
Adaptive Model-Based Monitoring
for Robots

Dominik Kirchner and Kurt Geihs

Abstract Continuous and comprehensive monitoring is a key requirement for reli-
able failure detection. However, the overhead of the observation process conflicts
with the limited resources of a robot platform. Therefore, robot monitoring faces
high efficiency requirements. This defines a trade-off between comprehensive obser-
vation and monitoring resource overhead. In this paper, we propose an adaptive,
model-based monitoring approach that addresses this trade-off. We specify an indi-
vidual monitoring configuration in an abstract systemmodel to focus the observation
on expressive state aspects. Moreover, we introduce adaptivity to further improve
the efficiency of the monitoring process. To evaluate this efficiency, we compare our
approach with a reference monitoring system. Due to our results, we are confident
that the proposed approach significantly reduces the resource overhead.

1 Introduction

Advances in autonomous robotic research are increasingly applied in multiple areas
spanning from industrial production to medical assistance systems [1]. This results
in increasingly complex and error-prone system designs [2]. However, the ability
to autonomously manipulate their physical environment demands a high reliability
requirement of these robots. Therefore, reliability and safety pose one of the major
challenges in the field.

To counteract performance-critical events in a running robot system, automatic
failure recovery is required at runtime. Therefore, robots require continuous and
comprehensive system state monitoring to support reliable failure diagnosis and
recovery. The design objective of such a monitoring system is to provide comprehen-
sive and expressive state information with minimal delay. Unfortunately, monitoring

D. Kirchner (B) · K. Geihs
Distributed Systems Group, University of Kassel, 34121 Kassel, Germany
e-mail: kirchner@vs.uni-kassel.de

K. Geihs
e-mail: geihs@vs.uni-kassel.de

© Springer International Publishing Switzerland 2016
E. Menegatti et al. (eds.), Intelligent Autonomous Systems 13,
Advances in Intelligent Systems and Computing 302,
DOI 10.1007/978-3-319-08338-4_4

43

44 D. Kirchner and K. Geihs

capabilities are often an afterthought in robot development [3]. Such capabilities are
rarely initially included in the system architecture [4]. However, late integration often
causes high integration efforts. Hence, monitoring support is omitted, if the integra-
tion efforts are considered too high. This complicates themonitoring design objective
to provide comprehensive state information. In order to contribute to a comprehen-
sive monitoring, the integration efforts should be reduced. Moreover, computational
resources for autonomous robots are constrained severely. Acting in real-world envi-
ronments already consumes a significant amount of resources, e.g. for sensor data
analysis or action execution. As a consequence, system components not directly
required for robot operation, like the monitoring, face high efficiency requirements
to avoid interferences with robot operation [4]. This efficiency requirement conflicts
with the requirement of expressive and frequent system observation [5].

In summary, the design of a monitoring system requires comprehensive, expres-
sive, and frequent state observation, while simultaneously providing acquisition effi-
ciency and ease of integration. This forms a trade-off betweenmonitoring quality and
resource overhead. In order to contribute to this challenge, we propose an adaptive,
model-based monitoring for robot systems. The key contributions of our proposed
approach are:

Model-based Configuration We use an abstract model to specify a priori knowl-
edge of the robot design and the application domain to specialize the monitor-
ing.The proposed abstract model enables the monitoring to focus on relevant state
aspects tailored to the application context.This eases the monitoring integration
and contributes to an individual configuration of comprehensive and expressive
state observation.

Adaptation We use adaptation to adjust the monitoring behavior to the current
system context. This allows to automatically fine-tune the acquisition process
to react to performance-critical state changes. This contributes to the efficiency
requirement.

The paper is structured as follows: In Sect. 2, we discuss related work for robot
monitoring. We introduce an abstract robot model to specify domain knowledge
in Sect. 3. Section4 presents our monitoring solution, like an individual monitoring
configuration in Sect. 4.1 and adaptation support in Sects. 4.2 and 4.3. The evaluation
in Sect. 5 presents simulation results in a hypothetical robot scenario. We conclude
the paper in Sect. 6 and give an outlook on future work.

2 Related Work

Only little attention has been spent on the challenge of reliability in the robot domain
[2], and even less contributions have been published on the essential part of robot
monitoring. In practice, basic monitoring support is often found as part of a robot
development framework. However, this support is often a side issue, providing that
it exists at all [6].

Adaptive Model-Based Monitoring for Robots 45

A commonly used development framework, which supports monitoring, is the
Robot Operating System (ROS) [7]. ROS provides monitoring features by the diag-
nostic updater and node monitoring components. Both provide development support
in terms of libraries and language-specific utilities. These features have to be man-
ually integrated in the source code and specially adjusted to the application. As a
consequence, the realization of a systemmonitoring is a highlymanual, time consum-
ing, and application-specific task, which requires profound expert knowledge. The
implementation of themonitoring scope and the resource efficiency of the acquisition
is completely left to the developer.

Another robot development framework is CLARAty [8]. CLARAty provides
extensive support for task execution monitoring within a robot system. Based on
the Task Description Language (TDL) [9], CLARAty models the monitoring behav-
ior, the acquisition, and processing of task-related data in accordance to the task
hierarchy. The total state of an object is tracked and can be queried on demand. The
selection of the state data and the observation mechanism are not further specified
and therefore expected to be done case-specifically. However, the main focus of this
monitoring is the observation of task execution. Observation of the operational state
for components, like heartbeat signals or resource usage checking, is not addressed.
Furthermore, the work does not consider efficiency of the state tracking. Low-level
monitoring of components is also not further specified and therefore expected to be
handled manually.

Similar to CLARAty, CWave [5] provides a development framework build on
formal semantics (Instrumented Logical Sensor System, ILSS). In this project, the
goal is to achieve a comfortable way to compare different versions of a sensor system
based on online and offline qualitymeasurements. This is accomplished by embedded
functionalities for performance measurements, like runtime checks, component state
observers, or embedded test routines, in each system component. However, this
instrumentation is embedded in the component during the development process.
Observation of components not developed within this framework is not supported.
Moreover, the issue of efficient system observation is not further covered.

In [4, 10] the authors present amodel-based diagnosis for robot systems. Based on
a softwaremodel, a failure is detected when themonitored value exceeds its specified
limits, like timing constrains in the communication [11]. This monitoring is done
on a regular but static basis for a constant set of manually specified observations.
Therefore, the efficiency requirement of an observation mechanism do not scale well
with the system size.

In contrast, our work focuses on efficient system observation. The monitoring
configuration is specified in a generic robot model. Similar to TDL, this model
captures the system structure and allows the user to define an individual monitoring
configuration. Additionally, we address the efficiency requirement by an adaptive
observation mechanism. Based on that model, application-specific adjustments can
be done without changes on the code level of components. Therefore, we argue that
this monitoring can be applied even to an already existing robot system, with little
integration effort [12].

46 D. Kirchner and K. Geihs

3 System Model

In this section, we present a model to specify a priori knowledge of the application
domain and the system design. Therefore, we first describe a modeling formalism
and later specialize this to the robot domain.

Our modeling formalism is based on [13]. The most general concept in this for-
malism is the System. A system is an entity that interacts with other entities, i.e. other
systems including hardware, software, and the physical world. The relation between
systems creates a structure M, as seen in Fig. 1. This structure is defined as a tuple
(S,R), where S := {s0, s1, . . . , sN } denotes a transitive set of systems si and R
defines a set of relations between the systems. Each relation is a 2-element subset
of S where the elements are the participating systems. The relations are undirected
(si , s j) = (s j , si) and defined as:

R := {(si , s j) | i �= j}. (1)

As a consequence, relations are symmetric, irreflexive, and intransitive. The envi-
ronment Esg is specified as a set of systems that interact with sg .

Esg := {si | (sg, si) ∈ R}. (2)

The boundary Bsg of a system is defined as the common frontier between the given
system sg and its environment Esg .

Bsg := {ri | ri = (si , sg), si ∈ Esg }. (3)

Components of a top-level system s� are understood again as systems si and
form a structure. This extends the formal structure and defines a recursion si ∈ s�.

: Environment : Relation : Boundary

Structure M

System sg
System s1

System s2

System s3

System sN

SystemSystem

System

System

System

: System : State

…

…

… …

…

(s1 , sg)

(s2 , sg)

(s3 , sg)

(s3 , sN)

Fig. 1 Recursive system formalism

Adaptive Model-Based Monitoring for Robots 47

The recursion stops when a system is considered as atomic �si (si ∈ s⊥). An atomic
system s⊥ is considered as a system with no distinguishable structure, or a structure
that is of no further interest. In our context, we understand an atomic system as an
operating system process or a distinct hardware module.

In order to reflect the current context of a system, we model the system state.
The state of a technical system subsumes all relevant aspects of the operation in a
time period. The state includes the aspects of computation comp, stored information
data, interconnection f low, and physical conditions (resources) res. Therefore, we
define a state as a quadrupel of these aspects state := (comp, data, f low, res).
Elements of this quadrupel are in turn sets of characteristic aspects, e.g. CPU or
memory usage for the computation. We denote single elements of this state as a
characteristic charac

Csi := {charac | charac ∈ state}. (4)

The total state of a system statesi comprises all states of subsystems of si :

statesi := {state0, statei , ...stateM } (5)

Based on this general formalism, we derive a model for the robot domain. There-
fore, we represent the structureM as a hierarchical layered tree, as depicted in Fig. 2.
Each layer defines an abstraction level of the system. We structure the abstraction
levels in the layers: organization, members, skills, and realization. In order to support
large scale scenarios, the first layer models organizational details, like group hierar-
chies. The second layer contains members of a specified organization, like robots.

Member:

Skill:

Realization:

R

Ch : Channel

Organization:
T

Cap

Func

Ch

I

Cap

Ch

Ch Ch

Func Func

Func

I

Cap

Ch

Func

Cap

Ch

Func

I

Ch

Func

Cap

Ch

Func

Ch

Func

T : Team R : Robot Cap : Capability I : Interface

I I

: Relation (active) : Relation (inactive)

Fig. 2 Layered robot model

48 D. Kirchner and K. Geihs

Each member is modeled by its skills. In order to realize such skills, we model
the required information processing of the involved systems on the realization layer.
Relations between these systems are represented as additional elements in themodel.

We limit the focus in this paper to a single robot system. Organizational details
are not addressed further. Furthermore, we name systems in respect to their layers.
We refer the top-level system as Robot, while systems that realize skills are called
Functionalities. Relations between functionalities are denoted as Channels. This
information processing chain ends with an Interface element that marks the end of
the software domain layer and the beginning of the hardware layer.

4 Monitoring

The design objective of the monitoring is to provide comprehensive, expressive, and
frequent state observations with minimal resource overhead. Based on the formalism
of Sect. 3, we define a monitoring task as a method mon to provide observations on
a subset of characteristics Csi of the total state.

mon : S → Csi . (6)

A realization, which concurs with our design objectives, needs to specify an
expressive subset of Csi and an efficient acquisition process. To specify these expres-
sive characteristics, we propose an individual configuration in Sect. 4.1. To comply
with an efficient acquisition process, we suggest two types of adaptations. The first
type adapts the observation in respect to the current operational context, the second
in respect to the current robot task (see Sects. 4.2 and 4.3). We differentiate two
acquisition types for state observation. In the first type, components are extended
with monitoring features to provide state information by their own (see Sect. 2, ROS
[7]). A heartbeat signal is a common example of this, where a component continu-
ously sends messages to prove its liveliness. We refer to this as active monitoring.
This, however, often requires code changes and causes manual integration efforts.
Additional to this common acquisition type, we propose a gathering concept that
focuses on the collection of general, characteristic information of a component, like
resource usage, or communication properties. We refer to this as passive monitoring.
In contrary to active monitoring, passive monitoring needs no support from a com-
ponent. Instead, it interfaces external sources, like the operating system, to gather
relevant data. This enables a realization with a separated, independent module. As a
result, integration of passive monitoring is facilitated, especially for already existing
systems [12]. Nevertheless, the expressiveness of these external observations seems
sufficient for the diagnosis task, as first results from [14] indicate.

In order to exemplify our proposed concepts, we introduce a hypothetical search-
and-collect scenario. Here, the goal of a robot is to explore the environment, find
items of interest, and transport them back to a certain location. Furthermore, we
subdivide this scenario in the tasks: explore the environment (search task), collect

Adaptive Model-Based Monitoring for Robots 49

the item (collection task), transport the item to the defined location (transport task),
and unload the item (dump task). The envisioned robot provides the skills to move,
localize itself, detect objects, manipulate objects, and acoustically report its status.
In respect to the proposed system model, this robot is modeled as a tree node R,
while each skill is presented as a capability (Cap, see Fig. 2). The realization of the
skills are left as an unspecified composition of atomic system components (Func)
and interactions (Ch).

4.1 Individual Configuration

Modular robot design consists of multiple components. Each realization of a compo-
nent is geared to a special purpose in this system design [11]. Hence, we assume that
characteristic observations are also component-specific. In order to find an expressive
set of observations, individual configuration of the characteristics is required.We fur-
ther define the extent of this set as a monitoring scope SCrobot ⊆ Crobot . In practice,
complete observation of the robot’s total state SCrobot = Crobot is too resource-
intensive. Therefore, we limit the scope to a reduced subset |SCrobot | � |Crobot |.
We individually annotate elements in the model with a configuration element Char-
acteristic, which determines the scope of the element. The cumulated characteristics
define the individual scope SCrobot = {SCsi | si ∈ S}.

Beside an individual monitoring scope, the degree of importance also varies for
components in the robot model. For example, the acoustic output skill provides
little relevance for the scenario completion, so the observation should be minimized.
Therefore, we introduce an additional configuration element in the model, named
Priority, to reflect the individual importance for each element. This local priority
is individually specified in respect to its abstraction level. For example, a motor
driver component is considered to have a high priority for the realization of the
motion skill, irrespective of whether or not the motion skill is currently needed. As
a consequence, priority specifications on the realization layer are independent of the
designated application in a scenario. Application-specific aspects are again locally
modeled on higher layers. We define this local priority as:

priol : S → R. (7)

In order to obtain the resulting, global priority priog , we introduce a hierarchical
priority rating in the model.

priog(si,n) = priog(si,n−1) + priol(si,n). (8)

The priority rating forms a recursion over the defined layers n. We denote a system
si on the layer n as si,n , e.g. the top-level system is defined as s� = si,0.

50 D. Kirchner and K. Geihs

4.2 Operational Adaptivity

On top of the individual configuration, we incorporate operational knowledge to
further reduce the resource usage. Operational knowledge specifies characteristic
state values of system components. These values are taken as references for normal
operation.High deviations to the reference are considered as indication for an unusual
operational state and result in intensified observation, while low deviations decrease
the monitoring.

More specifically, the task of the proposed adaptive monitoring is to adjust the
acquisition process in respect to the global priority of a component. We control the
acquisition by a set of parameters pi , further denoted as a monitoring configura-
tion mc = (p1, p2, . . . , pN). These parameters are domain specific and range from
simple observation interval length to more sophisticated analysis settings like model
estimation. The adaptation adapt changes these parameters in respect to the cur-
rent operational context. We describe the supported adaptations by a limited set of
monitoring configurations MCi,char := {mci,char } specific for a system si and its
defined characteristics char . Formally, the adaptationmaps a priority to amonitoring
configuration:

adapt : priog(si,n) → MCi,char . (9)

This initially defines an individual acquisition process. However, the operational
situation may change dynamically. In such a situation the monitoring configuration
should be dynamically adapted to the current operational situation. For example, a
suspicious component state, like a continuously rising motor temperature, should
yield to intensified observation. Therefore, we extend the Characteristic element
in the model to additionally capture representative information on the operational
state. An example for such information are typical values of a characteristic, like an
average value, or variations. We model these typical values in a Property and add it
to the characteristic.

Based on a given property propi , we define a metric dev = ||o, v||propi to deter-
mine the deviation between a current observation o and the representative value v.
For example, we assume that motor temperatures fluctuate between aminimum and a
maximum value. This defines a range of typical observations. Here, the fluctuations
are expected to be symmetrical, hence the middle of the interval is considered as
the typical value. Small deviations represent a good fit to the expected value and
reduce the monitoring process, whereas large deviations indicate a suspicious state
and intensify the monitoring process. This dynamic adaptation is controlled by the
function adaptdyn . We extended this function by the deviation dev to capture the
current operational state.

adaptdyn : priog(si,n) × dev → MCi,char . (10)

Adaptive Model-Based Monitoring for Robots 51

In order to address the time-varying nature of a robot system, this adaptation
process is evaluated in runtime to continuously adapt the monitoring to the current
situation.

4.3 Task-Related Adaptation

On top of the operational adjustments, we consider task-related adaptation. As exem-
plified in our search-and-collect scenario, robot missions are often structured in tasks
T := {t0, t1, . . . , tN }. Each task ti may require a different subset of robot skills
ti ⊂ SK := {s0,n, s1,n, . . . , sN ,n} where n specifies the skill layer. Static observa-
tions of the complete robot may result in the observation of currently inactive skills.
For example, in the search task of the scenario, the robot does not use itsmanipulation
skill. Hence, monitoring of components related to itemmanipulation are temporarily
not required. This provides potential to further reduce resource usage of the mon-
itoring without losing expressiveness of the observation. Therefore, we adjust the
monitoring scope in respect to the current task of the robot SCrobot,t := {Cs | s ∈ ti }.

In order to provide this information, we add task information to the skills in the
model. Therefore,we extend thePriority element to a list of task-dependent priorities.
More specifically, we add a subset Tsi ⊂ T to each skill si,n to describe in which
tasks a skill is required. Hence, we extend the definition of the local priority, given
in (7):

priol,t : S × T → R. (11)

As a consequence, the global priority rating, given in (8), is also revised:

priog,t (si,n) = priog,t (si,n−1) + priol,t (si,n, t j). (12)

This leads to the extended task-related adaptation:

adaptdyn, t : priog,t (si , n) × dev → MCi,char . (13)

Note that the necessary task information t j is expected to be provided by the
control system of the robot. Without such a notification, the task-related adaption is
not directly applicable (Fig. 3).

In summary, we propose an adaptive, model-based monitoring based on an indi-
vidual and task-related scope SCrobot,t to focus the monitoring to expressive state
aspects. In addition, we define an adaptive acquisition progress adaptdyn, t in relation
to the task and the operational context to reduce the resource overhead.

52 D. Kirchner and K. Geihs

Member:

Skill:

Realization:

R

Ch : Channel

Organization:
T

Cap

Func

Ch

I

Cap

Ch

Ch Ch

Func Func

Func

I

Cap

Ch

Func

Cap

Ch

Func

I

Ch

Func

Cap

Ch

Func

Ch

Func

T : Team R : Robot Cap : Capability I : Interface

I I

: Relation (active) : Relation (inactive)

Fig. 3 Task-related configuration for a hypothetical robot in the search-and-collect scenario (trans-
portation task, see Table1). The skills (beginning from left) are: drive, grab, detect, localize, and
control. Currently, inactive skills are marked as dashed lines

5 Evaluation

To determine the efficiency of our proposed monitoring solution, we conducted a
number of simulation experiments. More specifically, we evaluate the quality of
the monitoring in terms of the properties: efficiency and scalability. The efficiency
property is defined as the ratio of resource usage between a constant and static refer-
ence monitoring and our proposed monitoring. The scalability property, in addition,
captures the resource usage of the approach in respect to the system size. In order
to ground this evaluation, we evaluate our approach in respect to two versions of
this reference monitoring. To frame the range of resource usage, we apply a pes-
simistic and an optimistic version. In these reference monitoring configurations, we
do not apply individual configuration nor adaptation. While the optimistic setting
assumes a low failure probability and therefore represents a minimalistic acquisition
process, the pessimistic setting anticipates a high failure rate and performs an inten-
sive observation. We separately evaluate the effectiveness of our approach in respect
to the proposed concepts from Sect. 4. Therefore, we increase the applied concepts
in each instance, starting from an individual configuration, over operational adapta-
tion, to task-related adaptation. In order to evaluate the scalability, we additionally
vary the size of the system. Therefore, we increase the number of components in the
simulated robot system.

Adaptive Model-Based Monitoring for Robots 53

5.1 Simulation Setup

The setup of the simulation consists of a simulated robot system, a component to
control the size of the system, and the monitoring system. The simulated robot
consists of multiple, generic components to represent modular data processing and
intercomponent communication of most modern robot systems. These components
connect to each other, process data, and simulate resource usage. In our simulation,
we concentrate on the observation of the software layer.

We change the system size by generating robot models with a varying number of
functionalities on the realization layer. Thesemodels are interpreted by theCapability
and ReliabilityManager (CARE) [12, 15], which also implements the monitoring. In
our evaluation, we focus on passive monitoring. Therefore, the monitoring scope is
based on general, external state information, like CPU or memory usage. Addition-
ally, CARE monitors the intercomponent communication, like message frequency
or message content. In detail, the observed characteristics in this simulation are the
CPU usage, memory usage, number of threads, and message frequency.

5.2 Simulation Configuration

In the simulation, we implement our search-and-collect example scenario. Our simu-
lated robot provides the skills: drive, grab, object detection, localization, and control.
The number of components to realize the skills, except the control skill, are adjusted
to scale the size of the simulated robot. Every component is parameterized to gener-
ate a constant resource usage of 3% CPU usage and 25 MB memory. We subdivide
this scenario in the tasks: search, collect, transport, and dump.

In our simulation, the priorities are restricted to the discrete range [0, 1, . . . , 10].
Accordingly to the dynamic environment of a real-world robot application, we imple-
ment short observation intervals ranging from 100ms for priority 10–5000ms for
priority 0 ([5000ms, . . . , 590ms, 100ms]). The functionalities are equally priori-
tized with one, while the skills determine the varying priorities. In Table1, the first
row presents the task-related prioritization of the skills. Empty entries mark skills not
required for the task. The following rows present the priorities for the pessimistic,
the individual configuration, the operational adaptation, and the optimistic moni-
toring. The scope of the monitoring is identically configured for each component:
CPU usage, memory usage, thread usage, and message frequency. The properties of
the components are defined as a range around the parameterized resource usage. In
order to average the results, we log the resource usage of the monitoring each second,
resulting in 180 independent measurements for each monitoring configuration and
system size. To ground this results, we specify the applied computer in our simula-
tion. We used a X201 Tablet from Lenovo, with an Intel Core i7 L 620 and 4 GB of
memory.

54 D. Kirchner and K. Geihs

Table 1 Skill prioritization of the scenario

Drive Grab Detect Localize Control

Task-related: – – – – –

Search task 7 – 7 4 8

Collect task 1 7 4 – 8

Transport task 7 – – 7 8

Dump task – 7 – – 8

Pessimistic 9 9 9 9 9

Individual 7 7 7 7 8

Operational 7 7 7 7 8

Optimistic 4 4 4 4 4

5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

av
er

ag
ed

 m
on

ito
rin

g
cp

u
lo

ad
 [%

]

number of nodes

pessimistic
optimistic
individual
operational
task−related

Fig. 4 Scalability of the adaptive meta data-based monitoring

5.3 Discussion of the Results

We present the combined efficiency and scalability qualities of the performed sim-
ulation in Fig. 4. While the scalability is represented as the degree of the rise in the
curve, the efficiency property is depicted as the ratio between the pessimistic and the
instances of the proposed monitoring. As seen in Fig. 4, the individual configuration
reduces the monitoring overhead in respect to the pessimistic one by 60.17%. Fur-
thermore, the operational adaptation provides a gain of 69.98%, while an additional
adaptation in respect to the tasks yield to 76.94%. This is 4.46% above the optimistic
monitoring. These efficiency gains are determined in respect to a system size of 13
components. In contrast to the optimisticmonitoring, the acquisition progress (obser-
vation frequency) can be intensified almost to the level of the pessimistic monitoring
if required. However, the initial high gain of the individual configuration results from

Adaptive Model-Based Monitoring for Robots 55

high resource overhead differences in high priority values. For example, a constant
and static monitoring with a priority of 8 already decreases the resource overhead to
50.54%. We introduce our search-and-collect scenario as a vicarious example for a
single robot mission. In general, the efficiency gain depends on the specific appli-
cation context and the operational situation. Therefore, the presented results should
not be seen as a general proof-of-concept, but provide indication of resource gains
to expect.

Additional, we have gathered empirical results from a real-world setup. The pro-
posed monitoring was implemented on a Mid-Size-League RoboCup robot [16],
where the underlying PC is an Intel Core i7 M 620 with 4 GB memory. The robot
system consists of six components to observe. In this setup, the system monitoring
yields to approximated 1.65% of resource usage (averaged CPU load).

6 Conclusions

Monitoring faces special challenges in the robot domain. While failure recovery
relies on up to date and extensive system observations, the resource overhead of
the monitoring process should be minimal. In order to contribute to this challenge,
we propose a model-based and adaptive monitoring. The key assets of the proposed
approach are the individual configurability and the adaptation in respect to runtime
variations and robot task changes. Besides active monitoring support from system
components, our approach focuses on the observation of generic, external state infor-
mation, like resource usage, or communication properties (passive monitoring). The
configurability is based on a hierarchical layered robotmodel for individual specifica-
tion of the relevance and monitoring scope of components. Moreover, we propose an
adaption of the individual monitoring in respect to observation deviations from typ-
ical values. High deviations are taken as indication of conspicuous system behavior
resulting in an intensified monitoring, while low deviations reduce the monitoring
efforts and contribute to lower resource usage. Performing a robot mission often
requires only subparts of the robot skills for the current task. Therefore, we further
extend our proposed monitoring concept to adapt the focus to the current task. This
limits the monitoring scope to the currently required skills. Hence, we claim that the
required resource usage is significant reduced, while the quality of system obser-
vation is maintained. In order to support this statement, we evaluate the proposed
monitoring concepts against a constant and static monitoring realization often found
in practice. As a result, the proposed model-based, adaptive monitoring provides
significantly reduced resource costs of 76.94%, while providing the capability of
intensified observation in suspicious situations.

The individual specification of the monitoring scope and the characteristic value
ranges relies on expert knowledge of the system and domain. In order to reduce
this manual specification effort, our next goals include the usage of online machine
learning techniques to automatically learn these settings.

56 D. Kirchner and K. Geihs

References

1. Lee, S., Cho, H., Yoon, K.J., Lee, J.: Intelligent Autonomous Systems 12. Springer Advances
in Intelligent Systems and Computing, Vol. 194 (2013)

2. Jung, M., Kazanzides, P.: Run-time Safety Framework for Component-based Medical Robots.
In: International Conference on Cyper-Physical System, Philadelphia (2013)

3. Hill, J., Sutherland, H., Staudinger, P., Silveria, T., Schmidt, D.C., Slaby, J., Visnevski, N.:
OASIS : AnArchitecture for Dynamic Instrumentation of Enterprise Distributed Real-time and
Embedded Systems. Computer System Science and Engineering (Real-time Systems) (2011)

4. Steinbauer, G.,Wotawa, F.: Detecting and locating faults in the control software of autonomous
mobile robots. In: International Joint Conference on Artificial Intelligence, Edinburgh (2005)

5. Dekhil, M., Henderson, T.C.: Instrumented Sensor System Architecture. The International
Journal of Robotics Research 17(4) (April 1998) 402–417.

6. Elkady, A., Sobh, T.: RoboticsMiddleware: A Comprehensive Literature Survey and Attribute-
Based Bibliography. Journal of Robotics (2012)

7. Quigley, M., Conley, K., Brian P., G., Josh, F., Tully, F., Jeremy, L., Rob, W., Andrew Y., N.:
ROS: an open-source Robot Operating System. In: ICRAWorkshop on Open Source Software.
(2009)

8. Volpe, R., Nesnas, I., Estlin, T., Mutz, D.: CLARAty: Coupled layer architecture for robotic
autonomy. JPL Technical Report (December) (2000) 116

9. Simmons, R., Apfelbaum, D.: A task description language for robot control. International
Conference on Intelligent Robots and Systems 3 (1998)

10. Steinbauer, G., Martin, M., Wotawa, F.: Real-Time Diagnosis and Repair of Faults of Robot
Control Software. In: RoboCup 2005: Robot Soccer World Cup IX, Springer (2006) 13–23

11. Grosclaude, I.: Model-based monitoring of component-based software systems. In: Interna-
tional Workshop on Priciples of Diagnosis, Carcassonne, France (2004)

12. Kirchner, D., Niemczyk, S., Geihs, K.: RoSHA : AMulti-Robot Self-Healing Architecture. In:
RoboCup2013: Robot World Cup XVII, Eindhoven, Springer (2013)

13. Avizienis, A., Laprie, J.: Basic concepts and taxonomy of dependable and secure computing.
IEEE Transactions on Dependable and Secure Computing 1(1) (2004)

14. Kirchner, D., Geihs, K.: Qualitative Bayesian Failure Diagnosis for Robot Systems. In: Sub-
mitted to International Conference on Intelligent Robots and Systems, Chicago, IEEE (2014)

15. Kirchner, D., Saur, D.: Reliable Robotics - Diagnostics++. In: ROS Developer Conference,
Stuttgart (2013)

16. Haque, T., Geihs, K., Kirchner, D., Opfer, S., Saur, D., Witsch, A.: Team description: Carpe
noctem 2013. Technical report (2013)

	Adaptive Model-Based Monitoring for Robots
	1 Introduction
	2 Related Work
	3 System Model
	4 Monitoring
	4.1 Individual Configuration
	4.2 Operational Adaptivity
	4.3 Task-Related Adaptation

	5 Evaluation
	5.1 Simulation Setup
	5.2 Simulation Configuration
	5.3 Discussion of the Results

	6 Conclusions
	References

