
 

T. Andreasen et al. (Eds.): ISMIS 2014, LNAI 8502, pp. 164–173, 2014. 
© Springer International Publishing Switzerland 2014 

Neural Network Implementation  
of a Mesoscale Meteorological Model 

Robert Firth and Jianhua Chen 

Division of Computer Science and Engineering 
School of Electrical Engineering and Computer Science 

Louisiana State University 
Baton Rouge, LA 70808 

rfirth1@tigers.lsu.edu, 
jianhua@csc.lsu.edu 

Abstract. Numerical weather prediction is a computationally expensive task 
that requires not only the numerical solution to a complex set of non-linear par-
tial differential equations, but also the creation of a parameterization scheme to 
estimate sub-grid scale phenomenon. This paper outlines an alternative ap-
proach to developing a mesoscale meteorological model – a modified recurrent 
neural network that learns to simulate the solution to these equations. Along 
with an appropriate time integration scheme and learning algorithm, this me-
thod can be used to create multi-day forecasts for a large region. 

The learning method presented in this paper is an extended form of Back-
propagation Through Time for a recurrent network with outputs that feed back 
through as inputs only after undergoing a fixed transformation. 

Keywords: Recurrent neural networks, spatial-temporal, weather prediction, 
forecasting, temperature, wind. 

1 Introduction 

While huge accuracy gains have been made in weather forecasting, it still remains a 
challenging task. Many approaches have been developed including heuristics like 
persistence and trends, numerical weather prediction, and neural networks. 

Numerical weather prediction is a computationally expensive task that requires not 
only the numerical solution to a complex set of non-linear partial differential equa-
tions (PDEs), but also the creation of a parameterization scheme to estimate sub-grid 
scale phenomenon [1]. 

This paper proposes a method to replace the primitive equations, the set of PDEs 
that govern atmospheric dynamics [2], with a set of recurrent neural networks. 

2 Previous Work 

Computational approaches that have been developed to forecast weather include heu-
ristics like persistence and trends, numerical weather prediction, and neural networks. 
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Numerical weather prediction techniques focus on simulating the evolution of the 
atmosphere through numerical solutions to the simplified set of partial differential 
equations known as the primitive equations to find the time derivative of the variables 
and then applying forward time integration [2]. Models such as the NCEP’s RAP 
(Rapid Refresh) model use this technique to generate forecasts. 

Parameterization schemes are used to estimate sub-grid scales phenomena that 
can’t be directly simulated [1]. Krasnopolsky et al. replaced the shortwave and long-
wave atmospheric radiation parameterization schemes of the NCAR CAM-2 model 
with a neural network. The network proved to be a fast and accurate replacement and 
resulted in a 50-60 times faster computation of the radiation parameterization [6]. 

Zakerinia et al. developed a neural network to create a wind forecast for a single 
site using 3 inputs, 20 hidden nodes, and 1 output node that represented the 1 hour 
wind forecast [3]. Corne et al. also developed a neural network to forecast wind speed 
for a single site, but used 7 input variables (cloud cover, humidity, pressure, tempera-
ture, visibility, wind speed, and wind direction) for the single site. They tested using 
the 7 variables as inputs, the 7 variables plus 7 more from an hour before, and the 7 
variables plus their 1 hour deltas [7]. 

Abdel-Aal et al. used abductive networks to create a 24 hour hourly temperature 
forecast. The inputs to the network were temperatures for the 24 previous hours, min-
imum and maximum temperature for the previous day, and the minimum and maxi-
mum forecasted temperature. The output is the temperature for a given hour on the 
following day [4]. 

Previous work in this direction has been focused mainly on either forecasting 
weather variables for a single location and learn using inputs from only that site, or 
focused on creating a hybrid dynamic climate model by applying machine learning to 
the parameterization scheme. The former ignores the important spatial component that 
is available and essential to a successful forecast, while the latter hybrid model only 
partially relies on machine learning. For this reason, the method proposed is a genera-
lized recurrent neural network that utilizes both spatial and temporal information to 
generate a forecast for a wide region. Instead of developing a hybrid model, the me-
thod almost exclusively relies on learning with some domain knowledge. 

The learning method presented in this paper is an extended form of Backpropaga-
tion Through Time for a recurrent network with outputs that feed back through as 
inputs only after undergoing a fixed transformation. 

Backpropagation Through Time involves unfolding the network in time until all 
cycles are removed, then applying normal backpropagation [5]. 

3 Method 

3.1 The Grid and the Forecast 

The input data to forecast wind is the wind speed in the east-west (U) and north-south 
(V) directions, geopotential height, and latitude at 2744 locations across the southeas-
tern United States. The input data to forecast temperature is temperature, wind, cloud 
cover, and solar angle. These observations are on a 56x49 grid as shown in fig. 3. 
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The goal of the forecast is to determine the future state of the gridded variables 1 
hour in the future. To accomplish this, a 6 minute forecast is generated for every point 
on the grid. This 6 minute forecast can be further extended by using it as the input to 
the forecast system again to time step further and further into the future. This is done 
10 times to generate a forecast 1 hour in the future. 

3.2 Finite Differences 

Many inputs are not fed directly into the network. Instead, they are fed in as partial 
derivatives with respect to east-west and north-south grid coordinates x and y. These 
partial derivatives are computed numerically using a centered finite difference 
scheme: 

 ߲ ௜ܶ௝߲ݔ ൌ ௜ܶାଵ,௝ െ ௜ܶିଵ,௝2  

 ߲ ௜ܶ௝߲ݕ ൌ ௜ܶ,௝ାଵ െ ௜ܶ,௝ିଵ2  

3.3 Time Integration 

The learning task of our recurrent neural network is to learn to compute the partial 
derivative of each meteorological variable with respect to time. For temperature, this 

would be
డ்೔ೕడ௧ . Once this is known, we can time step forward to get the next value of T: 

 ଵܶ ൌ ଴ܶ ൅ ݐ߂ ߲ ଴߲ܶݐ  
 ௧ܶାଵ ൌ ௧ܶିଵ ൅ 2 ൈ ݐ߂ ߲ ௧߲ܶݐ  

 

The first formula is a forward integration technique, while the second is a centered-
in-time technique, or leapfrog. While we could use the first one for every time step, 
errors quickly ruin the forecast unless a very small time step is used [10]. It was con-
firmed experimentally with a 15 second time step that the forward integration tech-
nique underperforms the leapfrog scheme using only a 5 minute time step. For this 
reason, we only use the forward scheme in the first time step to get the leapfrog 
scheme started. 

This same process is used to forecast all meteorological variables. 

3.4 The CFL Condition 

We are using 20km resolution input data and 1 hour later target values. Ideally, we 
would take that input data and create a 1 hour forecast. However, it was discovered by  
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Courant, Friedrichs, and Lewy that forecast stability is a function of grid resolution, 
time step, and velocity [2]. 
ܥ  ൌ ݔ∆ݐ߂௠௔௫ݑ ൑  ௠௔௫ܥ

 
The ideal value of Cmax depends on many factors, including the system solution 

method. For our purposes, we’ll take it to be equal to 1. This means that with a 1 hour 
time step and 20 km grid spacing, the maximum wind velocity we can simulate with-
out the simulation becoming unstable is approximately 5.5 m/s or 12 mph. This is 
much lower than the typical maximum wind speed, even at the surface. Jet streams 
and cyclones can have wind speeds that exceed 150 mph. 

If we change our time step to 6 minutes and keep the same grid spacing, we can si-
mulate wind speeds up to 55.5 m/s, or 124 mph. This necessarily smaller time step 
makes designing our system much more difficult because we don’t have target values 
for only 6 minute later. It also means that the forecast system must run for 10 iterations 
in order to create a 1 hour forecast, increasing computation time by a factor of 10. 

For reference, the RAP model uses a 1 minute time step. This allows for very high 
wind speeds in a very stable model. 

3.5 Inputs and Outputs 

The recurrent networks to forecast U, V, and T each require 5 inputs and generate 1 
output. This is possible because of our pre-processing stage where we compute the 
spatial derivatives at the point we wish to forecast. 

Alternately, instead of computing the partial derivatives for use as inputs to the 
network, we could train an autoencoder network. This could take the 6 nearest neigh-
bor grid points as inputs and use unsupervised learning to learn a lower dimensional 
representation. 

If we instead input every temperature value in the 1-region, every U and V compo-
nent of wind, then this would be 12 more inputs – a total of 17 inputs to the network. 
Because training slows and the network becomes less able to capture the desired func-
tion with increased dimensionality, this is undesirable. 

This paper describes how to represent and learn N1, N2 (by symmetry with N1), 
and N3. 

3.6 Error and Error Attribution 

Error is computed by comparing the output of the system to the 1 hour later initializa-
tion data for the RAP model. 

However, because the network is not a normal recurrent network – the inputs  
do not directly connect to the inputs – backwards propagation of error is not 
straightforward. Two rules are therefore created to propagate error back to the output 
layer of the network (so that normal backpropagation can begin). First, the last step, 
time integration: 
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Here E is the target – predicted, (1-λ)E is the error attributed to ଵܶ, and λE is the 

error attributed to an error in 
డ ೟்డ௧ . Also, λ is a parameter 0 ≤ λ ≤ 1 and ideally decaying 

with time. 
The portion attributed to ଵܶ  is directly used to compute a grid of errors in ଵܶ , 

which is passed backward in time to the previous time step. The portion of error attri-

buted to 
డ ೟்డ௧  is directly used as the error in the output layer of the network and is 

backpropagated normally using the backpropagation algorithm and updates the 
weights in the network. 

4 Results 

4.1 Implementation and Experimental Setup 

The proposed method was implemented in Python and C++. All neural network code 
was written by the author specifically for this task. The experiment was run on a lap-
top with a 1.6GHz Intel Core 2 Duo U7600 processor and 4GB RAM. Training time 
was limited to 1 day, but could be allowed to run longer for reduced error. Because 
wind speed was forecast on 37 levels of the atmosphere, this required training 74 
different networks – two for each level for the U and V components. 

4.2 Data Sets  

The network was trained using the hourly input data sets to the Rapid Refresh (RAP) 
model for days divisible by 3 in January 2014 and validated against days 3n+1 in that 
same month. 

The RAP model is run hourly out to 18 hours on a 301x225 Lambert conformal pro-
jected grid with a 20km horizontal resolution and 37 vertical levels with pressure coor-
dinates. This data can be downloaded from either the NCEP or NCDC ftp server [8,9]. 

Because the same learned network is applied to every grid point on a given pres-
sure surface to create a forecast, and interaction with land/water at the surface there-
fore needs to be taken into account, this effect is reduced by selecting a 56x49 sub-
grid that covers the southeastern US and no ocean. This is a roughly homogenous 
region. This is only necessary at the lower levels of the atmosphere that are influenced 
by interaction with land, the planetary boundary layer. This region of the atmosphere 
is known as the planetary boundary layer. 

Training and validation data was generated by computing input data for every grid 
point and generating target values for a 1 hour forecast by using the input files for the 
RAP model initialized 1 hour later. 

4.3 Analysis 

Error was measured as the Mean Absolute Error (MAE): ܧܣܯ ൌ 1݊ ௜௝ݐ௜௝หߑ െ  ௜௝หݕ
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Fig. 3. NCEP Grid 252, a 301x225x37 grid of observations with approximately 20km horizon-
tal resolution. Only the 56x49 grid over the southeastern US is used in this paper. This 
represents a roughly homogenous region with similar elevation and no ocean. 

The forecasts generated by the proposed approach were compared to forecasts gen-
erated by the RAP model. The MAE of the 1 hour forecast generated by the RAP 
model is calculated for the same 56x49 sub-grid. 

Table 1. Summary of results forecasting U and V for 10 levels of the atmosphere, where AIM3 
represents the results of the proposed method. Error is MAE in m/s (meters per second). 

Level RAP U RAP V AIM3 U AIM3 V 
1000 0.4652 0.5219 0.4514 0.5807 
900 0.7464 0.8519 1.0420 1.0868 
800 0.7506 0.7588 1.0017 1.0764 
700 0.7945 0.7715 1.0209 1.0714 
600 0.8570 0.8695 1.1019 1.2007 
500 1.0294 1.1761 1.2813 1.4829 
400 1.3186 1.4488 1.8873 1.9040 
300 1.5315 1.4577 2.0526 2.5082 
200 1.2195 1.2825 1.5223 1.6046 
100 0.7350 0.7379 0.9235 1.0091 
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Fig. 4. Scatterplot for U Forecast on 1000mb Level 

 

 

Fig. 5. Scatterplot for U Forecast on 500mb Level 

 

 

Fig. 6. Scatterplot for U Forecast on 100mb Level 
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5 Discussion 

The RAP model is an operational model run hourly by NCEP, and represents typical 
results by a sophisticated primitive equation model. 

The implementation of the proposed method only forecasts horizontal wind speed. 
Vertical wind speed and geopotential height are calculated for each level using diag-
nostic equations. A complete model would forecast all model variables. Temperature 
and moisture forecasting are important components that are not yet implemented and 
are assumed to remain static during the forecast, but are necessary for more accurate, 
competitive results. Despite these limitations, Figures 4, 5, and 6 show that the 
learned behavior closely mirrors the desired behavior. 

Figure 4 is a scatterplot comparing the actual to the forecasted one hour change in 
wind speed for both the proposed method and the RAP model for the 1000mb level. 
The 1000mb level closely follows the surface at ground level. The proposed method 
outperforms the RAP model at the surface, as can be seen in Table 1. 

Figure 5 is the same as Figure 4, except for the 500mb level. This level is shown 
because it represents the approximate center of mass of the atmosphere. It performs 
slightly worse than the RAP model in terms of MAE, but the scatterplot shows it 
more closely follows the line Y=X. 

Figure 6 is the same as Figure 5, except for the 100mb level. This level represents 
the top of the atmosphere. 

In the planetary boundary layer at the surface, learned networks should only be 
shared with regions with similar surface characteristics, like albedo, elevation, and 
land use type. Because of the homogenous nature of the boundary layer over water, 
this approach could be particularly well-suited to forecasting over oceans and could 
be applied to forecasting tropical systems like hurricanes and typhoons out at sea. 
However, special consideration would have to be made for landfalling systems and an 
appropriate time step would have to be chosen that satisfies the CFL condition. 

Additional numerical stability could be achieved by switching from the leapfrog 
time integration scheme to a 3rd order Runge-Kutta integration scheme, which is used 
by the RAP model [2]. The time step, 6 minutes in our implementation, could also be 
brought down to 1 minute to match the RAP model. 

6 Conclusion 

This method can be used to create a full AI-based meteorological model. In order to 
do this, further work must be done to forecast all variables, for all regions and land 
types.  Special networks need to be trained to forecast over oceans, in the mountains, 
in forested regions, and over cities, although these specialized networks are only re-
quired for the lower levels of the atmosphere.  

Networks also need to be designed to forecast moisture transport, phase change, 
and latent heat. The remaining work there mainly involves selecting the appropriate 
inputs to consider. Although unimplemented, the network for forecasting temperature 
is given in Figure 2. With this, we would have a full forecast system. 
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Our implementation of the proposed approach has been successfully run out to 6 
hours, but needs these additional components to generate competitive forecasts. 
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