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Abstract. Three-way decisions for classification consist of the actions
of acceptance, rejection and non-commitment (i.e., neither acceptance
nor rejection) in deciding whether an object is in a class. A difficulty
with three-way decisions is that one must consider costs of three actions
simultaneously. On the other hand, for two-way decisions, one simply
considers costs of two actions. The main objective of this paper is to take
advantage of the simplicity of two-way decisions by interpreting three-
way decisions as a combination of a pair of two-way decision models.
One consists of acceptance and non-acceptance and the other consists
of rejection and non-rejection. The non-commitment of the three-way
decision model is viewed as non-acceptance and non-rejection of the pair
of two-way decision models.

1 Introduction

In concept learning, concept formation and classification, one typically uses a
strategy of binary, two-way decisions. That is, an object is either accepted or
rejected as being an instance of a concept or a class. One makes a decision with
minimum errors or costs. An advantage of a two-way decision strategy is its
simplicity. One only needs to consider two actions. On the other hand, when one
is forced to make either an acceptance or a rejection decision, it is impossible to
arrive at both a low level of incorrect acceptance error and a low level of incorrect
rejection error at the same time [1]. To avoid this difficulty, three-way decisions
are widely used in many fields and disciplines [2–11] as an alternative effective
strategy. In contrast to two-way decisions, a third option called non-commitment,
namely, neither acceptance nor rejection, is added. Three-way decisions enable us
to reduce incorrect acceptance error and incorrect rejection error simultaneously
at the expense of non-commitment for some objects.

In earlier formulations of three-way decisions with rough sets [12], three ac-
tions are considered and compared simultaneously. The consideration of six types
of costs of three actions makes three-way decisions more complicated than two-
way decisions, as the latter only need to consider four types of costs. A recent
study by Yao [13] on three-way decisions based on two evaluations suggests that
three-way decisions can in fact be interpreted through two-way decisions. In this

T. Andreasen et al. (Eds.): ISMIS 2014, LNAI 8502, pp. 73–82, 2014.
c© Springer International Publishing Switzerland 2014



74 X. Deng, Y. Yao, and J. Yao

paper, we revisit the two-evaluation-based three-way decision model and explic-
itly show that three-way decisions can be formulated as a combination of a pair
of two-way decision models, namely, an acceptance model and a rejection model.
To achieve this goal, we slightly modify the interpretation of a two-way decision
model. In the standard interpretation of a two-way decision model, acceptance
and rejection are dual actions. That is, failing to accept is the same as rejecting,
and vice versa. However, in our acceptance model, we have acceptance and non-
acceptance decisions. Failing to accept is non-acceptance, rather than rejecting.
Similarly, in the rejection model, we have rejection and non-rejection. Failing to
rejection is non-rejection, rather than accepting. By combining the two models
together, we have three actions of acceptance, rejection, and non-commitment,
where non-commitment is interpreted as non-acceptance and non-rejection.

The rest of the paper are organized as follows. Section 2 gives a brief review
of two-evaluation-based three-way decisions proposed by Yao [13]. Section 3 pro-
poses an interpretation of three-way decisions based on a pair of two-way deci-
sions. Section 4 calculates the acceptance and rejection thresholds using a pair
of two-way decision models.

2 An Overview of Three-Way Decisions

The purpose of three-way decisions is to divide objects in an universe U , accord-
ing to a criteria, into three pair-wise disjoint regions, namely, positive, negative
and boundary regions, denoted by POS, NEG and BND. A criteria can be con-
sidered to be a set of conditions. Due to a lack of information, the true state of
satisfiability of the criteria usually is unknown. The degree to which the criteria
is satisfied must be estimated according to the partial information. We use a
pair of evaluation functions to estimate whether the criteria is satisfied or not.

Definition 1. Suppose U is a finite non-empty set of objects. Based on a pair
of posets (La,�a) and (Lr,�r), where �a and �r are two partial orderings, an
acceptance evaluation and a rejection evaluation can be defined as a pair of map-
pings: va : U −→ La and vr : U −→ Lr. For each object x ∈ U , va(x) ∈ La and
vr(x) ∈ Lr represent the acceptance-evaluation value and rejection-evaluation
value, respectively.

For two objects x, y ∈ U , va(x) �a va(y) indicates that x is not more acceptable
than y. Similarly, vr(x) �a vr(y) indicates that x is not more rejectable than
y. Notions, such as benefits, risks, costs or confidence, can be used to interpret
partial orderings �a and �r.

For an object, a decision is made if its evaluation value reaches a certain level.
We introduce the notion of designated values as sets of values for acceptance and
rejection.

Definition 2. Suppose L+
a is the set of designated values for acceptance, satis-

fying condition ∅ �= L+
a ⊆ La, and L−

r is the set of designated values for rejection,
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satisfying condition ∅ �= L−
r ⊆ Lr. The positive, negative and boundary regions

of three-way decisions are defined by:

POS(L+
a ,L−

r )(va, vr) = {x ∈ U | va(x) ∈ L+
a ∧ vr(x) �∈ L−

r },
NEG(L+

a ,L−
r )(va, vr) = {x ∈ U | va(x) �∈ L+

a ∧ vr(x) ∈ L−
r },

BND(L+
a ,L−

r )(va, vr) = (POS(L+
a ,L−

r )(va, vr) ∪ NEG(L+
a ,L−

r )(va, vr))
c

= {x ∈ U | (va(x) �∈ L+
a ∧ vr(x) �∈ L−

r ) ∨
(va(x) ∈ L+

a ∧ vr(x) ∈ L−
r )}, (1)

where (·)c denotes the complement of a set.

The three decision regions are pair-wise disjoint and some of them may be empty.
They do not necessarily form a partition of the universe.

3 Three-Way Decisions as a Combination of a Pair of
Two-Way Decisions

Two models of three-way decisions are interpreted based on two-way decisions. A
general model uses two evaluations and a specific model uses a single evaluation.

3.1 Two-Evaluation-Based Model

Let va : U −→ La denote the acceptance-evaluation function, (A, Ā) denote the
two-way decisions for acceptance, and L+

a ⊆ La denote the designated values for
acceptance. The two decision regions of an acceptance model, i.e., the (A, Ā)-
model, are defined by:

POSL+
a
(va) = {x ∈ U | va(x) ∈ L+

a },
NPOSL+

a
(va) = (POSL+

a
(va))

c = {x ∈ U | va(x) �∈ L+
a }, (2)

where POSL+
a
(va) is called the acceptance region and NPOSL+

a
(va) is called the

non-acceptance region. For an object x ∈ U , we can make two-way decisions:

(A) If va(x) ∈ L+
a , then take an acceptance action, i.e., x ∈ POSL+

a
(va);

(Ā) If va(x) �∈ L+
a , then take a non-acceptance action, i.e., x ∈ NPOSL+

a
(va).

The acceptance rule (A) classifies objects into an acceptance region. The non-
acceptance rule (Ā) classifies objects into the non-acceptance region. The two
regions are disjoint and their union is the universe U .

Similarly, let vr denote the rejection-evaluation function, (R, R̄) denote the
two-way decisions for rejection, and L−

r ⊆ Lr denote the designated values for
rejection. The two-way decision regions of a rejection model, i.e., (R, R̄)-model,
are defined by:

NEGL−
r
(vr) = {x ∈ U | vr(x) ∈ L−

r },
NNEGL−

r
(vr) = (NEGL−

r
(vr))

c = {x ∈ U | vr(x) �∈ L−
r }, (3)
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where NEGL−
r
(vr) is called the rejection region and NNEGL−

r
(vr) is called the

non-rejection region. For an object x ∈ U , we can make two-way decisions:

(R) If vr(x) ∈ L−
r , then take a rejection action, i.e., x ∈ NEGL−

r
(vr);

(R̄) If vr(x) �∈ L−
r , then take a non-rejection action, i.e., x ∈ NNEGL−

r
(vr).

The rejection rule (R) classifies objects into the rejection region. The non-
rejection rule (R̄) classifies objects into the non-rejection region. The two regions
are disjoint and their union is the universe U .

By combining decision rules of the pair of two-way decision models for ac-
ceptance and for rejection, we have three-way decision rules: for each object
x ∈ U ,

(P) If va(x) ∈ L+
a ∧ vr(x) �∈ L−

r , then take an acceptance action,

i.e., x ∈ POS(L+
a ,L−

r )(va, vr);

(R) If vr(x) ∈ L−
r ∧ va(x) �∈ L+

a , then take a rejection action,

i.e., x ∈ NEG(L+
a ,L−

r )(va, vr);

(B) If (va(x) ∈ L+
a ∧ vr(x) ∈ L−

r ) or (va(x) �∈ L+
a ∧ vr(x) �∈ L−

r ),

then take a non-commitment action, i.e., x ∈ BND(L+
a ,L−

r )(va, vr).

They in fact define the three regions, POS(L+
a ,L−

r )(va, vr), NEG(L+
a ,L−

r )(va, vr)

and BND(L+
a ,L−

r )(va, vr) of three-way decisions given in Equation (1). Table 1
shows the connection between two-way decisions and three-way decisions. An
acceptance decision is interpreted as a combination of acceptance and non-
rejection, i.e.,

POS(L+
a ,L−

r )(va, vr) = POSL+
a
(va) ∩ NNEGL−

r
(vr). (4)

Combining rejection and non-acceptance decisions forms the rejection decision,
i.e.,

NEG(L+
a ,L−

r )(va, vr) = NEGL−
r
(vr) ∩ NPOSL+

a
(va). (5)

Making both an acceptance and a rejection decision is a contradiction of a pair of
two-way decisions, which results in a non-commitment decision. Neither making
an acceptance nor making a rejection decision leads to a different type of non-
commitment decision. The union of the two sets forms the boundary region of
three-way decisions:

BND(L+
a ,L−

r )(va, vr) = (POSL+
a
(va) ∩ NEGL−

r
(vr))

∪(NPOSL+
a
(va) ∩ NNEGL−

r
(vr)). (6)

In many applications, we tend to avoid making a contradiction during decision-
makings by imposing the following condition:

POS(L+
a )(va) ∩NEG(L−

r )(vr) = ∅. (7)
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As a result, we have BND(L+
a ,L−

r )(va, vr) = NPOSL+
a
(va)∩NNEGL−

r
(vr), and the

non-commitment decision are interpreted as neither acceptance nor rejection.

Table 1. Interpretation of three-way decisions based on two-way decisions

��������������(A, Ā)-model
(R, R̄)-model

rejection non-rejection

acceptance
non-commitment

acceptance
(contradiction)

non-acceptance rejection non-commitment

3.2 Single-Evaluation-based Model

Suppose v : U −→ L is an evaluation function defined on a totally ordered set
(L,�), where� is a total ordering, and let L+ ⊆ L and L− ⊆ L denote the sets of
designated values for acceptance and rejection, respectively. When we use v in the
(A, Ā)-model, we define the two regions of two-way decisions for acceptance by:

POSL+(v) = {x ∈ U | v(x) ∈ L+},
NPOSL+(v) = (POSL+(v))c = {x ∈ U | v(x) �∈ L+}, (8)

where POSL+(v) is the acceptance region and NPOSL+(v) is the non-acceptance
region. Similarly, when we use v in the (R, R̄)-model, we define the two regions
of two-way decisions for rejection by:

NEGL−(v) = {x ∈ U | v(x) ∈ L−},
NNEGL−(v) = (NEGL−(v))c = {x ∈ U | v(x) �∈ L−}, (9)

where NEGL−(v) is the rejection region, and NNEGL−(v) is the non-rejection
region.

As shown by Figure 1, combining the pair of two-way decisions forms three-
way decision regions.

In order to ensure that the three-way decision regions are pair-wise disjoint,
we assume that the following property holds:

(t) L+ ∩ L− = ∅.
According to condition (t), we can define three-way decision regions using a
single evaluation by:

POS(L+,L−)(v) = {x ∈ U | v(x) ∈ L+},
NEG(L+,L−)(v) = {x ∈ U | v(x) ∈ L−},
BND(L+,L−)(v) = {x ∈ U | v(x) �∈ L+ ∧ v(x) �∈ L−}. (10)

That is, a single-evaluation-based three-way decision model can be interpreted
based on a pair of two-way decision models.
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Three-way decisions AcceptanceRejection
Non-

commitment

v(x) �∈ L+ ∧ v(x) �∈ L−

rejection

Two-way decisions for

v(x) ∈ L−

Rejection Non-rejection

Two-way decisions for

acceptance v(x) ∈ L+

AcceptanceNon-acceptance

+

Fig. 1. Interpretation of a single-evaluation-based three-way decisions

4 Probabilistic Three-Way Decisions

In order to apply three-way decisions, we need to investigate the following fun-
damental issues [13]:

a) construction and interpretation of evaluation functions,
b) construction and interpretation of the sets of designated values of

acceptance and rejection, respectively, and
c) analysis of the cost or risk of two-way decisions and three-way deci-

sions, as well as their relationships.

We discuss these issues in the context of probabilistic three-way decisions, which
is a generalization of decision-theoretic rough sets [12] and has received much
attention recently [14–16].

4.1 Main Results of Probabilistic Three-Way Classifications

Suppose U is a universe of objects. An object in U is represented by a vector
x = (x1, x2, . . . , xd) in a d-dimensional space, where xi, 1 ≤ i ≤ d, is the object’s
value on the i-th attribute. Using the terminology of rough set theory, a vector
x is in fact the representation of the set of objects with the same description. In
the rest of this paper, we simply consider U as a set of vectors. Let C denote a
concept or a class of interest, Cc denote its complement, and Pr(C|x) denote the
conditional probability that an object is in C given that the object is described
by x. The main task of probabilistic classifications is to decide, according to
Pr(C|x), whether an object with description x is an instance of C.

The conditional probability Pr(C|x) is considered to be an evaluation func-
tion for building a three-way decision model. The unit interval [0, 1] is the set
of evaluation status values, that is, L = [0, 1]. Given a pair of thresholds (α, β)
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with 0 ≤ β < α ≤ 1, we construct the sets of designated values for acceptance
and rejection as follows:

L+ = {a ∈ [0, 1] | a  α}, L− = {b ∈ [0, 1] | b � β}. (11)

By inserting L+ and L− into Equation (10), we immediately obtain the main
results of probabilistic three-way classifications [17]:

POS(α,·)(C) = {x ∈ U | Pr(C|x) ≥ α},
NEG(·,β)(C) = {x ∈ U | Pr(C|x) ≤ β},
BND(α,β)(C) = {x ∈ U | β < Pr(C|x) < α}. (12)

The threshold α is called the acceptance threshold and β is called the rejection
threshold. A crucial issue is how to interpret and determine the pair of thresh-
olds [1]. We present a solution by using a pair of two-way decision models based
on Bayesian decision theory [18].

4.2 Calculating the Acceptance Threshold

To build a two-way decision model, i.e., (A, Ā)-model, we need to introduce
an acceptance threshold 0 < α ≤ 1. The two regions of probabilistic two-way
decisions for acceptance are given by:

POSα(C) = {x ∈ U | Pr(C|x) ≥ α},
NPOSα(C) = {x ∈ U | Pr(C|x) < α}. (13)

Based on Bayesian decision theory [18], we calculate the optimal acceptance
threshold α.

Let Ω = {C,Cc} denote the set of states and ActionsA = {aA, aĀ} denote
the set of two decision actions, namely, an acceptance action aA and a non-
acceptance action aĀ. We assume each action is associated with certain cost,
loss or risk. Such a loss function is given by a 2× 2 matrix:

Action x ∈ C (Positive instance) x ∈ Cc (Negative instance)
aA λAP = λ(aA|C) λAN = λ(aA|Cc)
aĀ λĀP = λ(aĀ|C) λĀN = λ(aĀ|Cc)

Each cell represents the loss or cost of taking an action a ∈ Actions when
the state of an object is ω ∈ Ω, namely, λ(a|ω). For example, λĀP = λ(aĀ|C)
represents the risk of taking action aĀ given that x ∈ C. The conditional risks
of taking actions aA and aĀ for x ∈ U are given by:

R(aA|x) = λ(aA|C)Pr(C|x) + λ(aA|Cc)Pr(Cc|x),
R(aĀ|x) = λ(aĀ|C)Pr(C|x) + λ(aĀ|Cc)Pr(Cc|x). (14)

The overall risk of the acceptance and non-acceptance decisions for all objects
can be expressed by:

R(α) = RPOS(α) +RNPOS(α),

=
∑

x∈POSα(C)

R(aA|x) +
∑

x∈NPOSα(C)

R(aĀ|x). (15)
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By assuming the following two conditions,

(c0) λAP < λĀP , λĀN < λAN

we obtain the optimal acceptance threshold α that minimizing R:

α =
(λAN − λĀN )

(λAN − λĀN ) + (λĀP − λAP )

=

(
1 +

λĀP − λAP

λAN − λĀN

)−1

(16)

It can be verified that 0 < α ≤ 1. The detailed procedure for deriving α can be
found in [12] .

4.3 Calculating the Rejection Threshold

To build a two-way decision model for rejection, i.e., (R, R̄)-model, we need a
rejection threshold 0 ≤ β < 1. The two regions of probabilistic two-way decisions
for rejection are given by:

NEGβ(C) = {x ∈ U | Pr(C|x) ≤ β},
NNEGβ(C) = {x ∈ U | Pr(C|x) > β}. (17)

The rejection threshold β can be computed by using Bayesian decision theory.
Let Ω = {C,Cc} denote the set of states, and ActionsR = {aR, aR̄} denote

the set of two decision actions, namely, a rejection action aR and a non-rejection
action aR̄. A loss function is given by a 2× 2 matrix:

Action x ∈ C (Positive instance) x ∈ Cc (Negative instance)
aR λRP = λ(aR|C) λRN = λ(aR|Cc)
aR̄ λR̄P = λ(aR̄|C) λR̄N = λ(aR̄|Cc)

The overall risk of the rejection and non-rejection decisions for all objects is
expressed by:

R′(β) =
∑

x∈NEGβ(C)

R(aR|x) +
∑

x∈NNEGβ(C)

R(aR̄|x), (18)

where R(aR|x) and R(aR̄|x) are conditional risks of taking actions aR and aR̄
for x ∈ U , respectively. By assuming the following conditions,

(c0′) λR̄P < λRP , λRN < λR̄N .

we obtain the optimal rejection threshold β that minimizing R′:

β =
(λR̄N − λRN )

(λR̄N − λRN ) + (λRP − λR̄P )

=

(
1 +

(λRP − λR̄P )

(λR̄N − λRN )

)−1

(19)

It can be verified that 0 ≤ β < 1.
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4.4 Combing Results of a Pair of Two-Way Decision Models

To build a three-way classification model, we combine a pair of two-way classi-
fication models introduced in the last two subsections. According to condition
(t), we require 0 ≤ β < α ≤ 1, that is,

(c1) α > β ⇐⇒ (1 +
(λĀP − λAP )

(λAN − λĀN )
)−1 > (1 +

(λRP − λR̄P )

(λR̄N − λRN )
)−1.

Using this condition, we immediate obtain three-way probabilistic regions in
Equation (12).

To establish a connection to the existing formulation of probabilistic three-way
classification [12], we further assume:

(c2) λNP = λĀP = λR̄P , λNN = λĀN = λR̄N ,

where λNP and λNN denote the costs of decisions of non-commitment. That is,
the cost of non-acceptance is the same as the cost of non-rejection, and both of
them are the same as the cost of non-commitment. In this case, for three-way
decisions, we have a set of three actions. Suppose Actions = {aA, aR, aN} is the
set of actions for acceptance, rejection and non-commitment. The loss function
is given by a 3× 2 matrix:

Action x ∈ C (Positive instance) x ∈ Cc (Negative instance)
aA λAP = λ(aA|C) λAN = λ(aA|Cc)
aR λRP = λ(aR|C) λRN = λ(aR|Cc)
aN λNP = λ(aN |C) λNN = λ(aN |Cc)

It can be proved that the pair of thresholds (α, β) computed from Equations (16)
and (19) in fact minimizes the overall risk of three-way classifications:

R(α, β) = RPOS(α) +RNEG(β) +RBND(α, β), (20)

where the risks of the three regions are defined similarly as earlier. In this way,
we obtain three-way decisions classifications by combining a pair of two-way
decision models.

5 Conclusion

A pair of two-way decision models, i.e., one for acceptance and non-acceptance,
the other for rejection and non-rejection, is used to derive and interpret three-
way decisions. An advantage of this interpretation is the simplicity derived from
a consideration of only two actions, rather than three actions, simultaneously.
That is, we investigate separately two 2 × 2 loss matrices of two-way decisions
and combine the results into a 3 × 2 loss matrix of three-way decisions. We
compute an acceptance threshold and a rejection threshold independently in a
pair of two-way decision models. By combine the two thresholds together, we
obtain a three-way classification model. Our analysis clearly shows the relative
independence and the connection of the two thresholds in probabilistic three-way
classification.
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