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Abstract. The goal of the EverMiner project is to run automatic data
mining process starting with several items of initial domain knowledge
and leading to new knowledge being inferred. A formal description of
items of domain knowledge as well as of all particular steps of the pro-
cess is used. The EverMiner project is based on the LISp-Miner software
system which involves several data mining tools. There are experiments
with the proposed approach realized by manual chaining of tools of the
LISp-Miner. The paper describes experiences with the LISp-Miner Con-
trol Language which allows to transform a formal description of data
mining process into an executable program.

1 Introduction

The EverMiner project is introduced in [8,14]. Its idea is to automate data
mining process with help of several items of initial domain knowledge. All items
of domain knowledge are formalized as well as particular steps of the process
[7]. GUHA procedures [1,3,10] are used as core analytical tools. Input of each
GUHA procedure consists of an analysed data and several parameters defining
a large set of relevant patterns, output is a set of relevant patterns true in the
analysed data.

The EverMiner project is based on the LISp-Miner system [12,9] which in-
volves several GUHA procedures as well as modules for data preprocessing and
dealing with items of domain knowledge. There are several experiments with
the proposed approach realized by manual chaining of the procedure mining for
generalized association rules and modules of LISp-Miner system [11]. Process
of data mining with association rules is described by FOFRADAR - a formal
frame for data mining with association rules [7] based on observational calculi.
The goal of this paper is to describe experiences with a scripting language LISp-
Miner Control Language (LMCL) which allows to transform a formal description
of data mining process into an executable program.

Main features of the EverMiner project are outlined in Section 2. An example
of a simple and manually implemented concept is described in Section 3. An
application of LMCL to run an enhancement of this example is introduced in
Section 4. The example concerns medical data. However, the goal of this example
is not to get new medical knowledge, but to introduce the LMCL language.
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There are various approaches to describe and automate data mining process
[2,5,6,15]. Their detailed comparison with the presented approach is out of the
scope of this paper and is left as a further work. Let us mention that they do not
use the formalization of a data mining process based on observational calculi.

2 EverMiner Principles

The concept of the EverMiner is based on two loops — an outer loop (see the left
part of Fig. 1) and an inner loop (see the right part of Fig. 1) in the phase (4)
of answering analytical questions formulated in step (3) in the outer loop. A do-
main expert (1) is necessary to supervise the automated process. But his role is
limited mainly to approval or disapproval of newly inferred knowledge. He or she
doesn’t intervene directly into the outer and inner loops so they could be really
automated. Domain knowledge (2) contains both the initial domain knowledge
prepared by the domain expert and the newly inferred domain knowledge which
is clearly flagged as data specific and needs an approval from the domain expert
before it could become part of accepted domain knowledge. Nevertheless, newly
inferred knowledge could be used immediately to formulate new analytical ques-
tions so the whole automated process could carry on even if the expert is busy
and not available. He or she could return back later and approve or disapprove
the whole bunch of newly inferred knowledge afterwards.
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Fig. 1. EverMiner seen as two loops
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Domain knowledge is formalized in a way both understandable to domain
experts and suitable to be used in an automated data mining process. The outer
loop starts with currently available domain knowledge (2). There are several ways
to formulate reasonable analytical questions based on the current knowledge in
step (3). Shortly, we can try (a) to verify that domain knowledge is valid in
analysed data, (b) to found new patterns not yet covered by current knowledge
or (c) to found exceptions to known patterns.

By answering analytical questions in step (4) we mean to create and solve
several data mining tasks, results of which can contribute to a solution of the
analytical question formulated in step (3). We plan to start with data mining
tasks which can be solved by the GUHA procedures implemented in the LISp-
Miner. An example of formulation of analytical questions and application of the
GUHA procedure 4ft-Miner dealing with association rules to solve one of the
formulated analytical questions is in Section 3. Usually, several applications of
GUHA procedures are necessary to solve one analytical question.

3 Mechanical Turk Proof of Concept

3.1 Data Set STULONG

As demo data we use the data matrix Entry belonging to the dataset STULONG
concerning Longitudinal Study of Atherosclerosis Risk Factors'. The data matrix
concerns 1.417 male patients, each row describes one patient. The data matrix
has 64 columns corresponding to particular attributes of patients. We use four
groups of attributes — Personal, Diet, Measures, and Examinations.

Group Personal has three attributes: Marital Status (4 categories i.e. possi-
ble values), Education (4 categories), and Responsibility in a job (4 categories).
Group Diet has two attributes: Beer (3 categories) and Coffee (3 categories).
Group Measures has only one attribute BMI (i.e. Body Mass Index) with 17
categories — < 21, (21;22), (22;23), ..., (35;36), > 36. Group Ezaminations
has three attributes: Diastolic blood pressure (7 categories), Systolic blood pres-
sure (9 categories) and Cholesterol in mg% (10 categories). Fig. 4 presents the
selected attributes and categories.

3.2 Domain Knowledge and Analytical Questions

Three types of domain knowledge related to the STULONG data are managed
by the LISp-Miner system [11]: groups of attributes, information on particular
attributes and a simple influence between attributes. There are 11 basic groups of
attributes defined at http://euromise.vse.cz/challenge2004/data/entry/
and four additional groups of attributes defined in the previous section. Groups
of attributes are used to define reasonable analytical questions.

Information on particular attributes include information on types of attributes
(nominal/ordinal/cardinal). An example of a simple influence between attributes

! see http://euromise.vse.cz/challenge2004.
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is an SI-formula BMI 11 Diastolic saying that if BMI of a patient increases then
patient’s diastolic blood pressure increases too [11].

We outline how these items of knowledge can be used to define reasonable an-
alytical questions, see outer loop in Fig. 1. We use groups of attributes Personal,
Diet, Measures, and Examinations and SI-formula BMI 11 Diastolic. An example
of an analytical question is: In the data matriz Entry, are there any interesting
relations between combinations of attributes from Personal, Diet, and Measures
on one side and attributes from Examinations on the other side? We denote this
analytical question as AQ7, symbolically
AQ1: [Entry: Personal, Diet, Measures =~ Ezaminations|.

This question can be enhanced: In the data matriz Entry, are there any interest-
ing relations between combinations of attributes from Personal, Diet, and Mea-
sures on one side and attributes from Examinations on the other side? However,
we are not interested in consequences of the known fact that if BMI increases,
then diastolic blood pressure increases too. Symbolically we can write

AQ1g: [Entry: BMIT Diastolic # Personal, Diet, Measures ~7 Ezaminations).

3.3 EverMiner Analytical Questions

Similarly, additional analytical questions can be

AQs:  [Entry: Diet, Measures, Ezaminations ~* Personal]
AQz:  [Entry: Measures, Examinations, Personal =" Diet]
AQy: [Entry: Evaminations, Personal, Diet =" Measures|.

We assume here that the only item of knowledge of the type simple influence
between attributes is BMI 11 Diastolic. It makes no sense to use this item in the
introduced additional analytical questions. We assume here that the analytical
questions AQ1, AQs, AQ3, AQ, are the only analytical questions to be solved.
However, actually hundreds or thousands of similar analytical questions can be
formulated using available groups of attributes and SI-formulas.

3.4 Solving a GUHA Task — An Example

The FEverMiner project is based on applications of GUHA procedures imple-
mented in the LISp-Miner system, there are nine GUHA procedures mining for
various types of patterns [9,12]. Each analytical question formulated in the outer
loop, see Fig. 1 is transformed into several data mining tasks. We outline how the
GUHA procedure 4ft-Miner can be used to solve the analytical question AQ;:
[Entry: Personal, Diet, BMI =" Ezaminations|.

The procedure 4ft-Miner deals with association rules ¢ = 1 where ¢ and 1) are
Boolean attributes derived from columns of an analysed data matrix. Boolean
attribute ¢ is called antecedent and 1 is called succedent. The symbol =~ is a
4ft-quantifier, it corresponds to a criterion concerning quadruples (a,b,c,d) of
non-negative integers a, b, ¢, d such that a + b+ ¢+ d > 0. The association rule
/2 1) is true in the data matrix M if the criterion corresponding to == is satisfied
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ANTECEDENT |
Personal Con,0-3 A
» Education (subset), 1 - 1 B, pos SUCCEDENT
» Marital_Status (subset), 1 - B, pos Examinations Con. 1-3 Ia
M v -y » Responsibility (subset), 1 - B, pos » Diastolic (seq), 1 - 2 'B, pos
[0} a b et Son.0-4 » Cholesterol (seq), 1 - 3 B, pos
» Beer (subset), 1 -1 B, pos » Systolic (seq), 1- 3 B, pos
ﬁ(P C d » Coffee (subset), 1 -1 B, pos ! ‘
Measures Con, 0-1
»BMI(seq), 1-5 B, pos
Total length: 1-6
4ft(p, v, M) Relevant antecedents Relevant succedents

Fig. 2. 4ft(p, ¥, M) and definitions of sets of relevant antecedents and succedents

for a contingency table 4ft(p, ¥, M) of ¢ and 1 in data matrix M, see Fig. 2.
Here a is the number of rows of M satisfying both ¢ and %, b is the number of
rows of M satisfying ¢ and not satisfying v, etc.

Input of the 4ft-Miner consists of an analysed data matrix, definitions of sets
of relevant antecedents and succedents and of a 4ft-quantifier ~. Output is a
set of all rules ¢ & 1 true in the analysed data matrix where ¢ is a relevant
antecedent and 1 is a relevant succedent.

A definition of a set of relevant antecedents used to solve the analytical ques-
tion AQ; is in Fig. 2. An antecedent is a conjunction pp A ¢p A ¢p where pp
is a Boolean characteristics of the group Personal, similarly for ¢p, ¢p and the
groups Diet, BMI respectively. The attribute ¢p is a conjunction of 0 - 3 Boolean
attributes created from attributes Fducation, Marital Status, and Responsibil-
ity. Four Boolean attributes Education(basic), ..., Education(university) are au-
tomatically created from the attribute FEducation, similarly for Marital Status,
and Responsibility. The attributes ¢p are created analogously. The attributes
pp are in a form BMI(a) where a is a sequence of 1-5 consecutive cate-
gories of BM1I (see expression BMI(seq), 1 - 5 in the definition of relevant
antecedents in Fig. 2). This way 75 Boolean characteristics of BMI are defined,
BMI(< 21,(21;22),(22;23)) i.e. BMI(< 23) being an example. The expressions
B, pos means that all Boolean attributes are equally important [10].

The set of relevant succedents is defined similarly. Sequences of categories are
again used, see right part of Fig. 2. We used the 4ft-quantifier =, p of founded
implication defined by the criterion aib > pA a > B. The rule ¢ =, p 1) means
that at least 100p per cent of rows of M satisfying ¢ satisfy also ¢ and that
there are at least B rows of M satisfying both ¢ and 1. There are about 20
additional 4ft-quantifiers implemented in the /ft-Miner.

We started with the quantifier = 95 50. More than 4.5 108 of association
rules were verified in 150 sec. (PC with 4GB RAM and Intel i5-3320M processor
at 2.6 GHz) and no true rule was found. After about 10 automatically computed
modifications of parameters we get 98 true rule for 4ft-quantifier = g 39. We used
the way introduced in [11] to filter out 32 consequences of BMI 11 Diastolic. This
is based on transforming the SI-formula to a set of its atomic consequences i.e.
all suitable simple rules BMI(«) =, p Diastolic(f) where «, 5 are subsets of
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possible values of BMI, Diastolic respectively. Then all their consequences are
filtered out, deduction rules of the logic of association rules [9] are used.

The remaining rules are used to create a set of interesting results of the appli-
cation of the GUHA procedure 4ft-Miner with the 4ft-quantifier = g 30. Several
(10 — 20) strongest rules can be considered as examples of results. Another ex-
ample of results is an assertion that among found rules 10 are consequences of
(yvet not considered) item of knowledge BM I 11 Systolic.

4 Applying the LISp-Miner Control Language

Although theoretically proved valid, a manual implementation of the FverMiner
steps is not feasible. The number of tasks to be solved could easily grow above
hundreds and even thousands. Therefore an automated approach is necessary
and here the LISp-Miner Control Language (LMCL) steps in. LMCL is a script-
ing language based on Lua and its syntax [4]. The main purpose of LMCL is
to provide programmable means to automate all the main phases of data min-
ing i.e. to import data, to pre-process them, to formulate reasonable analytical
tasks, to process those tasks and finally to digest found patterns and to report
only the interesting ones to the user or to infer directly new items of domain
knowledge. In this sense, the language is a necessary prerequisite for automation
of data mining process. But, it could serve other purposes too [13].

4.1 EverMiner Stulong Simple Algorithm

The EverMiner Stulong Simple demo presented here is really a simplified version
of the EverMiner concept, in line with the proof of concept described in Section
3. Its main purpose is to proof that the LMCL is able to automate data mining
process and to solve many data mining tasks in parallel with speed that would
be never possible to achieve through standard user interface.

Few user-defined parameters guide the whole process which is fully automated.
Apart from the rather technical ones (e.g. a connection string to database with
analysed data), there is one piece of domain knowledge in form of groups of
attributes and association of attributes with them. The second important input
parameters are the minimal and maximal number of patterns to mine. There
are several ways how to reduce (or enlarge) task search space to influence the
number of found patterns, but they are out of scope of this paper. Just a very
simple heuristic has been implemented for now. Nevertheless, it is successfully
exploited in the step (4) of Fig. 1 to ensure the number of found patterns is
within given range, see Fig. 3.

After a desired number of hypotheses was reached for each task (or a specified
maximal limit of iterations was reached), a summary of task results could be
prepared in form of an analytical report. An example of such a report (manually
shortened) is in Fig. 4.

There is no space to discuss an automated data preprocessing in this paper
(an example is in [13]). The first example where LMCL simplifies and speeds-
up the data mining process is in the analytical task formulation phase. There
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is a data mining task automatically created for each analytical question. Task
parameters are set to pre-defined initial values so the fine-tuning could turn in
any direction based on number of hypotheses found. There is a simple heuristic
implemented to take a special care of ordinal and cardinal values and to set
coeflicients of type sequence up to length of one third of number categories in
corresponding attribute, see an example of LMCL syntax in Fig. 5.
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EverMiner Stulong Simple Analytical Report
Data Preprocessing

Diet

Beer: no, 1 or 2 mugs, 3 or more mugs

Examinations

Diastolic: <50;70), <70;80), <80;90), <908;100), <100;110), <1108;120), <120;150)

Measures

BMI: <21, <21;22), <22;23), <23;24), <24;25), <25;26), <26;27), <27;28), <28;29), <29;30),
<30;31), <31;32), <32;33), <33;34), >=34

Personal

Education: basic, apprentice, full secondary, university

Marital_Status: married, divorced, single, widower

Tasks

Diet, Measures, Personal -> Examinations (08)

Task finished succesfully and an acceptable number of patterns has been found

Number of iterations: 8

Found patterns: 20

The most interesting ones:
« Beer(no) & Education(apprentice) & Marital_Status(married) >-+< Diastolic(<80;100))
« BMI(<24) & Education(university) >+< Diastolic(<70;90))
« BMI(<21;24)) & Education(university) >+< Systolic(<110;140))

Fig. 4. Example of an automatically created analytical report (shortened)

for j, attribute in ipairs( attributeArray) do

-- add literal for each attribute

ftliteralSetting= lm.tasks.settings.FTLiteralSetting({
pFTPartialCedentSetting= ftpartialCedentSetting,
pAttribute= attribute

i
if ( (attribute.getDataCharacterTypeCode() == lm.codes.DataCharacterType.Ordinal) or
(attribute.getDataCharacterTypeCode() == lm.codes.DataCharacterType.Cardinal)) then

-- sequence up to 1/3 of number of categories
ftliteralSetting.setCoefficientTypeCode( lm.codes.CoefficientType.Sequence);
ftliteralSetting.MaxLen= math.max( math.floor( attribute.CategoryCount / 3), 1);

else

=W de FallEta (s Ubset il i)

end;

end;

Fig. 5. LMCL syntax example

The most important phase of the EverMiner Stulong Simple example is an asyn-
chronous parallel processing of data mining tasks till the desired number of hy-
potheses is reached, see Fig. 3. It implements the EverMiner inner cycle using a
task queue. The queue is initially filled with analytical tasks constructed in the
step (4.1) of Fig. 1. The inner loop is processed till the queue is empty. The first
step pops the top-most task in the queue and checks its state. If the task is not
computed yet, it starts an asynchronous generation and verification of patterns by
calling the LISp-Miner ProcPooler module for background computation of data
mining tasks on multiple processor cores of a hosting computer. (Alternatively, the
LM GridPooler module could be used to utilize distributed grid of computers.)
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If the task has already been started, a query is made for the task state update
(possibly made meanwhile by the LM ProcPooler module in another thread).
If the state has not changed yet, the task is moved to the end of the queue
and the first step is repeated for another task. If the task has finished with
some error, its state is changed to failed and the task is removed from further
processing. If the task state has been solved successfully, found patterns are
loaded and the execution forks based on the number of found patterns. If it
is within the defined acceptable range, the most interesting patterns (in this
simplified version just the first three) are marked as final results to be included
in the analytical report. If the number of found patters is outside the given range,
the concerned task settings are changed to enlarge (respectively to reduce) the
solution-space searched. Changes to the task settings are limited for now to a
change of parameters p, B of the 4ft-quantifier =, g, see Section 3.4. In the
above mentioned application 28 runs of the 4ft-Miner procedure was used which
required 2 minutes and 50 seconds.

4.2 LMCL Performance

LMCL is implemented by the LM FEzec module of the LISp-Miner system using
Lua script interpreter library of version 5.2. The used Lua interpreter is really
lightweight and proved to be fast, so far tested with up to medium-sized scripts
(thousands of code-lines). Script parsing and execution overhead costs are in-
significant compared to data mining task solution times or to data transfers
from database. Performance of LMCL scripts therefore depends solely on ability
of the LISp-Miner system modules to compute data mining tasks. It has been
proved already (see e.g. [10]) that the algorithms and optimizations techniques
implemented in the LISp-Miner system lead to solution times linearly dependant
on number of rows (objects) in analysed data.

5 Conclusions

We have demonstrated the first experience with the LISp-Miner Control Lan-
guage which allows to transform a formal description of a data mining process
into an executable program. It was shown that it is possible to use this language
to automate data mining processes with association rules. In the next steps we
assume to use theoretical results [7] and considerations [8,14] to enhance the
described experiments by deeper application of additional formalized items of
domain knowledge and other types of patterns.

Also, a deeper comparison of the presented approach with additional ap-
proaches, see e.g. [2,5,6,15], is necessary.
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