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Abstract. Layout configuration algorithms in civil engineering have
two major strategies called constructive and iterative improvement. Both
strategies have been successfully applied within different facility scenar-
ios such as room configurations and apartment layouts. Yet, most of the
work share two commonalities: They attack problems in which the ref-
erence plane is parallel to the Earth and, in most cases, the number of
activities are known in advance. This work aims to close that gap by de-
veloping a constructive-based algorithm for the layout configuration of
building facades in the context of a French project called CRIBA. The
project develops a smart-city support system for high-performance ren-
ovation of apartment buildings. Algorithm details are explained and one
example is presented to illustrate the kind of facades it can deal with.

1 Introduction

As pointed out by Liggett in [10], a layout configuration, commonly referred as
space planing or layout synthesis, “...is concerned with the allocation of activ-
ities to space such that a set of criteria (for example, area requirements) are
met and/or some objective optimized...”. Layout configuration algorithms have
two major and often mixed strategies. The first strategy is called constructive:
Place one activity (e.g. room, office, panel) at a time. The iterative improve-
ment strategy, on the other hand, is based on the improvement of an already
configured space. Both strategies have been applied, for instance, in room con-
figurations [14], apartment layouts [9], activities within a business office [8] and
finding an optimal configuration for hospital departments [4]. Underlying models
used in these approaches include but are not limited to evolutionary computa-
tion (genetic algorithms [12]), graph theoretic models (adjacency graphs [7]) and
constraint satisfaction problems (filtering algorithms [2,6]) .

Yet, regardless the considerable body of literature, most of the work share two
commonalities. On the first hand, they attack problems in which the reference
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plane is parallel to the Earth, meaning that they do not deal with gravity or
other natural forces that will, potentially, affect the configuration. On the other
hand, in most cases the number of activities are known in advance, given the
possibility to use existing algorithms to tackle the problem [4,9,10,12,14] .

Our work aims to close that gap by developing two algorithms, one greedy
and one constraint-based, for the layout configuration of facades as part of a
decision support system for buildings renovation [5,13]. In this paper we focus
our attention on the first algorithm. The decision support system, and hence the
algorithm, uses the notion of Constraint Satisfaction Problems (CSPs) [11] to
describe relations among components. It has been proved that CSPs modeling
fits neatly in the constrained nature of layout synthesis [2,14]. The presented al-
gorithm deals with the geometric of facades and the weight of panels by using the
knowledge of constraints inherent to any facade and thus improves performance
at the conception and implementation of the renovation.

The paper is structured as follows. We present the context of the project,
called CRIBA, and the environment setup in Section 2. In Section 3 the con-
straint model describing the problem is introduced. Afterwards we present the
first version of the layout configuration algorithm in Section 4. An example illus-
trating the algorithm is drawn in Section 5. Finally, some conclusions and future
work are discussed in Section 6.

2 Preliminaries

The CRIBA project aims to industrialize high performance thermal renovation
of apartment buildings [5,13]. This industrialization is based on an external new
thermal envelope which wraps the whole building. The envelope is composed of
prefabricated rectangular panels comprising insulation and cladding, and some-
times including in addition, doors, windows and solar modules. As a requirement
for the renovation, facades have to be strong enough to support the weight added
by the envelope. Within CRIBA several tools, needed to industrialize the renova-
tion process, will be developed: a) a new method for three-dimensional building
survey and modelling, b) a configuration system for the design of the buildings
new thermal envelope (bill of material and assembly process), and c) a working
site planning model with resource constraints. At the core of the renovation are:

Facades. Are compositions of apartments along with its doors, windows and so
on. At the model level, they will be represented by a 2D coordinate plane
which includes a set of rectangles defining frames, a set of supporting areas
and rectangles defining zones out of configuration. For convenience, the origin
of coordinates (0,0) is the bottom-left corner of the facade.

Configurable Components. At the current stage of the project, we only con-
sider rectangular panels that are attached to the facade by means of fas-
teners. In addition, the panels may come with rectangular frames (windows,
doors or solar modules). Panels are prefabricated in the factory when the
user inputs the renovation profile.
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A facade configuration will be made by one or more of these panels. Follow-
ing the constructive approach, we establish what we consider a well-configured
facade. A panel is well configured if it satisfies all its facade related constraints
(presented in Section 3.2), i.e., posses the right dimensions, can be hang on the
facade, is consistent with the facade frames, does not overlap with other panels
and if it does not interfere with other panels placement. A facade is said to be
well configured if all its composing panels are well configured and if they cover
all facade area.

Consider the facade (a) in Figure 1 which represents a facade to be renovated.
Horizontal and vertical lines represent the supporting areas in the facade. These
are places in which we are allowed to attach weight-fasteners to supports panels.
On panels, fasteners are attached in the edges (corners been mandatory). On
the facade, fasteners will be aligned with the center of each supporting area in
order to evenly distributed the panel’s weight. As a constraint, distance between
two fasteners is in [0.9, 4] meters. Small rectangles in the facade are frames (e.g.
windows and doors) that must be completely covered by one and only one panel.
Two zones in the facade are out the configuration: The gable and the bottom
part before the first horizontal supporting area. Those parts need specific panels
design.

Now, facade (b) in Figure 1 presents three ill-configured panels. This is due
to the impossibility to place another panel north to the already placed panel
p1, because there is not supporting areas at the corners of panel p2 and, in the
case of panel p3, because it partially overlaps a frame. Non of these cases are
allowed in a configuration solution. Finally, facades (c) and (d) in Figure 1 are
well configured because they satisfy all criteria.

Fig. 1. Facade to renovate along with well and ill-configured panels

3 Constraint Model

This section introduces the constraint model describing the renovation. Recall
that a CSP problem is described in terms of a tuple 〈V ,D, C〉, where V is a set of
variables, D is a collection of potential values associated for each variable, also
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known as domains, and C is a set of relations over those variables, referred to as
constraints. See [1,3] for further references.

3.1 Constraint Variables

Following the CSP model, we have identified 16 variables that allow us to repre-
sent the core of the layout configuration for a given building facade: The spatial
positioning of panels. The list of constraint variables and their domains is pre-
sented in Table 1.

Table 1. 16 crucial constraint variables

Variable Description Domain

wfac Width of facade [2, 18] meters
hfac Height of facade [3, 21] meters (≤ 7 stories)
efac Environmental property [easy, hard]
(px0,py0) Origin (bottom-left) of panel p x0 ∈ [0, wfac], y0 ∈ [0, hfac]
(px1,py1) End (top-right) of panel p x1 ∈ [0, wfac], y1 ∈ [0, hfac]
wp Width of panel p [0.9, 13.5]
hp Height of panel p [0.9, 13.5]
(fx0,fy0) Origin (bottom-left) of frame f x0 ∈ [0, wfac], y0 ∈ [0, hfac]
(fx1,fy1) End (top-right) of frame f x1 ∈ [0, wfac], y1 ∈ [0, hfac]
faiload Maximum weight load of fastener [0, 500]

at supporting area i
Xsa Collection of horizontal supporting {∀(wi, hi) ∈ Xsa :

areas of the form (w, h) wi ∈ [0, wfac] ∧ hi ∈ [0, hfac] }
Ysa Collection of vertical supporting {∀(wi, hi) ∈ Ysa : }

areas of the form (w, h) wi ∈ [0, wfac] ∧ hi ∈ [0, hfac] }

Given the description of origin and end coordinates of panels, bottom-left and
top-right corners, we can deduce the first constraint: px0 <px1 and py0 <py1.

3.2 Components Relationship

In order to configure the layout of a given facade we use constraints to ensure
relations over the variables representing components. In this section, we present
the set of relevant constraints over panels and components w.r.t. the facade. The
underlying CSP model we use is that of Disjunctive CSP [2]. Disjunctive CSP are
boolean combination of atomic constrains (e.g. <,≤, >,≥). The canonical form
of a disjunctive constraint is expressed as Ci = (di1∨di2∨ ...∨dik) where each di
are atomic constraint connected by the and operator, dj = (cj1∧cj2∧...∧cjk) [2].
Some of the constraint in our model, presented in Table 2, follow this approach.

Environmental. Impact on domains from environmental properties are
expressed as inequalities. The width wp and height hp of panels may be con-
strainedbecause accessibilitydifficulties to the facade (e.g. trees,water sources,
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high voltage lines, etc), transportation issues (e.g. only small trucks available)
or even climatological aspects (e.g. wind speed more than a given threshold).
Constraint C1 express these constraints, where Γ and Θ represents the upper
bound for panel dimensions, width and height respectively.

Dimension. The width wp and height hp of each panel is in the range [0.9, 13.5].
However, this is actually a combination of values. In other words, it is possible
to have a panel with dimensions 0.9× 13.5, 3× 8.4 or 13.5× 0.9, but it is not
possible to have one with dimensions 13.5×13.5, this is due to fabrication and
transportation constraints. In consequence, we constrain the combination of
values for the width and height of panels using C2.

Table 2. Atomic and disjunctive constraints

C1 Environmental constraint
(wp ≤ Γ ) ∧ (hp ≤ Θ) ∧ (efac = Hard)

C2 Dimension constraint(
(wp ∈ [0.9, 3.5]∧hp ∈ [0.9, 13.5]) ∨ (wp ∈ [0.9, 13.5]∧hp ∈ [0.9, 3.5])

)

C3 Area constraint

wfc×hfc =
∑N

i=1(wpi×hpi)
C4 Non-overlap constraint

(px1 <qx0) ∨ (qx1 <px0) ∨ (py0 <qy1) ∨ (qy0 <py1)
C5 Weight Constraint∑|ATPi|

j=1 computeWeight(ATPi[j]) ≤faiload
C6 Panels and frames constraints(

(px1 +Δ ≤fx0) ∨ (px0 −Δ ≥fx1) ∨ (py1 +Δ ≤fy0) ∨ (py0 −Δ ≥fy1)
)∨(

(py0 +Δ ≤fy0) ∧ (fy1 ≤py1 −Δ) ∧ (px0 +Δ ≤fx0) ∧ (fx1 ≤px1 −Δ)
)

Area. As a requirement, we have that the entire area of the facade must be
renovated, provided it has the corresponding supporting areas. Thus, a con-
straint forcing the sum of panel areas (wp× hp) to be equal to the facade
area (wfac× hfac) is posted. The constraint C3 express this relation, where
N is the number of panels covering the facade.

Non-Overlap. In addition, we must ensure that the panels do not overlap so
we can have a valid solution. Thus, for each pair of panels p and q we define
the non-overlap constraint using the disjunctive constraint C4.

Weight. A given fastener in a supporting area is defined by its coordinates and
its maximum weight load. Let ATPi be the panels attached to the fastener
fai and let computeWeight(p) be a function1 that returns the weight of panel
p. Constraint over panels weight is defined by C5.

Panel vs. Frames. We shorten the width or height of a given panel if there
exists a frame near to it. Either the panel overlaps the frame or the panel
is right, left, up or down to the frame. This is a typical case addressed by

1 This function uses the next values to calculate the weight of a panel: dimensions of
the panel, insulation type of the panel, weight of the frames within the panel (if any)
and weight of any other component (e.g. solar modules).
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disjunctive CSP. In any case, due to the internal structure of the panel,
borders of frames and borders of panels must be separated by a minimum
distance that we denote by Δ. This disjunctive constraint is modeled in C6.

4 Greedy-Recursive Algorithm

Bearing in mind the above description, we proceed by developing an algorithm
that solves the layout configuration in a greedy fashion. It makes local decisions
for positioning panels following the constructive approach. It is worth noting
that the algorithm uses the knowledge of constraints inherit by any building
facade and thus reducing the search space. Also, it exploits recursion, simulating
backtracking, when positioning a panel is not possible due to constraint conflicts.
Moreover the algorithm is parameterized with an heuristic (soft constraint) that
limits panel dimensions: Try to use, as much as possible, either vertical (i.e., left
part of C2) or horizontal panels (i.e., right part of C2).

First, we present the Algorithm 1 that checks whether an initial origin point
and end point for a panel, bottom-left and top-right corners respectively, violates
the disjunctive constraint C6. Its complexity is O(Nf ) where Nf is the number
of frames in the facade.

Algorithm 1. Panels versus frames validation

1 def panelVSframes(px0,py0,px1,py1,wfac,hfac,frames,Δ):
2 if (py1 = hfac) then
3 reduceDimensions(wfac-py1 ≥ 0.9);/* Dimension constraint */

4 stack ← {f ∈ frames | py0 ≤ fy0 ≤py1 + Δ };
5 while ( stack = ∅) do
6 f = pop(stack);
7 if (py1 − fy1 < Δ) then
8 reduceDimensions(py1 +Δ ≤fy0);/* Panel vs Frames constraint */
9 else

10 mark(f ); /* Frame successfully covered by panel in this axis... */

11 Repeat from 2 to 10 with x-coordinate;
12 foreach f in frames do

/* Discard frames overlaped in two axis... */
13 if (|marks(f )|==2) then discard(f );
14 else unmark(f ) ;

15 return (px1,py1);

The first step of Algorithm 1 is to leave enough space for the next panel (lines
2-3). Then, it uses a stack to perform an ordered check of all frames covered
by the panel in a given axis (lines 4-10). In the case there is a conflict, the
algorithm proceeds by constraining one of the coordinates of the end point (line
8). If there is no conflict panel-frame, the algorithm marks the frame as good
(line 10). Finally, the algorithm discards all frames successfully covered by the
panel in order to avoid forthcoming checks (lines 12-16). The end point of the
panel is returned: A point which is consistent with all frames.
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The greedy-recursive algorithm, presented in Algorithm 2, works as follows.
It begins by retrieving an available origin point and finding an end point given
the heuristic (lines 3-4). It proceeds by generating a new valid point using the
Algorithm 1. If dimensions of the panel violate dimensions constraints then it
fails at positioning the panel (lines 6). After computing the weight of the panel
(line 7) it checks whether it is possible to hang it using an horizontal (block
at 8-14) or vertical supporting areas (block at 15-28). To hang the panel in an
horizontal supporting area, it checks if the area is strong enough to support
the weight of the panel (lines 9-11), in which case it propagates the weight to
supporting areas (line 10). In the case it is not possible, it reduces the dimensions
of the panel (line 13). To hang the panel in vertical supporting areas, it checks
if the number of panels needed to hang the panel are less than or equal than

Algorithm 2. Greedy-recursive algorithm for layout synthesis.

1 def GreddyRecursive(wfac,hfac,frames,heu,op,solution):
2 if (op == ∅)then return True;
3 (px0,py0) ← getOriginPoint (op); /* Non-overlap constraint */
4 (px1,py1) ← getEndPoint(px0,py0,heu); /* Non-overlap constraint */
5 (px1,py1) ← panelVSframes(px0,py0,px1,py1,frames);
6 if (checkDimensions(px0,py0,px1,py1) == False)then return False;
7 weight ← computeWeight(px0,py0,px1,py1);
8 if (py0 ∈ Ysa)then
9 if (weight ≤ getNearestSA(py0)load)then

10 getNearestSA(py1)load ← getNearestSA(py1)load−weight;
11 goto 29;
12 else
13 (px1,py1) ← reduceDimensions(px0,py0,px1,py1,heu); /* Weight constraint */
14 goto 5;

15 else
16 n ← computeFasteners(px0,px1,weight);
17 m ← panelOverlaps(px0,py0,px1,py1);
18 if (n ≤ m)then
19 ssAreas ← selectedSA(px0,py0,px1,py1);
20 foreach (area ∈ ssAreas)do
21 if ((weight

n ) > areaload)then
22 (px1,py1) ← reduceDimensions(px0,py0,px1,py1,heu); /* Weight

constraint */
23 goto 5;

24 foreach (area ∈ ssAreas)do
25 areaload ← areaload − weight

n ;

26 else
27 (px1,py1) ← reduceDimensions(px0,py0,px1,py1,heu);
28 goto 5;

/* Place the panel in px0,py0,px1,py1. Do recursive call to place next panel! */
29 newOp ← computePoints(px0,py0,px1,py1);
30 next ← GreddyRecursive(wfac,hfac,frames,newOp,solution);
31 if (next == False)then
32 (px1,py1) ← reduceDimensions(px0,py0,px1,py1,heu); /* Area constraint */
33 goto 5;
34 else
35 solution.append(new Panel (px0,py0,px1,py1));
36 return True;
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the actual vertical overlaped supporting areas (lines 16-18). If the panel can not
be hang in those supporting areas given its weight, it proceeds by reducing the
dimensions of the panel (block lines 19-23). Otherwise propagate the weight to
supporting areas (lines 24-25). Finally, if the panel is well positioned, it proceeds
by computing new origin points and adding the next panel recursively (lines 29-
30). If the next panel can not be placed, dimensions for current panel are reduced
and another check is run (lines 31-33). Otherwise add the solution to solution
list and return (lines 35-36). The algorithm runs in O(r × s(Nf + Nsa)) in the
best case (i.e., no failures in recursive calls) and O(r × s(Nf +Nsa)

r×s) in the
worst case (i.e., no solution found), where Nf is the number of frames, Nsa the
number of supporting areas and r and s are the maximum number of panels that
can be fixed vertically and horizontally, respectively.

5 Example

In what follows, we present a behavior illustration for the greedy-recursive al-
gorithm. Figure 2 shows a facade in the commune Saint Paul-lès-Dax in the de-
partment of Landes, France. This facade is part of a 5 block working site called
La Pince. In our illustration the heuristic used to find a solution is vertical pan-
els first, i.e., the algorithm tries to put a vertical panel as big as possible and
resolves constraint conflicts. Additionally, the setup simulates a customization
where the upper bound for panel’s height has been set in 10 meters.

Due to paper-length constraints, Figure 2 shows the most representative states
of the execution. State 1 is a failed attempt to position the first panel with
dimensions 3.5× 10; constraint C6 (Panels vs. frames) is violated. Algorithm 2
changes py1 to match an horizontal supporting area and thus reducing the panel
dimensions. State 2 shows the final position of the first panel. The same occurs
to the second panel in State 3, thus resulting the State 4. It is worth noting that
the second panel is constrained in its width by the zone out of configuration. In
State 5 the third panel is well configured because it does not enters in constraint
conflict and because it allows a panel to be placed above it (it can be installed
using its corners). The State 9 shows the result of placing the panels 4 and
5: Constraint conflicts in y-axis are solved. Nonetheless, the panel number 5
is not well configured because it does not allow another panel to be placed at
it’s right. Thus, the algorithm reduce its width resulting in the configuration
of State 10. State 12 shows the correct placement of another panel, with valid
dimensions, at the right edge of the facade. A panel is placed then above the
zone out of configuration in the intermediate State 13. In State 14 is presented
the correct configuration of two panels in the top-right of the facade. States 15
to 18 correspond to the correct placement of another two panels at the top of
the facade. Finally, the algorithm stops at State 19 given that there is no more
origin points for positioning panels.
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Fig. 2. Configuration example using the greedy-recursive algorithm

6 Conclusions

In the present document we have shown a constructive-based algorithm for the
layout synthesis of building facades. This work is part of a project that inves-
tigates the possibility of automated building renovation based on rectangular
panels and supported by an intelligent system. Our problem is interesting and
our results novel because it integrates a vertical oriented layout synthesis, a di-
verse set of constraints (e.g. geometrical, structural, global constraints) and user
preferences. Conception and implementation for the renovation of buildings in
smart cities are then improved. In addition, the algorithm presented in the paper
contributes with the field of layout synthesis and civil engineering discipline. A
constraint-based algorithm, implemented by means of global constraints and us-
ing a constraint solver, is totally valid to solve the problem but will be proposed
in further communications. We acknowledge that the paper presents prelimi-
nary results that need to be improved. On this regard, the following objective is
a strategic direction within the project.

Providing Structural Analysis. Intuitively, a human configuration takes ad-
vantages of the facade dimensions and positions of frames to find a solution.
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Thus, it is adequated to add new constraints consequence of previous structural
analysis of the facade. For instance, an analysis may look for symmetries in the
facade, distances between windows and between supporting areas. Moreover, a
structural analysis may throw different origin points or even determine which is
the optimal number of panels given the facade structure. Consequences of this
preprocessing are transparent to the supporting system given that constraint
posting is a monotonic operation, i.e., it can only reduce the search space.
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