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Abstract. In this paper we introduce multi-label ferns, and apply this
technique for automatic classification of musical instruments in audio
recordings. We compare the performance of our proposed method to a
set of binary random ferns, using jazz recordings as input data. Our main
result is obtaining much faster classification and higher F-score. We also
achieve substantial reduction of the model size.

1 Introduction

Music Information Retrieval (MIR) is a hot research topic last years [23], [26],
with quite a successful solving of such problems as automatic song identification
through query-by-example, also using mobile devices [25], [28], and finding mu-
sic works through query-by-humming [18]. Still, one of the unattainable goals of
MIR research is automatic score extraction from audio recordings, which is espe-
cially difficult for polyphonic data [8], [12]. Multi-pitch tracking combined with
assignment of the extracted notes to particular voices (instruments) is a way to
approach score extraction. Therefore, identification of instruments can be used
to assign each note in a polyphonic and polytimbral sound to the appropriate
instrument. However, the recognition of all playing instruments from recordings
in polyphonic environment is still a challenging and unsolved task, related to
multi-label classification of audio data representing a mixture of sounds.

In our work, the target is to recognize all instruments playing in the ana-
lyzed audio segment. No initial segmentation nor providing external pitch is
required. The instruments identification is performed on short sound frames,
without multi-pitch tracking. In our previous works, we were using sets (which
we called batteries) of binary classifiers to solve the multi-label problem [13], [30]
of identification of instruments in polyphonic environment. Random forests [2]
and ferns [21], [22] were applied as classification tools. Recently, we have shown
that random ferns are a good replacement for random forests in music anno-
tation tasks, as this technique offers similar accuracy while being much more
computationally efficient [15]. In this paper we propose a generalized version of
random ferns, which can natively perform multi-label classification. Using real
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musical recording data, we will show that our approach outperforms a battery
of binary random ferns classifiers in every respect: in terms of accuracy, model
size and prediction speed.

1.1 Background

The difficulty level of automatic instrument recognition in audio data depends
on the polyphony level, and on the preprocessing performed. The simplest poly-
phonic research case is instrument identification in duets (2 instruments) [4], [10],
[29], and the most complex one for symphonies, with high polyphony level (i.e.
high number of instrument sounds played together). Since the sound waves of
instruments overlap, so harmonic spectral components (partials) do, to a certain
— sometimes large — extent. For single isolated sounds the instrument identifi-
cation can even reach 100% for a few classes, but it decreases to about 40% for
30 or more classes [8]). For polyphonic input even labeling of ground truth data
is difficult, so mixes and single sounds are commonly applied to facilitate the re-
search on polyphonic audio data. The identification of instruments in polyphony
is often supported with external provision of pitch data, but automatic multi-
pitch tracking problem is addressed too [7]. Another simplified approach aims at
the identification of a predominant instrument [1]. Multi-target identification of
multiple instruments is performed as well, although this research is done on vari-
ous sets of data, so the results cannot be directly compared. This section presents
a general view of methods and results obtained in the research addressing this
subject.

Audio data are usually parameterized before further processing in the classi-
fication procedure, and pure data representing amplitude changes of a complex
audio wave are rarely used. Preprocessing usually consists in calculation of pa-
rameters describing audio signal, or (more often) spectral features. Still, direct
spectrum/template matching can be also applied to instrument identification,
without feature extraction [10], [11]. This approach can result in good accuracy;
in [11], 88% was obtained for the polyphony of 3 instruments: flute, violin and
piano, supported with integrating musical context into the system.

The higher the polyphony level and number of instruments considered in the
recognition procedure, the lower usually accuracy of instrument identification
is. In [12], 84.1% was obtained for duets, 77.6% for trios, and 72.3% for quar-
tets, using LDA (Linear Discriminant Analysis) based approach. In [31], LDA
yielded 60% average precision for instrument pairs (300 pairs, 25 instruments),
and much a higher recall of 86–100%. Other techniques used in multiple in-
strument identification include SVM (Support Vector Machine), decision trees,
and k-NN (k-Nearest Neighbor) classifiers [5], [16]. For the polyphony of up to
four jazz instruments, the average accuracy of 53% was obtained in [5], whereas
[17] obtained 46% recall and 56% precision for the polyphony of up to 4 notes
for 6 instruments, based on spectral clustering, and PCA (Principal Compo-
nent Analysis). The problematic overlapping partials are sometimes omitting in
the instrument identification process [4], resulting in about 60% accuracy us-
ing GMM (Gaussian Mixture Models) for duets from 5-instrument set. Another
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interesting approach to multiple-instrument recognition is presented in [3]; their
approach was inspired by non-negative matrix factorization, with an explicit
sparsity control.

The research on instrument identification is often incorporated in studies ad-
dressing automatic score extraction. The experiments described in [17] aimed at
sound separation, which is usually performed as an intermediate step in auto-
matic music transcription, and then each separated sound can be independently
labeled. Semi-automatic music transcription is addressed in [32] through shift-
variant non-negative matrix deconvolution (svNMD) and k-means clustering;
the accuracy dropped below 40% for 5 instruments, analyzed in form of mixes.
However, we should be aware that music transcription is a very difficult problem,
and such results are not surprising.

2 Data

The data we used originate from various recordings, all recorded at 44.1kHz/16-
bit, or converted to this format. Testing was performed on recordings as well,
not on mixes of single sounds, as often happens in similar research. This was
possible because we used recordings especially prepared for research purposes,
the original tracks for each instruments were available, and thus ground truth
labeling was facilitated. Both training and testing data were used as mono input,
although some of them were originally recorded in mono or stereo format. In the
case of stereo data, mixes of the left and right channel (i.e. the average value of
samples in both channels) were taken.

Sound parametrization was performed as a preprocessing in our research, for
40-ms frames. Spectrum was calculated first, using FFT (Fast Fourier Transform)
with Hamming window, and various spectral features were extracted. No pitch
tracking was performed nor required as preprocessing. Both training and testing
data were labeled with instruments playing in a given segment. In the testing
phase, the identification of instruments was performed on frame by frame basis,
for consequent 40-ms frames, with 75% overlap (10 ms hop size).

2.1 Feature Set

The feature vector consists of parameters describing properties of a 40-ms audio
frame, and differences of the same parameters but calculated between for a
30 ms sub-frame starting from the beginning of the frame and a 30 ms sub-
frame with 10 ms offset. The features we used are mainly MPEG-7 low-level
audio descriptors, are often used in audio research [9], and other features applied
in instrument recognition research. The following 91 parameters constitute our
feature set [13], [30]:

– Audio Spectrum Centroid — the power weighted average of the frequency
bins in the power spectrum, with coefficients scaled to an octave scale an-
chored at 1 kHz [9];
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– Audio Spectrum Flatness, flat1, . . . , flat25 — features parameter describing
the flatness property of the power spectrum within a frequency bin for se-
lected bins; we used 25 out of 32 frequency bands;

– Audio Spectrum Spread — RMS (root mean square) of the deviation of the
log frequency power spectrum wrt. Audio Spectrum Centroid [9];

– Energy — energy of the spectrum, in log scale;
– MFCC — 13 mel frequency cepstral coefficients. The cepstrum was calcu-

lated as the logarithm of the magnitude of the spectral coefficients, and then
transformed to the mel scale, reflecting properties of the human perception
of frequency. 24 mel filters were applied, and the results were transformed to
12 coefficients, and the logarithm of the energy was taken as 13th coefficient
(0-order coefficient of MFCC) [19];

– NonMPEG7 - Audio Spectrum Centroid — a linear scale version of Audio
Spectrum Centroid ;

– NonMPEG7 - Audio Spectrum Spread — a linear scale version of Audio
Spectrum Spread ;

– Roll Off — the frequency below which an experimentally chosen percentage
(85%) of the accumulated magnitudes of the spectrum is concentrated; pa-
rameter originating from speech recognition, applied to distinguish between
voiced and unvoiced speech;

– Zero Crossing Rate, where zero-crossing is a point where the sign of the
sound wave in time domain changes;

– changes (differences) of the above features for a 30 ms sub-frame of the given
40 ms frame (starting from the beginning of this frame) and the next 30 ms
sub-frame (starting with 10 ms offset);

– Flux — the sum of squared differences between the magnitudes of the DFT
points calculated for the starting and ending 30 ms sub-frames within the
main 40 ms frame; this feature works on spectrum directly, not on its pa-
rameters.

2.2 Audio Data

In our experiments we focused on wind instruments, typically used in jazz mu-
sic. Training data for clarinet, trombone, and trumpet were taken from three
repositories of single, isolated sounds of musical instruments: McGill University
Master Samples (MUMS) [20], The University of Iowa Musical Instrument Sam-
ples (IOWA) [27], and RWC Musical Instrument Sound Database [6]. Since no
sousaphone sounds were available in these sets, we additionally used sousaphone
sounds recorded by R. Rudnicki [24]. Training data were in mono format in RWC
data and for sousaphone, and in stereo for the rest of the data. Training was
performed on single sounds and mixes. Our classifiers were trained to work on
larger instrument sets, so additionally sounds of 5 other instruments were used
in the training. These were instruments also typical for jazz recordings: double
bass, piano, tuba, saxophone, and harmonica. RWC, IOWA and MUMS repos-
itories were used to collect these sounds. The testing data were taken from the
following jazz band stereo recordings by R. Rudnicki [13], [24]:
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– Mandeville by Paul Motian,
– Washington Post March by John Philip Sousa, arranged by Matthew Postle,
– Stars and Stripes Forever by John Philip Sousa, semi-arranged by Matthew

Postle — Movement no. 2 and Movement no. 3.

These recordings contain pieces played by clarinet, trombone, trumpet, and
sousaphone, which are our target instruments.

3 Classification

In the previous works, we have been solving the multi-label problem of recogniz-
ing instruments with the standard binary relevance approach. Namely, we were
building a battery of binary models, each capable of detecting the presence or
absence of a single instrument; for prediction, we were applying all the models
to the sample and combining their predictions.

Unfortunately, this approach is not computationally effective, ignores the in-
formation about instrument-instrument interactions and requires sub-sampling
of the training data to make balanced training sets for each battery member.
Thus, we attempted to modify the random ferns classifier used in our method-
ology to natively support multi-label classification.

3.1 Multi-label Random Ferns

Random ferns classifier is an ensemble of K ferns, simple base classifiers equiva-
lent to a constrained decision tree. Namely, the depth of a fern (D) is fixed and
the splitting criteria on a given tree level are identical. This way, a fern has 2D

leaves and directs object x into a leaf number F (x) = 1+
∑D

i=1 2
i−1σi(x) ∈ 1..2D,

where σi(x) is an indicator variable for a result of the i-th splitting criterion. We
use the rFerns implementation of random ferns [14] which generates splitting cri-
teria entirely at random, i.e. randomly selects both a feature on which the split
will be done and the threshold value. Also, rFerns builds a bagging ensemble of
ferns, i.e. each fern, say k-th, is not directly build on a whole set of objects but
on a bag Bk, a multiset of training objects created by random sampling with
replacement the same number of objects as in the original training set.

The leaves of ferns are populated with scores Sk(x, y), indicating the confi-
dence of a fern k that an object x falling into a certain leaf Fk(x) belongs to the
class y. The scores are generated based on a training dataset Xt = {xt

1, x
t
2, . . .},

and are defined as

Sk(x, y) = log
1 + |Lk(x) ∩ Yk(y)|

C + |Lk(x)| − log
1 + |Yk(y)|
C + |Bk| , (1)

where Lk(x) = {xt ∈ Bk : Fk(x) = Fk(x
t)} is a multiset of training objects from

a bag in the same leaf as a given object and Yk = {xt ∈ Bk : y ∈ Y (xt)} is a
multiset of training objects from a bag that belong to a class y. Y (x) denotes
a set of true classes of an object x, and is assumed to always contain a single
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element in a many-classes case; C is the number of all classes. The prediction of
the whole ensemble for an object x is Y p(x) = argmaxy

∑K
k=1 Sk(x, y).

Our proposed generalization of random ferns for multi-label classification is
based on the observation that while the fern structures are not optimized to a
given problem, the same set of Fk functions can serve all classes rather than
being re-created for each one of them. In the battery classification, we create
virtual not-class classes to get a baseline score value used to decide whether a
class of a certain score value should be reported as present or absent. With multi-
class random ferns, however, we can incorporate this idea as a normalization of
scores so that the sign of their value will become meaningful indicator of a class
presence. We call such normalized scores score quotients Qk(x, y), and define
them as

Qk(x, y) = log
1 + |Lk(x) ∩ Yk(y)|
1 + |Lk(x) \ Yk(y)| − log

1 + |Yk(y)|
1 + |Bk \ Yk(y)| . (2)

The prediction of the whole ensemble for an object x naturally becomes Y p(x) =
{y : Qk(x, y) > 0}.

4 Experiments

When preparing training data, we start with single isolated sounds of each target
instrument. After removing starting and ending silence [13], each file representing
the whole single sound is normalized so that the RMS value equals one. Then, we
create the training set of sounds by mixing random 40 ms frames extracted from
the recordings of 1 to 4 randomly chosen instruments; the mixing is done with
random weights and the result is normalized again to get the RMS value equal to
one. Finally, we convert the sound into a vector of features by applying previously
described sound descriptors. The multi-label decision for such an object is a set
of instruments which sounds were used to create the mix. We have repeated this
procedure 100 000 times to prepare our training set.

This set is used directly to generate the model with the multi-label random
ferns approach. When creating the battery of random ferns, we are splitting this
data into a set of binary problems. Each one is devoted to one instrument and
contains 3000 positive examples where this instrument contributed to the mix
and 3000 negative when it was absent.

In both cases, we used K = 1000 ferns and scanned depths D = 5, 7, 10, 11, 12.
As the random ferns is a stochastic algorithm, we have replicated training and
testing procedure 10 times.

Both models are tested on real jazz recordings described in Section 2.2 and
their predictions assessed with respect to the annotation performed by an expert.
The accuracy was assessed via precision and recall scores; these measures were
weighted by the RMS of a given frame, in order to diminish the impact of softer
frames which cannot be reasonably identified as their loudness approaches the
noise level. Our true positive score Tp for an instrument i is a sum of RMS of
frames which are both annotated and classified as i. Precision is calculated by
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dividing Tp by the sum of RMS of frames which are classified as i; respectively,
recall is calculated by dividing Tp by the sum of RMS of frames which are
annotated as i.

As a general accuracy measure we have used F-score, defined as a harmonic
mean of such generalised precision and recall.

5 Results

The results of accuracy analysis are presented in Figure 1. One can see that for
fern depth greater than 7 the multi-label ferns achieved both significantly better
precision and recall that the battery classifier; obviously this also corresponds
to a higher F-score. The precision of both methods seems to stabilize for greater
depth, while the recall and so F-score of multi-class ferns raise steadily and
may be likely further improved. The variation of the results is also substantially
smaller for multi-class ferns, showing that the output of this approach is more
stable and thus more predictable.

Table 1 collects the sizes of created models and the speed with which they
managed to predict the investigated jazz pieces. One can see that the utilization
of multi-label ferns results in substantially greater prediction speed, on average

Fig. 1. Overall precision, recall and F-score for all the investigated jazz recordings and
all the instruments for a battery of binary random ferns and for multi-label ferns
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Table 1. Comparison of model size and prediction speed for a random ferns battery
and multi-label random ferns. The speed is expressed as the total playing time of all
investigated jazz recordings divided by the CPU time required to classify them.

Model size Prediction speed
Fern depth Battery Multi-label Battery Multi-label

5 5MB 2MB 54× 359×
7 19MB 9MB 42× 301×
10 149MB 74MB 33× 238×
11 297MB 148MB 30× 216×
12 592MB 295MB 26× 204×

7 times better than the speed achieved by the battery of binary ferns. Theoreti-
cally, this factor should be equal to the number of classes because each object is
predicted by a single classifier instead of a battery of them, so should be equal
to 9 in our case. The difference is caused by a more subtle effects connected to a
higher sophistication of multi-label code and should diminish with an increasing
number of classes.

The difference between model sizes is less pronounced, with multi-label models
being on average two times smaller than battery models. This is because the
multi-label ferns model mainly consists of 2DCK scores quotients, while the
ferns battery 2D+1CK score quotients (the models are binary but there is C of
them).

There is a negative correlation between the achieved F-score and both pre-
diction speed and model size, though, with the fern depth controlling the speed-
quality trade-off. However, this way a user may utilize this parameter to flexibly
adjust the model to the constraints of the intended implementation.

6 Summary and Conclusions

In this paper we introduce multi-label random ferns as a tool for automatic
identification of musical instruments in polyphonic recordings of a jazz band.
The comparison of performance of multi-label random ferns and sets of binary
ferns shows that the proposed multi-label ferns outperform the sets of binary
ferns in every respect. Multi-label ferns are much faster, achieve higher F-score,
and the model size increase with increasing complexity also compares favorably
with the set of binary random ferns. Therefore, we conclude that multi-label
random ferns can be recommended as a classification tools in many applications,
not only for instrument identification, and this technique can also be applied on
resource-sensitive devices, e.g. mobile devices.
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