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Abstract. One of the recently addressed research directions focuses on
the problem of mining topic evolutions from textual documents. Follow-
ing this main stream of research, in this paper we face the different, but
related, problem of mining the topic evolution of entities (persons, com-
panies, etc.) mentioned in the documents. To this aim, we incrementally
analyze streams of time-stamped documents in order to identify clusters
of similar entities and represent their evolution over time. The proposed
solution is based on the concept of temporal profiles of entities extracted
at periodic instants in time. Experiments performed both on synthetic
and real world datasets prove that the proposed framework is a valu-
able tool to discover underlying evolutions of entities and results show
significant improvements over the considered baseline methods.

1 Introduction

Topic Detection and Tracking (TDT) [3,22,5,10] is an important research area
which applies data mining algorithms in order to find and follow topics in streams
of news or, in general, in streams of textual documents. According to the clas-
sification suggested in [7], there are three main research lines in TDT: i) Seg-
mentation - documents coming from a stream are clustered according to their
topic. Each cluster represents the same topic across the time dimension. ii) New
topic detection - new clusters are identified in the stream. iii) Topic tracking -
evolutions of clusters are tracked. In this case, new documents can be associated
to existing clusters, causing changes in clusters’ properties.

By focusing our attention on topic tracking, in this paper, we argue that it is
possible to use such techniques to discover evolutions of entities over time. We
focus on entities (e.g. people, organizations) having particular roles (e.g. perpe-
trator, victim, in the risk identification and analysis domain) in particular types
of domain-dependent relationships (e.g. kill, steal). These entities are consid-
ered as units of analysis. In this respect, the proposed framework identifies such
entities and incrementally analyzes streams of documents in order to discovery
clusters of “similar” entities and represent their evolution over time. To this aim,
we apply a time-slice density estimation method [2] that allows us to represent
the profile of each entity. Moreover, it allows us to analyze profiles evolution by
measuring the rate of change of properties and peculiarities of entities activities’
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over a given time horizon. At this purpose, we apply a time-slice density estima-
tion method [2] that allows us to represent the profile of each entity. Moreover,
it allows us to analyze profiles evolution by measuring the rate of change of
properties and peculiarities of entities activities’ over a given time horizon.

In the literature, several papers have faced the problem of mining evolutions
in streams of documents and, in particular, the problem of tracking topics, ideas
and “memes” [14,24]. However, most of the work considers single keywords or
short phrases in the documents as units of analysis. On the contrary, we con-
sider as units of analysis the entities that can be associated with (identified in)
the documents. This means that we identify the evolution of entities by ana-
lyzing documents they are associated with. Evolutions are expressed according
to relevant terms that allow us to represent and characterize entities. From the
methodological viewpoint, we do not identify evolutions by evaluating whether a
particular data mining model has become stale because of a change in the under-
lying data distribution [13,2], but we provide the user with an understanding of
the changes, according to a content-based representation of the entities’ profiles
(entities are represented according to terms occurring in the textual documents).

The proposed framework could be profitably exploited in different application
domains. For instance, in the analysis of papers belonging to the medical do-
main, it could support researchers in the identification of evolutions about the
recognized role of biological entities (e.g. genes) over time. Another example is
represented by the risk identification and analysis domain, which is considered in
this paper. In this case, using publicly available news (e.g. daily police reports,
public court records, legal instruments) about criminals, and assimilating the
concept of topic with the concept of crime typology represented by a group of
“similar” criminals, the proposed method can be considered as a valuable tool
for law enforcement officers in risk and threat assessment.

The contribution of this paper is manifold: on the basis of entities identified in
the documents, i) we define an unsupervised feature selection algorithm which
overcomes limitations of existing unsupervised methods ii) we represent the
entities’ profile and on-line modify it according to more recent documents; iii)
we generate clusters of similar entities and represent and analyze their evolution.

2 Related Work

In the literature, a variety of approaches to deal with evolving clusters from
textual data streams can be found. For example, in [23] the authors propose an
incremental and neural-network-based version of the “spherical” k-means which,
according to an appropriate rule for updating the weights of the neural network,
incrementally modifies the closest cluster center, given a new document. In [1]
the authors cluster blogs by considering their labels and generating a “collective
wisdom”. In [15], stories, built from blogs, are clustered. After a set of initial
clusters is built, a dynamic clustering algorithm incrementally updates clusters
on the basis of the distance between new stories and clusters’ stories.

Despite the clear relationship, there are differences between these researches and
ours. In the former, clusters represent the same topic across the time dimension
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whereas we associate clusters to a single time interval. Consequently, we do not ap-
ply incremental clustering approaches, but we identify clusters for each time inter-
val and compare themwith those previously identified.Moreover, in topic tracking,
clusters group documents on the same topic, i.e. the unit of analysis is the docu-
ment, while in our case the unit of analysis is the entity. This means that we cluster
entities on the basis of documents associated to them.

A similar approach to ours is proposed in [4], where clusters of keywords ex-
tracted from messages published in blogs are identified for each time interval.
Clusters associated to consecutive time intervals are pairwise compared in order
to identify pairs with the highest affinity. By combining affinity relationships
over several time intervals, it is possible to identify the top-k paths that express
the most significant evolutions of the initial clusters over time. The main dif-
ference with respect to our approach is that the considered unit of analysis is
the “keyword”, on the basis of the assumption that clusters of keywords char-
acterize topics. Similarly, in [21] the authors propose an approach for defining
and monitoring topics by clustering, for each time interval, blogs on the ba-
sis of their content. However, in this case, clustering is performed on the pairs
(class, similarity) obtained by a centroid-based classifier. This means that clus-
tering significantly depends on a preliminary supervised learning phase.

In [18], the authors propose the identification of evolutions of clusters over
time, by considering the application of either batch or incremental clustering
approaches for each time interval. Evolutions are represented through an Evo-
lution Graph, where nodes are clusters and edges connect clusters belonging to
adjacent time intervals, and are summarized through the so-called fingerprints.
Also in this case, the units of analysis are the keywords of textual documents.

Finally, we mention the work presented in [12] where the authors propose to
learn, from news, a generative model of terms which takes as input the topic and
the mentioned entities. Although this work does not exploit the time dimension,
it considers, similarly to our work, the possible correlation of news with other
entities such as people, organizations, locations.

3 TB-EEDIS

In this section we define the framework TB-EEDIS (Time-Based Entity Evolu-
tion DIScoverer) that allows us to discover evolutions of entities from a stream of
textual documents. In this respect, an evolution is defined as a relevant change of
entities’ properties in different time windows. All the necessary information are
extracted from time-stamped textual documents which are implicitly associated
to a single time window. In this work, time windows are defined as adjacent and
disjunct time intervals, obtained by partitioning the entire period we intend to
analyze into intervals of the same size. Evolutions are discovered by analyzing
the changes identified among distinct time windows.

The textual content of each document dj is represented according to the clas-
sical Vector Space Model (VSM) with TF-IDF weighting. Each entity is repre-
sented in the same space of terms used for representing documents (an example
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for news about criminals, that we will show in the experiments, is: [attack; fire;
claim; suspect; report; injur; islam]), which better represents the profile of the
entity in a given time window. Since the terms space can be very large, we select
relevant features through an unsupervised feature selection algorithm.

Summarizing, the framework TB-EEDIS consists of the following phases: i)
identification of entities from each document; ii) VSM representation of the doc-
uments (after applying classical pre-processing techniques), iii) feature selection,
iv) identification of the position of each entity for each time window, v) cluster-
ing of entities for each time window and vi) evolution discovery and analysis.
Entity identification is performed by applying two natural language processing
techniques, that is, Named Entity Extraction [19] and Dependencies Analysis
[16]. The adopted strategy considers the logical structure of the sentences and,
starting from relationships, it identifies the involved entities. Since this task is
not the main subject of the paper, for space constraints, we do not report fur-
ther details about this phase. In the following, we explain the methods we use
for selecting relevant features, representing entities and studying their evolution.

3.1 Feature Selection

We present two distinct unsupervised feature selection algorithms. The use of
unsupervised approaches is motivated by the task we consider (i.e. clustering)
and the consequent absence of any target (class) attribute to guide the selection.

Variance-based Feature Selection. The most straightforward way to perform
feature selection is by computing the variance of the relative term-frequency of
each term in the entire document collection and keeping the k terms with the
highest variance. Intuitively, a term with high variance will better discriminate
documents, whereas a term with low or zero variance will substantially describe
the documents in the same way. This feature selection algorithm has the ad-
vantage of a linear time complexity, at the price of some disadvantages: a) It
selects the terms which best discriminate between documents, disregarding their
real similarity. In fact, it does not take into account the case in which similar
documents share the same terms with similar relative term-frequency. This can
lead to lose terms that characterize entire classes of documents. b) It does not
consider the correlation between terms. In fact, two strongly correlated terms
will be both selected if they are in the set of the top k terms with the highest
variance. This leads to select redundant terms.

MIGRAL-CP. In [9], the authors propose to use the Laplacian Score to iden-
tify the features which better preserve samples similarity. However, the Laplacian
Score rewards features for which similar samples show a small variation in the
feature values, but does not reward those that show a large variation for dissimi-
lar samples. Inspired by this work, we define a different method called MInimum
GRAph Loss with Correlation Penalty (MIGRAL-CP), which i) selects k terms
to represent the whole collection of documents, showing both great variation for
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dissimilar documents and low variation for similar ones and ii) discards features
correlated with already selected features.

Formally, given the set of documents D = {d1, d2, . . . , dn} and the set of terms
T = {t1, t2, . . . , tm}, we build the (fully-connected undirected) graph G, where
each node represents a document and each edge between two documents di and

dj is labeled with their similarity computed as: vi,j = e−||wdi
−wdj ||2 , where wdi

(wdj ) is the relative term-frequency vector associated to the document di (dj),
defined according to the set of terms T . The similarity measure we use is defined
in [9] but, obviously, any other similarity measure might be considered.

We define an iterative method to select a subset of k terms which satisfy the
above requirements. The first term is selected in order to maximize the score:

Score1(tr) =
1

2

(
1− 1

n

n∑
j=1

ρ(Vj , Fr,j)
)

(1)

where:

– Vj = [vj,1, vj,2, . . . , vj,n] are the similarity values between the document j
and all the other documents, using all the terms.

– Fr,j =
[
(sr,j − sr,1)

2, (sr,j − sr,2)
2, . . . , (sr,j − sr,n)

2
]
are the dissimilarities

between the document j and all the other documents, using the term tr only.
In this formula, sr,j is the relative term frequency of the term tr in dj .

– ρ(·, ·) is the Pearson correlation coefficient.

The first selected term (t̂1 = argmaxtr∈T Score1(tr)) will be the one which
determines the highest inverse linear correlation between the documents’ sim-
ilarities computed with all the terms and documents’ dissimilarities computed
with only that term. The remaining k − 1 terms are selected according to:

Scorei(tr) = Scorei−1(tr)× (1 − penalty(tr, t̂i−1)) (2)

where, at the iteration i, penalty(tr, t̂i−1) reduces the score of each term tr ac-
cording to its correlation to the term selected during the previous iteration, pre-
venting the selection of redundant terms. Coherently with the correlation coef-
ficient introduced before, we define penalty(tr, t̂i−1) = max (0,

∣∣ρ(tr, t̂i−1)
∣∣− γ),

where 0 ≤ γ ≤ 1. The rationale of this choice is that a correlation value of∣∣ρ(tr, t̂i−1)
∣∣ ≤ γ is considered too small to result in a penalty.

3.2 Representing Entities

For each time window τz, the profile of each entity is represented in the same
k-dimensional terms space identified in the feature selection phase. In the fol-
lowing we describe two possible alternatives.

Time-Weighted Centroid. In this case, the profile of the entity c in τz is:

X(c, τz, h) =

∑
<dj,τj>∈Sc,τz,h

pτz,τj(h)× wdj∑
<dj,τj>∈Sc,τz,h

pτz,τj(h)
, (3)
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where Sc,τz,h is the set of documents associated to c and belonging to τz or to
one of the previous h− 1 time windows, and pτz,τj(h) = 1 − z−j+1

h is the time
fading-factor which reduces the effect of the document dj according to the dis-
tance between τz and the time window τj (i.e. the time window of dj).

Max Density Point. In this solution, inspired to the work in [6], each document
dj is represented as a k-dimensional Gaussian function d′j(·): [0, 1]k → R

+:

d′j(x) =
k∏

i=1

1√
2πσ2

e−
(xi−si,j)

2

2σ2 (4)

where σ ∈ [0, 1] is a parameter that defines the width of the Gaussian function.
The position of c in τz is the point with the highest sum of contributions:

X(c, τz, h) = argmax
x∈[0,1]k

∑
<dj ,τj>∈Sc,τz,h

pτz,τj (h)× d′j(x) (5)

where the time fading-factor pτz,τj(h) reduces the value of the Gaussian function.
For computational reasons, we search X(c, τz, h) in the discrete space Φk,

where Φ =
{
0, 1

β , . . . ,
β−1
β , 1

}
and β+1 is the number of desired distinct values.

Moreover, we adopt two further optimizations: i) we limit the search to the
areas interested by at least one document belonging to the time window τz ,
and to the position X(c, τz−1, h), assumed in the previous time window (incre-
mentality); ii) we adopt a greedy search that works only around the points for
which the d′j(·) functions, contributing to X(c, τz, h), reach the highest values. In
particular, we focus (for each dimension) on a smaller area around the point for
which d′j(·) assumes the maximum value. Formally, let y be the value assumed on
a given dimension by a document. Given the applied discretization, we analyze
only βσ values on both sides of y, leading to a total of 2βσ + 1 values1, instead
of β + 1, thus covering all the available values in [y − σ; y + σ] (see Figure 1).

Fig. 1. Gaussian function defined on a single dimension with y = 0.5, β = 20, σ = 0.05
(a) and σ = 0.10 (b). In (a) it is enough to analyze only the values 0.45, 0.50 and 0.55,
whereas in (b) it is necessary to analyze also the values 0.40 and 0.60.

1 Reasonable values of σ are ≤ 0.1. In the experiments we use σ ∈ {0.05, 0.1}.
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3.3 Clusters Evolution Discovery

The last necessary step, before analyzing the evolutions of entities, consists of
searching for clusters of entities for each time window. Although we perform clus-
tering for each time window independently, i.e. without considering the temporal
neighborhood, it is noteworthy that the influence of documents belonging to pre-
vious time windows is caught by the proposed strategy for the identification of
entities’ profile, as already described in Section 3.2.

We use a variant of the K-means algorithm. Obviously, in TB-EEDIS, any
clustering algorithm (also density based, e.g. DBSCAN [8]) can be plugged in.

Our improvement to the standard K-means algorithm consists in the auto-
matic identification of the reasonable number of clusters to be extracted, which
is necessary in the task at hand, since the number of clusters is not known a-
apriori. The solution we adopt is that of exploiting the Principal Component
Analysis (PCA), which identifies a new (smaller) set of prototype features such
that a given percentage of the variance in the data is explained [11]. By inverting
the roles of features and examples, it is possible to identify a set of (orthogonal)
prototype examples, according to which other examples can be aggregated. In
our solution we use the number of prototype examples as an indication of the
appropriate number of clusters, according to the underlying data distribution.

Once clustering is performed for each time window, it is possible to identify:

– the position of the cluster in the k-dimensional terms space. This can be
identified by analyzing the terms with the highest weights in the cluster (e.g.
of its centroid), which gives an idea about the entity typology it represents.

– a matching between clusters of different time windows by maximizing the
similarity between the centroids of matched clusters, which are still repre-
sented in the same terms space.

– the number of entities which have evolved from the entity typology repre-
sented by Ci to that represented by Cj , where Ci and Cj are two generic
clusters extracted for the time windows τz−1 and τz , respectively (Figure 2).

Fig. 2. An evolution: Three entities moved from C2 in τz−1 to C1 in τz
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4 Empirical Evaluation

The evaluation is performed on a set of synthetically generated datasets and on
a real dataset. The synthetic datasets consist of documents about 50 entities,
generated for 30 time windows. For each time window and entity, a set of 10
documents is generated by considering 7 specific vocabularies (representing dif-
ferent topics) and a generic English vocabulary, used to introduce “noise terms”.
For each time window and entity, the probability of changing the topic is set to
0.2. Three different datasets are generated, setting the number of time windows
necessary to complete each evolution (which defines the “speed” of changes)
to 4, 10 and 20. In order to reproduce realistic situations, when simulating an
evolution from a topic A to a topic B, we gradually decrease the frequency of
terms representing A and increase the frequency of terms representing B in the
generated documents. During an evolution, no additional evolutions can start.

As real dataset, we consider the Global Terrorism Database (GTD)2 for the
risk identification and analysis domain. GTD consists of information on terror-
ist events (more than 104,000 cases) around the world from 1970 through 2011,
including systematic data (such as the textual content of a news, involved crim-
inals, publication date) on domestic as well as international terrorist incidents.

In the evaluation performed on the synthetic datasets, the feature selection
is executed with both the proposed methods (variance-based, which is consid-
ered as baseline, and MIGRAL-CP), with k = 10 (number of features to select).
For MIGRAL-CP, results are obtained with γ = 0.5 (γ is the minimum thresh-
old on the Pearson coefficient for applying a penalty), which after preliminary
experiments (not reported in this paper for space constraints), resulted in the
best trade off between relevancy and allowed redundancy of selected terms. For
MaxDensity, the discretization parameter β is set to 20 and σ of the Gaussian
functions d′j(·) is set to 0.053.

As regards GTD, we consider 13 annual time windows (from 1998 to 2010),
for a total of 11,225 news concerning 82 criminals/criminal organizations. The
feature selection is executed with both the proposed methods, with k = 15 and,
for MIGRAL-CP, γ = 0.5. For MaxDensity, β is set to 20 and σ is set to 0.0533.

Both synthetic and real datasets are analyzed with two different values for
the PCA variance (90% and 95%) and with different values of h (2, 5 and 10). In
particular, each synthetic dataset is analyzed with the corresponding value of h
such that the number of time windows used to perform an evolution is 2h. This
solution is motivated by the fact that, in general, the system should be able to
detect the change of the topic in the middle of the evolution. On the other hand,
GTD is analyzed with all the considered values of h, since we do not know a
priori the speed of evolutions in the dataset.

Results are collected in terms of running times (hh:mm) required to com-
plete the whole evolution discovery process and in terms of a variant of the

2 http://www.start.umd.edu/gtd/
3 We also performed experiments with σ = 0.10. Since there was no significant differ-
ence in the results, for space constraints, we report only results with σ = 0.05.

http://www.start.umd.edu/gtd/
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Table 1. Results obtained on the synthetic datasets and on the GTD dataset. Italic
indicates a better result with respect to the strategy for computing the entity position,
while bold indicates a better result with respect to the feature selection strategy.

Synthetic Dataset GTD Dataset
Variance MIGRAL-CP Variance MIGRAL-CP

h Position Var time q-mod NMI time q-mod NMI time q-mod time q-mod
2 Centroid 90% 07:38 0.581 0.652 15:21 0.613 0.757 00:09 0.294 39:54 0.245
2 Centroid 95% 07:39 0.606 0.692 15:22 0.659 0.799 00:09 0.319 39:54 0.270
2 MaxDensity 90% 07:43 0.570 0.689 15:26 0.672 0.770 110:41 0.322 100:17 0.447
2 MaxDensity 95% 07:43 0.577 0.698 15:27 0.710 0.800 110:41 0.509 100:17 0.479
5 Centroid 90% 08:06 0.559 0.615 21:03 0.616 0.726 00:09 0.297 39:54 0.224
5 Centroid 95% 08:07 0.633 0.678 21:04 0.634 0.739 00:09 0.316 39:54 0.249
5 MaxDensity 90% 08:16 0.614 0.679 21:11 0.654 0.773 137:41 0.325 118:59 0.454
5 MaxDensity 95% 08:17 0.665 0.713 21:12 0.690 0.797 137:41 0.521 118:59 0.487
10 Centroid 90% 08:31 0.534 0.548 25:51 0.547 0.698 00:09 0.304 39:54 0.232
10 Centroid 95% 08:32 0.565 0.575 25:52 0.587 0.731 00:09 0.322 39:54 0.245
10 MaxDensity 90% 08:45 0.491 0.603 26:08 0.607 0.724 144:20 0.400 126:06 0.452
10 MaxDensity 95% 08:46 0.522 0.623 26:09 0.660 0.762 144:20 0.524 126:06 0.479

Q-Modularity measure [17], which allows us to evaluate the quality of the clus-
tering with respect to a random clustering. This variant is described in the
following. Let eij =

2
r(r−1)

∑
c′∈Ci,c′′∈Cj

sim(X(c′, τz, h), X(c′′, τz , h)) be a mea-

sure of the strength of the interconnections between entities in the cluster Ci

and entities in the cluster Cj . In this formula, r represents the total number of
entities and sim(·, ·) ∈ [0, 1] is the cosine similarity. Intuitively, we want clusters
for which eii values are generally large and eij(i �= j) values are generally small.

Formally: Q =
∑k

i=1

(
eii − a2i

)
, where ai =

∑
j eij =

∑
j eji.

Moreover, for the synthetic datasets, we also evaluate the results in terms of
the average Normalized Mutual Information (NMI) [20]. In particular, NMI is
computed between the set of extracted clusters and the set of true clusters rep-
resenting topics imposed during the generation of the datasets, in order evaluate
the ability of TB-EEDIS to correctly catch the underlying evolutions.

As it can be observed in Table 1, for feature selection, the MIGRAL-CP
algorithm always leads to better Q-Modularity and NMI results in the synthetic
datasets, with respect to the variance-based method (which we consider as a
baseline). The disadvantage is that better results are obtained at the price of
significantly higher running times. These observations do not hold for the GTD
dataset, where there is no clear advantage of MIGRAL-CP over the variance-
based method in the case of MaxDensity (where we have better results). The
motivation can be found in the fact that in the synthetic datasets we explicitly
introduced redundancy in the text, while in GTD this phenomenon is not under
control and the two methods almost equally perform.

As regards the method for computing the entities’ position, the MaxDensity
method always significantly outperforms the centroid-based method (which we
consider as baseline) on GTD, at the price of a slightly higher running times,
whereas on the synthetic datasets it shows betters results only in terms of NMI.

Observing the influence of the variance (for the PCA-based estimation of the
number of clusters), we have that, for V ar = 95%, extracted clusters better
adapt to the underlying topics models (see NMI in Table 1), without incurring
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in overfitting issues. This phenomenon is reflected on Q-Modularity values, also
for GTD. However, it is noteworthy that the quality of results is less dependent
on such parameter when the MIGRAL-CP feature selection method is adopted.

From a qualitative viewpoint, it is interesting to identify a description of the
clusters, in order to deeply understand the evolutions in which they are involved.
A possibility consists in the analysis of the terms describing the entities belonging
to the cluster. For example, analyzing the centroid of a cluster identified from
GTD (Var=90%, MaxDensity-MIGRAL-CP, h = 5), that is: [attack: 0.593; fire:
0.371; claim: 0.271; suspect: 0.1; report: 0.057; injur: 0.057; islam: 0.05] allows
us to identify a specific type of crime (terrorist attack). For future work, we will
investigate the possibility of performing an extensive qualitative analysis of the
evolutions discovered from real datasets.

5 Conclusions

In this paper, we propose the framework TB-EEDIS to incrementally extract
knowledge from time-stamped documents. In particular, it: identifies entities
with domain-specific roles; represents documents by exploiting unsupervised fea-
ture selection algorithms; represents the entities’ profile and identifies clusters
of entities in order to represent and analyze their evolution.

Results show that the algorithms proposed for the unsupervised feature se-
lection (MIGRAL-CP) and for the identification of the position of entities (Max
Density-based) generally provide better results when compared to baseline ap-
proaches. Moreover, results obtained in terms of Normalized Mutual Information
on synthetic datasets prove the ability of TB-EEDIS to catch the underlying evo-
lutions of entities, making it applicable in additional domains (e.g. biological).

For future work, we intend to analytically identify the value of σ, with respect
to h, such that the global optimum is guaranteed. Moreover, we will qualitatively
evaluate the evolutions discovered on real datasets and we will analyze how
different sizes of time windows can influence results.
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