
RILL: Algorithm for Learning Rules
from Streaming Data with Concept Drift

Magdalena Deckert and Jerzy Stefanowski

Institute of Computing Science, Poznań University of Technology,
60-965 Poznań, Poland

{magdalena.deckert,jerzy.stefanowski}@cs.put.poznan.pl

Abstract. Incremental learning of classification rules from data streams
with concept drift is considered. We introduce a new algorithm RILL,
which induces rules and single instances, uses bottom-up rule general-
ization based on nearest rules, and performs intensive pruning of the ob-
tained rule set. Its experimental evaluation shows that it achieves better
classification accuracy and memory usage than the related rule algorithm
VFDR and it is also competitive to decision trees VFDT-NB.

1 Introduction

Mining data streams has received a growing research interest. Massive volumes
of data, their rapid arrival rate, and changing characteristics impose new com-
putational requirements for algorithms, which are not fulfilled by standard so-
lutions developed for static data repositories. Moreover, the greatest challenge
for classifiers learning from data streams is to properly react to concept drifts,
i.e. changes in definitions of target concepts over time. Depending on the rate
of these changes, concept drifts are divided into sudden, gradual or recurrent
ones [6]. There exists a need for a new type of classifier, that, besides stream
requirements on constrained memory usage, limited learning time and efficient
incremental scanning of incoming data, should be able to track drifts and effec-
tively adapt to them.

Most of data stream classifiers are based on either implementing window-
ing forgetting mechanisms, applying drift detectors or include adaptive ensem-
bles [6]. The most popular single classifiers are Hoeffding Trees [3] and Very Fast
Decision Trees which can handle numerical data and concept drifts [6]. However,
decision rules have not received enough attention in the data stream research
community so far. For static data, they are often equivalent to considering trees
as they can provide better interpretability and flexibility for applying them in
various systems [5]. Moreover, individual rules can be considered independently
and in case of concept drift the single outdated rules can be adapted more eas-
ily than rebuilding the complete classifier or even changing the structure of the
tree [7]. Besides the pioneering work on FLORA [11], only three other rule ap-
proaches have been introduced: AQ11-PM-WAH [9], FACIL [4], and VFDR [7].

We claim that there is still need for a new rule algorithm that fulfills stream
computational requirements and has better reaction to different types of drifts.

T. Andreasen et al. (Eds.): ISMIS 2014, LNAI 8502, pp. 20–29, 2014.
c© Springer International Publishing Switzerland 2014

RILL: Algorithm for Learning Rules from Streaming Data 21

In our proposal we want to consider two-fold knowledge representation—rules
and single instances. It can be more appropriate for dealing with difficult decision
boundaries and decomposition of the concepts into many sub-part with outlying
examples which may occur in changing data. Here we are inspired by positive
experiences of BRACID algorithm for handling static imbalanced data [10]. Un-
like divide and conquer general to specific strategy from VFDR we propose to
consider stepwise bottom-up generalization based on the nearest rule idea. We
will also promote other solutions for coping changes.

The main aim of our paper is to introduce this algorithm, called RILL, and to
evaluate it in the comparative study on several data containing different types
of concept drifts.

2 Related Works

Fundamental works on incremental rule learning with concept drift has been
started with FLORA family of algorithms [11]. Their main idea is based on
successive modifications of nominal attribute conditions in positive rules (having
the same label as the new incoming example), boundary, and negative rules with
each incoming example. FLORA was also equipped in forgetting mechanism
using global window with learning examples. The next proposal is the AQ11-
PM-WAH system [9], which stores positive examples from the boundaries of the
current rule set inside the partial memory. When new examples arrive, the AQ11
learner combines them with those from the partial memory to modify the rules.
Moreover, it dynamically tune the period for keeping examples in the partial
memory using the forgetting heuristic from FLORA2.

However, according to [4] these algorithms were not effective for larger data
streams, especially with numerical attributes, and the authors introduced the
FACIL algorithm. Conditions in FACIL’s rules are expressed as intervals over
numerical attributes defining a hyper-rectangle in the normalized real numbered
space. The algorithm starts from very specific rules. When a new incoming ex-
ample is not covered by any rule, FACIL tries first to generalize positive rules
by looking for the smallest extensions of intervals inside rules. However, it is
accepted if each extension is smaller the user-defined threshold and the candi-
date for generalization does not intersect with any negative rules. The core of
FACIL is to store with each rule both negative and selected positive examples
(two positive per one negative example covered). This local set with examples is
updated when the rule covers the new example. FACIL’s rules may be inconsis-
tent (covering both positive and negative examples), however the possible purity
is controlled by the user defined threshold. When this threshold is reached, the
rule and its generalizations are blocked, and the examples associated with the
rule are used to induce new positive and negative rules.

The completely different induction mechanism is applied in Very Fast Decision
Rules (VFDR) learner, which generates either ordered or unordered set of rules [7].
Following divide and conquer strategy [5] it starts from the most general rules
and successively specialize them by adding new conditions. The specialization is

22 M. Deckert and J. Stefanowski

based on the Hoeffding bound adapted from VFDT [3]. VFDR has been extended
in [8] to cope with concept drifts by incorporation of the drift detection method
(DDM [6]) with each individual rule. This improves the adaptation to changes and
enables pruning of the rule set. Worth of notice is fact that only VFDR was more
extensively evaluated on massive data streams with concept drift showing that it
is competitive to VFDT.

As our proposal follows bottom-up rule induction and integrates rules with
single instances it is more similar to FACIL than to VFDR. However, we identify
several critical issues and differences in comparison to FACIL which motivate our
proposal. Firstly, FACIL does not directly track drifts (only in a limited range
by updating stored examples, although in a too computationally complicated
way). It also insufficiently prunes rules (which can be critical for sudden drifts).
Furthermore, its rule generalization is very limited and it can favor quite pure
rules with small supports. Finally, its classification strategy seems to be too
complex and not intuitive.

We hypothesize that it is beneficial to: (1) use single instances besides rules
to better model complex concepts and their changes; (2) allow much stronger
and simpler generalization of rule conditions based on the well known distance
measure; (3) keep a simple forgetting mechanism with the global sliding win-
dow; (4) implement more aggressive rule pruning depending on monitoring their
predictive abilities and (5) use the nearest rule / instance classification strategy.

3 Rule-Based IncrementaL Learner

RILL is an acronym of words Rule-based IncrementaL Learner. It incrementally
processes learning instances described by nominal and numerical conditional
attributes and the decision class label. The RILL algorithm induces unordered
set of decision rules and single instances. Each rule is represented in a form:

if (attrnum in [bl; bu]) and (attrnom = value) then class,

where attrnum is a numerical attribute, bl is its lower bound, bu is its upper
bound, attrnom is a nominal attribute, value is its value, and class is the value
of the decision class indicated by the rule.

The pseudocode of the RILL algorithm is presented as Algorithm 1. It oper-
ates as follows. When a new learning example ei is available, index of currently
processed instance is incremented and the example ei is added to the sliding
window sw. Moreover, the distribution d of classes for learning examples in the
window sw is updated according to the label of ei (Alg. 1, line 2).

Next, RILL checks if ei is covered by any positive rule with the same class
label as ei (Alg. 1, line 3). For every rule covering ei, statistics like the number
of covered positive examples in the window sw and the timestamp of its last
usage are updated. Next, negative rules are checked. If they also cover ei, their
respective statistics are updated (Alg. 1, line 4).

If no positive rule covers ei, the generalization procedure is fired (presented as
Algorithm 2). First, this procedure looks for the nearest rule nr to the current

RILL: Algorithm for Learning Rules from Streaming Data 23

Algorithm 1. RILL (Rule-based IncrementaL Learner)
Input : S: data stream of examples;

w: maximum size of the sliding window;
a: rule’s maximum age

Output: RS: updated set of decision rules;
sw: sliding window with learning examples;
d: distribution of the learning examples in the sliding window

1 foreach (learning example ei ∈ S) do
2 add example ei to sw and update d;
3 positiveCoverage = PositiveCoverage (ei);
4 negativeCoverage = NegativeCoverage (ei);
5 if (positiveCoverage = false) then
6 generalization = Generalization (ei, sw, d);
7 if ((positiveCoverage = false) and (generalization=false)) then
8 r = full description of the example ei;
9 RSc ← RSc ∪ {r};

10 if (swSize > w) then
11 remove the oldest example from sw and update d;
12 RS = DeleteOldRules (RS, a);
13 RS = DeleteImpureRules (RS, swSize, d);
14 RS = DeleteErroneousRules (RS, swSize, d);

example ei (Alg. 2, line 1), i.e. the rule with the smallest distance calculated
using modified HVDM measure [12]. The value of this distance is defined as:

distance =
∑

a∈attributes

{
0 ∨ 1 if a is nominal
0 ∨ (bl − valuea) ∨ (valuea − bu) if a is numerical

.

This formula expresses the distance between the learning example and the de-
cision rule as a sum of distances for each rule’s conditional attribute. In case
when rule’s elementary condition for given attribute matches the example’s
value (valuea), then the distance equals 0. When the rule does not match the
example’s value for given attribute, the distance depends on the type of the
attribute. In case of nominal attributes, the distance equals 1. On the other
hand, if the type of the attribute is numerical, the distance is calculated to the
nearest bound of the elementary condition in the rule. Next, the nearest rule nr
is generalized to cover ei (Alg. 2, line 2). It is enhanced by dropping condition
in case of nominal attributes or extending boundaries of numerical attributes
((bl = valuea) ∨ (bu = valuea)) to include attribute value describing the ex-
ample ei. After obtaining generalized rule gr, its statistics are updated and its
purity is calculated (Alg. 2, line 4). If the obtained purity value, calculated as
positive examples from the sliding window covered by the rule
total number of covered examples from the sliding window , is higher than the relative

frequency of the rule’s class calculated from the window sw (Alg. 2, line 5), then
the procedure looks for the nearest negative example not covered by gr (Alg. 2,
line 6). The motivation is to consider more general rule conditions. If such an

24 M. Deckert and J. Stefanowski

example exist, the rule gr is extended on numerical attributes to the half of the
distance to the negative example and the new rule er replaces the old rule nr in
the current set of rules RS (Alg. 2, line 7—9). Otherwise, the rule nr is removed
from the rules’ set RS and the rule gr is added to the current set of rules RS
(Alg. 2, line 11).

Algorithm 2. Generalization procedure
Input : ei: current learning example;

sw: sliding window with number of recent learning examples;
d: distribution of learning examples in the sliding window

Output: generalization: flag indicating whether generalization was performed
1 nr = find nearest rule to ei;
2 gr = generalize nr to cover ei;
3 if (length of gr > 0) then
4 rule’s gr purity = positiveCoverage

positiveCoverage+negativeCoverage
;

5 if (purity>= d(class)
swSize

) then
6 neg = find the nearest negative example not covered by gr;
7 if (neg �= null) then
8 er = extend gr on numerical attributes to the half distance to neg;
9 RSc ← {RSc \ {nr}} ∪ {er};

10 else
11 RSc ← {RSc \ {nr}} ∪ {gr};
12 generalization = true;

In case when both procedures: finding positive coverage and generalization
attempt fail, then full description of the learning example ei is added to the set
of rules RS as the most specific rule (Alg. 1, lines 7—9). Next, if the number of
stored learning examples exceeds the maximum size of the sliding window sw,
the oldest example from the sliding window sw is removed and the distribution
d is updated (Alg. 1, lines 10—11).

The set of rules RS is pruned using three criteria. First, rules that are not
used for more than a maximum age threshold are removed (Alg. 1, line 12).
Secondly, rules with too low purity (below the relative frequency of its class)
are deleted (Alg. 1, line 13). Finally, rules making too many prediction errors
are removed (Alg. 1, line 14). This criterion uses the confidence intervals related
to class probabilities, which are constructed for both, the rule classification ac-
curacy and its class relative frequency observed over the sliding window. If the
accuracy interval’s higher endpoint is less than its class frequency interval’s lower
endpoint, then the rule is deleted [1].

Finally, the RILL’s classification strategy assigns the new examples according
to the class labeled of its nearest rule, which is consistent with the idea used in
generalization process.

4 Experiments

Experimental Setup. The aims of this experiments are to evaluate the RILL
algorithm and compare it with related classifiers. We consider the only available

RILL: Algorithm for Learning Rules from Streaming Data 25

rule-based classifier in MOA—Very Fast Decision Rules (VFDR). Unfortunately,
despite all our efforts, FACIL’s code was inaccessible for the public use. More-
over, in order to be consistent with former experiments of VFDR [7], we chose
other incremental tree classifier: Very Fast Decision Trees (VFDT) and Very
Fast Decision Trees with Naïve Bayes leaves (VFDT-NB). Additionally, we also
checked a single Naïve Bayes (NB). All classifiers, except RILL, are not adjusted
to directly deal with concept drift, that is why we combined them with the slid-
ing window of the same size as used in RILL. All algorithms are implemented in
Java, including our implementation of RILL, and are embedded into the Mas-
sive Online Analysis framework for mining streams of data1. All classifiers were
run with default values of their parameters. As for RILL, the size of the sliding
window was set to 1000. We tested other sizes but results obtained for chosen
value stated the best compromise between achieved accuracy of classification
and computational demands. RILL’s maximum age threshold was chosen exper-
imentally and finally was set to 3000. Lower values caused removing rules, which
were still up-to-date. On the other hand, higher values of age threshold resulted
in decreasing value of classification accuracy.

Table 1. Characteristics of datasets

Dataset #Examples #Attributes #Classes Change type
AgrawalGradual 100000 9 2 gradual
CovType 581012 54 7 unknown
Crash2 999900 8 4 gradual
Electricity 45312 8 2 unknown
HyperplaneFaster 100000 10 4 gradual
HyperplaneSlow 100000 10 4 gradual
PAKDD09 50000 30 2 unknown
Poker 829201 11 10 unknown
Power 29928 2 24 unknown
RBFBlips 100000 20 4 blips
RBFGradualRecurring 100000 20 4 gradual
RBFNoDrift 100000 10 2 N/A
RBFSudden 100000 20 4 sudden
SEAGradual 100000 3 2 gradual
STAGGERGradual 100000 3 2 gradual
STAGGERSuddenFaster 100000 3 2 sudden

Toestimate classificationperformanceweused theEvaluatePrequentialmethod
from MOA [6]. It first uses each example in the stream to assess a classification ac-
curacy and then this example can be used to update the classifier. Moreover, this
method uses a sliding window or a fading factor as a forgetting mechanism. Besides
the total classification accuracy, we also recorded values of accumulated process-
ing time from the beginning of the learning phase and the size of current model
(expressed by its used memory size).
1 For more about MOA project see http://moa.cs.waikato.ac.nz/
2 We would like to thank Radosław Ziembiński, who provided us this dataset.

http://moa.cs.waikato.ac.nz/

26 M. Deckert and J. Stefanowski

We considered several datasets involving different types of changes, such as
gradual drifts, sudden drifts, blips (representing rare events—outliers in a stable
period, which a good classifier should not treat as real drifts), stability periods
(no drifts for which a classifier should not be updated) and complex/mixed
changes. To model precisely these drifts we used data stream generators available
in the MOA framework to construct 11 synthetic datasets. To extend the study
on more real world scenarios, we decided to additionally consider 5 publicly
available real datasets previously used to test the related ensemble algorithms in
several papers. However, for some of them there is no precise information about
type of drifts. Detailed characteristics of these datasets are given in Table 1.

Experimental Results. Although we carried out more experiments, due to
the page limits, we can present only the most representative results showing the
general tendency. The accuracy values were averaged over recording time points
(every 1000 examples, more frequent records did not influence the results). They
are presented in Table 2, where the best results are denoted in bold.

Table 2. Average values of classification accuracy [%]

Dataset VFDT NB VFDT-NB VFDR RILL
AgrawalGradual 68.09 73.22 71.71 66.11 67.91
CovType 60.06 79.41 78.91 61.39 88.13
Crash 50.97 53.23 50.97 30.91 81.91
Electricity 68.12 65.41 68.76 67.47 76.02
HyperplaneFaster 61.36 86.35 85.25 69.61 68.55
HyperplaneSlow 50.35 88.78 88.76 52.80 66.55
PAKDD09 80.19 53.75 53.31 80.10 68.99
Poker 59.25 56.67 57.22 58.42 79.22
Power 13.77 13.77 13.77 5.24 14.08
RBFBlips 39.52 76.19 76.02 51.59 80.34
RBFGradualRecurring 33.92 67.18 67.19 42.86 78.34
RBFNoDrift 49.99 71.24 71.24 70.33 80.59
RBFSudden 33.90 67.14 67.16 43.26 78.81
SEAGradual 64.22 91.25 91.25 87.96 87.88
STAGGERGradual 72.52 85.99 85.99 64.32 92.15
STAGGERSuddenFaster 59.82 78.32 78.32 60.85 88.68

To globally compare classifiers we carried out the ranked Friedman test with
the significance level α = 0.05. According to it (p-value=0.00008) we claim that
there is a significant difference in the results of compared classifiers. Notice that
RILL achieved the highest value of average ranks equal 4.19. The second and
third were NB (3.47) and VFDT-NB (3.31), which were very near one another.
The post-hoc analysis showed that the differences in average ranks between
these methods are too small to conclude that they are significant. However, we
can resume that each of the top three methods was significantly better than
VFDR and VFDT. We additionally carried out the paired Wilcoxon tests for
comparing RILL against NB or VFDT-NB. Results of this test were nearly at

RILL: Algorithm for Learning Rules from Streaming Data 27

the significance level (in both cases p-value equals 0.07), so we were very close to
confirm that RILL was significantly better. However, making win-loss analysis
for single data, we noticed that RILL won 11 times, was third 2 times, and
fourth—3 times.

40 %

45 %

50 %

55 %

60 %

65 %

70 %

75 %

80 %

85 %

0 5 k 10 k 15 k 20 k 25 k 30 k 35 k 40 k 45 k 50 k

A
cc

ur
ac

y

NB
VFDT

VFDT-NB
VFDR

RILL

Fig. 1. Prequential classification accuracy for Electricity datasets

Better insight into dynamics of learning is available by studying figures of
prequential classification accuracy with respect to processing every learning ex-
ample. Again, due to the space limits, we present only the representative figures
for real dataset Electricity and artificial data with sudden drift RBFSudden—see
Figures 1, 2. For most of other datasets (except PAKDD09) RILL achieved also
the best trend of classification accuracy. In case of artificial data with STAG-
GER concepts, Radial Basis Function and crashes, RILL was definitely the best
classifier in terms of the accuracy of classification. Moreover, results obtained
by RILL are quite stable—without any drastic rises and falls. Only for Hyper-
plane datasets and SEA functions, RILL was not able to outperform Very Fast
Decision Tree with Naïve Bayes leaves and the single Naïve Bayes classifier.

In terms of memory consumption, the biggest amount of memory needs VFDR
classifier. RILL have lower demands. However, the least memory consuming are
VFDT, NB, and VFDT-NB. This tendency is also visible for most of the datasets
and algorithms. Only for 2 datasets with STAGGER concepts, RILL uses more
memory than VFDR classifier. In case of time, the fastest algorithms are VFDT,
NB, and VFDT-NB. Other algorithms, RILL and VFDR, need more time. For
majority of datasets VFDR is the slowest one. For some real problems, RILL
needs more time however it becomes the most accurate classifier.

28 M. Deckert and J. Stefanowski

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

0 10 k 20 k 30 k 40 k 50 k 60 k 70 k 80 k 90 k 100 k

A
cc

ur
ac

y

NB
VFDT

VFDT-NB
VFDR

RILL

Fig. 2. Prequential classification accuracy for RBFSudden datasets

5 Discussion of Results and Final Remarks
In this paper we presented a new incremental algorithm called RILL, which
induces an unordered set of decision rules and single instances. It processes
data streams and attempts to adapt rules to concept drift by rule pruning and
sliding window. Unlike related algorithms, it uses bottom-up rule generalization
based on nearest rules, performs their intensive pruning and is integrated with
the classification strategy also based on looking for the nearest rules. RILL was
evaluated in a comparative study with available in MOA incremental classifiers
on several data containing different types of concept drifts.

In terms of the total accuracy of classification, RILL was the best on most
of the datasets. It won 11 times, was third 2 times, and fourth—3 times. With
respect to more precise analysis we can say that it is competitive (according
to statistical test) to the best decision trees VFDT-NB. Nevertheless, RILL
outperformed the other rule-based classifier VFDR on 13 datasets and this dif-
ference is statistically significant. RILL left its opponents far behind especially
on datasets with Radial Basis Function. The reason for this behavior is that
these datasets represent the complex concept decomposed in many changing
sub-concepts, which are not straightforward to approximate with a decision
tree model. However, we have to admit, that RILL is not doing so well on
datasets with moving hyperplane, SEA functions and loan functions introduced
by Agrawal. We suspect that for the last two datasets, the problem lies in a
definition of the concept as: (1) it is modeled as a quite difficult mathematical
function with conditions over a subset of numerical attributes; (2) datasets also
contain irrelevant numerical attributes. Notice that the current version of RILL
generalization procedure does not allow to discard numerical attributes.

Furthermore, we experimentally showed that RILL is less computationally
demanding, mainly from the memory usage, than VFDR rule classifiers.

RILL: Algorithm for Learning Rules from Streaming Data 29

Comparing RILL to FACIL algorithm, we were unable to do it experimentally.
However, we could evaluate their differences with respect to computational costs.
From the memory usage perspective, FACIL may be more demanding due to the
fact that it stores examples for every rule. Moreover, its pruning is quite limited,
so it still may keep many rules. On the other hand, RILL stores always the same
number of examples in the global window and offers stronger pruning. As for
processing time, RILL may operate longer during the rule generalization phase,
because it calculates rule statistics from the complete window.

During experiments we also analyzed the number of rule generalizations per-
formed by RILL. For most of the datasets almost half of the generalization
attempts are successful. However, in case of the hyperplane datasets only 3%
of generalizations are performed. Therefore in our future research we will con-
sider modifications of these generalizations and dropping numerical conditions
for such difficult datasets.

Acknowledgments. The research has been supported by internal grant no.
09/91/DSPB/0543.

References

1. Aha, D.W., Kibler, D.: Instance-based learning algorithms. Machine Learning 6,
37–66 (1991)

2. Deckert, M.: Incremental Rule-based Learners for Handling Concept Drift: An
Overview. Foundations of Computing and Decision Sciences 38(1), 35–65 (2013)

3. Domingos, P., Hulten, G.: Mining high-speed data streams. In: Proceedings of the
6th ACM SIGKDD International Conference, KDD, pp. 71–80 (2000)

4. Ferrer-Troyano, F.J., Aguilar-Ruiz, J.A., Riquelme, J.C.: Data Streams Classifica-
tion by Incremental Rule Learning with Parametrized Generalization. In: Proceed-
ings of ACM Symposium on Applied Computing, SAC 2006, pp. 657–661. ACM
(2006)

5. Fürnkranz, J., Gamberger, D., Lavrac, N.: Foundations of Rule Learning. Springer
(2012)

6. Gama, J.: Knowledge Discovery from Data Streams. CRC Publishers (2010)
7. Gama, J., Kosina, P.: Learning Decision Rules from Data Streams. In: Proceedings

of the 22th International Joint Conference on Artificial Intelligence, IJCAI 2011,
vol. 2, pp. 1255–1260. AAAI Press (2011)

8. Kosina, P., Gama, J.: Handling time changing data with adaptive very fast decision
rules. In: Proceedings of ECML/PKDD 2012, Bristol, United Kingdom, vol. 1,
pp. 827–842 (2012)

9. Maloof, M.: Incremental Rule Learning with Partial Instance Memory for Chang-
ing Concepts. In: Proceedings of the International Joint Conference on Neural
Networks, IJCNN 2003, vol. 4, pp. 2764–2769. IEEE Press (2003)

10. Napierala, K., Stefanowski, J.: BRACID: A comprehensive approach to learning
rules from imbalanced data. Journal of Intelligent Information Systems 9(2), 335–373
(2012)

11. Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden
contexts. Machine Learning 23, 69–101 (1996)

12. Wilson, D.R., Martinez, T.R.: Improved Heterogeneous Distance Functions. Journal
of Artificial Intelligence Research 6(1), 1–34 (1997)

	RILL: Algorithm for Learning Rules from Streaming Data with Concept Drift
	1 Introduction
	2 Related Works
	3 Rule-Based IncrementaL Learner
	4 Experiments
	5 Discussion of Results and Final Remarks
	References

