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Abstract. To extend the scope of retrieval and reasoning spanning several 
linked data stores, it is necessary to find out whether information in different 
collections actually points to the same real world object. Thus, data stores are 
interlinked through owl:sameAs relations. Unfortunately, this cross-linkage is 
not as extensive as one would hope. To remedy this problem, instance matching 
systems automatically discovering owl:sameAs links, have been proposed re-
cently. According to results on existing benchmarks, such systems seem to have 
reached a convincing level of maturity. But the evaluations miss out on some 
important characteristics encountered in real-world data. To establish if instance 
matching systems are really ready for real-world data interlinking, we analyzed 
the main challenges of instance matching. We built a representative data set that 
emphasizes these challenges and evaluated the global quality of instance match-
ing systems on the example of a top performer from last year’s Instance Match-
ing track organized by the Ontology Alignment Evaluation Initiative (OAEI).  
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1 Introduction 

Fostered by the W3C Semantic Web group’s initiative to build the “Web of Data”, a 
massive amount of information is currently being published in structured form on the 
Web. Currently, more than 53 billion triples in over 300 data stores are available in 
the largest Virtuoso-based Semantic Web database (SWDB)1. The key point of this 
initiative and an important design principle of Linked Open Data (LOD) is that data 
from different sources is extensively inter-linked. This way queries can join informa-
tion available in disjoint data stores with high precision. For example, for a query on 
biographic data and work of the film producer Martin Scorsese, biographic data could 
come from DBpedia while data about his work could come from LinkedMDB.  
All this is possible provided that DBpedia and LinkedMDB are inter-linked at least 
with respect to the entity of Martin Scorsese. The typical way for such cross-linkage 

                                                           
1 The Virtuoso SWDB is accessible at http://lod.openlinksw.com/ through a 

SPARQL endpoint. 
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between LOD sources is through owl:sameAs links. Unfortunately, today cross-
linkage is not nearly as extensive as one would hope: The number of unique 
owl:sameAs links we counted on the aforementioned SWDB, is about 570 million. 
Many links are missing and from the ones available, a large part are trivial links be-
tween DBpedia, Freebase, and YAGO ([1]).  

Under the name of entity reconciliation or instance matching (usually mixed up 
with instance-based ontology matching because instance matching is often required 
for ontology matching), the problem of finding identity links (owl:sameAs) between 
identifiers of the same entity in various data stores has been heavily researched (see 
[2–7]). These systems make use of techniques like probabilistic matching, logic-based 
matching, contextual matching, or heuristic matching based on natural language 
processing (NLP). Each approach shows strengths and weaknesses. But these particu-
larities are hard to assess, since each system was evaluated on different data samples. 
The choice of data for the evaluation has a big influence on the results. For instance, 
there is a large number of class equivalence links between DBpedia and YAGO. If 
these two data sources build a significant part of the evaluation data then approaches 
like the one presented in [5] are favored. The verbose nature of the URIs also helps 
shallow NLP techniques favoring for instance the system presented in [7]. The situa-
tion is different for other selections like LinkedMDB and YAGO since the URIs pro-
vided in LinkedMDB are more cryptic and links to and from YAGO are rare.  

Of course, instance-matching approaches have to be able to work with all kinds of 
entities from multiple data-stores. Again, this may boost the performance of some 
systems, since different aspects of an entity can be learned iteratively from various 
stores. On the other hand it can be detrimental to the overall data quality, since the 
more entities and entity types are available, the more probable it becomes for systems 
to generate incorrect identity links. Take for instance LINDA [5] which heavily ex-
ploits transitive links to support the inter-linking process. When it was evaluated on 
the Billion Triple Challenge corpus comprising entities from various stores the re-
spective precision was about 0.8. For relaxed similarity constraints the precision even 
drops to 0.66. But with every third identity link being incorrect, this level of quality 
does not seem satisfactory for performing join queries or reasoning. In contrast, 
SLINT+ [7] reports an average precision of 0.96 on DBpedia and Freebase data.   

But does this really mean that SLINT+ performs better? The respective precision 
was achieved on a biased set, representing a highly inter-linked extract from DBpedia 
and Freebase! It is therefore impossible to directly compare the performance of the 
two systems. To make systems comparable to one another, the Ontology Alignment 
Evaluation Initiative (OAEI) organizes a yearly evaluation event including an In-
stance Matching track. For the last year’s evaluation2 there were evaluation tests in-
volving data value differences, structural heterogeneity and language heterogeneity. 
With small data value and structure alterations and involving a small extract (1744 
triples and 430 URIs) from a single high quality data source (DBpedia), we will show 
that the tests do not accurately reflect the problems encountered in real-world data. 

                                                           
2 http://www.instancematching.org/oaei/imei2013/results.html 



276 S. Homoceanu, J.-C. Kalo, and W.-T. Balke 

 

Actually, judging by the 2013’s OAEI evaluation results (sustained precision of 
over 0.9), instance matching systems seem to have reached a level of maturity. But 
considering the modest precision achieved by systems like LINDA on real-world 
data, this raises the question: Is instance matching ready for reliable data inter-
linking? To answer this question, we perform extensive real-world experiments on 
instance matching using a system which has proven very successful in OAEI tests. To 
the best of our knowledge, this is the first study that provides an in depth analysis 
over how effective instance matching systems are on real-world data.  

2 The Instance Matching Problem 

Instance matching is about finding and reconciling instances of the same entity in 
heterogeneous data. It is of special interest to LOD because the same entity may be 
identified with different URIs in different data stores and the owl:samesAs property 
useful for interlinking URIs of the same entity is not as wide-spread as needed.  

In the context of LOD, given multiple sets of URIs D1, D2, …, Dn, with each set 
comprising all unique URIs of a data store, matching two instances of an entity can 
formally be defined as a function match:URI×URI→{false, true} with: ݄݉ܽܿݐ൫ܷܴܫ௜, :௝൯ܫܴܷ ൌ ቊ ,݁ݑݎݐ ,௜ܫ൫ܷܴ݉݅ݏ ݂݅ ௝൯ܫܴܷ ൐ ,݁ݏ݈݂ܽߠ  ௜ܫܴܷ ݄ݐ݅ݓ                         ݁ݏ݅ݓݎ݄݁ݐ݋ א , ௜ܦ ௝ܫܴܷ א   ௝ܦ
where 1 ൑ ݅, ݆ ൑ ݊, and sim() is a system dependent, complex similarity metric in-
volving structural, value-based, contextual and other similarity criteria, and ߠ is a 
parameter regulating the necessary quality level for a match.  

Based on this function, instance matching systems build an equivalence class for 
each entity. An equivalence class comprises all URIs used by any source to refer to 
some corresponding unique entity. For instance, considering only DBpedia, Freebase, 
YAGO and LinkedMDB, the equivalence class for the entity “Martin Scorsese” is: 

{http://dbpedia.org/resource/Martin_Scorsese,  
  http://yago-knowledge.org/resource/Martin_Scorsese,  
  http://rdf.freebase.com/ns/m.04sry,  
  http://data.linkedmdb.org/resource/producer/9726,  
  http://data.linkedmdb.org/resource/actor/29575,  
  http://data.linkedmdb.org/resource/editor/2321}. 

It’s worth noticing that in contrast to general purpose knowledge bases like Free-
base or DBpedia, specialized data stores like LinkedMDB have finer granularity, 
differentiating between Martin Scorsese as actor, editor, or producer. According to the 
owl:sameAs property definition in the OWL standard, all URIs referring to the same 
real world object should be connected through owl:sameAs. In consequence, all six 
URIs from the previous example should be linked by owl:sameAs relations. Of course 
one could argue that finer, context-based identity is required and that “Martin Scor-
sese, the producer” may not be the same as “Martin Scorsese, the actor”. For further 
discussions regarding context-based similarity and identity see [8]. In this paper we 
adopt the definition as provided by the OWL standard for the owl:sameAs property. 

Instance matching is an iterative process. Once some of the instances are matched 
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either manually or by some system and owl:sameAs links have been established, more 
identity links can be found by exploiting the transitivity inherent in identities: Given 
that URIA and URIB represent the same real world object, the same applying for URIB 
and URIC implies that also URIA and URIC represent the same real world entity. Con-
sequently, an owl:sameAs link between URIA and URIC can be created. However, the 
actual process of discovering sameAs links is based on some similarity function and 
not on identity. Similarity functions, however, are usually not transitive!  

 

 

Fig. 1. Three URIs matching in a chain (URIA and URIC don’t match). The similarity between 
URIA and URIB is stronger than the similarity between URIB and URIC. 

Let us give a simplified example where the matching function relies on the Le-
venshtein distance on the rdfs:label property as similarity metric. Consider that a URI 
with rdfs:label “Scorsese, Martin” referring to the well-known movie producer, is 
matched with a URI with rdfs:label “Scorsese, Cartin” (which could be a typo). This 
last URI matches a URI with rdfs:label “Scorsese, Chartin” and the match process 
goes on up to a URI with rdfs:label “Scorsese, Charles”. Charles Scorsese is an actor 
known for his role in Goodfellas and actually Martin’s father. This problem is well 
known in the area of single link clustering: similarity clustering may lead to chains of 
URIs where neighboring URIs in the chain are similar, but for long enough chains the 
ends of the chain have almost nothing in common. Linking the URIs of Martin and 
Charles Scorsese with owl:sameAs would obviously be incorrect. Of course this ex-
ample is constructed, but the danger of transitively matching unrelated instances in 
the context of large amounts of data is real. In consequence, evaluation data involving 
triples from multiple stores is necessary for exposing such weaknesses.  

From the instance matching systems we found that only LINDA specifically ad-
dresses the problem of transitivity and selects only those matches consistent with 
transitivity as follows: On the example in Figure 1, considering that sim(URIA, URIB) 
> sim(URIB, URIC), the equivalence class of URIA comprises only URIB and vice versa, 
i.e. both URIs refer the same entity and all properties valid for URIA are also valid for 
URIB and all properties valid for URIB are also valid for URIA. To express this we can 
denote the entity referred by URIA and URIB through URIAB. Even though URIA and 
URIC don’t show a large enough similarity, they are considered to refer the same enti-
ty if match(URIAB, URIC) is true. Then, URIC will also be added to the equivalence 
class. The process of finding identity links continues iteratively up to convergence. 

Borrowing from hierarchical clustering, also the complete-linkage criteria could for 
instance be easily adopted to enforce transitivity. Assume after pairwise comparing all 
URIs we find three URIs matching in a chain like presented in Figure 1. Any set of n 
linked URIs satisfies the complete-linkage criteria, iff all n URIs match in a pairwise. 
Obviously this is not the case for chains. In consequence, chains are broken up by 

URIA URIB URIC

URIAB
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removing the weaker links. In the case of links of equal strength one of them is bro-
ken at random. Consider sim(URIA, URIB) > sim(URIB, URIC). Since match(URIA, 
URIC) is false, the link between URIB and URIC has to be removed. As a rule, the list 
of URIs being weakly linked to an URIx is: ܹܮ௎ோூೣ ൌ ൛ܷܴܫ௬| ݄ܿݐܽ݉ :ݖ ׌ሺܷܴܫ௫, ௭ሻܫܴܷ ൌ ר ݁ݑݎݐ ,௬ܫ൫ܷܴ݄ܿݐܽ݉  ௭൯ൌܫܴܷ ר ݁ݏ݈݂ܽ ,௫ܫሺܷܴ݉݅ݏ ௭ሻܫܴܷ ൒ ,௫ܫ൫ܷܴ݉݅ݏ  .௬൯ൟܫܴܷ
After all weak links are broken for all URIs, the equivalence class of an URI is given 
by a function E:URI→{URIs} where:  ܧሺܷܴܫ௞ሻ: ൌ ሼܷܴܫ௟|݄݉ܽܿݐሺܷܴܫ௞,  ௟ሻሽܫܴܷ

3 Related Work 

Instance matching is crucial for several applications like data integration, identity 
recognition and more important, for ontology alignment. Recognizing the lack of 
evaluation data, OAEI provided a reference benchmark for ontology alignment since 
2004. Probably fostered by advances in Linked Data, four years later, [9] is one of the 
first publications to address this problem for instance matching. The authors discuss 
the particularities of instance matching and name main challenges. Based on these 
challenges, they design a benchmark with movie data from IMDb that emphasizes on 
data value differences, structure and logical heterogeneity. Finally, they compare the 
results for two instance matching algorithms to show the applicability of the data set.  

In 2009, OAEI introduced an instance matching track and provided first generated 
benchmarks3: One comprising three datasets with instances from the domain of scien-
tific publications built on Digital Bibliography & Library Project (DBLP), one with 
three datasets covering several topics, structured according to different ontologies 
from DBpedia and one generated benchmark obtained by modifying a dataset accord-
ing to the data value, structure and logical heterogeneity criteria introduced in [9]. 
Evaluation data has gradually improved and last year’s benchmark comprised five test 
cases: One for value transformation, where the value of five properties was changed 
by randomly deleting or adding characters; one for structure transformation, where 
the length of property paths between resources and values has been changed; a lan-
guages test where comments and labels were provided in French instead of English; 
one set combining value and structure transformation using French text and one 
where besides the value, structure and language challenges, some entities have none 
or multiple counterparts (a cardinality test). The data for the tests was extracted from 
DBpedia: it comprised 1744 triples, 430 URIs and only 11 predicates. It involves only 
one type of entity: Personalities from the field of computer science like Alan Turing, 
Donald E. Knuth, or Grace Hopper and is limited to triples having such personalities 
as a subject. Four instance matching systems have been evaluated on this benchmark. 
Out of the four, SLINT+ [7] and RiMOM [4, 10, 11] achieved outstanding results 
with an average precision and recall over all test of more than 0.9. 

                                                           
3 http://oaei.ontologymatching.org/2009/instances/ 
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While these results are quite promising, similar systems have proven weaker per-
formance on real-world larger in size and involving multiple data stores. To assess the 
performance of such systems with real-world data, we built an evaluation set compris-
ing 90,000 entities, from four domains, extracted from five data stores. In contrast to 
the OAEI test cases, all domains were included in all tests rendering cross-domain 
false positive matches (e.g. person being matched to movie) possible. The data stores 
were all-purpose knowledge bases like DBpedia and Freebase as well as domain fo-
cused stores like LinkedMBD and DrugBase. Some sources have cryptic URI naming 
conventions while some are more explicit. Also the granularity of properties varies 
between sources. We believe this is a more appropriate way of measuring the success 
of instance matching algorithms.  

Table 1. Number of entities and properties per data store and entity type 

Types Freebase DBpedia LMDB NYT DrugBase 
#entities / properties

Person 10,000 / 1,006 10,000 / 2,537 10,000 / 10 4,979 / 11 0 
Film 10,000 /   465 10,000 /   565 10,000 / 48 0 0 
Drug  5,000 /   435  5,000 /   247 0 0 6,712 / 36 
Org.   5,000 /   641 0 0 3,044 / 11 0 
#entities 30,000    25,000   20,000   8,023    6,712   
#triples 1,749,433 2,461,263 264,902 90,850 314,108 

4 Evaluation Data 

For evaluating instance matching systems we rely on real-world data comprising enti-
ties of types Person, Film, Drug and Organization. The data was extracted from five 
stores: Freebase, DBpedia, LinkedMDB, DrugBase and NewYork Times. A detailed 
description of the data set is presented in Table 1. Instance matching systems are quite 
resource demanding ([5, 7]). For this reason, the evaluation data has a manageable 
size of about 90 thousand entities. This translates to about 4.9 million triple 
representing all relations having one of the selected entities as a subject. Such volume 
can be matched in a matter of minutes on commodity hardware. A similar number of 
entities was selected from each data store. The size difference between entity types 
was considered, too: Overall, the data set comprises about 35 thousand entities of type 
person, 30 thousand entities of type film, about 15 thousand drug entities, and about 8 
thousand organizations. To emphasize data value problems, entities were selected 
after alphabetically ordering them on their labels. This way, almost all entities have 
labels starting with the letter ‘A’. Due to the small number of entities, DrugBase and 
NewYork Times have been selected in full. The number of properties per entity type 
is, with a maximum of 2,537 unique properties for persons, significantly higher than 
in the OAEI tests. This stresses out structure heterogeneity of real-world data. The 
ontology differences between data sources, different aggregation levels introduced by 
LinkedMDB, or the fact that persons are being matched with actors add to the chal-
lenges this data set poses. Furthermore, in contrast to OAEI tests, having data form 
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multiple stores increases the risk of building wrong transitive links. At the same time, 
the fact that multiple domains are compared, the possibility of creating bad links be-
tween entities of different types also exists. Finally, the selected data is not heavily 
interlinked. There are 5,855 owl:sameAs links between entities in our data set. 5,264 
of them are between DBpedia and Freebase entities, 548 between DBpedia and Lin-
kedMDB entities and 43 between entities from DBpedia and the NewYork Times.  

To encourage further research on this topic, we made this data set, and data gener-
ated by our experiments, available at: http://www.ifis.cs.tu-bs.de/node/2906.  

Table 2. The number of owl:sameAs links, the number of owl:sameAs links between entities of 
different types and precision obtained by SLINT+ and by performing the transitive closure on 
inks created by SLINT+ respectively 

θ SLINT+ clTR 
#sameAs Inter-domain Prec. #sameAs Inter-domain Prec. 

0.95 8,020 33 0.91 2,055 89 0.20 
0.75 16,739 119 0.71 5,498 216 0.15 
0.50 17,436 230 0.76 7,038 396 0.09 
0.25 25,113 1,734 0.67 14,879 2,408 0.02 

5 Instance Matching - Experiments  

To assess the quality of instance matching systems, we performed instance matching 
on the data presented in the previous chapter and measured sampled precision. We 
computed the transitive closure of the resulting owl:sameAs links and measured the 
quality of the newly created links. We paid special attention to the resulting equiva-
lence classes as well as to entities of different types that have been matched. All tests 
were performed for high to low similarity thresholds. Since one of the characteristics 
of the data set was that it is not highly interlinked, there were not enough owl:sameAs 
links available to also measure recall. 

The instance matching system is a black box from our perspective. Any domain in-
dependent system can be used. SLINT+ is one of the systems to achieve exceptional 
results in instance matching tasks. It is training-free and domain-independent. It 
builds on thorough predicate alignment and selection, shallow NLP and correlation 
based instance matching. It has already been successfully tested on selections from 
DBpedia and Freebase and it is available online for download4.  

 
For a similarity threshold of 0.95, SLINT+ creates 8,020 owl:sameAs links (see 

Table 2). 33 of them link drugs or movies to persons. They are obviously wrong. 
Overall, we observed a sampled precision of 0.91 for this threshold. The lower the 
similarity threshold, the more links are found. For a similarity threshold of 0.25, 
25,113 links are found. Even for such a low similarity threshold the precision is with a 

                                                           
4 http://ri-www.nii.ac.jp/SLINT/index.html 
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value of 0.67 quite impressive. According to the OWL standard, owl:sameAs links are 
transitive. Like most instance matching systems, SLINT+ ignores this aspect, proba-
bly because few bad links may lead to an explosion of bad links through transitivity. 
On the other hand completely ignoring transitive links is dangerous since any query 
engine using the links created by SLINT+ may transitively link sources to solve join 
queries. Computing the transitive closure of the owl:sameAs relations discovered by 
SLINT+ for a threshold of 0.95 we obtained an additional 2,055 links. However, the 
precision measured for these transitive links is only 0.20.  

Table 3. Number of equivalence classes per number of URIs in the equivalence class, for 
various similarity thresholds 

#URIs 
per class 

# equivalence classes 
θ=0.95 θ=0.75 θ=0.5 θ=0.25 

2 4,168 5,054 7,008 8,180 
3 529 1,160 2,023 2,781 
4 54 222 315 648 
5 15 110 136 303 
6 7 49 67 167 
7 1 24 38 89 
8 4 22 22 52 
9 5 12 17 43 

10 2 11 12 27 
11 2 4 8 13 
12 2 8 9 9 
13 0 1 3 12 
14 0 3 1 7 
15 1 6 4 6 
16 1 1 3 5 
17 0 1 3 7 
18 1 1 2 4 
19 1 1 2 1 
20 1 2 2 4 
21 1 1 2 2 
22 0 1 2 3 
23 1 1 1 2 
24 0 0 2 1 
27 0 1 0 1 
29 0 1 1 1 
31 0 0 0 1 
38 0 0 1 1 

 
 
But how is this possible? As discussed in Section 2, due to the non-transitive nature 

of the similarity function, long chains of entities belonging to the same equivalence 
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class may be created. The longer the chain, the higher the probability that URIs that  
are far apart in the chain refer different entities. Even for high precision oriented  
similarity thresholds like 0.95, SLINT+ produces 11 equivalence classes with more 
than 10 URIs each. Actually, the largest equivalence class has 23 URIs, while for  
lower similarity thresholds there are equivalence classes with 38 URIs (see Table 3). 
One false owl:sameAs link connecting two smaller equivalence classes in such a  
large class creates a huge explosion of false links. Assuming two equivalence  
classes each having 10 URIs, one false link created by SLINT+ connecting the  
two classes may generate up to 100 incorrect links (all pairwise combinations develop-
ing between the two classes: ܥଶଶ଴- 2 ·  ଶଵ଴). Considering the high precision for 8,020ܥ
links but the low precision for all transitive links, the real, overall precision achieved 

by SLINT+ for a threshold of 0.95 is 
଼,଴ଶ଴כ଴.ଽଵାଶ,଴ହହכ଴.ଶ଴଼,଴ଶ଴ାଶ,଴ହହ ൌ 0.77 and thus quite com-

parable to LINDA. 
Not knowing all owl:sameAs links for all entities from our data set it is impossible 

to accurately measure recall. However, if we take into consideration that 25,113 enti-
ties were found with a precision of 0.67 and that an additional 14,879 were found with 
a precision of 0.02, we can assume that the data set should have, when correctly inter-
linked, at least 17,123 links (25,113 * 0.67 + 14,879 * 0.02). Assuming that 8,020 * 
0.91 + 2,055 * 0.20 = 7,709 correct links have been discovered for a threshold of 
0.95, this translates into a recall of at best 0.45. This is significantly lower than the 
results observed on the OAEI benchmark. 

To sum up, results for today’s instance matching systems seem quite impressive. 
But if the problem of transitivity is not properly considered, even for very high simi-
larity thresholds the precision on links obtained through transitivity is catastrophic. 

6 Conclusions and Future Work  

The most important benefit of linked open data is that it creates a unified view of 
entities by tapping into information from different data stores. The standard mechan-
ism for connecting instances of the same entity is to transitively exploit owl:sameAs 
properties. But to do this, first all individual instances of real-world entities have to be 
linked. Since manually creating all sameAs links is hardly feasible, instance matching 
systems mostly rely on similarities to automatically create sameAs links for subse-
quent traversal. The slight problem is that similarity functions are not transitive.  

In this paper, we have shown that, even for high similarity thresholds (θ=0.95), ig-
noring the missing transitivity may have catastrophic effects over the quality of the 
discovered links. In our experiments for a top-rated system it translated into an overall 
precision of less than 0.8 for a recall lower than 0.45. In conclusion, unfortunately, 
today, instance matching is not yet ready for reliable automatic data interlinking. 

While our results on one hand call for ways of enforcing transitivity in instance 
matching systems, they also call for better evaluation within the OAEI instance 
matching track. A starting point is the data set constructed in this paper. But transitivi-
ty problems are by no means the only problems that have to be reflected in the evalua-
tion benchmark. Similar challenges for instance matching, first introduced in [9], are: 
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• Data Value Differences: The same data may be represented differently in 
different sources. For instance a company’s name may be “IBM” in one 
source and “International Business Machines Corporation” in another. 

• Structural Heterogeneity: A data type property in one source may be de-
fined as an object property in another source. Multiple properties from one 
source (first name and last name) may be composed into a single property in 
other sources (name). One source may have three values for a property while 
in another source the same property has just one value. 

• Logical Heterogeneity: Instances of the same real-world object may belong 
to different concepts. These concepts may be subclasses of the same super-
class. Two instances having the same property values may belong to disjoint 
classes.  

Considering all this, a proper data set for evaluating instance matching systems 
should have triples from multiple stores for transitivity reasons, with a certain level of 
overlap between domains and different levels of data quality to address data value 
differences, and it should include sources having properties with different levels of 
cardinality and granularity to address structural and logical heterogeneity.  

In the near future, after building a benchmark for proper matching evaluation we 
plan to analyze the transitive closures and their respective precision/recall also for 
RiMOM2013 and LogMap, two other state of the art systems. Moreover, we will 
thoroughly analyze ways of enforcing transitivity by design in instance matching.  
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