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Abstract Outdoor robots such as planetary rovers must be able to navigate safely
and reliably in order to successfully perform missions in remote or hostile envi-
ronments. Mobility prediction is critical to achieving this goal due to the inherent
control uncertainty faced by robots traversing natural terrain. We propose a novel
algorithm for stochastic mobility prediction based on multi-output Gaussian process
regression. Our algorithm considers the correlation between heading and distance
uncertainty and provides a predictive model that can easily be exploited by motion
planning algorithms. We evaluate our method experimentally and report results from
over 30 trials in a Mars-analogue environment that demonstrate the effectiveness
of our method and illustrate the importance of mobility prediction in navigating
challenging terrain.
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1 Introduction

Safe and reliable navigation for outdoor robots involves principled consideration of
control uncertainty.We are interested inmobility prediction for systems such as plan-
etary rovers that are mechanically designed for mobility in natural environments, but
which pose interesting challenges in planning and control due to complex interac-
tions with rigid or deformable terrain. Addressing these challenges is important in
enabling the application of planetary rovers that operate outside the possibility of
human intervention, especially, since the most interesting scientific tasks must often
be performed in the most difficult terrain [1]. In recent work [2, 3], we explored
mobility prediction using Gaussian process (GP) regression models where heading
(bearing) and distance uncertainty are treated independently. Here we consider the
case, where heading distance uncertainty are coupled, and model this coupling using
a multi-output GP.

Mobility prediction is the problem of estimating the likely behaviour of the rover
in response to a given control action on given terrain. The goal is to provide a
predictive model of control uncertainty that can be exploited by planning algorithms
to find safe paths. This idea is different from classical motion planning, which seeks
to minimise time or distance while avoiding obstacles. Safe paths, in contrast, have
low likelihood of leading the robot into unsafe states during execution, such as tipping
over and getting stuck, in addition to collisions. On unstructured terrain, mobility
prediction is difficult due to the complex terramechanics involved [4], and is distinct
from the large body of work in terrain classification [5, 6] which seeks to detect and
avoid hazards but does not attempt to build a predictive model of control uncertainty.

In our recent work [3] we proposed a mobility prediction method that learns a
stochastic transition model from previous experience. This method considers the
effects of terrain interaction on the macroscopic behaviour of the rover without
modelling detailed wheel-soil interactions. We demonstrated the effectiveness of
this method experimentally in Mars-analogue terrain where path executions were
safer and more reliable in rigid and deformable terrain than paths generated by a
classical motion planning algorithm. The model consists of multiple single-output
GP components that predict heading and distance uncertainty independently.

In this paper, we propose a new mobility prediction method that captures the cor-
relation between heading and distance uncertainty. Wemodel correlated heading and
distance using multi-output GP regression, where the outputs represent the expected
resulting position of the rover with respect to a given control action. We also propose
a new representation of terrain features that improves on our previous method by
considering a larger area of terrain in the intended direction of motion.

We present experimental results that show significant improvement over the
single-output GP method, and compare both results to the no-uncertainty case as
a control condition. First, we evaluate the mobility prediction model in isolation and
discuss terrain types where correlated heading and distance uncertainty is beneficial.
Then, we present results from over 30 navigation trials. All experiments were per-
formed using a six-wheeled planetary rover platform in challenging Mars-analogue
terrain. In the control condition (no uncertainty considered), no trials could be



Enhanced Stochastic Mobility Prediction on Unstructured Terrain … 175

completed successfully due to rocks and deformable terrain. All trials were
successful in the multi-output GP condition, only one trial failed in the single-output
condition, and the multi-output case resulted in demonstrably safer paths.

The paper is organised as follows. Section2 discusses related work. Section3
presents our general mobility prediction approach as background material for com-
pleteness. In Sects. 4 and 5 we present our new algorithms and implementation.
Experimental results are reported in Sects. 6 and 7, and Sect. 8 concludes the paper.

2 Related Work

Robust terrain traversability estimation and navigation is an important topic of
research, especially in the context of planetary exploration. Traversability analysis is
the general problemof assessing towhat degree a robotmay traverse given terrain [7].
Typically this analysis is performed by examining local terrain geometry [8] and soil
properties [9]. Terramechanics is the study of wheel-soil interactions [10], and is
difficult to apply online due to large parameter uncertainty even in homogeneous
terrain [11]. Near-to-far learning is an online terrain classification approach where
the association between proprioceptive measurements and the corresponding classes
allow remote terrain to be classified based on the rover’s previous experience [5, 12].
Related work in stochastic mobility prediction typically seeks to reactively com-
pensate for control uncertainty due to factors such as slip, but assumes a reference
path [12, 13].

Our approach is data-driven and relies on Gaussian process regression, a machine
learning technique that has recently gained popularity in robotics applications. GPs
are non-parametric, do not assume an underlying function shape, and provide a
continuous estimate of prediction uncertainty [14]. GPs have natural application to
spatially correlated datawith sparse datasets.Multi-outputGPs, also knownas depen-
dent GPs, allow correlated outputs to be simultaneously learnt [15]. In the context
of regression, several implementations of multi-output GPs have been proposed [16,
17]. To the best of our knowledge, multi-output GPs have not previously been applied
and experimentally validated in the context of mobility prediction.

3 Background

In prior work [3], we proposed a path planning approach that accounts for con-
trol uncertainty by learning a Stochastic Mobility Prediction Model (SMPM) from
experience. In this paper, we build on this previous work by tackling two main limi-
tations: (1) considering the control uncertainty in multiple dimensions jointly, rather
than each dimension separately, and (2) taking into account the variability of the paths
taken by the rover when collecting the input information about the terrain. In this
section, we summarise the original technique for planning with control uncertainty
using a learned SMPM.
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3.1 Stochastic Mobility Prediction Model

Given. a rover state s = {x, y,ψ}, where (x, y) is the 2D position of the rover and ψ
its orientation (yaw), the execution of a given action a ∈ A will result in state s′. A
deterministic mobility prediction model is commonly used to represent the transition
from s to s′. However, due to control uncertainty, in practice the resultant state is not
deterministic. This can be accounted for by formulating the state transition function
as a probability density function of the relative transition between states, p(Δs|s, a),
withΔs ≡ s′ − s. In this work,Δs is defined using a polar representation of the state
space. The N components Δsi of Δs are the vehicle’s heading, distance and yaw:

Δs � {Δshead,Δsdist,Δsyaw}
� {tan−1(Δy,Δx),

√
(Δx)2 + (Δy)2,Δψ}.

Since the outcome of an action is strongly correlated with the geometry of the
unstructured terrain the rover has to traverse, the transition model depends on terrain
profiles λ(s, a), which contain information on terrain geometry. In our prior work,
λ(s, a) encoded the variations of rover’s attitude and configuration angles experi-
enced between s and s′, predicted using a kinematic model (see [3]). Since the exact
path between s and s′ is not known in advance, these predictions were made at dis-
crete locations along a straight line drawn between the initial state s and the average
resultant state s′ = s +Δsa for this action in the training data (see Sect. 4.2 for more
details).

To learn the SMPM from experience, training data were collected in a representa-
tive environment by performing multiple executions of each action a over a variety
of terrain profiles. Since training can only provide a limited, sampled subset of the
feature space, the SMPM was then learnt using Gaussian Process regression. This
consists in learning the correlations K between the outcomes of each action a and
the corresponding terrain profiles λ(s, a). Once this training is complete, given an
action a, we can query the SMPM for a prediction of the expected control error
distribution for any terrain profile λ∗(s, a) on similar terrain. For each action a ∈ A,
the distribution can be written as:

p(Δsa − Δsa |λ(s, a), a), (1)

where Δsa is the mean value of Δsa across all executions of action a in the train-
ing data. Δsa − Δsa represents the discrepancy between the actual execution and
the expected action execution (based on the raw training data). Note that with this
formulation the training data for each action has zero mean.

3.2 Single-Output GP Learning

For each action and component Δsi of Δs, given a training set of n input fea-
tures X = {x j | j = 1, . . . , n} and their corresponding action outcomes, or targets
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Z = {z j }, the GP can provide a predictive distribution g∗ for any query inputs
x∗ [14]. g∗ is estimated as the Gaussian distribution:

p(g∗|X, Z , x∗) ∼ N (μ∗,Σ∗), (2)

with predictive mean

μ∗ = K (x∗, X)[K (X, X) + σ2
n I ]−1Z , (3)

and variance

Σ∗ = K (x∗, x∗) − K (x∗, X)[K (X, X) + σ2
n I ]−1K (X, x∗), (4)

where K (X, x∗) is the covariance function that describes the spatial correlation
between two inputs X and x∗, I is the identity matrix, and σn is the noise variance.

In our prior work each component of Δsi , i ∈ [[1, N ]] for each action a ∈ A is
estimated by a different GP. The predictive distribution of each GP can be written as:

p(g∗|X, Z , x∗) = p(Δsi,a − Δsi,a |λ(s, a), a) ∼ N (μ∗,Σ∗), (5)

where Δsi,a is the i th component of the change of state Δs resulting from executing
action a ∈ A, and Δsi,a is the mean value of Δsi across all executions of action a in
the training data. In this implementation of mobility prediction, a training input (or
a query input x∗) is a terrain profile x j = λ(s, a), and a target is the corresponding
action outcome: z = Δsi,a − Δsi,a . The uncertainty in each component Δsi is
accounted for by using the full distribution learned from Δsi and the expectation of
the other components. We then use the learnt SMPM as a transition model during
planning (see Fig. 1).

3.3 Planning

Various planning methods can be used to exploit our mobility prediction model.
We use a Markov decision process (MDP) formulation of the problem, where the
transition function P(s′|s, a) is provided by the SMPM, and the reward is a function
of action cost and vehicle’s safety over the terrain (represented by a cost Cost (s)).
Prior to planning, a cost map is computed using kinematic modelling predictions on
a digital elevation map (DEM) generated using exteroceptive sensors on the rover.
We then compute policies using dynamic programming to maximise the sum of
rewards accumulated over sequences of actions [18]. In operation, the rover follows
the policy: at the end of each action execution, the policy provides the rover with the
next most appropriate action that it should execute from its current location.

The experiments conducted in [3] considered uncertainty in heading and in dis-
tance travelled, independently. The results indicated that by using our learned SMPM
to consider control uncertainty in the planning stage, at the execution we obtained
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Fig. 1 System outline. The left box shows the training conducted to build the mobility prediction
model, while the planning is shown in the box to the right. During the training stage, training terrain
profiles λtrain are generated from sets of {Φtrain}, representing the attitude and configuration Φtrain
of the platform evaluated at regular intervals along the traversed terrain trajectory when executing
action a (see Fig. 2c). This training process produces K , which is used to estimate continuous SMPM
with a GP. Once training is complete, λ∗(s, a) terrain profiles are generated from the DEM of the
terrain that the rover needs to traverse. These are then used to compute the stochastic transition
distribution P(s′|s, a). Given P(s′|s, a) and the reward function R(s′|s, a) for the terrain to be
traversed, DP generates an optimal policy π∗

paths with significantly reduced cost, i.e. safer and more efficient paths. Besides,
the impact was stronger when considering heading uncertainty rather than distance
uncertainty. Figure1 gives an outline of the implementation of this approach.

4 Enhanced Mobility Prediction Modelling

In this paper, we propose to address two of the main limitations of the previous
work. First, we propose to learn themultiple dimensions of control uncertainty jointly
instead of independently. Second, we enhance the strategy used to collect the features
representing the appropriate terrain profiles.

4.1 Joint Predictions and Multi-output Learning

In the prior approach, the SMPMrepresented the uncertainty in each dimension ofΔs
separately, as illustrated by the blue and green diamonds in Fig. 2a. As a result, when
considering the outcome of a given action for a given terrain profile, one dimension
was considered uncertain while the other was considered deterministic. For example,
when accounting for uncertainty in heading, the distance that the rover was expected
to travel during the execution of action a was assumed to beΔsdist,a , i.e. the average
distance travelled by the rover during all executions of action a in the training data.
However, in practice, the outputs of the prediction process (heading and distance
deviations) may be highly correlated.
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Fig. 2 a Example of predictions of the end position (s′) of the rover (triangle) after executing action
a, starting from s. The predictions made by the prior approach are shown: in blue when considering
uncertainty in heading only (diamond: best guess, Gaussian: predicted distribution of heading
uncertainty) and in green when considering uncertainty in distance only. The prediction made by
the new approach, which accounts for the correlation between heading and distance uncertainty, are
shown in red, with the ellipse representing 2 standard deviations in both directions. b Illustration
of the correlation between heading and distance uncertainty. c Single-line features strategy used in
prior work. The platform configuration, Φ, is evaluated at regular intervals on a line between s and
s′ to form the set of {Φ∗(s)}. d Multi-line features used in the new approach proposed in this paper.
The Φ samples are collected along multiple lines to better reflect the variety of possible outcomes
of the action

Consider the following example. The rover plans to execute the action of going
straight ahead (see Fig. 2b). The terrain is sandy but flat, except for a rock located on
the right-hand side of its course, far enough that the rover would not touch it when
driving perfectly straight. The rock is most likely not traversable by the vehicle. In
practice, during the action execution, sometimes the rover will deviate on the right
and get stuck against the rock. In such case, it is clear that the heading deviation
experienced by the rover has a strong impact on the distribution of distance travelled
by the rover, illustrating the correlation between heading and distance uncertainty in
mobility prediction.

Figure2a shows an example of prediction obtained when considering uncertainty
in both heading and distance, and their correlation (in red), comparedwith the predic-
tions made when considering only one dimension of uncertainty (in blue and green).
To address this issue, in this paper we propose to use multi-output GPs to learn the
joint effects of control uncertainty.

Joint predictions of the correlated outputs are possible by usingmulti-output learn-
ing, however, defining the covariancematrix K can be difficult while guaranteeing its
positive-definitiveness, required for GP regression. To model the correlated outputs,
one method is to utilise Convolution Processes [17] between a smoothing kernel kq

and a latent function u(z). The set of Q functions, representing the N correlated
outputs, can be written as:

fq(x) = kq(x) ∗ u(x) =
∫ ∞

−∞
kq(x − z)u(z)dz (6)

where x is the input and z is the output (target).
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In our approach, the smoothing kernel kq used is the squared exponential function
with heteroscedastic noise:

kq(x − z) = Sq |Mq |1/2
(2π)p/2 exp[−1

2
(x − z)T Mq(x − z)], (7)

where Mq , Sq and p are hyperparameters of the kernel. This kernel produces very
smooth functions [14], can be integrated against most functions, and is widely used
within the GP learning community.

The influence of noisewq(x) and R latent functions are considered on the function
yq by assuming that each output is independently corrupted. The function yq(x) can
be expressed as:

yq(x) = fq(x) + wq(x) =
R∑

r=1

∫ ∞

−∞
kqr (x − z)ur (z)dz + wq(x). (8)

The Σ∗ and μ∗ values required for generating the predictive distribution [see
Eq. (5)] can be computed from yq(x∗). To consider the influence of multiple latent
functions on yq(x), each latent function is assumed to be an independent GP. The
covariance between two functions yq(x) and ys(x) can therefore be written as:

cov[ fq(x), fs(x ′)] =
R∑

r=1

∫ ∞

−∞
kqr (x − z)

∫ ∞

−∞
ksr (x ′ − z′)kur ur (z, z′)dz′dz, (9)

where kqr and ksr are the kernel functions for the latent functions, and kur ur is the
covariance function for ur (z). The correlation between any given output fq(x) and
the latent function ur (z) can be computed as:

cov[ fq(x), ur (z)] =
∫ ∞

−∞
kqr (x − z′)kur ur (z

′, z)dz′. (10)

Joint predictions that consider more than one output can be calculated by using
Eqs. (9) and (10), as the cross-covariance terms are incorporated into the estimation
process. This enables us to consider the correlated heading and distance uncertainties
jointly in the prediction of Σ∗ and μ∗. In practice, for every action a ∈ A the inputs
are the same as in the single-output GP formulation, however, a target represents the
N-dimensional action outcome:

z = [Δshead − Δshead,Δsdist − Δsdist,Δsyaw − Δsyaw]. (11)

Furthermore, this means that for every action a ∈ A we generate only one multi-
output GP, as the predictive distribution of the multi-output GP estimates the N
dimensions ofΔsi simultaneously. In this paper, the predictive distributions estimated
by the multi-output GP over the entire state space constitute the SMPM employed
in planning.
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4.2 Terrain Profiles and Feature Generation

As mentioned previously, the estimation of the outcome of a given action a requires
information about the profile of the terrain that the rover is going to traverse during
the execution of this action (i.e. between the initial state s and the final state s′). In
prior work, this information, which described the variations of the rover’s attitude
and configuration angles (Φ), was collected at regularly spaced discrete positions on
a single straight line in the direction of the initial best guess of the outcome (s′), see
Fig. 2c. However, the prediction of the distribution of end states s′∗ (see the ellipse
in Fig. 2a) shows that the rover may actually follow a path that is quite different
from this single line s to s′, thereby travelling over different terrain geometry than
anticipated initially.

Therefore, in this paper, we propose to expand the locations where we collect
the relevant terrain geometry information (see Fig. 2d). We collect this information
over multiple lines (five in practice), all starting from the initial state s, and placed at
regular angular increments around the original single line, whose extremity is s′ (we
use increments of 30◦ in this paper). In order to use a fixed strategy for all queries of
action outcomes, the extent of that coverage of the terrain was chosen to represent
three standard deviations of the heading uncertainty observed in the training data.

In the next section, we will show that features generated using these multiple
lines better capture the possible configurations that the rover may encounter during
the execution of each action. For convenience, in the remainder of the paper, we
will refer to this new strategy to generate the features representing the appropriate
terrain profiles as multi-line features, in contrast with the former approach, which
uses single-line features, i.e. features captured over a single straight line.

5 Implementation

This section describes the implementation details of our proposed approach. The
platform used in our experimental validation is Mawson, a six-wheeled holonomic
rover prototype with a Rocker-bogie chassis, shown in Fig. 3. It is equipped with
two visual cameras and an RGB-D camera (Microsoft Kinect), used as depth sensor
only, mounted on a mast tilted down 20◦ for DEM generation. Other onboard sensors
include three potentiometers to measure the bogie angles and the rocker differential,
and an Intersense IS-1200 VisTracker device, comprising of an inertial measurement
unit (IMU) and a camera, to compute 6-DOF rover localisation with 2cm average
accuracy.

We define the same set of primitive actions that the rover can execute as in [3]:
eight crabbing actions, and two rotational actions, where crabbing is set at intervals
of π/4 for a distance of about 0.3m, and rotation is set at ±π/4. These actions are
initially calibrated on flat terrain, therefore, deviations from the original objective
(both in heading and distance) are expected to happen in practice on rough terrain.
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Fig. 3 The Mawson rover (a) and its attitude and configuration angles Φ = {φ, θ,α1,α2}, shown
in (b). ψ represents the yaw of the rover

The experimental environment is a Mars-analogue terrain facility located inside
the Sydney PowerhouseMuseum inAustralia. The terrain considered consists of both
solid and loose soil, slopes of varying degrees, rocks of different sizes and shapes.

The DEMs used in this study are generated with a resolution of 0.05m × 0.05m
from point clouds acquired by the depth sensor. Kinematic predictions of attitude
and internal configuration angles Φ were computed using a method similar to [19],
allowing for the computation of features for the terrain profiles as well as cost maps.

As in [3], we define a terrain traversability cost as a function of the attitude and
rocker-bogie angles:

costterrain(s) = (φ2 + θ2 + 0.5(α2
1 − α2

2))
2, (12)

where φ and θ are the roll and pitch of the platform, respectively, and (α1,α2) are
internal angles of the rover’s chassis (see Fig. 3b). This cost function captures the
magnitudes of the platform’s attitude and configuration during the traversal of the
terrain, which are indicative of the difficulty and risk for the platform to traverse
this patch of terrain. The reward function R(s|s′, a) used to compute the policies is
defined as the average cost of states between the start state s and the resultant state
s′, plus an action execution penalty ξ [3]:

R(s′|s, a) = −ξ − 1

M

M∑

i=0

costterrain
(

sx + i

M
(s′

x − sx ), sy + i

M
(s′

y − sy), sψ + i

M
(s′

ψ − sψ)
)
,

(13)

where M = 20 is the sampling resolution of the path between s and s′, and ξ = 0.003
is the penalty used in our implementation. During policy execution, the potentiome-
ters and the IMU measurements allow the attitude and internal configuration angles
of the rover to be collected, such that terrain costs integrated over actual executed
paths can be computed for the experimental analysis (see Sect. 7).

The set of most informative features to describe the terrain profiles, which are
used for training and querying the GPs, were selected by performing a Principal
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Component Analysis (PCA) over a large variety of features capturing absolute values
and variations within the Φ sets (see [3] for more details). These features, set in the
vectorλ,were collected on the terrain overmultiple lines (for the proposed approach),
or over a single straight line (for comparison with prior work), as described in Sect. 4.

To collect the required training data, the rover executed each action a ∈ Amultiple
times over varying terrain profiles, while recording: the action a, the difference Δs
between the end state of the rover after action execution s′ and the start state s, and
the platform attitude and configuration angles (Φtrain) during the action execution.
Then, in order to train the GP, the features λtrain were systematically computed from
Φtrain.

6 Experimental Validation of the Learned Mobility
Prediction Model

In this section, we validate the learned mobility prediction model experimentally,
specifically demonstrating the benefits of (1) the multi-output GP learning, and (2)
the extended feature set to better describe the relevant terrain profiles.

6.1 Training Data

Weused theMawson rover (see Sect. 5) and the training approach described in Sect. 3
to collect training data from more than 600 action executions, over numerous terrain
profiles, varying from flat surface to rough terrain with significant slope.

Table1 shows a summary of the training data obtained over all terrain for each
action a. Note that due to the left-right symmetry of the platform, the training data
were combined for symmetric actions. Therefore, only six different actions are shown
in the table.

The table shows the average of the Δsi components obtained over all executions
of each action, on all terrain profiles experienced in the training phase. It can be noted

Table 1 Training data statistics

Action Crab Rotate

(0π) (±π/4) (±π/2) (±3π/4) (π) (±π/4)

# samples 72 118 139 114 72 100

Δshead (rad) −0.066 0.679 1.316 2.411 2.494 –

Δsdist (m) 0.231 0.246 0.182 0.256 0.249 –

Δsyaw (rad) – – – – – 0.538

Mean values of the Δsi components, by action
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that since the ability of the rocker-bogie chassis to overcome rough terrain depends
on the rover orientation, the mean of Δsi can be quite different for each action.

6.2 Mobility Prediction Model Validation

To cross-validate the proposed approach, we learned the mobility prediction models
using 2/3 of the collected data, and tested the models using the remaining 1/3 of
the data. First, we show the benefits of multi-output learning compared with the
state-of-the-art technique that uses single-output GPs. Second, we validate the use of
extended features to capture the relevant terrain information as input of the mobility
prediction.

6.2.1 Multi-output Learning Results

Table2 shows the results obtained when predicting the outcomes of action a using
multi-output GPs with the same strategy to collect information on terrain profiles as
in prior work (i.e. single-line features), compared with the predictions made using
the state-of-the-art approach with single-output GPs (which considers uncertainty
in heading or distance, respectively). The position errors in the table correspond
to the distance between the predicted end position of the rover and the actual end
position given by the ground truth (i.e. the localisation system onboard the rover).
The table provides the mean and standard deviation (std) of these position errors
computed over all executions of each action in the test data. It can be seen that in all
cases the results of the approach proposed in this paper are more accurate and more
consistent than those obtained with the single-output GP that considers uncertainty
in heading only. Compared with the single-output GP that considers uncertainty in
distance only, the results are comparably accurate for the first three actions, andmore

Table 2 Position errors (m) for single-output andmulti-output GP predictions, using the single-line
features

Uncertainty
considered:

Single-output GP Multi-output GP

Heading Distance Heading and distance

Action a Mean Std Mean Std Mean Std

crab(0π) 0.0199 0.0200 0.0148 0.0181 0.0148 0.0181

crab(±π/4) 0.0139 0.0241 0.0108 0.0157 0.0108 0.0157

crab(±π/2) 0.0278 0.0290 0.0132 0.0103 0.0132 0.0103

crab(±3π/4) 0.0080 0.0142 0.0063 0.0102 0.0034 0.0040

crab(±π) 0.0261 0.0065 0.0185 0.0062 0.0024 0.0021
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Fig. 4 A specific example of predictions of the end position of the rover for an execution of
Action crab(3π/4), compared with the ground truth (s′, shown as a blue solid square). The starting
position of the rover is shown as s. All predictions s′∗ are indicated by the hollow, black squares. a
Single-output GP prediction considering uncertainty in distance only. b Single-output GP prediction
considering uncertainty in heading only. c Multi-output GP prediction. a Distance uncertainty. b
Heading uncertainty. c Joint uncertainty

accurate for crab(±3π/4) and crab(±π). The benefit is particularly significant for
the latter. Figure4 illustrates an example of execution of Action crab(3π/4), with
the corresponding predictions generated by the single and multi-output GPs.

Because the state-of-the-art approaches can only consider uncertainty on one
dimension at a time, the other dimension has to be assumed deterministic. For exam-
ple, when considering heading uncertainty, the distance travelled is assumed to be
Δsdist,a for action a. Similarly, when considering distance uncertainty only, the
change in heading to the end position of the rover is assumed to be Δshead,a for
action a. However, whenever the uncertainty is significant in both dimensions, this
can generate large prediction errors, as in the figure. This further shows the benefits
of using multi-output learning to learn the mobility prediction model.

6.2.2 Multi-line Features

Table3 shows the position errors obtained when predicting the outcomes of each
action a using multi-output GPs with the proposed enhanced strategy to collect fea-
tures that better represent relevant terrain profiles (i.e. multi-line features), compared
with the predictions made using the state-of-the-art approach with single-output GPs
(which considers uncertainty in heading or distance, respectively). The results show
that, again, the proposed multi-output learning approach is more accurate than both
state-of-the-art single-output techniques.

In addition, comparing the last columns of Tables2 and 3 shows that the new
strategy consisting in capturing features over multiple lines on the terrain rather a
single line leads to more accurate and more consistent mobility predictions. This
indicates that the multi-line features provide more appropriate information on the
terrain profiles than the features computed over a single line.
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Table 3 Position errors (m) for single-output and multi-output GP predictions, using the multi-line
features

Uncertainty
considered:

Single-output GP Multi-output GP

Heading Distance (m) Heading and distance (m)

Action a Mean Std Mean Std Mean Std

crab(0π) 0.0198 0.0201 0.0055 0.0106 0.0054 0.0106

crab(±π/4) 0.0132 0.0228 0.0095 0.0170 0.0062 0.0106

crab(±π/2) 0.0266 0.0307 0.0092 0.0083 0.0073 0.0090

crab(±3π/4) 0.0070 0.0141 0.0041 0.0046 0.0030 0.0034

crab(±π) 0.0064 0.0083 0.0189 0.0058 0.0015 0.0020

In summary, the experimental results in this section validate that the learned
mobility prediction model is much more accurate when using: (1) multi-output GPs,
and (2) features capturing terrain profiles characteristics over multiple lines rather a
single line.

7 Experimental Results—Planning

In this section, we validate the use of the enhanced SMPM in motion planning and
execution, usingMawson on unstructured, partially deformable terrain.We evaluated
the performance of planning and execution using the SMPM learned by the approach
in this paper,which considers the joint heading anddistanceuncertainties for crabbing
actions, and yaw uncertainty for rotational actions, using multi-output GPs trained
with the new features taken over multiple lines on the terrain.

We compared this performance with one of the state-of-the-art methods, which
learns the SMPM using a single-output GP, trained with features taken over a single
line ahead the rover. In the experiments of this section we use the method that
considers heading uncertainty for crabbing actions, and yawuncertainty for rotational
actions. We chose to consider heading uncertainty rather than distance uncertainty
for this comparison because the results in [3] indicated that the former had more
impact on the performance of planning and execution, both in terms of reliability
and cost reduction.

For reference, we also compared with a control method that uses a deterministic
mobility prediction model, based on the Δsa values from the training data (similarly
to the experiments in [3]).

Using a depth sensor, point clouds of the terrain were captured at known locations
to generate a DEM,which allowed for the computation of the cost map and λ features
(both single-line and multi-lines) representing the terrain profiles. We then generated
the SMPMs using the different approaches to be compared. Finally, we defined
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Table 4 Summary of all experimental runs

Uncertainty
considered

Total runs Successful runs Failed runs (%)

None (deterministic) 10 0 10 (100%)

Heading 11 10 1 (9.1%)

Joint (proposed) 10 10 0 (0%)

a common goal area on the map and built policies to reach this goal, using DP
with each type of SMPM. Once these policies were obtained, an experimental run
corresponded to the rover following the given policy from a starting location s0 on
the map. We executed multiple experimental runs for each type SMPM (i.e. for each
policy), to account for the stochastic nature of the process.

Table4 summarises the amount of runs performed for each method. Each suc-
cessful run corresponds to one full trajectory executed by the rover until it reached
the goal. Failed runs correspond to cases when the rover failed to reach the goal,
because it was stuck on rocks or in a crater (located approximately at (x, y) = [6, 0]
in Fig. 5), and/or had its wheels bogged in loose soil. The numbers in parentheses in
the table show the percentage of number of failed runs over the total number of runs.

When no uncertainty was considered, all runs failed. This is because the rover
tried to traverse into loose soil sections of the crater, where wheels often become
stuck. Conversely, when using both approaches that consider uncertainty the rover
successfully escaped the crater in most cases by traversing parts of the crater with
more rocks in the ground. Note that for each method that considers uncertainty,
we used the same number of successful runs (10) in order to generate comparable
statistics.

Figure5 illustrates a subset of the executed paths, shownover the costmap used for
these experiments. For clarity, we only show five executed paths for each successful
method, chosen randomly. We can observe that the executed paths are fairly spatially
consistent. It appears that there is less spatial variation between themultiple executed
paths when only heading uncertainty was considered, compared with the proposed
approach where joint uncertainty was considered.

The statistics of actual total cost integrated over each executed path, path length
and number of actions executed for the successful experimental runs are shown in
Table5. It can be observed that the mean and standard deviation of the total cost
accumulated along the path executions are significantly lower with the proposed
approach (39.34% reduction). This cost reduction can be considered as highly sta-
tistically significant, since performing the significance test from [20] gave a p-value
of 0.00005.

The average lengths of executed paths are comparable (15.87 and 16.04m). How-
ever, the rover had to execute a much smaller number of actions when using the pro-
posed approach. This indicates that the action executions were much more efficient
in average. Furthermore, the reduced standard deviation on the number of executed
actions suggests that the action executions were more consistent.
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Fig. 5 Multiple executed paths obtained when using: a the policy generated from the SMPM
learned using the state-of-the-art approach, and b the policy generated from the enhanced SMPM,
using the proposed approach. The background shows the cost map, coloured by cost value (see the
colour bar on the top right)

Table 5 Statistics for successful experimental runs

Uncertainty
considered

Mean
length

No. Cost No. actions

(m) runs Mean Std Reduction Mean Std

Heading
uncertainty

15.87 10 0.2984 0.0935 N/A 67.20 7.66

Joint uncertainty
(proposed
method)

16.04 10 0.1810 0.0196 39.34% 46.50 5.323

Overall, the experimental results show that the rover greatly benefits from using
SMPMs generated by the proposed approach when planning and executing policies,
especially in terms of cost accumulated over the executed paths, and in terms of
action efficiency in practice.

8 Conclusion and Future Work

We have presented a new method for mobility prediction based on multi-output GP
regression.We evaluated ourmethod experimentally in comparisonwith our previous
single-output GP method and also a no-uncertainty control condition.

Our experiments show that mobility prediction with multi-output GPs is clearly
beneficial for navigation tasks. In the control condition the rover failed to reach its
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goal in all trials, whereas no trials failed in the multi-output condition. The multi-
output condition resulted in better path execution as measured by fewer total actions.

These results further validate the role of mobility prediction in achieving safe,
reliable navigation for planetary rovers. Important avenues for future work include
the consideration of additional sources of uncertainty, such as localisation.
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