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Abstract We modify Q-MDP value method and observe the behaviors of a robot
with the modified method in an environment, where state information of the robot is
essentially indefinite. In Q-MDP value method, an action in every time step is chosen
based on a calculation of expectation values with a probability distribution, which is
the output of a probabilistic state estimator. The modified method uses a weighting
function with the probability distribution in the calculation so as to give precedence
to the states near the goal of the task. We applied our method to a simple robot
navigation problem in an incomplete sensor environment. As a result, the method
makes the robot take a kind of searching behavior without explicit implementation.

Keywords Q-MDP value method · Particle filters · Belief states · Partially observ-
able Markov decision process

1 Introduction

Uncertainty of state recognition is an inevitable problem for autonomous agents in the
real world. On the other hand, agents can sometimes choose appropriate actions even
where its state is quite uncertain. For example, a person can reach his/her bedroom
even if his/her house is in total darkness.

In robotics, online methods for solving POMDP (partial observable Markov deci-
sion process) problems have been proposed in [1–3]. These methods give an appro-
priate action of a robot by real-time search based on the partial knowledge of the
state of the robot and its surroundings, and a mathematical model of the task that
the robot is trying to complete. These online methods can be applied to POMDP
problems with high dimensionality.
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When a problem is to be defined in a low-dimensional state space, we can use
abundant computing resources, or we can choose some offline methods. In an offline
method, some parts of a POMDP problem is solved previously. Robots can utilize the
solution to choose their actions. Coastal navigation by Roy et al. is a straightforward
example [4]. This method is classified into the group of the AMDP (augmented
Markov decision process) methods in [5]. In this study, a robot used range sensors
for measurement of the distance from the walls in an indoor environment and the
outputs were used for self-localization. The behavior of the robot was planned in
a space spanned beforehand by four variables: the position on an X–Y coordinate
system, orientation, and an additional scalar value. The additional one represents the
level of the uncertainty of self-localization. Since the planner, which is based on the
dynamic programming [6], considers the easiness of self-localization, a robot with
the planned policy moves along the walls. With the behavior, the robot can keep an
appropriate distance from the walls for self-localization.

To use an AMDPmethod, we must prepare a state transition model that considers
when or where the robot can obtain sensor information. It is not always known
previously.

Previous knowledge about obtainment of information is not required in QMDP
valuemethod [7], which iswritten asQ-MDP value method in this paper. Thismethod
was proposed by Littman et al. two decades ago. In this method, a decision-making
policy is obtained without consideration of the information uncertainty. Instead,
uncertainty is considered in online calculations. The robot with this method chooses
an action that is stochastically effective to the task of the robot when a probability
distribution that represents the self-localization uncertainty is given.When the state is
clear, the robot can choose the identical action that is chosen by the decision-making
policy that does not consider the uncertainty.

We have applied Q-MDP value method to some tasks of robot soccer [8, 9].
Since the robot has poor computing resources, offline methods are suitable. Since
the transition of state uncertainty is then unpredictable in bruising soccer games, we
have chosenQ-MDPvaluemethod rather than anyAMDPmethod.On the other hand,
we never expected the Q-MDP value method to generate such a skillful behavior as
obtained in Roy’s research. That is because uncertainty of states is never considered
in the planning phase.

In this paper, we show that another kind of skillful behavior can be generated by
a small modification of the Q-MDP value method. The robot with the modification
method overcomes a lack of information by its search behavior,which is not explicitly
planned in offline calculations.

This paper is composed of the following sections. The modification of Q-MDP
value method is proposed in Sect. 2. In Sect. 3, we define a problem and some condi-
tions for simulation in which we observe and evaluate behaviors of a robot generated
by the modification method. We discuss results of the simulation in Sect. 4 and con-
clude this paper in Sect. 5.
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2 Modification of Q-MDP Value Method

2.1 Problem Definition

Q-MDP value method and our modification can be applied to a POMDP (partial
observable Markov decision process) problem that is defined as follows. In general,
for POMDPs not only the state of controlled objects, but also the optimal policies
are unknown in advance. However, we only handle the POMDP problems in which
the optimal policies are known when the state is known.

2.1.1 States

The state of a robot and its environment can be explained by n state variables:
x1, x2, . . . , xn . Each state x = (x1, x2, . . . , xn) belongs to a state spaceX . There are
final states in the state space. The set of final states is denoted by Xf ⊂ X . When the
state becomes one of the final states, the task defined below is regarded as finished.

2.1.2 Actions and State Transitions

The robot chooses one action from the action set:A = {a1, a2, . . . , am} at each time
step. When the robot executes an action, a state transition occurs. State transitions
are stochastic and their model is represented by the probability density pa

xx′ where
x ∈ X is the state where the action a ∈ A is chosen and x′ ∈ X is one of the
posterior states after the action a.

2.1.3 Evaluation of Behavior Based on Optimal Control Problem

The evaluation of the above set of an action and states: x, a, x′ is given by a real
number. In this paper, this number is named as a penalty ra

xx′ ∈ �.
We consider a function V : X → �. V (x) is the sum of penalties from x to a final

state when a decision-making policy π : X → A is given. The purpose of decision
making is to minimizes V (x) in each state x.

2.1.4 Belief State

In a POMDP problem, x is unknown. Instead, the state information is given as a
probability density function b : X → �. The probability that the actual state is in a
set Y ⊂ X is given as

B(Y ) =
∫

Y
b(x)dx. (1)

b is called belief state of the robot [10].
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2.1.5 Recognition of Final States

The robot is informed whether the task is finished or not from someone or some
sensors. In other words, the robot does not need to judge from the probability density
function b whether the actual state is in Xf or not.

This assumption is not arbitrary and can be applied to some tasks. In the case of
robot soccer, for example, the finish of the task (scoring) is notified by the referee. In
the example of the dark house mentioned in the introduction, the person may notice
that he/she is in a bedroom when he/she touches a surface of a bed.

Under this assumption, the actual state is not a final state when the robot knows
that task is not finished. We can therefore add the following operation of the belief
state after each action:

b(x) −→ 0 (∀x ∈ Xf) (2)

if the task is not finished after the action.

2.2 Q-MDP Value Method

When a policy π and the value function V that is derived from π is known,
Q-MDP value method chooses a stochastically optimal action based on the following
function:

QMDP(a) =
∫

x
b(x)

∫
x′

pa
xx′

(
V (x′) + ra

xx′
)

dx′dx. (3)

The action a ∈ A that minimizes QMDP(a) is regarded as the optimal action.
When the penalty ra

xx′ in Eq. (3) is a constant, Eq. (3) can be considered as a
probabilistic version of the artificial potential method [11]. To choose an action that
minimizes the expected value of energy of the value function V after the action is
the strategy of Q-MDP value method.

Q-MDP value method has the problem of local minima as is the case with almost
all of artificial potential methods. The robot with Q-MDP method cannot choose an
appropriate action when the expected value of energy cannot be improved after any
action.

2.3 Modification of Q-MDP Value Method with an Attentional
Function

We think that a subtle modification of Q-MDP method is effective when Eq. (2) can
be applied to the task. Our idea of the modification is the introduction of attention to
some important areas in the state space. For example,
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Z(a) =
∫

x∈X \Xf

w(x)

∫
x′

pa
xx′

(
V (x′) + ra

xx′
)

dx′dx, where (4)

w(x) = b(x)

V (x)
(5)

can be used instead of Eq. (3). In Eq. (3), the decision is weighted by b(x). That is,
the larger b(x) a state has, the more influential the state on the decision. In Eq. (4),
on the other hand, the weight is b(x)/V (x). Since the value V (x) denotes the total
cost from x to a final state, not only the probability density, but also the closeness to
a final state gives a large weight to a state for decision making.

We can expect that the robot with Eq. (4) moves as it checks preferentially a part
of the probability distribution of b near the final state. If the robot cannot reach in
a final state, the part of the distribution can be erased with Eq. (2). This selectivity
is not shown in Eq. (3). When the state is certain, moreover, the decision making
with Eq. (4) is optimal as a problem of MDP (Markov decision process) as well as
Q-MDP value method.

3 Generation and Evaluation of Behavior with Simulation

3.1 A POMDP Problem with Indefiniteness of State
Recognition

We define a task and a robot environment where the state of the robot is essentially
indeterminate.

3.1.1 Environment, Task, and Action

As shown in Fig. 1, There is a mobile robot and a point landmark in the environment.
The point landmark is set at the origin of the X–Y coordinate system in the figure.

Fig. 1 Environment



8 R. Ueda

The state of the robot is denoted by x = (x, y, θ), where (x, y) is the position of the
robot in the X–Y coordinate system and θ denotes the orientation of the robot from
the X-axis.

The task given to the robot is to touch the goal point (xG, yG) with its body as
soon as possible. When the radius of the robot is r , the state is a final state when
(x, y), the center position of the robot, is in the circle whose radius and center are r
and (xG, yG), respectively.

The robot can choose one action from the following action setA = {ccw, cw, fw},
where

• ccw: the robot rotates by ω + σω,
• cw: the robot rotates by −ω + σω and,
• fw: the robot goes forward v + σv in the θ direction.

σω and σv in this list represent Gaussian noises in each motion. The robot can run
through on the point landmark.

3.1.2 Recognition of the Robot

The robot recognizes its state as a probability density function b, which is defined in
Eq. (1). b is referred to as a belief state.

The belief state changes when the robot moves or observes something. When
the robot executes an action, the probability distribution represented by b moves
and diffuses based on the amounts of displacement and noises. In regard to the
observation, the robot can observe the point landmark, andwhether the task is finished
or not.

The robot can observe the point landmark at any state. The robot measures (�, ϕ)

by one observation. � is the direction from the landmark to the robot, and ϕ is the
relative orientation of the landmark from the robot. Gaussian noises contain in � and
ϕ. The noises on � and those on ϕ are independent of each other. This information
can be reflected to the belief state b based on Bayes’ theorem.

The robot can also reflect the information whether the task is finished or not to b.
This assumption is mentioned in Sect. 2.1.

In this condition, the state x is almost indefinite in a task. The robot just knows
the relative pose from the landmark when it observes the landmark. The information
whether the task is finished gives subtle and implicit information about the X–Y
coordinate of the robot.

3.1.3 Implementation of a Particle Filter for Self-localization

In the simulation, the belief state and its operations are implemented by a particle
filter [12]. The particle filter that is used by the robot has the following particle set:

Ξ = {ξ (i) = (x(i), w(i))|i = 1, 2, . . . , N } (6)
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where x(i) and w(i) are the state and the weight of a particle ξ (i) respectively.
With the particles, Eq. (1) is approximated as

B(X) =
N∑

i=1

w(i)δ(x(i) ∈ X). (7)

When the robot obtains a set of measurement values (�, ϕ) from the landmark
observation, the weight of each particle is changed to

w(i)′ =α−1w(i)N (� − �(i), σ 2
� )N (ϕ − ϕ(i), σ 2

ϕ ) (8)

where

α =
N∑

i=1

w(i)′ , and (9)

N (x, σ ) = 1√
2πσ 2

exp

[
− x2

2σ 2

]
. (10)

(�(i), ϕ(i)) are the direction and the orientation of the landmark from x(i). σ� and σϕ

are the standard deviations of the measurement of � and ϕ respectively.
Particles frequently converge on some points where the robot does not exist. In

such a case, Bayes’ theorem cannot be applied to the approximated b accurately. To
reset this situation, we use the sensor resetting algorithm [13]. When α in Eq. (8) is
smaller than a threshold value after an observation of the landmark, preknowledge is
discarded through the replacement of all particles. In the replacement, the particles
are distributed in the area where the robot can obtain the observation with a high
probability.

We implement Eq. (2). The recognition of whether the task is finished or not is
reflected to the particles as

w(i)′ =
{

α−110−5w(i) (x(i) ∈ Xf)

α−1w(i) (otherwise)
(11)

after every action. This means that we can erase the particles in the area of final
states. 10−5 is an alternative value for zero.

3.2 Value Function and Penalty

In the simulation trials, we compare some methods. All of the methods use a value
function that is defined by
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V (x) =
{

ϕG/ω + (�G − r)/v (�G > r)

0 (otherwise)
(12)

for decision making. This function can be considered as a potential function in an
artificial potential method. �G and ϕG denote, respectively, the relative distance and
orientation of the goal from the robot. Though the form of the optimal value function
of this task is more complex than that of this function, it is sufficient for comparison.

We also define that the robot is given a penalty ra
xx′ = 1 after every action. To

minimize the sum of this penalty in the task, the robot must finish the task in as small
number of steps as possible.

3.3 Parameters on the Simulation

We choose values of the parameters in the simulation as shown in Table1. To tell the
truth, this set of values is selective for obtaining the behavior that we have interest
in. We should investigate the influence of parameter choices for the behavior of the
robot in the future.

3.4 Methods Compared in the Simulation

We compare the following decision-making methods:

(A) the modified Q-MDP value method that uses Eq. (4),
(B) Q-MDP value method,

Table 1 Parameters for the simulation

Initial state x = 1000mm, y = 0mm, θ = −90◦

Goal position xG = 0mm, yG = 200mm

Radius of the robot r = 50mm

Displacement on an action w = 5◦, v = 10mm

Amounts of noise on an action σw = 0.5◦, σv = 1mm

Frequency of a landmark observation every 5 steps

Frequency of an observation of task fin-
ished/unfinished

every step

Amounts of noise on a landmark observation σ� = 0.1 � (10% of �), σϕ = 10◦

Number of particles 1000

Threshold value to invoke a sensor resetting 10−6

Ranges of the environment −4000 ≤ x ≤ 4000mm,
−4000 ≤ y ≤ 4000mm
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Fig. 2 Distribution of
particles on trials

(C) decision making based on the weighted mean state of the particles, and
(D) decision making based on the actual state.

Since the actual state is indefinite, the method C will not work. We can expect that
Q-MDP value methods (A and B) can give proper actions when the robot is far from
the landmark and the goal. In Fig. 2, we show a state of the robot and particles in
a trial after several observation of the landmark. The particles are distributed in a
torus-shape area on the X–Y coordinate system. θ of each particle reflects the relative
orientation between the landmark and the robot. When the particle distributes as
shown in this figure, Q-MDP value methods chooses an action that makes the robots
come close to the landmark because the expected value calculated from Eq. (12) will
be reduced. However, we can also expect that decision making will be difficult when
the robot is near the landmark and the goal due to the indefiniteness of the state.

4 Discussion with the Simulation Results

4.1 Results of Comparison

100 trials are examined for each method. In each trial, we count the number of steps
of the robot from the start state to a goal state. When the number of steps reaches to
500(step), we regard the trial as a failed one and stop the trial. In Table2, the success
rates, the average steps in success trials, and the average distance from the robot to
the goal at 500th step in failed trials are shown.

As shown in this table, the robot cannot come near the goal and the landmark with
the method C, whereas the robot with A and B can be near the goal even if a trial is
failed. The difference between the results of A and B is the success rate. Though the
absolute position of the robot on the X–Y coordinate system is uncertain, the method
A, the modified Q-MDP value method, can bring the robot to the goal in 87 trials.
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Table 2 Comparison of the results

Methods Successful trials
(%)

Avg. # of
steps (step)

Avg. final dist. on failed trials
(mm)

(A) modified Q-MDP 87 289 260

(B) Q-MDP 17 242 223

(C) weighted average 0 – 993

(D) state known 100 121 –

We show two cases of deadlock in failed trials. (a) and (b) are obtained with the
method A and B respectively. In these situations, the belief states are trapped in local
minimum points. Both Eqs. (3) and (4) have local minima.

Through the trials, the distribution of particles is symmetric around the landmark
when the deadlocks happen in the case of the Q-MDP value method as shown in (b).
On the other hand, the distribution is not symmetric at deadlocks in the case of
the modified one. It would appear that this tendency is one of the reasons for the
difference in success rate between the Q-MDP value method and the modified one.
The pattern of distribution shown in (b) is generated frequently in this task. The
modified Q-MDP value method can choose a sequence of appropriate actions even
when the distribution of particles is symmetric around the landmark. In that case,
the particles near the goal have heavier weights than the others and the motion of the
robot is dragged by the particles with heavy weights (Fig. 3).

4.2 Generation of Search Behavior

We show a typical behavior of the robot with themethodA in Fig. 4. Though the value
function defined in Eq. (12) never considers the uncertainty of state recognition, the
behavior of the robot compensates for the state indefiniteness. The robot sweeps a
circle around the landmark and goes into the goal that is on the circle.

To explain this behavior, we show the distributions of particles at some steps of
this trial in Fig. 5. At first, the robot went to the direction of the landmark as shown in
(a) and (b). Between (b) and (d), the robot got away from the landmark and went on

Fig. 3 Deadlocks shown in
failed trials

(a) (b)
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Fig. 4 A trajectory with the modified Q-MDP value method

(a)

(d) (e) (f) (g)

(b) (c)

Fig. 5 Distributions of particles on the trial

the circle. Here, we pay attention to the situation in (c). Particles that formed a cluster
marked with “*” was given heavy weights by the modified Q-MDP method. In this
case, the action that brought these particles into the goal was chosen. Therefore, the
robot started a clockwise turn at (c). We think that this choice would be different
from the decision with Q-MDP value method, since Q-MDP value method does not
weight particles in such a selective manner.

After (c), the modified Q-MDPmethod chose the sequence of actions that brought
particles in the goal from one to the next, and the robot whose state was somewhere
in the distribution of particles, reached the goal.
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Fig. 6 Other trajectories with the modified Q-MDP value method (Fig. 4 shows the trajectory of
the 9th trial)

We also show the trajectories obtained in the first ten trials with the modified Q-
MDPvaluemethod in Fig. 6. Behaviors that compensate uncertainty of the state could
be seen in almost trials with the modified Q-MDP value method. The difference in
the success rate between Q-MDP and the modified Q-MDP value methods suggests
it. However, there were failed trials in which the robot got trapped into a state that had
a local minimum value V (x) with both the Q-MDP value methods. The modified
Q-MDP value method does not completely remove the problem of local minima
though this method can reduce the frequency of the trapping.

5 Conclusion

We modified Q-MDP value method and applied it to a simulated POMDP problem
in which the state of the robot was essentially indefinite. From the simulation, we
can study the following:

• the robot shows a kind of search behavior that compensates for the lack of infor-
mation about its state with the modified Q-MDP value method, and

• the modified Q-MDP value method improves the success rate of trials in the sim-
ulation from 17 to 87% when compared to Q-MDP value method.

In the future works, we should apply the modified Q-MDP value method in this
task with various parameters and other tasks so as to investigate the following:

• whether we can find other complex behaviors of the robot with the modified
Q-MDP value method, and

• the condition that the modified Q-MDP value method is stable.
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