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Abstract. Many techniques have been proposed for community detec-
tion in social networks. Most of these techniques are only designed for
networks defined by a single relation. However, many real networks are
multiplex networks that contain multiple types of relations and differ-
ent attributes on the nodes. In this paper we propose to use relational
Bayesian networks for the specification of probabilistic network models,
and develop inference techniques that solve the community detection
problem based on these models. The use of relational Bayesian networks
as a flexible high-level modeling framework enables us to express different
models capturing different aspects of community detection in multiplex
networks in a coherent manner, and to use a single inference mechanism
for all models.
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1 Introduction

Social networks like Facebook, Twitter, Flickr, or Youtube have prospered in
recent years. People in an online society here can communicate and interact with
each other. Community structure is one of the most important characteristics
for social networks [1]. Within a community, the connections between nodes are
very dense but they are sparse in between communities. In a social network, a
community can be a friend group which has close relations, a group of people with
similar interests, a group of people in a same workplace, and so on. Community
detection, therefore, has received significant attention in the research of social
networks [2][3].

Most existing methods have been developed to analyze single relation net-
works, where there is only one type of relation between nodes. However, in the
real world, social networks may often appear as multiplex networks, in which
there exist different types of nodes, which are connected by different types of
links [4][5]. For example, in Facebook, the relations between two users could be
friends, common interests, alumni, and so on; and the users in Facebook could be
humans, companies, or organizations, which makes the characteristics of users
different from each other.
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A few studies have investigated community detection for multiplex networks,
but mostly these are characterised by strong simplifications that reduce commu-
nity detection in multiplex networks to community detection in single relation
networks. On the other hand, in Machine Learning the field of statistical rela-
tional learning (SRL) is specifically concerned with statistical models for multi-
relational data. Since probabilistic models are a powerful tool for clustering in
general, and community detection in networks in particular, it is natural to ap-
ply SRL techniques to the community detection problem in multiplex networks.
In this paper we give an initial report on the application of the SRL modeling
framework of Relational Bayesian Networks (RBNs) [6] to this task. The RBN
framework provides an expressive and flexible representation language in which
a variety of probabilistic community detection models can be specified. The dif-
ferent models are supported by a common set of generic inference algorithms.
Such a general representation and inference framework provides a good basis to
explore different aspects of communities in multiplex networks using different
models, without the need to re-design inference methods for each model.

The rest of this paper is organized as follows. In Section 2, we compare our
work with the related work on the subject; in Section 3, we present the prob-
lem description; in Section 4, we model the community detection in multiplex
networks; in Section 5, we provide the experimental results; finally, we conclude
our paper in Section 6.

2 Related Work

Community Detection in Single Relation Networks. Girvan and New-
man [2] published the seminal paper on discovering the community structure in
networks. After that, a lot of community detection methods for single networks
has been developed. Typical methods include graph partitioning [7], hierarchical
clustering [3], partitional clustering [8] and spectral methods [9]. A good review
of community detection for single networks can be found in [10].

Community Detection in Multiplex Networks. Some researchers divide
a multiplex network into single network layers and do community detection on
these single networks, such as [4][5]. Yang et al. [11] extended traditional random
walk algorithm to detect communities in signed networks which includes posi-
tive and negative relations. Breiger et al. [12] describe a hierarchical clustering
algorithm that is based on an iterative transformation of incidence matrices into
a block form, and which can be simultaneously applied to matrices representing
multiple relations.

SRL Methods. An early paper that considered clustering in graphs as a pos-
sible application of SRL techniques is [13]. However, their model representation
framework only allowed for the modeling of random attributes of nodes in a
network, and not the modeling of random link structures, which are essential for
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natural probabilistic community detection models. Markov Logic Networks are
a currently popular SRL framework, which in [14] also was applied to clustering
in multi-relational data, though no application to a community detection prob-
lem was presented. Xu et al. [15] proposed to use the Infinite Hidden Relational
Model (IHRM) for social network analysis. The resulting probabilistic model is
quite similar to the basic RBN-based community detection model we will de-
scribe below. A main difference between [15] and our work lies in the fact that
Xu et al. work with a fixed graphical model, whereas we are using a higher-level
representation language that allows us to experiment with different clustering
models without the need to re-design the update equations for inference in the
underlying graphical model. On the other hand, a key concern of the IHRM is to
support a nonparametric Bayesian approach for automatically finding the ’right’
number of clusters or communities, whereas we are currently taking the simpler
approach of requiring the number of communities to be a user-defined input.

3 Problem Description

In this paper, we will use probabilistic models to analyze community structure
problems. Graphs will be used to represent social networks. The vertices and
arcs in graphs correspond to nodes and relations in social networks, respectively.
Considering only single relation networks first, we can give the problem descrip-
tion as follows.

Given a directed graph G =< V,A >, with vertices V and arcs A, we want
to find the partition Γ with maximal probability

Pθ(Γ |A) = Pθ(A,Γ )

Pθ(A)
(1)

Here Pθ is the underlying probabilistic model, which defines for the given
set V a joint distribution over partitions and arcs. The model can depend on
unknown parameters θ. Since Pθ(A) does not depend on Γ , the community
detection problem therefore amounts to computing

argmax
Γ

max
θ

Pθ(A,Γ ) = argmax
Γ

max
θ

Pθ(A|Γ )Pθ(Γ ) (2)

Fig. 1. A small example of multiplex network

We now turn to the generalization of this probabilistic community detection
approach to multiplex networks. Multiplex networks are networks with more
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than one type of relations between nodes, and a node may have multiple at-
tributes. Figure 1 gives an example of a multiplex network. This small network
includes 9 nodes, two types of relations (green line and red dash), and two types
of attributes (yellow and blue). The green line relation is assumed to be a pos-
itive relation and the red dash relation is a negative relation. Positive relations
represent “attraction”, such as “like”, “friend of”; negative relations represent
“repulsion”, such as “dislike”, “objector of”. Two nodes tend to belong to a
community if they are connected with positive relations, and belong to different
communities if they are connected with negative relations. We can see that a
reasonable community structure is given by two communities that consist of the
left 4 nodes and right 5 nodes, respectively. However, node 5 would be in the left
community if we only considered the green relation, but appears “closer”to the
right community when also considering the red relation and the node attributes.

The information from all relations and attributes can be integrated into a
probabilistic model; we only need to generalize (2) as follows.

• All types of relations should be considered. Therefore, if a network with p
types of relations, A = {A1, . . . , Ap}, then (2) becomes

argmax
Γ

max
θ

Pθ(A, Γ ) = argmax
Γ

max
θ

Pθ(A|Γ )Pθ(Γ ) (3)

• The attributes of the nodes can also play important roles in the community
structure. The attributes of nodes within a same community should be as same
as possible. Therefore, if a network with p types of relations and q types of
attributes, At = {At1, . . . , Atp}, equation (3) should be extended as (4):

argmax
Γ

max
θ

Pθ(A,At, Γ ) = argmax
Γ

max
θ

Pθ(A,At|Γ )Pθ(Γ ) (4)

4 RBN Models for Community Detection

4.1 Model Specification

We now briefly describe the elements of the RBN framework that we need for
our community detection models. We begin by introducing a few basic concepts
that are common for most SRL frameworks.

Given a set of relationsA, a set of attributes,At, and a set of entities (vertices)
V , we define following:

Definition 1. A ground atom is an expression of the form Ai(vj1 , vj2 ) or Ati(vj),
where Ai is a relation, Ati an attribute, and the vj are elements from V . In a non-
ground atom, one can also have variables that range over all vertices as arguments
for the Ai, Ati.

A probabilistic relational model defines a joint probability distribution for all
ground atoms Ai(vj1 , vjk ) or Ati(vj) as Boolean random variables [16]. Commu-
nity membership will be represented by special attributes, so that also the joint
distribution Pθ(A,At, Γ ) is covered by these definitions. RBNs are a formal
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representation language for probabilistic relational models. It is based on proba-
bility formulas that for each relation and each attribute specify the probability
distributions for the ground atoms in a single declaration of the form

P (Ai(nj , nk) = true) ← ProbabilityFormula(nj, nk).

Here nj, nk are variables that range over vertices. The RBN language provides
a small number of simple syntax rules with which complex probability formulas
can be inductively constructed. The inductive definition is grounded by the base
constructs of constants, parameters, and ground atoms. In this paper we will
construct complex formulas only using the convex combination construct, which
can be understood as a probabilistic if-then-else rule: if PF1,PF2,PF3 are prob-
ability formulas, then (PF1:PF2,PF3) is a new formula. This formula evaluates
to a mixture of the values returned by PF2,PF3, with PF1 defining the mixture
weights. In the particular case that PF1 is purely Boolean (i.e., evaluates to 0 or
1), this means that the formula evalutes to PF2 if PF1 returns true, and to PF3
if PF1 returns false. In this paper we will only make use of the convex combi-
nation construct in this special form. Full definitions of syntax and semantics of
RBNs can be found in [16].

We now turn to concrete encodings of community detection models using
RBNs. For the time being, we only consider the case of two communities, and
we use two special attributes c1, c2 to represent community membership. We
then first define the prior distribution Pθ(Γ ) using the two formulas

c1([Node]n) ← 0.5; (5)

c2([Node]n) ← (c1(n) : 0, 1); (6)

The first probability formula specifies that the probability of a node belongs
to community c1 is 0.5; the second one specifies that a node with probability
0 belongs to cluster c2 if it belongs to community c1, and with probability 1
belongs to cluster c2 if it does not belong to community c1. This specification
implies that the two communities form a partition of the nodes. By replacing
the constants 0,1 in (6) with non-extreme values, the model will also allow over-
lapping communities, and nodes belonging to no community.

The following are probability formulas that define the model Pθ(A,At|Γ ) for
the relations and attributes of the graph in Figure 1:

link green([Node]n1, [Node]n2) ← (c1(n1) : (c1(n2) : θ1, 0.01),

(c2(n1) : (c2(n2) : θ2, 0.01), 0.5));
(7)

link red([Node]n1, [Node]n2) ← (c1(n1) : (c1(n2) : 0.01, θ3),

(c2(n1) : (c2(n2) : 0.01, θ4), 0.5));
(8)

attribute yellow([Node]n) ← (c1(n) : θ5, θ6); (9)

attribute blue([Node]n) ← (c2(n) : θ7, θ8); (10)
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The θi in these formulas are free parameters that are estimated in the op-
timization process. The nested if-then-else construct of formula (7) can be ex-
panded as follows:

P (link green(n1, n2) = true) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

θ1 if n1 ∈ c1 ∧ n2 ∈ c2
0.01 if n1 ∈ c1 ∧ n2 /∈ c2
θ2 if n1 /∈ c1 ∧ n1 ∈ c2 ∧ n2 ∈ c2
0.01 if n1 /∈ c1 ∧ n1 ∈ c2 ∧ n2 /∈ c2
0.5 if n1 /∈ c1 ∧ n1 /∈ c2

The placement of the constants 0.01 here encodes that link green is a positive
relation. Formula (8) is structurally similar, but parameterized differently in
order to enforce that link red is considered a negative relation. Formulas (9)
and (10) represent in a generic manner the dependency of these attribute values
on the community membership.

In the model given by (5)-(10) all attributes and relations are independent
given the community membership. A dependency of the green on the red relation
could be modeled by the formula

link green([Node]n1, [Node]n2) = (c1(n1) :

(c1(n2) : (link red(n1, n2) : θ9, θ10), θ11),

(c2(n2) : (link red(n1, n2) : θ12, θ13), θ14));

(11)

4.2 Inference

To solve the inference problem (4) when Pθ is given by an RBN, we extend a
datastructure and inference techniques that were introduced for RBN parameter
learning in [17].

Fig. 2. The architecture of MAP -inference and parameter learning module
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First, given the general RBN model and a concrete multiplex network, a
representation of Pθ(A,At, Γ ) in the form of a likelihood graph is constructed.
Figure 2 illustrates the structure of this graph. Below the root likelihood node,
the graph contains for each ground atom a node that represents the contribu-
tion of this ground atom to the overall likelihood. These nodes are inserted both
for the atoms corresponding to observed relations and attributes in the net-
work (denoted RAtom in Figure 2), and for atoms representing the unobserved
community attributes (CommuAtom).

The leaves in the graph are the variables in the optimization problem (4):
the free parameters θ of the model, and the truth settings for the community
attributes, which jointly define Γ (Indicator nodes in Figure 2). Intermediate
nodes in the graph (indicated by the dashed box in Figure 2) represent inter-
mediate values that are obtained from probability sub-formulas in the recursive
evaluation of the formulas associated with the ground atoms.

Using the likelihood graph as the common inference structure we compute (4)
by alternating between maximization for θ and Γ . For maximizing θ we use the
general parameter learning method of [17]. Maximization over Γ is a Maximum
A Posteriori Probability (MAP) inference problem. This problem is intractable
to solve optimally, and we use a local search procedure that combines greedy,
random, and lookahead elements to obtain an approximate solution. In this
process, the likelihood graph is used in two ways: first, it is used to compute the
likelihood values of candidate solutions Γ , and second, the dependency structure
of the likelihood function on the different atoms encoded in the graph structure is
exploited to identify in the lookahead search candidate community membership
atoms whose truth values might be changed to improve the likelihood.

5 Experiments

We first test the feasibility of our approach on a standard single relational net-
work, the Zachary’s karate club [18] network, which is a well-known benchmark
for testing community detection algorithms. The network consists of 34 nodes as
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Fig. 3. The communities of Zacharys karate club network. Node shapes (and colors)
indicate the community memberships of nodes.
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members of the Karate club and 78 edges as friendships between members. We
use probability formulas (5) and (6) to define Pθ(Γ ). However, since the hard
constraints on c1 and c2 are very difficult for MAP inference, we relax the model
slightly by replacing 0 with 0.001, and 1 with 0.999. Since the relation in this
network is positive, we model it using formula (7). The optimization terminates
with parameter setting θ1 = 0.259 ,and θ2 = 0.253, and the communities shown
in Fig.3. Yellow square and green triangle nodes represent nodes for which in
the MAP solution for the community atoms exactly one of c1 and c2 was set to
true. For node 3 (red triangle) in the middle both c1 and c2 were set to true
in our solution. Apart from this ambiguous membership of node 3, our solution
corresponds with the solution of [19].
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Fig. 4. The communities of bank wiring
room network. Node colors indicate the
community memberships of nodes.

Table 1. Parameters of the model for
bank wiring dataset

θ1 θ2 θ3 θ4
playing games
together

0.500 0.563 - -

friendship 0.276 0.219 - -

helping 0.277 0.141 - -

arguments - - 0.164 0.167

antagonism - - 0.272 0.271

We next conduct an experiment on the ’bank wiring room’ multiplex network
introduced in [12]. This network includes 14 employees work in a single wiring
room. Relations between them are quite complex, and include playing games
together(red arcs in Fig.4), friendship(yellow), helping(orange), arguments about
whether to open window(blue) and antagonism(purple). The first three relations
are positive and the latter two are negative. We define Pθ(Γ ) as for the Zachary
network. Each relation is modeled using the formulas of (7) and (8), depending
of whether it is a positive or negative relation. The network and the computed
communities are shown in Figure 4, and the learned parameters in Table 1.
In this case, all nodes were assigned uniquely to one of the two communities
(yellow and green squares in Figure 4), and the results coincide exactly with the
structure suggested in [12].

In the preceding experiment the model encoded explicit information on which
relations are positive, and which are nega tive. We next investigate the appli-
cability of our approach when this distinction is not provided a-priori. For this,
we use the network of Figure 5 (c), which contains two relations that are also
separately drawn in Figure 5 (a) and (b). The network (a) shows an obvious
community structure, whereas (c) shows no clear structure. We define a model
with Pθ(Γ ) as before, and for each of the two relations a formula of the form
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Fig. 5. A network which is a summation of two networks: (a) the network with ob-
vious community structure; (b) the network with unobvious community structure; (c)
summation of network (a) and (b).

link([Node]n1, [Node]n2)← (c1(n1) : (c1(n2) : θ14, θ15),

(c2(n1) : (c2(n2) : θ16, θ17), 0.5));
(12)

In these formulas all parameters are free, and therefore no prior bias is imposed
on whether a relation is to be seen as positive or negative. The optimization
terminates with parameters setting θ14 = 0.749, θ15 = 0.063,θ16 = 0.625, θ17 =
0.063 for the yellow relation (a), and θ14 = 1.2E−8, θ15 = 0.312,θ16 = 0.1.98E−
6, θ17 = 0.313 for the green relation (b). From the parameters we can see that
our model considers the yellow relation as positive and the green relation as
negative. The results are clusters {1, 2, 3, 4} and {5, 6, 7, 8}.

For comparison, we also apply Newman’s Edge Betweenness(EB)[19] and
Ruan’s Spectral Clustering (SC) method [9] to the network (c) without dis-
tinguishing the two relations. We obtain the clusters {1, 2, 3, 4, 5}, {6, 7, 8} from
SC, and {1}, {2, 3, 4, 5, 6, 8, 8} from EB. Neither of these two clusterings appear
very meaningful, and it is clear that the clustering evidence provided by the
relation (a) is not strong enough for single-relational methods to detect the two
clusters, when it is masked by relation (b).

6 Conclusions

We addressed the problem of community detection in multiplex networks using
RBNs as a high-level and flexible specification language for probabilistic models.
The main benefit of this approach is that we can use a single coherent framework
with uniform inference techniques to experiment with different models that can
capture different aspects and objectives that arise in the context of multiplex
networks. Even though our results are quite preliminary at this point, they al-
ready demonstrate that using this coherent framework we can easily reconstruct
results that have previously been obtained using very different techniques (graph
cut techniques for the Zachary network, and matrix permutation for the Wiring
Room). Our current system can handle networks up to approximately 300 nodes
with arbitrary link structure. Future work will be directed towards exploring
additional aspects such as multiple and overlapping community detection, and
the application to bigger datasets.
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