
pRoPhEt MAS: Reactive Planning Engine
for Multiagent Systems

Daniel Saur and Kurt Geihs

Abstract Autonomous mobile robots can substantially increase their effectiveness
in dynamic environments using planning. This paper proposes a design for a soft
real-time planning system for autonomous robots and offers a generic and modular
approach to control a team of robots. Our system pRoPhEt MAS is based on ALICA
(A Language for Interactive Cooperative Agents) and offers the coordination of team
behaviors at runtime. In the evaluation scenario the system pRoPhEt MAS uses a
state of the art planner “Fast Downward Planning System.” The evaluation focuses on
planning during execution time. The team executes the best solutions found, selected
by the heuristic, under certain time constraints. The results show that the execution
with soft real-time planning is as good as sequential planning and execution. Hence,
it offers the ability to react quickly in dynamic domains.

Keywords Multiagent systems · Dynamic domains · Planning

1 Introduction

Dynamic and nondeterministic domains such as RoboCup MSL1 impose challenges
for the realization of fast reactions to world changes with dynamically changing
behaviors. Furthermore, dynamic domains need an intuitive goal description for
modeler. Oftentimes, the plan of a team of agents, describing the activities for
every agent, is manually coded and covers all possible foreseen situations. With an

1http://www.robocup.org/robocup-soccer/middle-size.

D. Saur (B) · K. Geihs
Distributed Systems Group, University of Kassel, 34121 Kassel, Germany
e-mail: saur@vs.uni-kassel.de

K. Geihs
e-mail: geihs@vs.uni-kassel.de

© Springer International Publishing Switzerland 2016
E. Menegatti et al. (eds.), Intelligent Autonomous Systems 13,
Advances in Intelligent Systems and Computing 302,
DOI 10.1007/978-3-319-08338-4_12

147

http://www.robocup.org/robocup-soccer/middle-size


148 D. Saur and K. Geihs

increasing number of agents or complex problems, the overhead for maintenance,
modeling, and testing increases enormously. This approach can react only on the
modeledmultiagent plan, and is therefore problematic because it becomes very likely
that a possible situation is missing among themanually coded ones. Solving planning
problems takes a certain amount of time. Therefore, fast reaction is not possible if
the environment changes rapidly with state of the art planning.

Hence, the challenge of multiagent systems in a dynamic environments is to
optimize the planning process. The IPC (International Planning Competition) is held
every year to tackle complex planning problems; however, the search is limited to
30min. This length is not suitable for dynamic changing environments. Another
approach is to join planning and executing into an anytime planner.

In this paper, we introduce a novel approach for soft real-time planning, focus-
ing on teams of agents acting dependent on the planning process. pRoPhEt MAS
observes the searching process and selects the best solution determined by the plan-
ner heuristics in due consideration of the soft real-time limit. We use state-of-the-art
planning systems and plans that depend on the actual world situation. If the team is
not able to reach the goal, pRoPhEt MAS plans again.

The approach uses the agent-oriented language ALICA [10] to describe, coordi-
nate, and execute behaviors. We expand ALICA by an element to define planning
problems. These problems are described with PDDL [3] (Planning Domain Descrip-
tion Language). It offers an interface for planners on the basis of the PDDL descrip-
tion. PDDL enables the interchanging of planning engines easily. Furthermore, we
integrate state-of-the-art planning systems to cope with planning problems. Finally,
we present pRoPhEt MAS, which uses this planning system and reacts on the search
progress and the actual world situation accordingly using a soft real-time limit.

InSect. 2we start to discuss relatedworks.Next,we introduce the basics ofALICA
in Sect. 3, which offers the basis for describing team activities (plans). ALICA allows
the modeling of behaviors for a team from a global perspective instead of interfacing
single agent programs. We will present an extension to the language of ALICA for
supporting planning problems in order to describe a goal description, which the team
of agents must reach, independent of any particular world state. Finally, we present
in Sect. 3.3 a planning framework, which can assist in offline plan creation, when the
developer would like to specify certain situations. Moreover, solving online planning
problems in soft real-time using a “best effort planner” will be described in Sect. 4,
followed by the conclusion in Sect. 5.

2 Related Work

The international planning competition (IPC) takes place every year, where newly
developed planners evaluate hard planning problems. However, PDDL is not suitable
for periodic world state changes.



pRoPhEt MAS: Reactive Planning Engine for Multiagent Systems 149

The basic idea for the development of PDDL [3] was to define a common interface
to describe this problem class. PDDL defines a language to describe the existing
world, actions to execute by agents and the goal state.

Brenner and Nebel introduced the language MAPL [1]. The article describes a
continual planning algorithm realizedwithMAPL. For the proof-of-concept, Brenner
and Nebel evaluate MAPL in the grid world domain. A small team consisting of four
robots must find their position on the grid, which is done in simulation.

Ulusar [11] shows an approach for real-time planning evaluated in RoboCup2

simulation while using PDDL. This approach is a high-performance problem solver,
but themain differencewith our approach is that it is not aiming at real-time planning.
The author uses a training phase for caching to select a suitable plan in certain
situations. Furthermore, the cached plans are for a fixed team size.

McCoy et al. [6] show an approach in a real-time scenario in the gaming branch.
This approach is developed specifically for a certain game, and they use a multiagent
approach that is not cooperative. Every agent acts best for himself.

Kumar et al. [5] realize a multiagent planning using probabilistic inference. This
is achieved by constructing a graphical model using likelihood maximization, which
is equivalent to plan optimization. The execution time of this approach is high.
Furthermore, the approach does not consider the communication performance.

RAPID [2] is an anytime planner for imprecisely-sensed domains. It performs
well on a large problem simulation with a lot of state variables. However, Brunskill
et al. do not evaluate RAPID in robotic or multiagent domains.

Russel et al. [7] introduce an anytime algorithm,whose quality of results improves
as computation time increases. It provides useful performance components for time-
critical planning and control of robotic systems. The approach does not handle sensor
noise and is evaluated in simulation.

3 Design

In this section, we will sketch first the basics of ALICA, which offers the foundations
for the description of multiagent plans and the planning framework. Afterward, the
document describes the expansion ofALICA for defining planning problems. Finally,
we will describe the planning framework.

3.1 Overview of ALICA

ALICA provides modeling facilities for cooperative behaviors within clear opera-
tional semantics. Furthermore, the language can be used in highly dynamic domains

2www.robocup.org.

www.robocup.org


150 D. Saur and K. Geihs

Fig. 1 Example ALICA
plan

Stacking

z1 z3
holding(c)

Unstack(c,g) Putdown(c)

Task1

1..1

z2

Unstack(g,e)

z5

Stack(g,c)

holding(g) and clear(c)
Task2

1..1

z4

Unstack(e,i)

z6

Stack(e,g)

holding(e) and clear(g)
Task3

1..1

[8]; therefore, this paper does not focus on the coordination of the plan, but rather
on its generation and execution.

The core elements of the language are:

• Basics:

– L: With language L(Pred, Func) meant to describe the agents’ belief with a
set of predicates Pred and a set of function symbols Func

– R: Set of roles, which the agent can take
– B: Set of atomic behaviors, which can interact with the environment
– P: Set of cooperative behavior description
– P∨: Set of alternative plans
– T : Every task describes a function in a plan
– Z: States exists in plans and represents a step in this plan

• Plan elements:

– Behaviors—atomic single-agent action programs: Z �→ 2B

– Plans—abstract multiagent activity descriptions defined by: P �→ 2Z

– Plantypes—sets of alternative plans defined by PlanTypes: Z �→ 2P∨

– Tasks—denote specific activities within plans defined by Tasks: P �→ 2T

– Roles—descriptions of capabilities

• Conditional elements:

– Pre—denotes a pre-condition of a behavior or plan defined by Pre: P ∪B �→ L
– Run—denotes a runtime condition of a behavior or plan defined by Run: P ∪
B �→ L

– Post—denotes a post-condition of a behavior or plan defined by Post: Z �→ L
Figure1 illustrates an example ALICA plan using the core elements of the language.
This figure shows an example of the blocks world domain.3 We defined roles R
which are suitable for the task T (Task 1–3) dependent on the robot capabilities.
Every agent in the team can be assigned to one of the tasks with respect to the

3http://ipc.icaps-conference.org.

http://ipc.icaps-conference.org


pRoPhEt MAS: Reactive Planning Engine for Multiagent Systems 151

minimum and maximum cardinalities 1..1 and the precondition. The “Stacking”
plan Ps contains a state machine for every agent in the team with several states Z
(yellow circle). Every state contains a plan (orange boxes), which contains a state
machine of basic behaviors B. These plans represent the basic skills of the agents.
The agents can switch states with conditional transitions. The plan shows how to
build a stack of c, g and e.

3.2 Expansions of ALICA

ALICA supports the description of multiagent plans, which a team of collaborative
robots can execute. The main problem is that the plan has to model every possible
world state or otherwise the team cannot act in unanticipated situations. Therefore,
ALICA needs some expansions for integrating a planner.

ProblemElement : O �→ 2P∪B

UpdateTime : O �→ R

AlternativePlan : O �→ P
WaitPlan : O �→ P

World : O �→ Pre

Goal : O �→ Post

A ProblemElement defines a set of Plans P , or Behaviors B, which represent single
actions. The UpdateTime represents the soft real-time boundary for the planner.
pRoPhEt MAS, at a frequency of the UpdateTime, will check if there exists some
possible actions and may update the actual plan. Until the first plan is available,
the team executes the WaitPlan. This can be used for positioning or setup for the
planning problem. If the planner fails, the team will execute the AlternativePlan as
a fallback plan. Finally, the planning problem contains a world and goal description.
ALICA uses conditions that weremanually coded beforehand. Theworld will update
automatic in runtime. However, world can be defined to solve planning problems in
offline mode.

3.3 Planning Framework

We begin by explaining how to use planning problemsO. Figure2 shows an example
for a blocks world problem. At the beginning, it is possible to start and stop the team’s
behavior. This plan illustrates that the team of agents have to search trough all the
stacks. We explicitly modeled a plan to solve this problem. The “StackProblem”
is defined as the planning problem, which may contain basic skills like “Stack”,



152 D. Saur and K. Geihs

Fig. 2 Example plan for an
online stacking problem

Top-Level

z0τ0

Controller

Controller

z0τ0

Stop

z2

SearchStacks

z1

StackProblem

StackProblem

?

SearchStacks

z1 z3Searcher

DriveToPOI Identify

“Unstack”, “Pickup” and “Putdown”; therefore, the engine tries to find a plan at
runtime. pRoPhEtMAS (Reactive Planning Engine forMultiagent Systems) updates
the plans dependent on the “UpdateTime.” The integrated planning engine searches
a valid sequence of actions of the “ProblemElement” which satisfies the goal. Every
root plan must span an acyclic “plan tree” like in Fig. 2. In every dynamic situation,
we can define a planning problem instead of a static plan.
pRoPhEt MAS The planning framework is shown in Fig. 3. World and ALICA-
Engine are the basic components of the framework. The WorldModel contains the
information about the robots’ environment in first-order logic. ALICA selects a
suitable plan from the PlanBase which is modeled by the developer. ALICA reacts
to environment changes, and actively selects new plans. If a planning problem O
is defined, the engine will use a planning system for creating a suitable plan. (Of
course, planning problems can be solved offline as well.) The plan generation is
handled by a central leader to reduce the amount of communication. The leader is
selected by the team implicitly, while sharing team information periodically via the
ISharing component. Currently, the robot with the lowest ID becomes the leader.
The leader starts the computation to solve the planning problem in due consideration
of WorldModel. If the leader gets the first results by the planning system, he will
share the result with his members after the plan has been validated by the Validation
component. The team will start to execute the previously existing plan. If the team
receives new plan updates, tasks may change with the former plan. However, ALICA
is able to handle switching tasks by the task allocation.

pRoPhEtMAS observes the execution process. If the steps of the planning system
donot fulfill the goal, the planwill fail. Every robotwillmove to theWaitPlan. Finally,
the leader restarts the planning process.



pRoPhEt MAS: Reactive Planning Engine for Multiagent Systems 153

World

ALICA-Engine

ISharing

IPlanner

WorldModel
Contains sensor

data of team

PlanBase
Contains all defined

plan elements

PlanSelector
Select plan node

from master plan

Share
Distribute plans

CheckLeader
Check/Elect leader

PlannerBase
Contains all

solved problems

PlannerRealization
Find solution for

problem in timeval

Validation
Check if plan

is executable

update

acting

uses

select

plan request

is planning problem

is leader

validate plan

replan

created
plan

created plan

update
plan request

plan

Fig. 3 Planning framework

The architecture of pRoPhEt MAS is modular. It is possible for IPlanner to
exchange every PDDL-based planner easily. Furthermore, it is possible to define
planning problems in every desired state so we can choose a specific planning system
suitable for the specific planning problem.

4 Evaluation

The evaluation focuses on a scenario from the blocks world domain since the blocks
world offers a test bed where the state space increases very quickly. Besides, the
planning results can be understood and easily analyze. The situation of the scenario
is shown in Fig. 4. The blocks on the left represent the current situation, which is
defined in a planning problem asWorld. The blocks on the right represent the situation
the team has to reach, which is defined in a planning problem as Goal. In WaitPlan



154 D. Saur and K. Geihs

Fig. 4 Scenario description

C

G

E

I

J

A

B

F

D

H

C

B

D

F

I

A

E

H

G

J

every agent drives to a free position for not disturbing other tasks. AlternativePlan
is not defined, so we assume to find a suitable plan.

The goal of the experiment is to compare the execution time for different team
sizes of the generated multiagent plan. The plan is calculated offline, and the team
starts to execute this plan afterward. We repeat the same experiment online with
different UpdateTimes, after the first solution is available, the team starts to execute
the plan. Every experiment is executed 1000 times, where the average execution
times are shown in Fig. 5.

For this scenario, we use three different parameters with or without update time,
team size, and update time. For the simulation, we assume that every action takes
between 6 and 8 seconds. The FastDownward Planning System takes 9.5 s on average
over all trials to solve the problem from Fig. 4.

In Fig. 5 is the trial without update rate compared to the update rates from 1 to
8s. The results show that if the update time is smaller, the team saves more of the
planning time, which is included in the curve with no update rate. But it is possible
that the team executes an action which is not optimal. As a result, the team has to
do some more actions. This effect increases if more robots are available, which is
slightly visible. The distance of the curves with update rate to the curve with no
update rate increases with the number of agents. If more robots are available, the
probability that the team executes a suboptimal action increases. For this reason, the
plan can become invalid, and the systems will plan from the actual world situation
again. If the update time is higher, the probability that the team executes suboptimal
actions decrease, but the team needs more time while waiting on the first results of
pRoPhEt MAS.



pRoPhEt MAS: Reactive Planning Engine for Multiagent Systems 155

100

120

140

160

180

200

220

240

2 4 6 8 10 12 14 16

E
xe
cu

ti
on

T
im

e
[s
]

Agents

no update rate
update rate 1s
update rate 2s
update rate 3s
update rate 4s
update rate 5s
update rate 6s
update rate 7s
update rate 8s

Fig. 5 Average execution time of the experiment

Furthermore, we execute the same scenario on real robot systems. The team
consists of up to five robots (surveyor (SRV1)4). Every robot is equipped with a
marker. This marker is used to localize every agent with the localization of the
“Robocup small size league” [12]. In addition, every stack is detected by a marker.
To reduce the overhead for grasping, we project the stacks to 2D; therefore, if robot
like to manipulate stacks, it will push them across the ground. In our scenario, we
use five robots in the first experiment and an UpdateTime of one second. Next,
to realize a dynamic environment we use different agent as opponents. They are
able to select a random action, where no other robot is blocking this stack at this
point. The results are shown in Fig. 6. Without opponents, the total execution time
decreases with the number of agents. However, the time decreases lesser compare to
the simulation. The robots have to drive slower for a precise position because of sensor
noise. Furthermore, the execution time is higher. Since, the obstacle avoidance takes
more time. With opponents, the time increases. pRoPhEt MAS have to plan again.
However, the select actions of the opponents are random. Therefore, sometimes they
help to reach the goal. At the end of the scenario, the opponents often were not able
to act, because the stack was blocked by an agent.

5 Conclusion

Autonomousmobile robots can improve their effectiveness in dynamic environments
using dynamic planning. If the team obeys a predefined static behavior structure, the
team will not able to reach the goal if the plan does not covers all possible situations.

4http://www.surveyor.com.

http://www.surveyor.com


156 D. Saur and K. Geihs

Fig. 6 Execution time of the
SRV1 surveyor

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5

E
xe
cu

ti
on

T
im

e
[s
]

Agents

no opponents
one opponents
two opponents

Thus, the behavior of the team must be completely described by the developer. This
takes a lot of time for complex scenarios, and is difficult to maintain.

For a more flexible approach, it becomes necessary to integrate a planning engine
capable of generating a plan for the agent team based on a goal description. It is
not suitable to explicitly declare the procedure to reach the goal. Rather, the team
is responsible for creating the plan that contains the behaviors necessary to reach
the goal state. On one hand, the plans can be generated offline as a support for plan
creation. On the other hand, the planning must also be performed at runtime to react
on environment changes. The planner has to offer solutions or first possible steps in
soft real time.

Thus, the goal is to integrate a generic interface for the integration of planning
engines, which is capable of reacting in soft real time. As a first step, we expand
ALICA by adding a new element that describes planning problems. Accordingly,
ALICA needs an interface for planning systems. Finally, a planning system must be
designed to solvemore complex problems at runtime. pRoPhEtMAS uses amodified
Fast Downward Planning System, which is expanded to provide an observation of the
search process. Hence, pRoPhEt MAS is able to select optimistic steps to execute.
We simulated different team sizes and different update rates. The results from Fig. 5
shows that planning in runtime can be more efficient than sequential planning and
execution. Finally, we evaluate the same scenario on real robot systems shown in
Fig. 6. The team of robots was able to solve the problem dynamically while working
against opponents.

The next steps are to concentrate on a plan repair mechanism. Currently, we
plan again if the team is not longer able to reach the goal. Planning and replanning
increases the communication. As a result, an improvement would be to evaluate the
rate of coordination of the team as in [9]. Furthermore, wewill distribute the planning
process to all members of the team in our future work.



pRoPhEt MAS: Reactive Planning Engine for Multiagent Systems 157

Acknowledgments The project IMPERA is funded by the German Space Agency (DLR, Grant
number: 50RA1112) with federal funds of the Federal Ministry of Economics and Technology
(BMWi) in accordance with the parliamentary resolution of the German Parliament.

References

1. Brenner, M., Nebel, B.: Continual planning and acting in dynamic multiagent environments.
Autonomous Agents and Multi-Agent Systems, 19(3):297–331 (2009)

2. Brunskill, Emma andRussell, Stuart J.: RAPID:AReachableAnytimePlanner for Imprecisely-
sensed Domains. CoRR (2012)

3. Ghallab, M., Isi, C. K., Penberthy, S. Smith, D. E., Sun, Y., andWeld, D.: PDDL - The Planning
Domain Definition Language. Technical report, CVC TR-98-003/DCS TR-1165, Yale Center
for Computational Vision and Control (1998)

4. Helmert, M.:The Fast Downward Planning System. Journal of Artificial Intelligence Research
26 (2006)

5. Kumar, A., Zilberstein, S., and Toussaint,M.: ScalableMultiagent PlanningUsing Probabilistic
Inference

6. McCoy, J. and Mateas, M. An integrated agent for playing real-time strategy games. In Pro-
ceedings of the 23rd national conference on Artificial intelligence - Volume 3, AAAI’08, pages
1313–1318. AAAI Press (2008)

7. Russell, S. J. and Zilberstein, S.: Anytime sensing, planning, and action: A practical model
for robot control, pages 1402–1407. Proceedings of the International Conference on Artificial
Intelligence (1993)

8. Skubch, H., Wagner, M., Reichle, R., and Geihs, K.: A modelling language for cooperative
plans in highly dynamic domains. Mechatronics, 21:423–433 (2011)

9. Skubch, H., Wagner, M., Reichle, R., Triller, S., and Geihs, K.: Towards a comprehensive
teamwork model for highly dynamic domains. In Filipe, J., Fred, A., and Sharp, B., editors,
Proceedings of the 2nd International Conference on Agents and Artificial Intelligence, vol-
ume 2, page 121–127. INSTICC Press, INSTICC Press (2010)

10. Skubch, H.:Modelling and Controlling of Behaviour for Autonomous Mobile Robots. West-
deutscher Verlag GmbH (2013)

11. Ulusar, U. D.: Design and implementation of a real time planning system for autonomous
robots. volume 1, page 74–79. Industrial Electronics, IEEE International (2006)

12. Zickler, S., Laue, T., Birbach, O., Wongphati, M., and Veloso, M. M. Ssl-vision: The shared
vision system for the robocup small size league. In Baltes, J., Lagoudakis, M. G., Naruse, T.,
and Ghidary, S. S., editors, RoboCup, volume 5949 of Lecture Notes in Computer Science,
pages 425–436. Springer (2009)


	pRoPhEt MAS: Reactive Planning Engine for Multiagent Systems
	1 Introduction
	2 Related Work
	3 Design
	3.1 Overview of ALICA
	3.2 Expansions of ALICA
	3.3 Planning Framework

	4 Evaluation
	5 Conclusion
	References


