. ∪|V |

j=1v j = P and v j1 ∩ v j2 = ∅. With an abuse of
notation v : P → V is also the map that associates each pi ∈ P to its container
cell v(pi ) = v j . Each point pi consists of its Cartesian coordinates pi,pos w.r.t. a
specific frame (e.g. the sensor reference frame) and of the color information pi,col .
A cell v j has neighboring cells that are represented by its neighborhood setN j ⊂ V .
The cells used in this system are voxels indexed by an octree data structure which
quickly accesses the neighbors. For neighbor sets on octree reflexivity is granted, i.e.
vk ∈ N j implies v j ∈ Nk .

The system performs scene segmentation by grouping similar voxels. Similarity
between voxels is computed in termof distance between their corresponding features.
In this work, a cell v j is described by color, texture and shape and such information
is encoded in a feature vector f j = [ f T

j,col , f T
j,tex , f T

j,shape]T .

• Color featuresThe color features of the voxel v j are computed by binning theHSV
color components of its points. In particular, a two-dimensional color histogram
is computed on hue (H) and saturation (S) components with 10 × 10 bins and a
unidimensional histogram is computed with 10 bins for value (V). Hence, color
features contribute to the feature vector with | f j,col| = 10×10+10 = 110 entries.

• Texture features Texture information is computed on the grey-scale image patches
corresponding to the cells after the application of a set of Gabor filters. We have
combined 24 filters which are obtained by using 6 orientations and 4 scales. A 10
bin histogram is obtained from each of the 24 images. Hence, texture components
contribute with | f j,tex | = 6 × 4 × 10 = 240 feature components.

• Shape features The shape of each cell is defined by several parameters: the 3
normalized eigenvalues l1 ≥ l2 ≥ l3 of the point coordinate covariance matrix,
the curvature index defined as the ratio l3/

∑3
i=1 li , the two-dimensional histogram

of 10 × 10 bins computed on the two polar coordinates of the normals. Thus, the
shape is described by | f j,shape| = 3 + 1 + 10 × 10 = 104 parameters.
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Algorithm 1: Initial Clustering
Data: P: point set; V: cell set; α: confidence interval;
Result: C: centroids in feature space;
V̄ ← V; /* set of unvisited cells */1
Q ← ∅; /* queue of cells to be visited */2
C ← ∅; /* centroid list */3

while Q 
= ∅ or V̄ 
= ∅ do4
if Q 
= ∅ then5

pop v j from Q and remove it from V̄;6
else7

extract an unvisited node v j from V̄;8
end9
/* updates the nearest centroid */

compute feature vector f j for v j ; di = mins∈C( f j − μs)
T �−1

s ( f j − μs);10

if di < χ2
α,d then11

μ̂i ← μi ;12

μi ← ni μi + f j
ni +1 ;13

�i ← ni �i +ni μ̂i μ̂T
i + f j f T

j −(ni +1)μi μT
i

ni +1 ;14

ni ← ni + 1;15

else16
initialize centroid i = |C| + 1;17
μi ← v j ; �i ← 0; ni ← 1;18
C ← C ∪ {(ni ,μi , �i )}19

end20
/* visit neighborhood N j of v j */
sort N j by distance to (ni ,μi , �i );21
foreach vk ∈ N j do22

if vk /∈ V̄ then push vk in Q;23
end24

end25
/* performs k-means starting from the initialized centroids
*/
k ← |C|;26
C ← kmeans(V, C);27

Scene segmentation is performed by associating a label to each voxel cell v j

according to the feature vector f j and the proximity of similar cells. An unsupervised
classifier has been adopted to perform an initial classification, which is refined using
a Markov Random Field, as described in the next section.

3.2 Classification and Markov Random Field Inference

Scene segmentation is formulated as an unsupervised classification problem: given
the cell set V described before, the aim is to find a label set L and a labeling function
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λ : V → L. The labeling function λ(·) should weight both the self-organization
of features f j , i.e. the existence of clusters in feature space, and the dependence
among neighbor cells, i.e. the cell context. The k-means algorithm allows the a priori
estimation of the k clusters, while a graphical model technique refines the initial
classification through context-oriented inference.

Estimating the number of labels |L| is an important operation that affects the
detection of objects. Several criteria could be used such as Akaike’s Information
Criterion (AIC) [17] or Davies-Boulding Index (DBI) [18]. However, these indices
are not related to the geometric structure of the 3D scene and the resulting clusters
may turn out to be discontinuous. Algorithm 1 searches candidate cluster centroids
taking into account both features similarity and their spatial distribution. In partic-
ular, the nodes of the graph defined by the neighborhood of each cell are visited
according to a breadth-first search. Under the assumption that neighbor cells are
likely to have similar feature, the feature values found during expansion are used to
initialize or update a set of centroids C. Such centroids represent subsets of points
with similar features resulting from proximity. The search starts from a new seed for
each connected component and is handled by a FIFO queue Q. At each iteration,
an unvisited item v j is extracted from the queue or picked from the unvisited items
in V̄ , when a connected component has been visited. If the closest centroid to the
feature f j of cell v j is less than threshold χ2

α,d (gaussian distribution is assumed
and α = 0.85), then the closest centroid is updated (line 11) or a new centroid is
initialized (line 16). This procedure adds a new centroid when a feature discontinuity
between neighbors is detected and no other similar centroid has been detected before.
After the initial clustering, the centroids obtained by the algorithm are used as the
input values for k-means method. After the centroids have been estimated the label
function λ(·) is defined by applying to each cell v j the label associated to its closest
centroid in feature space. The label of a cell is also inherited by the points contained
in the cell.

The assumption that spatial neighbors in the dataset tend to have the same labels
has already been used to estimate the number of clusters and to generate an initial clas-
sification. However, the unsupervised classification of each vi is independent from its
neighbors. MRF techniques allow the refinement of the classification based only on
individual similarity to the centroids. The implicit graph defined by neighbor sets rep-
resents relations among the random variables representing the labels of each cell. Let
λ j ∈ L be the random variable representing the label of v j , λ = [λ1, . . . λn]T ∈ Ln ,
ψ j (λ j ) the unary potential associated to the label, andφ jk(λ j ,λk) the cross-potential
between two neighbors. The new label vector λ is computed in order to minimize
the energy function

E(λ) =
∑

v j ∈V
ψ j (λ j ) +

∑

v j ∈V∧vk∈N j

φ jk(λ j ,λk) (1)

The functionψ j (λ j ) depends on the initial classification operated on the single voxel
v j as discussed above. In this work, the value of the potential for a specific label l



814 D. Lodi Rizzini et al.

depends on the distance between the feature f j and the centroid μl corresponding
to l. Instead the cross-potential has been defined according to the standard Potts
model [19]. In particular, the analytical expression of the two terms is

ψ j (λ j = l) = ωu log

(

1 − d jl
∑

l ′ d jl ′

)

(2)

φ jk(λ j ,λk) = ωc (1 − δ jk) (3)

where d jl = ‖ f j − μl‖ is the feature to centroid distance, δ jk the Kronecker delta,
ωu and ωc two proper constants. In our experiments these constants have been set to
ωu = 1.0 andωc = 0.275. The cross-potential is equivalent to a smoothness function
since it adds a penalty when the neighbor nodes have different labels.

The labels are computed by mimizing the energy function in Eq. (1). The com-
putation has been performed using the Graph-Cut Optimization (GCO) library [20]
with αβ-swap method. The application of MRF produces a more homogeneous dis-
tribution of labels in the same region of space as shown in Fig. 1c–d.

3.3 Selection

The result of segmentation is a labelled point cloud that can be partitioned into
connected sets of voxels with the same labels. Such connected components will be
called cluster in the remaining of the paper. In an ideal case, an object is represented by
a single cluster and such cluster does not include voxels belonging to the background
or to other objects. However, one of the following cases may arise:

1. an object is partitioned into more than one cluster;
2. a cluster covers more than an object and/or part of the background.

The first case is not critical for recognition if the cluster covers a significant portion
of the object, since the object recognition algorithm can operate with partial object
representations as shown in Sect. 4. The second case is addressed by the selection
algorithm illustrated in this section. First, all the cluster are computed by performing
Euclidean clustering according to the labels. Second each cluster is further divided
by detecting loosely connected components, which usually correspond to single
objects. Weak connections are found by estimating the point density in the spherical
neighborhood around each point. Finally, the connected components containingmore
points than a given threshold are selected as candidate objects.

3.4 Recognition

Recognition of clusters is the last step in the described pipeline and aims at matching
a selected cluster with an entry in a dataset of known models. The dataset consists of
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Fig. 2 Objects used by the recognition algorithm (left) andmultiple models obtained from different
PoV for an example object (right)

a variable number of views for each object taken from several viewpoints as shown in
Fig. 2 (right). Each model is obtained by accumulating points from multiple frames
in order to fill gaps of the cloud produced by stereo vision. Then a voxel grid filter
is applied to achieve a uniformly sampled point cloud. The recognition algorithm
is based on point clouds alignment. The two clouds of the ith model Pmod

i and
the current object Pobj in 3D space need to be registered or aligned in order to be
compared. The registration procedure computes the rigid geometric transformation
that should be applied to Pmod

i to align it to Pobj. Registration is performed in three
different steps:

• Remove dependency on external reference frame
Pmod

i and Pobj are initially expressed in the reference of the respective centroids.
• Perform initial alignment
The algorithmestimates an initial and sub-optimal alignment betweenpoint clouds.
This step is performed with the assistance of a RANSAC method that uses FPFH
descriptors [5] as parameters for the function of consensus.

• Refine the alignment
The initial alignment is then refined with an ICP algorithm that minimizes the
mean square distance between points.

The procedure is detailed in Algorithm 2 and an example result is shown in Fig. 1f.
Recognition is then performed by computing a fitness value that evaluates the

overall quality of the alignment between Pmod
i,aligned and Pobj. For each point of Pobj,

the algorithm calculates the square mean distance from the nearest point of Pmod
i,aligned

and retrieves the percentage of points whose distance is below a fixed threshold δth:

Q =
{

pi ∈ Pobj : ‖p j − pi‖2 ≤ δth, p j ∈ Pmod
i,aligned

}
(4)

f i tness(Pobj,Pmod
i,aligned) = |Q|

|Pobj| (5)

Maximum fitness, equal to 100%, is obtained when all points of Pobj have a neigh-
bour in Pmod

i,aligned within δth (in our experiments δth = 1cm).
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Algorithm 2: Registration procedure
Data:
Pmod

i : Point cloud of i-th model;
Pobj : Point cloud of the object to be recognized;
Result:
Pmod

i,aligned : Aligned point cloud of the model;

Pobj
c ← shiftToCentroid(Pobj );1

Pmod
i,c ← shiftToCentroid(Pmod

i );2

Fo ← computeFPFH(Pobj
c );3

Fm ← computeFPFH(Pmod
i,c );4

Pmod
i,sac ← getRANSACAlignment(Pobj

c ,Fo,Pmod
i,c ,Fm );5

Pmod
i,aligned ← getICPAlignment(Pmod

i,sac,Pobj );6

Algorithm 3: Overall recognition procedure

Data:
Pmod [·]: List of point cloud models;
Pobj : Point cloud of the object to be recognized;
Result:
name: Name of the recognized object;
Fmax ← 0;1

foreach Pmod
i ∈ Pmod [·] do2

Pmod
i,aligned ← performRegistration(Pmod

i , Pobj );3

Fi ← getFitness(Pobj , Pmod
i,aligned );4

if Fi > Fmax then5
Fmax ← Fi ;6

name ← name of Pmod
i ;7

end8

end9

The algorithm is iterated for each model in the dataset and returns the recognized
model with the higher fitness as shown in Algorithm 3.

4 Results

This section presents the experiments performed to assess both the segmentation
and the object recognition algorithms illustrated in the previous section. The detec-
tion, selection and recognition modules have been implemented as separated compo-
nents using ROS (Robot Operating System) framework. The input range images are
acquired using a stereo vision system consisting of two vertically aligned Logitech
C270 cameras [21].
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Table 1 Precision, recall and V-measure in segmentation

Algorithm Precision (%) Recall (%) V-Measure

ANN 61.3 61.1 –

ANN+MRF 64.9 70.3 –

SVM 70.4 68.7 –

SVM+MRF 59.7 71.1 –

K-means 61.3 61.3 0.17

K-means+MRF 58.2 76.7 0.35

The first set of experiments is aimed at evaluating the performance of the pro-
posed segmentation method. The used dataset consists of 13 point clouds within the
annotated images representing the groundtruth. The annotated image is partitioned
into background elements (floor, wall, door) and objects. The proposed unsuper-
vised k-means clustering is compared with two supervised classifiers trained on the
four categories: an artificial neural network (ANN) and a support vector machine
(SVN). Each supervised multi-class classifier consists of four binary classifiers, one
for each category, and the final decision is taken by choosing the binary classifier with
the highest score. On the other hand, the output of the unsupervised classification
consists of labels that cannot be directly associated to the groundtruth categories.
Hence, each label λ j has been associated to the groundtruth region r that contains
more voxels labeled as λ j . Of course, such correspondence is an approximation: the
unsupervised algorithm is not aimed at classifying voxels into the classes defined a
priori, but only at discovering distinctive similar voxels. It may occur that two con-
nected clusters belonging to different groundtruth regions have the same label due
to their feature similarity. In spite of these limitations, such comparison measures
the internal consistency of the segmentation achieved by the unsupervised algo-
rithm. The precision and the recall obtained in the experiments by the three methods
with or without MRF refinement, are shown in Table1. The values of precision and
recall of k-means are comparable with those obtained with the two supervised clas-
sifiers, while the recall is slightly greater. The application of MRF tends to reduce
the precision, but increases the recall. An assessment restricted to the unsupervised
cases is given by the V-measure [22] which is equal respectively for K-means and
K-means+MRF to0.17 and0.35.Hence,MRFsignificantly improves theV-measure,
which is a cluster evaluation measure for unsupervised classification methods.

The second set of experiments is designed to assess the object recognition algo-
rithm, in particular when only partial point clouds of the object are available due
to noisy segmentation and occlusions. Test set consists on a fixed sequence of 2241
object point clouds taken from random viewpoints. The dataset consists of 61models
representing the 8 objects in Fig. 2 (8 views for each object on average). The first test
series takes into account parameters of the algorithm like the number of model views
in the dataset, the number of RANSAC iterations, the number of ICP iterations and
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Table 2 Experimental results for the recognition algorithm

Test01 Test02 Test03 Test04 Test05 Test06 Test07 Test08 Test09

# Dataset 61 32 61 24 61 61 32 32 32

Radius (mm) 3, 5, 10,
20, 30, 50

3, 5,
10, 20,
30, 50

3, 10,
30

3, 5,
10, 20,
30, 50

5, 15 3, 10,
30

5, 15 3, 10,
30

5, 15

RANSAC it. 200 200 200 200 200 100 200 100 100

ICP it. 200 200 200 200 200 150 200 150 150

True Pos. (%) 80 70 83 60 81 81 73 70 69

False Pos. (%) 20 30 17 40 19 19 27 30 31

(a) (b)

Fig. 3 ROC curves for tests test 01–09 (a) and for tests with occlusions (b)

the search radius used to compute the FPFH (trials are called test01, test02, etc. in
Table2).

Experimental results show the importance of including dataset models taken
from multiple viewpoints. Keeping fixed all the parameters while decreasing the
dataset size, the percentage of true positives decreases (see test01, test02 and test04).
Results also show that, even limiting the search radius values, recognition rate is
not negatively affected. Moreover, reducing RANSAC and ICP iterations marginally
decreases performance (see test03 and test06). The Receiver Operating Charateristic
(ROC) curves in Fig. 3a depict the performance of the classifier as its discrimination
threshold is varied. To summarize, the recognition algorithm has good performance
with true positive rate above 80% provided that sufficient viewpoints models are
available.

We have then evaluated the recognition algorithm with partial and occluded
objects. In order to have comparable results, occlusions have been artificially gener-
ated with a random procedure. The occlusion generator processes the original test
set and for each view chooses a random point in the cloud and removes all points
within a random radius. In this way it generates a new synthetically occluded test set
with occlusions measured as percentage of removed points. Six different tests have



Unsupervised Range Image Segmentation and Object Recognition ... 819

Table 3 Experimental results for test set with occlusions and recognition parameters as test05
[Table2]

Occlusions (%) 10–20 20–30 30–40 40–50 50–60 60–70

True Pos. (%) 76 70 60 47 37 23

False Pos. (%) 24 30 40 53 63 77

been performed with increasing occlusions from 10 to 70%. Recognition results are
shown in Table3. Recognition algorithm preserves good performance with occlu-
sions up to 30% with true positive rates above 70%. Performance rapidly decreases
with occlusions up to 40% and then collapses with increasing percentage of occluded
points. Figure3b shows Precision-Recall curves for all tests with occlusions and a
reference test without them. Performance with occlusions till 30% is consistent with
the reference test.

5 Conclusion

In this paper, we have presented a complete system that performs unsupervised range
image segmentation and object recognition by exploiting joint feature similarity and
proximity. The acquired points are partitioned into voxels and a feature vector is
extracted from each voxel. The initialization of the classifier is achieved by grouping
similar features during a breadth-first expansion over neighbor voxels and then by
classifying the voxels according to a k-means algorithm. The resulting segmenta-
tion is refined using a Markov Random Field method in order to detect contiguous
and similar voxels. Then, the candidate objects are selected looking for foreground
segments likely to represent objects and are compared to the models in an a priori
dataset. Object recognition is performed by aligning the two point clouds. Experi-
ments have been performed to assess both the consistency of the segments and the
effectiveness of object recognition even with occlusions or partial views.
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