
T. Andreasen et al. (Eds.): ISMIS 2014, LNAI 8502, pp. 103–112, 2014. 
© Springer International Publishing Switzerland 2014 

A Large-Scale, Hybrid Approach for Recommending 
Pages Based on Previous User Click Pattern and Content 

Mohammad Amir Sharif and Vijay V. Raghavan 

The Center for Advanced Computer Studies 
University of Louisiana at Lafayette 

Lafayette, LA 70503, USA 
{mas4108,vijay@cacs.louisiana.edu} 

 

Abstract. In a large-scale recommendation setting, item-based collaborative fil-
tering is preferable due to the availability of huge number of users’ preference 
information and relative stability in item-item similarity. Item-based collabora-
tive filtering only uses users’ items preference information to predict recom-
mendation for targeted users. This process may not always be effective, if  
the amount of preference information available is very small. For this kind of 
problem, item-content based similarity plays important role in addition to item 
co-occurrence-based similarity. In this paper we propose and evaluate a  
Map-Reduce based, large-scale, hybrid collaborative algorithm to incorporate 
both the content similarity and co-occurrence similarity. To generate recom-
mendation for users having more or less preference information the relative 
weights of the item-item content-based and co-occurrence-based similarities are 
user-dependently tuned. Our experimental results on Yahoo! Front Page “Today 
Module User Click Log” dataset shows that we are able to get significant  
average precision improvement using the proposed method for user-dependent 
parametric incorporation of the two similarity metrics compared to other recent 
cited work.     

Keywords: Recommender Systems, Item-based Collaborative Filtering, Map-
Reduce, Item-Item content-based similarity, Item-Item co-occurrence-based  
similarity, Mahout. 

1 Introduction 

In this age of Internet, the amount of information we come across is overwhelming. It 
is really difficult to find relevant information useful for a person. There are numerous 
research studies in this branch of research called information filtering [1, 2, 3, 4]. 
Information filtering system assists users by filtering the data source and delivers 
relevant information to the users. When the delivered information comes in the form 
of suggestions, an information filtering system is called a recommender system.       
 Recommender systems are mainly classified as content-based and collaborative 
filtering-based. In content-based recommendation, user’s profile-vector is matched 
with item’s profile vector to generate recommendation [2]. Content-based system 
depends on well structured attributes and reasonable distribution of attributes across 



104 M.A. Sharif and V.V. Raghavan 

items. A content-based system is unlikely to find surprising connection. Rather, such 
a system aims to find a substituting item. In many cases, getting common attributes is 
not easy and complimentary items are preferred, rather than simple substitution. So, 
content-based systems are not preferred in many cases. In order to overcome these 
problems, collaborative filtering approach is introduced, which depends mainly on the 
users’ item preferences information. It does not depend on the content information.  
  Collaborative filtering is classified as either user-based or item-based [3]. In the 
user-based collaborative filtering, recommendation is generated based on weighted 
average rating of similar or neighboring users’ ratings. But as the number of users 
increases many users will not have sufficient rating and the user-item rating matrix 
will be very sparse. This can lead to finding no or dissimilar users as neighbors of a 
targeted user, making the recommendation task difficult. To overcome this sparsity 
problem, item-item collaborative recommendation is introduced, where item-item 
similarity is used to generate recommendation. Because it is more probable that each 
item will be rated by many users, finding effective neighbors of an item will be much 
easier. 

In user-based method overcoming sparsity to get sufficient neighbor is acceptable, 
but in item-based collaborative algorithm, finding effective similar items is not 
enough, because some neighboring item may not be rated by the targeted users to 
contribute to the prediction calculation. The prediction is calculated by making 
weighted average of targeted user’s rating to the neighboring items of the preferred 
item [4]. So if all or sufficient number of neighboring items can’t contribute to rec-
ommendation calculation, then the recommendation will not be accurate. So, if a tar-
geted user has a small number of preferred items, the recommendation generation 
needs to be modified. 

Moreover, if the number of users and items increases to a massive scale, the tradi-
tional method of deploying an algorithm in a single machine does not work. So, sca-
lability is a very common problem in current recommendation settings.      
 In this work, we propose to use a hybrid item-similarity score by combining item-
item co-occurrence similarity and item-item content-based similarity. We use a para-
metric incorporation so that the parameter can have different values for different tar-
get users based on the length of their preference list. We test whether targeted users 
having a short preference lists get better recommendation if content-based similarity 
is given more weight for recommendation generation. Our experimental results vali-
date the claim.  

Moreover, we believe that the Map-Reduce based implementation of our proposed 
hybrid method is highly scalable to handle many recommendations in parallel. The 
experimental results on “Yahoo front page today module” dataset shows significant 
speed up in recommendation generation.  

2 Literature Survey and Background 

2.1 Sparsity Problem 

In most e-commerce recommendation systems, the numbers of users and items are 
very large and many of the users don’t rate or their actual preference is not obtainable. 



 A Large-Scale, Hybrid Approach for Recommending Pages 105 

In addition, even many popular items are not rated by many users. These factors cause 
user sparsity and item sparsity. Table 1 shows a user-item preference matrix where we 
can see that the matrix is not filled. In this case, the similarity calculation based on 
item cooccurrences will not be very much effective. Selecting either user-based or 
item-based collaborative approach automatically is also a method to handle sparsity 
[5]. Predictions corresponding to a user-based and item-based technique are calcu-
lated separately and, then, decisions are combined to make an integrated prediction in 
[5], which is infeasible for a large-scale implementation. Sometimes users sparsity is 
resolved by applying item-based filtering. But, in order to resolve item-sparsity, some 
studies have combined content-based item-similarity with the co-occurrence-based 
item similarity in item-based recommender systems [6, 7].  A weighted combination 
of content similarity and collaborative similarity is proposed in [6]. Table 2 shows an 
item-feature matrix. It is possible to calculate pair-wise similarity between items us-
ing the features of items. So, if the feature-based similarity and co-occurrence-based 
similarity are incorporated properly, better prediction is expected. Since the customi-
zation of weighting for the whole data set is practically infeasible, [7] proposes an 
incorporation technique giving the same weight for both the similarity values in mul-
tiplicative form. The performance of developed system in [7] is poor when the prefe-
rence list size is small. Small preference list size hurts co-occurrence-based collabora-
tive approach. 

Table 1. User-Item preference matrix 

         Item I1 I2 I3 I4 
User 
U1 P1,1 P1,2 P1,3 ? 
U2 P2,1 P2,2 P2,3 P2,4 
U3 P3,1 P3,2 ? P3,4 
U4 ? P4,2 ? ? 

 
So, if the active user does not have sufficient preference information, the resulting 

collaborative approach gives poor recommendation even though better item similarity 
is available. In this work we propose a user-dependent weighting technique so that, 
for the targeted users having short preference lists, more weight can be given on con-
tent-based similarity during prediction. On the other hand, users having longer prefe-
rence lists will get more weight on co-occurrence based similarity prediction.  

Table 2. Item-Feature matrix 

         Feature F1 F2 F3 F4 
Item 
     I1 F1,1 F1,2 F1,3 F1,4 
     I2 F2,1 F2,2 F2,3 F2,4 
     I3 F3,1 F3,2 F3,3 F3,4 
     I4 F4,1 F4,2 F4,3 F4,4 



106 M.A. Sharif and V.V. Raghavan 

2.2 Scalability Problem 

As the number of users and items increases the computational complexity increases 
drastically in any recommendation setting. 

In most of the recommender systems, the recommendation generation needs to be 
real time. There are already some works to do large-scale recommendation [8, 9]. 
While some of them have bottleneck in accuracy, others lack in the quality of perfor-
mance. In this work, we propose an adaptive recommendation system that adjusts 
weight parameters according to the profile list lengths on top of the Apache Mahout’s 
large-scale item-based recommendation systems. Mahout’s Map-Reduce based rec-
ommendation systems run on top of Hadoop [10]. 

Map-Reduce. Map-reduce is a large-scale parallel computing framework developed 
by Google.  A Map-reduce job mainly has two types of functions called map () and 
reduce(), taking input from distributed file system (DFS). 
    The Map and Reduce functions of Map-Reduce are both defined with respect to 
data structured in (key, value) pairs. Map takes one pair of data with a type in one 
data domain, and returns a list of pairs in a different domain: Map(k1,v1)→ 
list(k2,v2).    
 The Map function is applied in parallel to every pair in the input dataset. This pro-
duces a list of pairs for each call. After that, the Map-Reduce framework collects all 
pairs with the same key from all lists and groups them together, creating one group 
for each key.  

The Reduce function is then applied in parallel to each group, which in turn pro-
duces a collection of values in the same domain: Reduce(k2, list(v2)) 
→list(k3, v3). 

Mahout’s Large Scale Recommendation. In Mahout’s algorithm the item similarity 
is calculated based on co-occurrences.  Their distributed algorithm is based on   paral-
lel implementation of matrix multiplication.  They run four Map-Reduce jobs to im-
plement the recommendation.  

Our content similarity-oriented, large-scale item based collaborative recommender 
system is built on top of an existing large-scale recommender system by apache Ma-
hout [11]. We extended page co-occurrence to include content-based item-item simi-
larity within the same Map-Reduce process. The structure is given in Fig. 1. 

This algorithm runs four Map-Reduce jobs. The first Map-Reduce job builds user 
vector. Mapper takes file position as key and line of text containing user id, item id 
and preference as value; and outputs user id as key and (item id, preference) as value. 
The Reducer outputs user id as key and mahout’s vector representation of items as 
value. 

Second map-reduce job creates a co-occurrence matrix.  The mapper takes user id 
as key and user vector as value; and outputs item id as key and other item id as value.  
The output from the mapper is itemId as key; and another-item with corresponding 
similarity as value. The reducer here outputs item id as key and a column vector of 
co-occurrence matrix as value.  



 A Large-Scale, Hybrid Approach for Recommending Pages 107 

 

Fig. 1. Architecture of Mahout’s Recommendation Engine 

Inside-out technique is used for map-reduce based matrix multiplication. In third 
map-reduce job one mapper called PartialMultiply1 takes the output of the first map-
reduce job as input where user id is key and user’s preference vector is the value. The 
output of this map job is item id as key and (user id, preference value) as value.  
Another mapper called Partial Multiply2 inputs and outputs item id as key and co-
occurrence matrix column Vector as value. The Partial multiply reducer inputs item 
id as key; and many (user ID, preference) pairs with a co-occurrence matrix column 
vector as value, which are value parts from previous two mapper’s output. The reduc-
er outputs item id as key and column vector with (user ID, preference) pair as value.  

In the fourth map-reduce job a mapper called aggregate mapper takes the key val-
ue pair as input from the output of previous map-reduce job i.e. item id as key and 
column vector and (user ID, preference) pair as value. And the mapper outputs user id 
as key and column vector times preference as value. Aggregate reducer receives user 
id as key and vectors from previous mapper output for corresponding user id. Reducer 
sums to make recommendation vector and finds top n values for recommendations. 
For the top n values, the reducer outputs user id as key and (item ID, value) as value. 

3 Our Approach 

3.1 Content-Based Item-Item Similarity Calculation 

As the content-based similarity is stable, we calculated the item-item content-based 
similarity off-line, and then incorporated it with the co-occurrence similarity later.  



108 M.A. Sharif and V.V. Raghavan 

We used Mahout’s distributed row similarity calculation module for this content-
based similarity calculation. Each item is represented as a vector of features. Then 
cosine similarity measure is used to calculate similarity among two items, which gives 
a similarity value between 0 to 1.  

3.2 Computation 

We merged two similarity matrices in the user vector to co-occurrence-mapper and 
co-occurrence-reducer Map-Reduce job shown in Fig. 1. This Map-Reduce job takes 
pair wise similarity value of each pair of items. We inputted two kinds of similarity 
values for each pair of items from file; one co-occurrence-based and other content-
based. The output of the mapper is item ID as key and another item, with correspond-
ing similarity values, as value. So after all the map tasks are completed, each item will 
be emitted twice for same item with different similarity values. These key-value pairs 
are sent to the co-occurrence-reducer.  The input to reducer is item ID as key and a 
vector of rest of the items with corresponding similarity values to the key item as 
value. In this vector there will be two entries of same item with two different kinds of 
similarities. We used a linked-list to find those duplicate items, and the corresponding 
similarities are summed-up to get an aggregated similarity among items. At the end, 
the reducer emits item ID as key and the corresponding updated similarity vector in 
terms of other items as key. In this part, we just merge the two similarity matrices into 
one. As the co-occurrence similarity ranges from [0, 185] and content similarity 
ranges from (0, 1], it is very easy to separate these similarity components later and 
give different weights of importance for combining the two similarity values based on 
different user preference list length, during recommendation generation.  
 In aggregateAndReccomendReducer module, we apply separate weights to the 
different similarity components based on the users’ preference list length. In order to 
do so, we separate the whole and fractional part of the similarity value. The whole 
number is co-occurrence similarity and normalized to [0, 1] scale, the fractional part 
is content-similarity. After normalization we compute the weighted sum of the two 
different similarities for a user, based on her preference list length. In this way, the 
two different similarities are merged to generate the prediction. 

3.3 Incorporating Content-Based and Co-occurrence-based Similarity  

In our similarity calculation method, we used the following equation to calculate simi-
larity, , ,  among two items for a user , 
 , , , 1,  , :          1 :                 , :                , :        



 A Large-Scale, Hybrid Approach for Recommending Pages 109 

4 Experimental Setup 

We used the Yahoo! Front Page Today Module User Click Log Dataset for the 
experiments. The dataset is a fraction of user click log for news articles displayed in 
the Featured Tab of the Today Module on Yahoo! Front Page (http://www.yahoo.com) 
during the first ten days in May 2009. The dataset contains 45,811,883 user visits to 
the Today Module.  For each visit, both the user and each of the candidate articles are 
associated with a feature vector of dimension 6. These features were represented by 
some numerical numbers without any identification. We preprocessed the data set to 
extract article click information for each user and the article vectors for each article for 
this experiment. There were 271 articles that were displayed in Yahoo! front page in 
those ten days.   

4.1 Preference List Length Based Evaluation 

We choose several different sets of users based on different preference list lengths for 
our evaluation. In this case, the preference means clicked pages. Each selected user 
set had users having preference list length 6 to 10, 11 to 20, 21 to 35, 36 to 55, more 
than 35 and more than 55. Although we had around 1.3 million users, very few of 
them had prefernce lists of size greater than 5. There were 560 users having 
preference list length 6 to 10, 333 users with length 11 to 20, 142 users with length 21 
to 35, 87 users with length 36 to 55 and 214 users having prefernce length more than 
55. For these sets, we trained the recommender system by 70% of the preferences of 
the users in the current user set along with 100% of other users’ preferences and kept 
the remaining 30% preference list in the current user set for testing i.e. testing prefe-
rences. For these users, we explore the recommendations generated by the system for 
different weight combinations of content similarity and co-occurrence similarity. For 
each selected user set, we ran the experiment by increasing the content similarity 
weight; that is, by taking the content-based similarity and co-occurrence-based simi-
larity weight pair respectively as (0, 1), (0.1, 0.9), (0.2, 0.8), (0.3, 0.7), (0.4, 0.6), (0.6, 
0.4), (0.7, 0.3), (0.8, 0.2), (1, 0). Considering the rank order of first 10 recommenda-
tions, we calculated average precision for an active user, for each combination of 
weights, based on ranking of pages in the testing preferences.  Then we found the 
mean average precision (MAP) over all the users within those selected user sets [12].  

Fig. 2, 3 and 4 show how  the recommender’s performance changes with the in-
crease of content similarity weight or decrease of co-occurrence similarity weight for 
users having preference list length respectively 6 to 10, 11 to 20, 21 to 35 and 36 to 
55, more than 35 and more than 55. 

From Fig. 2 and 3, we can see that for users having prefernce list length 6 to 10, 11 
to 20 and 21 to 35 the best performance is obtained for content similarity  weight 1.0 
and cooccurence similarity weight 0.0. For users with prefence list length 36 to 55, we 
get better performance with content similarity  weight 0.4 and cooccurence similarity 
weight 0.6, which shows the imporatnce of co-occurrence as the length grows. Fig. 4 
says that for users having prefernce list length greater than 36 or 55, we get better  
 

 



110 M.A. Sharif and V.V. Raghavan 

       

Fig. 2. Change of performance with increasing content similarity weight or decreasing co-
occurrence similarity weight for users having preference list length 06 to 10 and 11 to 20 

 

Fig. 3. Change of performance with increasing content similarity weight or decreasing co-
occurrence similarity weight for users having preference list length of 21 to 35 and 36 to 55 

 

Fig. 4. Change of performance with increasing content similarity weight or decreasing co-
occurrence similarity weight for users having preference length greater than 35 and 55 

performance at content similarity  weight of 0.4 and 0.3 respetcively. It also shows the 
importance of co-occurrence weight for users having long prefernce list. So, for 
shorter preference list length, less than 36, we give more weight on content.  

Observing the results in Fig. 2, 3 and 4, we selected content similarity weight 1.0 
for users having length less than 36; content similarity weight 0.4 for length 36 to 55  
and content similarity weight 0.3 for length greater than 55. We used this weighting 
mechanism to do our full-scale testing. We tested our system with all the 1336 users 
having prfernce length greater than 5. Again, for each user in this set of 1336 users, 
70% of papges in the preference list are used for training and the rest for testing. 
Table 3 shows the performance comparison of our user-dependent method with 
systems having only co-occurrence similarity, content similarity; and system 
described by Puntheeranurak, S., where the two similarities are just multiplied with-
out using any parameter [7]. We can see from Table 3 that, we got 22% better per-
formance than just using a simple merge process without parameter tuning.  
 

 



 A Large-Scale, Hybrid Approach for Recommending Pages 111 

Table 3. Comparative performance of our user-dependent parametric method with alternative 
approaches for all the users having preference list length greater than 5 

 Co-occurrence 
similarity only 

Content si-
milarity only 

Method in 
reference[7] 

User-
dependent 
adjustment 

MAP 0.1174517 0.1578064 0.1253729 0.16152156 

4.2 Scalability for Online Recommendations to Growing Number of Users 

We ran our recommendation algorithm both in single node Hadoop ecosystem in a 
virtual machine and in a Cloudera 4.5 cluster with 3 nodes with one master node and 
two slave nodes. Each machine was with quad-core CPU with speed 2.4GHz, 4GB 
memory, running on Centos 6.2 OS.  Table 4 shows the comparative elapsed time 
requirement for recommendation generation to varying number of users. The time 
required to generate a similarity matrix, which is used in recommendation generation 
is approximately 11 minutes for single machine and 5.5 minutes for the cluster envi-
ronment. In table 4, we report the required time to generate recommendation from 
already created similarity matrix for different number of users.  

Table 4. Comparison of recommendation time for different number of users 

No. of users Single Machine(time) Cluster(time) 
100K 3m29sec 1m32sec 
200K 4m15sec 1m44sec 
300K 5m1sec 1m57sec 
400K 6m28sec 2m5sec 
500K 7m52sec 2m26sec 

 
From Table 4, we can see that for 100,000 users to 500,000 users the running time 
increases linearly with the number of targeted users for the single node recommenda-
tion generation. In the distributed environment, on a Hadoop cluster, the running time 
is also linear, but increases at a lower rate. Definitely a cluster with many nodes could 
make the running time nearly constant. 

5 Conclusion 

In this paper we have presented a Map-Reduce based, scalable recommender system 
that uses a unique, preference list length based weighting technique to incorporate 
content-based and co-occurrence-based item-item similarities to help make better 
recommendations in the situation where preference list sizes are small. Our length-
based weighting technique gives 22% better performance compared to a recent work 
described in [7]. As we selected only users having preference list lengths greater than 
five for each test set, we could not show full potential of length-based approach for 



112 M.A. Sharif and V.V. Raghavan 

determining the weight parameters. But, in future, we plan to use the whole dataset to 
determine the length-based parameters applicable to a more global context. We will 
also use a bigger compute cluster to demonstrate better speed-up.  

References 

1. Hanani, U., Shapira, B., Shoval, P.: Information Filtering: Overview of Issues, Research 
and Systems. User Modeling and User-Adapted Interaction 11, 203–259 (2001) 

2. Delgado, J., Ishii, N., Ura, T.: Content-based Collaborative Information Filtering: Actively 
Learning to Classify and Recommend Documents. In: Klusch, M., Weiss, G. (eds.) CIA 
1998. LNCS (LNAI), vol. 1435, pp. 206–215. Springer, Heidelberg (1998) 

3. Adomavicius, G., Tuzhilin, A.: Toward the Next Generation of Recommender Systems: A 
Survey of the State-of-the-art and Possible Extensions. IEEE Transactions on Knowledge 
and Data Engineering 11(6), 734–749 (2005) 

4. Su, X., Khoshgoftaar, T.M.: A survey of collaborative filtering techniques. Journal of  
Advances in Artificial Intelligence (2009) 

5. Hu, R., Lu, Y.: A Hybrid User and Item-based Collaborative Filtering with Smoothing on 
Sparse Data. In: Proceedings of the 16th International Conference on Artificial Reality and 
Telexistence–Workshops (2006) 

6. Gong, S.J., Ye, H.W., Shi, X.Y.: A Collaborative Recommender Combining Item Rating 
Similarity and Item Attribute Similarity. International Seminar on Business and Informa-
tion Management (2008) 

7. Puntheeranurak, S., Chaiwitooanukool, T.: An Item-based Collaborative Filtering Method 
using Item-based Hybrid Similarity. In: 2nd International Conference on Software Engi-
neering and Service Science (2011) 

8. Jiang, J., Lu, J., Zhang, G., Long, G.: Scaling-up Item-based Collaborative Filtering Rec-
ommendation Algorithm based on Hadoop. IEEE World Congress on Services (2011) 

9. Chen, Y., Pavlov, Y.: Large Scale Behavioral Targeting. In: 15th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining (2009) 

10. Apache Hadoop, http://hadoop.apache.org/ 
11. Apache mahout, https://mahout.apache.org/ 
12. Text retrieval quality,  

http://www.oracle.com/technetwork/database/ 
enterprise-edition/imt-quality-092464.html 

 


	A Large-Scale, Hybrid Approach for Recommending Pages Based on Previous User Click Pattern and Content
	1 Introduction
	2 Literature Survey and Background
	2.1 Sparsity Problem
	2.2 Scalability Problem

	3 Our Approach
	3.1 Content-Based Item-Item Similarity Calculation
	3.2 Computation
	3.3 Incorporating Content-Based and Co-occurrence-based Similarity

	4 Experimental Setup
	4.1 Preference List Length Based Evaluation
	4.2 Scalability for Online Recommendations to Growing Number of Users

	5 Conclusion
	References




