
Reliable Handling of Real-Time Scheduling

Attributes on Multiprocessor Platforms
in Ada 2012

Sergio Sáez, Jorge Real, and Alfons Crespo

Instituto de Automática e Informática Industrial
Universitat Politècnica de València

Camino de vera, s/n, 46022 Valencia, Spain
{ssaez,jorge,alfons}@disca.upv.es

Abstract. The real-time attributes of a concurrent task define the pa-
rameters that will determine when the task can be allocated the required
resources. Typical examples are the task’s priority, the deadline, and the
CPU (or CPUs) on which it must be executed. Since the 2012 revision,
Ada is prepared for handling all these attributes. But the handling is
per-attribute: it is not possible to change several attributes at a time, in
a single call. Instead, they have to be changed one by one, which poses
scheduling issues especially in multiprocessor platforms.

This paper proposes and discusses approaches for implementing atomic
changes of multiple scheduling attributes, thus mitigating or eliminating
those issues.

Keywords: Real-time systems, multiprocessor scheduling, Ada 2012.

1 Introduction

The scheduling attributes of a concurrent, real-time task define how resources
are allocated to that task. Typical scheduling attributes are priority, deadline
(in EDF-scheduled systems) and CPU of the task (in multiprocessor systems).
Using Ada 2012 [1], a programmer can access these attributes and modify them
according to changing application needs.

The package System.Multiprocessors.Dispatching Domains supports the
concept of dispatching domains for multiprocessor platforms, i.e., the set of pro-
cessors on which a task can be executed. The package offers subprograms for
querying and setting the current CPU for a task. It also provides the subpro-
gram Delay Until And Set CPU to perform an atomic delay and change of CPU.
The calling task will be assigned the new processor when the delay expires. This
avoids the task taking too long to move to the destination CPU, when it has a
relatively low priority in the original CPU.

The package Ada.Dispatching.EDF supports the concept of deadline and pro-
vides subprograms to query and set a task’s deadline. Similarly to the CPU case,
the package also provides one subprogram, Delay Until And Set Deadline, for

L. George and T. Vardanega (Eds.): Ada-Europe 2014, LNCS 8454, pp. 74–90, 2014.
c© Springer International Publishing Switzerland 2014

Reliable Handling of Real-Time Scheduling Attributes 75

atomically executing an absolute delay and setting a new relative deadline for
the task. This atomicity is needed so that the calling task can wake up from the
delay at the priority level dictated by its new deadline, and not the previous one.

The package Ada.Dynamic Priorities provides subprograms for querying
and setting a task’s priority at run time. As opposed to the cases of deadline
and CPU, there is no subprogram provided for atomically changing the priority
at the end of a delay (a hypothetical Delay Until And Set Priority). Hence
it is possible that scheduling anomalies occur when a task needs to wake up
from a delay with a changed priority. For example, if the task wakes up with
an old low priority and then it wants to raise its priority to high, then it can
suffer interference from mid-priority tasks in the interim. This issue can however
be worked around by using a timing event rather than a delay statement. The
timing event handler would change the task’s priority from a high interrupt
priority, hence reducing the scheduling error to an interference glitch to higher-
priority tasks during the execution of the timing event handler.

So CPU and deadline can be separately changed with immediate or deferred
effect, and priority can be immediately changed. But there is no functionality
in Ada, however, that allows the programmer to change several scheduling at-
tributes at a time, either immediately or right after a delay. Such scheme would
be very useful for applications using prevalent multiprocessor techniques such
as:

Job partitioning which alternates jobs of a task (execution instances) in dif-
ferent CPUs at possibly different priorities and/or deadlines. Here the task
needs to change several of its attributes, and have them enforced by the next
job activation.

Task splitting and dual-priority systems where a task may need to change
CPU, priority, deadline or a combination of them after a programmed amount
of real time or execution time [2,3,4].

Multimoded systems that potentially require changes to several attributes of
tasks after a mode change request [5,6].

The need for language changes to support this functionality is a current sub-
ject of discussion in a part of the Ada community [7,8,9]. One argument against
changes or additions to the language is that, presumably, the programmer could
use timing events to obtain a sufficiently effective solution [9]. Since the timing
event executes at a very high priority, and it acts upon another task, the handler
can change the priority or deadline of the target task, and then awake it from
suspension, possibly in a different CPU. In this paper, we explore and imple-
ment this idea as well as other approaches. We then analyse different aspects of
the implementations obtained, from system requirements to run-time behaviour.
Our conclusion is that, although effective to a certain extent, approaches such as
timing events are not absent from certain scheduling artefacts. These artefacts
however, are shown to disappear in an alternative scheme based on the use of
a server task for enforcing the attribute changes. The server task approach is
a working solution in Ada 2012, although less efficient than it could be if the
programmer could enforce the affinity of timing event handlers.

76 S. Sáez, J. Real, and A. Crespo

The paper is organised as follows. Section 2 motivates our study by showing
the issues around the operation of changing scheduling attributes at run time,
especially on multiprocessor platforms. Section 3 discusses design alternatives
of safe mechanisms for handling multiple scheduling attributes in multiproces-
sors, either with immediate or delayed effect. Section 4 describes and discusses
implementations of those design alternatives. Finally, Section 5 summarises our
conclusions.

2 Motivation

Before we propose alternatives for properly handling task scheduling attributes
in multiprocessor platforms, we will visit some scenarios that justify the need for
a controlled mechanism. We will show how the order in which several attributes
are changed is relevant for proper execution of the real-time schedule at run
time, especially when the CPU is one of the changing attributes. Failing to
apply changes in the correct order leads to scheduling errors. Even if the order is
correct, failing to change them atomically will cause scheduling artefacts (short,
bounded situations of priority inversion).

Consider Scenario A in figure 1, where we want to change both the priority
and CPU1 of a task τ in a 2-processor system, with CPU1 and CPU2. Task τ
is running at priority 20 on CPU1. We want to move task τ to processor CPU2
with priority 10. If the change of CPU and priority is not atomic, then they must
be done in some sequential order.

Fig. 1. Scenarios described in Section 2. Thick lines represent task execution. Dotted
thick lines represent intervals of interference. Intervals between two double arrows are
arbitrarily large. Errors affect the changing task τ . Artefacts affect tasks of priority 15.

1 The same discussion applies for the case of changing deadline and CPU of deadline-
scheduled tasks. We limit ourselves to priority and CPU for simplicity.

Reliable Handling of Real-Time Scheduling Attributes 77

Case 1. If the priority is changed first, then τ will have its priority lowered
to 10 while in CPU1. This would make τ suffer a potentially large amount
of interference from all tasks with priority higher than 10 in CPU1. The
change to CPU2 will not occur until all tasks with a priority higher than 10
are idle on CPU1. This delay can be unacceptably large and it would break
the assumptions of any static real-time scheduling analysis. The impact on
the schedule would be especially notorious if the new priority of τ was the
highest in CPU2.

Case 2. Let’s now consider the reverse order. If the CPU is changed before
the priority, then τ will move to CPU2 with priority 20, rather than 10.
This will preempt any tasks with priority lower than 20, when τ should
execute at priority as low as 10 on CPU2. The duration of this interference
will however be bounded to the time between the change of CPU and the
change of priority from 20 to 10. If that time is short and bounded, then this
particular order (CPU, then priority) will cause only a scheduling artefact.

Consider now the reverse Scenario B: task τ has a priority 10 in CPU1 and
wants to move to CPU2 with a priority 20. If we first change the priority, then
we will cause interference in CPU1 to all tasks with priorities between 10 and
20. This interference will however last only the time it takes to move from CPU1
to CPU2. A situation similar to Case 2 above, but the artefact will occur in
the original CPU1 rather than in the destination CPU2. In symmetry with the
previous scenario, if we first change the CPU, then τ is moved to CPU2 with a
priority 10 rather than 20, so it will not be able to raise its priority to 20 until
all tasks with priorities between 20 and 10 are idle. This corresponds to Case 1
above, but the unbounded interference on τ would occur while in CPU2, rather
than CPU1.

In the rest of this paper, we will explore design alternatives to remove the
scheduling errors described in this Section. Note that if the scheduling artefacts
can not be removed, at least they will only cause limited interference.

3 Design Alternatives

The situations described above suggest that the change of several attributes of
a target task, especially when the CPU attribute is involved, needs be done
atomically. At an application level (i.e., not considering the implementation of
the underlying system services to change task scheduling attributes) there are
four Ada mechanisms we want to explore for pursuing the required atomicity:

– A protected object with the highest ceiling changes the target task attributes.
– The target task performs the changes of its own attributes using the highest

priority to avoid interference from other tasks during the sequence of changes.
– A timing event is programmed to change the attributes of the target task.
– A server task changes the attributes of the target task using rendezvous at

the highest priority.

In the following subsections, we explore the properties of these approaches to
correctly solve the problem of changing several scheduling attributes at a time.

78 S. Sáez, J. Real, and A. Crespo

3.1 Using Protected Objects

Changing the priority, deadline or CPU of an Ada task are task dispatching
points. However, all these operations are deferred if they occur within a protected
action. This seems to give a chance to atomicity if all attribute changes are done
within a protected action. By choosing the right ceiling priority for the protected
object, the programmer can avoid priority inversions leading to scheduling errors
such as those described in Section 2. In the most extreme case, the ceiling can
be as high as System.Interrupt Priority’Last, so that the attribute changes
will never be pre-empted by any other application task or interrupt handler.

Taking Case 1 of Scenario A in Figure 1, if the change of priority and CPU was
atomic, then task τ would travel to CPU2 without spending a potentially large
amount of time suspended in CPU1, with a relatively low priority that would
delay its migration. In Case 2 of Scenario B, the task would migrate to CPU2
with the correct priority 20, and hence it would not suffer priority inversion from
lower-priority tasks in CPU2.

The deferred setting of multiple scheduling attributes (à la Delay Until -

And Set Scheduling Attributes) can also be dealt with by requeuing the call-
ing task in a private entry of the protected object, with a closed barrier, and
programming a timing event for the required delay time. The timing event han-
dler would then open the barrier of that private entry and release the waiting
task with the new attributes.

Unfortunately, this analysis fails because we must also take into account how
the underlying combination of operating system (OS) and run-time system ac-
tually implements the change of several attributes at the end of a protected
action. When the task abandons the protected action it must have its priority
and CPU changed. The original problem arises again: if the OS/runtime is re-
quested to change the priority before the CPU, then the task will be inserted in
the scheduling queue corresponding to its new priority. Since the change of CPU
is still pending, then the error described for Scenario A Case 1 will happen again.
If the OS/runtime is commanded to perform the changes in the reverse order,
first CPU and then priority, then we would repeat the situation and scheduling
error shown in Case 2 of Scenario B in Figure 1.

A solution to these problems can only come from the particular runtime im-
plementation of how protected actions are completed. A safe design choice is to
have the completion of the protected action executed at the maximum priority
and follow the order: change CPU, then priority. But that falls out of the control
of an application programmer.

3.2 Self Change of Attributes from the Highest Priority

A second approach is to have the changing task applying the changes to itself
but after rising its priority to the highest possible (Interrupt Priority’Last)
so that it cannot be pre-empted in the middle of the changes. The sequence of
operations in the task would be: (1) Set my own priority to the highest, where
I cannot be pre-empted; (2) Call Delay Until And Set CPU to change to the

Reliable Handling of Real-Time Scheduling Attributes 79

target CPU at the specified absolute time (it could be immediately if Set CPU

is used instead); Finally (3) enforce my new scheduling attributes, in an order
such that the last attribute changed is my priority, so that all changes are done
from Interrupt Priority’Last.

Fig. 2. Scenarios for the self-change approach and their impact on higher- and lower-
priority tasks in the destination processor CPU2

Figure 2 shows this approach and the impact it may have on other higher- and
lower-prioritytasks.On the left hand side, the task executes onCPU1at priority 20
and wants to move to CPU2 with priority 15. At the time given in
Delay Until And Set CPU, the task wakes up in CPU2, still with the highest pri-
ority. Thismay cause bounded interference on all tasks in CPU2. In particular, this
will even preempt tasks with a priority higher than the destination priority of the
changing task. This is marked as an artefact in the left-hand side of Figure 2.

On the right-hand side of Figure 2, the changing task executes on CPU1 at
priority 15 and then migrates to CPU2 with priority 20. The impact on lower-
priority tasks in CPU2 is just regular pre-emption.

We note however that any task running on CPU2 (below Interrupt

Priority’Last) could be subject to pre-emption bursts in the case of multi-
ple tasks migrating to CPU2 in a short interval during its execution. And it
would not matter whether the target priorities of the pre-empting tasks were
higher or lower than that of the pre-empted task (or tasks) in CPU2. This is an
important drawback of this approach since it ruins the assumptions of schedula-
bility analysis: any task on CPU2 could suffer interference from any other task
potentially migrating to CPU2 from any other CPU.

80 S. Sáez, J. Real, and A. Crespo

3.3 Using Timing Events

For our purpose, and in terms of scheduling, the timing event mechanism has
similar properties to using a protected action with the highest possible ceiling pri-
ority. Furthermore, timing events are amenable to more efficient implementations
than protected objects, since they are simpler. An additional advantage is that
the timing event handler can be programmed for the future. This is most suit-
able for the deferred setting of scheduling attributes, such as the Ada supported
operations Delay Until And Set CPU and Delay Until And Set Deadline for
individual attributes. Timing events are conceived for handling an event in the
future, but the handler can be forced to execute immediately by programming
the event for a time in the past.

Fig. 3. An implementation based on a timing event prevents the scheduling er-
rors shown in Figure 1. TE represents the priority at which the timing event
handler is executed. In practice, under the Ceiling Locking policy, this priority is
Interrupt Priority’Last.

But perhaps the principal advantage of using a timing event (vs. a protected
object) is that the timing event handler will apply the attribute changes to an-
other task. It can therefore change the task’s priority without forcing a reschedule
(since the handler is still executing at the highest priority) and then change the
task’s CPU before completing the execution of the handler. This eliminates the
issue mentioned above with protected objects: even though the OS does not
support the atomic change of several scheduling attributes of a task, since the
changes are done from a timing event handler, there will be no other application
tasks interfering the whole operation. Figure 3 shows how the scheduling errors
described in Section 2 disappear and only the artefact glitches remain. Since the
changes of priority and CPU are enforced from the timing event handler, with
no possible pre-emption, the order in which they are performed is not relevant,
hence the absence of cases 1 and 2 in Figure 3.

Reliable Handling of Real-Time Scheduling Attributes 81

In summary, an implementation based on timing events effectively eliminates
the scheduling errors described in section 2, but not the artefacts. We note that,
unfortunately, it is unknown to the programmer in which CPU the artefact will
occur, given that the underlying OS/runtime could choose any CPU to execute
the timing event handler2. This poses a challenge to schedulability analysis and
motivates us to explore how the hypothetical ability to set the affinity for timing
events, would help solve this issue and determine precisely where the artefacts
occur, which would provide invaluable information for schedulability analysis.
We will develop this idea in Section 4.4.

3.4 Using Rendezvous with a Server Task

We now explore an alternative approach whereby a server task is used for ser-
vicing requests of immediate and deferred changes of the scheduling attributes.

Assume one server task is in charge of applying the attribute changes to
another calling (client) task. The server task has the highest priority, Interrupt
Priority’Last. A client task calls the appropriate server entry (for immediate
or deferred change) and then it becomes blocked during the execution of the
handled sequence of sentences of the corresponding accept statement on the
server side. According to the Ada standard [1], the execution of the rendezvous
occurs at the priority of the calling task. Since we do not want to reproduce the
scheduling errors described above for the protected object scheme, we want the
rendezvous to occur at the highest priority. To this end, the calling task will rise
its priority to the highest before issuing the actual entry call to the server.

Consider first the immediate setting of scheduling attributes by means of a
procedure Apply Scheduling Attributes. Within this procedure, the calling
task first rises its priority to Interrupt Priority’Last and then calls an entry
in the server task to enforce the new scheduling attributes. Upon completion of
the entry call, the server task goes back to accepting new calls and the client
task is released from the rendezvous blocking with the new attributes applied.
The effect on the schedule is a bounded interference at the highest priority in
the origin CPU, that can easily be accounted for in the schedulability analysis as
blocking time for all tasks of a priority higher than the client task in the origin
CPU. This is because the whole operation starts at the client’s original priority
in the origin CPU.

Figure 4 shows the process for both immediate and deferred changes. In the
immediate case (left side of Figure 4), a task in CPU1 with priority 20 wants to
change its priority to 10 and CPU to CPU2. The task first rises its priority to
the highest and then calls the appropriate entry in the server task. During the
rendezvous (represented by a grey box) the server task enforces the changes of
priority and CPU with no possible interference from other tasks. Note that, as
opposed to what occurs with timing events, the artefacts depicted in Figure 4 will

2 In Figure 3 we have represented the timing event executing in the same CPU where
the calling task executes, but nothing prevents the runtime system to execute the
handler in CPU2 or even in a third CPU, if it exists.

82 S. Sáez, J. Real, and A. Crespo

always occur in the origin CPU, so although they exist, they can be predictably
accounted for in the schedulability analysis. We have represented the continuous
execution of a second task of priority 15 in CPU2 to show that there are no
glitches caused by this approach.

Fig. 4. Execution examples for immediate and deferred change of scheduling attributes
using an implementation based on server tasks. Gray boxes represent execution of the
server task. The explanation for marks 1, 2 and 3 is given in Section 3.4.

Consider now the deferred change of attributes, enabled by a procedure
Delay Until And Apply Scheduling Attributes. The right hand side of Fig-
ure 4 shows the case of a task running on CPU1 at priority 10, that wants
to migrate to CPU2 with priority 20 at a given time in the future. As in the
immediate case, the first thing to do is to rise the priority of the task to the
highest. Then the entry call is issued and the rendezvous starts. In this case,
the rendezvous only copies the parameters of the call to apply them at a later
stage. This is marked as step 1 on the right hand side of Figure 4. After step
1 the rendezvous completes and we have both server and client at the highest
priority, since we have not yet changed any of the task’s attributes. We now
want to make sure that the client task goes on and executes a delay until

sentence to suspend itself until the requested time. This is marked as step 2 in
Figure 4. Having the client task suspended, the server task now executes step 3,
where it simply enforces the new attributes to the (suspended) client task. The
result is that no scheduling errors can occur, and the artefacts are actually only
short blocking times. The whole operation of changing the priority and CPU of
a task can be accounted as blocking time for tasks of a higher priority than the
changing task in the origin CPU. And this situation of priority inversion always
occurs in the origin CPU. This is a clear advantage with respect to the timing
event alternative described in Section 3.3, where it can’t be predicted in which
CPU the priority inversion will occur.

To ensure that the steps will occur exactly in the order described here (1, then
2, then 3), the server task has to yield the processor after the rendezvous (step 1),

Reliable Handling of Real-Time Scheduling Attributes 83

so that the client task executes the delay statement (step 2) and is placed at the
tail of the ready queue of Interrupt Priority’Last. After that, the server task
gains the CPU again to perform the change of attributes on the suspended client
– this is because the only two tasks executing at the highest priority level are the
client and the server. Indeed, this protocol causes two context switches between
server and client, but the important benefit is that the associated overhead is
bounded and predictable.

4 Implementation

This section discusses implementation details of the design alternatives described
so far. After briefly restating the implementation goals, we will first look at the
details of a data type to capture all the scheduling attributes of tasks, and its
related primitive operations. We will then show the most relevant implementa-
tion aspects of the alternatives proposed in sections 3.2, 3.3 and 3.4, that is,
having the attributes changed by the target task itself, or by a timing event or
by a server task, respectively. We are not considering the implementation details
of the protected object approach described in Section 3.1 because the way it
behaves is heavily dependent on the underlying combination of OS and runtime
support.

4.1 Goals

The goal of the software under design is to provide an abstraction to capture
the set of scheduling attributes (priority, deadline, CPU, or other user-defined
attributes...) individually associated to each task in the system. The programmer
must be allowed to query these attributes, and to atomically change one or
more individual attributes at a time. The change of these attributes can either
have immediate or deferred effect, at a certain specified absolute time in the
future. The type representing the set of attributes shall be extendable, so that
application-specific scheduling attributes can be added at a later time.

4.2 Representation of Scheduling Attributes

Listing 1 shows the specification of the tagged type Scheduling Attributes,
that captures the scheduling attributes of a task. An instance of this type (or
a type derived from it) is associated with each task so that the whole set of
attributes can be passed to a changer subprogram in a single call. The type
was already proposed in [8], and extended with a derived type for including
a deadline attribute for deadline-scheduled tasks. We show here only the two
attributes defined in the root type, priority and CPU.

The implementation details in the private part show that the type is simply
an extensible record with the proper fields, one for each attribute. The class-wide
type Any Scheduling Attributes is needed for the class-wide operations Apply
Scheduling Attributes andDelay Until And Apply Scheduling Attributes.

84 S. Sáez, J. Real, and A. Crespo

These subprograms internally use the private subprogram Enforce Scheduling

Attributes, which is in charge of ultimately setting the attributes. It has to be
implemented for each extension of the type, since the parameters to change will
vary between those extensions. Listing 2 shows the implementation of the corre-
sponding root operation.

The type is simple enough, and the operations are common setters and getters.
The subprogram Retrieve Scheduling Attributes allows the programmer to
read the attributes of a task. This is needed when we only need to change a
subset of the attributes and leave the rest intact.

Listing 1. Data type for scheduling attributes and primitive operations

−− with clauses omitted
package Ada Real Time.Scheduling Attributes is

−− Data type to represent scheduling attributes
type Scheduling Attributes is tagged private ;
procedure Set Priority (SP : in out Scheduling Attributes ; Prio : Any Priority);
function Get Priority (SP : Scheduling Attributes) return Any Priority ;
procedure Set CPU (SP : in out Scheduling Attributes ; CPU Nr: CPU Range);
function Get CPU (SP : Scheduling Attributes) return CPU Range;
procedure Retrieve Scheduling Attributes (SP : in out Scheduling Attributes ;

T Id : Task Id := Current Task);
type Any Scheduling Attributes is access all Scheduling Attributes ’ Class ;

−− Class−wide procedures
procedure Apply Scheduling Attributes (SP : Any Scheduling Attributes ;

T Id : Task Id := Current Task);
procedure Delay Until And Apply Scheduling Attributes (SP : Any Scheduling Attributes ;

Delay Until Time : Time);
private

type Scheduling Attributes is tagged
record

Prio : Any Priority := Default Priority ;
CPU Nr : CPU Range := Not A Specific CPU;

end record;

procedure Enforce Scheduling Attributes (SP : Scheduling Attributes ; T Id : Task Id);

end Ada Real Time.Scheduling Attributes ;

Listing 2. Root subprogram in charge of ultimately changing the attributes

procedure Enforce Scheduling Attributes (SP : Scheduling Attributes ; T Id : Task Id) is
begin

Set Priority (Priority => SP.Prio, T => T Id);
Set CPU (CPU => SP.CPU Nr, T => T Id);

end Enforce Scheduling Attributes ;

The implementation of a particular approach to handle the attributes will be
fully contained in the subprograms Apply Scheduling Attributes and Delay

Until And Apply Scheduling Attributes. The following subsections illustrate
the implementations of the three viable design alternatives discussed in Section 3.

4.3 Implementation Based on Self Changing the Attributes

Listing 3 shows the implementation of the deferred change of attributes contained
in subprogram Delay Until And Apply Scheduling Attributes. The key as-
pect of this approach (as described in Section 3.2) is that the changing task has

Reliable Handling of Real-Time Scheduling Attributes 85

the highest priority before it changes to the target CPU (line 5 of Listing 3). This
ensures that it will continue to execute at the highest priority when it arrives
in the destination CPU. Then we change the other attributes (all but CPU and
priority, if any) and finally, we change the priority.

Note that the last two sentences (lines 8 and 9) will be executed on the target
CPU, thus interfering with tasks that may have a higher priority than the final
priority of the changing task.

Listing 3. Deferred change of attributes in the self-change approach

1 procedure Delay Until And Apply Scheduling Attributes (SP : Any Scheduling Attributes ;
2 Delay Until Time : Time) is
3 begin
4 Set Priority (Interrupt Priority ’Last); −− Rise caller ’ s priority to highest
5 Delay Until And Set CPU(Delay Until Time,SP.CPU Nr);
6 −− Caller wakes up from delay in the destination CPU and still with the highest priority
7 SP. Enforce Scheduling Attributes (Current Task); −− Update other attributes
8 Set Priority (SP.Prio); −− Decrease caller’s priority down to the target priority
9 end Delay Until And Apply Scheduling Attributes ;

4.4 Implementation Based on Timing Events

As discussed in Section 3.3, timing events could lead to a more efficient im-
plementation than the self-changing and server task approaches. However, the
interference caused by a timing event handler cannot be bound to a particular
CPU, since the affinity of timing events cannot be enforced.

Listing 4 shows a hypothetical, extended specification of the Set Handler

subprogram (for programming a timing event handler). This extension adds the
parameter CPU Nr to set the handler’s affinity. At the low level, the operation
hides the complexity of adding timed events to the timer queue of a different
CPU. If we had this in Ada, then we could remove the most important drawback
of the timing-event approach to handling scheduling attributes.

Listing 4. A proposed signature for timing events with CPU affinity

procedure Set Handler (Event : in out Timing Event; At Time : Time; Handler : Timing Event Handler;
CPU Nr : CPU Range := Get CPU);

The use of this hypothetical feature could be as follows. Assume a Schedul-
ing Manager abstraction is declared for each task whose scheduling attributes
may be changed. This scheduling manager maintains the scheduling attributes
of the task and enables their enforcement when the timing event expires. List-
ing 5 shows a part of the implementation of a protected object supporting the
scheduling manager abstraction.

The immediate change of scheduling attributes, implemented within the entry
body of Apply Scheduling Parameters, programs an already expired timing
event to force the execution of the handler as soon as the calling task completes
the entry call. In the case the calling task is also the target task, it also forces the
task to wait until the handler is executed. The deferred setting of attributes is
implemented in Delay Until And Apply Scheduling Attributes. It is similar
to the immediate case, but using an expiration time in the future.

86 S. Sáez, J. Real, and A. Crespo

Listing 5. Timing Event handler and protected operations

−− Scheduling Manager specification
protected type Scheduling Manager with Interrupt Priority => Interrupt Priority ’Last is

entry Apply Scheduling Attributes (SP: Any Scheduling Attributes);
entry Delay Until And Apply Scheduling Attributes (SP : Any Scheduling Attributes ;

Delay Until Time : Time);
private

entry Wait;
procedure Handler (Event : in out Timing Event);

Task Waiting : Boolean := false ;
Sched Params : Any Scheduling Attributes ;
Timing Ev : Timing Event;

end Scheduling Manager;

−− Scheduling Manager body
protected body Scheduling Manager is

entry Wait when not Task Waiting is
begin

null ;
end Wait;

procedure Handler (Event : in out Timing Event) is
begin

Sched Params.Enforce Scheduling Attributes (Owner Task);
Task Waiting := false ;

end Handler;

entry Apply Scheduling Attributes (SP: Any Scheduling Attributes) when True is
begin

if not Task Waiting then
Sched Params := SP;
if Scheduling Manager.Apply Scheduling Attributes ’ Caller /= Owner Task then

−− A task wants to change another task’s attributes
Timing Ev.Set Handler(Time First, Handler’Access, SP.Get CPU);

else
−− A task wants to change its own scheduling attributes
Task Waiting := True; −− Barrier for entry Wait
−− An immediate timing event is programmed...
Timing Ev.Set Handler(Time First, Handler’Access, SP.Get CPU);
−− ... and the task is requeued to Wait until Handler updates its attributes
requeue Wait;

end if ;
end if ;

end Apply Scheduling Attributes ;

entry Delay Until And Apply Scheduling Attributes (SP : Any Scheduling Attributes ;
Delay Until Time : Time) when True is

begin
Sched Params := SP;
Task Waiting := True;
−− Program a TE for Delay Until Time ...
Timing Ev.Set Handler(Delay Until Time, Handler’Access, SP.Get CPU);
−− ... and wait until Handler wakes me up with the new attributes
requeue Wait;

end Delay Until And Apply Scheduling Attributes ;

end Scheduling Manager;

4.5 Implementation Based on Server Tasks

In the approach described in Section 3.4, a server task is used to atomically
change the scheduling attributes of a client task. Listing 6 shows an implemen-

Reliable Handling of Real-Time Scheduling Attributes 87

tation of the server task type, from which server objects can be instantiated.
We may need up to one server task per CPU. The function Next CPU, used as
the initial value for the discriminant CPU Nr of the task type, is just a global
function that returns one distinct CPU number upon each call, all within the
range of CPUs available in the execution platform.

Each server task offers two entries that will be used by the class-wide opera-
tions to implement the immediate and deferred changes. When a call is accepted
to the entry Apply Attributes Immediately, the server simply calls the proce-
dure that enforces the new attributes. As Listing 7 shows, the entry call is sent to
the particular server task that is attached to the CPU where the changing task
is executing. We have omitted the implementation of the function Current CPU,
which is dependent on the particular underlying operating system.

Listing 6. Server task that atomically enforces the scheduling attributes

task type Scheduling Manager Type(CPU Nr : CPU := Next CPU) with
Interrupt Priority => Interrupt Priority ’Last, CPU => CPU Nr is

−− entries omitted
end Scheduling Manager Type;

task body Scheduling Manager Type is
Sched Param : Any Scheduling Attributes ;
Target Task: Task Id ;

begin
loop

select
accept Apply Attributes Immediately (SP : in Any Scheduling Attributes ;

T Id : Task Id) do
−− Change task’s attributes
SP. Enforce Scheduling Attributes (T Id);

end Apply Attributes Immediately ;
or

accept Apply Attributes On Suspend (SP : in Any Scheduling Attributes ;
T Id : Task Id) do

−− Stores the target task and new attributes (Fig. 3 step 1)
Target Task := T Id;
Sched Param := SP;

end Apply Attributes On Suspend;
−− Forces client task to execute the delay until (Fig. 3 step 2)
delay 0.0;
−− Change the sched. attributes of the suspended client task (Fig. 3 step 3)
Sched Param.Enforce Scheduling Attributes(Target Task);

or
terminate;

end select ;
end loop;

end Scheduling Manager Type;

The second entry in Listing 6, Apply Attributes On Suspend, implements
steps 1 and 3 shown at the right-hand side of Figure 4. The sentence delay

0.0 after the accept forces the server task to move to the tail of the Interrupt

Priority’Last ready queue3. This allows the client task, that has the same high-
est priority, to execute the statement delay until Delay Until Time, within
subprogram Delay Until And Apply Scheduling Attributes shown in Listing
7 (labelled as step 2 in Figure 4).

3 The Yield operation is not supported in our platform.

88 S. Sáez, J. Real, and A. Crespo

Once the client task is suspended, the server task resumes execution (it is
the highest-priority active task) and changes the scheduling attributes of the
suspended client task. When the client task wakes up, it will be inserted in
the corresponding ready queue of the target CPU, but with the new scheduling
attributes already applied. Therefore, no scheduling interferences at application
level will occur4.

Listing 7. Class-wide operations of the scheduling attributes

−− Class−wide procedures
procedure Apply Scheduling Attributes (SP : Any Scheduling Attributes ;

T Id : Task Id := Current Task) is
begin

Set Priority (Interrupt Priority ’Last);
Scheduling Manager(Current CPU).Apply Parameters Immediately(SP, T Id);

end Apply Scheduling Attributes ;

procedure Delay Until And Apply Scheduling Attributes (SP : Any Scheduling Attributes ;
Delay Until Time : Time) is

begin
Set Priority (Interrupt Priority ’Last); −− Rise its priority to IP’Last
Scheduling Manager(Current CPU).Apply Parameters On Suspend(SP,

Current Task);
−− Sched. attributes will be change on suspension (Fig. 3 step 2)
delay until Delay Until Time; −− It will wake up with new attributes applied

end Delay Until And Apply Scheduling Attributes ;

5 Conclusions

The ability to safely change several scheduling attributes of a task in a single
operation, is a useful feature for real-time systems, especially on multiprocessor
platforms. It is on these platforms that the operation poses the biggest chal-
lenges, since there are multiple opportunities for scheduling issues to occur at
run time. This is especially true when the CPU is one of the changing attributes.
In this paper, we have described those issues and explored four ways to solve
them in Ada. We conclude that:

– A solution based on protected objects does not guarantee, at the language
level, the required atomicity in the change of several scheduling attributes.
Even if the protected action was executed at the highest possible ceiling.
This is because we ultimately depend on how the OS/runtime implements
the lower-level services to actually enforce the scheduling attributes.

– Self-changing the attributes from the highest priority level, introduces remote
interference in the destination CPU. Although this interference is presum-
ably short (just the time it takes to call the OS/runtime support to have
the changes enforced, plus a task context switch in and out the destination
CPU), a task in the destination CPU may suffer bursts of interference when
many tasks are migrating to the CPU where it is running.

4 The possible scheduling interferences that a task activation produces at kernel level
depend ultimately on the implementation of the underlying operating system.

Reliable Handling of Real-Time Scheduling Attributes 89

– Delegating on a timing event handler for the change of attributes, while the
changing task is safely blocked awaiting for the handler to execute. This
approach produces one interference glitch, presumably shorter than in the
previous case since no task context switch is strictly necessary here. However,
it is impossible for the programmer to determine in which CPU the inter-
ference will occur (unless it is very precisely documented in the language
implementation). Moreover, at least one implementation that we know of
uses a task for servicing timing events, hence the efficiency argument does
not necessarily hold in all cases. We note that the main weakness of this ap-
proach (namely, ignoring which CPU is affected by the handler glitch) could
be overcome by adding a new language feature that enabled the programmer
to set the affinity of timing event handlers.

– Using a server task to change the attributes of client tasks has proven to be
the most reliable implementation in our experience. This approach requires
up to one server task per CPU and produces interference only in the origin
CPU, where it can be accounted for as interference from the highest priority
level. Since all attribute changes are applied to a non-running task, they will
be actually enforced at the next task activation. There is no need for further
operations that are susceptible of causing additional interference. Our own
criticism to this approach is that we need a double context switch between
the server and the client tasks in order to apply all the changes in a controlled
manner.

Acknowledgements. This work has been partially supported by the Span-
ish Government’s projects COBAMI (DPI2011-28507-C02-02) and Hi-PartES
(TIN2011-28567-C03-01-02-03) and the European Commission’s MultiPARTES
project (FP7-ICT-2011.3.4, Contract 287702).

References

1. ISO/IEC JTC1 SC22 WG9 Ada Rapporteur Group: Ada Reference
Manual - Language and Standard Libraries - ISO/IEC 8652:2012(E),
http://www.ada-europe.org/manuals/LRM-2012.pdf

2. Davis, R., Wellings, A.: Dual priority scheduling. In: Proceedings of the 16th IEEE
Real-Time Systems Symposium, pp. 100–109 (1995)

3. Kato, S., Yamasaki, N., Ishikawa, Y.: Semi-partitioned scheduling of sporadic task
systems on multiprocessors. In: 21st Euromicro Conference on Real-Time Systems,
ECRTS 2009, pp. 249–258. IEEE Computer Society, Los Alamitos (2009)

4. Lakshmanan, K., Rajkumar, R., Lehoczky, J.P.: Partitioned fixed-priority preemp-
tive scheduling for multi-core processors. In: 21st Euromicro Conference on Real-
Time Systems, ECRTS 2009, pp. 239–248. IEEE Computer Society (2009)

5. Tindell, K., Burns, A., Wellings, A.: Mode changes in priority preemptively sched-
uled systems. In: Real-Time Systems Symposium, pp. 100–109 (1992)

http://www.ada-europe.org/manuals/LRM-2012.pdf

90 S. Sáez, J. Real, and A. Crespo

6. Real, J., Crespo, A.: Mode Change Protocols for Real-Time Systems: A Survey
and a new Proposal. Real-Time Systems 26(2), 161–197 (2004)

7. Sáez, S., Crespo, A.: Deferred setting of scheduling attributes in Ada 2012. Ada
Letters 33(1), 93–100 (2013)

8. Sáez, S., Real, J., Crespo, A.: Deferred and atomic setting of scheduling attributes
for Ada. Ada Letters 33(2), 97–108 (2013)

9. Vardanega, T., White, R.: Session summary: Improvements to Ada. Ada User
Journal 34(4), 239–241 (2013)

	Reliable Handling of Real-Time Scheduling
Attributes on Multiprocessor Platforms in Ada 2012
	1
Introduction
	2
Motivation
	3
Design Alternatives
	3.1
Using Protected Objects
	3.2
Self Change of Attributes from the Highest Priority
	3.3
Using Timing Events
	3.4
Using Rendezvous with a Server Task

	4
Implementation
	4.1
Goals
	4.2
Representation of Scheduling Attributes
	4.3
Implementation Based on Self Changing the Attributes
	4.4
Implementation Based on Timing Events
	4.5
Implementation Based on Server Tasks

	5
Conclusions
	References

