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Abstract. Recently, there has been increased interest in the extrac-
tion of structured data from the web (both “Surface” Web and“Hidden”
Web). In particular, in this paper we focus on the automatic extraction
of Web Lists. Although this task has been studied extensively, existing
approaches are based on the assumption that lists are wholly contained
in a Web page.They do not consider that many websites span their list-
ing on several Web Pages and show for each of these only a partial view.
Similar to databases, where a view can represent a subset of the data
contained in a table, they split a logical list in multiple views (view lists).
Automatic extraction of logical lists is an open problem. To tackle this
issue we propose an unsupervised and domain-independent algorithm for
logical list extraction. Experimental results on real-life and data-intensive
Web sites confirm the effectiveness of our approach.
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1 Introduction

A large amount of structured data on the Web exists in several forms, includ-
ing HTML lists, tables, and back-end Deep Web databases ( e.g. Amazon.com,
Trulia.com ). Caffarella et al. [3] estimated that there are more than one billion
HTML tables on the Web containing relational data, and Elmeleegy et al. [5]
suggested an equal number from HTML lists. Since the Web is a large and under-
utilized repository of structured data, extracting structured data from this source
has recently received great attention [3,5]. Several solutions have been proposed
to find, extract, and integrate structured data, which are used in few public
available products like Google Sets and Google Fusion Tables. In addition, the
analysis of large amount of structured data on the web has enabled features
such as schema auto-complete, synonymy discovery [3], market intelligence [1],
question answering [6], and mashup from multiple Web sources [15]. However,
only few websites give access to their data through Application Programming
Interfaces (e.g. Twitter, Facebook). The majority of them present structured
data as HTML and/or backed through “Hidden” Web Database.

In this paper, we focus on the problem of automatic extraction of Web Lists.
Several methods have been presented in the literature [13,16,10,9,14] as regards
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Fig. 1. An example of Amazon Web page

to this task, but they fail to detect lists which span multiple Web pages. This
is an open issue, because many web sites, especially data-intensive (e.g. Ama-
zon, Trulia, AbeBooks,. . . ), present their listings as logical list, that is, a list
spanning multiple pages (e.g. computers, books, home listings)1. It is as if, each
list represents a view of the same logical list. Similar to databases, where a view
can represent a subset of the data contained in a table partitioned over a set of
attributes, a logical list is split in multiple views (Web Pages) in order to avoid
information overload and to facilitate users’ navigation.

For example, Fig. 1 shows a Web page from Amazon.com that contains the
results for the query “Computer”. On this page, the boxes A, B, C, D, E, F
are web lists. The list in the box A shows a view of the “Computers” products,
that is the top six sorted by relevance, and F allows us to navigate to the other
views of the products ordered by relevance. Thus navigating the links in F we
can generate the logical list of the products for the query “Computer”. Boxes B,
C, D and E contain respectively the lists representing filters for “Department”,
“Featured Brands”, “Computer Processor Type”, and “Hard Disk Size”, which
are attributes of the virtual table “Computer”. Moreover, the anchor-text links
in boxes B, C, D and E stores valuable information which can be used to annotate
data records, and thus to individuate new attributes. For example, the anchor-
text links of web list C can be used to index data records based on “Computer
brands”. Traditionally, search engines use the proximity of terms on a page as a
signal of relatedness; in this case the computer brand terms are highly related
to some data records, even though they are distant.

Providing automated techniques for logical list extraction would be a signifi-
cant advantage for data extraction and indexing services. Existing data record

1 The motivations behind this approach are as well technical (reducing bandwidth
and latency), and non technical as avoiding information overload or maximizing
page views.
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extraction methods [13,16,9,14] focus only in extracting view lists, while several
commercial solutions2 provide hand-coded rules to extract logical lists.

In this paper, we face this issue by proposing a novel unsupervised algorithm
for automatic discovery and extraction of logical lists from the Web. Our method
requires only one page containing a view list, and it is able to automatically
extract the logical list containing the example view list. Moreover, during the
process, it enriches the list’s elements with the pair <url, anchor-text> used for
the extraction task. We have validated our method on a several real websites,
obtaining high effectiveness.

2 Definitions and Problem Formulation

In this section, we introduce a set of definitions we will use through the paper.

Definition 1. The Web Page Rendering is the process of laying out a spatial
position of all the text/images and other elements in a Web Page to be rendered.

When an HTML document is rendered in a Web browser, the CSS2 visual
formatting model [11] represents the elements of the document by rectangular
boxes that are laid out one after the other or nested inside each other. By
associating the document with a coordinate system whose origin is at the top-
left corner, the spatial position of each text/image element on the Web page
is fully determined by both the coordinates (x,y) of the top-left corner of its
corresponding box, and the box’s height and width.

Property 1. The spatial positions of all text/image elements in a Web Page define
the Web Page Layout.

Property 2. As defined in [7], each Web Page Layout has a tree structure, called
Rendered Box Tree, which reflects the hierarchical organization of HTML tags
in the Web page.

As we can see in Fig. 2, on the left there is the Web Page Layout of the Web page
in Fig. 1. On the right, there is its Rendered Box Tree. The technical details of
building Rendered Box Trees and their properties can be found in [7]. Under the
Web page layout model, and the Rendered Box Tree we can give the definition
for Web lists.

Definition 2. Web List: It is collection of two or more objects, under the
same parent box and visually adjacent and aligned on a rendered web page. This
alignment can occur via the x-axis (i.e. a vertical list), the y-axis (i.e. horizontal
list), or in a tiled manner (i.e., aligned vertically and horizontally) [8].

For example the list A in Fig. 1 is a tiled list, while B is a vertical list and F is
a horizontal list.

2 Lixto, Screen Scraper Studio, Mozenda Screen Scaper.
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Fig. 2. An example of Rendered Box Tree

The list’s elements can be called as Data Records. Similar to the concept of
data records into database, data records into a web page are a set of similar and
structured objects containing information. Typically, they are formatted using
similar HTML tags (i.e. the same HTML structure).

Definition 3. Logical List: It is a list whose Data Records are distributed on
more then one Web Pages.

An example is shown in Fig. 3, where the boxes A1 and A2 represent a part of
a logical list.

Definition 4. View List: It is a view of a logical list, whose Data Records are
all contained in same Web page.

For Example the list F in Fig. 1 is an example of a view list. In fact, it contains
only some of data records belonging to its logical list (that is the pagination
list).

Definition 5. Dominant List: It is the view list of interest, containing data
records from the logical list that we want to extract.

For example the list A in Fig. 1 is the Dominant List for the given Web page.

3 Methodology

In this section we describe the methodology used for logical list extraction. The
algorithm employs a three-step strategy. Let P a Web Page, it first extracts the
set LP of the lists contained in P ; in the second step, it identifies the dominant
list lPdom ∈ L; finally, it uses lPdom to discover the logical list LL which includes
lPdom as sub-list. These steps are detailed in the following sub-sections.

3.1 List Extraction

Given a Web Page P as input, its lists L = {l1, l2, . . . , ln} are extracted through
running an improved version of HyLiEn [8]. With respect to HyLiEn, we made
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Fig. 3. An example of logical list for Amazon’s products

several improvements. First, to render the Web pages we removed the depen-
dency to the open source library CSSBox 3, because we found that this library
was not able to correctly render several Web pages. We implemented a WebKit
wrapper, called WebPageTraverser4, which is released as open source project.
Given as input the url of a Web page P , WebPageTraverser outputs a JSON5

representation of the P using the rendered box tree model. Second, to compute
the similarity of two sub-trees in rendered box tree (see Prop. 2) we adopted the
HTML tag distance, presented in [2] instead of the string edit distance used by
HyLiEn. Although, our current implementation uses the HyLiEn algorithm to
obtain Web lists our solution is independent of any specific list-extraction algo-
rithm. We used HyLiEn because it showed interesting result compared to the
state of art algorithms for List Extraction [8].

3.2 Dominant List Identification

Given a Web Page P and the set of list L = {l1, l2, . . . , ln} extracted in the first
step, we use three measures to identify the dominant list of P:

– Centrality. Given a list li ∈ L, the centrality of li w.r.t P is obtained by
computing the Euclidean distance between the center of the parent-box of
li and the center of root-box of P .

– Area Ratio. Given a list li ∈ L, the area ratio of li w.r.t P is the size of
the box containing li divided the size of root-box of P .

– Text-Tag Ratio. Given a list li ∈ L, and let m the length of li, the text-tag
ratio of li is computed as:

1

m

m∑

j=0

chars(li[j])

tag(li[j])
(1)

3 http://cssbox.sourceforge.net
4 https://bitbucket.org/wheretolive/webpagetraverser
5 http://www.json.org/

http://cssbox.sourceforge.net
https://bitbucket.org/wheretolive/webpagetraverser
http://www.json.org/
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where tag(li[j]) is the number of HTML tags contained in the j-th data
record of li and chars(li[j]) is the total number of characters contained in
li[j]. Before that the text-tag ratio is computed, script and remark tags are
removed because this information should be not considered in the count of
non-tag text.

In particular the Dominant list of P is the list with the highest sum of contri-
butions:

argmax
li∈L

α1

centrality(li)
+ α2areaRatio(li) + α3textTagRatio(li) (2)

where centrality(li), areaRatio(li) and textTagRatio(li) are respectively the
centrality measure, area ratio and text-tag ratio of a list li contained in L.
α1 = α2 = α3 are set to 0.3 to give the same weight to each measure.

Algorithm 1. LogicalListDiscovery

input : dominant list lPdom, set L− = {L \ lPdom}
output: logical list LL

1 LL = {lPdom};
2 forall the l ∈ L− do
3 forall the u ∈ l do
4 Lu ← HyLiEn(u);

5 Lu.filterSimilarity(lPdom, α);
6 LL.add(Lu);

7 LL ← LL.flatMap();
8 LL ← LL.removeDuplicates();
9 return LL;

3.3 Logical List Discovery

Identified the dominant list lPdom of the Web Page P, the last step of the algorithm
is to discover the logical list LL containing lPdom. This is done by taking advantage
of the regularities of Web Sites. As described by Crescenzi et al. [4], Web page
links reflect the regularity of the web page structure. In other words, links that
are grouped in collections with a uniform layout and presentation usually lead to
similar pages. Link-based approaches are used in the literature for tasks strictly
related to the one solved by our method. For instance, Lin et al. [12] used Web
links to discover new attributes for web tables by exploring hyperlinks inside
web tables. Lerman et al. [10] uses out-links to “detail web pages” in order to
segment Web tables. In this paper, we successfully use links grouped as lists to
navigate Web pages and to discover logical lists.
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The algorithm 1 describes the approach used. It takes as input the dominant
list lPdom, the minimum similarity threshold α, and the set of the lists L extracted
from P . It iterates over all the lists in the set L− = {L \ lPdom} (line 1), and, for
each url u in li it alternates, (i) the extraction of the set list Lu contained in the
Web Page U having u as url (line 4) to, (ii) the filtering of all the lists in Lu

which have a similarity with lPdom lower than α (line 6). At each iteration, all the
lists resulting from step (ii) are added to LL (line 7). Finally, LL is flattened and
all the duplicate elements are merged (lines 8-9). Moreover, during the process
all the anchor text of url u are used as attributes to annotate the discovered
view lists and are reported in the final logical list LL.

4 Experiments

In this section we presents the empirical evaluation of the proposed algorithm.
We manually generated and verified a test dataset. In particular, for the exper-
iment, we select 40 websites in different application domains (music shops, web
journals, movies information, home listings, computer accessories, etc.) with list
elements presented in different ways. For the deep-web databases, we performed
a query for each of them and collected the first page of the results list, and for
others we manually select a Web page. Table 1 shows in the first column the
ground truth, that is, the number of data records which belong to the logical
list to be extracted. The dataset is composed of 66.061 list elements extracted
from 4405 Web pages. We rendered each Web page and we manually identified
(i) dominant list and, (ii) following the out-links of the other lists in the pages
we annotated logical lists. This task required around 7 days of 4 people.

To the best of our knowledge the task of Logical List Discovery is novel,
and there are not any other methods to compare with. So, we evaluated the
effectiveness of our algorithm by using precision, recall and f-measure metrics,
computed over the number of logical list elements to be extracted (manually
verified) w.r.t to the algorithm results. In particular, the precision is the measure
of, how many of the extracted view lists belong to a logical list. The recall allows
us to measure how many of the discovered view lists are true positive element
of a logical list. We also included the F-Measure which is the weighted harmonic
means of precision and recall. These metrics are evaluated counting how many
data records of the logical list are found in the view lists.

precision =
TP

TP + FP
, recall =

TP

TP + FN
,F −measure =

2(precision× recall)

precision+ recall
(3)

4.1 Results

The execution of the algorithm requires two parameters which are empirically
set to α = 0.6 and β = 50. These parameters are need by the HyLiEn Algorithm.
Our methods uses α during the Logical List Discovery step.
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Table 1 presents the main results. The first column holds for each logical list
the number of data records to extract. The second and the third columns contain
the number of true positive and the number of false negatives data records. We
do not plot the number of false positives, because our algorithm outputted always
0 false positives during the experiment evaluation. Finally, the fourth, fifth and
sixth columns show the values for precision, recall and f-measure.

In general, the experimental results show that our algorithm is able to discover
logical lists in a varying set of Web sites (that is, it is not domain dependent).
Moreover, the quality of the results are not correlated to how the lists are ren-
dered in Web pages (i.e. horizontal, vertical and tiled). In average, it achieves
100% for Precision, 95% for Recall and a F-Measure 97%. With respect to the
ground truth, the algorithm does not extract any False Positive, and it outputs
only 466 False Negatives. In general, it returns perfect results (100% precision
and recall) for several kind of websites spanning different applications domain,
but there are some of them which presents values for recall ranging from 81%
and 91%. Considering “last.fm”, which gave a recall equal to 81%, we found that
the presentation of the data records is sometime quite different, because of the
high variance in the number of the “similar to” tags (which are presented as
HTML <a> ) assigned to each listing. Analyzing other examples such as “Il-
Sole24Ore.it” and “RealEstateSource.au” we found the same problem, that is,
the presentation of the data records is quite variable across the Web pages, and
so the HyLiEn algorithm sometimes misses some of the data records. Anyway
we see that the proposed algorithms is effective is able to discover logical lists
on different type of websites.

5 Conclusions and Future Works

In this paper, we have presented a new method for Logical List Extraction.
Our method solves the open issue of discover and extract lists which spans
multiple Web pages. These logical lists are quite common in many websites,
especially data-intensive, where their listings are split on multiples pages in
order to avoid information overload and to facilitate users’ navigation. However,
the data stored in such logical list need to be automatically extracted to enable
building services for market intelligence, synonyms discovery, question answering
and data mashup. Experimental results show that our new method is extremely
accurate and it is able to extract logical lists in a wide range of domains and
websites with high precision and recall. Part of this future work will involve tasks
such as indexing the Web based on lists and tables, answering queries from lists,
and entity discovery and disambiguation using lists.

Acknowledgements. This work fulfills the research objectives of the PON 02
00563 3470993 project “VINCENTE - A Virtual collective INtelligenCe ENviron-
ment to develop sustainable Technology Entrepreneurship ecosystems” funded
by the Italian Ministry of University and Research (MIUR).
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Table 1. Discovered logical list elements for Web sites dataset

Website Ground TP FN Precision Recall F -measure

BariToday.it 904 904 0 100% 100% 100%

Subito.it 1000 1000 0 100% 100% 100%

GitHub.com 100 100 0 100% 100% 100%

TestoLegge.it 360 360 0 100% 100% 100%

Zoopla.co.uk 597 597 0 100% 100% 100%

FindAProperty.co.uk 60 60 0 100% 100% 100%

Savills.co.uk 232 232 0 100% 100% 100%

AutoTrader.co.uk 60 60 0 100% 100% 100%

EbayMotors.com 3925 3925 0 100% 100% 100%

Doogal.co.uk 38240 38240 0 100% 100% 100%

RealEstateSource.com 368 316 62 100% 85% 91%

AutoWeb.co.uk 180 180 0 100% 100% 100%

TechCrunch.com 434 422 12 100% 95% 98%

Landsend.com 1243 1243 0 100% 100% 100%

TMZ.com 300 300 0 100% 100% 100%

IlSole24Ore.it 510 445 65 100% 81% 86%

GoBari.it 350 340 10 100% 97% 98%

AGI.it 60 60 0 100% 100% 100%

BBCNews.co.uk 347 310 37 100% 89% 94%

milano.corriere.it 30 30 0 100% 100% 100%

torino.repubblica.it 70 68 2 100% 98% 99%

Ansa.it 1506 1479 27 100% 98% 99%

LeMonde.fr 445 418 27 100% 94% 97%

Time.com 377 377 0 100% 100% 100%

aur.ArchLinux.org 575 575 0 100% 100% 100%

Immobiliare.it 609 536 73 100% 86% 93%

bitbucket.org 130 130 0 100% 100% 100%

MyMovies.com 563 515 48 100% 92% 96%

Trulia.com 3300 3300 0 100% 100% 100%

YouTube.com 580 567 13 100% 98% 99%

FileStube.com 332 304 28 100% 91% 95%

Last.fm 60 41 19 100% 68% 81%

Bing.com 130 130 0 100% 100% 100%

addons.mozilla.org 984 939 45 100% 95% 97%

AutoScout24.com 840 840 0 100% 100% 100%

Facebook.com 2820 2820 0 100% 100% 100%

SlideShare.net 2037 2037 0 100% 100% 100%

Gazzetta.it 970 970 0 100% 100% 100%

ElPais.es 294 285 9 100% 98% 99%

StackOverflow 585 585 0 100% 100% 100%

Sums and Averages 66.527 66.061 466 100% 95% 97%
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