

T. Andreasen et al. (Eds.): ISMIS 2014, LNAI 8502, pp. 164–173, 2014.
© Springer International Publishing Switzerland 2014

Neural Network Implementation
of a Mesoscale Meteorological Model

Robert Firth and Jianhua Chen

Division of Computer Science and Engineering
School of Electrical Engineering and Computer Science

Louisiana State University
Baton Rouge, LA 70808

rfirth1@tigers.lsu.edu,
jianhua@csc.lsu.edu

Abstract. Numerical weather prediction is a computationally expensive task
that requires not only the numerical solution to a complex set of non-linear par-
tial differential equations, but also the creation of a parameterization scheme to
estimate sub-grid scale phenomenon. This paper outlines an alternative ap-
proach to developing a mesoscale meteorological model – a modified recurrent
neural network that learns to simulate the solution to these equations. Along
with an appropriate time integration scheme and learning algorithm, this me-
thod can be used to create multi-day forecasts for a large region.

The learning method presented in this paper is an extended form of Back-
propagation Through Time for a recurrent network with outputs that feed back
through as inputs only after undergoing a fixed transformation.

Keywords: Recurrent neural networks, spatial-temporal, weather prediction,
forecasting, temperature, wind.

1 Introduction

While huge accuracy gains have been made in weather forecasting, it still remains a
challenging task. Many approaches have been developed including heuristics like
persistence and trends, numerical weather prediction, and neural networks.

Numerical weather prediction is a computationally expensive task that requires not
only the numerical solution to a complex set of non-linear partial differential equa-
tions (PDEs), but also the creation of a parameterization scheme to estimate sub-grid
scale phenomenon [1].

This paper proposes a method to replace the primitive equations, the set of PDEs
that govern atmospheric dynamics [2], with a set of recurrent neural networks.

2 Previous Work

Computational approaches that have been developed to forecast weather include heu-
ristics like persistence and trends, numerical weather prediction, and neural networks.

 Neural Network Implementation of a Mesoscale Meteorological Model 165

Numerical weather prediction techniques focus on simulating the evolution of the
atmosphere through numerical solutions to the simplified set of partial differential
equations known as the primitive equations to find the time derivative of the variables
and then applying forward time integration [2]. Models such as the NCEP’s RAP
(Rapid Refresh) model use this technique to generate forecasts.

Parameterization schemes are used to estimate sub-grid scales phenomena that
can’t be directly simulated [1]. Krasnopolsky et al. replaced the shortwave and long-
wave atmospheric radiation parameterization schemes of the NCAR CAM-2 model
with a neural network. The network proved to be a fast and accurate replacement and
resulted in a 50-60 times faster computation of the radiation parameterization [6].

Zakerinia et al. developed a neural network to create a wind forecast for a single
site using 3 inputs, 20 hidden nodes, and 1 output node that represented the 1 hour
wind forecast [3]. Corne et al. also developed a neural network to forecast wind speed
for a single site, but used 7 input variables (cloud cover, humidity, pressure, tempera-
ture, visibility, wind speed, and wind direction) for the single site. They tested using
the 7 variables as inputs, the 7 variables plus 7 more from an hour before, and the 7
variables plus their 1 hour deltas [7].

Abdel-Aal et al. used abductive networks to create a 24 hour hourly temperature
forecast. The inputs to the network were temperatures for the 24 previous hours, min-
imum and maximum temperature for the previous day, and the minimum and maxi-
mum forecasted temperature. The output is the temperature for a given hour on the
following day [4].

Previous work in this direction has been focused mainly on either forecasting
weather variables for a single location and learn using inputs from only that site, or
focused on creating a hybrid dynamic climate model by applying machine learning to
the parameterization scheme. The former ignores the important spatial component that
is available and essential to a successful forecast, while the latter hybrid model only
partially relies on machine learning. For this reason, the method proposed is a genera-
lized recurrent neural network that utilizes both spatial and temporal information to
generate a forecast for a wide region. Instead of developing a hybrid model, the me-
thod almost exclusively relies on learning with some domain knowledge.

The learning method presented in this paper is an extended form of Backpropaga-
tion Through Time for a recurrent network with outputs that feed back through as
inputs only after undergoing a fixed transformation.

Backpropagation Through Time involves unfolding the network in time until all
cycles are removed, then applying normal backpropagation [5].

3 Method

3.1 The Grid and the Forecast

The input data to forecast wind is the wind speed in the east-west (U) and north-south
(V) directions, geopotential height, and latitude at 2744 locations across the southeas-
tern United States. The input data to forecast temperature is temperature, wind, cloud
cover, and solar angle. These observations are on a 56x49 grid as shown in fig. 3.

166 R. Firth and J. Chen

The goal of the forecast is to determine the future state of the gridded variables 1
hour in the future. To accomplish this, a 6 minute forecast is generated for every point
on the grid. This 6 minute forecast can be further extended by using it as the input to
the forecast system again to time step further and further into the future. This is done
10 times to generate a forecast 1 hour in the future.

3.2 Finite Differences

Many inputs are not fed directly into the network. Instead, they are fed in as partial
derivatives with respect to east-west and north-south grid coordinates x and y. These
partial derivatives are computed numerically using a centered finite difference
scheme:

 ߲ ௜ܶ௝߲ݔ ൌ ௜ܶାଵ,௝ െ ௜ܶିଵ,௝2

 ߲ ௜ܶ௝߲ݕ ൌ ௜ܶ,௝ାଵ െ ௜ܶ,௝ିଵ2

3.3 Time Integration

The learning task of our recurrent neural network is to learn to compute the partial
derivative of each meteorological variable with respect to time. For temperature, this

would be
డ்೔ೕడ௧ . Once this is known, we can time step forward to get the next value of T:

 ଵܶ ൌ ଴ܶ ൅ ݐ߂ ߲ ଴߲ܶݐ
 ௧ܶାଵ ൌ ௧ܶିଵ ൅ 2 ൈ ݐ߂ ߲ ௧߲ܶݐ

The first formula is a forward integration technique, while the second is a centered-
in-time technique, or leapfrog. While we could use the first one for every time step,
errors quickly ruin the forecast unless a very small time step is used [10]. It was con-
firmed experimentally with a 15 second time step that the forward integration tech-
nique underperforms the leapfrog scheme using only a 5 minute time step. For this
reason, we only use the forward scheme in the first time step to get the leapfrog
scheme started.

This same process is used to forecast all meteorological variables.

3.4 The CFL Condition

We are using 20km resolution input data and 1 hour later target values. Ideally, we
would take that input data and create a 1 hour forecast. However, it was discovered by

 Neural Network Implementation of a Mesoscale Meteorological Model 167

Courant, Friedrichs, and Lewy that forecast stability is a function of grid resolution,
time step, and velocity [2].
ܥ ൌ ݔ∆ݐ߂௠௔௫ݑ ൑ ௠௔௫ܥ

The ideal value of Cmax depends on many factors, including the system solution

method. For our purposes, we’ll take it to be equal to 1. This means that with a 1 hour
time step and 20 km grid spacing, the maximum wind velocity we can simulate with-
out the simulation becoming unstable is approximately 5.5 m/s or 12 mph. This is
much lower than the typical maximum wind speed, even at the surface. Jet streams
and cyclones can have wind speeds that exceed 150 mph.

If we change our time step to 6 minutes and keep the same grid spacing, we can si-
mulate wind speeds up to 55.5 m/s, or 124 mph. This necessarily smaller time step
makes designing our system much more difficult because we don’t have target values
for only 6 minute later. It also means that the forecast system must run for 10 iterations
in order to create a 1 hour forecast, increasing computation time by a factor of 10.

For reference, the RAP model uses a 1 minute time step. This allows for very high
wind speeds in a very stable model.

3.5 Inputs and Outputs

The recurrent networks to forecast U, V, and T each require 5 inputs and generate 1
output. This is possible because of our pre-processing stage where we compute the
spatial derivatives at the point we wish to forecast.

Alternately, instead of computing the partial derivatives for use as inputs to the
network, we could train an autoencoder network. This could take the 6 nearest neigh-
bor grid points as inputs and use unsupervised learning to learn a lower dimensional
representation.

If we instead input every temperature value in the 1-region, every U and V compo-
nent of wind, then this would be 12 more inputs – a total of 17 inputs to the network.
Because training slows and the network becomes less able to capture the desired func-
tion with increased dimensionality, this is undesirable.

This paper describes how to represent and learn N1, N2 (by symmetry with N1),
and N3.

3.6 Error and Error Attribution

Error is computed by comparing the output of the system to the 1 hour later initializa-
tion data for the RAP model.

However, because the network is not a normal recurrent network – the inputs
do not directly connect to the inputs – backwards propagation of error is not
straightforward. Two rules are therefore created to propagate error back to the output
layer of the network (so that normal backpropagation can begin). First, the last step,
time integration:

168 R. Firth and J. Chen

Fig. 1. Networks N1 through
computes the time derivative o

Error in Tt+1 can be attri

as:

Fig. 2. Temperature forecasti
equal to 30 minutes. U and V
respectively. T is the tempera
horizon. Outputs of the netw
through a pre-processing stage

N6 are independent and can be trained separately. Each netw
of a different meteorological observable variable.

௧ܶାଵ ൌ ௧ܶ ൅ ݐ߂ ߲ ௧߲ܶݐ

ibuted to two sources, Tt and
డ ೟்డ௧ . We can weight this erܧ ൌ ሺ1 െ ܧሻߣ ൅ ܧߣ

ing recurrent network unfolded though time with time step
are the east-west and north-south components of the wind sp

ature, C is the cloud cover, and S is the sun’s altitude above
work do not directly re-enter as inputs. Instead, they must
e, which complicates backpropagation training.

work

rror

p Δt
eed,

e the
t go

 Neural Network Implementation of a Mesoscale Meteorological Model 169

Here E is the target – predicted, (1-λ)E is the error attributed to ଵܶ, and λE is the

error attributed to an error in
డ ೟்డ௧ . Also, λ is a parameter 0 ≤ λ ≤ 1 and ideally decaying

with time.
The portion attributed to ଵܶ is directly used to compute a grid of errors in ଵܶ ,

which is passed backward in time to the previous time step. The portion of error attri-

buted to
డ ೟்డ௧ is directly used as the error in the output layer of the network and is

backpropagated normally using the backpropagation algorithm and updates the
weights in the network.

4 Results

4.1 Implementation and Experimental Setup

The proposed method was implemented in Python and C++. All neural network code
was written by the author specifically for this task. The experiment was run on a lap-
top with a 1.6GHz Intel Core 2 Duo U7600 processor and 4GB RAM. Training time
was limited to 1 day, but could be allowed to run longer for reduced error. Because
wind speed was forecast on 37 levels of the atmosphere, this required training 74
different networks – two for each level for the U and V components.

4.2 Data Sets

The network was trained using the hourly input data sets to the Rapid Refresh (RAP)
model for days divisible by 3 in January 2014 and validated against days 3n+1 in that
same month.

The RAP model is run hourly out to 18 hours on a 301x225 Lambert conformal pro-
jected grid with a 20km horizontal resolution and 37 vertical levels with pressure coor-
dinates. This data can be downloaded from either the NCEP or NCDC ftp server [8,9].

Because the same learned network is applied to every grid point on a given pres-
sure surface to create a forecast, and interaction with land/water at the surface there-
fore needs to be taken into account, this effect is reduced by selecting a 56x49 sub-
grid that covers the southeastern US and no ocean. This is a roughly homogenous
region. This is only necessary at the lower levels of the atmosphere that are influenced
by interaction with land, the planetary boundary layer. This region of the atmosphere
is known as the planetary boundary layer.

Training and validation data was generated by computing input data for every grid
point and generating target values for a 1 hour forecast by using the input files for the
RAP model initialized 1 hour later.

4.3 Analysis

Error was measured as the Mean Absolute Error (MAE): ܧܣܯ ൌ 1݊ ௜௝ݐ௜௝หߑ െ ௜௝หݕ

170 R. Firth and J. Chen

Fig. 3. NCEP Grid 252, a 301x225x37 grid of observations with approximately 20km horizon-
tal resolution. Only the 56x49 grid over the southeastern US is used in this paper. This
represents a roughly homogenous region with similar elevation and no ocean.

The forecasts generated by the proposed approach were compared to forecasts gen-
erated by the RAP model. The MAE of the 1 hour forecast generated by the RAP
model is calculated for the same 56x49 sub-grid.

Table 1. Summary of results forecasting U and V for 10 levels of the atmosphere, where AIM3
represents the results of the proposed method. Error is MAE in m/s (meters per second).

Level RAP U RAP V AIM3 U AIM3 V
1000 0.4652 0.5219 0.4514 0.5807
900 0.7464 0.8519 1.0420 1.0868
800 0.7506 0.7588 1.0017 1.0764
700 0.7945 0.7715 1.0209 1.0714
600 0.8570 0.8695 1.1019 1.2007
500 1.0294 1.1761 1.2813 1.4829
400 1.3186 1.4488 1.8873 1.9040
300 1.5315 1.4577 2.0526 2.5082
200 1.2195 1.2825 1.5223 1.6046
100 0.7350 0.7379 0.9235 1.0091

 Neural Network Implementation of a Mesoscale Meteorological Model 171

Fig. 4. Scatterplot for U Forecast on 1000mb Level

Fig. 5. Scatterplot for U Forecast on 500mb Level

Fig. 6. Scatterplot for U Forecast on 100mb Level

-4

-2

0

2

4

-4 -2 0 2 4RA
P

dU
/d

t

dU/dt
-4

-2

0

2

4

-4 -2 0 2 4

A
IM

3
dU

/d
t

dU/dt

-10

-5

0

5

10

-10 -5 0 5 10RA
P

dU
/d

t

dU/dt
-10

-5

0

5

10

-10 -5 0 5 10

A
IM

3
dU

/d
t

dU/dt

-5

-2.5

0

2.5

5

-5 -2.5 0 2.5 5RA
P

dU
/d

t

dU/dt
-2.5

-1.5

-0.5

0.5

1.5

2.5

-2.5 -1.5 -0.5 0.5 1.5 2.5

A
IM

3
dU

/d
t

dU/dt

172 R. Firth and J. Chen

5 Discussion

The RAP model is an operational model run hourly by NCEP, and represents typical
results by a sophisticated primitive equation model.

The implementation of the proposed method only forecasts horizontal wind speed.
Vertical wind speed and geopotential height are calculated for each level using diag-
nostic equations. A complete model would forecast all model variables. Temperature
and moisture forecasting are important components that are not yet implemented and
are assumed to remain static during the forecast, but are necessary for more accurate,
competitive results. Despite these limitations, Figures 4, 5, and 6 show that the
learned behavior closely mirrors the desired behavior.

Figure 4 is a scatterplot comparing the actual to the forecasted one hour change in
wind speed for both the proposed method and the RAP model for the 1000mb level.
The 1000mb level closely follows the surface at ground level. The proposed method
outperforms the RAP model at the surface, as can be seen in Table 1.

Figure 5 is the same as Figure 4, except for the 500mb level. This level is shown
because it represents the approximate center of mass of the atmosphere. It performs
slightly worse than the RAP model in terms of MAE, but the scatterplot shows it
more closely follows the line Y=X.

Figure 6 is the same as Figure 5, except for the 100mb level. This level represents
the top of the atmosphere.

In the planetary boundary layer at the surface, learned networks should only be
shared with regions with similar surface characteristics, like albedo, elevation, and
land use type. Because of the homogenous nature of the boundary layer over water,
this approach could be particularly well-suited to forecasting over oceans and could
be applied to forecasting tropical systems like hurricanes and typhoons out at sea.
However, special consideration would have to be made for landfalling systems and an
appropriate time step would have to be chosen that satisfies the CFL condition.

Additional numerical stability could be achieved by switching from the leapfrog
time integration scheme to a 3rd order Runge-Kutta integration scheme, which is used
by the RAP model [2]. The time step, 6 minutes in our implementation, could also be
brought down to 1 minute to match the RAP model.

6 Conclusion

This method can be used to create a full AI-based meteorological model. In order to
do this, further work must be done to forecast all variables, for all regions and land
types. Special networks need to be trained to forecast over oceans, in the mountains,
in forested regions, and over cities, although these specialized networks are only re-
quired for the lower levels of the atmosphere.

Networks also need to be designed to forecast moisture transport, phase change,
and latent heat. The remaining work there mainly involves selecting the appropriate
inputs to consider. Although unimplemented, the network for forecasting temperature
is given in Figure 2. With this, we would have a full forecast system.

 Neural Network Implementation of a Mesoscale Meteorological Model 173

Our implementation of the proposed approach has been successfully run out to 6
hours, but needs these additional components to generate competitive forecasts.

Acknowledgements. This work is partially supported by the Louisiana Board of Re-
gents grant LEQSF-EPS(2013)-PFUND-307. We are grateful to Dr. Kevin Robbins
from the NOAA Southern Regional Climate Center at LSU and Dr. Frederick Carr
from the University of Oklahoma for many helpful discussions on topics related to
this work.

References

1. Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather
Prediction Models, pp. 7–9. Cambridge, New York (2007)

2. Coiffier, J.: Fundamentals of Numerical Weather Prediction, vol. 4-6, pp. 15–16.
Cambridge, New York (2011)

3. Zakerinia, M., Ghaderi, S.F.: Short Term Wind Power Forecasting Using Time Series
Neural Networks. University of Tehran, Tehran (2011)

4. Abdel-Aal, R.E.: Hourly temperature forecasting using abductive networks. Eng. App. of
Art. Intel. (2004)

5. Mitchell, T.M.: Machine Learning, pp. 119–121. McGraw-Hill, Singapore (1997)
6. Krasnopolsky, V.M., Michael, S.F., Dmitry, V.C.: New Approach to Calculation of At-

mospheric Model Physics: Accurate and Fast Neural Network Emulation of Longwave
Radiation in a Climate Model. Mon. Wea. Rev. 133, 1370–1383 (2005)

7. Corne, D., Reynolds, A., Galloway, S., Owens, E., Peacock, A.: Short term wind speed fo-
recasting with evolved neural networks. In: Blum, C. (ed.) 15th Genetic and Evolutionary
Computation Conference Companion (GECCO 2013 Companion), pp. 1521–1528. ACM,
New York (2013)

8. National Centers for Environmental Prediction,
ftp://ftp.ncep.noaa.gov/pub/data/nccf/com/rap/prod/

9. National Climatic Data Center,
http://nomads.ncdc.noaa.gov/thredds/dodsC/rap252/

10. Warner, T.T.: Numerical Weather and Climate Prediction, pp. 456–459. Cambridge,
New York (2011)

	Neural Network Implementation of a Mesoscale Meteorological Model
	1 Introduction
	2 Previous Work
	3 Method
	3.1 The Grid and the Forecast
	3.2 Finite Differences
	3.3 Time Integration
	3.4 The CFL Condition
	3.5 Inputs and Outputs
	3.6 Error and Error Attribution

	4 Results
	4.1 Implementation and Experimental Setup
	4.2 Data Sets
	4.3 Analysis

	5 Discussion
	6 Conclusion
	References

