
Laurent George
Tullio Vardanega (Eds.)

 123

LN
CS

 8
45

4

19th Ada-Europe International Conference
on Reliable Software Technologies
Paris, France, June 23–27, 2014, Proceedings

Reliable Software
Technologies –
Ada-Europe 2014

Lecture Notes in Computer Science 8454
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Laurent George Tullio Vardanega (Eds.)

Reliable Software
Technologies –
Ada-Europe 2014

19th Ada-Europe International Conference
on Reliable Software Technologies
Paris, France, June 23-27, 2014
Proceedings

13

Volume Editors

Laurent George
University of Paris-Est
Champs sur Marne, France
E-mail: Laurent.George@univ-mlv.fr

Tullio Vardanega
University of Padua, Italy
E-mail: tullio.vardanega@math.unipd.it

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-08310-0 e-ISBN 978-3-319-08311-7
DOI 10.1007/978-3-319-08311-7
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014941454

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The 19th edition of the International Conference on Reliable Software Technolo-
gies (Ada-Europe 2014) took place in the fascinating venue of Paris, graciously
hosted by the École d’Ingénieurs, ECE, on their spectacular campus very close
to the Eiffel Tower. With this edition, the conference returned to France for the
third time after Toulouse in 2003 and Brest in 2009. Two other countries have
hosted the conference three times since its inception: Spain (Santander, 1999,
Palma de Mallorca, 2004, and Valencia, 2010), and the UK (London, 1997, York,
2005, and Edinburgh, 2011). Three countries hosted it twice: Switzerland (Mon-
treux, for the inauguration in 1996, and Geneva, 2007), Sweden (Uppsala, 1998,
and Stockholm, 2012), and Germany (Potsdam, 2000, and Berlin, 2013). Four
countries have their hosting counter still at one: Belgium (Leuven, 2001), Austria
(Vienna, 2002), Portugal (Porto, 2006) and Italy (Venice, 2008).

The conference series is run and sponsored by Ada-Europe, in collaboration
with local organizers, whenever possible (and luckily, often enough) represent-
ing the local Ada communities. This was the case this year, with Ada-France
leading the organizing team, with precious reinforcement from members of the
host institution, ECE. There were two main reasons for the conference to come
to Paris. One was to facilitate an encounter between the vast industrial pole
based around Paris and the 2012 revision of the Ada language standard, which
makes it especially attractive where reliability is a factor. The other was to start
the celebrations of the 20th anniversary of the first validation of GNAT, which
actually happened in 1995, before building a home in Paris after its birth in New
York. These celebrations will peak in 2015, in nice sync with the 20th anniversary
of the conference series.

The conference took place during June 23-27, 2014, featuring a rich and
attractive program on both technical and social grounds. In building the pro-
gram, the organizers had to choose from 68 submissions, 37 of which were for
peer-reviewed papers, 12 for industrial papers, 16 for tutorials, and three for
workshops. Out of this healthy batch of material, ten tutorials for the equivalent
of 12 half-day sessions were scheduled on Monday and Friday, together with two
full-day workshops on themes of high relevance to industrial research, one on the
engineering of “Dependable Cyber-Physical Systems” (Monday), and the other
on “Mixed-Criticality Systems.” The core program, run from Tuesday to Thurs-
day, included three keynote talks, 12 presentations from peer-reviewed papers,
six industrial presentations, three experience reports positioned between indus-
try and research, one vendor session with an accompanying industrial exhibition,
and a retrospective session on the first 20 years of GNAT and its ecosystem. On
the Wednesday of the conference week, Ada-France also organized a special event
dedicated to presenting Ada 2012 to high-ranking members of French industry.

VI Preface

The proceedings contained in this volume cover two of the three keynote talks
that opened each day of the core conference program, and the full set of peer-
reviewed papers. The remainder of the conference proceedings were published,
in successive instalments, in the Ada User Journal, the quarterly magazine of
Ada-Europe.

– Lessons Learned and Easily Forgotten, Robert Lainé, SPACINOV, France,
delivered insights drawn from over 40 years of experience in leading large
space projects.

– From ARTEMIS to ECSEL: Growing a Large Eco-System for High-
Dependability Systems, Alun Foster, ARTEMIS, Belgium, gave testimony
of the power of larger-scale collaborative research, and the importance of
the public–private partnership model for R&D investments.

– Future Challenges in Design Tools and Frameworks for Embedded Systems;
Application to Intelligent Transportation Systems, Mohamed Shawky, Uni-
versité de Technologie Compiègne, France, presented a synopsis of the new
challenges that future designers and tool developers for intelligent trans-
portation systems will face in the near future.

Submissions to the peer-reviewed track of the conference program came from 18
countries and 87 distinct authors, from Europe, Asia, Australia, North America,
and Africa. The selection was very competitive and resulted in the making of
four technical sessions, all covered in this volume, on topics ranging from formal
verification to real-time scheduling via Ada technology and critical applications.

The tutorial program covered a rich spectrum of topics in close match with
the central themes of the conference, as follows:

– Proving Safety of Parallel/Multi-Threaded Programs, Tucker Taft, AdaCore,
USA

– Multicore Programming Using Divide-and-Conquer and Work Stealing, Tucker
Taft, AdaCore, USA

– Debugging Real-Time Systems, Ian Broster and Andrew Coombes, Rapita
Systems, UK

– Developing Mixed-Criticality Systems with GNAT/ORK and Xtratum, Al-
fons Crespo, Alejandro Alonso, and Jon Perez, Universidad Politècnica de
València, Universidad Politécnica de Madrid, IKERLAN, Spain

– High-Integrity Object-Oriented Programming with Ada 2012, Ben Brosgol,
AdaCore, USA

– Ada 2012 (Sub)type and Subprogram Contracts in Practice, Jacob Sparre-
Andersen, JSA R&I, Denmark

– Technical Basis of Model-Driven Engineering, William Bail, MITRE, USA
– An Overview of Software Testing with an Emphasis on Statistical Testing,

William Bail, MITRE, USA
– Robotic Programming, Lars Asplund, Asplund Data AB, Sweden
– Introduction to Verification with SPARK 2014, Rod Chapman and Yannick

Moy, Altran, UK, and AdaCore, France.

Preface VII

The industrial session featured six presentations centered on various aspects of
reliable software development:

– From Ada 83 to Ada 2012, Philippe Gast and David Lesens, Astrium EADS,
France

– Test Means at Airbus Defence and Space, Military Aircraft Business Line:
Making Ada the Heart of an All •Encompassing Aircraft Test Life •Cycle,
Javier Arroyo and Bartolome Lozano, Airbus Defence and Space, Spain

– PolarSys: Open Source Tools for Embedded Systems, and Use Cases, Gael
Blondelle, Pierre Gaufillet and Silvia Mazzini, Eclipse Foundation, France,
Airbus, France, Intecs, Italy

– Agile Software Development Compliant to Safety Standards?, Christian Scholz,
Thales Transportation Systems GmbH, Germany

– Critical Software for the First European Rail Traffic Management System,
Ana Rodriguez, Silver Atena, Spain

– AdDoc (Beyond a Document Generator), Robert Cholay, Systerel, France.

The program also included an experience report session, which contained the
following presentations:

– Modified Condition/Decision Coverage (MC/DC) of Ada Case Statements,
Antoine Colin, Roger Braff and Andrew Coombes, Rapita Systems, UK

– Privacy Leaks in Java Classes, Jacob Sparre Andersen, JSA R&I, Denmark
– Experience in Spacecraft On •Board Software Development, Juan Antonio de

La Puente, Alejandro Alonso, Juan Zamorano, Jorge Garrido, Emilio Salazar
and Miguel A. De Miguel, Universidad Politécnica de Madrid, Spain.

Before closing this preface, we must acknowledge those who, serving in various
roles – some in the foreground, others in the background – were central to the
making of the conference program. The first to deserve gratitude are the authors
of all presentations: They had a large take in the success of the event. Next come
the members of the Program Committee – their reviewing and advising were es-
sential to achieving a high standard of quality in the conference proceedings, in
its various guises – Springer’s LNCS for the peer-reviewed papers, and the Ada
User Journal for the industrial presentations and the workshops. A smaller group
of people ran, for a full year, the preparation, construction and execution of the
conference program: Local Chair Magali Munoz; Conference Chair Jean-Pierre
Rosen; Industrial Chair Jørgen Bundgaard; Publicity Chair Dirk Craeynest; Ex-
hibition Co-chairs Jamie Ayre and Guillaume Foliard; Tutorial Co-chairs Liliana
Cucu and Albert Llemos̀ı; Finance Chair Paul Duquennoy. They all deserve a
big thank you.

We hope that the attendees enjoyed the conference, in both its technical and
social program, as much as we did in organizing it.

June 2014 Laurent George
Tullio Vardanega

Organization

Conference Chair

Jean-Pierre Rosen, Ada-France

Finance Chair

Paul Duquennoy, Ada-France

Program Co-chairs

Laurent George University of Paris-Est, Marne La Vallée,
France

Tullio Vardanega University of Padua, Italy

Industrial Chair

Jørgen Bundgaard Ramboll, Denmark

Tutorial Co-chairs

Liliana Cucu Inria, France
Albert Llemos̀ı Universitat des Illes Balears, Spain

Exhibition Co-chairs

Jamie Ayre AdaCore, France
Guillaume Foliard Thales, France

Publicity Chair

Dirk Craeynest Aubay Belgium & K.U. Leuven, Belgium

Local Chair

Magali Munoz ECE, France

X Organization

Sponsoring Institutions

AdaCore
Altran
Rapita Systems Ltd
Squoring
TNI – Ellidiss Software

Program Committee

Mario Aldea Universidad de Cantabria, Spain
Ted Baker US National Science Foundation, USA
Johann Blieberger Technische Universität Wien, Austria
Bernd Burgstaller Yonsei University, Korea
Maryline Chetto University of Nantes, France
Liliana Cucu Inria, France
Christian Fraboul ENSEEIHT, France
Laurent George LIGM/UPEMLV – ECE Paris, France
Xavier Grave Centre National de la Recherche, France
Emmanuel Grolleau ENSMA, France
Jérôme Hugues ISAE Toulouse, France
Albert Llemośı Universitat de les Illes Balears, Spain
Kristina Lundqvist Mälardalen University, Sweden
Franco Mazzanti ISTI-CNR Pisa, Italy
John McCormick University of Northern Iowa, USA
Stephen Michell Maurya Software, Canada
Laurent Pautet Telecom ParisTech, France
Lúıs Miguel Pinho CISTER Research Centre/ISEP, Portugal
Erhard Plödereder Universität Stuttgart, Germany
Juan A. de la Puente Universidad Politécnica de Madrid, Spain
Jorge Real Universitat Politécnica de València, Spain
José Ruiz AdaCore, France
Sergio Sáez Universidad Politécnica de Valencia, Spain
Amund Skavhaug NTNU, Norway
Yves Sorel Inria, France
Tucker Taft AdaCore, USA
Theodor Tempelmeier University of Applied Sciences Rosenheim,

Germany

Elena Troubitsyna Âbo Akademi University, Finland
Tullio Vardanega University of Padova, Italy
Juan Zamorano Universidad Politécnica de Madrid, Spain

Organization XI

Industrial Committee

Jacob Sparre Andersen JSA Consulting, Denmark
Roger Brandt Roger Brandt IT Konsult AB, Sweden

Ian Broster Rapita Systems, UK
Jørgen Bundgaard Rambøll Denmark A/S, Denmark
Dirk Craeynest Ada-Belgium & KU Leuven, Belgium
Peter Dencker ETAS GmbH, Germany
Ismael Lafoz Airbus Military, Spain
Maria del Carmen Lomba

Sorrondegui GMV, Spain
Ahlan Marriott White Elephant, Switzerland
Robin Messer Altran-Praxis, UK
Quentin Ochem AdaCore, France
Steen Palm Terma, Denmark
Paolo Panaroni Intecs, Italy
Paul Parkinson Wind River, UK
Ana Rodriguez Silver-Atena, Spain
Jean-Pierre Rosen Adalog, France
Alok Srivastava TASC, USA Claus Stellwag, Elektrobit AG,

Germany
Jean-Loup Terraillon European Space Agency, The Netherlands
Rod White MBDA, UK

Table of Contents

Keynotes

Lessons Learned and Easily Forgotten . 1
Robert Lainé

Future Challenges in Design Frameworks for Embedded Systems:
Application to Intelligent Transportation Systems . 7

Mohamed Shawky

Formal Methods

Rigorous Development of Fault-Tolerant Systems through
Co-refinement . 11

Ilya Lopatkin and Alexander Romanovsky

Kronecker Algebra for Static Analysis of Ada Programs with Protected
Objects . 27

Bernd Burgstaller and Johann Blieberger

A TASM-Based Requirements Validation Approach for Safety-Critical
Embedded Systems . 43

Jiale Zhou, Yue Lu, and Kristina Lundqvist

Uses of Ada

Towards a Runtime Verification Framework for the Ada Programming
Language . 58

André de Matos Pedro, David Pereira, Lúıs Miguel Pinho, and
Jorge Sousa Pinto

Reliable Handling of Real-Time Scheduling Attributes on Multiprocessor
Platforms in Ada 2012 . 74

Sergio Sáez, Jorge Real, and Alfons Crespo

Parallelism in Ada: Status and Prospects . 91
Lúıs Miguel Pinho, Brad Moore, and Stephen Michell

Real-Time Scheduling

Deadline-Aware Programming and Scheduling . 107
Alan Burns and Andy Wellings

XIV Table of Contents

Schedulability Analysis for Directed Acyclic Graphs on Multiprocessor
Systems at a Subtask Level . 119

Manar Qamhieh and Serge Midonnet

Integrated Schedulers for a Predictable Interrupt Management
on Real-Time Kernels . 134

Sergio Sáez and Alfons Crespo

Applications

PDP 4PS : Periodic-Delayed Protocol for Partitioned Systems 149
Antoine Jaouën, Etienne Borde, Laurent Pautet, and Thomas Robert

OBUs’ Development and Maintenance of a Train Control System for
Low Density Traffic Lines . 166

Gerhard Hanis and Burkhard Stadlmann

Practical Formal Methods in Railways - The SafeCap Approach 177
Alexei Iliasov, Ilya Lopatkin, and Alexander Romanovsky

Author Index . 193

L. George and T. Vardanega (Eds.): Ada-Europe 2014, LNCS 8454, pp. 1–6, 2014.
© Springer International Publishing Switzerland 2014

Lessons Learned and Easily Forgotten

Robert Lainé

SPACINOV
www.spacinov.com

Abstract. The author has had the privilege of leading a number of important
and challenging spacecraft development projects in his long professional career.
At the request of the organizers of the 19th International Conference on Reliable
Software Technologies, this short paper summarizes some lessons learned on
the exercise of leadership. This paper is more like a retrospective reflection on a
vast personal experience than a scientific essay on the art of project and team
management. In the hope that this contribution can benefit others, these person-
al reflections are offered first to the community that keeps this conference series
alive and kicking, and then to those who consult the conference proceedings,
who – I have learned – are not a small number.

1 Introduction

It is my pleasure to address the Ada community, to whom I am grateful for its contri-
bution to some of the space projects I had to lead.

A common element in those projects was the significant part of innovation they in-
volved. Having retired after 41 years of technical leadership in space projects, and in
“debugging” a number of others, I have now had time to think about what contributes
to making projects successful. This paper shares my findings with the readers of these
proceedings.

Perhaps a surprise to some, my discussion will not address technical issues; rather
it will dwell on what I regard as the root cause of projects major problems: the human
factor. Please sit back and take this opportunity to look at project leadership from a
different perspective.

2 Some Definitions about Projects and Project Team

Projects are the visible part of development activities. It is there that all the expertise
is glued together (in system work) to achieve something useful. It underlines our
ability to lead and develop people expertise in various fields.

A project is a task with a clearly identified objective to be reached, with finite re-
sources and within a finite time. Once the objective is reached, the project cease to
exist. A project that goes on forever is no longer a project; it has become a sort of ad-
ministration or worse, a bureaucracy working for the single purpose of maintaining its
existence!

2 R. Lainé

A project team is a group of people who individually take the project objective as a
personal objective and voluntarily agree to work together to make the project a suc-
cess. One cannot force people to work successful on a project if they do not agree on
its objective.

These notions are easily forgotten.

3 Key Factors in Project Success

In a spacecraft development budget, the cost of raw material is irrelevant: 99% of the
time and money goes to human activities. In software, that human activity ratio gets
very close to 100 %. In other Hi-Tech fields, that ratio may be only 80%, but, still, the
quality of the result is essentially that of the human contribution in innovation and
work.

In space projects, there is no second chance for a launch: it must work the first time
round! Once a spacecraft is in orbit, it is too late to remove an error or fix a fault.

The success of any large project, aerospace or software or Hi-Tech, bases on
teamwork, with several subcontractors and players. Managing, or rather Leading
(with capital L) projects successfully is first of all leading people, which means:

• interacting continuously with people,
• identifying what hampers their progress,
• helping them to perform and solve problems,
• making sure that no mistake gets through the verification net.

Let us look at each such task in isolation.

3.1 Interacting with People

All European space projects are international undertakings. Europe's space communi-
ty is small, highly qualified, but with wide differences of culture and language, which
cause a lot of room for misunderstanding and lasting aggravations. For a project lead-
er, there is no point trying to reduce these differences, which are deeply embedded in
the human nature; recognizing them, accepting them and working with them is the
only solution to remain sane.

In a project, everyone depend on others doing their share of work on time. As we
cannot afford the luxury of duplicating all work packages and pick the first to deliver,
all individuals contributing to the project are to be treated as partners and definitely
not as upper/lower/junior citizens of an improbable hierarchy.

Consequently, it is essential to split the work according to the capability of each
partner. Recognizing and respecting the work done by each partner is as essential as
being prepared to help anyone who runs into problems.

Sometime, things do not go as planned. Accepting and facing that reality is vital.
The «Wait and See» attitude or worse its «Don't bring me problems, I pay you to
solve them» variant, never pays, since problems do not go away by themselves.

 Lessons Learned and Easily Forgotten 3

People never drive themselves intentionally into problems, if problems arise, they
have to be dealt with promptly and honestly while respecting people rather than judg-
ing them. In these situations where a solution has to be found, we must remember that
there is always a solution to a problem and finding it is what counts. Asking the right
questions and listening to what individuals have to propose often brings that solution
to solve the problem. Asking the same questions to an «Organization», which is sup-
posed to have avoided or solved the problem, will mostly add confusion.

3.2 Identifying What Hampers Progress

The number One source of trouble in a project is a «customer» who does not know
what he actually needs in the way of a product, but is very good at defining strict rules
he wants followed! In this context, it is important to remember that, in all complex
projects, many partners are both the supplier but also the customer of someone else.
For example, a system engineer is the customer of a number of sub-systems suppliers
who are themselves the customers of components suppliers, and so forth.

The absence of clear understandable objective for each task cannot be replaced by
Rules that, by definition, are only formalizing what has already been done. Rules are
the prerogative of administration (“management” in English): the leader of an innova-
tive project would be well advised to know them, but be prepared to at least bend
them or ignore them if they do not help meeting the objective of the project. The only
fixed rule a leader should respect is that his project must succeed. Project failure is
not an option, even with a good excuse.

Another source of trouble is a set of self-imposed constraints, negative thinking
and talking, easily recognized by such expressions as: «this is the way we always do
it»; «customer will not accept our way of doing it»; «these guys are unable to do any-
thing right»; and variants of this tune. If people talk negatively, they think negatively,
and quickly they will focus on the possibility of failure and consider covering their
track under the false protection of hypothetical rules and practices. When it comes to
innovative solution, it is impossible to identify a priori who is the innovator (supplier)
and who is the customer. In this situation, everyone can be a source of innovation
provided the other members of the team are prepared to accept and build on innova-
tive ideas of others. It is there that the «Not Invented Here» (NIH) syndrome can do a
lot of damage. When combined with negative talking, it will discourage anyone from
venturing new ideas and solutions.

The negative thinking and NIH have to be stopped at once, and people have to be
refocused on going forward.

Very often, the above negative thinking is associated with poor or even absence of
human-to-human communication. One should be aware of what I call the «email and
memo broadcasting escalation trap». These e-mails with copy to the world just add
noise and encourage people to spend their time hitting their keyboards to show that
they too exist, instead of thinking of how to move the project forward. Very quickly,
such emails turn sour with underlying or explicit judgment of value being passed to
one another. These judgments of value will send everyone down in their bunker
to think hard on how to retaliate, and the project will halt! The only solution there is

4 R. Lainé

to block the email flow and call the team for a serious discussion on how to meet the
project objective.

Emotional relations in the decision process, where someone will surely think that
he lost out in a decision; personal ambition driving decisions; hiding errors to make
sure that one cannot be seen to be wrong; playing « games » to obtain a favor, etc.
These are all common practices that degrade very quickly the positive spirit needed
for a project to succeed.

3.3 Helping People to Perform

Individuals have different personalities, with competences, strength and weaknesses.
Teamwork is the summation of these strengths and competences. It is therefore im-
portant not to dwell on weaknesses – we all have some and we don't like to have them
exposed – but rather make sure that these weaknesses are not in a critical path.

Reformulating the task objective until it is positively understood is essential, in
particular when the culture and language of the partner is different from yours. The
answer «Yes» to the question «Do you understand?», is no proof of understanding,
particularly in some culture where saying «No» is considered impolite. The only way
to make sure that people really understand is to ask them to reformulate the objective
in their own language, and even that may leave room to some doubt.

Give people the freedom to do their job. Innovation often comes from failure, as
such failure will reveal which underlying assumptions were wrong. It is therefore im-
portant to assure the people that trying new routes may indeed lead to failures, and
this is OK as long as we know about it and understand why it failed.

When something does not work, it is often necessary to provide alternatives routes
to explore, which may even include known solutions. In those circumstances, it is im-
portant to leave it to the partner to implement the alternative, so that he regains confi-
dence and succeeds in delivering their part of the project.

Regular, transparent reporting on real progress at all levels is important such that
everyone sees where the others are toward the project objective. It greatly helps re-
duce the attitude of hiding behind the delays of others, an attitude that slows down the
project and degrades to a competition at not being the last rather than at being in front.
To that extent, public acknowledgement of success is a form of reward to be used
without limitation. It does create a positive feedback motivating the people.

3.4 System Engineering and Human Factor

The job of system engineering is to design and specify for others to do. System engi-
neers will set and explicit the common objective for the technical groups and will
keep track of progress toward it. The following list of common pitfalls has been
drawn from experience:

• Fuzzy requirements mean that various interpretation can allowed leaving a lot of
room for creativity and mistakes. «KIS»: Keep It Simple, is the golden rule to
follow when writing requirements. One requirement per sentence, one explicit

 Lessons Learned and Easily Forgotten 5

verification criteria per requirement. If in doubt about the usefulness of a require-
ment, move it to the wish list for later decision.

• Design must be achievable and verifiable. There is no point in asking for the im-
possible or something that cannot be verified.

• At system level, be aware of the «almighty software» solution. In particular in
safety critical missions, it can become virtual reality replacing reality until reality
catches up! Sometime a little piece of hardware can be more practical, more pre-
dictable and safer than complicated software.

• Be as strict in defining software as you are with hardware. It is surprising that very
often the system engineering group is unable to describe in simple words what they
expect the software to do. They leave it to the software team to define their own
requirements and hope it will work. This often leads to a number of «undocu-
mented features», which are just booby traps waiting for someone to trigger them.

• Mistakes are made all the time by humans. Everyone has his bad day, sooner or
later. It is important to accept that reality and not rate it as «unacceptable»! The is-
sue is not the mistake being made, that is reality, the issue is to organize the work
and set the right state of mind in the team to find them. Once a mistake is found, it
can always be tracked, corrected and the earlier it is found, the cheaper it will be.

• Organizing the work to help remove mistakes is a matter of being clear about what
each function shall do and shall not do in which environment, and having methods
for proving it. Many tools exists to achieve that but managers (not leaders) will of-
ten skip them as they cost and in the mind of managers people are supposed to be
perfect. Be extremely careful with things that seemingly work but have not been
formally verified.

• The norm to be set across the team is that a day without finding a mistake is a day
lost! That norm is true for everyone in the team from the leader to all partners and
contributors. To help this, transparency and absence of judgment of value about the
people having made mistakes is vital. Transparency means that other team mem-
bers can then check that they have not made similar error. Be very sensitive to the
body language of individuals, it often gives the best warning about up-coming
problems and remember that in engineering, a majority of people saying it is OK
cannot overrule a minority saying it is NOT OK. Either side must be able to prove
rationally that it is OK/NOK. In doubt, assuming the worse is safer than going with
a majority of hand wavers.

• No judgment of value passed on individuals means that people will feel comforta-
ble with reporting doubts and mistakes instead of hiding them. If a judgment of
value is passed in the heat of events, it is important to quickly and publicly ac-
knowledge that this was inappropriate to avoid a negative thinking spiral develop-
ment.

4 Summary: Preferred Project Leadership Style

Over the years, I have observed that successful project leaders share a common set of
values, which is worth itemizing:

6 R. Lainé

• Acceptance and respect for the competences and responsibilities of all partners,
despite cultural differences.

• Transparent, open and direct communication of the project objective to reach.
• Encourage lateral and upward communication as opposed to strictly hierarchical

reporting, encourage peer review of critical points within the team.
• Provide regular feedback to all participants.
• Open minded to different approaches to achieve the result. This is particularly im-

portant when a large part of the project depend on innovation.
• Keep the team focused strictly on the project end objective and finding mistakes.
• Do not shoot at people just solve problems.
• Be honest and stay honest with people; do not play games on them.

Finally, always keep in mind that a random success is just a missed random failure.

References

1. National Transportation Safety Board. Their reports provide analysis of the incidence of the
human factor in various accidents, http://www.ntsb.gov/

2. Morel, C.: Les décisions absurdes, Sociologie des erreurs radicales et persistantes. Bibli-
othèque des Sciences Humaines, Gallimard (2002)

L. George and T. Vardanega (Eds.): Ada-Europe 2014, LNCS 8454, pp. 7–10, 2014.
© Springer International Publishing Switzerland 2014

Future Challenges in Design Frameworks
for Embedded Systems: Application

to Intelligent Transportation Systems

Mohamed Shawky

Université de Technologie de Compiègne, Heudiasyc Laboratory,
Joint Research Unit with CNRS, Compiègne, France

shawky@utc.fr

Abstract. Environment perception technologies and sophisticated signal
processing algorithms yield today mature understanding of dynamics of trans-
portation vectors. Uncertainty management became inherent to decision making
following such environment understanding processes. However, designers of
critical embedded systems remain skeptical about considering uncertainty,
probably as design tools and frameworks have not yet integrated advances in
state-of-the-art of confidence management approaches. Furthermore, hesitant
multicore programming tools do not provide yet enough native redundancy for
applications offered by such technologies, which would have been a precious
contribution to increase their reliability. In this paper, which outlines the confe-
rence keynote, we present a synopsis of these new challenges that will face in
the near future designers and tool developers for Intelligent Transportation Sys-
tems.

Keywords: Intelligent Transportation Systems, design tools for critical embed-
ded systems, multicore for native redundancy.

1 Introduction

Intelligent Transportation Systems (ITS) are excellent representatives of critical sys-
tems, either for their relation to time determinism and constraints, or for their re-
quirements from safety point of view. Recent advances in ITS domain are greatly
visible for example in automatic driving in automotive sector, where millisecond
comprehensive reactivity of the vehicle became a mandatory reference. Along with
these developments, information technology has raised the expectations of ordinary
users from a computerized system to unprecedented level of interaction intelligence.
We will present in this keynote how the need to “cognitive behavior” from Intelligent
Transportation Systems has driven researches in the last decade, mainly to set up
novel perception algorithms, but oddly neglecting implementation of tools and
frameworks to let them become definite references in the domain.

8 M. Shawky

2 Cognitive Behavior in ITS

Environment understanding, which includes detecting neighboring vehicles, pede-
strians, infrastructure signs or other obstacles, is relying today on various sensing
technologies. Whatever are the accuracy and the precision of a single sensor, inherent
uncertainties remain in the returned values, representing the measured physical mag-
nitudes. Multisensor data fusion is meant to increase the reliability of environment
detection process (Fig. 1). Hence, a clearly defined need emerged for methods that
correctly combine data issued from different sensors.

Fig. 1. Multisensor Data Fusion for driving situation recognition

Evidence theory has brought up satisfying paradigm to deal with such problematic
[1, 2]. A belief mass is assigned to each subset of the repertory of hypothesis.

By cognitive behavior, or automatic reasoning, we do not consider here
“intellectual” reasoning, like text understanding, but we are dealing with intermediate
reasoning, as recognizing of “driving situations”, for example: “I am following a light
vehicle and being followed by a truck and we are all on the rightmost lane” [3].

To activate automatically a breaking system in case a dangerous situation is recog-
nized, a degree of autonomy in decision making has to be granted to the centralized
decision module. Managing uncertainty may be used as a basic building block to in-
crease the reasoning ability of such decision component, in order to improve their
autonomy.

Programming tools should enable designers and programmers to add or subtract
belief masses. Compilers should be able to overload usual arithmetic operators by
corresponding belief masses arithmetic functions.

Unfortunately, thorough analysis of current programming frameworks shows that
very few tools are positioned on that niche today.

 Future Challenges in Design Frameworks for Embedded Systems 9

3 Critical Embedded Systems and ITS

Critical embedded systems are best portrayed by a collection of common characteris-
tics. In most of the corresponding applications, a distributed architecture of processing
elements is used. Tasks are statistically assigned to processing elements, with no
adaptive behavior, or very few, especially in avionics and spatial domains. Hence,
hard partitioning of memory is a usual approach. Considering communications be-
tween processing elements, even if originally asynchronous network protocols are
used, their implementation would be so distorted to come up finally with almost com-
pletely synchronous protocols [4].

3.1 Uncertainty in Critical Systems

Although Intelligent Transportation Systems sphere is often comprehended as ground
transportations, latest researches in avionic domain had positive fallouts on all other
transportation fields, especially through several recent European Integrated Projects.
Nevertheless, critical system designers continue to regard uncertainty management
with considerable precaution, possibly for the lack of tools for managing uncertainty,
adequately positioned in the engineering lifecycle.

3.2 Impact on Component Based Design

In order to implement such type of tools, new design paradigm is needed that would
probably accentuate the trend for Model Driven Engineering and Component Based
Design, by distributing the intelligence of the tool over the components themselves,
so that each component includes part of the tool verification code.

This verification code would be activated only during the design phase to fulfill the
model checking stage, yielding “inference” ability to individual components. Howev-
er, few research works have extrapolated these approaches for complex components
that could not be any more considered as simple ones, but as a sub-system or even a
whole system by itself.

4 Multicore Implementation and Redundancy

Despite recent progress in multi-core technology, few research works have considered
sacrificing number of cores to the advantage of redundant resources, at the expense of
performance [5].

Several existing frameworks and runtime environments for parallel and distributed
programming like OpenMP have been cross-dressed to support redundancy design
and its real time operation.

Other works have addressed other challenges to automatically generate redundant
architecture and software code, including the necessary runtime middleware over a
given operating system [6].

10 M. Shawky

However, the contest is still open until we reach satisfying industrial tools where a
simple sliding cursor should enable to choose the number of cores dedicated to archi-
tecture and code redundancy and others assigned to application code execution.

References

1. Cattaneo, M.E.G.V.: Combining belief functions issued from dependent sources. In: Ber-
nard, J.M., Seidenfeld, T., Zaffalon, M. (eds.) Proceedings of the Third International Sym-
posium on Imprecise Probabilities and Their Applications (ISIPTA 2003), Carleton Scien-
tific, Lugano, Switzerland, pp. 133–147 (2003)

2. Denœux, T.: A k-nearest neighbor classification rule based on Dempster–Shafer theory.
IEEE Transactions on Systems Man and Cybernetics 25(05), 804–813 (1995)

3. Nigro, J.-M., Rombaut, M.: IDRES: A rule-based system for driving situation recognition
with uncertainty management. Information Fusion 4(4), 309–317 (2003)

4. Persson, M., Bonnet, S., Shawky, M.: In: Rajan, A., Wahl, T. (eds.) CESAR - Cost-efficient
Methods and Processes for Safety-relevant Embedded Systems. Springer (2013)

5. Smolens, J.C., Gold, B.T., Falsafi, B., Hoe, J.C.: Reunion: Complexity-Effective Multicore
Redundancy. In: 39th Annual IEEE/ACM International Symposium on Microarchitecture,
pp. 223–234. IEEE Computer Society, Washington, DC (2006)

6. Tahan, O., Shawky, M.: Using Dynamic Task Level Redundancy for OpenMP Fault Toler-
ance. In: Herkersdorf, A., Römer, K., Brinkschulte, U. (eds.) ARCS 2012. LNCS, vol. 7179,
pp. 25–36. Springer, Heidelberg (2012)

Rigorous Development of Fault-Tolerant

Systems through Co-refinement

Ilya Lopatkin and Alexander Romanovsky

CSR, School of Computing Science, Newcastle University,
Newcastle upon Tyne, NE1 7RU, UK

{ilya.lopatkin,alexander.romanovsky}@ncl.ac.uk

Abstract. With our increasing dependency on computer-based systems,
ensuring their dependability becomes one the most important concerns
during system development. This is especially true for safety-critical sys-
tems. Critical systems typically use fault tolerance mechanisms to miti-
gate runtime errors. However, fault tolerance modelling and, in particular,
rigorous definitions of fault tolerance requirements, fault assumptions and
system recovery have not been given enough attention during formal sys-
tem development. This paper proposes a developmentmethod for stepwise
modelling of high-level system fault tolerant behaviour. The method pro-
vides an environment for explicit modelling of fault tolerance and modal
aspects of systembehaviour and is supported by tools that are smoothly in-
tegrated into an industry-strength development environment.A case study
is used to demonstrate the proposed method.

1 Introduction

Our society is becoming increasingly dependent on computer-based systems due
to the falling costs and improving capabilities of computers. There is a class
of systems called critical that operate with resources of the highest value and
defects of which can have a significant impact on the environment, assets, and
human life. Critical systems have to be dependable [2], so that they can be
justifiably trusted to provide the required services.

It is well-known that one cannot produce a faultless system functioning in
a perfect fault-free environment [8]. A number of safety and reliability analy-
sis techniques are being successfully used nowadays in industry such as Failure
Modes and Effects Analysis (FMEA), Fault Tree Analysis, and HiP-HOPS. De-
terioration of physical components makes it necessary for systems to employ
fault tolerance mechanisms [8] in both hardware and software.

Furthermore, the design complexity of modern systems requires additional
means for reducing the number and criticality of design faults. One of the promi-
nent solutions to ensuring systems dependability by fault prevention and/or fault
removal is the inclusion of formal modelling in various stages of the software
development process. Usage of formal methods in development of dependable
systems is increasing and is proven to be cost-effective [13]. Among the main
current obstacles to adopting formal methods by industry are the lack of tools

L. George and T. Vardanega (Eds.): Ada-Europe 2014, LNCS 8454, pp. 11–26, 2014.
c© Springer International Publishing Switzerland 2014

12 I. Lopatkin and A. Romanovsky

and engineers’ experience in formal development. We believe this situation can
be significantly improved by teaching best practices of modelling and providing
modelling guidelines and reusable solutions.

The development method proposed in this work builds on our study of the
requirements descriptions and formal models produced by deployment partners
of the FP7 DEPLOY project [4]. The study showed that up to 35-40% of require-
ments to critical systems can be devoted to fault tolerance. However, typically,
formal models do not adequately represent the fault tolerant behaviour due to
the fact that the fault tolerance component of requirements is intertwined with
the functional one and is difficult to address during the modelling phase.

There are a number of studies on formal modelling of fault tolerance. Some
research is done on extending original semantics of formal methods with addi-
tional fault tolerance modelling constructs [5]. Other techniques provide patterns
and modelling styles for modelling fault tolerance within the formal semantics of
a particular formalism. For example, [7] provides a guidance to modelling fault
tolerant control system in the B formalism. The authors focus on modelling low-
level component failures that may be masked at a system level. Another example
of a style-based approach is introduced in [6]. The paper describes a general for-
mal specification pattern to be applied in development of dependable systems
with a layered architecture. The pattern adds exception handling mechanism to
each system layer and organizes communication between components within a
hierarchical structure by means of exceptions. The layered exception hierarchy
pattern is based on top-down refinement. The pattern follows the idea of ide-
alised fault tolerant component (IFTC) introduced in [8]. The IFTC is a generic
component which explicitly differentiates between its normal and abnormal op-
eration, and specifies the conditions under which it switches between the two.
The system is thus constructed as hierarchical layers of IFTCs. Each compo-
nent can handle certain exceptions, and it propagates the unhandled exceptions
to the abnormal part of its higher-level component. The idea of IFTC implies
sequential composition of component executions, and its application may under-
mine the ability to express system-level safety properties for some proof-based
methods.

We follow a pattern-based approach and propose a method for modelling
high-level fault tolerant system behaviour. In contrast to the above-mentioned
studies, we focus on reactive style of system-level fault tolerant behaviour, and
provide support for explicit reasoning about safety properties. Although the
present work focuses on refinement-based development of reactive systems, we
follow the IFTC-based ideas of top-down system structuring and explicitness of
system abnormal operation.

The paper is organised as follows. We give an overview of the proposed method
in Section 2. Then we describe the basic modelling principles behind the method
and the proposed refinement strategy in Sections 3 and 4 accordingly. We de-
scribe the method by applying it to a case study in Section 5, and draw conclu-
sions in Section 6.

Rigorous Development of Fault-Tolerant Systems through Co-refinement 13

2 Overview

In this paper we demonstrate a method for top-down development of fault toler-
ant systems with a focus on abstract levels of modelling. The method focuses on
verification of safety properties of fault tolerant systems and ensures traceability
of the relevant safety and fault tolerance requirements.

The method accommodates two formalisms: a traditional state-based formal-
ism and a diagrammatic formalism from our previous work [10]. Any state-based
formalism with interleaving semantics can be used with the proposed method
such as Action Systems, B, Event-B, Z, and VDM with refinement-based for-
malisms benefiting the most. In this paper we exemplify our approach on the
Event-B formalism [1]. The second formalism used in the method constitutes
an additional viewpoint called Fault Tolerance (FT) Views for modelling modal
and fault tolerant behaviour [10]. The FT viewpoint is also refinement-based.
The refinement chains for the two formalisms coexist in a single development
and formally relate to each other. At each refinement level, the two formal mod-
els essentially represent the same system at the appropriate level of abstraction
(Figure 1).

Mi

Mi+1

Viewi

Viewi+1

Event-B refinement Modal/FT Views refinement

proof obligations

Fig. 1. Refinement chain of a bi-model development

The development method includes the following three constituents:

– the modelling principles stating the key rules and reasoning behind the mod-
elling process of the method,

– the refinement strategy defining a sequence of refinement steps that need to
be performed to arrive at a meaningful model of a fault tolerant system, and

– a set of modelling patterns and FT view templates that provide a reuse
mechanism during modelling.

The three constituents together represent modelling guidelines for building fault
tolerant systems in refinement-based formal methods in a systematic way.

14 I. Lopatkin and A. Romanovsky

3 Modelling Principles

The development method is based on a number of modelling principles. These
postulate a set of terms and rules that are used in definitions of modelling
patterns and the refinement strategy described later.

The first principle of the method defines the style for modelling fault tolerant
systems. The method facilitates the expression of safety properties by providing
patterns that follow a reactive style of modelling. By the reactive modelling style
we mean such a way of behaviour definition that uses atomic reactions and allows
developers to express high-level properties in the following form:

cause ⇒ reaction

One of the most important principles used in the method is the principle of
behaviour restriction. We treat the system model as a transition system that is
”composed” of two parts: an unconstrained behaviour and a set of functional
and fault tolerance constraints. An unconstrained behaviour contains all system
states and all transitions, it is merely a declaration of the system structure
using variables. A model without constraints has a non-deterministic behaviour.
During its evolution, it can go from any state to any other state. In the proposed
method, the development departs from an unconstrained declaration of the state
space and step-wise arrives at a model which ”behaves” in a safe and sensible
manner within the given constraints, i.e. requirements.

In our method, we assume that a system observes some part of its environment
and reacts to its changes. To represent the environment adequately in the models,
we require all state transitions occurring during system execution to satisfy the
implementable causality rule: a cause (environmental change) must not depend
on a reaction (system change). In other words, a system being in a certain state
may not ”forbid” environment to change. Otherwise, the model would contain
unrealistic assumptions about system environment that cannot be implemented.

To structure the formal development in such a way that follows the imple-
mentable causality and the behaviour restriction principles, we offer a term fault
tolerant component. A fault tolerant component is a structural system unit that
is described by its functional and error state variables which are explicitly sep-
arate in the model. In this regard, the term is similar to the Idealised Fault
Tolerant Component [8]. Note that an FT component is a modelling concept
and does not necessarily represent a physical object or a design-level module.

4 Refinement Strategy

The development method prescribes a number of modelling steps that need to be
performed to arrive at a correct and meaningful model of a fault tolerant system.
The schematic procedure of the development method is shown on Figure 2. The
development method is divided into two parts: the first part contains steps for a
generic development of reactive fault tolerant systems and is applicable in any

Rigorous Development of Fault-Tolerant Systems through Co-refinement 15

problem domain, the second part focuses on control systems and facilitates mod-
elling of low-level components with an intention to support the implementation
step.

Failure-free functionality

Abstract FT classes
failure-free / safe stop

Refinement of functionality

FT component refinement

Hardware

Control cycle

Part 1:

Reactive system

abstract modelling

Part 2:

Control system modelling

Requirements

Implementation

Step 2

Step 1

Step 3

Step 4

Step 6

Step 7

Behaviour restrictionStep 5

Fig. 2. The steps of the method

Abstract modelling of a reactive fault tolerant system starts with defining a
failure-free functionality of the system (Step 1). By failure-free functionality we
mean the abstract behaviour that is only restricted by functional requirements.

At the first abstract level where fault tolerance requirements impact the sys-
tem model, a designer has to choose an abstract fault tolerance class of the
system (Step 2). We give more details on system FT classes in Section 5.2.

Steps 3, 4 and 5 form the core of the method. They are repeated iteratively
until all the required properties of the reactive system behaviour are expressed
and verified. Step 3 is a refinement of functionality which is project-specific.
Step 4 is called the fault tolerant component refinement : it refines the abstract
component errors and FT behaviour into sub-component errors. This step is
described in Section 5.3. Step 5 is the behaviour restriction step that is used
to restrict the functional behaviour with operational conditions dictated by the
environment. The details of this step are given in Section 5.4.

The second part of the method refines the reactive model into a model of
a control system. Here we reuse our previous work on modelling control cycles
and incorporating FMEA into Event-B specifications [11] and omit description
of this step due to space restriction. It is important to note that the first part
focuses on verification of safety properties whereas the second part of the method
facilitates further implementation of the system.

16 I. Lopatkin and A. Romanovsky

5 Method Application

In this section we describe the steps of the proposed method applied to a run-
ning example. The example is an airlock system shown in Figure 3. We define
requirements to the system as a set of informal statements that we then formalise
using the proposed method.

5.1 Failure-Free Functionality

We start describing our system by defining its environment:
(ENV1) The airlock system separates two different environments (external and

internal). The pressure of the external environment is lower than that of the
internal one. The internal environment is considered to be natural to humans.

(ENV2) The system has two doors and a chamber (Figure 3). Each door when
closed separates the chamber from the appropriate environment.

E
xt

er
na

l
en

vi
ro

nm
en

t

Airlock
chamber In

te
rn

al
en

vi
ro

nm
en

t

Door 1

Door 2

Door motor

Pressure sensors

Door closed sensor

Door opened sensor
Door position sensor

Fig. 3. The airlock system

The primary function of the system can be expressed in the following form:
(FUN1) When in operation, the airlock system must be able to let users pass

safely between the two environments via the airlock.
In order to allow a user to pass from the internal area through the airlock into

the external area, the system needs to perform the following steps:

1. equalise the chamber pressure to that of the internal environment,
2. open the second door to allow the user in the chamber,

3. close the second door,
4. equalize the pressure in the airlock to that of the external environment,

5. open the first door to allow the user out,

Rigorous Development of Fault-Tolerant Systems through Co-refinement 17

and vice versa for the opposite direction.
To provide such operations, the system is equipped with a number of sensors

and actuators as shown on Figure 3. We assume that the details of such a
low level are given in requirements on which we base our abstractions. In this
paper, we omit the low-level modelling steps due to lack of space and focus on
modelling and proving safety properties at a high level of abstraction. We define
the following safety requirements for the airlock system:

(SAF1) The pressure in the chamber must always be between the lower external
pressure and the higher internal one

(SAF2) A door can only be opened if the pressure values in the chamber and
the conjoined environment are equal

(SAF3) At most one door is allowed to be opened at any moment of time
(SAF4) The pressure in the chamber shall not be changed unless both doors are

closed

axioms

axm1: partition(DOOR STATE,{OPENED}, {CLOSED}, {OPENING},
{CLOSING}, {STOPPED})

axm2: LOW PRESSURE = 0
axm3: HIGH PRESSURE = 2

invariants

inv1: door1 ∈ DOOR STATE
inv2: door2 ∈ DOOR STATE
inv3: pressure ∈ N

inv4: door1 �= CLOSED ⇒ pressure = LOW PRESSURE
inv5: door2 �= CLOSED ⇒ pressure = HIGH PRESSURE
inv6: door1 = CLOSED ∨ door2 = CLOSED
inv7: pressure > LOW PRESSURE ⇒ door1 = CLOSED
inv8: pressure < HIGH PRESSURE ⇒ door2 = CLOSED
inv9: pressure ≥ LOW PRESSURE ∧ pressure ≤ HIGH PRESSURE

events

event open1 =̂

when

grd1: door1 = CLOSED ∨ door1 = STOPPED
grd2: pressure = LOW PRESSURE
grd3: door2 = CLOSED

then

act1: door1 := OPENING
end

Snippet 1. Definitions, invariants, and behaviour of M0

At this stage, we only define the failure-free functionality of the system. That
is, no failures are considered and the system is assumed to work in a flawless
manner forever. We formalise the given requirements in an Event-B model M0

18 I. Lopatkin and A. Romanovsky

(see Snippet 1). In the model, section axioms contains axiomatic definitions
such as a given set of door states (opened, closed, etc). We represent the two
environments described in (ENV1) by their pressure values LOW PRESSURE
and HIGH PRESSURE that we assume to be constant. Section invariants
contains variable type definitions and safety properties that must always hold
during system evolution. For example, we represent the physical components
from (ENV2) by variables door1 and door2 for the two doors correspondingly,
and the current value of pressure in the chamber by variable pressure. The rest
of the invariants correspond to the safety requirements. Namely, inv9 ensures
the pressure limits required by (SAF1). Invariants inv4 and inv5 correspond to
requirement (SAF2). Requirement (SAF3) is ensured by inv6. Invariants inv7 and
inv8 together represent (SAF4).

The events section formalises the behaviour of the system. It consists of a
set of events each of which represents a guarded labelled transition. The guard
of each event is given as a set of predicates in section when. When the guard
becomes true, the event fires thus atomically making a transition described in
section then by a set of assignments. The system evolves by making transitions
in an interleaving fashion. During evolution, invariants must always hold, and
the modeller is obliged to prove that the action of each event preserves all of
the invariants. In model M0, there are five events for each door that ensure
the safe traversal of the corresponding door through its set of possible states,
and two events for changing the level of pressure in the chamber. For brevity,
we only show an event of a door behaviour (open1) in Snippet 1. Event open1
starts opening the first door if it is either closed or stopped at some intermediate
position.

5.2 Abstract Class of System Fault Tolerance

The next step is to identify the class of the system from the fault tolerance
perspective. In the proposed method, we identify two abstract classes of systems
from the fault tolerance modelling perspective: a class of failure-free systems,
and a class of safe stop systems. Any system belongs to one of these classes
depending on whether stop conditions are defined in requirements.

At this stage, we include an additional type of formal models into the de-
velopment process, Modal Views, and define a formal relationship with Event-B
models. A modal view consists of modes and mode transitions. A mode describes
the functionality of a system by its guarantee predicate, and the operating con-
ditions under which the system provides this functionality by its assumption
predicate. A mode is mapped into a set of Event-B events and represents a su-
perstate of a system. A mode transition represents an instantaneous switch of the
system between two modes. More details on formal definitions of Modal Views
and relationship with Event-B can be found in [10,3,12,9]. Here it is important
to understand that such a relationship between two different types of models
produces formal consistency conditions in a form of additional proof obligations.
These require developers to focus more on the modelling activity and, thus, add
rigour to the development process.

Rigorous Development of Fault-Tolerant Systems through Co-refinement 19

We associate the two classes of system fault tolerance with two possible initial
modal views accordingly (Figure 4). Systems of the first class can mask all in-
ternal errors and operate indefinitely long. This is represented by a single mode
Normal. Systems of the second class cannot tolerate certain errors and can even-
tually stop. The errors that can cause a system stop are called unrecoverable and
are collectively represented by the abstract transition to mode Stop.

Normal Stop
A: stopped=FALSE
G: stopped'=FALSE
Events: <all functional events>

A: stopped=TRUE
G: stopped'=TRUE
Events: stopped

Normal
A: FALSE
G: TRUE
Events: <all functional events>

a)

b)

Fig. 4. Two abstract classes of fault tolerant systems: a) Failure-free, b) Safe-stop

The airlock system so far contained only failure-free functionality reflecting
the absence of failures in requirements. Now we assume that some components of
the system can fail, and the whole system may eventually stop due to such errors.
We accommodate this behaviour in model M1 (Snippet 2). We define variable
stopped representing the operational availability of the system, and separate the
functional behaviour from the stopped state by using this variable. We refine
all functional events by strengthening their guards and add two new events as
shown in Snippet 2. The changes we made to the model are generic in that they
are applicable to any safe stop system. These constitute the safe stop pattern
that should be applied as the first refinement step for modelling fault tolerant
behaviour in case of a safe stop system.

event open1 =̂ extends open1

when grd stopped: stopped = FALSE

event stop =̂

when grd stopped: stopped = FALSE
then act stopped: stopped := TRUE

event stopped =̂

when grd: stopped = TRUE
then skip

Snippet 2. Part of M1 after applying the safe stop pattern

20 I. Lopatkin and A. Romanovsky

We also associate the modal view b on Figure 4 with Event-B model M1.
This produces additional formal obligations to prove for M1 and ensures that
the model indeed contains the safe stop behaviour.

The purpose of this refinement step is to ”reserve” an abstract representation
of the overall system fault tolerant behaviour for further refinements. Event stop
represents an abstraction of all unrecoverable errors that will be introduced later.

5.3 Fault Tolerant Component Refinement

On top of the functional requirements to the system, we also introduce a “fragile”
environment where the physical components of the system may fail:

(ENV3) Sensors and actuators may fail to provide a correct function.
From this fault assumption, description of sensors (which we omit due to lack

of space), and description of available redundancy in the system we can construct
an adequate abstraction for modelling. We define the three possible error states
of the two doors in model M2:

door1 cond,door2 cond : {BROKEN,DEGRADED,OK}

Such a definition of error states constitutes the error state variable pattern.
Fault assumption (ENV3) raises a number of requirements that concern system

fault tolerance:
(FT1) The system shall disallow opening a degraded door.
(FT2) The system shall stop if at least one of the doors is broken.
(FT3) If both doors are degraded, the system shall stop unless there is a user

in the chamber. If the user is present in the chamber, the system shall allow
opening the inner door.

In order to represent these requirements formally, we refine the modal view
shown in Figure 4b by splitting the normal behaviour of the system into four
modes: the normal operation mode and three degraded modes (Figure 5). The
system stays in mode Door1 when the first door is degraded and the second
door is fully operational, and vice versa for mode Door2. When both doors are
degraded and there is a user present in the chamber, the system stays in mode
Trapped until the user leaves the chamber. The new mode Normal together
with the three degraded modes formally refine abstract mode Normal as shown
by a dashed area. Such a refinement of a mode by a chain of degraded modes
constitutes the mode split template. The degraded modes in Figure 5 represent
different sets of available components and the associated subsets of system be-
haviour. The assumption predicates of the modes split the possible combinations
of the components’ error states into disjoint sets. The mode assumptions cover
all the system states which must be demonstrated through the well-definedness
proof obligation COVER [12].

We refine the abstract system failure transition by four concrete transitions
depicting the sources of failure. Transitions Stop on degrade and User leaves
initiate at the new modes. TransitionBreak can initiate at any of the four modes
within the dashed area. All three formally refine the abstract error transition,

Rigorous Development of Fault-Tolerant Systems through Co-refinement 21

Normal

Door1 Door2Trapped

Stop

Break

Degrade

Degrade

Degrade

Degrade

Stop on degrade Stop on degrade

User leaves

refines Normal

A: door1_cond=OK door2_cond=OK

A: door1_cond=OK
 door2_cond=DEGRADED

A: door1_cond=DEGRADED
 door2_cond=DEGRADED
 obj_presence=TRUE

A: door1_cond=DEGRADED
 door2_cond=OK

A: door1_cond=BROKEN door2_cond=BROKEN
 (door1_cond=DEGRADED door2_cond=DEGRADED
 obj_presence=FALSE)

Fig. 5. Modal view of the airlock M2 model

and this is an example of an application of the transition split template. The two
templates shown here (mode split and transition split templates) provide a means
for step-wise construction of complex modal behaviour and ensure traceability
of modal views into fault tolerance requirements.

Modal view M2 represents fault tolerant behaviour of the system in terms
of its fault tolerant components, two doors and the chamber. In order to ensure
formal refinement between M1 and M2, we define a relationship between the
abstract error state variable stopped and the newly defined door error state
variables as a gluing invariant inv4:

door1 cond = BROKEN ∨ door2 cond = BROKEN∨
(door1 cond = DEGRADED ∧ door2 cond = DEGRADED∧

obj presence = FALSE)⇔ stopped = TRUE

Definition of gluing invariants over error state variables constitutes the error
state invariant pattern. This pattern is necessary for establishing the refinement
relation between each two subsequent modelling steps. Note that the gluing
invariant also refers to functional variable obj presence that we introduced to
meet requirement (FT3). This variable shows whether a user is present in the
chamber. Such reference to a functional variable highlights the point that the
fault tolerance properties of the system are inevitably tied to the functional state
and both need to be taken into account during refinement.

The defined error states are used in definition of fault tolerant behaviour
using the fault tolerant behaviour pattern: we refine the events that represent
the reactions of the system to errors by error detection events. In this way we
associate the causes of failures with system reactions. Snippet 3 shows three

22 I. Lopatkin and A. Romanovsky

event break =̂ extends stop

any

d1c d2c
where

grd stopped: stopped = FALSE
grd2 0: d1c ∈ DOOR CONDITION ∧ d1c ≤ door1 cond
grd2 1: d2c ∈ DOOR CONDITION ∧ d2c ≤ door2 cond
grd2 2: d1c = BROKEN ∨ d2c = BROKEN
grd2 3: door1 cond �= BROKEN ∧ door2 cond �= BROKEN
grd2 4: door1 cond = DEGRADED ∧ door2 cond = DEGRADED ⇒

obj presence = TRUE
then

act stopped: stopped := TRUE
act2 0: door1 cond, door2 cond := d1c, d2c

end

event degrade =̂

any

d1c d2c
where

grd0: stopped = FALSE
grd1: d1c ∈ {OK,DEGRADED} ∧ d1c ≤ door1 cond
grd2: d2c ∈ {OK,DEGRADED} ∧ d2c ≤ door2 cond
grd3: (door1 cond = OK ∧ d1c = DEGRADED ∧ door2 cond = d2c) ∨

(door2 cond = OK ∧ d2c = DEGRADED ∧ door1 cond = d1c)
grd4: d1c �= DEGRADED ∨ d2c �= DEGRADED ∨ obj presence = TRUE

then

act1: door1 cond, door2 cond := d1c, d2c
end

event stop on degrade =̂ extends stop

when

grd0: stopped = FALSE
grd1: door1 cond = DEGRADED ∨ door2 cond = DEGRADED
grd2: obj presence = FALSE
grd4: door1 cond = OK ∨ door2 cond = OK

then

act stopped: stopped := TRUE
act1: door1 cond := DEGRADED
act2: door2 cond := DEGRADED

Snippet 3. The airlock M2 model after refining fault tolerant components

Rigorous Development of Fault-Tolerant Systems through Co-refinement 23

events break, degrade and stop on degrade changing the door error states in
three different situations. Events break and stop on degrade extend abstract
event stop with actions putting the doors into degraded and broken states to
satisfy gluing invariant inv4. This shows how an abstract fault tolerant reaction
is refined into more specific component failures. Event degrade is new at M2, it
changes the doors’ error states and continues the system operation. It represents
the tolerance of the system to certain errors. The three events represent a part
of requirements (FT1), (FT2), (FT3). Two events degrade and stop on degrade
depict the same abstract detection of a door failure but they lead to different
reactions, and the choice depends on the current system state. We have to have
both events in the model to cover all relevant system states at the moment of
component failure to satisfy the implementable causality rule.

Thus, error detection transitions are also system reactions: they change FT
components’ error states as well as functional states. Such behaviour conforms to
the reactive style of modelling and allows us to express safety properties which
include both functional and error states.

5.4 Behaviour Restriction

During the previous steps, we refined the error states of the airlock system
into error states of its components and defined events that provide transitions
between those states. However, the functional behaviour of the system does not
take the current error states into account. For example, a broken door can still
“operate” in our model M2 as if it was in a normal condition. In this step, we
remedy such an omission and restrict the functional behaviour to satisfy the
fault tolerance requirements.

Firstly, we refine the M2 modal view by applying the behavioural split tem-
plate to modes Door1, Door2 and Trapped (Figure 6). For example, mode
Door2 closing now restricts the system to only operate with the second door,
and only contains events that close or stop the door but do not open it. Upon
the door closure, the system switches to mode Door2 that guarantees that the
pressure is set to low and the door is closed, and thus only allows operating the
first door.

Secondly, in order to satisfy the consistency conditions enforced by the modal
view, we restrict the system behaviour expressed in the Event-B model. Specif-
ically, to satisfy proof obligation EV T A [12], we strengthen the guard of event
open1 by the following condition:

door1 cond = OK

We strengthen every event in model M3 in a similar manner thus ensuring that
(FT1) is satisfied. Such a restriction constitutes the behaviour restriction pat-
tern: we restrict the functional transitions that are not allowed with respect
to the error states of components. In this regard, we treat modal views as di-
agrammatic specifications of the system fault tolerant behaviour, and their as-
sumption/guarantee pairs as one of the two formalisations of fault tolerance
requirements.

24 I. Lopatkin and A. Romanovsky

Fig. 6. Modal view of airlock M3 model

The component refinement and the behaviour restriction steps are performed
in a top-down manner until the reactive model of the system contains the re-
quired safety and fault tolerance properties.

6 Conclusions

Development of correct fault tolerance is a major challenge in designing complex
dependable systems as evidenced by major failures such as the crash of the
Ariane 5 launcher and the August 2003 Blackout in the US and Canada. Analysis
of these and more recent failures shows that a (typically substantial) support for
tolerating faults in many modern systems often fails or has a lower quality than
the rest of the systems.

In this paper, we described a top-down development method for formal mod-
elling of fault tolerant systems starting from the early stages of abstract mod-
elling and following to modelling control systems. The early consideration of
fault tolerance in refinement-based methods can reduce the modelling efforts,
and helps to ensure the overall dependability of the resulting systems.

The method proposed incorporates a separate viewpoint for modelling modal
and fault tolerance features of systems. This viewpoint adds rigour to the formal
development process, contributes to readability of formal models by engineers,
and bridges the gap between requirements and formal models. The method en-
sures the reuse of formal modelling by supporting patterns typical for modelling
fault tolerance. The use of refinement as a formal basis for step-wise development,
separation of FT concern in a formal viewpoint, and a pattern-based approach
to modelling contribute to tackling complexity of critical system models.

Rigorous Development of Fault-Tolerant Systems through Co-refinement 25

We demonstrated the application of the method by modelling an airlock sys-
tem. The refinement chain of the airlock case study consists of 5 Event-B ma-
chines and 3 associated modal views; overall the development produced 417 proof
obligations, 356 of which were proven automatically. Most of the rest 61 proof
obligations that required interactive proof were generated by the Rodin tools.
The full Rodin project containing the models and views can be downloaded from
the Modal Views wiki page [12].

The method is tool supported. The modal viewpoint is implemented as a plug-
in for the Rodin environment which includes a diagram editor and a smooth
integration with prover facilities [12].

Acknowledgements. This work is supported by the ICT DEPLOY IP and
the EPSRC/UK TrAmS-2 platform grant. We are grateful to Alexei Iliasov for
fruitful discussions and support.

References

1. Abrial, J.-R.: Modeling in Event-B - System and Software Engineering. Cambridge
University Press (2010)

2. Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C.: Basic Concepts and Tax-
onomy of Dependable and Secure Computing. IEEE Transactions on Dependable
and Secure Computing 1(1), 11–33 (2004)

3. Dotti, F.L., Iliasov, A., Ribeiro, L., Romanovsky, A.: Modal systems: Specification,
refinement and realisation. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM 2009.
LNCS, vol. 5885, pp. 601–619. Springer, Heidelberg (2009)

4. FP7 DEPLOY Project: Industrial deployment of system engineering
methods providing high dependability and productivity (2008 - 2012),
http://www.deploy-project.eu/

5. Jeffords, R., Heitmeyer, C., Archer, M., Leonard, E.: A Formal Method for De-
veloping Provably Correct Fault-Tolerant Systems Using Partial Refinement and
Composition. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp.
173–189. Springer, Heidelberg (2009)

6. Laibinis, L., Troubitsyna, E.: Fault Tolerance in a Layered Architecture: A General
Specification Pattern in B. In: Proceedings of the 2nd International Conference
on Software Engineering and Formal Methods, SEFM 2004, pp. 346–355. IEEE
Computer Society (September 2004)

7. Laibinis, L., Troubitsyna, E.: Refinement of Fault Tolerant Control Systems in B.
In: Heisel, M., Liggesmeyer, P., Wittmann, S. (eds.) SAFECOMP 2004. LNCS,
vol. 3219, pp. 254–268. Springer, Heidelberg (2004)

8. Lee, P.A., Anderson, T.: Fault Tolerance: Principles and Practice. Springer-Verlag
New York, Inc. (1990)

9. Lopatkin, I.: A Method for Rigorous Development of Fault-Tolerant Systems. PhD
thesis, School of Computing Science, Newcastle University (2013)

10. Lopatkin, I., Iliasov, A., Romanovsky, A.: Rigorous Development of Dependable
Systems using Fault Tolerance Views. In: Proceedings of the 22nd International
Symposium on Software Reliability Engineering, ISSRE 2011, Hiroshima, Japan,
pp. 180–189 (December 2011)

http://www.deploy-project.eu/

26 I. Lopatkin and A. Romanovsky

11. Lopatkin, I., Iliasov, A., Romanovsky, A., Prokhorova, Y., Troubitsyna, E.: Pat-
terns for Representing FMEA in Formal Specification of Control Systems. In: The
13th IEEE International High Assurance Systems Engineering Symposium (HASE
2011), Boca Raton, FL, USA, pp. 146–151 (November 2011)

12. Wiki page for Modal and Fault Tolerance Views language and tool support,
http://wiki.event-b.org/index.php/Mode/FT_Views

13. Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.S.: Formal methods: Prac-
tice and experience. ACM Computing Surveys 41(4), 19:1–19:36 (2009)

http://wiki.event-b.org/index.php/Mode/FT_Views

Kronecker Algebra for Static Analysis

of Ada Programs with Protected Objects�

Bernd Burgstaller1 and Johann Blieberger2

1 Yonsei University, Korea
2 Vienna University of Technology, Austria

Abstract. Kronecker algebra has proven useful in analyzing multi-
threaded programs when semaphores are the only synchronization primi-
tives. In contrast, Adauses higher level synchronization primitives, namely
protected objects. In this paper we show how Kronecker algebra can be
generalized to statically analyze Ada multi-tasking programs that employ
protected objects for synchronization issues.

1 Introduction

With the advent of multi-core processors, scientific and industrial interest fo-
cuses on analysis and verification of multi-threaded applications. The scientific
challenge comes from the fact that the number of thread interleavings grows
exponentially in a program’s number of threads. All state-of-the-art methods
suffer from this so-called state explosion problem.

Kronecker algebra is a useful vehicle to model multi-threaded shared mem-
ory programs and stochastic automata [5,14,15,16]. Kronecker sum and Kro-
necker product are applied to the adjacency matrices of the underlying concur-
rent programs’ control flow graphs and the synchronization primitives’ graph
representations. Until now Kronecker algebra analysis has only been applied to
multi-threaded concurrent programs being synchronized via semaphores. Ap-
plying Kronecker algebra to higher level synchronization primitives like Ada’s
protected objects (POs) is novel in this area. The contributions of this paper are
as follows.

1. We show how to model Ada’s protected objects such that Kronecker alge-
bra can be employed for static analysis. This covers several more or less
semaphore-like synchronization primitives.

2. We provide graph templates that can be plugged into the graph model used
by Kronecker algebra when a guarded entry call, a procedure, or function
call is contained in a task body.

3. We apply symbolic analysis (SA) to the graph resulting from Kronecker
algebra. SA provides predicates associated with graph edges which can be
used to eliminate dead program paths.

� This project has been supported by the National Research Foundation of Ko-
rea (NRF) funded by the Korean government (MEST) under grant number 2012-
K2A1A9054713, and by the Austrian Science Fund (FWF) project I 1035N23.

L. George and T. Vardanega (Eds.): Ada-Europe 2014, LNCS 8454, pp. 27–42, 2014.
c© Springer International Publishing Switzerland 2014

28 B. Burgstaller and J. Blieberger

2 Preliminaries

Tasks and synchronization primitives are represented by slightly adapted con-
trol flow graphs (CFGs). Each CFG is represented by an adjacency matrix. We
assume that the edges of CFGs are labeled by elements of a semiring. Defi-
nitions and properties of the semiring can be found in [10,14]. A prominent
example of such semirings are regular expressions describing the behavior of fi-
nite state automata. Our semiring consists of a set of labels L which is defined
by L = LV ∪ LS, where LV is the set of non-synchronization labels and LS is
the set of labels representing calls to synchronization primitives (LV and LS are
disjoint).

Semiring 〈L,+, ·, 0, 1〉 consists of a set of labels L, two binary operations + and
·, and two constants 0 and 1 such that 〈L,+, 0〉 is a commutative monoid, 〈L, ·, 1〉
is a monoid, ∀l1, l2, l3 ∈ L : l1 ·(l2+l3) = l1 ·l2+l1 ·l3 and (l1+l2)·l3 = l1 ·l3+l2 ·l3
hold, and ∀l ∈ L : 0 · l = l · 0 = 0. Examples for semirings include regular
expressions (cf. [19]).

Intuitively, our semiring is a unital ring without subtraction. For each l ∈ L
the usual rules are valid, e.g., l + 0 = 0 + l = l and 1 · l = l · 1 = l. In addition
we equip our semiring with the unary operation ∗. For each l ∈ L, l∗ is defined
by l∗ =

∑
j≥0l

j, where l0 = 1 and lj+1 = lj · l = l · lj for j ≥ 0.
Since our matrix calculus manipulates the edges of CFGs, we need to have ba-

sic blocks on the (incoming) edges. To keep things simple we refer to edges, their
labels and the corresponding entries of the adjacency matrices synonymously.
A basic block consists of multiple consecutive statements without jumps. For
our purpose we need a finer granularity which we achieve by splitting edges. We
employ edge splitting for calls to synchronization primitives (e.g. p- and v-calls
to semaphores) and require that such a call referred to as si has to be the only
statement on the corresponding (split) edge. Edge splitting maps a CFG edge
e whose corresponding basic block contains k semaphore calls to a subgraph

◦ e1→ ◦ s1→ ◦ e2→ ◦ s2→ ◦ · · · ◦ ek→ ◦ sk→ ◦ ek+1→ ◦, such that each si represents a single
semaphore call, and ei and ei+1 represent the consecutive parts before and after
si, respectively (1 ≤ i ≤ k). Applying edge splitting results in a refined CFG
(RCFG).

Kronecker product and Kronecker sum form Kronecker algebra. In the follow-
ing we define both operations. Proofs, additional properties, and examples can
be found in [3,7,9,14]. In addition, we find it convenient to sometimes refer to
CFGs as automata, both of which are represented by matrices. From now on we
use matrices out of M = {M = (mi,j) |mi,j ∈ L} only.

Definition 1 (Kronecker product). Given an m-by-n matrix A and a p-by-q
matrix B, their Kronecker product A ⊗ B is an mp-by-nq block matrix defined
by

A⊗B =

⎛
⎜⎝

a1,1 · B · · · a1,n ·B
...

. . .
...

am,1 · B · · · am,n ·B

⎞
⎟⎠ .

Kronecker Algebra for Static Analysis of Ada Programs 29

(a) C (b) D

Interleavings

a · b · c · d
a · c · b · d
a · c · d · b
c · a · b · d
c · a · d · b
c · d · a · b

(c) Interleavings (d) C ⊕D

Fig. 1. A simple example

Given two automata, the Kronecker product synchronously executes them. This
means that both automata perform a single step at the same time. Thus the
Kronecker product is too restrictive for modeling tasks that synchronize via a
synchronization primitive. However, we will show below how we can achieve our
goal to model concurrent systems (see also [5,14,16]).

Definition 2 (Kronecker sum). Given a matrix A of order m and a matrix
B of order n, their Kronecker sum A ⊕ B is a matrix of order mn defined by
A ⊕ B = A ⊗ In + Im ⊗ B, where Im and In denote identity matrices of order
m and n, respectively.

The Kronecker sum calculates all possible interleavings of two concurrently ex-
ecuting automata (see, e.g., [11] for a proof) even if the automata contain con-
ditionals and loops. The following example illustrates the interleaving of two
simple tasks and how the Kronecker sum handles it.

Example 1. Consider matrices C =

⎛
⎝0 a 0
0 0 b
0 0 0

⎞
⎠ and D =

⎛
⎝0 c 0
0 0 d
0 0 0

⎞
⎠ . The CFGs of

matrices C and D are shown in Fig. 1a and Fig. 1b, respectively. The regular
expressions associated with the CFGs are a ·b and c ·d. All possible interleavings
by executing C and D in an interleavings semantics are shown in Fig. 1c. In
Fig. 1d the graph represented by the adjacency matrix C ⊕D is depicted. It is
easy to see that all possible interleavings are generated correctly. Note, however,
that ⊕ provides correct results even if the operands contain branches and loops.

The system model presented so far (see, e.g., [14]) consists of a finite number
of tasks and synchronization primitives which are represented by RCFGs. The
RCFGs are stored in form of adjacency matrices. The matrices have entries which
are referred to as labels l ∈ L as defined in Sect. 2. The only synchronization
primitives used until now are semaphores. In the following we first give the
general system model used by the Kronecker approach leading to (1). Then
we describe how Ada’s protected objects can be modeled such that Kronecker
algebra can be employed for analyzing concurrent Ada programs.

30 B. Burgstaller and J. Blieberger

Formally, the system model consists of the tuple 〈T ,S,L〉, where T is the set
of RCFG adjacency matrices describing tasks, S refers to the set of RCFG ad-
jacency matrices describing synchronization primitives, and the labels in T ∈ T
and S ∈ S are elements of L and LS, respectively. The matrices are manipulated
by using Kronecker algebra operations.

A Concurrent Program Graph (CPG) is a graph C = 〈V,E, ne〉 with a set
of nodes V , a set of directed edges E ⊆ V × V , and a so-called entry node
ne ∈ V . The sets V and E are constructed out of the elements of 〈T ,S,L〉.
Details on how we generate the sets V and E follow below. Similar to RCFGs,
the edges of CPGs are labeled by l ∈ L.

Let T (i) ∈ T and S(j) ∈ S refer to the matrices representing thread i and
synchronization primitive j, respectively. We obtain matrix T representing k
interleaved tasks and matrix S representing r interleaved synchronization prim-
itives by

T =
k⊕

i=1

T (i), where T (i) ∈ T and S =
r⊕

j=1

S(j), where S(j) ∈ S.

Because the operations ⊗ and ⊕ are associative (cf. [14]), the corresponding n-
fold versions are well defined. In the following we define the selective Kronecker
product which we denote by �L. This operator limits synchronization of the
operands to labels l ∈ L ⊆ L.

Definition 3 (Selective Kronecker product). Given an m-by-n matrix A
and a p-by-q matrix B, we call A �L B their selective Kronecker product. For
all l ∈ L ⊆ L let A�L B = (ai,j)�L (br,s) = (ct,u), where

c(i−1)·p+r,(j−1)·q+s =

{
l if ai,j = br,s = l, l ∈ L,
0 otherwise.

The selective Kronecker product ensures that, e.g., a semaphore p-call in the left
operand is paired with the p-operation in the right operand and not with any
other operation in the right operand.

Definition 4 (Filtered Matrix). We call ML a filtered matrix and define it
as a matrix of order o(M) containing entries l ∈ L ⊆ L of M = (mi,j) and zeros
elsewhere:

ML = (mL;i,j), where mL;i,j =

{
l if mi,j = l, l ∈ L,
0 otherwise.

The adjacency matrix representing program P is referred to as P . In [14] it
has been shown that P can be computed efficiently by

P = T �LS
S + TLV

⊗ Io(S). (1)

Intuitively, the selective Kronecker product term on the left allows for synchro-
nization between the tasks represented by T and the synchronization primitives S.

Kronecker Algebra for Static Analysis of Ada Programs 31

(a) Binary semaphore (b) Counting semaphore

Fig. 2. Semaphores (synchronization primitives)

Both T and S are Kronecker sums of the involved tasks and synchronization prim-
itives, respectively, in order to represent all possible interleavings of the concur-
rently executing tasks. The right term allows the tasks to perform steps that are
not involved in synchronization. Summarizing, the tasks (represented by T) may
perform their steps concurrently where all interleavings are allowed, except when
they call synchronization primitives. In the latter case the synchronization prim-
itives (represented by S) together with Kronecker product ensure that these calls
are executed in the order prescribed by the deterministic finite automata (DFA) of
the synchronization primitives.

So, for example, a task cannot do semaphore calls in the order v followed by p
when the semaphore DFA only allows a p-call before a v-call. The CPG of such
an erroneous program will contain a node from which the final node of the CPG
cannot be reached. This node is the one preceding the v-call. Such nodes can
easily be found by traversing CPGs. Thus deadlocks of concurrent systems can
be detected with little effort.

In Fig. 2a and 2b a binary and a counting semaphore are depicted. The latter
allows two threads to enter at the same time. In a similar way it is possible to
construct semaphores allowing n non-blocking p-calls (n ∈ N, n ≥ 1).

Figure 3 shows a small example. The program in Fig. 3a has two branches.
The left one employs calls p and v to an initially unlocked semaphore (Fig. 2a)
in the correct order, the second one contains two p-calls. Applying Kronecker
algebra (cf. (1) and Fig. 3b) we obtain the CPG in Fig. 3c. Node 6 shows that
there is a self-deadlock in the underlying program.

3

1

2

4

p p

v p

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 p p 0
0 0 0 v
0 0 0 p
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⊗

⎛
⎜⎝
0 p
v 0

⎞
⎟⎠=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 p 0 p 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 v 0
0 0 0 0 0 0 0 p
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

6

1

4

7

p p

v

(a) CFG (b) Matrices (c) CPG

Fig. 3. (a) An example program with a correct (left path) and incorrect (right path)
use of a binary semaphore that is initially unlocked; (b) Kronecker matrix operation;
(c) CPG after Kronecker analysis with the self-deadlock in CPG-node 6

32 B. Burgstaller and J. Blieberger

(a) (b) (c)

Fig. 4. Protected object PO (a), CFG template for protected functions (b) and task
CFG containing a call to the protected function PO.OP2 (c). CFGs generated from user
source code are shaded in grey . Instantiation proceeds from left to right: the CFG
of the protected function OP2 is inserted into the protected function graph template in
place of the highlighted edge labelled “exec Func”. The instantiated graph template is
inserted into the task CFG to replace the highlighted edge marking the call to PO.OP2.

3 Modelling Ada’s Protected Objects

Kronecker algebra until now has only been applied to concurrent programs
that use semaphores for synchronization. Ada’s protected objects (POs) are a
higher level synchronization primitive. For reasons explained in the latter part
of this section, simple Kronecker algebra-based semaphores are insufficient to
model POs.1 However, the Kronecker algebra approach is not limited to simple
semaphores. Its general idea is that DFAs are employed to model synchroniza-
tion primitives. The Kronecker product ensures that concurrent programs use
the operations of the modeled synchronization primitives (e.g., p and v with
semaphores) in the correct order, i.e., the order prescribed by the DFA. For this
reason we are free in setting up DFAs that describe the semantics of Ada POs.

Our approach is outlined in Fig. 4. We build on our prior work from [8] to
create CFGs from user-provided source code. CFGs are created for (1) the main
program, (2) all tasks in the concurrent Ada program, and (3) for all protected
operations. We provide graph templates for all types of protected operations,
i.e., functions, procedures, and entries. Templates model the mutual exclusion
semantics of protected operations as required by the Ada RM. Templates pro-
vide placeholders where the CFG of the user-supplied code of the protected
operation is inserted. E.g., with the template for protected functions in Fig. 4b,
the placeholder for the protected function call (“exec Func”) is wrapped by a
pair of P and V operations that enforce the mutual exclusion semantics required
by the Ada RM. We note that standard binary or counting semaphores, e.g.,

1 Clearly POs can be implemented with help of semaphores. Semaphores employed
within Kronecker algebra, however, differ from semaphores used in practical imple-
mentations in several ways. For example, tasks in the Kronecker algebra model are
not blocked and queued when a semaphore is not available.

Kronecker Algebra for Static Analysis of Ada Programs 33

from Fig. 2, are insufficient for this purpose: a counting semaphore would allow
concurrent execution of multiple protected function calls, but it cannot model
the exclusive access for protected procedure and entry calls at the same time.
We will develop the full semantics of graph templates in the latter part of this
section. For this introductory example we assume the simplified semantics pro-
vided by the binary semaphore from Fig. 2a to exclusively lock the protected
object PO.

At a protected operation call-site, a graph template is instantiated. E.g., with
the task CFG in Fig. 4c, the highlighted edge represents a call to the protected
function PO.OP2. Template instantiation inserts the CFG of the protected oper-
ation (Fig. 4a) into the graph template (Fig. 4b). The instantiated graph tem-
plate is inserted at the call site of the protected operation (Fig. 4c). The effect
of this protected operation “inlining” is that the protected operation call-site
is expanded into a CFG of the respective, user-provided protected operation-
functionality wrapped by the mutual-exclusion semantics of the graph template.
Insertions of CFGs are done in a manner similar to derivations in graph gram-
mars [17]. In the remainder of this section we describe our model in more detail,
accompanying it by a running example.

Our static analysis for concurrent programs with Ada POs extracts the pro-
gram semantics from the CFG of the user-supplied input program. As we have
already observed in the overview in Fig. 4, the user-supplied source code must be
complemented by functionality that ensures the mutual-exclusion semantics of
POs. The POmutual-exclusion semantics is complex, because it involves guarded
entries, protected procedures, and functions. Implementation permissions of the
Ada RM add complexity, because they allow multiple run-time system imple-
mentations which are correct with respect to Ada semantics, but which differ
considerably in the run-time behavior of the concurrent program. E.g., Ada al-
lows a task to execute an entry on behalf of another task [4, 9.5.3(22)]. So-called
proxy-model implementations [13] make use of this permission, which limits the
parallelism inherent in an application: because a proxy-task that executes an
entry on behalf of another, queued, task delays execution of its own code, par-
allelism is temporarily reduced. Entry queuing policies determine the order in
which queued tasks are served and thus influence the run-time behavior of the
program.

It is essential for a static analysis method for concurrency bugs to antic-
ipate all possible parallel executions of tasks in the program under consider-
ation. If the analysis misses out on a particular, incorrect parallel execution
(e.g., one that leads to a deadlock), analysis will yield a false negative result.
To cover the complexity of Ada’s PO synchronization constructs, and to cope
with concurrency-related variations from permissible implementations, we chose
a template-based approach. Our graph templates constitute semantic models
of the underlying execution semantics of Ada’s POs. Graph templates contain
all synchronization primitives necessary to ensure the correct mutual-exclusion
semantics imposed by the Ada RM. Synchronization primitives comprise stan-
dard semaphores, three-phase (counting) semaphores with operations Pe, V and

34 B. Burgstaller and J. Blieberger

1 procedure Running Example is
2
3 protected type Buffer (Max: Integer) is
4 entry Load (S: in String);
5 entry Get (C: out Character);
6 private
7 Data: String(1..Max);
8 Start: Integer := 1;
9 Finish: Integer := 0;
10 end Buffer;
11
12 protected body Buffer is
13 entry Load(S: in String)
14 when Start > Finish is
15 begin
16 Start := 1;
17 Finish := S’Length;
18 Data(Start..Finish) := S;
19 end Load;
20
21 entry Get(C: out Character)

22 when Start <= Finish is
23 begin
24 C := Data(Start);
25 Start := Start + 1;
26 end Get;
27 end Buffer;
28
29 B: Buffer(16);
30
31 task Getter;
32 task body Getter is
33 C: Character;
34 begin
35 loop
36 B.Get(C);
37 end loop;
38 end Getter;
39
40 begin
41 B.Load("Hello Ada!");
42 end Running Example;

Fig. 5. Running example

Px, and counting semaphore-like DFAs. Graph templates capture the semantics
of guards and their queuing policies. Our template-based approach offers the
following advantages.

1. Graph templates separate concerns: they isolate the semantics of the lan-
guage run-time system from user-level code. Graph templates provide few
and well-defined insertion points where user-level code of protected opera-
tions is automatically inserted during template instantiation.

2. Graph templates can be plugged into the Kronecker algebra-based PO anal-
ysis: multiple graph templates covering different PO implementations can
co-exist to be selected according to the run-time system at hand.

3. The graph template mechanism is extensible and generic and not restricted
to POs.

In the following we describe the graph templates necessary to model Ada PO
semantics. We chose the proxy-model where a task that opens the guard of an
entry with a queued task will execute the entry on behalf of the queued task [13].
In particular, if a guard of an entry evaluates to false, the calling task T1 has
to wait until the guard’s value changes. If, later on, a different task T2, after
executing a PO operation, detects that a guard now evaluates to true and that
task T1 is waiting for this guard to become true, T2 executes the PO entry on
behalf of task T1 and after that releases T1. T2 continues with the proxy execution
of entries until all tasks waiting on true (open) guards have been released. In the
meantime no other task can use the affected PO. Thus our model corresponds
to the semantics of Ada’s POs ([18]) and to the eggshell model implemented in
GNAT ([2,13]). Other PO implementations such as self-service where tasks do
not delegate entry call executions have been omitted due to space considerations;
their implementation will follow along the same lines.

Kronecker Algebra for Static Analysis of Ada Programs 35

1

15

2

3

4

5

6

7

8

P(POSem)
grdself = false:

P(EntrySemAtomicself)

Inc(EntrySemCountself)

V(POSem)

Pe(EntrySemself)

V(EntrySemAtomicself)

Px(EntrySemself)

9

10

11

14

13

grd1=true ∧ EntrySemCount1> 0:

[else1]:

12
[¬

el
se

1
∨
..
.
∨
¬e

ls
e n
]:

[elsen]:

V(EntrySem1)

grdself = true: exec Entryself

V(EntrySemn)

exec Entry1; Dec(EntrySemCount1)

grdn=true ∧ EntrySemCountn> 0:

exec Entryn; Dec(EntrySemCountn)

[else1 ∧ . . .∧ elsen]: V(POSem)

Fig. 6. Graph template for protected entries

We use the running example depicted in Fig. 5. The example is originally
from [2] and contains a string buffer implemented as a PO. The Load entry
(lines 13–19) allows filling the buffer, subject to the guard condition that the
buffer is empty. The Get entry allows character-by-character retrieval of the
buffer string, subject to the guard condition that the buffer is not empty. The
program’s main task, in the following called the Loader, fills the buffer once by
invoking the PO’s Load entry (line 41). The Getter task uses an infinite loop
(lines 35–37) to read characters from the buffer through repeated invocations of
the Get entry. After depleting all characters from the Loader’s initially loaded
string, the guard of the Get entry (line 22) becomes false.

Our graph template for protected entry operations is depicted in Fig. 6. This
template is to be instantiated at each protected entry call site in the program.
The purpose of the graph template is to encapsulate the semantics of a protected
entry operation in the form of a CFG which is inserted in place of the entry call
(see also the overview in Fig. 4). For the CFG of the running example from
Fig. 5, the template will be instantiated for the Get entry call in line 36 and the
Load entry call in line 41.

Template execution starts at Node 1 and proceeds along the edges of the graph
until a final node (depicted as a double-circle) is reached. Each edge contains
a label of the form 〈cond〉 : 〈side-effect〉, where cond is a condition that must
be true for execution to follow along this edge, and side-effect is the activity
performed as a result of edge execution. Trivial true conditions are omitted, and
null-statements are left empty, denoted by 〈cond〉 :.

For this exposition, the entries of a PO are numbered from 1 to n. We use vari-
able self to contain the number of the called entry. We employ one semaphore,

36 B. Burgstaller and J. Blieberger

1

2

P(
PO

Sem
)

F1

F2

V(POFSem)

V(POFSem)

P(POFSem)V(
PO

Sem
)

P(POFSem)

Fn

1

2

3

Px(EntrySem)

Pe(EntrySem)

V(EntrySem)

1 2

P(EntrySemAtomic)

V(EntrySemAtomic)

(a) (b) (c)

Fig. 7. DFAs for PO(F)Sem (a), EntrySem (b) and the atomic EntrySem (c)

POSem, per protected object to ensure mutual exclusion with the execution of
protected operations. The full semantics of the POSem semaphore will be dis-
cussed later in this section; For now we note that the semaphore is acquired
at the beginning of the entry operation (edge 1 → 2) and released upon exit
(edges 14→15 and 4→5). Depending on whether the guard of the called entry
is closed or open, execution follows along edge 2→ 3 or 2→ 9. The path from
node 2 to node 8 is used to queue a task that called an entry with a closed
guard, expressed by the edge-condition grdself =false. For each entry we main-
tain a counter for the number of queued tasks. This counter (EntrySemCountself)
is incremented along edge 2→3. (The counter will be used later when the guard
becomes open to decide whether a task is queued on this entry.) The task is
then queued (blocked) as follows: it relinquishes the POSem on edge 4→ 5 to
allow other tasks into the PO. The task then attempts to acquire the entry’s
EntrySemself semaphore on edge 5→ 6. Because the EntrySemself semaphore is
initially closed, the attempted acquisition will block the task. To cover the three
phases of (1) attempting to acquire the semaphore, (2) signaling the semaphore
by another task, and (3) releasing the blocked task, EntrySem semaphores have
three phases, as depicted in Fig. 7b. After the to-be-blocked task has executed
the Pe(EntrySem) operation, it cannot proceed until another task signals the
semaphore by executing V(EntrySem). Only then can the blocked task pro-
ceed to its Px(EntrySem) operation (edge 3 → 1 in Fig. 7b corresponding to
edge 7 → 8 in Fig. 6) and resume execution. We note that the three phases
applied in our model for EntrySem semaphores correspond to the behavior of
“real”, e.g., POSIX semaphores, where the P-operation of a closed semaphore is
interleaved with the V-operation of the signaling process.

With our entry-call graph template, a blocked task delegates entry call ex-
ecution to another task, the so-called proxy-task. This behavior is explicitly
allowed in the Ada RM [4, 9.5.3(22)]. Proxy execution is captured by nodes 9–
14 of Fig. 6: a task that is past the execution of its own entry call (edge 2→9)
will look for open guards. For an open guard, a blocked task is detected by an
EntrySemCount value greater than zero. The entry is executed and the Entry-
SemCount decremented (edges 9→ 10 and 12→ 13), followed by the release of
the blocked task (edges 10→ 11 and 13→ 14). Guards are evaluated in a loop

Kronecker Algebra for Static Analysis of Ada Programs 37

1

9

2

P(POSem)

3

4

5

8

7

grd1=true ∧ EntrySemCount1> 0:

[else1]

6

[¬
el
se

1
∨
..
.
∨
¬e

ls
e n
]

[elsen]

V(EntrySem1)

exec Procself

V(EntrySemn)

exec Entry1; Dec(EntrySemCount1)

grdn=true ∧ EntrySemCountn> 0:
exec Entryn; Dec(EntrySemCountn)

[else1 ∧ . . .∧ elsen]: V(POSem)

1

2

P(POFSem)

3

4

exec Funcself

V(POFSem)

(a) (b)

Fig. 8. Templates for protected procedures (a) and functions (b)

until proxy-execution and task-release has been achieved for all tasks blocked
on open guards. Only then will the proxy-task exit the PO by relinquishing the
POSem semaphore (edge 14 → 15). This behavior of favoring already queued
tasks over newly-arriving tasks is informally called the eggshell model.

A note is due on the EntrySemAtomic semaphore employed with the blocking
of tasks on closed entries (edges 3→ 4 and 6→ 7 in Fig. 6, and Fig. 7c): the
purpose of this semaphore is to enforce that relinquishing of the POSem and
queuing on the EntrySem happens atomically in our PO model. Note that the
nesting of the V(EntrySemAtomicself) operation within the P-operation (Pe and
Px) is not possible with real, e.g., POSIX, semaphores. However, the graph
template is concerned with the model of the mutual exclusion semantics, and
the stated nesting of calls in conjunction with the semantics of the Kronecker
algebra ensure that the model correctly represents the queuing of tasks.

The graph template for protected procedures depicted in Fig. 8a is simpler
than protected entries, because protected procedures are not guarded and hence
there is no need to block a calling task conditionally on a protected procedure.
Once the POSem has been acquired, the protected procedure is executed. As
with the entry call template, guards and EntrySemCounts are then repeatedly
evaluated for possible proxy-execution of entry-calls of blocked tasks.

Figure 8b contains the graph template for protected function calls. Because
functions are not allowed to change the state of a PO, multiple protected func-
tions are allowed inside the PO as long as mutual exclusion with protected entries
and procedures is ensured. We model this semantics as a counting semaphore
extension of the POSem used with protected entries and procedures. As de-
picted in Fig. 7a, POSem and POFSem operations are combined in one DFA:

38 B. Burgstaller and J. Blieberger

the DFA allows either one task acquiring the POSem semaphore, or multiple
tasks counting up the POFSem counting semaphore. We note again that this is
a synchronization mechanism created for our model of POs, which is not neces-
sarily the same as the run-time system implementation mechanism, but which
correctly models the execution semantics of the run-time system.

A final note is due on the EntrySem in Fig. 7c: if a program contains multiple
tasks potentially performing entry calls on a protected entry or procedure, then
the semaphore in Fig. 7c can be extended into a three-phase counting semaphore.
Our approach does not allow dynamically created tasks, hence the maximum
number of tasks can be statically bound.

The instantiation process for the running example is illustrated in Fig. 9. The
CFGs of the Loader and Getter task are depicted in Fig. 9b. The CFGs after
template instantiation are shown in Fig. 9c. For space considerations CFG edge
labels are abbreviated. The relation of the edge labels to the graph template in
Fig. 6 is stated in Fig. 9a.

The next step is to apply Kronecker algebra according to (1) to our graphs.
We obtain matrix T in (1) by applying the Kronecker sum to the CFGs after
template instantiation. Matrix S is obtained by employing the Kronecker sum to
the CFGs of Fig. 7a, of two instances of Fig. 7b (for the Load and Get EntrySem
semaphores), and two instances of Fig. 7c (again for the Load and Get entries of
the Buffer object). The result is a CPG that contains all possible interleavings of
the Loader and Getter task subject to the synchronization imposed by the Buffer
PO. The resulting matrix has size 7560x7560, it defines a CPG consisting of 171
nodes, 298 edges, and 13 deadlock nodes. Incorporating conditions and side-
effects of the CPG edge labels into our analysis, we find that several deadlock
nodes are unreachable, i.e., all paths from the root of the CPG to such a deadlock
node are infeasible and the deadlock thus constitutes a false positive. To illustrate
unreachable paths through the CPG, we consider the CPG subgraph of our
running example depicted in Fig. 10. The subgraph is rooted at the CPG root
node. The path along the edges G.gcz→G.p1→G.7→G.lcm→L.lcz is infeasible,
because the guard of the Get entry will be initially closed (the loader has not
filled the buffer yet). Thus the condition along edge G.7 will evaluate to false
and execution cannot proceed along this edge. Further consideration reveals
that all paths from the root of the CPG to the depicted deadlock node are
across edge G.7. Along all such paths, the condition on edge G7 is false and the
deadlock node is thus unreachable and constitutes a false positive.

CPGs contain infeasible paths because the Kronecker algebra does not con-
sider the conditions and side-effects on the edge-labels of CPGs. In the following
section we will apply symbolic analysis of the computations along edges to avoid
infeasible CPG paths and thereby increase the precision of the analysis.

4 Symbolic Analysis

Static program analysis is concerned with the design of algorithms that deter-
mine the dynamic behavior of programs without executing them. Symbolic anal-
ysis is an advanced static program analysis technique. It has been successfully

Kronecker Algebra for Static Analysis of Ada Programs 39

Label Meaning Edges

lcz EntrySemCount1=0 CFG
lcp Inc(EntrySemCount1) 2 → 3
lcm exec Entry1;

Dec(EntrySemCount1)
12 → 13

gcz EntrySemCount2=0 CFG
gcp Inc(EntrySemCount2) 2 → 3
gcm exec Entry2;

Dec(EntrySemCount2)
12 → 13

P1 P(POSem) 1 → 2
V1 V(POSem) 4 → 5,

14→15
P4 P(EntrySemAtomic1) 3 → 4
V4 V(EntrySemAtomic1) 6 → 7
P5,V5 ditto for EntrySemAtomic2
Pe3 Pe(EntrySem2) 5 → 6
Px3 Px(EntrySem2) 7 → 8
V3 V(EntrySem2) 13 → 14
7 exec Entry2 2 → 9
10 [else1] (grd1=false) 9 → 11
13 [else2] (grd2=false) 12 → 14
15 [¬ else1 ∨ ¬else2] 14 → 9
16 null CFG
g exec Entry1 2 → 9
j [else1] (grd1=false) 9 → 11
k [else2] (grd2=false) 12 → 14
n [¬ else1 ∨ ¬else2] 14 → 9

(a) Edge label descriptions

(b) Load & Get
Task CFGs

(c) Task CFGs after template instantiation (d) CPG

Fig. 9. (a) Relation of edge labels to the template in Fig. 6 and the task CFGs, (b) task
CFGs, (c) task CFGs with protected operations expanded (dashed edges remain from
the task CFGs), and (d) pruned CPG with deadlock node ()

40 B. Burgstaller and J. Blieberger

Fig. 10. Subgraph of the running example’s CPG with a false positive deadlock
node (). The CPG edge G.7 with the infeasible edge condition is dashed.

applied to several important problems in static program analysis (cf. [6] for more
details). The results gained using symbolic analysis provide invaluable informa-
tion for optimizing compilers, code generators, program verification, testing and
debugging.

Symbolic analysis uses symbolic expressions to describe computations as al-
gebraic formulæ over a program’s problem space. Symbolic analysis consists of
two steps: (1) the computation of symbolic expressions that describe all valid
variable bindings of a program at a given program point, and (2) the formulation
of a specific static analysis problem in terms of the computed variable bindings.

In general, CPGs contain many irreducible loops. The approach presented
in [6] can derive solutions for arbitrary nodes (even within loops and nested
loops) of reducible and irreducible CFGs. Thus the approach from [6] can be
used to solve static analysis problems based on CPGs.

In particular, we are interested in finding dead paths in CPGs in order to
reduce false positives. Returning to our running example, the CPG contains 13
deadlock nodes. If we can reduce the number of dead paths in the CPG with
help of symbolic analysis, deadlock nodes in the CPG will be reduced, too.

After we have located an edge e = (s → t) with a path condition being false
in all cases, the target node of this edge t is no more reachable during program
execution. In addition, nodes that can only be reached via t cannot be reached
anymore, too. To be more specific and applying notions from dataflow analysis,
nodes that can only be reached via t are related to the dominance frontier of
t. Dominance is a well-known relation frequently used in dataflow analysis (cf.,
e.g., [12]). Anyway, nodes that can only be reached via node t, can safely be
removed from the CPG together with edges adjacent to these nodes. We have
implemented an operation to remove such nodes based on the boost libraries [1].
By applying this operation to all edges for which the path condition evaluates
statically to false, all dead paths in the CPG can be eliminated.

After all dead paths have been removed from our example CPG, we obtain the
pruned CPG shown in Fig. 9d. All edges originating from task Getter are labeled
starting with the prefix “G”, while those originating from task Load show prefix
“L”. The suffixes of the edge labels are described in the table of Fig. 9a. Thus
they can be related to the template in Fig. 6.

Our pruned CPG consists of 56 nodes and 87 edges. Out of the 13 poten-
tial deadlock nodes in the original CPG, only one deadlock node remains after
pruning. The pruned CPG is depicted in Fig. 9d, with the deadlock node () at

Kronecker Algebra for Static Analysis of Ada Programs 41

the bottom left. Because we have eliminated all dead paths, we can be sure that
our example program eventually deadlocks. Studying the graph more closely, we
distinguish two parts:

1. One part reflects the Getter task calling entry Buffer.Get before the main
task calls entry Buffer.Load. In this case, the Getter task is blocked because
the corresponding guard is closed. Eventually Buffer.Load is called by the
main task. During its execution the first call to Buffer.Get is executed and
the Getter task is released. Later the Getter task issues the remaining calls
to Buffer.Get until all characters have been read from the Buffer object.

2. The other part reflects the main task executing the call to Buffer.Load

before the Getter task issues its first call to Buffer.Get. After the execution
of Buffer.Load is finished, the Getter task does its calls to Buffer.Get until
all characters have been read.

In both cases, after the last character has been read from the Buffer, the Getter
task again calls Buffer.Get. Since, however, the Buffer is empty now, the
Getter task is blocked because the guard of Buffer.Get is closed. As no task
issues a further call to Buffer.Load, the program deadlocks.

Instead of doing an accurate analysis, an alternative approach is to study only
one single path from the start node to the deadlock node of the pruned CPG. On
such a path, conditions can be identified that yield a deadlock. These conditions
provide enough facts to correct the erroneous program.

5 Conclusions

We have shown how Kronecker algebra can be employed for static analysis of
concurrent Ada programs that use protected objects for synchronization. In more
detail, we have provided graph templates that can be plugged into the graph
model used by Kronecker algebra when a guarded entry call, a procedure, or
function call is contained in a task body. Our graph model corresponds to the
well-known eggshell model for implementing PO semantics. In addition, we have
elaborated on how the graph resulting from Kronecker algebra can be pruned
by eliminating dead program paths.

Since Kronecker algebra is based on the theory of finite automata, dynam-
ically allocated tasks and dynamically allocated protected objects cannot be
modeled by our approach. As our analysis targets safety related systems, we do
not consider this a severe limitation.

The usefulness of our approach has been proved by a lazy implementation of
Kronecker algebra done in Ada. The implementation is very memory efficient and
has been parallelized to exploit modern many-core hardware architectures [14].
In addition, our implementation for pruning the resulting CPG is based on the
boost C++ libraries [1]. Generating CFGs for Ada programs is based on [8].

42 B. Burgstaller and J. Blieberger

References

1. The Boost Graph Library: User Guide and Reference Manual. Addison-Wesley
Longman Publishing Co., Inc., Boston (2002)

2. Barnes, J.: Programming in Ada 2005. Addison Wesley (2006)
3. Bellman, R.: Introduction to Matrix Analysis. Classics in Applied Mathematics,

2nd edn. Society for Industrial and Applied Mathematics (1997)
4. Brukardt, R.L. (ed.): Ada 2012 Annotated Reference Manual (2012)
5. Buchholz, P., Kemper, P.: Efficient Computation and Representation of Large

Reachability Sets for Composed Automata. Discrete Event Dyn. Systems 12(3),
265–286 (2002)

6. Burgstaller, B., Scholz, B., Blieberger, J.: A symbolic analysis framework for
static analysis of imperative programming languages. Journal of Systems and Soft-
ware 85(6), 1418–1439 (2012)

7. Davio, M.: Kronecker Products and Shuffle Algebra. IEEE Trans. Computers 30(2),
116–125 (1981)

8. Fechete, R., Kienesberger, G., Blieberger, J.: A framework for CFG-based static
program analysis of Ada programs. In: Kordon, F., Vardanega, T. (eds.) Ada-
Europe 2008. LNCS, vol. 5026, pp. 130–143. Springer, Heidelberg (2008)

9. Graham, A.: Kronecker Products and Matrix Calculus with Applications. Ellis
Horwood Ltd., New York (1981)

10. Kuich, W., Salomaa, A.: Semirings, Automata, Languages. Springer (1986)
11. Küster, G.: On the Hurwitz Product of Formal Power Series and Automata. Theor.

Comput. Sci. 83(2), 261–273 (1991)
12. Lengauer, T., Tarjan, R.E.: A fast algorithm for finding dominators in a flow graph.

ACM Transactions on Programming Languages and Systems 1(1), 121–141 (1979)
13. Miranda, J.: A Detailed Description of the GNU Ada Run Time (2002),

http://www.iuma.ulpgc.es/users/jmiranda/gnat-rts/

14. Mittermayr, R., Blieberger, J.: Shared Memory Concurrent System Verification us-
ing Kronecker Algebra. Technical Report 183/1-155, Automation Systems Group,
TU Vienna (September 2011), http://arxiv.org/abs/1109.5522

15. Mittermayr, R., Blieberger, J.: Timing Analysis of Concurrent Programs. In: Var-
danega, T. (ed.) 12th International Workshop on Worst-Case Execution Time Anal-
ysis, Dagstuhl, Germany. OpenAccess Series in Informatics (OASIcs), vol. 23, pp.
59–68. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2012)

16. Plateau, B.: On the Stochastic Structure of Parallelism and Synchronization Mod-
els for Distributed Algorithms. ACM SIGMETRICS 13, 147–154 (1985)

17. Rozenberg, G.: Handbook of Graph Grammars and Computing by Graph Trans-
formation: Volume I. Foundations. World Scientific Publishing Co., Inc. (1997)

18. Taft, S.T., Duff, R.A., Brukardt, R.L., Plödereder, E., Leroy, P.: Ada 2005 Refer-
ence Manual. LNCS, vol. 4348. Springer, Heidelberg (2006)

19. Tarjan, R.E.: A Unified Approach to Path Problems. J. ACM 28(3), 577–593 (1981)

http://www.iuma.ulpgc.es/users/jmiranda/gnat-rts/
http://arxiv.org/abs/1109.5522

A TASM-Based Requirements Validation
Approach for Safety-Critical Embedded Systems

Jiale Zhou, Yue Lu, and Kristina Lundqvist

School of Innovation, Design and Engineering
Mälardalen University, Västerås, Sweden

{zhou.jiale,yue.lu,kristina.lundqvist}@mdh.se

Abstract. Requirements validation is an essential activity to carry out
in the system development life cycle, and it confirms the completeness
and consistency of requirements through various levels. Model-based for-
mal methods can provide a cost-effective solution to requirements vali-
dation in a wide range of domains such as safety-critical applications. In
this paper, we extend a formal language Timed Abstract State Machine
(TASM) with two newly defined constructs Event and Observer, and
propose a novel requirements validation approach based on the extended
TASM. Specifically, our approach can: 1) model both functional and
non-functional (e.g. timing and resource consumption) requirements of
the system at different levels and, 2) perform requirements validation by
utilizing our developed toolset and a model checker. Finally, we demon-
strate the applicability of our approach in real world usage through an
industrial case study of a Brake-by-Wire system.

1 Introduction

With the growing complexity of safety-critical systems, requirements are no longer
merely specified at the outset of the systems development life cycle (SDLC). On the
contrary, there is a continuum of requirements levels as more and more details are
added throughout the SDLC, which can roughly be divided into two categories in
terms of high-level and low-level requirements [2].High-level requirements describe
what features the proposed system has (i.e. features hereafter) and low-level re-
quirements state how to develop such a system (i.e. requirements hereafter). Stud-
ies have revealed that most of the anomalies discovered in late development phases
can be traced back to hidden flaws in the requirements [9] [11], such as contradic-
tory or missing requirements, or requirements that are discovered to be impossible
to satisfy features at the late phase of development. For this reason, requirements
validation is playing a more and more significant role in the development process,
which confirms the correctness of requirements, in the sense of consistencyandcom-
pleteness [20]. In details, consistency refers to situations where a specification con-
tains no internal contradictions in the requirements, while completeness refers to
situations where the requirements must possess two fundamental characteristics,
in terms of neither objects nor entities are left undefined and the requirements can
address all of the features.

L. George and T. Vardanega (Eds.): Ada-Europe 2014, LNCS 8454, pp. 43–57, 2014.
c© Springer International Publishing Switzerland 2014

44 J. Zhou, Y. Lu, and K. Lundqvist

In order to increase the confidence in the correctness of the requirements,
model-based formal methods techniques have been to a large extend investigated
into the field of requirements validation [7] [10]. In these techniques, the system
design derived from requirements is often specified in terms of analyzable models
at a certain level of abstraction. Further, features are formalized into verifiable
queries or formulas and then fed into the models to perform model checking
and/or theorem proving. In this way, the requirements are reasoned about to
resolve contradictions, and it is also verified that they are neither so strict to
forbid desired behaviors, nor so weak to allow undesired behaviors. However, such
formal methods techniques also suffer from some limitations, such as how to ease
the demand of heavy mathematics background knowledge to perform theorem
proving, and how to model the target without having the state explosion problem
of model checking occurred.

To tackle with the aforementioned limitations, we propose an approach to
requirements validation using an extended version of the formal language Timed
Abstract State Machine (TASM), which contains new constructs TASM Event
and TASM Observer. Additionally, TASM has shown its success in the area of
systems verification in [18] [19], with some distinctive features: 1) TASM sup-
ports the formal specification of both functional behaviors and non-functional
properties of safety-critical systems w.r.t. timing and resource consumption and,
2) It is a literate language being understandable and usable without requiring ex-
tensive mathematical training, which avoids obscure mathematics formulae and,
3) TASM provides a toolset [16] to execute the pertaining TASM models for
the purposes of analysis. The Observer technique [4] has an origin in the model-
based testing domain where it has been used to specify and observe coverage
criteria as well as verify such observable properties, but without changing the
system’s behaviors. The applications and advantages of using the Observer tech-
nique inspire us to exploit it to perform requirements validation, which makes a
detour on the state explosion issue of model checking by not adding new states
in the analysis. To be specific, our approach consists of three main steps:

– Requirements modeling models requirements by using various constructs
in TASM.

– Features modeling translates features into our newly defined TASM ob-
servers that are used for the later analysis.

– Requirements validation contains four kinds of validation checking on
focus, i.e. Logical Consistency Checking, Auxiliary Machine Checking, Cov-
erage Checking, and Model Checking, as in the consistency and completeness
checking of requirements.

The main contributions of this work are three-fold: 1) We extend the TASM
language with two newly defined constructs in terms of Event and Observer
and, 2) We propose a novel approach to requirements validation by using the
extended TASM language and, 3) We demonstrate the applicability of our ap-
proach through a case study. The remainder of this paper is organized as fol-
lows: An introduction to the TASM language and its extension is presented in

A TASM-Based Requirements Validation Approach 45

Section 2. Section 3 introduces the Brake-by-Wire (BbW) system and its require-
ments. Our approach to requirements validation is described and demonstrated
by using the BbW system in Section 4. Section 5 discusses the related work, and
finally concluding remarks and future work are drawn in Section 6.

2 TASM Language and Its Extension

Figure 1 shows the meta-model of the extended TASM language in UML class
diagram. The constructs included in the dashed rectangle are the new TASM
constructs defined in this work. Section 2.1 gives an overview of the TASM
language and Section 2.2 presents the extension of TASM.

Fig. 1. The Meta-model of the extended TASM language

2.1 Overview of TASM

TASM [16] is a formal language for the specification of safety-critical systems,
which extends the Abstract State Machine (ASM) [5] with the capability of mod-
eling timing properties and resource consumption of applications in the target
system. TASM inherits the easy-to-use feature from ASM, which is a literate
specification language understandable and usable without extensive mathemati-
cal training [8]. A TASM model consists of two parts – an environment and a set
of main machines. The environment defines the set and the type of variables, and
the set of named resources which machines can consume. The main machine is
made up of a set of monitored variables which can affect the machine execution,

46 J. Zhou, Y. Lu, and K. Lundqvist

a set of controlled variables which can be modified by machines, and a set of
machine rules. The set of rules specify the machine execution logic in the form
of “if condition then action", where condition is an expression depending on the
monitored variables, and action is a set of updates of the controlled variables.
We can also use the rule “else then action" which is enabled merely when no
other rules are enabled. A rule can specify the annotation of the time duration
and resource consumption of its execution. The duration of a rule execution can
be the keyword next that essentially states the fact that time should elapse until
one of the other rules is enabled.

TASM describes the basic execution semantics as the computing steps with
time and resource annotations: In one step, it reads the monitored variables,
selects a rule of which condition is satisfied, consumes the specified resources,
and after waiting for the duration of the execution, it applies the update set
instantaneously. If more than one rules are enabled at the same time, it non-
deterministically selects one to execute. As a specification language, TASM sup-
ports the concepts of parallelism which stipulates TASM machines are executed
in parallel, and hierarchical composition which is achieved by means of aux-
iliary machines which can be used in other machines. There are two kinds of
auxiliary machines - function machines which can take environment variables
as parameters and return execution result, and sub machines which can encap-
sulate machine rules for reuse purpose [16]. Communication between machines,
including main machines and auxiliary machines, can be achieved by defining
corresponding environment variables.

2.2 The Extension to TASM

Our extension to TASM consists of two main parts, i.e. TASM Event and TASM
Observer (Event and Observer hereafter, respectively) as shown in Figure 1.

Definition 1 TASM Event (EV). TASM Event E defines the possible types of
an event instance, including ResourceUsedUpEvent, ChangeValueEvent, RuleEn-
ableEvent, and RuleDisableEvent. An event instance e is triggered by the corre-
sponding TASM construct, which is a tuple < E, t >, where E is the type of the
event instance, and t is the time instant when the instance occurs.

The events of ChangeV alueEvent type is triggered by a specific TASM envi-
ronment variable whenever its value is updated„ which can be referenced in the
form of VariableName->EventType. The ResourceUsedUpEvent is triggered by
the case whenever the resource of the application is consumed totally, which can
be referenced in the form of ResourceName->EventType. The RuleEnableEvent
and RuleDisableEvent are triggered whenever a specific TASM rule is enabled
or disabled, respectively, which can be referenced in the form of MachineName-
>RuleName->EventType.

Definition 2 TASM Observer. An observer is a tuple < ObserverEnvironment,
Listener,Observation >, where:

A TASM-Based Requirements Validation Approach 47

– ObserverEnvironment is a tuple < ObserverV ariable, EventsF ilter >,
where ObserverV ariable is a set of variables that can be used by both Listener
and Observation, and EventsF ilter can be configured to filter out events ir-
relevant to the observer.

– Listener specifies the observer execution logic in the form of "listening
condition then action", where the condition is an expression describing the
sequence of the occurrence of events and the action is a set of actions updat-
ing the value of observer variables when the condition evaluates to be true.

– Observation is a predicate of the TASM model, which can evaluate to be
either true or false, depending on the value of corresponding observer vari-
ables.

In this work, we only introduce the informal execution semantics of Observer,
as depicted in Figure 2, and the formal semantics is considered as part of our
future work. Basically, in the runtime, the TASM model often produces massive
events according to the modeled application. After the EventsF ilter removes
the irrelevant events, the remaining events will be logged in the local database,
namely EventsLog. Next, the Listener defined in Observer will evaluate its
condition based off of the sequence of logged events. Since regular expression
is usually used as a sequential search pattern, the specification of the event
sequence follows the syntax and semantics of regular expression. If the condition
is satisfied, then the action will start to update the observer variables. Once all
of the updates are executed, the Observation will be concluded based on the
updated observer variables. A running TASM model (representing the target
system) can be observed by several observers at the same time.

For a better understanding,we give an example ofObserver as shown inFigure 3,
where eventA and eventB areRuleEnableEvent type, and eventC and eventD are
RuleDisableEvent type. The observervariables include aBooleanvariable ov (ini-
tiated as false) and a Time variable time (initiated as zero). ChangeV alueEvent
and ResourceUsedUpEvent are regarded as irrelevant events and removed by the
EventsF ilter, the RuleEnableEvent and RuleDisableEvent events are logged
in the Eventslog database. As shown in line 9 in Figure 3, the expression of the
Listener condition in regular expression, represents the event sequence that begins
with eventA, followed by arbitrary events (represented by ".*") in the middle, and
ends with two events in terms of either eventBandeventD, or eventCandeventD.
If the condition evaluates to be satisfied, the observer variable ov will be assigned
as true, and time as the interval between eventA and eventD. In this example, if
the events sequence in the condition is detected and the interval time is larger than
100, the Observation will be concluded as a true predicate.

3 Case Study

Our case study is a Brake-by-Wire (BbW) system which is a demonstrator at a
major automotive company [13]. The BbW system aims to replace the mechani-
cal linkage between the brake pedal and the brake actuators. Further, the BbW

48 J. Zhou, Y. Lu, and K. Lundqvist

Fig. 2. The workflow of the Observer
execution

1 ObserverVariables:{
2 Boolean ov := false;
3 Time time := 0;
4 }
5 EventsFilter:{
6 filter out: ChangeValueEvent ,

↪→ResourceUsedUpEvent;
7 }
8 Listener :{
9 listening eventA .*(eventB | eventC)

↪→eventD then
10 ov := true;
11 time := eventD.t - eventA.t;
12 }
13 Observation:{
14 ov == true and time > 100;
15 }

Fig. 3. An example of the TASM Ob-
server

system consists of micro-controller units, sensors, actuators and communication
bus, which interprets driver’s operation and operating conditions, through sen-
sors, to decide on the desired brake torque of the brake actuators for appropriate
brake force on each wheel.

The features that the BbW system should possess are described as follows:

– Req H1: The system shall provide a base brake functionality where the
driver indicates that she/he wants to reduce speed so that the braking system
starts decelerating the vehicle.

– Req H2: When the brake pedal is not pressed, the brake shall not be active.
– Req H3: The time from the driver’s brake request till the actual start of

the deceleration should be no more than 300 ms.

The list of requirements for the BbW system in our work is as follows:

– Req L1: The brake torque calculator shall compute the driver requested
torque and send the value to the vehicle brake controller, when a brake
pedal displacement is detected.

– Req L2: The vehicle brake controller shall decide the required torque on each
wheel and each of the required wheel torque values is sent together with the
sensed vehicle velocity to the Anti-lock Braking System (ABS) function on
respective wheel.

– Req L3: The ABS function shall decide appropriate braking force on each
wheel, based on the received torque request, current vehicle velocity and
wheel angular velocity.

4 The TASM-Based Approach to Requirements
Validation

In this section, we will introduce our approach that addresses the issue of for-
malizing and validating requirements specifications written in natural language.

A TASM-Based Requirements Validation Approach 49

Further, our approach is based on the use of the extended TASM language to
formalize both requirements and features. We will go into details about each
step by introducing the adhering sub-steps and show an illustration by using the
BbW system. Specifically, Section 4.1 and Section 4.2 discuss modeling of the
requirements and features respectively, and Section 4.3 presents the analysis and
results of requirements validation of the BbW system.

4.1 Requirements Modeling

The first step of our approach is to analyze the low-level requirements (i.e. ,
requirements) in natural language and formalize them by using the corresponding
TASM models. This step contains five sub-steps, as shown in Figure 4:

Fig. 4. The sub-steps of requirements modeling

– Step 1: Requirements Preprocessing distinguishes functional require-
ments from non-functional requirements.

– Step 2: Components Identification extracts the possible software com-
ponents of the system referred in the functional requirements and maps them
onto TASM main machines.

– Step 3: Connections Identification identifies the connections between
different software components, according to a certain type of interactions.

– Step 4: Behavior Specification specifies the behaviors of components,
which implement different system functionalities.

– Step 5: Property Annotation adds timing and resource consumption
annotations to the relevant TASM model.

Requirements Preprocessing. At this step, we need to distinguish functional
requirements from non-functional requirements. The functional requirements will
be formalized into executable TASM models, and non-functional requirement
in terms of timing and resource consumption requirements can provide useful
information for property annotation. In the BbW system, all the requirements,
i.e. ReqL1, ReqL2 and ReqL3, are functional requirements.

Components Identification. The identification of the system components and
the mapping of each component onto a TASM main machine is of importance
in the process. In order to do so, we recommend the following two tasks:
– Identification of the external (or environmental in other words) components

that interact with the system.
– Identification of the internal components that compose of the system.

At this step, a list of main machines will be defined for the BbW system, as
shown in Table 1.

50 J. Zhou, Y. Lu, and K. Lundqvist

Table 1. The TASM main machines model the entire Brake-by-Wired system

Main Machine Quantity Category Description
DRIVER 1 External Entity model the driver’s behavior
VEHICLE 1 External Entity model the behavior of the vehicle

TORQUE_CALC 1 Micro-controller calculate the driver’s requested torque
BRAKE_CTRL 1 Micro-controller calculate the requested torque per wheel
ABS_CTRL 4 Micro-controller calculate the brake force on each wheel

BRAKE_ACTU 4 Actuator perform the brake force on each wheel
WHLSPD_SENSOR 4 Sensor sense the rotating speed of each wheel
VCLSPD_SENSOR 1 Sensor sense the moving speed of the vehicle
PEDAL_SENSOR 1 Sensor sense the position of the brake pedal
COMMU_BUS 1 Bus the communication bus

Connections Identification. In the TASM model, asynchronous communi-
cation between different main machines can be implemented by using a set
of variables, which ignores the transmission delay between machines. On the
contrary, the common form of inter-process communication (IPC) is message-
passing, which considers the transmission delay and bandwidth consumption as
unavoidable. To this end, we define a main machine with the annotation of time
and bandwidth as a means of modeling the communication bus. In our case
study, the sensors in the BbW system communicate with the corresponding con-
trollers through ports using signals, where transmission delay can be ignored.
Further, a specific TASM main machine i.e. COMMU_BUS (in Table 1) models
the communication bus, which is responsible for the communication between the
brake controller and the ABS controllers.

Behavior Specification. There is no silver-bullet to model the behaviors of
various components in TASM. Based on our experiences, we recommend the
following steps:
– Identification of possible states of the target system: A user-defined type is

used to represent the possible states, and a state variable is defined to denote
the current state of the system.

– Identification of the transition conditions of states: The conditions of a cer-
tain machine rule are given, according to the corresponding value of the state
variable and the transition conditions.

– Identification of the actions when the system enters a specific state: The
actions of machine rules are specified, based on the behaviors of a component
and the next possible state.

In the BbW system, all of the identified components (i.e. TASM main ma-
chines) are divided into five categories according to different functionalities: ex-
ternal entity, micro-controller, actuator, sensor, and bus. For reasons of space,
we do not list all the rules used by the identified TASM main machines. Instead,
we list the rules of four typical templates in our case study, i.e. micro-controller,
actuator, sensor, and bus. In order to have a better understanding on the pro-
posed sub-steps, we discuss the specification of a micro-controller component in
detail.

A TASM-Based Requirements Validation Approach 51

A micro-controller component is activated by an event, and it reads a set of
variables and performs a sequence of computation after being activated. When
it finishes execution, the result will be used by other components. Therefore,
the micro-controller component typically has three possible states – WAIT (ini-
tial state), COMPUTE, and SEND: The WAIT sate denotes that the micro-
controller is waiting for activation and, the COMPUTE state represents that
the micro-controller is performing computation. The SEND state introduces that
the micro-controller is sending the results to other components. Figure 5 shows
the rules of the TASM main machine, which models the micro-controller. PER-
FORM_COMPUTATION() and SEND_RESULT() are sub machines.

Figure 6 shows the machine rules that model an actuator, and PERFORM_A-
CTUATION() is a sub machine. Figure 7 shows the rules of the TASM main ma-
chine, which models a sensor. Measure_Quantity() is a function machine. Figure 8
shows the machine rules, which models the communication bus. Get_Message() is
a function machine and TRANSMITTING_MESSAGE() is a sub machine.

1 R1:Activation{
2 if ctrl_state=wait and new_event=

↪→True then
3 ctrl_state := compute;
4 new_event := False;
5 }
6 R2:Computation{
7 t:= computation_time;
8 if ctrl_state = compute then
9 PERFORM_COMPUTATION ();

10 ctrl_state := send;
11 }
12 R3:Send{
13 if ctrl_state = send then
14 SEND_RESULT ();
15 ctrl_state := wait;
16 }
17 R4:Idle{
18 t := next;
19 else then
20 skip;
21 }

Fig. 5. The TASM main machine mod-
els the micro-controller component

1 R1:Trigger {
2 if actu_state=wait and new_event=

↪→True then
3 new_event := False;
4 actu_state := actuate ;
5 }
6 R2:Actuation{
7 t:= actuation_time;
8 if actu_state=actuate then
9 PERFORM_ACTUATION();

10 actu_state := wait;
11 }
12 R3:Idle{
13 t:= next;
14 else then
15 skip;
16 }

Fig. 6. The TASM main machine mod-
els the actuator component

Non-functional Property Annotation. The accurate estimation of the per-
taining non-functional properties of the target system is playing a paramount
role in performing non-functional requirements validation. The Property Anno-
tation step can be carried out in the following ways:
– The estimates can be determined based upon the non-functional require-

ments specified in the low-level requirements.
– The estimates can be obtained by using existing well-known analysis meth-

ods, e.g. Worst-Case Execution Time (WCET) Analysis [12] for time
duration of rules.

52 J. Zhou, Y. Lu, and K. Lundqvist

1 R1:Sample{
2 if sensor_state = sample then
3 sensor_value :=

↪→Measure_Quantity ();
4 sensor_state := send;
5 }
6 R2:Send{
7 if sensor_state = send and

↪→sensor_value >= threshold
↪→then

8 observer_value := sensor_value
↪→;

9 new_sample_value := True;
10 sensor_state := wait;
11 }
12 R3:Wait{
13 t := period;
14 if sensor_state = wait then
15 sensor_state := sample;
16 }

Fig. 7. The TASM main machine mod-
els the sensor component

1 R1:Transmit{
2 if bus_state=idle and new_message

↪→=True then
3 bus_message := Get_Message ();
4 bus_state := engaged;
5 }
6 R2:Send{
7 t:= bus_delay;
8 band:= bandwidth;
9 if bus_state = engaged then
10 TRANSMITTING_MESSAGE ();
11 bus_state := idle;
12 }
13 R3:Wait{
14 t := next;
15 else then
16 skip;
17 }

Fig. 8. The TASM main machine mod-
els the communication bus component

– The estimates can be determined based upon the information in the related
hardware specifications, e.g. the time duration and power consumption of a
communication bus transferring one message.

– However, in some cases, the estimates can also be given by the experiences
of domain experts, if the accurate estimation is not possible.

We annotate the aforementioned TASM models with time duration and re-
source consumption, and the annotation terms computation_time, actuation_
time, period, bus_delay and bandwidth are either a specific value or a range of
values, which are given by our domain knowledge for simplicity.

4.2 Features Modeling
Our approach proceeds with the formalization of high-level requirements, i.e. ,
features. At this step, each feature will be translated into corresponding TASM
observer(s). The formalization consists of the following sub-steps:
– Step 1: Listener Specification specifies the possible events sequence

which represents the observable functional behaviors or non-functional prop-
erties required by the feature, and the corresponding actions taken on ob-
server variables when the sequence is caught by the Listener.

– Step 2: Observation Specification formalizes a predicate depending on
the observer variables. If the predicate of the Observation holds, i.e. evaluates
to be true, it implies that the satisfaction of the feature can be observed in
the system.

– Step 3: Events Filtering identifies the interesting events and filters out
the irrelevant events by specifying EventsF ilter.

– Step 4: Traceability Creation links the specified Observer to the tex-
tual requirements. The link is used for requirements traceability from the

A TASM-Based Requirements Validation Approach 53

formalization to natural language requirements in order to perform coverage
checking.

In the BbW system, there are three features i.e. ReqH1, ReqH2 and ReqH3.
The specification of Observer is illustrated by applying the proposed steps to
ReqH1. To be specific, ReqH1 states "The system shall provide a base brake
functionality where the driver indicates that she/he wants to reduce speed so
that the braking system starts decelerating the vehicle", and the interesting
events sequence consists of three parts. The first part "PEDAL_SENSOR-
>Send->RuleEnableEvent" denotes the event that is triggered when the Send
rule of the PEDAL_SENSOR main machine is enabled, which models the be-
havior that the brake pedal is pressed by the driver. The second part ".*" has
the same semantic with the counterpart defined in regular expression, which
means an arbitrary number of events regardless of their type. The last part
"BRAKE_ACTU->Actuation->RuleEnableEvent" represents the event that is
triggered after the Actuation rule of the BRAKE_ACTU main machine is exe-
cuted, i.e. disabled, which models the behavior that the brake actuator acts on
the wheels i.e. decreases the speed of the vehicle. When the events sequence is
detected, the Observation "ov == true" evaluates to be true, which indicates
that the satisfaction of ReqH1 can be observed in the TASM model.

1 ObserverVariables :{
2 Boolean ov := false;
3 }
4 EventsFilter :{
5 filter out: ChangeValueEvent , ResourceUsedUpEvent , RuleDisableEvent;
6 }
7 Listener :{
8 listening PEDAL_SENSOR ->Send ->RuleEnableEvent .* BRAKE_ACTU ->Actuation ->

↪→RuleEnableEvent then
9 ov := true;

10 }
11 Observation :{
12 ov == true;
13 }

Fig. 9. The Observer of Req H1

4.3 Requirements Validation

Validation of the formalized requirements aims at increasing the confidence in
the validity of requirements. In this work, we assume that there is a semantic
equivalence relation between the requirements and TASM models, and between
features and observers. This is built upon the fact that the TASM models and
observers are derived from the documented requirements and features, by fol-
lowing the proposed modeling steps based on our thorough understanding of
the BbW system. The validation goal is achieved by following several analysis
steps, based on the use of the derived TASM models and observers which may
help to pinpoint flaws that are not trivial to detect. Such validation steps in our
approach are:

54 J. Zhou, Y. Lu, and K. Lundqvist

– Logical Consistency Checking. The term of logical consistency can be
intuitively explained as "free of contradictions in the specifications". In our
work, the logical consistency checking can be performed on the executable
TASM models, i.e. requirements, by our developed tool TASM Toolset.
Two kinds of inconsistency flaws can be discovered. One kind of flaw is that
two machine rules are enabled at the same time, which is usually caused by
the fact that there exist unpredictable behaviors in the requirements. The
other is that different values are assigned to the same variable at the same
time, which is usually caused by the fact that there exist hidden undesired
behaviors in the requirements.

– Auxiliary Machine Checking. Auxiliary machines include function ma-
chine and sub machine. When the TASM Toolset starts to execute the
TASM model, if there exists any undefined auxiliary machine, the tool will
detect this situation, stop proceeding, and generate an error message. The
existence of undefined auxiliary TASM machines, in terms of functions and
sub machines, violates the completeness of TASM model specifying require-
ments. The undefined auxiliary TASM machines are usually caused by the
lack of detailed descriptions of the proposed system’s behaviors.

– Coverage Checking. Coverage checking corresponds to checking whether
the desired behaviors specified in features can be observed in the TASM
model, which is an important activity of requirements completeness checking.
To perform the coverage checking, all of the features are translated into
observers which observe the execution of TASM models at runtime. If the
Observation holds, the corresponding feature can be regarded as covered by
the requirements.

– Model Checking. The TASM machines can be easily translated into timed
automata through the transformation rules defined in [16]. The transfor-
mation enables the use of the Uppaal model checker to verify the various
properties of the TASM model. This check aims at verifying whether the
TASM model is free of deadlock and whether an expected property specified
in a feature is satisfied by the TASM model. It is necessary to stress that
the essential difference between Model Checking and Coverage Checking is
whether a property is exhaustively checked against a model or not. Although
a sound property checking is desired, in some cases Model Checking will en-
counter state explosion problem, which limits its usefulness in practice.

We follow the validation steps to check the validity of the requirements of the
BbW system. First, we use the TASM Toolset to perform Logical Consistency
Checking on the formalized TASM model. As in the fact that there are no in-
consistency warnings reported by the tool, we therefore proceed the validation
steps with Auxiliary Machine Checking. As shown in Figure 5, 6, 7 and 8, there
exist some undefined auxiliary machines in the TASM models of those typical
components, which also have been detected by our TASM toolset. For in-
stance, in the ABS_CTRL main machine (a micro-controller component), the
PERFORM_COMPUTATION sub machine is not defined, which implies that
the requirements need to specify in more details about how "The ABS function

A TASM-Based Requirements Validation Approach 55

shall decide appropriate braking force on each wheel". Next for Coverage Check-
ing, since the observations are determined to be held according to the results of
the TASM observers in the runtime, the satisfaction of requirements towards fea-
tures is therefore reached. On the note about Model Checking, we first translate
the TASM model into timed automata, and then check the deadlock property
as well as the ReqH3 requirement via the Uppaal model checker. The corre-
sponding results are: 1) Deadlock free is satisfied and, 2) the ReqH3 is satisfied.
Although the case study is a demonstrator, it is an illustrative example to show
how to follow our proposed approach to perform requirements validation at var-
ious levels.

5 Related Work

In addition to the aforementioned related work, there are some other interesting
pieces of work deserved to be mentioned as follows. Event-B [1] is a formal
state-based modeling language that represents a system as a combination of
states and state transitions. Iliasov [10] showed how to use Event-B for systems
development, where the system constraints are formalized as a set of visualized
proof obligations which can be synthesized as use cases. Such proof obligations
are then reasoned about their satisfaction in the corresponding Event-B model.
Mashkoor et al. [14] proposed a set of transformation heuristics to validate the
Event-B specification by using animation.

Cardei et al. [6] presented a methodology that first converts SysML require-
ments models into a requirements model in OWL, and then performs the rule-
based reasoning to detect omissions and inconsistency. Becker et al. [3] provided
a formalization for self-adaptive systems and the corresponding requirements,
which enables a semi-automatic analysis of performance requirements for self-
adaptive systems. Cimatti et al. [7] introduced a series of techniques that have
been developed for the formalization and validation of requirements for safety-
critical systems. Specifically, the methodology consists of three main steps in
terms of informal analysis, formalization, and formal validation. Scandurra et
al. [17] proposed a framework to automatically transform use cases into ASM
models, which are used to validate the requirements through scenario-based sim-
ulation. MARTE [15] is a UML profile for modeling and analysis of RTES, cov-
ering both functional and non-functional properties of the system. Nevertheless,
to our best knowledge, there has not been any work about using MARTE for
the purposes of requirements validation.

6 Conclusions and Future Work

In this paper, we have proposed a novel TASM-based approach to requirements
validation. The approach 1) uses the extended TASM language to model the doc-
umented requirements and, 2) performs the requirements validation by using two
tools in terms of the TASM Toolset and the model checker Uppaal. Our case
study using a Brake-by-Wire (BbW) system developed by a major automotive

56 J. Zhou, Y. Lu, and K. Lundqvist

company, has shown that our approach can achieve the goal of requirements vali-
dation via Logical Consistency Checking, Auxiliary Machine Checking, Coverage
Checking, and Model Checking. Even if limited in complexity, the BbW system
consists of a number of parts presenting the real world safety-critical systems,
such as micro-controllers, sensors, actuators, and communication buses.

In this work, the validity of our TASM model towards requirements and fea-
tures is built upon our thorough understanding of the BbW system, and hence
TASM models are semantic preserving. Moreover, we have observed model vali-
dation issue as a common problem with model-based approaches. This is getting
more complicated when the system’s non-functional properties are considered.
To address the situation, as future work, we will combine our proposed modeling
approach with a set of assistant techniques, such as rule/pattern-based algorithm
to semi- or fully-automatically transform natural languages into TASM models.
The future work also includes a wider industrial validation of our approach,
and the improvement of our current TASM Toolset. Such improvement will
not only facilitate our evaluation but also power up our analysis with statistical
methods [12] and probabilistic modeling patterns.

References

1. Abrial, J.-R.: Modeling in Event-B - System and Software Engineering. Cambridge
University Press (2010)

2. Bahill, A.T., Henderson, S.J.: Requirements development, verification and valida-
tion exhibited in famous failures. Syst. Eng. (2005)

3. Becker, M., Luckey, M., Becker, S.: Performance analysis of self-adaptive systems
for requirements validation at design-time. In: Proceedings of QoSA 2013, pp. 43–
52. ACM, New York (2013)

4. Blom, J., Hessel, A., Jonsson, B., Pettersson, P.: Specifying and generating test
cases using observer automata. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004.
LNCS, vol. 3395, pp. 125–139. Springer, Heidelberg (2005)

5. Börger, E., Stärk, R.F.: Abstract State Machines. A Method for High-Level System
Design and Analysis. Springer (2003)

6. Cardei, I., Fonoage, M., Shankar, R.: Model based requirements specification and
validation for component architectures. In: 2008 2nd Annual IEEE Systems Con-
ference, pp. 1–8 (2008)

7. Cimatti, A., Roveri, M., Susi, A., Tonetta, S.: From informal requirements to
property-driven formal validation. In: Cofer, D., Fantechi, A. (eds.) FMICS 2008.
LNCS, vol. 5596, pp. 166–181. Springer, Heidelberg (2009)

8. Clarke, E.M., Wing, J.M.: Formal methods: state of the art and future directions.
ACM Comput. Surv. 28(4), 626–643 (1996)

9. Ellis, A.: Achieving safety in complex control systems. In: Proceedings of SCSC
1995, pp. 1–14. Springer, London (1995)

10. Iliasov, A.: Augmenting formal development with use case reasoning. In: Brorsson,
M., Pinho, L.M. (eds.) Ada-Europe 2012. LNCS, vol. 7308, pp. 133–146. Springer,
Heidelberg (2012)

11. Leveson, N.G.: Safeware: System Safety and Computers. ACM, NY (1995)
12. Lu, Y.: Pragmatic Approaches for Timing Analysis of Real-Time Embedded Sys-

tems. PhD thesis, Mälardalen University (2012)

A TASM-Based Requirements Validation Approach 57

13. MAENAD (2013), http://www.maenad.eu
14. Mashkoor, A., Jacquot, J.-P., Souquières, J.: Transformation Heuristics for Formal

Requirements Validation by Animation. In: Proceedings of SafeCert 2009, York,
United Kingdom (2009)

15. OMG (2013), http://www.omgmarte.org/
16. Ouimet, M.: A formal framework for specification-based embedded real-time sys-

tem engineering. PhD thesis, Department of Aeronautics and Astronautics. MIT
(2008)

17. Scandurra, P., Arnoldi, A., Yue, T., Dolci, M.: Functional requirements validation
by transforming use case models into abstract state machines. In: Proceedings of
SAC 2012, pp. 1063–1068. ACM, NY (2012)

18. Yang, Z., Hu, K., Ma, D., Pi, L.: Towards a formal semantics for the AADL behavior
annex. In: Proceedings of DATE 2009, pp. 1166–1171 (2009)

19. Zhou, J., Johnsen, A., Lundqvist, K.: Formal execution semantics for asynchronous
constructs of aadl. In: Proceedings of ACES-MB 2012, pp. 43–48 (2012)

20. Zowghi, D., Gervasi, V.: The three cs of requirements: Consistency, completeness,
and correctness. In: Proceedings of REFSQ 2002 (2002)

http://www.maenad.eu
http://www.omgmarte.org/

Towards a Runtime Verification Framework
for the Ada Programming Language

André de Matos Pedro1, David Pereira1,
Luís Miguel Pinho1, and Jorge Sousa Pinto2

1 CISTER/INESC TEC, ISEP, Polytechnic Institute of Porto, Portugal
{anmap,dmrpe,lmp}@isep.ipp.pt

2 HASLab/INESC TEC & Universidade do Minho, Portugal
jsp@di.uminho.pt

Abstract. Runtime verification is an emerging discipline that investi-
gates methods and tools to enable the verification of program properties
during the execution of the application. The goal is to complement static
analysis approaches, in particular when static verification leads to the ex-
plosion of states. Non-functional properties, such as the ones present in
real-time systems are an ideal target for this kind of verification method-
ology, as are usually out of the range of the power and expressiveness of
classic static analyses. In this paper, we present a framework that allows
real-time programs written in Ada to be augmented with runtime ver-
ification capabilities. Our framework provides the infrastructures which
is needed to instrument the code with runtime monitors. These moni-
tors are responsible for observing the system and reaching verdicts about
whether its behavior is compliant with its non-functional properties. We
also sketch a contract language to extend the one currently provided by
Ada, with the long term goal of having an elegant way in which run-
time monitors can be automatically synthesized and instrumented into
the target systems. The usefulness of the proposed approach is demon-
strated by showing its use for an application scenario.

1 Introduction

Real-time embedded systems are usually large and complex, continuously inter-
acting with the external environment. A single real-time system is usually made
of several sub-components concurrently competing for the system’s resources.
Many, if not all, of these sub-components are not produced in-house, and are as-
sembled together from diverse sources, being these sometimes black-boxes to the
system integrator. Some parts may also be Commercial Off-The-Shelf (COTS)
components that, although being economic, have the drawback of introducing
safety concerns, as are usually not accompanied with their source-code and/or
complete specification.

Given the critical role of many of the real-time systems developed, their source
code is subject to exhaustive testing efforts, which may be extremely expensive.
In particular, in what the context of this work relates to, some static analysis

L. George and T. Vardanega (Eds.): Ada-Europe 2014, LNCS 8454, pp. 58–73, 2014.
c© Springer International Publishing Switzerland 2014

Towards a Runtime Verification Framework 59

tools have been developed to check the correctness of this class of systems, in
some cases applied with success. Model Checking [5] is among the most well-
known static analysis approaches, but it has the drawback of quickly explod-
ing due to state space search. Other alternative static analysis approaches have
strong drawbacks as well [12], therefore in the last years Runtime Verification
(RV) [1,12] has emerged in order to complement the existing limitations. RV is
concerned with providing theories, languages, and procedures that allow devel-
opers to improve programs with specifications of properties to be checked upon
execution time. In a nutshell, the idea of RV is to transform the extra specifi-
cations and synthesize them into monitors which are added to the system. A
monitor is a computational element that is responsible for observing (part of)
the system and make verdicts about its correct execution.

A real-time system is a paradigmatic case to show what RV can bring in
terms of safety for software. It is easy to identify, at least, two of the more
relevant reasons for such approach: it is very hard to verify during design all
the properties that real-time system must exhibit, which requires that some
properties are verified only during execution; and non-functional properties such
worst-case execution time are extremely hard to prove statically. With a runtime
approach we can have direct access to the states of the tasks of interest and
determine if their conditions hold, thus being able to detect erroneous execution
and act accordingly. The introduction of monitors can be handled by a static
automatic generation tool, from the properties which are to be checked, and can
be time-bounded, since monitors are scheduled as any other task executing in
the system.

Most of the RV frameworks developed so far are for Java, and were designed
to address software development in that programming language. They are based
on formal approaches such as temporal logics [2] and regular expressions [17] and
are directed towards ensuring functional correctness. These formal approaches
provide expressive languages for writing contracts, and for which their synthesis
and implementability are feasible and efficient. Although, ideally, the theory and
tools that resulted from this effort should be used for embedded systems (possibly
exhibiting real-time characteristics), only a couple of works have addressed this
kind of systems. One of these is PathFinder [11], for critical systems written in
Java; the other is CoPilot [14,13], a functional specification language and tool-
chain for the safe runtime monitoring of ultra-critical software.

In this paper, we present the RMF4Ada framework that aims at complement-
ing the available developments as follows: first, it is an RV framework that in-
tends to use the safety properties and expressiveness of the Ada programming
language, which we consider very relevant to implement real-time systems; sec-
ondly, we target the specification and synthesis of monitors that are capable
of verifying important non-functional properties, such as meeting deadlines, re-
specting worst-case execution times, among others. The focus of this paper is in
the structure of the code that allows synthesizing monitors and the management
of events and sequences of events. We also describe an extension to the Ada
2012 specification of contracts so that in the future, it can support contracts

60 A. de Matos Pedro et al.

for non-functional properties and that can be verified using frameworks such as
this proposal. In order to show the potential of our proposal, we present an Ada
implementation of a mine-drainage controller enriched with RV behavior using
this framework.

2 The RMF4Ada Runtime Verification Framework

In this section we introduce and describe the details of a novel RV framework
for the Ada programming language. RMF4Ada combines aspects of Runtime
Monitoring (RM) (the field that studies ways to define, implement, and con-
trol monitors), formal languages, and software architecture methods to provide
the infrastructure that is needed to equip an Ada program with RV function-
ality. The core of RMF4Ada is a set of Ada packages that provide schemas for
monitors (possibly executing in different patterns), data structures to represent
formal languages and the evaluation of their formulas/terms, and components
to represent and manage the events of the system that one might be interested
in verifying. It is not simply yet another RM framework, since the properties
to be verified or enforced are generated from timed specifications written in the
supported formal languages, in a correct-by-construction way.

The architecture of RMF4Ada is depicted in Figure 1. It is divided into two
sub-components: an Instrumentor and a Creator. The Instrumentor is a tool which
manages the environment for system instrumentation, and that couples moni-
tors that are automatically synthesized a priori by some built-in mechanism of
the framework, or by some third-party tools; the Creator is a tool that synthe-
sizes monitors based on the specification written in the contracts of the original
program; the output is the corresponding Ada executable code. The Creator also
contains mechanisms to generate monitors according to different modes of opera-
tion. The generic dynamics of RMF4Ada is as follows: the Instrumentor generates
an event manager (among other things, responsible for keeping an execution
trace of the system with the correct order, and inform monitors of available
events for consuming), and in-lines instructions in the original source-code that
create the symbolic representation of the events and communicates them to the
event manager; afterwards, the Creator generates the monitors and adds them
to the source-code already instrumented as a new package, in order to produce
the final program with the RV layer working according to the specifications in
the original system.

As we have pointed out earlier, the monitors that are added to the target
system do not need to follow a single execution behavior. RMF4Ada provides
support for two different modes of operation for monitors: time-triggered moni-
toring and event-triggered monitoring. In the time-triggered mode, monitors run
periodically; the time period is calculated beforehand in order to avoid higher
detection delays for the events of interest as we propose in [9,10]. In the event-
triggered mode, monitors execute when events occur, are considered sporadic
tasks, and consume the available events respecting a given execution pattern.

Towards a Runtime Verification Framework 61

.ads with specification

new ada files (.adb and .ads)

system (.adb + .ads)

Behavior Modes Theories Modules

Instrumentor

instrumented system ada files (.adb + .ads) +

RMF4Ada

Input

Output

Creator

Controller Event-Manager

Fig. 1. RMF4Ada Architecture

2.1 The Runtime Monitoring Library

We begin with an overview of the library’s structure, and then we introduce
library settings such as events, monitor modes, and monitor context-switches.

Structure. The runtime monitoring library (RML) of RMF4Ada is composed
of three modules: one that encodes the formal systems used to allow the spec-
ification and verification of contracts, other responsible for providing the ab-
stract data types fundamental to construct monitors, and another for building
instances of monitors that can be added to the program under consideration.
These modules are named Theories, Abstract Data Types, and Monitors.

Theories. This module provides an hierarchy of objects that allow to imple-
ment the inductive nature of the sentences of the formal languages that we have
adopted to specify contracts as well as to provide the semantical evaluation func-
tions for these sentences, which are the functions responsible for giving verdicts
when the target system is executing. Currently, we have considered two formal
systems: Timed Regular Expressions (TRE) [15], and Restricted Metric Temporal
Logic with Durations (RMTL-

∫
) [10,9].

Abstract Data Types. This module provides a set of well-known abstract data
types that are fundamental to architect the rest of the framework. Among these
are included an array-based first in first out (FIFO), a circular FIFO, and an
array-based stack. The abstract data structures themselves are not covered in
this paper, since they are not interesting from the point of view of runtime
monitoring.

Monitors. This module includes the types defining events and event traces. These
are the primitive notions where the activity of the system under consideration
are stored. Another building-block provided is the protected event manager type,
responsible for keeping the events in an internal FIFO. Finally, this library of-
fers the type for monitors, which is specialized according to its operations mode,
i.e., its either a task type implementing a periodic (time-triggered) or a sporadic
(event-triggered) behavior.

62 A. de Matos Pedro et al.

Events. In our framework, all events are typed, thus avoiding miss-specification
when instrumentation is performed. Ada discriminant records have been used to
statically ensure the release of the correct events. The creation of events is done
through several functions. Managing events and traces is the responsibility of
the event manager, implemented as an Ada protected type. The event manager
allows the system under observation to enqueue several different types of events
(as we see later), and to pop relevant events from the global trace into the
monitor’s local memory. In the code below we give a small example, describing
how the release of an event can be performed:

−− Generate an event meaning a task_release of Task_A
Ev_A: Events_Concrete.Event :=
Events_Concrete.Generate_Event_Task_Release_Structure (
Name => Task_A,
Monitor_Identifier_List => (Monitor_FormulaOne_Id => true),
Time => Time_Unit_Type(TIME_STAMP)

);

In the code above, we use the Generate_Event_Task_Release_Structure function
to construct a release event. TIME_STAMP is a value in accordance with the type
Time_Unit_Type, and Monitor_Identifier_List is a binary map that indicates
that the event Ev_A could be used by the monitor identified by the value of
Monitor_FormulaOne_Id. The other monitors, if available, need to be assigned
to false, since Monitor_Identifier_List is a static list that contains a Boolean
assigned for each available monitor. The value of Task_A is the identifier of the
event task release.

Monitoring Modes. Different monitor modes correspond to different task
types. For a monitor of type event-based we use the synchronous task con-
trol to suspend the task until the Boolean flag Event_Based_Is_Sporadic is true.
The code to handle the event and read the event from the event manager with
corresponding operations on the memory of the monitor, is the following:

−− Use of Timming Events for waiting order
Ada.Synchronous_Task_Control.Suspend_Until_True (
Event_Based_Is_Sporadic

);

−− Get event from event manager
Event_Manager_For_Monitor.Protected_Event_Manager.readEvent (
Id => Monitor_Id,
E => Event_Manager_For_Monitor.Trace_For_Event_Manager.

Trace_Elements.Event(Tmp_Event)
);

−− Set event to the dedicated trace structure of the monitor
Object.Assign_Event_To_Trace(Event_Manager_For_Monitor.

Trace_For_Event_Manager.Trace_Element_Type(Tmp_Event));

Tmp_Event is the event that has been read from the event manager, and object

the monitor object that contains a trace structure. Note that pushing and

Towards a Runtime Verification Framework 63

popping event from event manager are protected operations that avoid simulta-
neous concurrent accesses. We use the protected type Protected_Event_Manager

to ensure these operations. In time-triggered monitors identified by type Time_-

Based_Mode_Type we use a periodic task with the delay until sentence. The code
to define this behavior is the following:

−− if there are events to consume discard the new ones
if Event_Manager_For_Monitor.Trace_For_Event_Manager.

Get_Number_Elements(Object.Trace) < 1 then

−− Get list of events
Event_Manager_For_Monitor.Protected_Event_Manager.

readListOfEventsBounded (
Id => Monitor_Id,
List => Temporary_Trace

);

−− Set list of events to trace structure of the monitor object
Event_Manager_For_Monitor.Trace_For_Event_Manager.

Push_ListOfEventsBounded (
Trace => Object.Trace,
Trace_Tmp => Temporary_Trace

);

end if;

Monitor_Id is the identifier used to get the relevant events from the event-
manager, and Temporary_Trace is a temporary local variable used in transferring
events. The if statement maintains the Push_ListOfEventsBounded correct, since
it does not issue any array out of bounds access. In the worst-case scenario, the
Temporary_Trace array list may have the same size, and if one or more elements
exist in the local monitor trace, then the same number of events cannot be fit-
ted. The procedure Monitor_Function that is recursively defined is called in both
modes by the instruction:

Object.Monitor_Function;

Object variable includes all available data structures to store the inputs and
outputs of the function. After establishing the monitor modes a piece of code
need to be coupled for time-triggered mode after the monitor invocation. The
code remaining for this is the following:

if Object.Mode = Time_Based_Mode_Type then
Next_Time := Next_Time + Release_Time;
delay until Next_Time;

end if;

Next_Time is a clock value. The above code block intends to establish the behavior
of the periodic tasks inducing the system to a sleep state until a certain time is
reached to wake-up.

Monitor Context-Switches. Monitors employ high level software context
switches based on one stack data structure to be incrementally evaluated. As

64 A. de Matos Pedro et al.

we understand high level context switches are the ones that are implemented by
software with the aid of memory RAM instead of processor registers. The stack
allows us to encode recursive call into a loop, and to control the execution using
some control conditions. We introduce this approach as the subtractive-based ab-
straction for runtime monitoring. Our abstraction begins by popping the generic
structure that contains the tuple and the verdict, which are the inputs and the
outputs of a monitor function, respectively. The procedure that performs a pop
operation is invoked using the following code:

−− get tuple from stack
Monitor_Stack.Pop(
Item => Input_Output_Par,
From => Object.Stack_For_Arguments

);

−− subdivide state to recall monitor function
Tuple := I_O_Par.Tuple;
Verdict := I_O_Par.Verdict;

The context-switch restores the previous outcome values from variables Tuple

and Verdict to be able to call the Procedure_For_Monitor procedure with a
certain trace. The actual tuple represents the last global state of the monitor,
and the last verdict that has been saved, respectively. In Ada the monitor is
called according to the procedure:

Procedure_For_Monitor(Object.Trace, Tuple, Verdict);

One cycle of execution or a step is executed by this instruction, which we denote
as the One_Step restriction. This step may keep the Trace structure intact, indi-
cating that no symbols have been consumed. By the way some executions cannot
consume any event symbol of the trace and a buffer overrun of the local monitor
trace can occur. To tackle this we assume that the execution is progressive and
the monitor execution is recursively defined.

To manage the context-switches we consider four conditional statements.

1. Step-based condition – The evalution of the monitor ends when one step of
the recursive function Procedure_For_Monitor is executed. After each execu-
tion step the state is stored for a further resume of the monitor execution.
The Ada code for this restriction is as simples as follows:

I_O_Par.Tuple := Tuple;
I_O_Par.Verdict := Verdict;

Monitor_Stack.Push (
Item => I_O_Par,
Onto => Object.Stack_For_Arguments

);

2. Symbol-based condition – A symbol consumption is the necessary condi-
tion to suspend the monitor execution, and proceed with the context-switch.
One_Step_Until_Symbol_Is_Consuming is the Boolean variable that activates

Towards a Runtime Verification Framework 65

this condition in the RML. Any external feedback is required for the proce-
dure Procedure_For_Monitor since the re-execution only continues if the trace
is unchanged. We also assume that the procedure Procedure_For_Monitor is
progressive, which indicates that eventually some event is consumed. The
Ada code that we use to re-evaluate the monitor procedure is the following
one:

while not Trace_Has_Been_Changed(Object.Trace) loop
Procedure_For_Monitor(Object.Trace, Tuple, Verdict);

end loop;

I_O_Par.Tuple := Tuple;
I_O_Par.Verdict := Verdict;

Monitor_Stack.Push (
Item => I_O_Par,
Onto => Object.Stack_For_Arguments

);

Procedure_For_Monitor procedure ends with the push of the I_O_Par into the
Monitor_Stack (accordingly with the restriction One_Step), and the function
Trace_Has_Been_Changed establishes a comparison between two traces (new
and old ones). To be an efficient search over both traces labels are used to
indicate when a trace is equipped with a new event.

3. Time-bounded condition – A temporal bound for the evaluation of a monitor
is used to decide the suspension instant of a context-switch. One_Step_-

Until_T_Time_Units is the Boolean flag used to activate this condition in the
RML. The evaluation is made until the time elapsed exceeds the time allowed
for the monitor execution. To describe such behavior we use the execution
time timers [18]. Such timers allow us to force a monitor to execute in a
stipulated constant time by triggering an interruption when the available
time expires. In that point the last execution is rejected if a step of the
monitor’s execution is not completed. The excerpt of Ada code establishing
such behavior is the following one:

Ada.Execution_Time.Timers.Set_Handler
(ETT_Timer,
Ada.Real_Time.To_Time_Span(CONSTANT_TIME),
Object.Control.Budget_Expired’Access);

while not Object.Control.Budget_Is_Expired loop
Procedure_For_Monitor(Object.Trace, Tuple, Verdict);

end loop;

I_O_Par.Tuple := Tuple;
I_O_Par.Verdict := Verdict;

Monitor_Stack.Push (
Item => I_O_Par,
Onto => Object.Stack_For_Arguments

);

66 A. de Matos Pedro et al.

Object.Control.Budget_Expired is a protected procedure that waits for the
end of the step execution of the monitor, Object.Control.Budget_Is_Expired
is the function that returns true if the execution time timer expires or false
otherwise, and CONSTANT_TIME is the constant that indicates the allowed du-
ration for monitor execution.

4. Step-bounded condition – One step of a monitor’s execution is performed n
times. One_Step_N_Times is the condition available in the RML. We tackle
this restriction by a simple for loop, as follows:

for I in 1..Object.Counter−1 loop
Procedure_For_Monitor(Object.Trace, Tuple, Verdict);

end loop;

I_O_Par.Tuple := Tuple;
I_O_Par.Verdict := Verdict;

Monitor_Stack.Push (
Item => I_O_Par,
Onto => Object.Stack_For_Arguments

);

Object.Counter defines how many steps the monitor shall execute before a
context-switch is performed. The remaining code has the same meaning as
described before.

2.2 Library Usage

RML is the support library of RMF4Ada and is available in [7]. Our library
encourages developers to make constraints using strong type checking instead
of condition-based tests. This abstraction allows the software designers to make
less-mistakes when library is used as well as to maintain the integrity of the
instrumentation process. In some cases the memory space can be reduced due to
the message pass using strings is avoided, the registration of monitors avoids any
registration in the event-manager, and the event-manager and monitors discard
any filters since the unexpected types of events cannot take place. An overview of
library’s interconnection is depicted in the Figure 2, including the main blocks,
such as, the static instrumentation, the event-manager protected type, and the
set of tasks representing the monitors generated automatically by some theory.

A program to be instrumented should be designed following the hierarchy of
Ada packages. The main package should be the point where initializations of
RML are made, and the remain packages are necessarily extensions of the root
package. The instrumentation is made using the push procedures of the event-
manager positioned at certain points in program code. We have been included
in our library three types of events each one with several sub-types such as
– task release, task begin, task sleep, task resume, and task end;
– pre and post procedures, protected pre and post procedures, pre and post

functions, and protected pre and post functions; and
– pre and post assignments, and protected pre and post assignments.

Towards a Runtime Verification Framework 67

Event Manager Monitors/Checkers

In
st

ru
m

en
ta

tio
n

System Program/Controller

Protected Type
Ta

sk
Ty

pe
s

Pr
ot

ec
te

d
Ty

pe
s

Software Timers

Event Buffer

erelease

estart

esleep

eresume

· · ·

Timming EventsTimming Interrupts

Package Task Type

In
te

rc
on

ne
ct

io
nerelease(a,0.1)

erelease(b,0.2)

esleep(a,0.33)
estop(b,0.35)

...

B
in

ar
y

M
ap

Functions/Procedures

C
od

e

Event Garbage Collector

· · ·

Automatically
generated Monitor

Monitor Contract

Synthesized monitor
in Ada

Scheduler

Data Racing Algorithm

Hardware Timers

System Code

Operating System

E
ve

nt
Id

en
tifi

er

Context Switch Support

Fig. 2. Illustration of the interconnection of the element blocks provided by the RML

Other manually specified events are discarded in this paper but will be addressed
for further phases. The integrity of the event sequences that our framework
supplies also should be enforced.

Schedulability analysis can be enforced online using runtime monitoring tech-
niques as well as offline in the development phase. The integrity of the sys-
tem schedulability analysis requires that events triggered by tasks are correctly
pointed and instrumented for each available Ada task type. For instance, this is
enough for online schedulability analysis of periodic resource models as proposed
in [9]. In the case of the preemptive fixed priority scheduler allowed in Ada by
Ravenscar rules, we need to instrument all system tasks in order to provide the
events correctly for event monitoring. Our framework should be able to identify
if a higher priority task trigger an event task begin, then some time units ago an
event task sleep may have occurred. To do it, the framework only needs to select
the last event that has occurred in the event trace provided by event-manager.
This avoids any instrumentation of events at the operating system level (more
precisely at the internals of the scheduler).

We have described a subtractive-based abstraction that leaves us to couple di-
verse monitoring models in our framework as well as aiding to ensure finite exe-
cution segments for each execution cycle. The monitor should be fitted into these
abstractions after the synthesis process. A garbage collector also provided by the
event-manager allows us to dynamically remove unnecessary events while the sys-
tem is executing. All events are managed by the event-manager entity, and the
interconnection binary map is established to identify the relevant events for each
monitor.

3 Contract Language Extension for Runtime Verification

Currently, the newest version of the Ada programming language – Ada 2012
– provides a language of contracts for the dynamic verification of functional

68 A. de Matos Pedro et al.

properties. Subprograms can be equipped with preconditions, postconditions,
dynamic and static predicates, and types can be binded with invariants. However,
the contract language is not enough to address the characteristics of RV that
are supported by RMF4Ada.

In this section, we propose an extension to the current contract language that
is mainly composed of a couple of new syntactic contract constructions such as

1. a construction to establish the type of execution mode of the monitors, and
2. a construction to define the property that the software designer is interested

in checking at runtime.

Our extension proposes the usage of a contract of the form Monitor_Mode => M,
such that M is either the keyword Event_Triggered or the keyword
Time_Triggered representing, respectively, an even-triggered monitoring mode
or a time-triggered monitoring execution mode. Once the modus operandi of
monitors is stated, we will establish formal languages for enforcement of non-
functional properties such as temporal order, and durations. Each monitor spec-
ification is enforced by the usage of the contract Monitor_Case => (T , C), such
that T is the formal language of the contract chosen for property specification,
and C is a sentence of this language that specifies some property of interest for
runtime enforcement. The pair (T , C) has one of the following types:

1. a pair (TRE, α) for runtime contracts based on TREs with α being inductively
defined by

α ::= 0 | 1 | a ∈ Σ |α+ α |αα |α� | 〈α〉I ,

where Σ is the set of all events, and I is a time interval of the form [a..b]
with a, b ∈ R

+
0 , or

2. a pair (RMTLD, ϕ) for runtime contracts based on RMTL−
∫

with ϕ being
inductively defined by

β ::= c ∈ R
+
0 | x ∈ Lv | duration[β]ϕ,

ϕ ::= p ∈ P | β op β | notϕ | ϕ orϕ | ϕ Un ϕ | ϕ Sn ϕ | Exxϕ,

where P is the set of propositions for all available events, op ∈ {<,≤, >,≥},
Lv is the set of logic variables, and n is a constant time in R

+
0 .

Note that each monitor specification uses the pre-defined mode of operation,
until a new mode of operation is specified.

An event is defined by the introduction of the attribute Event in Ada. We use
the shortcut object’Event(e) for the meaning of the sentence for object’Event

use e. All events are previously defined, including the event ANY, which dictates
that any event can occur. Moreover, we also add the attribute Time to define
timing settings of the task types dealing with periods and WCET that have
been assigned prior to execution.

As we have described, RMF4Ada provides computational support for these for-
mal systems. There are object hierarchies to represent the (mutually) inductive

Towards a Runtime Verification Framework 69

Fig. 3. Command Line Interface of the Mine Drainage Simulator

structure of the terms and the formulas of the two formal systems. Moreover,
evaluation functions for the statements are also included. In the rest of this pa-
per, we will describe the implementation of a safety-critical real-time system in
Ada with the support of RMF4Ada, and we will use the extension of contracts
presented in this section. However, the synthesis of the monitors has been ob-
tained manually, because the tool for doing it automatically is not yet available
at the present time.

4 Experimental Scenario

In this last section, we describe the implementation of a real-time program that
models a mine-drainage scenario in Ada. This scenario has been proposed by
Burns et al. in [4,3]. The authors propose a mine drainage controller, and a sta-
tion for employers to control and monitor the mine state. The system contains a
water pump that drains the water into the ground, which needs to be switched
off when a critical level of methane is reached. The implementation is available
in [8], and employs our idealized contract extension to the RV. The evaluation of
RMF4Ada for this particular scenario has been performed as follows: first, we have
implemented the mine-drainage scenario guided by the case study presented by
the authors [3]; afterwards, we specified the necessary contracts and synthesized
them into monitors by hand, due to the lack of the Creator tool. Since the In-
strumentor is not currently ready as well, we also performed the instrumentation
by hand. After these steps have been completed successfully, we have compared
the performance of the original implementation with the monitor-enriched one
in order to measure the overhead imposed by the constructions provided by
RMF4Ada.

The graphical interface of the simulator is presented in Fig. 3. We can ob-
serve in the table depicting the monitoring of tasks in Fig. 3 the minimum and

70 A. de Matos Pedro et al.

maximum delay values of the computation time of the tasks. The field Count
indicates the number of iterations that one task made in the last ten seconds.
These values will be used as a reference to compare the original system and the
system resulting from its instrumentation and coupling with runtime monitors.
The experiments have been performed on an Intel Core i3-3110M at 2.40GHz
CPU, and 8 GB RAM running on Fedora 18 x64, in a uniprocessor setting. In
the future, we plan to do further experiments where we will use the MaRTE
OS [16] which is an operating system fully implemented in Ada. This allows
us to speculate that since we got good results in a Linux setting without strict
hard real-time constraints on the scheduler side, then we expect better ones in
a native real-time operating system as the one just pointed out.

Enforcement of Timing Properties. Formulas for enforcement of timing
properties have been established for task timing analysis, and for a particular
execution sequence of the simulation environment. Both formulas will be syn-
thesized, producing two monitors in Ada language that can be coupled manually
into the simulator. As a first example of our development, we introduce a con-
tract specification that states that a given task named task T_Simulation always
has a duration smaller than the pre-defined worst-case execution time. It allows
us to monitor a task without using execution time timers, which are highly de-
pendent on the operating system API. However, our approach may contain more
overhead than one using execution time timers since it has been implemented at
a source-level instead of a level closer to the hardware. We are also concerned
by the fact that the behaviors supported by execution time timers are stricter
than the behaviors supported by our monitors, and the expressiveness is incom-
parable: on the one hand, the time isolation is a positive point of our framework
since we can establish that a set of tasks has a certain budget to execute in a cer-
tain period; on the other hand, the overhead is only the big disadvantage when
systems have very strict hardware resources. The task specification using our
contract language for this duration limited task execution case is the following:

task type T_Simulation (period: integer; deadline: integer)
with

Monitor_Mode => Event_Triggered,
Monitor_Case => (RMTLD ,

T_Simulation’Event(Task_Release) next implies
duration[T_Simulation’Time(period)]
T_Simulation’Event(ANY) < T_Simulation’Time(wcet)

);

The Monitor_Case contract defines a RMTL-
∫

formula to be evaluated in event-
triggered mode, ’Event is an attribute that identifies the event or events to be
used, ANY identifies all the events assigned to a certain structure, and a next
implies b is a shortcut to the logic formula ¬a ∨ aU≤n b with a n greater than
the size of the observation as defined in [10]. The synthesis of this monitor can
be found in [6]. A second example is a protected type Protected_Environment

executing a certain timed order. Calls for the protected environment are made
beginning with the release event pre of the function read_CH4 and are followed by

Towards a Runtime Verification Framework 71

any combination of events with duration of at most twenty milliseconds. Finally,
it ends with the return of the function read_CO2 value identified by the event
post. The specification for this second example is the following:

protected type Protected_Environment
with

Monitor_Mode => Time_Triggered
Monitor_Case => (TRE,

(Protected_Environment.read_CH4’Event(pre) .
<(Protected_Environment’Event(ANY))∗>[0..20] .
Protected_Environment.read_CO2’Event(post))∗

) ,
is

function read_CO2 return CO2_Level_State;
function read_CH4 return CH4_Level_State;
function read_Air_Flow return Air_Exhaust_State;
function read_WaterPipe_Flow return WaterPipe_Flow_State;

end;

The interval [0..20] assumes the time unit of milliseconds, and pre and post are
the events that occur before and after the execution of a function, respectively.
The code resulting from synthesizing both the previous examples can be found in
[8], particularly in the specification files monitor_function_formulaone.ads and
monitor_function_formulatwo.ads, respectively.

Time Isolation. It is important to note that time isolation can be ensured using
our framework by applying directly the established formalization in [9,10]. In
this work we only need to assume that a task release a certain set of events. Our
Instrumentor tool should be capable to correctly instrument these events. The
time isolation is a major advantage when several systems should be merged in
order to reduce hardware costs, but the level of criticality is ensured and mixed.

4.1 Verdicts

The Instrumentor tool generates four files that are the monitoring.ads, the
monitoring.adb, the spec.ads, and the spec.adb. The Spec package contains
the definition of events used to analyze the system under observation (SUO),
and the trace type. The Monitoring package instantiates the generic packages
provided by RML to be included into the SUO at the instrumentation phase. The
package includes the event-manager definition, the both monitor assignments for
execution using the monitor collection, and a controller to initialize and finalize
the instrumentation before execution begin and end, respectively.

The results are surprisingly positive. The monitor generated by the first for-
mula introduces a maximum overhead of 11μs for every task iteration of the
task T_Simulator. Considering that a wake up from an absolute delay until the
operation, including one context switch, in Marte OS is 8.8μs [16] in a Pentium
III at 500mhz, the results are satisfactory. We are using one core of an Intel i3
at 2.4GHz. The monitor generated by the first formula has an estimated worst
case execution time (WCET) of 53μs for one step execution in event-triggered

72 A. de Matos Pedro et al.

mode. We can conclude that we have maximum overhead of 11+53μs for run-
time monitoring. This value has been estimated for 202 iterations of the task
T_Simulator or the first ten seconds of one execution.

5 Conclusions

In this paper, we have presented a framework for enabling the instrumentation
of Ada programs with monitors that enforce RV behavior. The evaluation of our
framework shows that the overhead is minimal when compared to the original
system, and that it could even be decreased by making our framework constructs
more efficient and implementing them in an operation system with actual real-
time behavior. Moreover, we have introduced a small extension to the current
Ada contract language for enabling the specification of contracts to be checked by
monitors. Finally, we provided the general structure of the complete framework,
which will include a Creator tool for performing the automatic synthesis of moni-
tors from contracts, and an Instrumentor tool that will automatically instrument
a target program with event notification and adequate monitor operation.

Currently, we use two formal systems to support the construction of contracts,
namely, TREs and the RMTL-

∫
timed temporal logic. In the future we plan to

explore further formal systems, and to generalize our current implementation
in order to allow the integration of such new formal systems in a modular ap-
proach, without needing to recompile the framework. Another interesting point
to investigate will be the adequacy of RMF4Ada in a multi-core environment,
which raises new interesting and hard challenges, such as how to deal with si-
multaneous events occurring in the different cores, and ways to combine cores
solely for monitoring while having the rest of the cores for executing the code
of the actual application. Finally, we also want to explore the adequacy of the
framework for COTS as internal black-box components, without source-code or
rigorous specification for those components.

Acknowledgments. The authors would like to thank the anonymous reviewers
for their comments that helped improve the manuscript. This work was partially
supported by Portuguese National Funds through FCT (Portuguese Founda-
tion for Science and Technology) and by ERDF (European Regional Develop-
ment Fund) through COMPETE (Operational Programme ’Thematic Factors of
Competitiveness’), within projects FCOMP-01-0124-FEDER-037281 (CISTER),
FCOMP-01-0124-FEDER-015006 (VIPCORE) and FCOMP-01-0124-FEDER-
020486 (AVIACC); and by FCT and EU ARTEMIS JU, within project
ARTEMIS/0003/2012, JU grant nr. 333053 (CONCERTO).

References

1. Bauer, A., Leucker, M., Schallhart, C.: Runtime Verification for LTL and TLTL.
ACM Trans. Softw. Eng. Methodol. 20(4), 14:1–14:64 (2011)

Towards a Runtime Verification Framework 73

2. Bellini, P., Mattolini, R., Nesi, P.: Temporal logics for real-time system specifica-
tion. ACM Comput. Surv. 32(1), 12–42 (2000)

3. Burns, A., Lin, T.M.: An engineering process for the verification of real-time sys-
tems. Form. Asp. Comput. 19(1), 111–136 (2007)

4. Burns, A., Lister, A.M.: A framework for building dependable systems. Comput.
J. 34(2), 173–181 (1991)

5. Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model checking. MIT Press, Cam-
bridge (1999)

6. de Matos Pedro, A., Pereira, D., Pinho, L.M., Pinto, J.S.: Monitors provided for
the Mine Drainage System Simulator, http://webpages.cister.isep.ipp.pt/˜
anmap/adaeurope14/examples/mine_drainage/monitors/ (accessed: December
15, 2013)

7. de Matos Pedro, A., Pereira, D., Pinho, L.M., Pinto, J.S.: Runtime Monitoring
Library for RMF4Ada, http://webpages.cister.isep.ipp.pt/˜
anmap/adaeurope14/ (accessed: December 15, 2013)

8. de Matos Pedro, A., Pereira, D., Pinho, L.M., Pinto, J.S.: The Mine Drainage
Simulator Code, http://webpages.cister.isep.ipp.pt/˜anmap/
adaeurope14/examples/mine_drainage/system/ (accessed: December 15, 2013)

9. de Matos Pedro, A., Pereira, D., Pinho, L.M., Pinto, J.S.: Logic-based Schedulabil-
ity Analysis for Compositional Hard Real-Time Embedded Systems. In: Proceed-
ings of the 6th International Workshop on Compositional Theory and Technology
for Real-Time Embedded Systems, CRTS 2013 (2013)

10. de Matos Pedro, A., Pereira, D., Pinho, L.M., Pinto, J.S.: A Compositional Mon-
itoring Framework for Hard Real-Time Systems. In: Badger, J.M., Rozier, K.Y.
(eds.) NFM 2014. LNCS, vol. 8430, pp. 16–30. Springer, Heidelberg (2014)

11. Havelund, K., Rosu, G.: Monitoring Java Programs with Java PathExplorer. Elec-
tronic Notes in Theoretical Computer Science 55(2), 200–217 (2001)

12. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Log. Algebr.
Program. 78(5), 293–303 (2009)

13. Pike, L., Niller, S., Wegmann, N.: Runtime verification for ultra-critical systems.
In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp. 310–324. Springer,
Heidelberg (2012)

14. Pike, L., Wegmann, N., Niller, S., Goodloe, A.: Copilot: Monitoring embedded sys-
tems. Innovations in Systems and Software Engineering: Special Issue on Software
Health Management (2012)

15. Pucella, R.: On equivalences for a class of timed regular expressions. Electr. Notes
Theor. Comput. Sci. 106, 315–333 (2004)

16. Aldea Rivas, M., González Harbour, M.: MaRTE OS: An Ada Kernel for Real-Time
Embedded Applications. In: Strohmeier, A., Craeynest, D. (eds.) Ada-Europe 2001.
LNCS, vol. 2043, pp. 305–316. Springer, Heidelberg (2001)

17. Sen, K.: Generating optimal monitors for extended regular expressions. In: Proc.
of the 3rd Workshop on Runtime Verification (RV 2003). ENTCS, vol. 89, pp.
162–181 (2003)

18. Zamorano, J., Alonso, A., Pulido, J.A., de la Puente, J.A.: Implementing execution-
time clocks for the ada ravenscar profile. In: Llamosí, A., Strohmeier, A. (eds.)
Ada-Europe 2004. LNCS, vol. 3063, pp. 132–143. Springer, Heidelberg (2004)

http://webpages.cister.isep.ipp.pt/~anmap/adaeurope14/examples/mine_drainage/monitors/
http://webpages.cister.isep.ipp.pt/~anmap/adaeurope14/examples/mine_drainage/monitors/
http://webpages.cister.isep.ipp.pt/~anmap/adaeurope14/
http://webpages.cister.isep.ipp.pt/~anmap/adaeurope14/
http://webpages.cister.isep.ipp.pt/~anmap/adaeurope14/examples/mine_drainage/system/
http://webpages.cister.isep.ipp.pt/~anmap/adaeurope14/examples/mine_drainage/system/

Reliable Handling of Real-Time Scheduling

Attributes on Multiprocessor Platforms
in Ada 2012

Sergio Sáez, Jorge Real, and Alfons Crespo

Instituto de Automática e Informática Industrial
Universitat Politècnica de València

Camino de vera, s/n, 46022 Valencia, Spain
{ssaez,jorge,alfons}@disca.upv.es

Abstract. The real-time attributes of a concurrent task define the pa-
rameters that will determine when the task can be allocated the required
resources. Typical examples are the task’s priority, the deadline, and the
CPU (or CPUs) on which it must be executed. Since the 2012 revision,
Ada is prepared for handling all these attributes. But the handling is
per-attribute: it is not possible to change several attributes at a time, in
a single call. Instead, they have to be changed one by one, which poses
scheduling issues especially in multiprocessor platforms.

This paper proposes and discusses approaches for implementing atomic
changes of multiple scheduling attributes, thus mitigating or eliminating
those issues.

Keywords: Real-time systems, multiprocessor scheduling, Ada 2012.

1 Introduction

The scheduling attributes of a concurrent, real-time task define how resources
are allocated to that task. Typical scheduling attributes are priority, deadline
(in EDF-scheduled systems) and CPU of the task (in multiprocessor systems).
Using Ada 2012 [1], a programmer can access these attributes and modify them
according to changing application needs.

The package System.Multiprocessors.Dispatching Domains supports the
concept of dispatching domains for multiprocessor platforms, i.e., the set of pro-
cessors on which a task can be executed. The package offers subprograms for
querying and setting the current CPU for a task. It also provides the subpro-
gram Delay Until And Set CPU to perform an atomic delay and change of CPU.
The calling task will be assigned the new processor when the delay expires. This
avoids the task taking too long to move to the destination CPU, when it has a
relatively low priority in the original CPU.

The package Ada.Dispatching.EDF supports the concept of deadline and pro-
vides subprograms to query and set a task’s deadline. Similarly to the CPU case,
the package also provides one subprogram, Delay Until And Set Deadline, for

L. George and T. Vardanega (Eds.): Ada-Europe 2014, LNCS 8454, pp. 74–90, 2014.
c© Springer International Publishing Switzerland 2014

Reliable Handling of Real-Time Scheduling Attributes 75

atomically executing an absolute delay and setting a new relative deadline for
the task. This atomicity is needed so that the calling task can wake up from the
delay at the priority level dictated by its new deadline, and not the previous one.

The package Ada.Dynamic Priorities provides subprograms for querying
and setting a task’s priority at run time. As opposed to the cases of deadline
and CPU, there is no subprogram provided for atomically changing the priority
at the end of a delay (a hypothetical Delay Until And Set Priority). Hence
it is possible that scheduling anomalies occur when a task needs to wake up
from a delay with a changed priority. For example, if the task wakes up with
an old low priority and then it wants to raise its priority to high, then it can
suffer interference from mid-priority tasks in the interim. This issue can however
be worked around by using a timing event rather than a delay statement. The
timing event handler would change the task’s priority from a high interrupt
priority, hence reducing the scheduling error to an interference glitch to higher-
priority tasks during the execution of the timing event handler.

So CPU and deadline can be separately changed with immediate or deferred
effect, and priority can be immediately changed. But there is no functionality
in Ada, however, that allows the programmer to change several scheduling at-
tributes at a time, either immediately or right after a delay. Such scheme would
be very useful for applications using prevalent multiprocessor techniques such
as:

Job partitioning which alternates jobs of a task (execution instances) in dif-
ferent CPUs at possibly different priorities and/or deadlines. Here the task
needs to change several of its attributes, and have them enforced by the next
job activation.

Task splitting and dual-priority systems where a task may need to change
CPU, priority, deadline or a combination of them after a programmed amount
of real time or execution time [2,3,4].

Multimoded systems that potentially require changes to several attributes of
tasks after a mode change request [5,6].

The need for language changes to support this functionality is a current sub-
ject of discussion in a part of the Ada community [7,8,9]. One argument against
changes or additions to the language is that, presumably, the programmer could
use timing events to obtain a sufficiently effective solution [9]. Since the timing
event executes at a very high priority, and it acts upon another task, the handler
can change the priority or deadline of the target task, and then awake it from
suspension, possibly in a different CPU. In this paper, we explore and imple-
ment this idea as well as other approaches. We then analyse different aspects of
the implementations obtained, from system requirements to run-time behaviour.
Our conclusion is that, although effective to a certain extent, approaches such as
timing events are not absent from certain scheduling artefacts. These artefacts
however, are shown to disappear in an alternative scheme based on the use of
a server task for enforcing the attribute changes. The server task approach is
a working solution in Ada 2012, although less efficient than it could be if the
programmer could enforce the affinity of timing event handlers.

76 S. Sáez, J. Real, and A. Crespo

The paper is organised as follows. Section 2 motivates our study by showing
the issues around the operation of changing scheduling attributes at run time,
especially on multiprocessor platforms. Section 3 discusses design alternatives
of safe mechanisms for handling multiple scheduling attributes in multiproces-
sors, either with immediate or delayed effect. Section 4 describes and discusses
implementations of those design alternatives. Finally, Section 5 summarises our
conclusions.

2 Motivation

Before we propose alternatives for properly handling task scheduling attributes
in multiprocessor platforms, we will visit some scenarios that justify the need for
a controlled mechanism. We will show how the order in which several attributes
are changed is relevant for proper execution of the real-time schedule at run
time, especially when the CPU is one of the changing attributes. Failing to
apply changes in the correct order leads to scheduling errors. Even if the order is
correct, failing to change them atomically will cause scheduling artefacts (short,
bounded situations of priority inversion).

Consider Scenario A in figure 1, where we want to change both the priority
and CPU1 of a task τ in a 2-processor system, with CPU1 and CPU2. Task τ
is running at priority 20 on CPU1. We want to move task τ to processor CPU2
with priority 10. If the change of CPU and priority is not atomic, then they must
be done in some sequential order.

Fig. 1. Scenarios described in Section 2. Thick lines represent task execution. Dotted
thick lines represent intervals of interference. Intervals between two double arrows are
arbitrarily large. Errors affect the changing task τ . Artefacts affect tasks of priority 15.

1 The same discussion applies for the case of changing deadline and CPU of deadline-
scheduled tasks. We limit ourselves to priority and CPU for simplicity.

Reliable Handling of Real-Time Scheduling Attributes 77

Case 1. If the priority is changed first, then τ will have its priority lowered
to 10 while in CPU1. This would make τ suffer a potentially large amount
of interference from all tasks with priority higher than 10 in CPU1. The
change to CPU2 will not occur until all tasks with a priority higher than 10
are idle on CPU1. This delay can be unacceptably large and it would break
the assumptions of any static real-time scheduling analysis. The impact on
the schedule would be especially notorious if the new priority of τ was the
highest in CPU2.

Case 2. Let’s now consider the reverse order. If the CPU is changed before
the priority, then τ will move to CPU2 with priority 20, rather than 10.
This will preempt any tasks with priority lower than 20, when τ should
execute at priority as low as 10 on CPU2. The duration of this interference
will however be bounded to the time between the change of CPU and the
change of priority from 20 to 10. If that time is short and bounded, then this
particular order (CPU, then priority) will cause only a scheduling artefact.

Consider now the reverse Scenario B: task τ has a priority 10 in CPU1 and
wants to move to CPU2 with a priority 20. If we first change the priority, then
we will cause interference in CPU1 to all tasks with priorities between 10 and
20. This interference will however last only the time it takes to move from CPU1
to CPU2. A situation similar to Case 2 above, but the artefact will occur in
the original CPU1 rather than in the destination CPU2. In symmetry with the
previous scenario, if we first change the CPU, then τ is moved to CPU2 with a
priority 10 rather than 20, so it will not be able to raise its priority to 20 until
all tasks with priorities between 20 and 10 are idle. This corresponds to Case 1
above, but the unbounded interference on τ would occur while in CPU2, rather
than CPU1.

In the rest of this paper, we will explore design alternatives to remove the
scheduling errors described in this Section. Note that if the scheduling artefacts
can not be removed, at least they will only cause limited interference.

3 Design Alternatives

The situations described above suggest that the change of several attributes of
a target task, especially when the CPU attribute is involved, needs be done
atomically. At an application level (i.e., not considering the implementation of
the underlying system services to change task scheduling attributes) there are
four Ada mechanisms we want to explore for pursuing the required atomicity:

– A protected object with the highest ceiling changes the target task attributes.
– The target task performs the changes of its own attributes using the highest

priority to avoid interference from other tasks during the sequence of changes.
– A timing event is programmed to change the attributes of the target task.
– A server task changes the attributes of the target task using rendezvous at

the highest priority.

In the following subsections, we explore the properties of these approaches to
correctly solve the problem of changing several scheduling attributes at a time.

78 S. Sáez, J. Real, and A. Crespo

3.1 Using Protected Objects

Changing the priority, deadline or CPU of an Ada task are task dispatching
points. However, all these operations are deferred if they occur within a protected
action. This seems to give a chance to atomicity if all attribute changes are done
within a protected action. By choosing the right ceiling priority for the protected
object, the programmer can avoid priority inversions leading to scheduling errors
such as those described in Section 2. In the most extreme case, the ceiling can
be as high as System.Interrupt Priority’Last, so that the attribute changes
will never be pre-empted by any other application task or interrupt handler.

Taking Case 1 of Scenario A in Figure 1, if the change of priority and CPU was
atomic, then task τ would travel to CPU2 without spending a potentially large
amount of time suspended in CPU1, with a relatively low priority that would
delay its migration. In Case 2 of Scenario B, the task would migrate to CPU2
with the correct priority 20, and hence it would not suffer priority inversion from
lower-priority tasks in CPU2.

The deferred setting of multiple scheduling attributes (à la Delay Until -

And Set Scheduling Attributes) can also be dealt with by requeuing the call-
ing task in a private entry of the protected object, with a closed barrier, and
programming a timing event for the required delay time. The timing event han-
dler would then open the barrier of that private entry and release the waiting
task with the new attributes.

Unfortunately, this analysis fails because we must also take into account how
the underlying combination of operating system (OS) and run-time system ac-
tually implements the change of several attributes at the end of a protected
action. When the task abandons the protected action it must have its priority
and CPU changed. The original problem arises again: if the OS/runtime is re-
quested to change the priority before the CPU, then the task will be inserted in
the scheduling queue corresponding to its new priority. Since the change of CPU
is still pending, then the error described for Scenario A Case 1 will happen again.
If the OS/runtime is commanded to perform the changes in the reverse order,
first CPU and then priority, then we would repeat the situation and scheduling
error shown in Case 2 of Scenario B in Figure 1.

A solution to these problems can only come from the particular runtime im-
plementation of how protected actions are completed. A safe design choice is to
have the completion of the protected action executed at the maximum priority
and follow the order: change CPU, then priority. But that falls out of the control
of an application programmer.

3.2 Self Change of Attributes from the Highest Priority

A second approach is to have the changing task applying the changes to itself
but after rising its priority to the highest possible (Interrupt Priority’Last)
so that it cannot be pre-empted in the middle of the changes. The sequence of
operations in the task would be: (1) Set my own priority to the highest, where
I cannot be pre-empted; (2) Call Delay Until And Set CPU to change to the

Reliable Handling of Real-Time Scheduling Attributes 79

target CPU at the specified absolute time (it could be immediately if Set CPU

is used instead); Finally (3) enforce my new scheduling attributes, in an order
such that the last attribute changed is my priority, so that all changes are done
from Interrupt Priority’Last.

Fig. 2. Scenarios for the self-change approach and their impact on higher- and lower-
priority tasks in the destination processor CPU2

Figure 2 shows this approach and the impact it may have on other higher- and
lower-prioritytasks.On the left hand side, the task executes onCPU1at priority 20
and wants to move to CPU2 with priority 15. At the time given in
Delay Until And Set CPU, the task wakes up in CPU2, still with the highest pri-
ority. Thismay cause bounded interference on all tasks in CPU2. In particular, this
will even preempt tasks with a priority higher than the destination priority of the
changing task. This is marked as an artefact in the left-hand side of Figure 2.

On the right-hand side of Figure 2, the changing task executes on CPU1 at
priority 15 and then migrates to CPU2 with priority 20. The impact on lower-
priority tasks in CPU2 is just regular pre-emption.

We note however that any task running on CPU2 (below Interrupt

Priority’Last) could be subject to pre-emption bursts in the case of multi-
ple tasks migrating to CPU2 in a short interval during its execution. And it
would not matter whether the target priorities of the pre-empting tasks were
higher or lower than that of the pre-empted task (or tasks) in CPU2. This is an
important drawback of this approach since it ruins the assumptions of schedula-
bility analysis: any task on CPU2 could suffer interference from any other task
potentially migrating to CPU2 from any other CPU.

80 S. Sáez, J. Real, and A. Crespo

3.3 Using Timing Events

For our purpose, and in terms of scheduling, the timing event mechanism has
similar properties to using a protected action with the highest possible ceiling pri-
ority. Furthermore, timing events are amenable to more efficient implementations
than protected objects, since they are simpler. An additional advantage is that
the timing event handler can be programmed for the future. This is most suit-
able for the deferred setting of scheduling attributes, such as the Ada supported
operations Delay Until And Set CPU and Delay Until And Set Deadline for
individual attributes. Timing events are conceived for handling an event in the
future, but the handler can be forced to execute immediately by programming
the event for a time in the past.

Fig. 3. An implementation based on a timing event prevents the scheduling er-
rors shown in Figure 1. TE represents the priority at which the timing event
handler is executed. In practice, under the Ceiling Locking policy, this priority is
Interrupt Priority’Last.

But perhaps the principal advantage of using a timing event (vs. a protected
object) is that the timing event handler will apply the attribute changes to an-
other task. It can therefore change the task’s priority without forcing a reschedule
(since the handler is still executing at the highest priority) and then change the
task’s CPU before completing the execution of the handler. This eliminates the
issue mentioned above with protected objects: even though the OS does not
support the atomic change of several scheduling attributes of a task, since the
changes are done from a timing event handler, there will be no other application
tasks interfering the whole operation. Figure 3 shows how the scheduling errors
described in Section 2 disappear and only the artefact glitches remain. Since the
changes of priority and CPU are enforced from the timing event handler, with
no possible pre-emption, the order in which they are performed is not relevant,
hence the absence of cases 1 and 2 in Figure 3.

Reliable Handling of Real-Time Scheduling Attributes 81

In summary, an implementation based on timing events effectively eliminates
the scheduling errors described in section 2, but not the artefacts. We note that,
unfortunately, it is unknown to the programmer in which CPU the artefact will
occur, given that the underlying OS/runtime could choose any CPU to execute
the timing event handler2. This poses a challenge to schedulability analysis and
motivates us to explore how the hypothetical ability to set the affinity for timing
events, would help solve this issue and determine precisely where the artefacts
occur, which would provide invaluable information for schedulability analysis.
We will develop this idea in Section 4.4.

3.4 Using Rendezvous with a Server Task

We now explore an alternative approach whereby a server task is used for ser-
vicing requests of immediate and deferred changes of the scheduling attributes.

Assume one server task is in charge of applying the attribute changes to
another calling (client) task. The server task has the highest priority, Interrupt
Priority’Last. A client task calls the appropriate server entry (for immediate
or deferred change) and then it becomes blocked during the execution of the
handled sequence of sentences of the corresponding accept statement on the
server side. According to the Ada standard [1], the execution of the rendezvous
occurs at the priority of the calling task. Since we do not want to reproduce the
scheduling errors described above for the protected object scheme, we want the
rendezvous to occur at the highest priority. To this end, the calling task will rise
its priority to the highest before issuing the actual entry call to the server.

Consider first the immediate setting of scheduling attributes by means of a
procedure Apply Scheduling Attributes. Within this procedure, the calling
task first rises its priority to Interrupt Priority’Last and then calls an entry
in the server task to enforce the new scheduling attributes. Upon completion of
the entry call, the server task goes back to accepting new calls and the client
task is released from the rendezvous blocking with the new attributes applied.
The effect on the schedule is a bounded interference at the highest priority in
the origin CPU, that can easily be accounted for in the schedulability analysis as
blocking time for all tasks of a priority higher than the client task in the origin
CPU. This is because the whole operation starts at the client’s original priority
in the origin CPU.

Figure 4 shows the process for both immediate and deferred changes. In the
immediate case (left side of Figure 4), a task in CPU1 with priority 20 wants to
change its priority to 10 and CPU to CPU2. The task first rises its priority to
the highest and then calls the appropriate entry in the server task. During the
rendezvous (represented by a grey box) the server task enforces the changes of
priority and CPU with no possible interference from other tasks. Note that, as
opposed to what occurs with timing events, the artefacts depicted in Figure 4 will

2 In Figure 3 we have represented the timing event executing in the same CPU where
the calling task executes, but nothing prevents the runtime system to execute the
handler in CPU2 or even in a third CPU, if it exists.

82 S. Sáez, J. Real, and A. Crespo

always occur in the origin CPU, so although they exist, they can be predictably
accounted for in the schedulability analysis. We have represented the continuous
execution of a second task of priority 15 in CPU2 to show that there are no
glitches caused by this approach.

Fig. 4. Execution examples for immediate and deferred change of scheduling attributes
using an implementation based on server tasks. Gray boxes represent execution of the
server task. The explanation for marks 1, 2 and 3 is given in Section 3.4.

Consider now the deferred change of attributes, enabled by a procedure
Delay Until And Apply Scheduling Attributes. The right hand side of Fig-
ure 4 shows the case of a task running on CPU1 at priority 10, that wants
to migrate to CPU2 with priority 20 at a given time in the future. As in the
immediate case, the first thing to do is to rise the priority of the task to the
highest. Then the entry call is issued and the rendezvous starts. In this case,
the rendezvous only copies the parameters of the call to apply them at a later
stage. This is marked as step 1 on the right hand side of Figure 4. After step
1 the rendezvous completes and we have both server and client at the highest
priority, since we have not yet changed any of the task’s attributes. We now
want to make sure that the client task goes on and executes a delay until

sentence to suspend itself until the requested time. This is marked as step 2 in
Figure 4. Having the client task suspended, the server task now executes step 3,
where it simply enforces the new attributes to the (suspended) client task. The
result is that no scheduling errors can occur, and the artefacts are actually only
short blocking times. The whole operation of changing the priority and CPU of
a task can be accounted as blocking time for tasks of a higher priority than the
changing task in the origin CPU. And this situation of priority inversion always
occurs in the origin CPU. This is a clear advantage with respect to the timing
event alternative described in Section 3.3, where it can’t be predicted in which
CPU the priority inversion will occur.

To ensure that the steps will occur exactly in the order described here (1, then
2, then 3), the server task has to yield the processor after the rendezvous (step 1),

Reliable Handling of Real-Time Scheduling Attributes 83

so that the client task executes the delay statement (step 2) and is placed at the
tail of the ready queue of Interrupt Priority’Last. After that, the server task
gains the CPU again to perform the change of attributes on the suspended client
– this is because the only two tasks executing at the highest priority level are the
client and the server. Indeed, this protocol causes two context switches between
server and client, but the important benefit is that the associated overhead is
bounded and predictable.

4 Implementation

This section discusses implementation details of the design alternatives described
so far. After briefly restating the implementation goals, we will first look at the
details of a data type to capture all the scheduling attributes of tasks, and its
related primitive operations. We will then show the most relevant implementa-
tion aspects of the alternatives proposed in sections 3.2, 3.3 and 3.4, that is,
having the attributes changed by the target task itself, or by a timing event or
by a server task, respectively. We are not considering the implementation details
of the protected object approach described in Section 3.1 because the way it
behaves is heavily dependent on the underlying combination of OS and runtime
support.

4.1 Goals

The goal of the software under design is to provide an abstraction to capture
the set of scheduling attributes (priority, deadline, CPU, or other user-defined
attributes...) individually associated to each task in the system. The programmer
must be allowed to query these attributes, and to atomically change one or
more individual attributes at a time. The change of these attributes can either
have immediate or deferred effect, at a certain specified absolute time in the
future. The type representing the set of attributes shall be extendable, so that
application-specific scheduling attributes can be added at a later time.

4.2 Representation of Scheduling Attributes

Listing 1 shows the specification of the tagged type Scheduling Attributes,
that captures the scheduling attributes of a task. An instance of this type (or
a type derived from it) is associated with each task so that the whole set of
attributes can be passed to a changer subprogram in a single call. The type
was already proposed in [8], and extended with a derived type for including
a deadline attribute for deadline-scheduled tasks. We show here only the two
attributes defined in the root type, priority and CPU.

The implementation details in the private part show that the type is simply
an extensible record with the proper fields, one for each attribute. The class-wide
type Any Scheduling Attributes is needed for the class-wide operations Apply
Scheduling Attributes andDelay Until And Apply Scheduling Attributes.

84 S. Sáez, J. Real, and A. Crespo

These subprograms internally use the private subprogram Enforce Scheduling

Attributes, which is in charge of ultimately setting the attributes. It has to be
implemented for each extension of the type, since the parameters to change will
vary between those extensions. Listing 2 shows the implementation of the corre-
sponding root operation.

The type is simple enough, and the operations are common setters and getters.
The subprogram Retrieve Scheduling Attributes allows the programmer to
read the attributes of a task. This is needed when we only need to change a
subset of the attributes and leave the rest intact.

Listing 1. Data type for scheduling attributes and primitive operations

−− with clauses omitted
package Ada Real Time.Scheduling Attributes is

−− Data type to represent scheduling attributes
type Scheduling Attributes is tagged private ;
procedure Set Priority (SP : in out Scheduling Attributes ; Prio : Any Priority);
function Get Priority (SP : Scheduling Attributes) return Any Priority ;
procedure Set CPU (SP : in out Scheduling Attributes ; CPU Nr: CPU Range);
function Get CPU (SP : Scheduling Attributes) return CPU Range;
procedure Retrieve Scheduling Attributes (SP : in out Scheduling Attributes ;

T Id : Task Id := Current Task);
type Any Scheduling Attributes is access all Scheduling Attributes ’ Class ;

−− Class−wide procedures
procedure Apply Scheduling Attributes (SP : Any Scheduling Attributes ;

T Id : Task Id := Current Task);
procedure Delay Until And Apply Scheduling Attributes (SP : Any Scheduling Attributes ;

Delay Until Time : Time);
private

type Scheduling Attributes is tagged
record

Prio : Any Priority := Default Priority ;
CPU Nr : CPU Range := Not A Specific CPU;

end record;

procedure Enforce Scheduling Attributes (SP : Scheduling Attributes ; T Id : Task Id);

end Ada Real Time.Scheduling Attributes ;

Listing 2. Root subprogram in charge of ultimately changing the attributes

procedure Enforce Scheduling Attributes (SP : Scheduling Attributes ; T Id : Task Id) is
begin

Set Priority (Priority => SP.Prio, T => T Id);
Set CPU (CPU => SP.CPU Nr, T => T Id);

end Enforce Scheduling Attributes ;

The implementation of a particular approach to handle the attributes will be
fully contained in the subprograms Apply Scheduling Attributes and Delay

Until And Apply Scheduling Attributes. The following subsections illustrate
the implementations of the three viable design alternatives discussed in Section 3.

4.3 Implementation Based on Self Changing the Attributes

Listing 3 shows the implementation of the deferred change of attributes contained
in subprogram Delay Until And Apply Scheduling Attributes. The key as-
pect of this approach (as described in Section 3.2) is that the changing task has

Reliable Handling of Real-Time Scheduling Attributes 85

the highest priority before it changes to the target CPU (line 5 of Listing 3). This
ensures that it will continue to execute at the highest priority when it arrives
in the destination CPU. Then we change the other attributes (all but CPU and
priority, if any) and finally, we change the priority.

Note that the last two sentences (lines 8 and 9) will be executed on the target
CPU, thus interfering with tasks that may have a higher priority than the final
priority of the changing task.

Listing 3. Deferred change of attributes in the self-change approach

1 procedure Delay Until And Apply Scheduling Attributes (SP : Any Scheduling Attributes ;
2 Delay Until Time : Time) is
3 begin
4 Set Priority (Interrupt Priority ’Last); −− Rise caller ’ s priority to highest
5 Delay Until And Set CPU(Delay Until Time,SP.CPU Nr);
6 −− Caller wakes up from delay in the destination CPU and still with the highest priority
7 SP. Enforce Scheduling Attributes (Current Task); −− Update other attributes
8 Set Priority (SP.Prio); −− Decrease caller’s priority down to the target priority
9 end Delay Until And Apply Scheduling Attributes ;

4.4 Implementation Based on Timing Events

As discussed in Section 3.3, timing events could lead to a more efficient im-
plementation than the self-changing and server task approaches. However, the
interference caused by a timing event handler cannot be bound to a particular
CPU, since the affinity of timing events cannot be enforced.

Listing 4 shows a hypothetical, extended specification of the Set Handler

subprogram (for programming a timing event handler). This extension adds the
parameter CPU Nr to set the handler’s affinity. At the low level, the operation
hides the complexity of adding timed events to the timer queue of a different
CPU. If we had this in Ada, then we could remove the most important drawback
of the timing-event approach to handling scheduling attributes.

Listing 4. A proposed signature for timing events with CPU affinity

procedure Set Handler (Event : in out Timing Event; At Time : Time; Handler : Timing Event Handler;
CPU Nr : CPU Range := Get CPU);

The use of this hypothetical feature could be as follows. Assume a Schedul-
ing Manager abstraction is declared for each task whose scheduling attributes
may be changed. This scheduling manager maintains the scheduling attributes
of the task and enables their enforcement when the timing event expires. List-
ing 5 shows a part of the implementation of a protected object supporting the
scheduling manager abstraction.

The immediate change of scheduling attributes, implemented within the entry
body of Apply Scheduling Parameters, programs an already expired timing
event to force the execution of the handler as soon as the calling task completes
the entry call. In the case the calling task is also the target task, it also forces the
task to wait until the handler is executed. The deferred setting of attributes is
implemented in Delay Until And Apply Scheduling Attributes. It is similar
to the immediate case, but using an expiration time in the future.

86 S. Sáez, J. Real, and A. Crespo

Listing 5. Timing Event handler and protected operations

−− Scheduling Manager specification
protected type Scheduling Manager with Interrupt Priority => Interrupt Priority ’Last is

entry Apply Scheduling Attributes (SP: Any Scheduling Attributes);
entry Delay Until And Apply Scheduling Attributes (SP : Any Scheduling Attributes ;

Delay Until Time : Time);
private

entry Wait;
procedure Handler (Event : in out Timing Event);

Task Waiting : Boolean := false ;
Sched Params : Any Scheduling Attributes ;
Timing Ev : Timing Event;

end Scheduling Manager;

−− Scheduling Manager body
protected body Scheduling Manager is

entry Wait when not Task Waiting is
begin

null ;
end Wait;

procedure Handler (Event : in out Timing Event) is
begin

Sched Params.Enforce Scheduling Attributes (Owner Task);
Task Waiting := false ;

end Handler;

entry Apply Scheduling Attributes (SP: Any Scheduling Attributes) when True is
begin

if not Task Waiting then
Sched Params := SP;
if Scheduling Manager.Apply Scheduling Attributes ’ Caller /= Owner Task then

−− A task wants to change another task’s attributes
Timing Ev.Set Handler(Time First, Handler’Access, SP.Get CPU);

else
−− A task wants to change its own scheduling attributes
Task Waiting := True; −− Barrier for entry Wait
−− An immediate timing event is programmed...
Timing Ev.Set Handler(Time First, Handler’Access, SP.Get CPU);
−− ... and the task is requeued to Wait until Handler updates its attributes
requeue Wait;

end if ;
end if ;

end Apply Scheduling Attributes ;

entry Delay Until And Apply Scheduling Attributes (SP : Any Scheduling Attributes ;
Delay Until Time : Time) when True is

begin
Sched Params := SP;
Task Waiting := True;
−− Program a TE for Delay Until Time ...
Timing Ev.Set Handler(Delay Until Time, Handler’Access, SP.Get CPU);
−− ... and wait until Handler wakes me up with the new attributes
requeue Wait;

end Delay Until And Apply Scheduling Attributes ;

end Scheduling Manager;

4.5 Implementation Based on Server Tasks

In the approach described in Section 3.4, a server task is used to atomically
change the scheduling attributes of a client task. Listing 6 shows an implemen-

Reliable Handling of Real-Time Scheduling Attributes 87

tation of the server task type, from which server objects can be instantiated.
We may need up to one server task per CPU. The function Next CPU, used as
the initial value for the discriminant CPU Nr of the task type, is just a global
function that returns one distinct CPU number upon each call, all within the
range of CPUs available in the execution platform.

Each server task offers two entries that will be used by the class-wide opera-
tions to implement the immediate and deferred changes. When a call is accepted
to the entry Apply Attributes Immediately, the server simply calls the proce-
dure that enforces the new attributes. As Listing 7 shows, the entry call is sent to
the particular server task that is attached to the CPU where the changing task
is executing. We have omitted the implementation of the function Current CPU,
which is dependent on the particular underlying operating system.

Listing 6. Server task that atomically enforces the scheduling attributes

task type Scheduling Manager Type(CPU Nr : CPU := Next CPU) with
Interrupt Priority => Interrupt Priority ’Last, CPU => CPU Nr is

−− entries omitted
end Scheduling Manager Type;

task body Scheduling Manager Type is
Sched Param : Any Scheduling Attributes ;
Target Task: Task Id ;

begin
loop

select
accept Apply Attributes Immediately (SP : in Any Scheduling Attributes ;

T Id : Task Id) do
−− Change task’s attributes
SP. Enforce Scheduling Attributes (T Id);

end Apply Attributes Immediately ;
or

accept Apply Attributes On Suspend (SP : in Any Scheduling Attributes ;
T Id : Task Id) do

−− Stores the target task and new attributes (Fig. 3 step 1)
Target Task := T Id;
Sched Param := SP;

end Apply Attributes On Suspend;
−− Forces client task to execute the delay until (Fig. 3 step 2)
delay 0.0;
−− Change the sched. attributes of the suspended client task (Fig. 3 step 3)
Sched Param.Enforce Scheduling Attributes(Target Task);

or
terminate;

end select ;
end loop;

end Scheduling Manager Type;

The second entry in Listing 6, Apply Attributes On Suspend, implements
steps 1 and 3 shown at the right-hand side of Figure 4. The sentence delay

0.0 after the accept forces the server task to move to the tail of the Interrupt

Priority’Last ready queue3. This allows the client task, that has the same high-
est priority, to execute the statement delay until Delay Until Time, within
subprogram Delay Until And Apply Scheduling Attributes shown in Listing
7 (labelled as step 2 in Figure 4).

3 The Yield operation is not supported in our platform.

88 S. Sáez, J. Real, and A. Crespo

Once the client task is suspended, the server task resumes execution (it is
the highest-priority active task) and changes the scheduling attributes of the
suspended client task. When the client task wakes up, it will be inserted in
the corresponding ready queue of the target CPU, but with the new scheduling
attributes already applied. Therefore, no scheduling interferences at application
level will occur4.

Listing 7. Class-wide operations of the scheduling attributes

−− Class−wide procedures
procedure Apply Scheduling Attributes (SP : Any Scheduling Attributes ;

T Id : Task Id := Current Task) is
begin

Set Priority (Interrupt Priority ’Last);
Scheduling Manager(Current CPU).Apply Parameters Immediately(SP, T Id);

end Apply Scheduling Attributes ;

procedure Delay Until And Apply Scheduling Attributes (SP : Any Scheduling Attributes ;
Delay Until Time : Time) is

begin
Set Priority (Interrupt Priority ’Last); −− Rise its priority to IP’Last
Scheduling Manager(Current CPU).Apply Parameters On Suspend(SP,

Current Task);
−− Sched. attributes will be change on suspension (Fig. 3 step 2)
delay until Delay Until Time; −− It will wake up with new attributes applied

end Delay Until And Apply Scheduling Attributes ;

5 Conclusions

The ability to safely change several scheduling attributes of a task in a single
operation, is a useful feature for real-time systems, especially on multiprocessor
platforms. It is on these platforms that the operation poses the biggest chal-
lenges, since there are multiple opportunities for scheduling issues to occur at
run time. This is especially true when the CPU is one of the changing attributes.
In this paper, we have described those issues and explored four ways to solve
them in Ada. We conclude that:

– A solution based on protected objects does not guarantee, at the language
level, the required atomicity in the change of several scheduling attributes.
Even if the protected action was executed at the highest possible ceiling.
This is because we ultimately depend on how the OS/runtime implements
the lower-level services to actually enforce the scheduling attributes.

– Self-changing the attributes from the highest priority level, introduces remote
interference in the destination CPU. Although this interference is presum-
ably short (just the time it takes to call the OS/runtime support to have
the changes enforced, plus a task context switch in and out the destination
CPU), a task in the destination CPU may suffer bursts of interference when
many tasks are migrating to the CPU where it is running.

4 The possible scheduling interferences that a task activation produces at kernel level
depend ultimately on the implementation of the underlying operating system.

Reliable Handling of Real-Time Scheduling Attributes 89

– Delegating on a timing event handler for the change of attributes, while the
changing task is safely blocked awaiting for the handler to execute. This
approach produces one interference glitch, presumably shorter than in the
previous case since no task context switch is strictly necessary here. However,
it is impossible for the programmer to determine in which CPU the inter-
ference will occur (unless it is very precisely documented in the language
implementation). Moreover, at least one implementation that we know of
uses a task for servicing timing events, hence the efficiency argument does
not necessarily hold in all cases. We note that the main weakness of this ap-
proach (namely, ignoring which CPU is affected by the handler glitch) could
be overcome by adding a new language feature that enabled the programmer
to set the affinity of timing event handlers.

– Using a server task to change the attributes of client tasks has proven to be
the most reliable implementation in our experience. This approach requires
up to one server task per CPU and produces interference only in the origin
CPU, where it can be accounted for as interference from the highest priority
level. Since all attribute changes are applied to a non-running task, they will
be actually enforced at the next task activation. There is no need for further
operations that are susceptible of causing additional interference. Our own
criticism to this approach is that we need a double context switch between
the server and the client tasks in order to apply all the changes in a controlled
manner.

Acknowledgements. This work has been partially supported by the Span-
ish Government’s projects COBAMI (DPI2011-28507-C02-02) and Hi-PartES
(TIN2011-28567-C03-01-02-03) and the European Commission’s MultiPARTES
project (FP7-ICT-2011.3.4, Contract 287702).

References

1. ISO/IEC JTC1 SC22 WG9 Ada Rapporteur Group: Ada Reference
Manual - Language and Standard Libraries - ISO/IEC 8652:2012(E),
http://www.ada-europe.org/manuals/LRM-2012.pdf

2. Davis, R., Wellings, A.: Dual priority scheduling. In: Proceedings of the 16th IEEE
Real-Time Systems Symposium, pp. 100–109 (1995)

3. Kato, S., Yamasaki, N., Ishikawa, Y.: Semi-partitioned scheduling of sporadic task
systems on multiprocessors. In: 21st Euromicro Conference on Real-Time Systems,
ECRTS 2009, pp. 249–258. IEEE Computer Society, Los Alamitos (2009)

4. Lakshmanan, K., Rajkumar, R., Lehoczky, J.P.: Partitioned fixed-priority preemp-
tive scheduling for multi-core processors. In: 21st Euromicro Conference on Real-
Time Systems, ECRTS 2009, pp. 239–248. IEEE Computer Society (2009)

5. Tindell, K., Burns, A., Wellings, A.: Mode changes in priority preemptively sched-
uled systems. In: Real-Time Systems Symposium, pp. 100–109 (1992)

http://www.ada-europe.org/manuals/LRM-2012.pdf

90 S. Sáez, J. Real, and A. Crespo

6. Real, J., Crespo, A.: Mode Change Protocols for Real-Time Systems: A Survey
and a new Proposal. Real-Time Systems 26(2), 161–197 (2004)

7. Sáez, S., Crespo, A.: Deferred setting of scheduling attributes in Ada 2012. Ada
Letters 33(1), 93–100 (2013)

8. Sáez, S., Real, J., Crespo, A.: Deferred and atomic setting of scheduling attributes
for Ada. Ada Letters 33(2), 97–108 (2013)

9. Vardanega, T., White, R.: Session summary: Improvements to Ada. Ada User
Journal 34(4), 239–241 (2013)

L. George and T. Vardanega (Eds.): Ada-Europe 2014, LNCS 8454, pp. 91–106, 2014.
© Springer International Publishing Switzerland 2014

Parallelism in Ada: Status and Prospects

Luís Miguel Pinho1, Brad Moore2, and Stephen Michell3

1 CISTER/INESC-TEC, ISEP, Polytechnic Institute of Porto, Portugal
lmp@isep.ipp.pt

2 General Dynamics, Canada
brad.moore@gdcanada.com

3 Maurya Software Inc, Canada
stephen.michell@maurya.on.ca

Abstract. Recently, a semantic and runtime model for parallel programming
was proposed for addition to Ada. The proposal uses program annotations
(expressed as Ada 2012 aspects) to inform the compiler of opportunities for pa-
rallel computation, and also offers the ability to specify details of parallel ex-
ecution. The proposal includes support for specialized behaviors via dedicated
libraries and a runtime environment that builds on pools of worker tasks. This
paper extends that work by adding notations for data types and parallel blocks,
simplifying some of the parallel notations and eliminating obstructions to the
implementation of efficient parallel algorithms.

1 Introduction

Recently a fine-grain parallel model for Ada has been proposed [1], based on the no-
tion of tasklets, which are non-schedulable computation units (similar to Cilk [2] or
OpenMP [3] “tasks”). This model is based on annotating Ada code with new aspects
that guide the compiler on how sequential code can be parallelized, where the compi-
ler is responsible for transforming the source for parallel execution.

Unlike Ada tasks, tasklets are not nameable or directly visible in a program, and
may exist only as a logical entity. A tasklet carries the execution of a subprogram or
of a code fragment in parallel with other tasklets executing the same or complementa-
ry code fragments (with different state) and possibly in parallel with other tasklets
executing code fragments from other Ada tasks. This work is also similar to what is
being proposed in other languages such as C++ [4] and C [5].

Tasklets do not replace tasking as the unit of concurrency but rather complement
tasks. Programmers declare an intent that code fragments be executable in parallel,
but do not necessarily concern themselves with the details of the parallelism itself, or
how it interoperates with other tasks. To the programmer, each tasklet execution looks
like a very lightweight task that briefly comes into existence and then terminates at
the end of its execution. In order to make tasklets integrate smoothly with the tasking
mechanism, priority, and real-time bounds, tasklets can be executed by worker tasks.
The Ada tasking model is then used to express the concurrency since tasks in Ada
already have a computationally sound model.

92 L.M. Pinho, B. Moore, and S. Michell

A proposal for an extensible underlying library is presented at [6], based on tasklets
being executed by pools of worker Ada tasks. The work at [6] considers that tasking
must carry the load in sharing cores when parallelization occurs in homogenous parallel
cores and the underlying runtime already maps tasks to threads. Nevertheless, it is rec-
ognized that there is a need for the programmer to be able to provide more control of the
parallelism when necessary. Examples of the need to tightly control how the parallelism
is implemented include huge data sets on massively parallel machines, general purpose
GPU's, and real-time systems. In such cases, the allocation of resources may need to be
tightly controlled and managed. Furthermore, for the case where tasks are not mapped to
threads, a different approach can be used altogether for executing the tasklets. There-
fore, the proposal defines the semantics as well as an interface, which can be used by an
implementer to add libraries specific to particular domains or platforms.

The proposal incorporates logical units of parallelism into the semantic model of
the language, allowing potential parallelism to be expressed both for task/control and
data parallelism notations [7]. In the former, the control structures of the code (e.g. for
loops 1, blocks and subprograms) which are amenable to parallelization are identified
(syntax to annotate for loops and subprograms is presented at [1]), while in the latter
it is the primitive operations of data types (arrays or records) that are annotated to be
potentially performed in parallel (a preliminary syntax is presented in [8]). Both are
based on the same notion of the tasklet as the logical unit of parallelism.

Concerning the behavior model, the programmer identifies potential Parallel OPpor-
tunities (POPs) in the code, guiding the compiler in generating code that creates the
logical tasklets. During execution, the runtime executes the tasklets in parallel, if the
load of the system and the underlying architecture allows it. Note that this model also
allows the compiler to integrate vectorization, as logically the compiler can decompose
parallel processing in several tasklets which are directly executed in hardware. If pro-
grammers have a clear understanding of the specific target hardware they may optimize
parallelism controls such as size of parallel chunks, etc. Nevertheless, we consider that
in the majority the cases the compiler is better able to perform that control.

In this paper we provide the current status of this proposal, as well as how it is ex-
tended for supporting data parallelism notation and how parallelism is handled in
expressions. We extend our previous syntax model by allowing programmers to ex-
press parallelism via a parallel block syntax, which can provide an easier approach for
the programmer to specify parallel algorithms, and also serve as a useful building
block for parallelism implementation. Finally, we discuss some open issues.

2 Proposal Model and Status

The work in [1] introduced the notion of a Parallel OPportunity (POP). This is a code
fragment that appears sequential but which can be executed by processing elements in
parallel. This could be by-element operations on an array, parallel iterations of a for

1 A loop is a control structure of the code. Nevertheless, a for loop is widely used for iteration

on array data types. Therefore, a for loop can also be seen as a way to express data decom-
position.

 Parallelism in Ada: Status and Prospects 93

loop over a structure or container, parallel executions of subprograms, and so on. That
work also introduced the notion of a tasklet to capture the notion of a single execution
trace within a POP, which we allow the programmer to express with special syntax.

Conceptually, each Ada task is seen as a graph of execution of multiple control-
dependent tasklets (Figure 1), with a fork-join model. At least one (implicit) tasklet
exists in each task, to execute the body of the task. Tasklets can be spawned by other
tasklets (fork), and need to synchronize with the spawning tasklet (join).

Fig. 1. Task 1 denotes the current model of an Ada task where a single thread of control is
executing the body of the task. Task 2 denotes the new model, where an Ada task can execute a
graph, where rectangles denote tasklets, dark circles fork points, and white circles join points.

The basic approach to the syntax is to use the Ada aspect mechanism

 with parallel => [True| False]

to denote a POP. The goal is to place this aspect on specifications, such as function
declarations and data type declarations so that individual statements do not require an-
notation. Adding these annotations is less laborious and less error prone than achieving
equivalent parallelism from scratch, in the absence of syntax, and library support, nei-
ther of which Ada has built into the standard. It also allows integration with the compi-
ler, as the annotations do not need to provide the exact breakdown of parallel execution.
As a bare minimum, the annotations only need to indicate the places where paralleliza-
tion can be performed. The compiler is then able to perform suitable transformations.

Nevertheless, in some cases, such as hard real-time systems or specialized mas-
sively parallel machines, the programmer may need to provide finer control of the
parallel behavior. These further controls are provided in the form of additional aspects
to guide mapping and reduction of algorithms, to select work strategies (such as
work-sharing or work-stealing), and to provide explicit control of user-provided task
pools for workers. When these finer controls are needed, the programmer is specializ-
ing for a particular architecture, achieving predictability or performance at the

Application/Partition

Task 2

Task 1

94 L.M. Pinho, B. Moore, and S. Michell

expense of decreased portability. The compiler then, together with the runtime
(which can be architecture-specific), generates the code required for parallelization.

We have identified the need for explicit syntax to guide the compiler in the genera-
tion of tasklets to execute the following:

─ Data structures
─ Parallel for loops (also over containers)
─ Subprograms (recursive and non-recursive)
─ Expressions
─ Evaluation of subprogram and entry parameters
─ Blocks

Each of these is discussed below.

2.1 Data Structures

Data structures include:

─ single dimensional arrays,
─ multi-dimensional arrays,
─ record types (including private types, and private extensions as well as the explicit

parallelization of any primitive operations on the type), and
─ containers.

Obvious areas for parallelization of data structures are initialization and copying large
structures, but also operations that can operate by-element or by-slice if the structure
of the type and of the operation can be partitioned for parallel execution.

The new proposal for parallelism notations within data types is discussed in sec-
tion 3. We do not have a proposal for tagged types at this time. The issues involved in
the overriding of parallel subprograms with non-parallel overridden subprograms (or
vice-versa) need further discussion.

2.2 Parallel for Loops

The basic syntax for a parallel for loop is given by [1]:

for I in 1 .. N
 with Parallel => True
loop
 --...
end loop;

Because the cost of scheduling a worker for parallel execution or of setting up the
data to be processed by that worker may be many times the cost of the operation it-
self, syntax may be needed to guide the implementation in the number and mapping
of tasklets for the loop. For example, by-element addition on a loop over a set of in-
tegers could be broken into N tasklets, where N is the number of cores or 1/10, 1/100
or 1/1000 of the set size.

 Parallelism in Ada: Status and Prospects 95

Our proposal includes [6] an aspect Chunk_Size that lets the programmer pro-
vide a fixed chunk size or guides the compiler in choosing one. Note that if fine con-
trol is not needed, the aspect may be left unspecified in which case the compiler can
typically choose a reasonable chunking value by using an algorithmic approach. The
proposal also includes an aspect Work_Plan that lets the programmer select the
approach to use on management of load balancing. This can be either by selecting an
object provided by the library, or even, if supported, selecting an option provided by
the compiler. Other aspects are also presented in section 3.

2.3 Parallel for Loops over Containers

Iteration over containers using a for loop can also be made in parallel in several
cases, as for example, in a search or reduction. This mechanism can be supported in
two complementary, non exclusive approaches.

The first approach is to provide a new interface Ada.Parallel.Iterator_
Interfaces, extending Ada.Iterator_Interfaces, that provides new itera-
tor types supporting parallel iteration (e.g. providing a set of iterators to different parts
of the container). The First and Next operations of these iterators would guarantee
non-overlapping processing.

A different, complementary, solution involves the compiler transforming the code
and iterating through the container spawning parallelism as needed. This would force
at least one sequential iteration to determine the start elements of the parallel execu-
tion, but it would allow applying parallelism to existing containers. Both approaches
can coexist, with the compiler using the latter if the container does not provide sup-
port for parallel iterators.

2.4 Subprograms

For the case of subprograms, we propose the ability to specify the execution of a sub-
program in parallel with subsequent code in the enclosing block or scope where the
subprogram is called.

This work extends our earlier papers in that the semantics for parallel subprogram
calls in standalone statements also applies to parallel blocks (when we discuss them in
section 3) and complex expressions: the aspect Parallel on the subprogram specifica-
tion means that each call to the subprogram will be executed by a new tasklet, thus
may execute in parallel with the following statement(s) (if in a standalone statement
such as a procedure call) or with the following subexpression(s) (if used in a complex
expression).

When a subprogram or a block executes in parallel with following statements, the
synchronization point for the parallel computations is the earlier of:

─ either the end of the enclosing scope, or
─ the first point where an object updated by the parallel call or block is read or writ-

ten by the following statements.

For parallel subprogram calls or parallel blocks, the enclosing scope is the end of the
containing block or subprogram. While compilers can usually work out where such

96 L.M. Pinho, B. Moore, and S. Michell

dependencies exist, human intervention is also possible by nesting scopes with the use
of blocks to force such synchronization.

Note that, for recursive subprograms that are called recursively two or more times
at each level, the definition of the parallel model means that the earlier invocations of
the recursive call execute in parallel with later invocations. For example

function Fib(Left : Natural)
 return Natural with Parallel is
begin
 return -- Expression is the enclosing scope
 Fib(Left-1) -- Tasklet spawned to execute parallel
 -- with following sub-expressions
 + -- consumes results, so sync
 -- happens before “+”
 Fib(Left-2);-- Nothing left for parallel execution
 -- in the expression hence no spawning
end Fib;

Parallel recursive functions are thus a simple extension of parallel subprograms.
Placing with Parallel => False on a subprogram specification guarantees

that all calls to the subprogram will be executed by the tasklet that executes the
enclosing scope of the call. It does not, however, prevent parallelism from being
initiated within the body of the subprogram itself (for example, a subprogram may
contain a data type that has a with Parallel on it). It also does not prevent paral-
lelization at levels above the immediately enclosing scope of a call to the subprogram.
Also, other subprograms in the same enclosing scope may be executing in parallel
with that scope, and hence with the subprogram under consideration.

2.5 Expressions

We consider that complex expressions should be parallelizable, if the parallel execu-
tion can be made safely, and/or efficiently.

Our previous work allowed for programmers to introduce aspects within expres-
sions in order to control the actual spawning of parallelism, however, we now consid-
er that this is a very complex, error prone, and “inelegant” mechanism, which should
not be used. Instead, we now propose that expressions are parallelized by the compiler
using the knowledge on parallel operations on data types and function calls, which is
given by programmers through the aspects in the specification of the types and func-
tions. This is later described in subsection 3.1.

2.6 Subprogram and Entry Parameters

Where one or more parallel functions serves as a parameter to a subprogram or entry
call X, the synchronization of the function parameters must be before invoking the
call on the subprogram or entry X (the invocation of X consumes its parameters,
which are the return values of the parallel functions, hence synchronization of the
parallel functions is required).

 Parallelism in Ada: Status and Prospects 97

Since the order of evaluation of parameters is not defined, the programmer cannot
rely upon order of execution to determine parallel/sequential behaviours. When one
cares about the order and potential parallelization, programmers need to evaluate the
functions in statements before the subprogram call.

2.7 Blocks

In the proposal of [1], we had dismissed adding parallelism notation to blocks, since
we considered that the syntax required to make them effective would be similar to
declaration of “anonymous” subprograms (controlling the modes and scope of va-
riables through notations similar to in and out parameters), so we decided to pro-
pose that programmers specify parallel subprograms in these cases.

However, further work demonstrated that the use of blocks allows for an easy struc-
turing of parallel regions of code, particularly if synchronization is required between the
parallel executions. A concept similar to these blocks is the task construct of OpenMP
[9]. The new proposal for parallelism notations in blocks is provided in section 4.

3 Data Parallelism and Expressions

One of the areas where Ada excels is in the use of type declarations together with
primitive operations on the type to create classes of objects (in the pure sense of the
term, as well as the object-oriented sense). It is thus important to also provide capabil-
ities for the programmer to annotate data types which can be processed in parallel.

In this proposal, an (optional) Parallel aspect can be added to data types to
inform the compiler that some of its primitive operations can be parallelized. In
addition, two new aspects are introduced; Parallel_By_Element, and Paral-
lel_By_Component. Parallel_By_Element applies to arrays and Paral-
lel_By_Component applies to composite types. These aspects can be added to the
data type operations to specify how the operation on the data type is to be performed
based on the composition of its individual elements 2. Note that these operations could
be built based on specifying parallelism within them by coding new subprograms.
However, for simple operations the extra syntax involved in such explicit parallel
statements becomes cumbersome. The following example describes notations for a
simple parallel array:

type Par_Arr is array (1..100) of Some_Type
 with Parallel => true;

function “+”(Left, Right: Par_Arr) return Par_Arr
 with Parallel_By_Element => “+”;
 -- the full specification of the individual by element
 -- “+” operation is known to the compiler so it is
 -- only the operation name that is required

2 The compiler is free to optimize and use SIMD hardware when available (as it already can),

and this is outside of the aspects we are specifying.

98 L.M. Pinho, B. Moore, and S. Michell

With this notation, the compiler knows that in expressions the sum of two parallel
arrays (or array slices) can be performed by composing parallel execution of
Some_Type sums. Note that the compiler may generate the code to perform 100
parallel individual sums, or aggregate in some chunk size (e.g. creating 10 tasklets
each one performing 10 sums). Continuing with the spirit that the programmer for
some specific reason may want to have a finer control of this chunking, a
Chunk_Size aspect is allowed in the Parallel_By_Element notation:

function “+”(Left, Right: Par_Arr) return Par_Arr
 with Parallel_By_Element => “+”,
 Chunk_Size => 10;

Note that some operations cannot be performed by element, but in this case, the capa-
bilities provided for primitive functions and for loops can be used instead. For in-
stance, the dot product of two Par_Arr variables can be specified as:

function “*”(Left, Right: Par_Arr) return Some_Type is
 Result: Some_Type := Identity_Value;
begin
 for I in 1 .. 100
 with Parallel => True, Accumulator => Result
 loop
 Result := Result + Left(I) * Right(I);
 end loop;
 return Result;
end “*”;

Or, if reduction and/or identity is also needed, then reduction aspects may also be
specified 3:

3 Note the extension to [1] as we have identified the need to group the accumulator with the

reducing operation and identity value, for the case where the same loop may be determining
multiple results simultaneously. The following example illustrates determining the sum and
the product of a range within the same loop:
 S: Integer := 0;
 P: Integer := 1;
begin
 for I in 1 .. 100
 with Parallel => True,
 Accumulator =>(S, Reduction =>“+”, Identity =>0),
 Accumulator =>(P, Reduction =>“*”, Identity =>1)
 loop
 S := S + I;
 P := P * I;
 end loop;
 -- ...
end;

 Parallelism in Ada: Status and Prospects 99

function “*”(Left, Right: Par_Arr) return Some_Type is
 Result: Some_Type := Identity_Value;
begin
 for I in 1 .. 100
 with Parallel => True,
 Accumulator => (Result,
 Reduction => “+”,
 Identity => Identity_Value)
 loop
 Result := Result + Left(I) * Right(I);
 end loop;
 return Result;
end “*”;

Multi-dimensional arrays can be treated the same way:

type Par_MArr is array (1..100,1..10) of Some_Type
 with Parallel => true;

function “+”(Left, Right: Par_MArr) return Par_Marr
 with Parallel_By_Element => “+”;

However, in this case programmers may wish to perform operations within a single
dimension, therefore the “+” operation could then be written instead as:

function “+”(Left, Right: Par_MArr) return Par_MArr is
 Result: Par_Marr;
begin
 for I in 1 .. 100
 with Parallel => True, Chunk_Size => 10
 loop
 for J in 1 .. 10
 with Parallel => False -- forces sequential
 loop
 Par_Marr (I,J) := Left (I,J) + Right (I,J);
 end loop;
 end loop;
 return Result;
end “+”;

We can, nevertheless, take the concept further, and create aspects for by-dimension
operations. This is a topic for further investigation.

100 L.M. Pinho, B. Moore, and S. Michell

For composite types, the model would be the same; however, Parallel_
By_Component would be used instead (operations may be different in each compo-
nent) 4:

type Par_Rec is record
 with Parallel => True
 A: Some_Type_A;
 B: Some_Type_B;
end record;
function “+”(Left, Right: Par_Rec) return Par_Rec
 with Parallel_By_Component => (A => “+”,
 B => Some_Op);

It should also be possible to parallelize the assignment of variables of a parallel data
type. In the following code excerpt, the compiler can perform the assignment to the
individual components of Z “in place” within the parallel addition of the same com-
ponents of X and Y:

 X, Y, Z: Par_Rec;
begin
 Z := X + Y;
 -- …

Using these basic mechanisms, it is also possible to create libraries of parallelizable
containers. Note that recursive structures and any general container may in cases be
only amenable to parallelization through the development of parallel-aware and con-
text-aware operations (in the sense that two inserts need to know if they are operating
on the same structure or the container is built in a way that they can be concurrent). In
some cases, it may be safe to process some existing container types in parallel (e.g.
searching in a vector). The basic mechanism provided here, together with the possibil-
ity of parallel iterators, can be used to build such containers.

3.1 Parallelism within Expressions

By specifying potentially parallel operations and potentially parallel spawning of
subprogram calls, expressions can now be performed in parallel. Consideration needs
to be given to ensure that ordering and safety are preserved.

When a data object or operation on such an object (such as “+”) is part of
an expression and that operation is a data-parallel operation, then potentially many
tasklets may be used to perform the execution. When an expression contains calls to

4 Visibility rules would likely prevent the use of Parallel_By_Component aspect in the

public part of a package declaration for a data type which is private to the package (the as-
pect requires access to the individual components of the record). Statements of parallelism
declared only in the private part, would hide potential parallelism from users of the type; this
is the same as the implementer of the primitive operations of the type specifying parallelism
internally to the operation, in the hidden body of the package. To address this, partial paral-
lel notations could be added to the public part, and later completed in the private part.

 Parallelism in Ada: Status and Prospects 101

potentially parallel functions connected by operators, then the execution of a subpro-
gram can execute in parallel with other parts of the expression on the proviso that
each operator cannot execute until functions that satisfy its parameters have synchro-
nized (as specified in the synchronization rules of section 2). The Ada rule on prece-
dence and left-to-right evaluation of operators within precedence must be preserved.
The compiler is nevertheless permitted to order the evaluation of expressions to op-
timize the opportunities for parallelism.

However, programmers may want to apply different parallel execution criteria to
individual function calls in an expression. In this case, the programmer can create
parallel and sequential variants of the same subprogram to use to control the use of
parallelism. For example, for function Foo, we can specify a Parallel =>
False aspect, thus preventing a call to Foo to spawn a tasklet:

function Foo(Left, Right : Some Type)return Some_Type
 with Parallel => False;

and provide a variant which would allowing the spawn of a tasklet:

function Foo_Par(Left, Right: Some Type) return Some_Type
 with Parallel => True is (Foo(Left, Right));

or

function Foo_Par(Left, Right: Some Type) return Some_Type
 with Parallel => True renames Foo(Left, Right);

Then we could write

Y := Foo_Par(X,Z) + (Foo(G,F) + Some_Other_Func);

to ensure that the first part is executed in a separate tasklet but the last Foo is not.
Note that if Some_Other_Func was not there, then the call to Foo would not be in
a separate tasklet anyway, because of the rules presented in section 2.

4 Parallel Blocks as a Building Block for Easier Parallelism
Specification

A block that is declared parallel (using the with Parallel aspect notation) ex-
ecutes in parallel with the statements immediately following the block end statement.
A synchronization point for the parallel block and subsequent statements is the end of
the immediately enclosing scope.

begin -- this is the main task
 declare with Parallel => True
 -- types and variables here
 Foo: ... := Outer_foo;
 Result: ...;

102 L.M. Pinho, B. Moore, and S. Michell

 begin
 Some_Code;
 -- Here whatever is inside is executed by one
 -- tasklet (or more if nested parallelism)
 -- but can execute in parallel with other code in
 -- the enclosing scope.
 -- Should only be used when there is no risk that
 -- the data elements being read or written require
 -- co-ordination with code outside the block.
 -- The programmer is hinting the compiler that
 -- this is safe.
 end; -- end of parallel region
 Some_other_code; -- executed in parallel with the
 -- block above
end; -- end of enclosing scope: join of parallel
 -- execution

The with Parallel notation could be applied to the begin construct, in case a
declare region was not required:

begin -- this is the main task
 begin with Parallel => true
 Some_Code;
 end; -- end of parallel region
 Some_other_code; -- in parallel with the block above
end; -- end of enclosing scope: join of execution

Similar to the implicit synchronization of the return results of functions, it is possible
that an implicit join is forced when, in the enclosing scope, the programmer reads a
variable being updated by a block in an inner scope. This is as if a variable is treated
as a future [10]:

 Result: Integer;
begin -- Main Task
 Code; -- Sequential
 declare with Parallel -- the parallel block
 begin
 Result := Foo + Bar;
 end;
 Other_Work; -- done in parallel with the
 -- block just above
 Put_Line ("Result = " &
 Integer'Image (Result)); -- Implicit
 -- join here before
 -- Result is read
end;

 Parallelism in Ada: Status and Prospects 103

We can view the futures analysis as simply the compiler introducing further implicit
blocks. It would be as if the above code could get transformed by the compiler into an
intermediate step which resembles:

 Result: Integer;
begin -- Main Task
 Code; -- Sequential
 begin -- implicit block for synchronization
 begin with Parallel -- the parallel block
 Result := Foo + Bar;
 end;
 Other_Work; -- done in parallel with the block
 end; -- for the join
 -- sequential again
 Put_Line ("Result = " & Integer'Image (Result));
end;

Note also that Other_Work can be also seen as another implicit block. So the final
transformation of the above code to the implementation level could look like the fol-
lowing (compiles currently in Paraffin [11]):

with Ada.Parallel.Blocks; use Ada;
declare
 Result: Integer;
 Manager : Parallel.Blocks.Parallel_Manager;
 procedure Block1 is
 begin
 Result := Foo + Bar;
 end Block1;
 procedure Block2 is
 begin
 Other_Work;
 end Block2;

begin
 Manager.Execute_Parallel_Blocks (A => Block1'Access,
 B => Block2'Access);
 -- Synchronization occurs before returning from
 -- Execute_Parallel_Blocks
 Put_Line ("Result = " & Integer'Image (Result));
end;

A final note for the use of parallel constructs inside the declarative region of a block
(or subprogram): it is our proposal that the scope of parallelism execution can include
both the declaration and the body of the block/subprogram, if the compiler is able to
determine that the semantics are the same as if elaboration of the declarative region
was complete before the begin statement.

104 L.M. Pinho, B. Moore, and S. Michell

5 Open Issues

The current proposal outlines to the semantic model of parallelism opportunities,
tasklets and “syntactic sugar”. However, several issues are still open.

One important question is whether implicit joins generated by the compiler for pa-
rallel variable updates should be allowed. In section 4 we described how a model
similar to futures could be used to allow for a parallel block to update a variable being
read in the enclosing scope. In this model the compiler would either detect the poten-
tial race condition and insert an implicit synchronization point, or would insert the
required check at runtime. An alternative which we are considering is to forbid such
race condition, which is a safer although less flexible approach. In this case, the com-
piler would reject any code where a potential race condition occurs (following the
rules for concurrent access to objects as specified in the Language Reference Manual
[12, section 9.10]), only allowing it if objects are guarantee to be independently ad-
dressable. If not detectable at compile-time it could be detectable at run-time.

Another issue is the underlying runtime. A runtime model based on execution of
tasklets on top of Ada tasks has been presented in [6], but this model is not complete
as it is currently silent about the issue of synchronization and communication between
tasklets. It is clear that this is required either because multiple tasklets may be access-
ing the same variable (e.g. an accumulator) or needing to execute in phases (e.g. to
solve a matrix using Gauss Jordan Elimination [13]). One approach is to let tasklets
communicate via protected operations, however, the use of protected objects and bar-
riers is only possible if tasklets are executed by full-fledged Ada tasks, and in some
cases (e.g. barriers and entries) only if the mapping between tasklets and tasks is
1-to-1. Allowing the programmer to explicitly use those constructs in potentially pa-
rallel code would require forcing this underlying model.

We note that simple tasklet communication and synchronization mechanisms can
be provided as a standard library interface that the runtime implementer can provide
based on protected objects and barriers if the implementation is task based, or some
other form (atomics, signals, etc.) if otherwise. This would also allow for a shared
parallel runtime between language domains. On the other hand, executing Ada code
not as part of an Ada task is currently outside the semantic model of Ada, and
presents problems of its own, including the additional complexity of having to define
synchronization primitives that are similar to primitives already in the language.

A second issue is that some modern many-core architectures can be seen as truly
distributed systems [14]. The model proposed here can be extended so that tasklets
can execute in different partitions, however analysis is needed to determine if a dif-
ferent distribution execution model is required.

Finally, by introducing parallel notations, the cases where the code may be updat-
ing the same variable simultaneously increases. Although compilers can detect many
cases of unsafe behavior, it is not guaranteed (as it is not today with tasking) that
these situations are detectable. Introducing real pure subprograms in Ada, without
side effects, could potentially make for much safer parallelism.

 Parallelism in Ada: Status and Prospects 105

6 Conclusion

This paper provides the current status of a proposal to augment Ada with support for
parallelism notations, based on a semantic model of a tasklet, a logic unit of paral-
lelism. The work expanded the places where tasklets can be used to execute code in
parallel, both for data types and blocks. The extension to data type specifications and
primitive operations will significantly extend the abstraction and reduce placing paral-
lel aspects in package and subprogram bodies. The parallelism notation in data types
as well as blocks, together with a new form of specifying when subprogram calls
generate new tasklets, also allowed simplifying the proposal, removing the need for
controlling tasklet spawning within expressions and parameters.

Acknowledgements. The authors would like to thank Tucker Taft and the anonymous
reviewers for the valuable comments and suggestions that helped improve the manu-
script. This work was partially supported by Portuguese National Funds through FCT
(Portuguese Foundation for Science and Technology) and by ERDF (European Re-
gional Development Fund) through COMPETE (Operational Programme ‘Thematic
Factors of Competitiveness’), within project FCOMP-01-0124-FEDER-037281
(CISTER); by FCT and EU ARTEMIS JU, within project ARTEMIS/0003/2012, JU
grant nr. 333053 (CONCERTO), and European Union Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement n° 611016 (P-SOCRATES).

References

[1] Michell, S., Moore, B., Pinho, L.M.: Tasklettes – A Fine Grained Parallelism for Ada on
Multicores. In: Keller, H.B., Plödereder, E., Dencker, P., Klenk, H. (eds.) Ada-Europe
2013. LNCS, vol. 7896, pp. 17–34. Springer, Heidelberg (2013)

[2] Frigo, M., Leiserson, C.E., Randall, K.H.: The implementation of the Cilk-5 multith-
readed language. SIGPLAN Not. 33, 212–223 (1998)

[3] Marowka, A.: Parallel computing on any desktop. Communications of the ACM 50, 74–
78 (2007)

[4] Halpern, P.: Strict Fork-Join Parallelism, JTC1/SC22/WG21 N3409 (September 2012)
[5] CPLEX, C Parallel Language EXtensions study group, archives at

http://www.open-std.org/mailman/listinfo/cplex
[6] Moore, B., Michell, S., Pinho, L.M.: Parallelism in Ada: General Model and Ravenscar.

In: 16th International Real-Time Ada Workshop, York, UK (April 2013)
[7] The Multicore Association, Multicore Programming Practices Guide,

http://www.multicore-association.org/
[8] Michell, S., Moore, B., Pinho, L.M.: Real-Time Programming on Accelerator Many-Core

Processors. In: Proceedings of the High-Integrity Language Technologies Conference,
HILT 2013 (November 2013)

[9] OpenMP Architecture Review Board, OpenMP Application Program Interface, Version
4.0 (July 2013)

106 L.M. Pinho, B. Moore, and S. Michell

[10] Ali, H., Pinho, L.M.: A parallel programming model for Ada. In: Proceedings of the
ACM SIGAda Annual Conference, SIGAda 2011 (November 2011)

[11] Moore, B.: Paraffin libraries, http://sourceforge.net/projects/paraffin/
[12] ISO/IEC, Ada Reference Manual, ISO/IEC 8652:2012(E) (2012)
[13] Squire, J.: Parallel implementation of the gauss-jordan elimination using maximum ele-

ment for pivot (October 2008),
http://www.csee.umbc.edu/~squire/download/psimeq.adb

[14] Pinho, L.M., Michell, S., Moore, B.: Ada and Many-core Platforms. In: 16th Internation-
al Real-Time Ada Workshop, York, UK (April 2013)

Deadline-Aware Programming and Scheduling

Alan Burns and Andy Wellings

Department of Computer Science,
University of York, UK

{alan.burns,andy.wellings}@york.ac.uk

Abstract. Deadlines are the most important events in real-time systems. Real-
time programs must therefore be aware of deadlines, and be able to identify and
react to missed deadlines. Moreover, Earliest Deadline First (EDF) is the most
widely studied optimal dynamic scheduling algorithm for uniprocessor real-time
systems. In this paper we explore how a resource sharing protocol (called the
DFP – Deadline Floor inheritance Protocol), which has been proposed for lan-
guages such as Ada, can be incorporated into the language’s definition. We also
address the programming of systems that have mixed scheduling (e.g. fixed pri-
ority and EDF). The incorporation of the DFP into Ada requires some changes to
the current predefined packages. These changes are also of use in supporting the
programming of deadline-aware systems even when not scheduling by EDF.

1 Introduction

The correctness of an embedded real-time system depends not only on the system’s
outputs but also on the time at which these outputs are produced. The completion of a
request after its timing deadline is considered to be of degraded (potentially no) value,
and could even lead to a failure of the whole system. Therefore, the most important
characteristic of real-time systems is that they have strict timing requirements that must
be guaranteed and satisfied. Schedulability analysis plays a crucial role in enabling these
guarantees to be provided.

The Earliest Deadline First (EDF) algorithm is one of the most widely studied dy-
namic priority scheduling policies for real-time systems. It has been proved [18] to be
optimal among all scheduling algorithms for a uniprocessor; in the sense that if a real-
time task set cannot be scheduled by EDF, then it cannot be scheduled by any other
algorithm.

The Ada 2005 standard [20] introduced EDF as one of the supported dispatching
policies and the Stack Resource Policy (SRP) was specified as the protocol for resource
sharing among EDF tasks [11]. SRP is a complex protocol, as has been shown by the
initial difficulties with its specification and implementation (see Section 3). Recently, a
new protocol for resource sharing in EDF has been proposed [7,9]. This new protocol,
called the Deadline Floor inheritance Protocol (DFP), is simpler to understand and
more efficient to implement (while keeping all the useful properties of SRP). At the
16th International Real-Time Ada Workshop, the recommendation was agreed [22] that
SRP should be deprecated and be replaced by the DFP for single processor systems. In
this paper we further explore the motivation for this change, and consider in more detail
the impact on the language’s definition.

L. George and T. Vardanega (Eds.): Ada-Europe 2014, LNCS 8454, pp. 107–118, 2014.
c© Springer International Publishing Switzerland 2014

108 A. Burns and A. Wellings

We review, in section 3, the current provision of Ada in its support for EDF and SRP.
The new protocol is described in Section 4, and the changes needed to incorporate this
definition into the language are outlined in Section 5. Coverage of systems that have
both fixed priority and EDF scheduling is given in Section 6. In Section 7 the impact
of the proposed changes are considered in the context of Ada’s approach to program-
ming real-time abstractions. Then, in Section 8 we briefly consider the implications of
multiprocessor systems on the protocol. Conclusions are contained in Section 9. First,
however, we give a short definition of a system model.

2 System Model

Although not restricting ourselves to the Ravenscar profile [8], the system model as-
sumed in this paper has many similarities to that profile. A system is assumed to consist
of N tasks; all of which are defined to have a period (denoted by the symbol T) that
is their minimum inter-arrival time, a relative deadline (D) and a worst-case execution
time (C). All tasks are executed on a single processor (or are statically partitioned onto
a set of processors). For system correctness, any task τi arriving at time t must be able to
execute for its maximum computation time (Ci) by its deadline which is at time t+Di.

With fixed priority scheduling, each task is assigned a priority (P), and all protected
objects are assigned ceiling priorities and a priority ceiling protocol (PCP) [19] is im-
plemented. The form of PCP usually applied is the ‘immediate’ version (IPCP) in which
a task’s priority is raised to the resources’s ceiling at the point the resource is accessed.
For optimal schedulability, a task’s priorities is derived from its relative deadline. Two
tasks with relative deadlines Di and Dj , with Di < Dj will have priorities with the
constraint Pi > Pj .

The term ‘deadline’ can be overloaded in scheduling papers. Here we explicitly use
relative deadline when concerned with the task’s D parameter. The use of deadline on
its own refers to the absolute deadline of the current invocation of the task. It could be
argued that Ada fails to fully support deadline-aware programming as relative deadlines
for tasks cannot currently be directly represented in the program’s code using language
defined types and subprograms.

3 Earliest Deadline First Dispatching and SRP in Ada

Baker [3,2] proposed the Stack Resource Policy (SRP) for bounding priority inversion
when accessing resources in real-time systems scheduled under EDF. SRP is a general-
isation of IPCP.

With SRP, each task is assigned a number called the preemption level that correlates
inversely to its relative deadline: the shorter the relative deadline the higher the pre-
emption level. Shared resources are also assigned a preemption level that is the highest
of the preemption levels of all the tasks that may use that resource. The use of SRP
imposes a new rule to basic EDF scheduling: a task can only be chosen for execution
if its preemption level is strictly higher than the preemption levels of the resources cur-
rently locked in the system. The basic rule is, of course, a task can only be chosen for
execution if it has the earliest deadline.

Deadline-Aware Programming and Scheduling 109

The most complex part of the EDF dispatching definition in Ada is the integration
of the base Ada dispatching model (based on fixed priorities for the tasks and priority
ceilings for the protected objects) with the SRP rules and the preemption level concept.
EDF is defined to work in a given band of priority levels, which may cover the whole
range of system priorities, or a specific sub-interval of these priorities. The Ada Ref-
erence Manual (ARM) defines a means of integrating preemption levels and priorities:
preemption levels of tasks and protected objects are mapped to priorities in the EDF
priority band.

The ARM defines that, by default, the active priority of an EDF task is the lowest
priority in its EDF priority band. The task will inherit priorities as any other Ada task;
in particular, when an EDF task executes a protected operation it will inherit the pri-
ority (preemption level) of the protected object. But, for EDF tasks, the ARM defines
a further source of priority inheritance (for arbitrary task T): the highest priority P, if
any, less than the base priority of T such that one or more tasks are executing within a
protected object with ceiling priority P and task T has an earlier deadline than all such
tasks; and furthermore T has an earlier deadline than all other tasks on ready queues
with priorities in the given EDF Across Priorities range that are strictly less than P.

This rule has proved difficult to specify correctly (the original definition was shown
to be incorrect [24]) and to implement correctly [15] or efficiently [1].

There is one further drawback that is specific to the Ada definition of SRP: the limited
number of distinct preemption levels. The number of distinct preemption levels that can
be used for tasks in an EDF priority range is the size of the range minus one. In a system
with few priority levels or in a narrow EDF range this limitation could jeopardize the
schedulability of the system by causing more blocking than is necessary. It could be
argued that the implementation should provide more priority levels, but priority levels
are expensive because they affect the size and performance of many of the run-time data
structures such as the delay queues, ready queues and the entry queues.

4 The Deadline Floor Protocol

Recently, Burns introduced a new protocol for resource sharing in EDF, called the Dead-
line Floor inheritance Protocol (DFP) [7]. The DFP has all the key properties of SRP;
specifically, causing at most a single blocking effect from any task with a longer relative
deadline, which leads to the same worst-case blocking in both protocols. In an EDF-
scheduled system, the DFP is structurally equivalent to IPCP in a system scheduled
under fixed priorities.

Under the DFP, every resource has a relative deadline equal to the shortest relative
deadline of any task that uses it. The relative deadline of a resource is called deadline
floor, making clear the symmetry with the priority ceiling defined for the resources in
any PCP.

The key idea of the DFP is that the absolute deadline of a task could be temporarily
shortened while accessing a resource. Given a task with absolute deadline d that ac-
cesses a resource with deadline floor DF at time t, the absolute deadline of the task is
(potentially) reduced according to d := min(d, t+DF) while holding the resource.

To give a concrete example, assume two tasks (A and B) with relative deadlines of
20 and 30 share a resource. The deadline floor of the resource is therefore 20. Assume

110 A. Burns and A. Wellings

task B is released at time 100: its absolute deadline is therefore 130. At time 103 it
accesses the resource: its absolute deadline is therefore reduced to 123. While B holds
the resource, task A is released at time 105: its absolute deadline is 125, this is not
sufficient to preempt B (as 125 > 123). If B exits the resource at time 107, its absolute
deadline will change from 123 to 130; as a result A will preempt as it now has the earlier
deadline (i.e. 125 < 130).

The action of the protocol results in a single block per task, deadlock free execution
and works for nested resource usage. Whilst a task accesses a resource its deadline is
reduced so that no newly released task can preempt it and then access the resource. See
[7] for details and proof of the key properties. This is equivalent to the use of a priority
ceiling; again the only tasks that can preempt a task executing within a protected object
are tasks that are guaranteed not to use that object (unless there is a program error,
which can be caught at run-time).

The DFP does not add any new rule to the EDF scheduling, thus it leads to simpler
and more efficient implementation than the SRP [1].

5 Required Language Simplifications and Modifications

To embed the rules for the DFP within Ada, the following issues must be addressed:

– All tasks must have a relative deadline assigned via an aspect/pragma or a routine
defined in a library package.

– Protected objects must have also a relative deadline (floor) assigned via an aspec-
t/pragma.

– Default relative deadline values must be defined for tasks and protected objects
(and their types).

– Rules for EDF scheduling must be extended to include a new locking policy:
Floor Locking.

– Rules for EDF scheduling need simplifying to remove the ‘across priorities’ feature
of the current definition.

– For completeness (and parity with priority ceilings) means of modifying the relative
deadline attribute of tasks and protected objects should be defined.

First, however, some changes to library packages are needed to make the notion of
deadline (relative and absolute) first class within the tasking model. Currently, relevant
definitions are coupled to the specification of EDF scheduling. Whilst deadlines are
key to EDF scheduling, they have a wider purpose; deadlines are relevant to all forms
of real-time scheduling. Moreover, programs that wish to catch and respond to missed
deadlines need to be able to manipulate deadlines directly.

5.1 Changes to Existing Library Packages

The 2005 version of Ada introduced EDF scheduling and the subtype Deadline.
Unfortunately, we feel, it only introduced this, as we noted above, for the support of
EDF scheduling. We feel that deadline and relative deadline are fundamental concepts

Deadline-Aware Programming and Scheduling 111

in real-time and deadline-aware programming. We therefore propose that the whole
package Ada.Dispatching.EDF be renamed, repositioned and extended to support
relative as well as absolute deadlines. The new package could be as follows.

with Ada.Real_Time;
with Ada.Task_Identification;
use Ada;
package Ada.Deadlines is

subtype Deadline is Real_Time.Time;
subtype Relative_Deadline is Real_Time.Time_Span;
Default_Deadline : constant Deadline :=

Real_Time.Time_Last;
Default_Relative_Deadline : constant Relative_Deadline :=

Real_Time.Time_Span_Last;
procedure Set_Deadline(D : in Deadline;

T : in Task_Identification.Task_ID :=
Task_Identification.Current_Task);

function Get_Deadline(T : in Task_Identification.Task_ID :=
Task_Identification.Current_Task) return Deadline;

procedure Set_Relative_Deadline(R : in Relative_Deadline;
T : in Task_Identification.Task_ID :=
Task_Identification.Current_Task);

function Get_Relative_Deadline(T : in Task_Identification.Task_ID :=
Task_Identification.Current_Task)
return Relative_Deadline;

procedure Delay_Until_And_Set_Deadline(
Delay_Until_Time : in Real_Time.Time;
TS : in Real_Time.Time_Span :=
Get_Relative_Deadline);

end Ada.Deadlines;

Key changes are:

– Change of name and library position.

– Introduction of a type for relative deadline and a default value.

– Set and Get routines added for relative deadlines.

– A default relative deadline provided for Delay Until And Set Deadline.

All tasks will have a deadline and a relative deadline; default values being used if the
program does not specify specific values. As with priority, where a task has a base and
an active priority, a task will also have a base (absolute) deadline and an active (abso-
lute) deadline – see definition of the locking policy below. A call of Get Deadline
returns the base deadline of the task.

The existing aspect/pragma Relative Deadline should be redefined to take an
expression of type Relative Deadline. Note, although the same name is used
here, this is the same situation with subtypePriority and aspect/pragmsPriority.
However, the definition of the aspect Relative Deadline should really be moved
from D.2.6. We suggest that it be placed, with the above package, in a new section
D.8.1. perhaps entitled Deadline-Aware Programming.

112 A. Burns and A. Wellings

5.2 New Locking Policy

Initially, when EDF was added to Ada, the existing locking policyCeiling Locking
was modified so that is accounted for EDF dispatching, FP (fixed priority) dispatching
and combined EDF and FP dispatching. Although there are some clear advantages in
having only a single protocol, it is now considered to have been a mistake [22], due to
the complex rules required. Here we propose a new locking policy Floor Locking.
We will not attempt to give here a full definition sufficient for the ARM, but the follow-
ing points define the semantics for this new policy.

– Whenever a task is executing outside a protected action, its active deadline is equal
to its base deadline.

– When a task executes a protected action its active deadline will be reduced to (if it is
currently greater than) ‘now’ plus the deadline floor of the corresponding protected
object.

– When a task completes a protected action its active deadline returns to the value it
had on entry.

– When a task calls a protected operation, a check is made that there is no task cur-
rently executing within the corresponding protected object; Program Error is
raised if this check fails.

A protected object is given an initial deadline floor value using the Relative Dead-
line aspect/pragma. Dynamic deadline floors could be defined in a similar way to
dynamic ceiling priorities (see Section D.5.2 of the ARM). We do not consider this
here.

With this definition of a new locking policy, the definition of Ceiling Locking
can return to its pre-2005 wording.

Note the semantics requires a check on non-concurrent access to the protected object.
It is not sufficient to check that the relative deadline of the task is not less than the dead-
line floor of the object. This points to a difference with Ceiling Locking where a
comparison based on priorities is sufficient. To implement the check on inappropriate
usage over the corresponding protected object requires only a simple ‘occupied’ flag to
be checked and modified. Usefully, if there is an attempt to gain access to an occupied
protected object then the task ‘at fault’ is forced, on a single processor, to be the sec-
ond task that is attempting to gain access, and it will therefore be this task that has the
exception raised. The correct task will be unaffected.

Interestingly, a simple check on non-concurrent access would also be sufficient for
the priority ceiling case. And again the exception is bound to be raised in the task ‘at
fault’. Of course, checking concurrent access, rather than correct priority/ceiling values
will only catch an actual error rather than a potential one. Inappropriate ceiling values
will be caught on first usage, inappropriate concurrent access may be very difficult to
create during testing. Although not a sufficient test, it might be advisable to also include
in the definition of Floor Locking a static check on the relative deadlines of user
tasks and the deadline floors of the used protected objects.

To ensure that locking protocols work correctly, the programmer must give the cor-
rect values for deadline floors and ceiling priorities. A run-time check prevents concur-
rent access, but a compiler-based check cannot be undertaken and hence the use of the
correct values can only be asserted by code inspection or static analysis.

Deadline-Aware Programming and Scheduling 113

5.3 New Dispatching Policy

Currently EDF dispatching is supported via the policy EDF Across Priorities. A
range of priorities is needed to account for the different priority ceilings needed for the
protected objects. The tasks themselves only execute at the base priority of this range
when they are not executing within a protected action. All ready queues are ordered by
the (absolute) deadline of the ready tasks.

To prevent confusion, and to emphasis the fact that with the new protocol only a
single priority is needed for all EDF dispatched tasks (regardless of the number of
protected objects they use), we propose a new dispatching policy. And to accommodate
hierarchical dispatching (see Section 6) we define the new policy as EDF Within
Priorities. Again we will not attempt to give a full definition appropriate for the
ARM1.

With EDF Within Priorities, all tasks with the same priority compete for the
processor using the rules for EDF dispatching. The ready queue is ordered by active
deadline. A collection of EDF dispatched tasks and the set of protected objects they
use/share will all have the same priority (and ceiling priority). But they will have dif-
ferent relative deadlines (and deadline floors).

A task that has not been given an explicit deadline or relative deadline will get
the default values of Default Deadline (equal to : Real Time.Time Last)
and Default Relative Deadline (equal to Real Time.Time Span Last).
The default value for the deadline floor of any protected object is 0 (actually Time-
Span Zero). This will have the effect of making all protected actions non-preemptive
(as does the default priority ceiling).

5.4 Ravenscar-Like Profile

The facilities provided by the policiesEDF Across Priorities and Floor Loc-
king, and the library package Ada.Dispatching.EDF allows a Ravenscar-like
profile for EDF scheduling to be defined.

For periodic (time-triggered) tasks the profile would only allow a task to be delayed
by the use of Delay Until And Set Deadline using the default parameter for
relative delay (which is the task’s relative delay). A task would be forced to set its rel-
ative deadline using an aspect/pragma and use the default parameter for the above delay
statement. It would be unable to use the Set Deadline andSet Relative Dead-
line routines.

For sporadic tasks, which are typically released by the action of an interrupt handler,
Set Deadline would need to be used, but could be restricted to be allowed only
within that context.

To accomplish these restrictions is may be useful to partition Dispatching.EDF
into the part needed for a restricted profile, and that which is available to all programs.

1 For example, consideration would need to be given to whether deadline inheritance should
occur during a rendezvous and task activation, and whether entry queues can be deadline or-
dered.

114 A. Burns and A. Wellings

6 Hierarchical and Mixed Scheduling

One of the advantages of the new EDF Within Priorities policy is that it unifies
Ada’s use of priority as the primary dispatching policy. It is no longer necessary to
reserve a range of priorities for a single EDF domain. If we ignore the non-preemptive
policy, we now have a clear means of supporting mixed scheduling in a hierarchical
manner:

– At all times, the task at the head of the highest priority non-empty ready queue is
the one chosen to be executed.

– Each ready queue has its own discipline to determine which task is at its head.

The disciplines supported are: FIFO, Round Robin (RR) and now EDF; i.e. FIFO
Within Priorities,Round Robin Within Priorities and nowEDF Wi-
thin Priorities.

So, for example, one could have the top 16 priority levels reserved for pure FP tasks,
then the next level for EDF and next (lowest) priority level for RR. At the EDF and RR
levels there may be many task allocated. For the FP there many be few, perhaps only
one task per priority.

If two priority levels are designated EDF then tasks from the higher priority level will
always run in preference to tasks at the lower level (irrespective of deadlines). Only if
the ready queue at the higher priority is empty will the task with the shortest active
deadline from the lower ready queue be chosen for execution.

To allow tasks from any priority level to share their use of protected objects (POs) it is
necessary to ensure the locking policies are appropriately defined. First the fundamental
priority based dispatching policy must be supported by Ceiling Locking. If two
tasks of different priority use the same PO then the ceiling priority of the PO must be no
lower that the highest priority of the client tasks. Within an EDF ordered priority level,
the policy Floor Locking must apply. It follows therefore that when hierarchical
dispatching is used both Ceiling Locking and Floor Locking will need to be
specified. The current definition of Ceiling Locking must be changed to reflect
this.

To further illustrate the behaviour of a mixed dispatching scheme, consider two sit-
uations on a single processor system. First, assume the highest priorities are reserved
for FIFO (FP) and a single EDF ready queue is at a lower priority. Let an EDF task, τe
execute and call a PO used by a FP task, τf . The following points appertain.

– The priority of τf is higher than τe.
– If τe is executing then τf must be suspended.
– When τe calls the PO its active priority will be set to the priority of τf . Its active

deadline may also shorten, but this is irrelevant in this example.
– If τf is released, it will not execute (its base priority is not greater than the active

priority of τe and dispatching at this priority level is FIFO).
– When τe leaves the PO its priority will return to its original base level, and if τf

had been released it would now preempt.

For a second example, consider the EDF tasks at the highest priority level (Phigh)
and a set of FP tasks below. The priority ceiling of the PO will be Phigh. If an EDF

Deadline-Aware Programming and Scheduling 115

task calls the PO, its active priority will not change but its active deadline may. Now
consider the lower priority FP task τf accessing the PO:

– Priority of τe is higher than τf .
– If τf is executing then τe must be suspended (and no other EDF task will be active).
– When τf calls the PO its active priority will be set above its current level to Phigh;

its active deadline will be updated according to the DFP; no further FP tasks will
run.

– If τe is released it will not execute (its base priority is not greater than the active
priority of Phigh and, because of the DFP it cannot have an earlier absolute dead-
line).

– When τf leaves the PO, its priority will return to its original base level (its base
deadline will return to its default value), and if τe had been released it would now
preempt.

It follows from these examples that both Ceiling Locking and Floor Lock-
ing are needed, but they are not needed together. If a task calls a PO with a higher
priority then the ceiling policy applies. And if an EDF dispatched task calls a PO with
the same priority then the deadline floor policy applies. Note, of course, that a task
cannot call a PO with a lower priority as this would break the priority ceiling protocol.

7 Impact on Real-Time Programming Abstractions

Since its inception, Ada has supported real-time systems’ development. Its focus has
been on a set of low-level primitive programming mechanisms and support for real-time
dispatching policies. The low-level mechanisms (such as the “delay until” statement,
the asynchronous select statement, timing events, protected objects etc) have allowed
a wide range of real-time programming abstractions to be developed [23]. However,
almost paradoxically, up until Ada 2005 the notion of absolute deadline was not explicit
in the language. Even at Ada 2005, deadlines were only introduced to support EDF
scheduling.

We have shown earlier, that to facilitate integration of the DFP, the notions of abso-
lute and relative deadlines must become more general language concepts that are not
confined only to EDF scheduling. Of course, this is correct as even tasks that are being
scheduled FIFO within a priority level may have a deadline. Although, this has no ef-
fect on the dispatching, the program may need to undertake corrective actions if a task
misses its deadline. There are many possible actions (see, for example, Chapter 13 in
Burns and Wellings [12]). Below, we illustrate one task template that can be used to
illustrate the impact of having deadlines more explicit in the language. The template is
for a periodic task that aborts its current release if the deadline is missed, executes some
handling code and then waits for its next periodic release. Note the use of the default
relative deadline in the Delay Until And Set Deadline statement.

116 A. Burns and A. Wellings

with Ada.Real_Time; use Ada.Real_Time;
with Ada.Deadlines; use Ada.Deadlines;
...

task type Periodic_Task(Period_In_Milliseconds : Positive;
Rel_Deadline_In_Milliseconds : Positive);

task body Periodic_Task is
Interval : Time_Span := Milliseconds(Period_In_Milliseconds);
Rel_Deadline : Time_Span :=

Milliseconds(Rel_Deadline_In_Milliseconds);
Next_Release_Time : Time;

begin
Set_Relative_Deadline(Rel_Deadline);
Next_Release_Time := Clock;
Set_Deadline(Next_Release_Time + Rel_Deadline);
loop

select
delay until Get_Deadline;
-- handle deadline miss here

then abort
-- undertake the work of the task

end select;
Next_Release_Time := Next_Release_Time + Interval;
Delay_Until_And_Set_Deadline(Next_Release_Time);

end loop;
end Periodic_Task;

...

Although there is not a significant difference between this and the original template,
the programmer’s intention is clearer.

8 Multiprocessor Considerations

Ada 2012 [21] supports the notion of a dispatching domain, which consists of one or
more processors on which tasks can be globally scheduled. Each processor in the sys-
tem can only exists in one dispatching domain. A task can only be allocated to a single
dispatching domain. In the case where a task is allocated to a multiprocessor dispatching
domain, there is an option to fix that task to only be dispatched on a single processor
in that domain. Hence, Ada 2012 has the flexibility to support global, partitioned and
semi-partitioned systems, as well as algorithms that fix computational intensive tasks
to a single processor and schedule less computational intensive tasks globally around
them [13].

Dispatching domains in conjunction with the two-level dispatching model in those
domains gives the system developer a significant level of control over how tasks are
allocated and scheduled in multiprocessor (and multicore) systems.

Although there has been some success in determining the necessary support for
scheduling, the issue of how best to support multiprocessor lock-based resource control
protocols is still far from clear. New results are emerging [16,4,5,14,6,10], but it is too
soon for programming languages/operating systems to adopt a particular approach [17].

Deadline-Aware Programming and Scheduling 117

This paper has discussed the Deadline Floor Protocol in the context of single proces-
sor systems. Just like the Stack Resource Protocol, the desirable properties (mentioned
in Section 4) are not maintained when protected objects can be simultaneously accessed
from multiprocessors. For example, multiple blocks per task and deadlocks are possi-
ble. Furthermore, mutual exclusion is not guaranteed by the protocol itself; hence a
lock is required, along with a FIFO spinning-based access mechanism. Until more op-
timal solutions become available, this approach, in conjunction with the default ceiling
and default floor, will ensure that a protected action is implemented non-preemptively
with predictable blocking times. The programmer will have to ensure that any nested
accesses do not lead to deadlock.

9 Conclusions

Arguably since its inception, Ada has supported a two-level dispatching model. Ini-
tially, in Ada 83, this was preemptive priority-based scheduling at the top level, and
FIFO at the low level (that is, within a priority). Progressively, over the years, the lan-
guage has added support for non-preemptive priority-based scheduling (at the top level)
and round-robin and EDF (within priority levels). Unfortunately, the introduction of
EDF scheduling in Ada 2005 required the support of the Stack Resource Policy and
its integration into the two-level scheduling scheme. This corrupted the pure two-level
scheduling model and required a range of priorities to support a single EDF secondary
dispatching level. Since Ada 2005, better understanding of EDF scheduling has been
obtained. One result is a new resource control protocol, the DFP. The integration of this
protocol into the Ada dispatching model allows a return to the pure two-level model.
With this integration, Ada can support

– preemptive or non-preemptive priority-based dispatching at the top level, and
– a mixture of FIFO, RR or EDF dispatching at the secondary level.

The integration requires that deadlines become a more widely visible concept in the
language’s definition. This has advantages as even for priority-based systems, the need
to recover from deadline misses requires deadlines to be set and manipulated. Having
deadlines directly expressible in the language makes deadline-aware programming and
scheduling more visible and hence more maintainable.

Acknowledgements. The authors would like to thank Marina Gutierrez, Mario Aldea
and Michael González Harbour for useful discussions on the implementation of the DFP.

References

1. Aldea, M., Burns, A., Gutiérrez, M., Harbour, M.G.: Incorporating the deadline floor protocol
in Ada. ACM SIGAda Ada Letters – Proc. of IRTAW 16 XXXIII(2), 49–58 (2013)

2. Baker, T.: A stack-based resource allocation policy for realtime processes. In: Proc. IEEE
Real-Time Systems Symposium (RTSS), pp. 191–200 (1990)

3. Baker, T.: Stack-based scheduling of realtime processes. Journal of Real-Time Systems 3(1)
(March 1991)

118 A. Burns and A. Wellings

4. Block, A., Leontyev, H., Brandenburg, B.B., Anderson, J.H.: A flexible real-time locking
protocol for multiprocessors. In: 13th International Conference on Embedded and Real-Time
Computing Systems and Applications, RTCSA 2007, pp. 47–56. IEEE Computer Society
(2007)

5. Brandenburg, B., Anderson, J.: Optimality results for multiprocessor real-time locking. In:
Real-Time Systems Symposium (RTSS), pp. 49–60 (2010)

6. Brandenburg, B., Anderson, J.: Real-time resource sharing under cluster scheduling. In: Proc.
EMSOFT. ACM Press (2011)

7. Burns, A.: A Deadline-Floor Inheritance Protocol for EDF Scheduled Real-Time Systems
with Resource Sharing. Technical Report YCS-2012-476, Department of Computer Science,
University of York, UK (2012)

8. Burns, A., Dobbing, B., Romanski, G.: The Ravenscar tasking profile for high integrity real-
time programs. In: Asplund, L. (ed.) Ada-Europe 1998. LNCS, vol. 1411, pp. 263–275.
Springer, Heidelberg (1998)

9. Burns, A., Gutiérrez, M., Aldea, M., Harbour, M.G.: A Deadline-Floor Inheritance Protocol
for EDF Scheduled Embedded Real-Time Systems with Resource Sharing. IEEE Transaction
on Computers (available online, 2014)

10. Burns, A., Wellings, A.: A schedulability compatible multiprocessor resource sharing proto-
col - MrsP. In: Proceedings of ECRTS, pp. 282–291 (2013)

11. Burns, A., Wellings, A.J., Taft, S.T.: Supporting deadlines and EDF scheduling in ada.
In: Llamosı́, A., Strohmeier, A. (eds.) Ada-Europe 2004. LNCS, vol. 3063, pp. 156–165.
Springer, Heidelberg (2004)

12. Burns, A., Wellings, A.J.: Real-Time Systems and Programming Languages, 4th edn. Addi-
son Wesley Longman (2009)

13. Davis, R., Burns, A.: A survey of hard real-time scheduling for multiprocessor systems. ACM
Computing Surveys 43(4), 35:1 –35:44 (2011)

14. Faggioli, D., Lipari, G., Cucinotta, T.: The multiprocessor bandwidth inheritance protocol.
In: Proc. of the 22nd Euromicro Conference on Real-Time Systems (ECRTS), pp. 90–99
(2010)

15. Fairbairn, M.L., Burns, A.: Implementing and verifying EDF preemption-level resource con-
trol. In: Brorsson, M., Pinho, L.M. (eds.) Ada-Europe 2012. LNCS, vol. 7308, pp. 193–206.
Springer, Heidelberg (2012)

16. Gai, P., Lipari, G., Di Natale, M.: Minimizing memory utilization of real-time task sets in
single and multi-processor systems-on-a-chip. In: Proc. 22nd RTSS, pp. 73–83 (2001)

17. Lin, S., Burns, A., Wellings, A.: Supporting lock-based multiprocessor resource sharing pro-
tocols in real-time programming languages. Concurrency and Computation: Practice and
Experience (2012)

18. Liu, C., Layland, J.: Scheduling algorithms for multiprogramming in a hard real-time envi-
ronment. JACM 20(1), 46–61 (1973)

19. Sha, L., Rajkumar, R., Lehoczky, J.: Priority inheritance protocols: An approach to real-time
synchronisation. IEEE Transactions on Computers 39(9), 1175–1185 (1990)

20. Taft, S.T., Duff, R.A., Brukardt, R.L., Ploedereder, E., Leroy, P.: Ada 2005 Reference Man-
ual. LNCS, vol. 4348. Springer, Heidelberg (2006)

21. Taft, S.T., Duff, R.A., Brukardt, R.L., Ploedereder, E., Leroy, P., Schonberg, E.: Ada 2012
Reference Manual. LNCS, vol. 8339. Springer, Heidelberg (2012)

22. Wellings, A.: Session summary: Locking protocols. ACM SIGAda Ada Letters, Proc. of
IRTAW 16 XXXIII(2), 123–125 (2013)

23. Wellings, A.J., Burns, A.: Real-time utilities for Ada 2005. In: Abdennadher, N., Kordon, F.
(eds.) Ada-Europe 2007. LNCS, vol. 4498, pp. 1–14. Springer, Heidelberg (2007)

24. Zerzelidis, A., Burns, A., Wellings, A.: Correcting the EDF protocol in Ada 2005. Proc. of
IRTAW 13, Ada Letters XXVII(2), 18–22 (2007)

Schedulability Analysis for Directed Acyclic

Graphs on Multiprocessor Systems
at a Subtask Level

Manar Qamhieh and Serge Midonnet

Université Paris-Est, Paris, France
{manar.qamhieh,serge.midonnet}@univ-paris-est.fr

Abstract. This paper addresses the problem of scheduling parallel real-
time tasks of Directed Acyclic Graph (DAG) model on multiprocessor
systems. We propose a new scheduling method based on a subtask-level,
which means that the schedulability decisions are taken based on the
local temporal parameters of subtasks. This method requires modify-
ing the subtasks to add more parameters which are necessary for the
analysis, such as local offsets, deadlines and release jitters. Then we pro-
vide interference and workload analyses of DAG tasks, and we provide a
schedulability test for any work conserving scheduling algorithm.

1 Introduction

Recently, the performance of systems has been increased using multiprocessors
instead of uniprocessors to overcome processor physical limitations and to pro-
duce faster and smaller processors. The use of parallelism in software makes
them compatible with multiprocessor hardware, because the calculations of par-
allel applications are performed on multiple processors simultaneously.
In real-time systems, scheduling parallel real-time tasks on multiprocessor sys-
tems is a challenging problem, and the extension of uniprocessor schedulability
conditions to parallel multiprocessor systems is not trivial. The need of syn-
chronization between parallel tasks and processors makes the scheduling process
more complicated.

In this paper, we are interested in scheduling Directed Acyclic Graph (DAG)
tasks on multiprocessor systems. The contribution is to provide schedulability
conditions for DAG tasks that take into account subtasks’ parameters instead of
DAG-level parameters (a solution commonly used in previous researches found
in literature).

The remainder of this paper is organized as follows. In Section 2, we present
a state-of-the-art of methods relative to real-time parallel task scheduling on
multiprocessor systems especially for the DAG model. The considered model
and the used terminology are described in Section 3. In Section 4, we explain the
subtask-level scheduling process, and we define additional parameters to subtasks
in order to be scheduled individually using any work conserving algorithm. A
workload analysis is given in Section 5. This workload analysis is used to derive

L. George and T. Vardanega (Eds.): Ada-Europe 2014, LNCS 8454, pp. 119–133, 2014.
c© Springer International Publishing Switzerland 2014

120 M. Qamhieh and S. Midonnet

a schedulability test for any work conserving scheduling algorithms. Finally, we
conclude this study and show future work in Section 6.

2 Related Work

Many hard real-time scheduling algorithms and schedulability analyses on homo-
geneous multiprocessor systems have been proposed in the literature [1]. They
mostly focus on the traditional sequential independent real-time task model.

Regarding parallel tasks, there are different models and each has its own
advantages and limitations. First there is the Fork-join model, in which a parallel
task is an alternating sequence of parallel and sequential segments, a stretching
algorithm to execute parallel segments as sequential as possible was proposed in
[2].

A more general model of parallel tasks, called the segment model, has been
studied in the literature. The multiprocessor scheduling of periodic tasksets with
implicit deadlines with this model has been addressed in [3]. This model represent
a task as a sequence of segments, each segment consists of a number of identical
threads.

The analysis has been extended to the DAG model and the same results can
be applied. Another scheduling approach based on the response time analysis
for the multi-threaded segment model has been provided in [4] for soft real-time
multi-core systems.

The DAG model has been studied in [5] in the uniprocessor case. The authors
considered a hybrid task set of periodic independent tasks and dependent spo-
radic graph tasks that execute only once. A graph task in this model consists of
a set of tasks with precedence constraints and each task has a release time and
deadline. They proposed an algorithm based on a modification of task parame-
ters in order to remove the dependencies between the tasks in the analysis. We
use a similar technique in Section 4 to modify subtasks with few differences due
to the characteristics of the model.

A capacity augmentation bound of 4− 2
m and a resource augmentation bound

of 2− 1
m have been proposed recently for GEDF scheduling of periodic implicit-

deadline DAG tasksets in [6], where m is the number of processors in the system.
Also, Bonifaci et al. [7] studied the schedulability of a DAG set on multiprocessor
systems. They proved that GEDF has a speedup bound of 2−1/m, and Deadline
monotonic a speedup bound equal to 3−1/m. It is worth noticing that the above
described scheduling methods do not consider the internal structure of DAGs in
the analysis. And the parallel DAG tasks are either transformed into a collection
of independent sequential tasks or they are scheduled directly while considering
the global parameters of the DAGs, such as their total worst-case execution time
and the critical path length.

More recently, we proposed in [8] a schedulability test of periodic implicit-
deadline DAG tasks when GEDF is used. The schedulability decisions are based
on a DAG-level (the global deadline of the DAGs), while the workload analysis of
the test considered the internal structure of DAGs. We proved by experimental

Schedulability Analysis for Directed Acyclic Graphs 121

results that this method reduces analysis pessimism and enhances scheduling
performance for DAGs. This paper is an extension of this work, in which we
aim at enhancing the scheduling analysis by proposing a DAG scheduling on a
subtask-level. To our best knowledge, no similar research exists using the method
to address the problem of scheduling parallel DAG tasks.

3 System Model

In this paper, we consider a taskset τ of n real-time Directed Acyclic Graph
(DAG) tasks scheduled on m identical processors. Each DAG task τi is a spo-
radic constrained-deadline graph composed of ni subtasks under precedence con-
straints.

A DAG task τi is characterized by (ni, {1 ≤ j ≤ ni|τi,j}, Gi, Di, Ti), where ni

is the number of its subtasks, the second parameter is the set of subtasks, Gi is
the set of directed relations between the subtasks, Di is the relative deadline of
τi and Ti is the minimum inter-arrival time between the successive jobs.

Let τi,j denote the jth subtask of the set of subtasks forming DAG task τi,
where 1 ≤ j ≤ ni. Each subtask τi,j is a single-threaded task that has a single
timing parameter which is its worst case execution time (WCET) Ci,j . The
subtasks of a DAG inherit the period and deadline of their DAG.

Let gi,ji,k ∈ Gi represent a directed link from subtask τi,j to τi,k. A direct link
between subtask τi,j and τi,k means that subtask τi,k cannot start its execution
unless subtask τi,j completes its own. In this case, subtask τi,j is called a parent
subtask of τi,k where τi,j ∈ parents(τi,k) ∈ pred(τi,k), where pred(τi,k) is the
set of all predecessors of subtask τi,k from the source of the DAG which have
to execute indirectly before τi,k (such as parents of τi,k’s parents). Likewise,
subtask τi,k ∈ children(τi,j) is called a child subtask of τi,j , and the set of all
successors of τi,k is denoted by succ(τi,k). Subtask τi,j may have zero or more
parent/children subtasks. A source subtask has no parent subtasks and a sink
subtask is the one without any successors.

Let Ci denote the total WCET of DAG task τi, where Ci =
∑ni

k=1 Ci,k. Let
Li denote the length of the critical path of DAG task τi, which is defined as the
longest execution path in τi when it executes on a platform of infinite number
of processors.

We assume that each DAG task τi generates an infinite sequence of jobs. Let
Jk
i be the kth job of DAG task τi which is characterized by (ri, di), where ri

is the release time of the job, and di is its absolute deadline. Each DAG job
Jk
i consists of a collection of subtask jobs each is denoted by Jk

i,j , j ∈ 1 . . . ni.
In the remainder of this paper, the numeration of jobs is removed when it is
unnecessary for the clarity of the discussion.

Figure 1(a) shows an example of a DAG task τ1 which consists of 6 subtasks.
Subtask τ1,1 is the source of the DAG and τ1,6 is its sink. The lines in the figure
represent the directed precedence constraints between the subtasks. The critical
path of τ1 is {τ1,1, τ1,2, τ1,6} and its length is Li = 6. For subtask τ1,5, its parent
subtask is τ1,3 while τ1,1 is one of its predecessor.

122 M. Qamhieh and S. Midonnet

For any DAG taskset, there are two necessary basic conditions, if at least one
of them is false, the taskset is not feasible:

∑
τi∈τ

Ci

Ti
≤ m

∀{τi ∈ τ} : Li ≤ Di

In the following sections, we provide a schedulability analysis for DAG tasks
using any global work conserving scheduling algorithm. A global algorithm al-
lows job migration and preemptions between processors (migration costs and
preemption costs are not taken into account in this work), while a work conserv-
ing algorithm does not authorize delaying the execution of an active job if there
is an idle processor in the system.

𝜏11 𝜏12

𝜏13 𝜏14

𝜏15

𝜏16

(a) A DAG task τ1 consists of 6
subtasks with parameters: D1 =
8, C1 = 10, L1 = 6.

𝜏1,1

𝜏1,2

𝜏1,3

𝜏1,4

𝜏1,5

𝜏1,6

o1 D1

j1,2

j1,3

j1,4

j1,5

j1,6

(b) Time diagram of each sub-
task of DAG task τ1

Fig. 1. Example of DAG model

4 DAG Task Scheduling

When scheduling DAG sets on multiprocessor systems, the interference on each
DAG task has the following two sources:

– an external interference from jobs of higher priority DAG tasks, in which
some or all of the interfering subtasks can contribute to the interference,

– an internal interference from the subtasks of the same DAG on each other.

For parallel DAG tasks, a DAG-level scheduling algorithm means that the
scheduling decisions are based on global parameters of the DAG tasks. According
to this scheduling, the priorities are assigned to DAG tasks which are applied
then to their respective subtasks. The DAG-level schedulability analysis depends
on the global parameters of the DAGs, such as their deadline, period, total
WCET and the length of their critical path. Usually, the resulted schedulability
tests are pessimistic, and the internal structure of the DAGs is not considered
in the performed analysis.

Hence, the interference analysis of DAG-level scheduling is difficult to be cal-
culated and it is harder to identify the exact sources of interference. However,

Schedulability Analysis for Directed Acyclic Graphs 123

if the scheduling algorithm uses extra knowledge about subtasks and their exe-
cution flow, then the interference analysis can be more accurate and precise. In
this case the scheduling process is said to be done at a subtask-level. According
to this, subtasks will be assigned priorities based on the scheduling algorithm.
However, the schedulability analysis requires extra temporal parameters for each
subtask other than its WCET provided by the DAG model.

Further in this paper, we will propose a technique to add local temporal
parameters to the subtasks based on their dependencies and the precedence con-
straints between them. As a result, the problem of scheduling parallel DAG tasks
on multiprocessor systems will be simplified to scheduling a set of independent
sequential subtasks on multiprocessor systems, which is widely studied in the
literature.

4.1 Subtask Analysis and Modification

In a previous work [8], we provided algorithms to add two temporal parameters,
in addition to the WCET parameter (provided by the model), to each subtask
in the DAG set. This was done to improve the interference analysis of DAG
scheduling in the case of GEDF scheduling. These two parameters are the local
offset and deadline of each subtask, and they were derived from the internal
structure of the DAG task and the execution flow of the subtasks in the best
case scenario. We consider that this scenario happens when a DAG set executes
on an infinite number of processors, all of its subtasks execute in parallel as soon
as possible without being delayed due to interference.

Definition 1. A local offset Oi,j of a subtask τi,j is defined as the earliest pos-
sible activation time of the subtask w.r.t. the release of its DAG task τi.

Definition 2. A local deadline Di,j of a subtask τi,j is the latest time for subtask
τi,j to complete its execution so as to leave enough time for its successors to
execute within their local deadlines.

For each subtask, the local offset and deadline are calculated using straight-
forward depth-first search algorithms (a detailed description can be found in
[8]). The local offset of a subtask takes into consideration the time needed for its
predecessor subtasks to execute in the best case scenario. Respectively, the local
deadline of a subtask leaves enough time for its successor subtasks to execute.

Observation 1. If a subtask τi,j ∈ τi misses its local deadline Di,j, then its
DAG task τi will definitely miss its deadline Di.

Based on the definition of the local deadline, when a subtask misses its lo-
cal deadline, the time remaining until the global deadline of the DAG task is
not enough for the successors to execute in the best case. Therefore, an early
schedulability failure can be announced based on the subtask’s deadline instead
of waiting for the DAG’s deadline miss.

Figure 1 shows the mapping between the DAG task τ1 and its subtasks after
the modification. The timing diagram of each subtask τ1,j , where 1 ≤ j ≤ 6, of

124 M. Qamhieh and S. Midonnet

the DAG is shown in Figure 1(b). The local offset O1,1 of the source subtask
τ1,1 equals to 0 because this subtask has no predecessors and it is released at
the release time of the DAG task τ1. Its local deadline D1,1 = 3 because its
successors need at least 5 time units to execute in the best case, which is the
longest path from τ1,1 (excluded) to a sink subtask ({τ1,2, τ1,6} in the example).
Then, both subtasks τ1,2 and τ1,3 are released after the completion of τ1,1. As
a result, O1,2 = O1,3 = 1. For the rest of the subtasks, their local offsets and
deadlines are shown in Figure 1(b).

The local offsets and deadlines of subtasks are calculated based on their best-
case activation scenario, in which all the subtasks execute as soon as they are
released with no interference or delays, These parameters helps in identifying
the longest execution window of each subtask. However, the activation of a sub-
task job can be delayed due to the interference of higher priority subtasks. Re-
spectively, the latest possible activation of a subtask job occurs when all of its
predecessors execute as late as possible (just before their local deadlines). Ac-
cording to this, the activation of a subtask job can happen at any time within
this interval, and this can be considered as the maximum release jitter of the
subtask.

Definition 3. A maximum release jitter ĵi,j of a subtask τi,j is defined as the
difference between the earliest and latest release time of the subtask with respect
to the activation of the DAG task.

ĵi,j = max
∀τi,k∈Parents(τi,j)

(Di,k − (Oi,j −Oi,k)) (1)

Based on the definition of the release jitter of a subtask, all of its jobs are
released within the jitter interval, which is shown in the following equation:

∀Jj
i,k , j ∈ N, τi,k ∈ τi : rji,k ∈ [Oi,k, Oi,k + ĵi,j]

Figure 1(b) shows the maximum release jitter values for the subtasks in DAG
τ1 from Figure 1(a). It’s worth noticing that the source subtask τ1,1 has no jitter
since it has no predecessor subtasks.

From Equation 1 and the example in Figure 1(b), we can notice that the
calculation of the release jitter of the subtasks is pessimistic, and it considers
always that the predecessor subtasks execute as late as possible. According to
this, the critical subtasks of a DAG task (subtasks forming its critical path) will
have no slack time1 if they are activated at their maximum release jitter. In the
following sections, we provide an optimization to the release jitter of subtasks
based on the interference analysis.

Regarding the period of the subtasks (minimum inter-arrival time for sporadic
tasks), each subtask inherits the period of its DAG task, where ∀τi,j ∈ τi, Ti,j =
Ti.

As a result, the subtasks of a given DAG task are characterized now by a
local offset, a WCET, a local deadline and a release jitter. These parameters will

1 Slack time is the time difference between the deadline of a task and its WCET.

Schedulability Analysis for Directed Acyclic Graphs 125

allow us to treat subtasks individually and independently in order to provide a
schedulability analysis at a subtask-level.

4.2 Interference Analysis

For the subtask-level scheduling process using any work conserving algorithm,
the execution of a subtask can be blocked by higher priority subtasks. The
interference on a subtask τk,h ∈ τk is defined as follows:

Definition 4. Ik,h(a, b) is the length of all intervals where subtask τk,h is ready
to execute but blocked by higher priority subtasks in an interval [a, b).

Definition 5. Ii,jk,h(a, b) is the length of all intervals where subtask τk,h is ready
to execute but blocked by subtask τi,j which has higher priority in an interval
[a, b).

Since the subtasks are single-threaded sequential real-time tasks, the relation
between Ik,h(a, b) and Ii,jk,h(a, b) is denoted by the following equation:

Ik,h(a, b) =
1

m
∗

∑
∀τi,j∈τi∈τ

Ii,jk,h(a, b) (2)

Due to the characteristics of the DAG tasks and the precedence constraints
between the subtasks, the interference on a subtask τk,h is divided into two
sources, external and internal interference. Let Iek,h(a, b) denote the interference
from higher priority subtasks of DAG tasks other than τk in the set, which is
defined as follows:

Iek,h(a, b) =
1

m
∗

∑
i�=k,∀τi,j∈τi

Ii,jk,h(a, b) (3)

Where some or all of the subtasks of DAG task τi (i �= k) can interfere with τk,h
based on their priorities.

Furthermore, subtasks of DAG τk can block the execution of τk,h which is
defined as the internal interference Iik,h(a, b). Since we consider constrained
deadline DAG tasks, for a given job of subtask τk,h, one job at most from each
subtask contributes to the interference. The internal interference depends on the
type of interfering subtasks which are divided into the following categories:

– a predecessor subtask τk,x ∈ pred(τk,h) of subtask τk,h: this subtask will
delay the activation of τk,h, but once subtask τk,x completes its execution,
subtask τk,h will start its own and there will be no further effect of τk,x on
τk,h,

– a sibling subtask τk,x ∈ sibling(τk,h) is the subtask that executes in paral-
lel with no dependencies with subtask τk,h. The sibling(τk,h) is the set of
subtasks that are not predecessors or successors of subtask τk,h,

126 M. Qamhieh and S. Midonnet

– a successor subtask τk,x ∈ succ(τk,h) has no interference with subtask τk,h,
because both subtasks cannot execute in parallel and subtask τk,x starts its

execution after τk,h completes its own. According to this, Ik,xk,h (a, b) = 0,
– subtask τk,h has no interference on itself since we consider constrained dead-

line DAG tasks, in which only one job of each DAG task is activated at any
time t. Hence, Ik,hk,h (a, b) = 0.

Based on the above definitions, the internal interference Iik,h(a, b) on subtask
τk,h in the interval [a, b) is defined as:

Iik,h(a, b) =
1

m
∗

∑
∀τk,i �∈succ(τk,h);i�=h

Ik,ik,h(a, b) (4)

Let J∗
k,h be the job of subtask τk,h which has maximum interference, and let

Ik,h(r
∗
k,h, d

∗
k,h) denote the worst-case interference for subtask job J∗

k,h of τk,h in

the interval [r∗k,h, d
∗
k,h). For the sake of clarity, we will use Îk,h = Ik,h(r

∗
k,h, d

∗
k,h)

in this document.

Lemma 1. A taskset τ , of sporadic constrained deadline DAG tasks, is schedu-
lable on m identical processors, for any work conserving algorithm if:

∀τk,h ∈ τk ∈ τ

Îk,h = Îek,h + Îik,h ≤ (Dk,h − Ck,h) (5)

Proof. The proof of this lemma is straight-forward. The interference on a subtask
job has two main sources; internal and external. In order for any subtask to be
schedulable, its execution window (between its activation and deadline) should
be enough to execute its execution time plus the interference workload which is
identified above.

4.3 Interference from Predecessor Subtasks

As described earlier, a predecessor subtask should complete its execution before
its successors are activated. Hence, a successor subtask can only be delayed by
its predecessors. In Section 4.1, we assigned a maximum release jitter for each
subtask in the DAG. This parameter represents the interval in which the subtask
job can be activated and it replaces the dependencies between the subtasks. If
we consider that all the predecessors of τk,h have executed as late as possible,

then the subtask job J∗
k,h will be delayed to the end of this interval (ĵk,h time

units after its offset), then the condition in Lemma 1 will be modified as follows:

Lemma 2. A taskset τ of DAG tasks is schedulable on m identical processors,
using any work conserving algorithm, if:

∀τk,h ∈ τk ∈ τ

Îek,h + Îik,h ≤ (Dk,h − Ck,h − ĵk,h) ≤ (Dk,h − Ck,h − jk,h) (6)

Schedulability Analysis for Directed Acyclic Graphs 127

where

Îik,h =
1

m
∗

∑
∀τk,i∈sibling(τk,h)

Ik,ik,h(a, b)

Proof. As shown in Figure 2 and based on the definition of the release jitter in
Equation 1, if all predecessors respected their local deadlines, then subtask τk,h
will be activated no later than t = (rk + Ok,h + ĵk,h). In the interval [t, dk,h),
predecessors will have no further interference, and only sibling subtasks of τk,h
will interfere with τk,h, which should be less than the available slack time (Dk,h−
Ck,h − jk,h).

𝜏k,h

rk dkdk,h

Ok,h

jk,h

Dk,h

Dk,h-Ck,h-jk,h

Fig. 2. The interference window excluding interference from predecessor subtasks

We have mentioned earlier that considering the maximum release jitter ĵk,h of
subtask τk,h in the interference analysis is too pessimistic, because it considers
that the predecessors will execute as late as possible. As a result, the upper bound
of interference used in Lemma 2 will be always zero for any critical subtask τk,h
since their release jitter ĵk,h = Dk,h − Ck,h.

As shown in Figure 3, it is possible to optimize the jitter of each subtask by
knowing that a parent subtask τk,i has a response time equal to (Îk,i+Ck,i) when
a work conserving algorithm is used. Its latest finish time f∗

k,i can be defined as:

f∗
k,i = Ck,i + Îk,i ≤ Dk,i

The finish time fk,i of any job of a schedulable subtask τk,i should not be
greater than its local deadline Dk,i, or a deadline miss will occur.

By using the finish time of each parent subtask of τk,h, we can calculate an
optimized release jitter j′k,h defined by the following equation:

j′k,h = max
∀τk,i∈parents(τk,h)

(f∗
k,i − (Ok,h −Ok,i))

= max
∀τk,i∈parents(τk,h)

(Ck,i + Îk,i − (Ok,h −Ok,i)) (7)

≤ ĵk,h

128 M. Qamhieh and S. Midonnet

𝜏k,i

𝜏k,h
rk dk

Ck,i

Ck,h

jk,h

j’k,h

Ik,h

dk,i

dk,h

fk,i

Fig. 3. The optimized release jitter of subtask τk,h from its sole parent τk,i

Corollary 1. A taskset τ of DAG tasks is schedulable on m identical processors,
using any work conserving algorithm, if:

∀τk,h ∈ τk ∈ τ

Îek,h + Îik,h ≤ (Dk,h − Ck,h − j′k,h) (8)

where

Îik,h =
1

m
∗

∑
∀τk,i∈sibling(τk,h)

Ik,ik,h(a, b) (9)

The use of the optimized release jitter of a subtask instead of its maximum
release jitter improves the schedulability test by considering a more accurate
upper bound on interference.

5 Workload Analysis

It is difficult to identify the actual interference from external and sibling subtasks
required for the schedulability test in Corollary 1. However, we can use an upper
bound on the interference based on the workload computation of an interfering
subtask, knowing that the interference of a subtask on another one in a fixed
interval cannot exceed the workload of the interfering subtask during the same
interval. Let Wi,j(a, b) be the amount of work done by the jobs of subtask τi,j
in the interval [a, b). Then:

Ii,jk,h(a, b) ≤ Wi,j(a, b)

Within the interference interval [a, b), let a carry-in job of an interfering subtask
be defined as the job that is released before the start of the interval and has a
deadline within the interval. While a body job is the job that is released within
the interval [a, b) and its deadline can be within or after the end of the interval.

5.1 Workload from Sibling Subtasks

A sibling subtask τk,i of τk,h is the subtask from the same DAG task τk that can
execute in parallel with τk,h. Moreover, subtask τk,i has no precedence relations
with τk,h and it cannot be among its predecessors or successors.

Schedulability Analysis for Directed Acyclic Graphs 129

For a given subtask job, one job at most from each sibling subtask will interfere
with it, because the jobs of sibling subtasks belong to the same DAG job, and
the release of their DAG job is considered as their activation reference. In other
words, one job from each sibling subtask τk,h is released in the interval [rk +

Ok,h, rk +Ok,h+ ĵk,h]. For any work conserving algorithm, the interference Îi
k,i

k,h

of a subtask τk,i on its sibling τk,h is calculated by identifying the maximum

interfering interval Lk,i
k,h of τk,i on τk,h. This interval is defined as the longest

interval in which subtasks τk,h and τk,i can execute in parallel. It is calculated
as follows:

Lk,i
k,h = min(D′

k,i, D
′
k,h)−max(Ok,i, Ok,h) (10)

For the sake of clarity, we considered D′
k,h to be the relative deadline of subtask

τk,h from the release of the DAG task, where D′
k,h = Ok,h +Dk,h.

Lemma 3. The maximum internal interference Îi
k,i

k,h of subtask τk,i on a job of
its sibling subtask τk,h is

Îi
k,i

k,h ≤ min(Ck,i, L
k,i
k,h) = Ŵ ik,i (11)

Proof. Based on the definition of the interference interval Lk,i
k,h, the maximum

possible workload of subtask τk,i in the interval happens when τk,i executes as
long as possible in this interval. From here comes the min in the Equation 11.

5.2 Workload Analysis for External Subtasks

For any work conserving algorithm, Bertogna et al. identified, in their paper [9],
the worst-case activation scenario of jobs of an interfering task in a fixed interval
(a, b) which generates the maximum possible workload. They considered a task
model of independent sequential single-threaded tasks. As shown in Figure 4,
this scenario happens when the carry-in job of the interfering task starts its
execution at the beginning of the interference window and executes as late as
possible. The following body jobs then execute as soon as possible until the end
of the window. This scenario is proved in [9] to generate the maximum workload
in the interval.

𝜏i

Fig. 4. The densest possible packing of jobs in interval pf length L for traditional task
using any work conserving algorithm

We use this scenario to calculate the workload of each external subtask in
order to be used as an upper bound of its interference on a given subtask in the

130 M. Qamhieh and S. Midonnet

system. Since each external subtask τi,j has no precedence constraints with τk,h
(where k �= i), then this scenario can be applied to each subtask independently.
As shown in Figure 5, the subtasks of an interfering DAG task τi will interfere
on subtask job J∗

k,h. Assume that subtask job J∗
k,h has an activation window

[r∗k,h, d
∗
k,h) as shown in Figure 5(b), while Figure 5(a) shows the DAG task τi

and its internal structure. In order to calculate the worst-case workload of its
subtasks on jk,h, the worst-case activation scenario is applied to each subtask
τi,j . As shown in Figure 5(b), the first job of each subtask starts its execution as
late as possible at the beginning of the interference interval, and the following
job executes as soon as possible. Based on this scenario, the maximum workload
done in the interference interval is 10.

However, applying this scenario on each subtask of the same DAG task in-
dependently is pessimistic. Because in reality, these interfering subtasks have
precedence constraints that define their execution flow. For example, subtask
τi,1 in Figure 5(b) cannot execute in parallel with its children subtasks τi,2 and
τi,3. But still, the workload in this activation scenario can be used as an upper
bound for workload. Using the following example, we will show that it is not
trivial to find a worst-case activation scenario of jobs adapted to DAG tasks
that generates the maximum workload.

(a) Example of a
DAG task τi.

𝜏i,1

𝜏i,2

𝜏i,3

r*k,h d*k,h

r1i,1 d1i,1 r2i,1 d2i,1

(b) The worst workload activation
scenario for subtask jobs of τi for any
work conserving algorithm.

(c) The worst workload ac-
tivation scenario for sub-
task jobs of τi for Global
EDF.

(d) First possible activa-
tion scenario of subtasks
of τi. Total workload is 3.

(e) Second possible acti-
vation scenario of sub-
tasks of τi. Total workload
is 4.

(f) Third possible activa-
tion scenario of subtasks
of τi. Total workload is 5.

Fig. 5. Workload analysis for external subtasks

Schedulability Analysis for Directed Acyclic Graphs 131

Example
Back to the DAG task τi from Figure 5(a). According to the precedence con-
straints between its subtasks, the activation scenario of its subtask jobs is shown
in Figures 5(d)-5(f). We consider an interference interval of length L = 3. Each
Figure in 5(d)-5(f) shows a possible position of the interference interval w.r.t.
to the interfering subtasks. For example, Figure 5(d) considers that subtask τi,1
starts at the beginning of the interfering interval, and its total workload is 3.
While Figure 5(e) considers that subtasks τi,2 and τi,3 start at the beginning
of the interval and the total workload is 4. However, the maximum workload
happens in Figure 5(f), in which the interference interval starts within subtask
τi,1 and it ends at the deadline of τi,2 and τi,3. In this case the total workload is
5.

Based on this example, we conclude that in order to calculate the maximum
workload of external subtasks of the same DAG, we have to analyze all the
possible positions of interference interval w.r.t. the activation of subtasks, and
this is done at each time instant in the interfering interval.

Lemma 4. The external interference Îe
i,j

k,h of subtask τi,j on subtask τk,h in an
interval, whose length is equal to the absolute deadline Dk,h of τk,h, is bounded by:

Îe
i,j

k,h ≤ Ni,j(Dk,h)Ci,j+ (12)

min(Ci,j , Dk,h +Di,j − Ci,j −Ni,j(Dk,h)Ti,j)

where

Ni,j(Dk,h) = �Dk,h +Di,j − Ci,j

Ti,j
�

Proof. The maximum interference workload from the external subtask τi,j on
subtask τk,h happens based on the execution scenario described in [9] and shown
in Figure 4. The calculations of workload is based on number of interfering
jobs which lie completely within the interfering window plus the last job in the
interval which may contribute partially in the interference. More details about
these equations can be found in [9].

A schedulability test for DAG tasks using any work conserving algorithm on
m identical processors is provided as follows:

Theorem 1. A DAG set τ is schedulable on m identical processors using any
work conserving algorithm if:

∀τk,h ∈ τk ∈ τ∑
τk,i∈sibling(k,h)

min(Îi
k,i

k,h, Dk,h − Ck,h − j′k,h)+

∑
τi,j ; i�=k

min(Îe
i,j

k,h, Dk,h − Ck,h − j′k,h)

≤ m(Dk,h − Ck,h − j′k,h)

132 M. Qamhieh and S. Midonnet

Proof. Knowing that the interference of a subtask in a given interval can never
exceed the workload of this subtask in the same interval, we can transform the
interference schedulability bound on subtask τk,h described in Lemma 3 into a
workload bound of schedulability of the same subtask. However, the internal
and the external interference are based on their respective workload calculations
shown in Equations 11 and 12,

The schedulability test described in the above theorem can be used to opti-
mize the release jitter value of each subtask. Based on the test, the optimized
release jitter can be calculated for each successor of the subtask. If the calculated
release jitter is more than the actual release jitter (the maximum release jitter
by default), then the calculated value is discarded and the actual release jitter
will not be modified.

In order to analyze the performance of our schedulability test, we compare
it with another test found in literature. Bonifaci et al. in [7] provided a GEDF
schedulability test for DAG set on m identical processors. The test depends
on the global parameters of the DAG tasks without considering the internal
structure and the execution flow of the subtasks. Our schedulability test provided
in Theorem 1 is provided for any work conserving algorithm. For the sake of
simulation, we derived a special case of this test for GEDF scheduling algorithm
and the results are shown in Figure 6.

Fig. 6. Simulation results

We generated a large number of random DAG tasksets, and we applied both
GEDF-schedulability tests on the sets of utilization that range from 0 to 8. As
shown in Figure 6, our own scheduling test (denoted by OWN) performs better
than the test from [7] (denoted by BMS). For each system utilization, our test
schedules more DAG sets than the BMS test.

The simulation results provided in this section proves the importance of the
internal structure of DAG tasks in the schedulability analysis.

Schedulability Analysis for Directed Acyclic Graphs 133

6 Conclusion

In this paper, we were interested in the scheduling of parallel real-time DAG tasks
on multiprocessor systems. Our motivation was to show that the scheduling of
real-time DAG tasks is affected by the internal structure of the DAG and the
execution flow of its subtasks. Hence, we applied the scheduling algorithms at
subtask-level instead of DAG-level. This means that the scheduling decisions are
based on local parameters of subtasks instead of the global parameters of DAGs.

We modified the subtasks by adding local parameters such as local offset,
deadline and release jitter for each subtask. Then we provided interference and
workload analyses for any work conserving scheduling algorithm.

As a future perspective, we aim at extending our work to analyze common
scheduling algorithms such as EDF and DM, so as to provide precise schedu-
lability test for each algorithm. Also, we aim at providing further analysis for
subtask-level schedulers including performance metrics such as speedup factor
and approximations ratio. These metrics can be used as an indication of the
performance of our proposed scheduling method.

References

1. Davis, R.I., Burns, A.: A survey of hard real-time scheduling algorithms and schedu-
lability analysis techniques for multiprocessor systems. ACM Computing Surveys
(2011)

2. Lakshmanan, K., Kato, S., (Raj) Rajkumar, R.: Scheduling Parallel Real-Time
Tasks on Multi-core Processors. In: Proceedings of RTSS (2010)

3. Saifullah, A., Agrawal, K., Lu, C., Gill, C.: Multi-core Real-Time Scheduling for
Generalized Parallel Task Models. In: Proceedings of RTSS (2011)

4. Liu, C., Anderson, J.H.: Supporting Soft Real-Time Parallel Applications on Mul-
ticore Processors. In: Proceedings of RTCSA (2012)

5. Chetto, H., Silly, M., Bouchentouf, T.: Dynamic scheduling of real-time tasks under
precedence constraints. In: Real-Time Systems (1990)

6. Li, A.J., Agrawal, K., Lu, C., Gill, C.: Analysis of Global EDF for Parallel Tasks.
In: Proceedings of ECRTS (2013)

7. Bonifaci, V., Marchetti-spaccamela, A., Stiller, S., Wiese, A.: Feasibility Analysis in
the Sporadic DAG Task Model. In: Proceedings of ECRTS (2013)

8. Qamhieh, M., Fauberteau, F., George, L., Midonnet, S.: Global EDF Scheduling
of Directed Acyclic Graphs on Multiprocessor Systems. In: Proceedings of RTNS
(2013)

9. Bertogna, M., Cirinei, M., Lipari, G.: Schedulability Analysis of Global Schedul-
ing Algorithms on Multiprocessor Platforms. IEEE Transactions on Parallel and
Distributed Systems (2009)

Integrated Schedulers for a Predictable

Interrupt Management on Real-Time Kernels

Sergio Sáez and Alfons Crespo

Department of Computer Engineering
Universidad Politécnica de Valencia
{ssaez,alfons}@disca.upv.es

Abstract. To analyse the timeliness behaviour of a real-time system is
one its key aspects. A big effort has been performed by the real-time
community to develop accurate and more general schedulability analysis
that can ensure the correct execution of the system. However, few works
have analysed the side effects introduced by the scheduler and undesired
execution of Interrupt Service Routines. Previous works addressed the
interrupt interference by proposing an Integrated Interrupt Model that
avoids unpredictable disturbance from external interrupts. Even so, the
scheduling overhead due to the unnecessary activation of low priority
tasks remains still unaddressed in this model. This work proposes a new
Virtual implementation of an Integrated Interrupt Event-Driven Sched-
uler that copes with this pending issue. It also analyses the behaviour
of the commonly used dual queue scheme under this kind of schedulers
and proposes a more appropriated data structure to avoid unnecessary
overheads.

1 Introduction

Real-time computing systems cope with its intrinsic complexity by decomposing
the system software in a set of concurrent tasks with timing constraints. These
timings constraints, that must be met for correct operation, are usually repre-
sented by a deadline and a task period. To guarantee such constraints, exten-
sive research has been performed on schedulability analysis of real-time systems
[1]. Schedulability tests are designed to take into account the system workload
characteristics and the kind of scheduler used by the real-time operating system.
Fixed-priority scheduler is one of the most popular and widely accepted real-time
schedulers, and therefore it is present in almost all the commercial real-time op-
erating systems [2]. However, a wide gap still exists between scheduling theory
and its implementation in operating system kernels, since the system scheduler
is usually assumed to be executed without any kind of overhead.

Few works have analysed the side effects introduced by the scheduler and the
associated operating systems routines [3–5]. These works analyse the temporal
behaviour of real-time schedulers classifying them into event-driven, that relies
on an external hardware device that generates interrupts upon task arrivals, or
timer-driven, that uses periodic interrupts from a programmable hardware timer

L. George and T. Vardanega (Eds.): Ada-Europe 2014, LNCS 8454, pp. 134–148, 2014.
c© Springer International Publishing Switzerland 2014

Integrated Schedulers for a Predictable Interrupt Management 135

to execute the scheduler at fixed intervals. Katcher et al. emphasize the impor-
tance of integrating timer interrupts into the scheduling scheme in order to avoid
unnecessary interrupts, i.e., timer interrupt that will wake up a low priority task
while a higher priority task is in execution. This integrated interrupt model has
been further extended by Leyva-del-Foyo et al. in [6–8] to include all hardware
interrupts that can be produced in a real-time kernel. These authors introduce
an integrated model for task and interrupt management and propose differ-
ent hardware and software implementation approaches. This integrated model
is carefully analysed under each proposed implementation and the utilization
bound reductions compared with the one obtained from a non-integrated model.

The integration of hardware interrupts and real-time tasks gives rise to a
real-time task set composed by Hardware Activated Tasks and Software Acti-
vated Tasks respectively [8]. The release of Harware Activated Task is strictly
controlled by an Interrupt Hardware Abstraction Layer in [7] or more loosely
controlled using an optimistic approach in [8]. However, the Software Activated
Tasks are normally released by means of a timer interrupt, and this fact is not
addressed in these works. For example, on [7] is suggested that the timer inter-
rupt still could be considered an Interrupt Service Routine, since it will never
be handled by the application. This approach, although reduces the unnecessary
overhead introduced by the Interrupt Hardware Abstraction Layer, could give
rise to an unnecessary invocations of the system scheduler when the task that
is woken up has a lower priority than the currently executing task. An inte-
grated event-driven scheduler, as proposed by Katcher et al., could cope with
this scenario whenever the Hardware Interrupt Controller was able to manage
multiple prioritized timers. However, this capability is usually not available in
the hardware interrupt controller integrated in nowadays processors.

This work proposes to complete the integrated interrupt model with an in-
tegrated event-driven scheduler that modifies the hardware timer to interrupt
only when a higher priority task has to be woken up. This kind of scheduler
could avoid unnecessary task activations, reducing the disturbance introduced
by the operating system kernel. The adequacy of traditional scheduling imple-
mentations based on a dual queue scheme, a ready-queue and a wait-queue, to
implement this new kind of scheduler is also addressed. Finally, a new fixed-
priority scheduler based on a Cartesian tree [9] is proposed to overcome the
detected drawbacks of the traditional dual queue approach.

The rest of the paper is organized as follows: next section describes the system
model and the notation used in the rest of the paper. Section 3 introduces the
model of integrated interrupt management. Then section 4 presents how the
scheduler can be integrated in this new model. Section 5 presents dual-queue
scheduling schemes, its computational cost and main drawbacks when used in
an integrated interrupt model. Section 6 presents a new scheduler that avoids
previous drawbacks. Finally section 7 presents some additional considerations
and then section 8 summarise some of the main results.

136 S. Sáez and A. Crespo

2 System Model and Notation

The notation used in this work is based on the one presented in [7] but with
some small differences. It can be summarized as follows:

HAT Hardware Activated Task. A task that is released by an external interrupt.
SAT Software Activated Task. A task that is activated by a timer interrupt or

by other task.1

τx Real-Time task with period Tx, worst-case execution time Cx and priority
px.

rx Next activation instant of task τx while it is in the wait queue.
H(i) Set of tasks with a priority higher than task τi. HSAT(i) are the SATs that

belongs to H(i). A similar definition holds for HHAT (i).
HSAT(i)

⋂
HHAT (i) = ∅.

L(i) Set of tasks with a priority lower than or equal to task ti. LSAT(i) and
LHAT (i) are defined as in H(i).

R and W Represents the tasks present in the ready queue or wait queue re-
spectively. The number of tasks in these queues will be represented as NR

and NW . Intersection with task sets L(i) and H(i) will be denoted by using
superscripts, e.g., HR(i) = R

⋂
H(i).

The notation for system overheads is shown next:

δisr Total processing time for the enter and leave code of an Interrupt Service
Routine, including basic communication with the Hardware Interrupt Con-
troller (interrupt ack, end-of-interrupt, etc.).

δhic Communication cost with the Hardware Interrupt Controller to mask un-
desired external interrupts.

δctx Time required to perform a task context switch, including CPU registers
context, MMU context (if required), etc.

δSched Processing time required to determine the next task to be executed. It can
be differentiated in δSched−A, when it is computed during a task activation,
or δSched−T, if it is computed when the active task is going to be suspended.
It can also be suffixed as δSchedT or δSchedI to differentiate between traditional
schedulers and integrated interrupt schedulers proposed in this work.

3 Integrated Interrupt Management Model

An extended explanation of the Integrated Interrupt Model is presented in this
section along with the issues that still remains unaddressed. A complete expla-
nation of this model can be found in [7, 8].

The Integrated Interrupt Model proposes to use a common priority space
where real-time tasks and traditional Interrupt Service Routines (ISR) are map-
ped. This gives rise to a set of Hardware Activated Tasks (HAT) and Software

1 However, this work only considers the software activated task released by a timer
interrupt.

Integrated Schedulers for a Predictable Interrupt Management 137

Activated Tasks (SAT) which timely execution can be analysed using well known
methods [10, 1]. This model avoids to perform a probably unbounded number
of ISR executions while high priority tasks are in execution, but also introduces
additional system overheads.

3.1 Hardware Activated Tasks

The conversion of the existing ISRs into HATs allows the system to control when
a given external interrupt is attended with respect to traditional real-time tasks,
i.e. SATs, and the rest of HATs by means of a correct priority assignment. The
disturbance associated to the execution of ISRs, that previously affect to all
priority levels due to the independence of priority spaces, is moved to a given
priority level in the common priority space where higher priority tasks will not
be affected. The reduction of CPU utilization due to the interrupt disturbance
for a given task τi is denoted in [7] as UiS . That work also concludes that the
time required to process the enter and leave code of the ISR, δisr, is replaced
by a usually larger time required to perform the context switches of the implied
HAT, δctx. Whether the utilization reduction due to this new overhead is lower
than the previous lost of utilization UiS or not, allows the system designer to
determine the adequacy of the integrated interrupt model for a given real-time
system.

This integrated priority space for tasks and interrupts requires to change the
interrupt priority level2 of the Hardware Interrupt Controller (HIC) each time
a new task enters into or exits from execution to avoid the undesired activation
of HATs. If the HIC is not included inside the CPU encapsulation, then the
communication with this external device through the input/output subsystem
could carried out an important overhead that also has to be incorporated into
the schedulability tests. Moreover, if the HIC does not support an interrupt
priority level, a Virtual Custom Programmable Interrupt Controller can be in-
corporated to Interrupt Hardware Abstraction Layer to offer this functionality.
As this Virtual Custom PIC emulates the availability of the interrupt priority
level by means of interrupt masking on the real HIC, additional overheads are
introduced to compute the adequate mask for each priority. These additional
operations performed during task activation and deactivation are the ones that
introduce a higher context switch time. A complete analysis of these overheads
can be found in [7, 8].

3.2 Software Activated Tasks

Although the integrated model allows the system designer to control the activa-
tion of HATs by means of properly assigned priorities, the correct activation of
SATs remains unaddressed. SATs are theoretically activated by software mech-
anisms such as semaphores, mutexes, barriers, execution time timers, timing
events and so on. While the tasks activated by semaphores, mutexes, barriers

2 This level specifies the minimum priority of an interrupt for the CPU to be notified.

138 S. Sáez and A. Crespo

and suspension objects are released by code executed directly or indirectly by
other task, in the case of temporal events, it is the ISR of the timer interrupt
the final responsible of producing the timed event. In such a way, a subset of
the SATs, in particular the real-time periodic tasks, are indirectly activated by
the occurrence of a hardware interrupt. After this SAT activation, the sched-
uler is executed in order to determine if the recently activated task has a higher
priority than the one is currently under execution. If the activated task has a
lower priority, then the current task is resumed. However, an unnecessary activa-
tion procedure has been performed that has introduced an unexpected overhead
during a higher task execution. This overhead is similar to the one produced by
hardware interrupts in a non-integrated model, but with the additional overhead
of executing the system scheduler.

The interference due to unnecessary SAT activations, USAT
i , is the decrease of

least upper utilization bound at priority level pi and can be computed as follows:

USAT
i =

∑
τk∈LSAT(i)

δisr + δSched−A
T

Tk
(1)

where δSched−A
T can be typically decomposed in the following actions: to remove

the time event from the wait queue, δSched−A
wq , to insert the newly activated task

τk into the ready queue, δSched−A
rq , and to check the top of the ready queue to

find out which task will be the next running task, δSched−A
next .

δSched−A
T = δSched−A

wq + δSched−A
rq + δSched−A

next (2)

While δSched−A
next can be considered constant when a new SAT has been ac-

tivated, the other two overhead terms, δSched−A
wq and δSched−A

rq , depends on the
data structures used to maintain the ready and wait queues. These overheads
are analysed in section 5.

This scheduling overhead can also be expressed as an additional blocking time,
that higher priority tasks can suffer from lower priority tasks, and it should be
taken into account during the Response Time Analysis [1] when traditional in-
terrupt models are used. The next equation summarises this additional blocking
time:

BSAT(i) = |LSAT(i)| × (δisr + δSched−A
T) (3)

In order to avoid this effect, the integrated interrupt model has to grant that
no timer interrupt that activates a lower priority task (τk ∈ LSAT(i)) will be
raised during the execution of a higher priority task τi. This can be achieved
using an Integrated Interrupt Event-Driven Scheduling scheme as it is proposed
by Katcher et al. in [3]. Next section briefly introduces this kind of schedulers
and proposes a software-based implementation.

Integrated Schedulers for a Predictable Interrupt Management 139

4 Integrated Interrupt Event-Driven Schedulers

In Integrated Interrupt Event-Driven Scheduling systems all the tasks are initi-
ated by external interrupts which have priorities that fully match the software
task priorities. Upon the activation of each task τi an interrupt is posted to the
processor that only starts the corresponding ISR if the priority pi is higher than
the priority of the currently running task τr, i.e., τi ∈ H(r). If task τi does not
belong to H(r), then the activation interrupt of task τi remains pending. This
behaviour requires a special hardware within the processor or a HIC that holds
the active task’s priority in a register and raises a real interrupt only when the
pending interrupt with the highest priority has a priority greater than the cur-
rent priority level. A similar Custom Programmable Interrupt Controller (CPIC)
is described in [6] with some differences: As all the tasks are considered HATs,
the CPIC has to provide enough hardware timers, with its associated priority
level, to implement all periodic real-time tasks in the system.

As the functionalities to be provided by the HIC are not commonly available in
current processors or PICs, an approach similar to the Virtual CPIC presented
in [7] is proposed next.

4.1 Virtual Integrated Interrupt Event-Driven Schedulers

This work proposes the use of a Virtual Integrated Interrupt Event-Driven Sched-
uler (VIIED Scheduler). Under this kind of scheduler, while the current task τr
is running, the HIC is programmed to raise only timer interrupts belonging to
activation instants of higher priority tasks, {rh : τh ∈ HSAT(r)}. The activation
instants that belong to lower priority tasks, {rl : τl ∈ LSAT(r)}, are ignored,
including the case in which an activation instant rl is closer than the closest rh.
This behaviour prevents the scheduler to wake up a task with a lower priority
than the current one. Thus, if a VIIED scheduler is incorporated to the inte-
grated interrupt mode presented in [7, 8], a fully integrated interrupt model can
be achieved and the system can avoid disturbances shown in sections 3.1 and
3.2.

To achieve this behaviour, each time the scheduler is invoked to determine the
next ready task with the highest priority, τr, it has to examine the wait queue
to find out which of the suspended tasks, τp, with a priority higher than pr, has
the closest activation instant. We call this task, τp, the next preemptor of τr and
it can be expressed as:

τp ∈ HW (r)/ � ∃τq ∈ HW (r) : rq < rp (4)

Once τp is determined, the HIC has to be programmed to raise the next timer
interrupt at time rp. If H

W (r) is empty then there is no task into the wait queue
with a higher priority than the current one, and therefore, the timer interrupt
does not need to be programmed. In such a case, the currently active task will
run until its suspension, at which time the system scheduler is invoked again.
This can only happen when the highest priority task is running.

140 S. Sáez and A. Crespo

Taking into account the new functionality that has to be implemented by the
scheduler in this model, the new scheduling overheads δSched−A

I and δSched−T
I

can be expressed as follows:

δSched−A
I = δSched−A

wq + δSched−A
rq + δSched−A

next + δSched−A
np (5)

δSched−T
I = δSched−T

rq + δSched−T
wq + δSched−T

next + δSched−T
np (6)

where δnp is the time required to find the next preemptor on each case, and
δSched−T
rq , δSched−T

wq and δSched−T
next are the execution times required to remove the

active task from ready queue, to insert its next activation on the wait queue and
to determine the next activate task among the ones found in the ready queue.

The efficiency of a VIIED scheduler will strongly depend on its ability to per-
form all the steps included in δSched−A

I and δSched−T
I in a fast and bounded man-

ner. A lot of study has been carried out to analyse the behaviour and temporal
costs of different kinds of priority queues, including under the real-time perspec-
tive [11]. Next section analyses common data structures used to implement the
ready and wait queues on several real-time kernels. The main drawbacks that
arise when they are used to implement a VIIED scheduler are also analysed.

5 Dual-Queue Scheduling Schemes

Today’s real-time operating system kernels are usually based on a dual-queue
scheduling scheme. This scheme uses one queue to store active tasks, called ready
queue, and the other one to store timed events, called wait queue. Timed events
stored in the wait queue usually has a reference to the suspended task that has
to be woken up upon the arrival of such an event.

Several open source real-time kernels found in the bibliography have been
analysed and the differences found among them in the scheduling scheme are
mainly centred in the data structures used to implement these queues. While
PartiKle [12] and MarteOS [13] use priority bitmaps plus an array of ordered
linked lists to implement the ready queue and a heap to implement the wait
queue, Open Ravenscar Kernel [14] and Shark [15] kernels implement both
queues with ordered linked list. The only one that does not follow the dual-
queue approach is RT-Linux [16] that uses a very simple scheme based on a
single one unsorted queue.

5.1 Time Complexity of Queue Operations

The ready queue operations usually required by a scheduler to implement a fixed-
priority scheduling policy are: insert, delete or delete-min, and find-min.
Among the structures used to implement the ready queue, the priority bitmap
clearly outperforms any other data structure since it has a constant temporal cost
(Θ(1)) with respect to the number of ready tasks3 in all the required operations.

3 The temporal cost is O(P), where P is the number of priority levels, but this value
is fixed in a given system.

Integrated Schedulers for a Predictable Interrupt Management 141

The queue operation required to implement the wait queue in a conventional
event-driven scheduler are the same than in the ready queue. As the normal key
used for storing timed events are absolute activation instants, and they are not
bounded, the priority bitmap cannot be used for wait queues. In these situations
a typical data structure to be used is any binary tree that offers a good temporal
behaviour on the required operations. As shown above, one of the preferred ones
is the binary heap [17]. In this case, the temporal cost of find-min operation
is Θ(1) and Θ(log(n)) for insert and delete-min. Other binary trees as AVL
and Black-Red trees[17] can also be used, as they have similar temporal costs,
although the constant that multiply any operation cost is usually higher than
the one of binary heaps.

However, to implement a VIIED scheduler a new queue operation find-pre-

emptor is required to be implemented in the wait queue, as it is shown in equation
(4). This operation is not commonly available in used data structures, as it
needs a second key to sort the wait queue nodes: the priority of the task to be
activated. Since data structures used to implement wait queues only uses one
key, the cost of finding the item that accomplishes the next preemptor condition
has an asymptotic upper bound of O(NW), being NW the number of timed
events stored in the wait queue.

When a sorted linked list is used to implement the wait queue, the nodes can
be traversed by increasing activation instant. Since the next preemptor condition
holds for the closest timed event with an associated task priority higher than
the current one, the find-preemptor operation can stop as soon as one node
fulfils the higher priority condition. This gives rise to lower temporal bound of
Ω(1) and an average-behaviour that depends on the distribution of timed events
inserted in the wait queue. However, due to the temporal cost of the insert

operation (O(n)), the linked lists are only useful for real-time system with small
real-time task sets.

On the other hand, as the ordering of siblings in a binary heap is not spec-
ified by the heap property, no order about nodes can be assumed and no in-
order traversal is possible. Then, the tight temporal cost of the operation find-

preemptor is Θ(n). As some implementations of AVL trees can maintain an in-
order linked list together with the binary tree, they could be a good substitution
of binary heaps when used on VIIED schedulers with a large number of tasks.

From here on, the worst case execution time of a queue operation will be
referred as QR

oper and QW
oper for the operation oper over the ready and wait

queue respectively.

5.2 Dual-Queue Scheme Drawbacks

As shown in the previous section, the temporal behaviour of the queue operations
used by a fixed-priority real-time scheduler can be tightly bounded by using
the appropriated data structures. Despite of the inability of the currently used
data structures to efficiently address the find-preemptor operation, the major
drawback of the dual-queue scheduling scheme is the use of separate queues

142 S. Sáez and A. Crespo

for ready and suspended tasks. This section describes the disadvantages derived
from this dual-queue scheme.

Given a running task, τr, a VIIED scheduler prevents the activation of lower
priority tasks by means of avoiding the unnecessary timer interrupts. However,
when the next preemptor task τp is activated, the lower priority tasks which
activation is pending still remain in the wait queue. Being τp the next preemptor
of τr, this set of pending tasks Pp(r) can defined as:

Pp(r) = {τk ∈ LW (r)/rk ≤ rp} (7)

Then the number of tasks, Np, that have to be moved to the ready queue
while activating τp is Np = |Pp(r) ∪ {τp}|.

When evaluating the cost of removing these pending tasks, it has to be taken
into account that some wait queue implementations are not able to perform
a find-min operation without performing a set of delete-min operations to
remove the previously activated tasks Pp(r). This is the case of the commonly
used heap. If the wait queue has this constraint, then the scheduling overhead
δSched−A
I is defined as:

δSched−A
I = Np × (QW

delete−min +QR
insert) +QR

find−min +QW
find−preemptor (8)

Although the QR
find−min can be considered constant, as it is known that the

highest priority task is going to be τp, the term Np × (QW
delete−min + QR

insert),
referred as pending task processing time, could give rise to an important execution
time overhead during the activation of τp.

On the other hand, when the running task finishes, the system has to deter-
mine the next running task and the next preemptor. This implies to update the
ready queue and wait queue, before determining the next running and preemptor
tasks. This scheduling overhead is shown next:

δSched−T
I = QR

delete−min +QW
insert +QR

find−min +QW
find−preemptor (9)

Additionally, due to the internal design of the scheduler, these scheduling
overheads, δSched−A

I and δSched−T
I , are in fact blocking times, since the system

scheduler is commonly designed as an uninterruptible routine. Therefore, no
higher priority tasks can be activated while the scheduler structures are being
updated.

Schedulers Implementation Comparison. In order to determine if this im-
plementation of the integrated interrupt model is adequate for a given real-time
system, the overhead introduced by a traditional interrupt model, δT , due to the
tasks that have to be activated during the execution of τr has to be compared
with the new δI .

When using a traditional scheduler, the maximum overhead at a priority level
pr, referred as δT (r), is:

δT (r) = δisr + 2× δctx + δSched−A
T +BSAT(r) + δSched−T

T (10)

Integrated Schedulers for a Predictable Interrupt Management 143

On the other hand, from equations (8) and (9) the overhead at a priority level
pr when using a VIIED Scheduler, δI(r), can be summarised as:

δI(r) = δisr + 2× (δctx + δhic) + δSched−A
I + δSched−T

I (11)

Thus, the condition that has to be fulfilled by a VIIED scheduler to worth its
use into an integrated interrupt model can expressed as:

δI(r) ≤ δT (r), ∀τr (12)

although the condition could be applied only to the critical priority levels.
Taking into account that in the worst case scenario Np is limited by the

number of tasks with a priority lower than pr, i.e., Np ≤ |LSAT(r)| + 1, the
inequality shown in (12) can be simplified as follows:

2× δhic + 2×QW
find−preemptor ≤ |LSAT(r)| × (δisr + δctx +QR

find−min) (13)

Therefore, as QR
find−min has a constant execution time in an efficient ready

queue implementation, the maximum temporal cost at a given priority level pr
for QR

find−preemptor can be O(|LSAT(r)|). As currently used wait queue implemen-
tations do not use the priority to sort the timed events, the computational cost
for finding the next preemptor is usually O(NW). In such cases, the system will
need an additional data structure that are able to sort pending timed events in
priority order to find the next preemptor with a tighter computational cost. A
possible data structure to perform this task could be a priority-indexed array of
sorted event queues, as it has O(|LSAT(r)|) for QW

find−preemptor.

Despite of the accomplishment of this inequality, the dependency of δSched−A
I

with the number of blocked task in Pp(r) introduces an additional undesirable
behaviour: the release jitter of task τp, defined as the interval between the ex-
pected activation rp and the real activation rp + δisr + δctx + δSched−A

I , becomes
significantly incremented.

These disadvantages are normally intrinsic to the dual-queue scheduling sche-
me. The next section presents a VIIED scheduling algorithm based on a single
queue model that tries to avoid both problems: release jitter and pending tasks
processing time.

6 A Scheduler Based on Cartesian Trees

This section describes a VIIED scheduler that uses only one data structure to
store ready and suspended tasks. This data structure is based on Cartesian trees
and it is intended to reduce the temporal cost of finding the next preemptor,
Qfind−preemptor, to constant time. It was already presented in a previous work to
implement a real-time scheduler [18].

Cartesian trees were introduced and named by Vuillemin [9]. The name is
derived from the Cartesian coordinate system for the plane. A Cartesian tree

144 S. Sáez and A. Crespo

for a set of points has the sorted order of the points by their x-coordinates, and
it has the heap property according to the y-coordinates of the points. In this
work the x-coordinates will be the task priorities and the y-coordinates their
activation instants. In such a way, the Cartesian tree becomes a heap structure
that stores the closest activation instant in the root node. However, as each node
also have a priority, the final tree has an interesting property: the left child of
each node is the next task to be activated with a priority lower or equal than its
parent node and the next task to be activated with a priority higher than the
parent node is the right child. So, the next preemptor of a given task is directly
located in its right child node, and therefore, to find the next preemptor of any
task can be performed in constant time. We denote this usage of the Cartesian
trees: Scheduling Cartesian Tree or SC-Tree.

a: 20

p: 11

4

a: 107

p: 22

5

a: 83

p: 6

2

a: 163

p: 36

0

a: 162

p: 16

1

a: arrival

p: priority

id

a: 241

p: 19

3

Fig. 1. A Scheduling Cartesian tree

Figure 1 shows an example of a SC-Tree with 6 tasks. Each task τi, is rep-
resented by three parameters: its identifier, i, its activation instant, ri, and its
priority, pi. As it can be observed the activation instants of the nodes maintains
no order but the heap property.

Let the node 4 represents the currently running task τ4. All the suspended
tasks with a higher priority, HW (4), can be found in the right sub-tree, and the
lower priority ones, LW (4), in the left sub-tree. Moreover, the closest suspended
task of HW (4), i.e., the next preemptor, can be found directly on the right
child of node 4, i.e., the node 5. The right branch, depicted in grey in Figure
1, will be referenced as preemptors branch, and it contains the only tasks that
can preempt the previous one in the branch during its execution. As it will be
explained bellow, this preemptors branch has interesting properties.

Integrated Schedulers for a Predictable Interrupt Management 145

Although this structure reduces Qfind−preemptor to constant time, provided
that a reference to the current task’s node is available, this does no avoid the rest
of drawbacks presented for the dual-queue scheduling schemes. So, the followed
approach in this work is to use the SC-Tree not only as a heap of timed events
with fast next preemptor operation, but also use the same SC-Tree as ready
queue.

Let us follow the explanation with the depicted example of Figure 1. When
task τ5 becomes active at instant 107, no modifications will be performed on the
SC-Tree, but just a change in the currently running task reference to point to
node 5, that was the previous preemptor. At this time, the node 4 is the parent
of currently running task τ5. Task τ4 is still active but it is not the highest
priority task any more. Task τ2 is also active, but it does not matter, since has a
lower priority than τ5 and τ4. The next preemptor will be τ0 with an activation
instant r0 = 163, which is the absolute time value used to program the next
timer interrupt into the HIC. If the activation instant r0 is reached before task
τ5 completes is execution, the task τ5 will be preempted, and the scheduler would
behave as in the later case, moving the currently running task reference to task
τ0. If task τ5 finishes is execution before r0 and ask for delaying its execution
until its next period, the node 5 is modified with the new activation instant and
pushed down until its new location in the SC-Tree. The new currently running
task will be τ4, i.e., the old parent of τ5 that still remains active. The next
preemptor would be τ0 only if the new activation instant of τ5 is not lower than
r0.

SC-Tree Computational Cost. As it has been explained, the structure of the
SC-Tree only changes when a task finishes its execution. When a task becomes
active there are no actions to perform but to change the currently running task
reference to the previous preemptor (right child), so the time required to deter-
mine the next active task QSA

find−min has a constant computational cost (Θ(1))

and also to determine the next preemptor QSA
find−preemptor once the currently run-

ning task reference has been updated. In such a way, the scheduling overhead
due to task activation δSched−A

I will be:

δSched−A
I = QSA

find−min +QSA
find−preemptor (14)

which are both constant time. This behaviour allows the system to minimize the
release jitter of a task under this VIIED scheduler.

On the other hand, when a preempting task finishes, the task that must be
resumed is the task located at the parent node, so QST

find−min has also a con-
stant execution time. Therefore, only the time to push down the next activation
of the finished task is significant in the preemption process. This new opera-
tion push-down for a given finished task τf has a worst-case execution time
QST

push−down that depends on the number of pending activations between now

and rf . In the worst case, the number of tasks will be NW and, therefore, the
cost will be O(NW).

146 S. Sáez and A. Crespo

SC-Tree Blocking Time. Another important advantage of the SC-Tree is that
the push-down operation is only executed when the task finishes its execution.
If some higher priority task is activated during the push-down operation, the
operation can be preempted and resumed when the higher priority tasks finishes.
Although the SC-Tree would remain in an inconsistent state until the operation
was resumed, the interesting property is that the preemptors branch is never
modified by a lower priority task, and therefore, the inconsistent SC-Tree still
can be used to determine the next preemptor of the running task until pending
push-down operations are concluded.

7 Additional Considerations

This section presents some additional considerations that have to be taken into
account when a fully Integrated Interrupt Model is used in a real-time system.

In the traditional interrupt model, the scheduler cost of changing the priority
of the running task, e.g. when it enters/leaves a protected object and the Imme-
diate Priority Ceiling Protocol is used, is considered negligible or has a constant
asymptotic cost.

When an Integrated Interrupt Model is used, to change the priority of the
current task requires to update the system priority level. To avoid unnecessary
interrupts when the system priority level changes, the HIC has to be repro-
grammed and the next preemptor has to be computed when the task enters
and leaves the protected object. The cost of these operations can be considered
excessively high to be applied each time a task access to a protected object.

However, if the base priority is pb and the real inherited priority, pa, is not
enforced by the VIIED Scheduler, any task τi with a priorities pi ∈ (pb, pa] will
be activated but not executed. Additional blocking times have to be computed
for these tasks similar to the one presented in equations (3) and (10).

BPO(i) =
∑

k∈L(i)−L(b)

δisr +QW
delete−min +QR

insert +QR
find−min (15)

This blocking time is equivalent to the one for the traditional interrupt model
but only for the task between priorities pb and pi. This overhead has to be
compared with the overhead due to update the system priority level when the
tasks enters and leaves the protected object that is presented next:

QPO = δhic +QR
insert +QR

delete−min + 2×QR
find−min + 2×QW

find−preemptor (16)

where QR
insert represents the overhead of inserting a pseudo-task at the new

priority level pa and QR
delete−min is the overhead to remove this pseudo-task at

the end of the protected action. In the case of the SC-Tree, QR
insert is replaced

by Qpush−down.
To compute the cost of these operations for a given system scheduler allows

the system designer to decide if it is worth following a fully integrated interrupt
model or if it could be relaxed during the execution of protected actions.

Integrated Schedulers for a Predictable Interrupt Management 147

8 Conclusions and Future Work

Previous works addressed the interrupt interference by proposing an Integrated
Interrupt Model that avoids disturbance from external interrupts. However, the
overhead of processing unnecessary activations of lower priority Software Acti-
vated Tasks has not been properly addressed in this model.

This work proposes a new Virtual implementation of an Integrated Interrupt
Event-Driven Scheduler that avoids the hardware requirements of an Integrated
Interrupt Event-Driven Scheduler. A new data structure based on Cartesian
trees has been proposed to avoid the main drawbacks of implementing a Virtual
Integrated Interrupt Event-Driven scheduler following a dual-queue scheduling
approach. A comparison of the run-time behaviour of system schedulers used in
an integrated model has been previously presented in [18].

The proposed SC-Tree scheduler has shown to be better suited for a fully
integrated interrupt model, completely avoiding release jitter and scheduling
blocking times that arise with conventional dual-queue schedulers.

Also a complete analysis of the implied overheads and blocking times when the
integrated interrupt model includes Software Activated Tasks has been presented.
This analysis allows the system designer to determine if the fully integrated inter-
rupt management is suited for the real-time system under development.

Future work will try to extend the analysis to fully integrated interrupt man-
agement systems based on dynamic priorities and the suitability of the SC-Tree
scheduler in such environments.

Acknowledgements. This work has been partially supported by the Span-
ish Government’s projects COBAMI (DPI2011-28507-C02-02) and Hi-PartES
(TIN2011-28567-C03-01-02-03) and the European Commission’s MultiPARTES
project (FP7-ICT-2011.3.4, Contract 287702).

References

1. Audsley, N., Burns, A., David, R., Tindell, K., Wellings, A.: Fixed priority pre-
emptive scheduling: An historical perspective. Real-Time Systems 8(2/3), 173–189
(1995)

2. POSIX.13: IEEE Std. 1003.13-1998. Information Technology-Standardized Appli-
cation Environment Profile-POSIX Realtime Application Support (AEP). The In-
stitute of Electrical and Electronics Engineers (1998)

3. Katcher, D., Arakawa, H., Strosnider, J.: Engineering and analysis of fixed priority
schedulers. IEEE Transactions on Software Engineering 19(9), 920–934 (1993)

4. Jeffay, K., Stone, D.L.: Accounting for interrupt handling costs in dynamic prior-
ity task systems. In: Proceedings of Real-Time Systems Symposium, pp. 212–221
(1993)

5. Burns, A., Tindell, K., Wellings, A.: Effective analysis for engineering real-time
fixed priority schedulers. IEEE Transactions on Software Engineering 21(5), 475–
480 (1995)

148 S. Sáez and A. Crespo

6. Leyva-Del-Foyo, L.E., Mejia-Alvarez, P.: Custom interrupt management for real-
time and embedded system kernels. In: Proceedings of the Embedded Real-Time
Systems Implementation (ERTSI 2004) Workshop 25th (December 2004)

7. Leyva-Del-Foyo, L.E., Mejia-Alvarez, P., de Niz, D.: Predictable interrupt manage-
ment for real time kernels over conventional PC hardware. In: RTAS 2006: Pro-
ceedings of the 12th IEEE Real-Time and Embedded Technology and Applications
Symposium, pp. 14–23. IEEE Computer Society, Washington, DC (2006)

8. Leyva-Del-Foyo, L.E., Mejia-Alvarez, P., de Niz, D.: Predictable interrupt schedul-
ing with low overhead for real-time kernels. In: International Workshop on Real-
Time Computing Systems and Applications, pp. 385–394 (2006)

9. Vuillemin, J.: A unifying look at data structures. Commun. ACM 23(4), 229–239
(1980)

10. Joseph, M., Pandya, P.: Finding response times in real-time systems. The Com-
puter Journal 29(5), 390–395 (1986)

11. Mhatre, N.: A comparative performance analysis of real-time priority queues. Mas-
ter’s thesis, Florida State University (2001)

12. Peiro, S., Masmano, M., Ripoll, I., Crespo, A.: PaRTiKle OS, a replacement of the
core of RTLinux. In: 9th Real-Time Linux Workshop (2007)

13. Aldea Rivas, M., González Harbour, M.: MaRTE OS: An ada kernel for real-time
embedded applications. In: Strohmeier, A., Craeynest, D. (eds.) Ada-Europe 2001.
LNCS, vol. 2043, pp. 305–316. Springer, Heidelberg (2001)

14. Puente, J., Zamorano, J., Ruiz, J.F., Fernandez, R., Garcia, R.: The design and
implementation of the open ravenscar kernel. ACM SIGAda Ada Letters XXI(1),
85–90 (2001)

15. Gai, P., Abeni, L., Giorgi, M., Buttazzo, G.: A new kernel approach for modu-
lar real-time systems development. In: Proceedings of the 13th IEEE Euromicro
Conference on Real-Time Systems (June 2001)

16. Barabanov, M.: A linux-based realtime operating system. Master’s thesis (1997)
17. Knuth, D.E.: The art of computer programming, 2nd edn. Sorting and searching,

vol. 3. Addison Wesley Longman Publishing Co., Inc., Redwood City (1998)
18. Sáez, S., Lorente, V., Terrasa, S., Crespo, A.: Efficient alternatives for implement-

ing fixed-priority schedulers. In: Vardanega, T., Wellings, A.J. (eds.) Ada-Europe
2005. LNCS, vol. 3555, pp. 39–50. Springer, Heidelberg (2005)

PDP 4PS : Periodic-Delayed Protocol

for Partitioned Systems�

Antoine Jaouën, Etienne Borde, Laurent Pautet, and Thomas Robert

Institut Telecom, TELECOM ParisTech, LTCI - UMR 5141
Paris, France

firstname.lastname@telecom-paristech.fr

Abstract. ARINC 653 systems have to comply with strong require-
ments with respect to time determinism and resource consumption. How-
ever, interacting processes may introduce significant overheads and in-
duce pessimism in schedulability analysis. In this paper, we restrict the
ARINC 653 execution and communication models so that a message is
delivered as if it was sent at the sender deadline. We take advantage
of dedicated inter-partition buffers to provide predictable and efficient
implementations for kernel and application suppliers.

Keywords: real-time, partitioned systems, inter-partition communica-
tion, deterministic communication protocol, scheduling, ARINC 653.

1 Introduction

Safety critical systems are systems whose failure can result in loss of life. In the
avionic domain, several standards have been defined to guide the design of such
systems. In particular, the avionic industry defined the ARINC 653 standard [1]
for designing space and time partitioned real-time systems. These systems enable
applications of different levels of criticality (under DO-178B [2] definition) to
coexist independently on the same hardware. We call this property the isolation
goal. Both the space and railway industries are now interested in this approach
based on partitioned systems [3].

N→1 message passing communications (N producers to 1 consumer) are used
for several purposes. A typical use concerns data fusion for system monitoring.
Data fusion is the process of integrating multiple data, frommultiple sources, into
a consistent and accurate representation. Another use of N→1 communications
occurs for fault tolerance techniques that rely on hardware/software redundancy
and voting mechanisms such as Triple Modular Redundancy [4]. Mahadevan et
al. in [5] described a critical avionic system involving N→1 communications used
in the two circumstances previously described.

In this paper, we propose an approach to implement ARINC 653 N→1 com-
munication channels with a deterministic message delivery order and a limited
number of non-preemptive function calls. Our approach is designed to be used

� This work was partially funded by the FSF/IRT-X project.

L. George and T. Vardanega (Eds.): Ada-Europe 2014, LNCS 8454, pp. 149–165, 2014.
c© Springer International Publishing Switzerland 2014

150 A. Jaouën et al.

in only some parts of the system, leaving the possibility to use regular ARINC
653 communication channels in the remaining system.

In section 2, we describe the context of this work. Section 3 presents the
issues raised when designing N→1 communications in ARINC 653. In section
4, we present our approach which results in two implementations described in
sections 5 and 6. Section 7 summarizes our experimentation. Section 8 compares
our approach with related works and section 9 concludes this paper.

2 Context and Motivations

N→1 message passing communications introduce schedulability analysis issues.
First, as the message delivery order is not fixed, a non-deterministic number
of concurrent accesses to shared resources occur. Second, preserving data con-
sistency during these concurrent accesses requires to use lock mechanisms or
non-preemptible sequences of instructions. At last, protected operations have an
execution time that should not be neglected, especially when privileged execu-
tion domains are required. Designers have to over-approximate delays due to
these shared resources. These issues deeply affect the schedulability analysis.

In [6], we define a deterministic N→1 communication mechanism implemented
without lock mechanisms or non-preemptible sections. This paper aims at defin-
ing a N→1 deterministic and lightweight communication mechanism for ARINC
653 systems.

The ARINC 653 standard defines partitions (comparable to Real-Time POSIX
processes). They are isolated in terms of space and time: space isolation means
two partitions cannot share the same memory space; time isolation is material-
ized by a static allocation of time intervals for the execution of partitions. These
time intervals (named Partition Windows or PW) are statically scheduled over
the hyperperiod (named MAjor time Frame or MAF) of partitions, which are
periodically executed [7]. Partitions contain processes, which can be compared
to Real-Time POSIX threads. Processes in the same partition share memory and
are executed under the scheduling policy of their partition. The user configures
processes, partitions, ports, etc in XML-based files. A qualified tool generates
from them parts of the kernel (i.e. scheduling tables).

In order to allow communication between processes, ARINC 653 defines in-
tra and inter-partition mechanisms. We focus on inter-partition communications
since intra-partition communications have already been addressed in [6]. An AR-
INC 653 channel is a communication link from one source partition to one or
more destination partitions. Partitions have access to channels via ports and each
port is either the source or destination of a channel. Two types of channels are
defined in ARINC 653: queuing or sampling channels. We focus on the queuing
mode since it raises issues on queue dimensioning and messages order. The mes-
sages are stored in source port, under FIFO order. ARINC 653 does not specify
the instant or the mechanism for transferring messages between partitions.

A last concern in the safety-critical domain, and in particular in the avionic
domain, is the certification process. The DO-178B certification standard requires

PDP 4PS : Periodic-Delayed Protocol for Partitioned Systems 151

evidences that the system source code is completely exercised by tests derived
from requirements. All components of the system have to be certified and the
certification depends on the criticality level of the component: the higher the
criticality level is, the more difficult it is to certify. The ARINC 653 execution
platform has to be certified at the higher criticality level and evolutions of such
execution platforms require lots of time and efforts.

3 Problem Statement

This section presents and analyzes some of the main issues encountered in pro-
viding N→1 communications for real-time ARINC 653 applications.

In general, communication mechanisms entail scheduling dependencies be-
tween tasks. They originate from locks or system calls, violating the preemption
hypothesis of most schedulers, both potentially delaying highest priority task
execution. Since ARINC 653 aims at providing time isolation, such scheduling
dependencies should be avoided as much as possible. In [6], N→1 communi-
cations have been studied for fixed priority preemptive scheduling. More pre-
cisely, an implementation strategy has been proposed to avoid both locks and
non-preemptible code such as system calls. Preemptive scheduling of sending
processes with variable execution leads to highly variable ordering of messages
in N→1 message queues using FIFO queuing policies. ARINC 653 hierarchical
scheduling of processes and partitions increases this phenomenon as preemptions
are enforced at both process and partition levels.

Data transfers between partitions cannot be implemented directly within par-
titions as they cannot share memory. Data flows through a trusted component
of the highest level of criticality, the ARINC 653 kernel. Data transfers between
partitions rely on three steps: (i) store data to be transferred into the output
port (triggered by a call to the ARINC 653 API for sending data), (ii) let the
ARINC 653 kernel transfer data to the receiving partition (usually executed
during PW switches), and (iii) retrieve data received on the input port (trig-
gered by a call to the ARINC 653 API for receiving data). As a consequence of
time and space partitioning, the implementations of steps (i) and (iii) include
a non-preemptible sequence of instructions causing preemption delays. Indeed,
partitioning memory relies on processors enabling memory access control (e.g.
with MMU). Bypassing these controls requires privileged non-preemptible code
execution. Moreover, the execution time of the memory copy is proportional to
the amount of data to be transferred. Thus, these inter-partition transfers are
sources of non-trivial delays on highest priority process execution, and impair
schedulability analysis.

In its current version, ARINC 653 does not allow to link a channel composed
of several source ports and one destination port. In other words, N→1 communi-
cations are natively not supported by ARINC 653-compliant kernels. Although
the ARINC 653 standard does not give explicit reasons for this restriction, in-
dustrial partners provide us with the following explanations:

152 A. Jaouën et al.

C1. A faulty process could produce more messages than expected and overflow
the receiving buffer. Therefore, processes from other partitions would not be
able to deliver their own messages and the faulty process would indirectly
impact non-faulty processes from other partitions.

C2. The receiving process cannot identify the sending process of a given message
and eventually the origin of an erroneous message. Extra information has to
be carried out by messages for this purpose.

Besides, the ARINC 653 standard states that N→1 communication may be
implemented on top of queuing or sampling ports. In other words, this design
requires N unicast channels (1→1). Such an architecture addresses the issues
stated above: (i) the space and time segregation is guaranteed by using N uni-
cast channels, and (ii) since there is one port per partition, the sending partition
can be easily identified in case it sent an incorrect message. However, this archi-
tectural solution does not address our initial issues :

1. the management of the message queue in the sending and receiving partitions
is left to the responsibility of the developers. Its implementation can be very
expensive and error-prone (see [5]). Moreover, the message delivery order
may not be deterministic.

2. inter-partition communications heavily rely on not-interruptible sequences
of instructions: one per emission or reception on a given port. Such an im-
plementation generates important overheads at runtime and increases the
pessimism of schedulability analysis.

In order to tackle these issues, we propose to adapt the Periodic-Delayed
Protocol (PDP) model (originally presented in [6]) to take into account the
specificities of partitioned architectures. In the next section, we introduce the
main lines of the original PDP [6] which is the basis of our solutions to provide
deterministic inter-partition communications.

4 PDP 4PS General Approach

As stated before, one of our objectives is to ensure a deterministic message
delivery order. We characterize this determinism by the ability for a sending
ARINC 653 process to transfer its messages in a predefined order and predict
when they should be read by the receiver.

In [6], we described how to derive timing constraints on messages state (i.e.
available, consumed, or outdated) from attributes of communicating processes.
We propose to adapt this approach for ARINC 653 processes in order to cope
with non-determinism of message transfers based on N→1 communications.

4.1 Execution and Communication Models

We first focus on processes to derive timing constraints of messages.

PDP 4PS : Periodic-Delayed Protocol for Partitioned Systems 153

Execution Model: the system activity is carried out by a fixed set of processes
characterized by Ti (name of process i), Pi (period of process Ti) andDi (deadline
of process Ti). The repetitive execution of a process on intervals delimited by
an activation time and a deadline is called a job. As we assume synchronous
activation of all processes at time 0, the execution of the kth job takes place
within the time interval [(k − 1) ∗ Pi, (k − 1) ∗ Pi + Di[where (∀Ti : Di ≤
Pi). Therefore, the kth job of a process Ti is computed as a function of the
time and not as a counter of Ti’s activation. As ARINC 653 processes may
have identical process ids on different partitions, we define global process ids
to uniquely identify all the processes of the ARINC 653 system using PDP
communication mechanisms. In the remaining, we designate as process ids these
global and unique process identifiers.

Communication Model: communications correspond to message transfers
from N sending processes to 1 receiving process. In order to follow ARINC 653
philosophy, sending processes push their messages through ports. Similarly, the
receiver reads messages from its receiver port, as long as it has messages to re-
trieve. Sender and receiver ports can be located in distinct partitions. From the
application programmer point of view, the send (respectively receive) function
is called to send (resp. receive) one message to (resp. from) a port. Our purpose
is to conceal from application programmers the implementation complexity (of
these functions) required to ensure deterministic communication. We hide this
complexity by providing an implementation method for these functions.

Our communication model is based on the following principles: in order to
master queues dimension, (i) emission rate of messages has to be bound (as
usually done during the design of real-time systems) and (ii) messages are only
available for readers during a finite time interval. We assume that: (i) during
each job exactly one message can (and has to) be sent on each sending port of a
process and (ii) a message is only available after the deadline of the sender and
during the following activation of the receiver. More formally, consider a message
sent from a sender Ts to a receiver Tr. Assuming that Ts is released at time ts,

then its message is delivered to Tr at time tr =

⌈
ts +Ds

Pr

⌉
∗ Pr . The message is

then available during the time interval [tr, tr +Dr]. A message can be read by
a unique job of the receiver process. No assumptions are made about the period
duration of senders. Thus, a sender can produce multiple messages during one
activation of the receiver, if its period duration is lesser than the receiver’s one.

An additional feature is to control the message delivery order. When messages
are sent from different output ports, the order in which they are delivered to the
receiving process is critical. We order messages according to the deadline of jobs
of sender processes. When deadlines of sender jobs are simultaneous, we use a
pre-defined order (e.g. based on processes id) noted ≺.

Such communications are said to be Periodic Delayed. In the remainder, ports,
function names, or other related data structures are associated with PDP acro-
nyms standing for Periodic Delayed Protocol to distinguish them from regular
ARINC 653 artifacts. An implementation of such communications already exists

154 A. Jaouën et al.

in the case of non-partitioned systems (i.e. with shared memory). This solution
is a building block of our approach and needs to be presented first.

4.2 PDP Communications for Non-partitioned Systems

Our contributions rely on the approach described in [6]. In [6], the authors
proposed an implementation of the communication model described above in
case processes can share memory. This implementation relies on a fixed size and
shared circular buffer to store and access messages. This structure was designed
to enable wait free insertion and extraction of messages from the buffer.

The number of slots in the buffer is denoted L. send PDP (respectively re-
ceive PDP) computes the slot index in (resp. from) which a message should be
inserted (resp. extracted) and then perform the corresponding action. Slot in-
dexes are computed with formulas attaching to each message a unique sequence
number. These formulas allow computing indexes concurrently on each sender
without synchronization between them. We define the following notations :

– PTq is the set of processes sending messages towards a PDP port q. The
single receiver would usually be denoted Tr.

– In order to deterministically sort messages with simultaneous deadlines, we
define ≺ as a total order among senders.

– SEJD(q, t) defines the cardinal of the set of messages that are supposed to
be stored before t on q.

– Followers(q, j, k) is the number of jobs, of processes belonging to PTq, with
same deadline as the kth job of Tj such that their process id is higher than
Tj with respect to ≺.

– PR(r, t) identify the next release time of receiving process Tr at time t.
– MSN(q, j, k) (or Message Sequence Number) computes the sequence number

of a message send by Tj from its kth job to the PDP port q.

SEJD(q, t) =
∑

Tj∈PTq

(⌊
t−Dj

Pj

⌋
+ 1

)
(1)

MSN(q, Tj, k) = SEJD(q, k ∗ Pj +Dj)− Followers(q, Tj , k) (2)

Sending a Message: A process Tj calls send PDP once during its kth job. It
computes MSN(q, Tj, k)mod L and stores the message passed as parameter at
this index in the buffer. As k is computed based on the period and the deadline
of task Ti, an attempt to send multiple messages during a period is automatically
detected (see [6] for more details). This approach was designed to store successive
messages in contiguous position in the buffer.

Receiving Messages: The receiver can read messages with indexes from
SEJD(q, (k− 1)∗Pr)+1 to SEJD(q, k ∗Pr)) during its kth activation. Modulo
buffer size has to be applied to find the correct slot. When the slot is empty, the
receiver automatically detects and identifies which sender failed to produce its

PDP 4PS : Periodic-Delayed Protocol for Partitioned Systems 155

message. The buffer size is a key feature of this mechanism as memory space is
often the weakness of wait free queues. Let Dmax the largest deadline of sending
processes. Then, a sufficient number of slots in the buffer, denoted L, is:

L =
∑

Tj∈PTq

(⌊
2 ∗ Pr +Dmax

Pj

⌋
+ 1

)
(3)

To complete the presentation of this approach, note that it combines two
advantages: first, messages are sorted in the order they should be delivered to the
receiver, and senders store their messages concurrently without relying on locks.
However, in partitioned systems, the memory space of partitions are disjoint.
Thus, this solution cannot be used without adaptation.

4.3 Adaptation to Partitioned Systems

A simple implementation of PDP consists in writing and reading messages from
a buffer stored in a memory space shared by sending and receiving processes.
However, a message transfer requires three different steps when processes com-
municate without having access to a shared memory (i.e. processes from different
partitions): (i) the sending process stores the message in a memory space of the
partition referenced by the kernel, (ii) the kernel transfers (through a system
call) the message from the sending partition to the receiving partition, and (iii)
the receiving process consumes and uses the message. As a consequence, the
implementation of PDP on a partitioned system must be adapted.

PDP relies on the principle that, for each job of a sender process, a dedicated
slot can be identified in the buffer viewed by the receiver process. Since we
can have P sending processes in N partitions sending messages towards one
receiving process in one partition, messages are stored in each sending partition
before being transferred to the receiving partition. The identification of the slot
dedicated to each message must be done twice: once in the memory space of the
sending partition, and once when the message is transferred to the queue viewed
by the receiving process.

In order to implement PDP over a partitioned system, two alternatives are
available from a software architectural point of view. Either data transfers from
partitions to partitions are done through standard ARINC services (reducing
maintenance effort), or data transfers are done through dedicated mechanisms
provided by a specialized kernel (reducing non-interruptible calls).

Figures 1 and 2 illustrates the architecture of each solution (respectively with
and without dedicated kernel services). The implementations of each solution are
described in sections 5 and 6. In this section, we present the common principles
of both solutions. Note also that data structures and functions of these imple-
mentations are part of the kernel or a system library and cannot be jeopardized
unintentionally. This partially contributes to enforce the isolation goal.

Message Conditioning Before Transfer: this activity verifies the absence of
message overproduction (a sending process sends more than one message during

156 A. Jaouën et al.

Partition 2Partition 1 Partition 3

R1

EPB RPBEPB

Transport layer

S1.1 S1.2 S2.1

Fig. 1. K-PDP architecture

Partition 2Partition 1 Partition 3

S1 S2 S3
R1

RPB

APEX
port

APEX
port

APEX
portAPEX

port

Transport layer

Fig. 2. A-PDP architecture

its period), and stores the message in the queue of the sending partition. In order
to proceed to faults detection and message queue reconstruction on the receiver
side, messages are annotated with (i) the identifier of the sending process, and
(ii) the job counter of the sending process. This extra information is used to
compute the message number as explained in equation (2).

Message Actual Transfer: messages being temporarily stored in sending par-
titions have to be transferred out from the memory of the sender partition and
copied to the receiver memory. The actual transfer does not need to occur during
the execution of the send PDP function, but needs to occur before the next PW
of the receiving partition.

Message Conditioning After Transfer: this step provides to the receiving
process a message queue structure similar to the one presented at the beginning
of this section. This means we have to proceed to the fusion of messages coming
from different partitions, and to re-order these messages. This step also detects
message omissions.

This approach complies with the IMA methodology. When designing IMA
systems, the system integrator specifies to application suppliers the different
production rates of messages exchanged by the partitions they are in charge of.
When message rates are periodic, our approach can be applied whether the mes-
sages are produced by logical or physical tasks. For instance, in fault tolerance
techniques relying on hardware/software redundancy and voting mechanisms
such in [5], the production rates of sender components are fully specified and
mapped onto periodic tasks. For non-periodic messages, the application suppli-
ers have to use the regular inter-partition communication mechanisms.

This approach also preserves the constraints from section 3. For instance,
let assume a sender produces two messages during the same period. As the job
counter is computed based on the emission time, the period and the deadline, the
Message Conditioning Before Transfer step will issue the same job counter
and therefore store the messages in the same slot. For the second message, as
its slot is not empty, a null message is stored to denote an incorrect message as
well as an incorrect partition. The same mechanism applies during the Message

PDP 4PS : Periodic-Delayed Protocol for Partitioned Systems 157

Actual Transfer step. During the Message Conditioning After Transfer
step, the receiver will read messages produced during a given time interval.
When one of these messages is a null message, this denotes the sender either
failed to produce its message or produced multiple ones. In any case, the slot
index corresponds to a specific partition which can be declared as erroneous.

The next section describes how these steps are actually implemented either
on top of, or integrated to, the ARINC 653 kernel.

5 PDP 4PS for Kernel Supplier

In this section, we assume a role of ARINC 653 kernel supplier and we implement
at kernel level a deterministic and wait-free solution for N→1 communication
named K-PDP. The main ideas have already been described in the previous sec-
tion. This section gives some implementation specificities made possible because
of the kernel sources availability. Without loss of generality, let us assume we
have only one N→1 channel to deal with.

5.1 Architecture

Figure 1 describes the architecture of a K-PDP channel and in particular the
buffers used on the sending and receiving sides. We first focus on the sender side.

As N sending processes are spread over M partitions (N ≥ M), let NP

designate the number of the processes co-located on the same partition P . Each
of these sending partitions has an unique port linked to the port of the receiving
partition. Therefore, Np sending processes share the same port on partition P .
We implement each partition port with a PDP buffer (named Emission PDP
Buffer or EPBp) allocated in the memory space of partition P . This buffer
mainly provides these Np sending processes with a wait free access to the port.
During its job k, a sending process Tj stores in slot MSN(EPBp, Tj , k) mod
length(EPBp) its message but also its process id and its job counter. This extra
information on the sending process is used on the receiving side to globally order
messages from several partitions. A sending partition also preserves lastMSN ,
the index of the last message transferred to the receiving partition.

We now focus on the receiving side. The receiving partition also maintains a
PDP buffer (named Reception PDP Buffer or RPB) allocated in its memory
space. This buffer allows the partition to order messages from all the sending
processes of different partitions. For the sake of consistency, the RPB buffer
also includes extra information as does any EPB buffer. This information is
transferred for consistency reason but it also helps the receiving partition to
identify a partition responsible for an erroneous message. Indeed, the receiving
partition maintains a sequence table with the process id and its job counter of the
messages to receive over an hyper-period. This table MtoPID helps retrieving
the process id from the index of the message in the RPB buffer. It is used to
ignore messages coming from a partition that is deemed to be unreliable.

158 A. Jaouën et al.

Note that the M EPB buffers and the RPB buffer are implemented as regular
PDP buffers. Therefore, the MSN values used to store messages in these buffers
are pre-computed either as a constant table or as a function [6].

5.2 Implementation

To explain the rational behind the architecture of a K-PDP channel, we now get
back to the steps introduced in 4.3. In this context, the kernel supplier provides
the new implementation of the send and receive functions. The different tables
they depend on can be automatically generated by qualified development tools
from the XML-based configuration file describing the ARINC 653 system.

Message Conditioning Before Transfer: As already stated, a sending parti-
tion P is equipped with a PDP buffer named EPBp configured for Np sending
processes and one receiving partition. One of the goals of this step is to check
that the current sending process Tj has not already produced a message in the
buffer of port q during its current job k. This is easily done by checking that the
slot MSN(EPBp, Tj, k) mod length(EPBP) is still empty. As described in the
previous subsection, the EPBp buffer includes the message produced by Tj but
also an extra information such as its process id and its job counter. This extra
information is crucial to enforce the actual transfer and to store the message at
the right slot in the RPB buffer of the receiving partition.

Message Actual Transfer: the kernel performs this step when it starts ex-
ecuting a partition window (PW) of the receiving partition R. Let tbR be the
activation time of such a PW. At tbR, we transfer messages produced by each
sending partition P involved in the K-PDP channel. We first determine the
messages produced by the Np sending processes on partition P that have to
be transferred from the EPBp buffer to the RPB buffer. We transfer messages
if and only if they might be consumed by the receiving process Tr during the
current PW. To achieve this, we compute the release time of the last job of Tr

occurring before teR the completion time of the current PW. The last job of Tr

occurs at time

⌈
teR
Pr

⌉
∗ Pr . Therefore, we transfer from EPBp to RPB the mes-

sages and their extra information from slot lastMSN +1 to SEJD(q, teR). Note
that before this transfer, the impacted slots can be first reinitialised to ease the
detection of missing messages. Once the transfer achieved, lastMSN is updated.
Note that all these numbers are known statically and can be computed off-line
to preserve performances.

In the event of a faulty sending partition which would produce more messages
than expected, our methodology will prevent from RPB overflow. Indeed, the
kernel determines which message to transfer from sending to receiving partition,
without relying on some information contained in partition memory space. Thus,
only expected number of message is transferred into the RPB.

Message Conditioning After Transfer: Once the messages to transfer from
a sending partition P to the receiving partition R have been determined, the

PDP 4PS : Periodic-Delayed Protocol for Partitioned Systems 159

kernel dispatches them in the RPB buffer. As stated before, each message m
comes with an extra information including the process id of Tj and job counter
k of the sending process. The kernel assigns to m a slot MSN(RPB, Tj, k) mod
length(RPB) in RPB. Before consuming a message m in RPB, the receiving
process checks the validity of the process id and the job counter attached to m
with those stored in the corresponding slot of the MtoPID table. If they do not
match, the message is actually missing and the receiving process can declare the
process id from MtoPID as faulty.

6 PDP 4PS for Application Supplier

In this section, we assume a role of ARINC 653 application supplier and we
implement at APEX level a deterministic solution for N→1 communication. The
main ideas have already been described in 4. The architecture of A-PDP channels
is very close to the K-PDP channel’s one. We focus on the implementation
specificities due to the unavailability of the kernel sources.

6.1 Architecture

Np designates the number of the processes co-located on a given partition P .
As the ARINC 653 standard does not enable to have N→1 channels, we use
M ARINC 653 unicast channels to implement one A-PDP channel, M being
the number of partitions. Thus, each sending partition S has a unique ARINC
653 source port and the receiving partition has M destination ports, one per
sending partitions. The size of ARINC 653 source and destination ports is set to
the one of the EPB buffer that partition S would have in the K-PDP solution.
This architecture is illustrated on figure 2. As we rely on ARINC 653 services,
concurrent accesses to this source port from Np co-located processes is delegated
to the ARINC 653 send operation. Then, messages are sent via the source port
with the sending process id and its job counter. As for the K-PDP channels,
this extra information helps to enforce a global message delivery order on the
receiving partition.

We now focus on the receiving side. The receiving partition has M ARINC
653 destination ports. its also maintains a PDP buffer (named Reception PDP
Buffer or RPB) allocated in its memory space. This buffer allows the partition
to order messages from N sending processes located on M partitions. The kernel
flushed messages to at most M destination ports before activating a PW for the
receiving partition. The receiving process dispatches the received messages in the
RPB buffer using the process id and the job counter attached to messages. The
receiving partition also maintains MtoPID, a sequence table with the process
id and its job counter of the messages to receive over an hyper-period. This table
allows to retrieve the process id with its index given a slot in the RPB buffer.
The RPB buffer is implemented as regular PDP buffers. Therefore, the MSN
values used to store messages in these buffers are pre-computed as they were in
the K-PDP solution.

160 A. Jaouën et al.

6.2 Implementation

To explain the rational behind the architecture of a A-PDP channel, we now
get back to the steps introduced in 4.3. In this context, the application sup-
plier provides an implementation of the send and receive functions in overlay
of corresponding APEX functions. The different tables they depend on can be
automatically generated by qualified development tools from the XML-based
configuration file describing the ARINC 653 system.

Message Conditioning Before Transfer: As already stated, a sending parti-
tion P is equipped with a ARINC 653 source port. One of the goals of this step
is to check that the current sending process Tj has not already produced a mes-
sage on source port during its current job k. This is easily done by maintaining
a counter associated at each sending process. This counter holds the number of
sending function calls during each period of its associated process. As described
in the previous subsection, a message produced by Tj is sent on the A-PDP
channel with extra information used to store the message at the expected slot
in the RPB buffer.

Message Actual Transfer: As message transfer between partitions relies on
ARINC 653 channels, the actual message transfer between partition is performed
by the ARINC 653 kernel. While the ARINC 653 standard specification does not
specify the exact instant for transferring messages between partitions, it has to
be done before any activation of the receiving partition.

In the event of a faulty sending partition which would produce more messages
than expected, our methodology will prevent from RPB overflow. Indeed, the
A-PDP architecture being based on M ARINC 653 unicast channel, in this event
the ARINC 653 channel linking the faulty partition to the receiving partition
can be discarded without impact on the A-PDP channel.

Message Conditioning After Transfer: The receiving process executes an
immediate ARINC 653 receive queueing message call on each of the M ARINC
653 channels and merges the received messages in its RPB buffer. This operation
occurs when the receiving process invokes our specific receive operation at each
period activation. As stated before, each message m comes with an extra infor-
mation including the process id of Tj and job counter k of the sending process.
The receiving process assigns to m a slot MSN(RPB, Tj, k) mod length(RPB)
in RPB. Before consuming a message m in RPB, the receiving process checks
the validity of m and may detect a faulty process.

7 Experimentation

Experimenting with the K-PDP proposal requires to have access to the sources
of an ARINC 653 kernel. For this purpose, we used POK (Partitioned Open
Kernel [8]). POK is a generic kernel for partitioned systems and it comes with
an ARINC 653 personality. Of course, POK is also used to evaluate the A-PDP
proposal. In order to illustrate the PDP 4PS approach, we introduce a simple

PDP 4PS : Periodic-Delayed Protocol for Partitioned Systems 161

Table 1. Process Id and Job Counter Associated to Message Number in Current MAF

Message Number 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Process Id S1 S2 S2 S3 S1 S2 S1 S2 S3 S1 S2 S1 S2 S3

Job Counter 0 0 1 0 1 2 2 3 1 3 4 4 5 2

S1 a1 a2 a3 a4 a5

S2 b1 b2 b3 b4 b5 b6

S3 c1 c2 c3

R

PW P1 P2 P2 P2
t(u)305

P1P3 P1P1P3
10 15 20 25

Time RPB state

4 a1 b1 x c1 x x

15 a1 b1 b2 c1 a2 b3 a3 x c2 x x x x x

34 a3 b4 c2 a4 b5 a5 b6 c3 a6 b7 x c4 x x

45 x c5 x x x x x a6 b7 b8 c4 a7 b9 a8

64 b10 c5 a9 b11 a10 b12 c6 a11 b13 x c7 x x a8

75 a11 b13 b14 c7 a12 b15 a13 x c8 x x x x x

Fig. 3. Receiver Buffer Content At Each Receiver Activation

example describing common configuration tables of K-PDP and A-PDP internal
mechanisms and a short execution diagram. For the sake of clarity, we will focus
only on the receiving side.

A system has three partitions : P1, P2 and P3. Process i is described as follow
(Ti, Pi, Di, Ci), Ci being the execution time of Ti. P1 has two sender processes
(S1, 6, 5, 2) and (S2, 5, 5, 1) under Rate Monotonic Scheduling, P2 one sender
process (S3, 10, 10, 1) and P3 one receiver process (R, 15, 15, 2). The RPB is 21
slot sized. The MtoPID table is 14 slot sized (see Table 1).

The figure 3 presents the execution of the system introduced above over a
MAF (at time 30). The PW line represents the Partition Windows allocated
to each partition over a MAF. An up (resp. down) arrow represents an activa-
tion (resp. a deadline) of a process. A doted line designate the production of
a message. The aX , bX , cX notation denotes the Xth message produced by
respectively S1, S2 and S3.

Table from figure 3 describes the state of the RPB at each activation of
process R. The symbols with a bold font represent available messages. These
contiguous intervals are determined as described in subsection 4.2. The symbols
with a normal font represent messages that will be available at the next receiver’s
period. Some of these messages have already been transfered, some messages
marked as ’x’ have not yet been transfered. This situation illustrates a A-PDP
configuration. In a K-PDP configuration, only messages available in the PW of

162 A. Jaouën et al.

the receiver are transferred. The available message sequence is repeated every
MAF. This allows to define a bounded size tableMtoPID which gives the sender
id and its job counter for a given message number in the current MAF (see Table
1). We retrieve the message number of a message, by applying its corresponding
MSN modulo the size of the MtoPID table MtoPID size.

We now illustrate how we detect a missing message and identify its sender
process. Let a9 (or the message of MSN 23 in the RPB) be missing. Once the
receiver try to read the message of MSN 23 , it detects its slot (i.e. 2) in RPB
is empty. It can retrieve the process id and its job counter from the MtoPID
table (see Table 1) at index 23 modulo MtoPID size (i.e. 9) and then declare
S1’s partition as erroneous.

8 Related Works

In this section, we present different results related to the contribution of this pa-
per. These results either focus on the definition of deterministic communications
on non-partitionned systems, or on the definition of communication mechanisms
for ARINC 653 compliant operating systems.

Deterministic Communication Models. Frameworks dedicated to the defi-
nition of deterministic communications in real-time systems were designed both
for local communications (communications between tasks on the same processing
unit) and remote communications (communications between tasks on different
processing units). OASIS [9] automates the implementation of local communi-
cations based on a time-triggered semantics. Applications are designed with an
extended version of the C language called ψC. Programmers express time inter-
vals in which communications are triggered by a dedicated scheduler included
in the kernel. In between such intervals, no data transmition is implemented.
OASIS extracts from ψC sources the communication intervals such that mes-
sage passing can be performed at predefined instants. This approach provides a
deterministic communication model, which can be implemented without locks.
However, OASIS differs from our approach since it requires a detailed description
of the communication instants, based on ψC. In order to implement communi-
cations as specified in ψC, an automatic configuration of the kernel is required.
Besides, since this configuration is done at a very precise granularity, it re-
quires to adopt a specific execution environment. Beyond local communications,
determinism is also of great interest when considering remote communications
on a given network. For instance, time-triggered protocols [10] help to analyse
and configure the usage of real-time networks. To illustrate this, the product
TTECOM Layer ARINC 653 is interfaced with VxWorks 653 in order to han-
dle time triggered remote communications in an avionic architecture. Note that
deterministic remote communications (such as time-triggered communications)
are complementary with the results we present in this paper: both approaches
could be coupled to have determinism on local and remote communications. Syn-
DEx [11] is a component-based framework relying on a synchronous data flow

PDP 4PS : Periodic-Delayed Protocol for Partitioned Systems 163

semantics. This model has been used to automate the deployment (by produc-
tion of scheduling tables) of functions on processing units in order to guarantee
the schedulability of tasks and communications. SyndDEx relies on a determinis-
tic communication semantics, and addresses the configuration of both local and
remote communications. However, the applicability of this framework to ARINC
653 applications has not been demonstrated yet. In [12], the authors study the
usability of SIGNAL (a framework based synchronous data flows) in order to
model and deploy applications on an ARINC 653-compliant kernel. This paper
shows the advantage of this technology in terms of analysis of a design model,
but does not detail how the ARINC 653 services are actually implemented. Thus,
it is difficult to assess the precision of their schedulability analysis, or the impact
of their approach on the certification efforts.

Low-Level Implementations of ARINC 653 Communications. When it
comes to the low-level mechanisms used to implement ARINC 653 communica-
tions, different strategies have been proposed. We study such contributions in
the remainder of this section. XtratuM [13] is a hypervisor designed for real-time
embedded systems. XtratuM can run several applications in a robust partitioned
environment, very similar to the ARINC 653 standard. Communications are con-
ducted by the kernel, which copies messages from a dedicated memory space (in
the kernel memory) bound to the sending partition to a dedicated memory space
(in the kernel memory) bound to the receiving partition [13]. Send and receive
operations execute a syscall in order to access their dedicated memory space.
Thus, the kernel controls the data flow and performs message copy at specific in-
stants, which increases the reliability of the system. As opposed to our solutions,
XtratuM does not rely on a deterministic communication model. As opposed to
our solution, this framework does not tackle the issues of scheduling dependen-
cies and ordering of messages raised by classical implementations of ARINC
653. Implementing inter-partition communication with two buffers is a common
practice. Rushby [14] proposed a more efficient communication mechanism via
memory mapping between a sending and a receiving process, using the services
of a memory management unit (MMU). The sending process has only writing
permissions in the memory space, while the receiving process has only reading
rights. This solution has several benefits in terms of execution time and memory
footprint. However, a faulty sending process can write anywhere in the shared
buffer and the receiving one must perform time consuming verifications under
this assumption. Contrasting with our approach, this result does not propose
a mechanism to detect the occurence of an erroneous communication. In [15],
the authors focus on the impact of ARINC 653 kernel on the composability of
timing properties associated to software components of a software architecture.
Authors clearly identified ARINC 653 inter-partition communication as an issue
for time composability. However, their results focus on improving the scheduling
algorithm rather than on the definition of a deterministic communication model.
Our results are thus complementary: design of ARINC 653 compliant kernels can
take improve time composability by taking advantage of both solutions.

164 A. Jaouën et al.

9 Conclusion

In this paper, we propose two implementations of N→1 communications for AR-
INC 653 systems that provide a deterministic message delivery order and require
no non-preemptive function calls. They ease the schedulability analysis and also
respect the ARINC 653 standard requirements. The first implementation, K-
PDP, is dedicated to platform suppliers as it requires an access to the kernel
sources, when the second one, A-PDP, is more suitable for applications suppliers
as it is based on the ARINC 653 services API. K-PDP has been implemented
on top of POK, our free ARINC 653 kernel and A-PDP has only been evaluated
with a manually generated implementation. We plan in future works to auto-
mate the A-PDP solution thanks to our AADL modeling environment and its
modeling transformations for automatic code generation.

References

1. Airlines Electronic Engineering: Avionics Application Software Standard Interface.
Technical report, Aeronautical Radio, INC (1997)

2. RTCA: DO-178B: Software Considerations in Airborne Systems and Equipment
Certification (1982)

3. Alena, R., Ossenfort, J., Laws, K., Goforth, A., Figueroa, F.: Communications for
integrated modular avionics. In: IEEE Aerospace Conference, pp. 1–18 (2007)

4. Lyons, R.E., Vanderkulk, W.: The use of triple-modular redundancy to improve
computer reliability. IBM Journal 6(2), 200–209 (1962)

5. Mahadevan, N., Dubey, A., Karsai, G.: Application of Software Health Manage-
ment Techniques. In: SEAMS, pp. 1–10 (2011)

6. Cadoret, F., Robert, T., Borde, E., Pautet, L., Singhoff, F.: Deterministic Imple-
mentation of Periodic-Delayed Communications and Experimentation in AADL.
In: ISORC (2013)

7. Hang Lee, Y., Younis, M., Zhou, J.: Partition scheduling in apex runtime environ-
ment for embedded avionics software. In: RTCSA, pp. 103–109 (1998)

8. Delange, J., Pautet, L., Kordon, F.: Design, implementation and verification of
mils systems. Softw., Pract. Exper. 42(7), 799–816 (2012)

9. Louise, S., Lemerre, M., Aussagues, C., David, V.: The OASIS Kernel: A Frame-
work for High Dependability Real-Time Systems. In: HASE, pp. 95–103 (November
2011)

10. Kopetz, H., Grünsteidl, G.: Ttp-a protocol for fault-tolerant real-time systems.
Computer 27(1), 14–23 (1994)

11. Grandpierre, T., Lavarenne, C., Sorel, Y.: Optimized rapid prototyping for real-
time embedded heterogeneous multiprocessors. In: CODES, Rome, Italy (1999)

12. Gamatié, A., Gautier, T., Le Guernic, P.: Example of Synchronous Design of Em-
bedded Real-Time Systems based on IMA. In: RTCSA, Gothenburg, Sweden (2004)

13. Crespo, A., Ripoll, I., Masmano, M.: Partitioned Embedded Architecture Based
on Hypervisor: The XtratuM Approach. In: EDCC 2010, pp. 67–72 (2010)

14. Rushby, J.: Partitioning in avionics architectures: Requirements, mechanisms, and
assurance. Technical Report (March 1999)

PDP 4PS : Periodic-Delayed Protocol for Partitioned Systems 165

15. Baldovin, A., Mezzetti, E., Vardanega, T.: A time-composable operating system.
In: WCET, pp. 69–80 (2012)

16. Delange, J., Lec, L.: POK, an ARINC653-compliant operating system released
under the BSD license. In: 13th Real-Time Linux Workshop (2011)

17. Feiler, P.H., Gluch, D.P.: Model-Based Engineering with AADL: An Introduction
to the SAE Architecture Analysis & Design Language, 1st edn. Addison-Wesley
Professional (2012)

18. Cadoret, F., Borde, E., Gardoll, S., Pautet, L.: Design patterns for rule-based
refinement of safety critical embedded systems models. In: ICECCS, pp. 67–76
(2012)

L. George and T. Vardanega (Eds.): Ada-Europe 2014, LNCS 8454, pp. 166–176, 2014.
© Springer International Publishing Switzerland 2014

OBUs’ Development and Maintenance of a Train Control
System for Low Density Traffic Lines

Gerhard Hanis and Burkhard Stadlmann

University of Applied Sciences Upper Austria, Campus Wels – School of Engineering
and Environmental Sciences, Wels, Austria

{gerhard.hanis,burkhard.stadlmann}@fh-wels.at

Abstract. This paper sketches the evolution of a train control system (TCS) and
its on-board unit (OBU) for low density traffic lines. The train control system
represents a distributed real-time control system consisting of on-board com-
puters on each train, a traffic control center as well as a data radio system. The
safety critical software components have been implemented in Ada95 and the
system is constantly adopted for different industrial and research projects. The
latest modifications dealt with the exchange of the communication mechanisms
over the data radio system, the exchange of the data radio system itself and sen-
sor replacements. These modifications have been performed within the realm of
the EU funded research project SATLOC and tested in field.

Keywords: train control system. GPS based train control system. real-time sys-
tems. communication-based train control.

1 Basic Idea of the Train Control System

The train control system relies on the same operational principles as radio-based
operational train control (in German: Zugleitbetrieb mit Sprechfunk), but receives
computer-aided support with the addition of a data radio system for communication
between trains and the traffic control center. The traffic controller performs the same
routines as before, but now via the aid of a computer instead of paper and pencil.
Train drivers obtain their movement authority via the driver machine interface (DMI)
instead of listening to and acknowledging over voice radio and logging it manually
into a journey report. The systems goal is to omit track side installations and therefore
the trains shall determine themselves were they are along the line, report this informa-
tion to a centralized control and supervision system. The traffic control center moni-
tors the trains and informs them up to where they are allowed to move. Since this kind
of system heavily relies on the communication between the system elements it can be
classified as a Communication Based Train Control (CBTC) system [6]. The system
development started in 1999 and a first version is described in [1]. In the meantime
the system has been developed further and is currently deployed on 5 low density
lines in Austria [2].

 OBUs’ Development and Maintenance of a Train Control System 167

2 System Architecture

The TCS is a distributed real-time system with a proprietary data-radio system as the
shared network layer and centralized control for dispatching. The communication
between the traffic control center and the trains relies on a line-specific bi-directional
data radio system, thus no expensive further line-side equipment is required. The
system utilizes a digital line atlas which contains line specific information like geo-
graphy and topology. It can be interpreted as simple track database and it is stored on
each on-board computer as well as at the traffic control center. Originally all safety
relevant parts of it like the management and emission of conflict free movement au-
thorities, collision avoidance and driver supervision have been implemented in
Ada95. In order to simplify system development as well as to get the advantages of
strong typing and due to recommendations in EN50128 Ada has been chosen as the
main programming language. Initially the TCS has been approved for SIL0 [3] though
the design process was already implemented to achieve a higher level like SIL2. The
approval for SIL0 was done as it represents an addition to the previously used voice
system and due to economic restrictions.

2.1 Traffic Control Center

The traffic control center (TCC) consists of two separate software modules. The safe-
ty kernel has been developed in Ada95 and is responsible for conflict-free generation
of movement authorities (MA), maintaining the communication to the trains via the
data radio system and the transmission of locally generated Radio Technical Commis-
sion for Maritime Services (RTCM) correction data to the trains. The RTCM
correction data contains information which is used by the trains to improve their self-
localization via satellite based systems. The other part has been coded with Java and
provides an interface to the traffic controller which shows a complete real-time view
of the line. The schematic view shows the line on one hand and a scaled electronic
time table including both the planned and actual train runnings on the other hand.

Fig. 1. Traffic Control Center

168 G. Hanis and B. Stadlmann

2.2 On-Board Unit

The on-board unit (OBU) consists of an on-board computer (OBC), driver machine
interfaces (DMI) for cab-signaling, navigation sensors, a data radio modem and is con-
nected to the emergency brake system as well as other train relevant digital I/Os. The
on-board computer is responsible for determining the train’s location along the line,
which is mainly based on Global Navigation Satellite System (GNSS) position data and
other sensors. The result of the sensor fusion is matched against a digital line atlas to
retrieve a position in a line-based coordinate format. Due to omitted track side signals,
the train driver is informed via cab-signaling of the most important information, like
current location, system state and received MA. Consequently, the computer supervises
the correct execution of the MA by the train driver. Moreover, it also monitors the
movement of the train and will automatically activate the emergency brake if the driver
tries to pass beyond the limitations of the given movement authority. Depending on the
configuration and state of implementation the speed of the train is supervised too.

3 Ada-Software Architecture

The safety related software of OBC and TCC do have a limited shared code basis e.g.
digital line atlas, telegram structures and generic packages in common. Due to the
nature of the system the remaining bigger portion of the code is separated, but does
follow the herein described principles.

3.1 Task Structure

The software of the TCC as well as the OBC consists of several loosely coupled tasks
of which each serves one distinctive purpose. The overall structure is:

• One task is responsible for starting the system in a defined order. This task initially
loads the configuration files as well as the digital line atlas. Afterwards it starts fur-
ther tasks and supervises them by monitoring heartbeats. Therefore this task is re-
ferred to as “Task_Supervisor”.

• The other tasks have to offer the rendezvous method “Start”.
• The inter-task communication is realized via an asynchronous messaging mechan-

ism.
• The tasks send cyclic heartbeats to “Task_Supervisor”.
• If heartbeats of a task are missing for a certain period of time the system either

restarts automatically or prompts the user to restart it.
• Cyclic tasks with appropriate predefined priorities and cycle times are used.

3.2 Inter-task Communication

The inter-task communication is implemented as a message handling system with an
appropriate amount of buffers using generic protected message buffers [1]. Therefore
each task has its own buffer from which it receives incoming messages. A message is

 OBUs’ Development and Maintenance of a Train Control System 169

a record which consists of two values: an ID as enumeration type and Data as Un-
bounded_String.

In order to create and retrieve proper messages so-called task message packages have
been introduced. These packages define the message ID as enumeration type and the
content of the Unbounded_String depends on the message ID. To ensure proper data
exchange explicit routines for creation and parsing the Unbounded_String have been
implemented for each message ID. In order to provide consistency these packages have
been named after the task which receives the messages. There have been two arguments
for using the dynamic structure Unbounded_String: (1) The safety of the TCS is based on
the combination of technical support by the computer as well as from a system point of
view the operational procedures themselves and (2) the concerned railway guideline [3]
only recommends avoiding dynamic structures or objects for SIL3 or higher.

Fig. 2. Inter-task communication via message buffer

The task package implements a message handler procedure which is only visible
within it and this routine shall only be called by the task and not in any other way
indirectly by procedures or functions. For message processing the task calls this hand-
ler every cycle and therefore checks whether messages are available and will process
them accordingly to their ID. Since the design rule is to use a case structure for han-
dling the enumeration type and to not use the keyword “others”, the Ada compiler

170 G. Hanis and B. Stadlmann

ensures all values of the enumeration are included and handled. Fig.2 illustrates the
implemented architecture and the required steps in order to transmit a message with
data from Task_A to Task_B.

The advantage of this approach is to have one straightforward, longterm base structure
for data exchange whereas the obvious downsides are the required amount of processing
resources for data conversions as well as the additional code to perform them.

3.3 Code Structure

From the development perspective certain code elements are shared between the
software of the TCC and the OBC. The concerned code elements are generic pack-
ages for reusability like buffers and finite-state machines. On the other hand packages
which are related to the digital line atlas, data type definitions and communication are
the common element between the systems. Therefore these packages can be seen as
the linkage within the distributed real-time system and are referred to as the common
source. Since TCC and OBC focus on different activities they do not share any further
code and are therefore separated from each other.

3.4 IO-Encapsulation

Concerning the long term maintenance aspects of the TCS it is important to design the
system right from the beginning with the idea of IO-encapsulation. The goal was to
separate the actual safety related code from hardware related code. This approach has
been used for the TCC as well as the OBC, but it has a more direct impact on the
OBC since its operating system is not necessarily a commonly used platform. Fig.3
indicates the code differentiation between the safety kernel and the operating system
dependent IO functions. It also shows that there is essentially one IO-package per
operating system which encapsulates all low-level functions and then there can be
several Ada Hardware_IO-Wrapper packages which do have a common definition,
but their implementation depends on the actual target operating system.

Fig. 3. Operating system and hardware dependent IO-encapsulation

 OBUs’ Development and Maintenance of a Train Control System 171

4 System Evolution

After the successful deployment in 2005 at the Gmunden line of Stern&Hafferl and its
final approval in 2006 [4] the system got modernized. Due to new features specified
by the user and new legal requirements and an end of operating system maintenance
of the OBC platform it was decided to move on to a modern target. Therefore the
OBCs’ operating system has been exchanged from the Windows based ETS to
VxWorks which also forced a change of the used Ada95 compiler. In consequence a
VxWorks system image with all relevant custom hardware drivers had to be devel-
oped. This step was followed by a simple exchange of the OS dependent IO-functions
as shown in Fig.3.

4.1 Stern and Hafferl

The Train Control System in Upper Austria [1] [4] has been enhanced with numerous
additional features based on the experience of the daily operation in combination with
user generated new features. Examples are the automatic location controlled lubrifica-
tion of the track to reduce squeezing of the wheels or the control of the moveable step
for easy access of the passengers and the supervision of the switch positions.

4.2 RZL-Pinzgau

For the deployment at Pinzgaubahn [2] several system elements had to be exchanged
or added in order to improve safety to SIL2 which have been implemented within an
additional research project. The main system extensions were support of “track
selectivity”, improved supervision and control as well as a mechanism for enhanced
integrity and authenticity checks of exchanged telegrams between OBC and TCC.
Previously the OBC was not capable of determining on which parallel track it was
driving. In order to add this functionality so-called balises, which represent passive
RFID tags, have been mounted onto track sleepers. In consequence balises and its
balise-reader have to be supported, which forced a major extension in the system
architecture. This affected the TCC, the OBC as well as the data exchange over the
digital radio system. The shared parts of the system, the data telegrams and the digital
line atlas have been extended accordingly.

Adding the new navigation sensor, the balise reader, to the system has been done
with the following steps:

• Adding Task_Balise_Reader as child task to the already implemented
Task_Location_Determination.

• Adding a “Balise-Buffer” in order to communicate detected balises to the parent
task.

• Extending the train location state by last crossed balise.
• Monitoring the activity of Task_Balise_Reader is realized within

Task_Location_Determination.

172 G. Hanis and B. Stadlmann

Fig. 4. Package and task structure of RZL-Pinzgau

Fig.4 gives an overview of the OBCs’ software architecture and it mainly consists of
8 packages and its child packages where each one contains one task.
Task_Balise_Reader has not been further integrated into the system, since it represents a
subpart of the location determination task. The supervision of it is realized via monitor-
ing the communication with Task_Location_Determination. Since the balise reader
reports detected balises and after an idle timeout sends a heartbeat, the parent task is
able to monitor if the hardware as well as the child task is still active. If a problem or
timeout occurs Task_Location_Determination reports the event via the already imple-
mented mechanisms. In consequence it was not necessary to perform modifications to
Task_Supervisor. By now this implementation is tested in field for over two years and
has proven to not cause issues on the systems performance.

Within Europe there are several different railway control systems, which hinder
cross country rail traffic. In order to overcome this situation and provide an interoper-
able train control system across Europe, the EU initiated the development of the Eu-
ropean Train Control System (ETCS). ETCS provides different levels of functionality
and currently it is mandatory to be equipped on new high speed lines within Europe.
The train side equipment consists of a vital computer, DMI, balise reader, odometry
module, Juridical Recording Unit and a Euroradio module [8]. Euroradio is the
standardized ETCS system for communication between trains and the Radio Block
Centers (RBCs) which is based on GSM-R [8]. GSM-R itself is a railway specific
standard of GSM including e.g. definitions for service quality levels focused on high
speed lines. Furthermore within Euroradio a method for message authenticity and
integrity checks, generation of random session keys as well as the telegram structures
is specified.

pkg Logical View2

Location_Determination

+ Balise_Reader
+ GPS_Receiver
+ Odometer
+ Task_Location_Determination
+ Message_Location_Determination
+ Telegram_Location_Determination

Movement_Control

+ Schedule
+ Task_Movement_Control
+ Train
+ Message_Movement_Control
+ Telegram_Movement_Control

Process_IO

+ Task_Process_IO
+ Message_Process_IO

Service

+ Task_Service
+ Message_Service

Telegram_IO

+ Task_Telegram_IO
+ Message_Telegram_IO
+ Telegram_Telegram_IO

Supervisor

+ Task_Supervisor
+ Message_Supervisor

Userinterface

+ Protocol_Display_Gersys
+ Task_Userinterface
+ Message_Userinterface

Balise_Reader

+ Balise_Buffer
+ Task_Balise_Reader

 OBUs’ Development and Maintenance of a Train Control System 173

Due to the required features to the data radio communication of the RZL-Pinzgau
certain elements of Euroradio have been implemented. Since the basic TCS [1] did
not feature message authenticity checks it has been decided to integrate Euroradio’s
method: CBC-MAC and triple DES. The required modifications to the base TCS [1]
mainly dealt with the communication related common code and therefore they have
been implemented in Ada95. The other features of Euroradio have not been integrated
into the system, because on the one hand field proven proprietary hardware has been
used and on the other hand ETCS compatibility was not required.

4.3 SATLOC

SATLOC is an EU funded research project which tackles the question of how a cost
efficient train control system for low density traffic lines can be realized. The system
utilizes GNSS-based train localization, cab-signalling as well as an adopted version of
ETCS Euroradio data radio communication as well as a modified ETCS RBC. The
project’s long-term goal of SATLOC is to promote the usage of GNSS as safe method
for train navigation in the railway domain focused on low density traffic lines.

Since the required operational procedures are similar between the Pinzgau – RZL
and the ETCS principles an adopted OBU version of the Pinzgau – RZL system will
be used. However the main difference between ETCS and Pinzgau – RZL is that the
former is dedicated to high speed lines across Europe while the latter focuses on lines
with low speed and low traffic density.

On-Board Unit
The previously used hardware for the OBC and DMI remains the same, whereas data
radio modem, balise reader and GNSS-receiver are exchanged. These components
had to be replaced in order to support the required features and functionalities of this
research project. The exchange of the GNSS-receiver was simple, since the hardware
interface is the same and the data protocol is in both cases NMEA 0183. In contrast to
this, the balise reader interface as well as the data protocol changed completely. Once
again this hardware exchange proofed to be of limited work, since it was only neces-
sary to exchange the concerned package Balise_Reader against a version which sup-
ports the new hardware while communication with Task_Location_Determination
remains as before. Furthermore, since the original system was designed to be used
only by German speaking personal and the fact that SATLOC is a European project, it
was required to support multilanguage output on the DMI. In order to achieve this
feature a generic package has been implemented which offers support for multiple
languages. These languages are loaded from configurable predefined static tables
which belong to the configuration of the OBC. During runtime it is possible to switch
the displayed language via the DMI.

Traffic Control Center
The TCC consists of a visualization unit, a communication unit and the software of
Invensys SIL4 ETCS RBC, which has mainly been developed in Ada.

174 G. Hanis and B. Stadlmann

Data Radio
Since the data radio system is the shared media between OBU and TCC it was neces-
sary to agree on a standardized solution under consideration of the economic
constraints of low density traffic lines. In the case of SATLOC the major system
modification was related to the data radio communication between TCC and OBU.

Within the scope of this research project, the OBU has to be able to communicate
with an ETCS RBC. Since the project focuses on low density lines which budgets are
rather strict, it was not applicable to use standard Euroradio for communication. If
standard Euroradio would have been used, it would have been necessary to deploy
and maintain the cost intensive circuit-switched GSM-R network, which is mandatory
for Euroradio, as well as the concerned equipment. Since this would have exceeded
the given economic boundaries, and SATLOC itself is a research project, it was cho-
sen to utilize the broadband network of local mobile carriers and therefore to imple-
ment a version of ETCS over packet-switched technologies like GPRS and UMTS.
From the TCC point of view it was only necessary to add a Wrapper-Layer to encap-
sulate the used TCP/IP mechanisms from the standard ETCS RBC. From the OBCs’
perspective it meant introducing a conversion module from the RZL-Pinzgau com-
munication system to an adopted Euroradio system.

As the topic of Euroradio over GPRS is currently investigated by a UNISIG work-
ing group [5], the SATLOC implementation is based on the proposed ideas but does
not necessarily comply with them in all aspects. In order to be on the OBC mainly in
line with Euroradio the layers Application, Safety and Transport including a Wrapper-
Layer have been introduced. These Layers have been integrated as tasks, since they
perform independent actions of each other. The combination of Transport and Wrap-
per-Layer is responsible for handling the TCP/IP socket; the Safety Layer performs
the session key management as well as the message authenticity and integrity check.
In order to fully integrate the adopted Euroradio into the OBC software the applica-
tion layer has to perform the conversion from RZL to Euroradio application messages.
Since the message structures and their actual content are not totally compatible to
each other, a message conversion layer has been incorporated into the internal imple-
mentation of the ETCS application layer. Concerning the base OBC software it meant
integrating these new tasks and re-routing certain application messages via an “ETCS
Translator” to the new ETCS Application Layer, see Fig.5.

The current implementation contains only a subset of a full ETCS [7], but within
the scope of SATLOC it is sufficient to handle all relevant operational procedures
like: authorizing train movement, monitoring train movements, issuing emergency
stops from the TCC.

 OBUs’ Development and Maintenance of a Train Control System 175

Fig. 5. ETCS vs. SATLOC layer architecture

Field Tests
During the second half of 2013 field tests have been carried out and they showed that
the OBC was able to communicate with the adopted ETCS RBC. Therefore the driver
could obtain a Movement Authortiy from the RBC while the traffic controller at the
TCC was able to monitor the trains’ movement along the line. Hence the implemented
subset of Euroradio, ETCS over TCP/IP, and the exchange of the balise reader hard-
ware seems to be working properly. During the test period communication failures in
the sense of outtake of mobile broadband did not occur, hence this indicates good
mobile broadband coverage along the test track. The implemented multilanguage
feature proved to be very helpful for the multinational test crew, since it was possible
to change the displayed language from German to English and Romanian. In 2014
further tests will be carried out to clarify and demonstrate system capabilities.

5 Experiences

System development started in 1999 and the first official deployment was in 2005 at
Stern&Hafferl [4]. Ever since the TCS has been developed further in order to support
new features like track selectivity, improved train monitoring and supervision, switch
control and switch supervision.

Meanwhile the OBC hardware and operating system have been completely ex-
changed. Considering the headcount of the R&D team this challenge proved to be
of limited scope due to the architecture of the system with implemented IO-
encapsulation and other features as well as the features of Ada. The main work
focused on creating a functional VxWorks image for the selected hardware, which
includes the self-written hardware drivers.

176 G. Hanis and B. Stadlmann

The selected approach of using several loosely coupled tasks which communicate
via message buffers seems to provide a sufficient reliable yet flexible approach,
though the implemented messaging mechanism tends to create more module depen-
dencies than desired.

6 Conclusion

While the original TCS [1] experiences changes, modifications and enhancements, the
basic system structure, as described in section 3, remains untouched. When it was
required to switch the operating system from ETS to VxWorks the core task was the
creation of a hardware compatible operating system image including IO-encapsulation
in Ada, thus no further adoptions were required in the safety kernel. Therefore it can
be assumed that in this case the selected approach for IO-encapsulation via distinctive
definitions in Ada and hardware or operating system dependent implementations
proved to be suitable.

Due to the fact that Ada has been used right from the projects start in 1999 to de-
velop all safety relevant functions, it provided a solid framework for a first system
deployment in 2005 as SIL0 system. With further features and enhancements it was
possible to deploy a low cost SIL2 train control system at Pinzgaubahn in 2012 [2].

References

1. Stadlmann, B.: Ada-Development for a Basic Train Control System for Regional Branch
Lines. Ada User Journal 22(1) (March 2001)

2. Stadlmann, B., Kaiser, F., Maierhofer, S.: Rechnergestütztes Zugleitsystem für die Pinzgau-
er Lokalbahn. In: SIGNAL+DRAHT 5/2012, pp. 28–33. Eurailpress (May 2012)

3. EN 50128: Railway applications – Communications, signaling and process systems – Soft-
ware for railway control and protection systems

4. Stadlmann, B.: Basic Train Control System for Regional Branch Lines - Field Test Report.
In: Eleventh International Conference on Computer System Design and Operation in the
Railway and Other Transit Systems, pp. 253–262. WIT Press (2008)

5. UNISIG: Protocol Stack main Alternative 1 ETCS over GPRS (v3). UNISIG (2012)
6. Pascoe, R., Eichorn, T.: What is communication-based train control? IEEE Vehicular Tech-

nology Magazine 4, 16–21 (2009)
7. UNISIG. System Requirements Specification. Subset-026-1 v2.3.0. UNISIG (February 24,

2006)
8. Stanley, P.: Institution of Railway Signal Engineers: ETCS for Engineers. Eurailpress,

Hamburg (2011)

Practical Formal Methods in Railways -

The SafeCap Approach

Alexei Iliasov, Ilya Lopatkin, and Alexander Romanovsky

Newcastle University, UK

Abstract. This paper presents the SafeCap Platform approach to the
verification of railway safety properties. We discuss how the hierarchy of
formal theories is used to capture the railway domain and interface with
verification tools; we explain the contribution of each individual theory to
the overall task of safety verification and capacity assessment. Finally, we
briefly relate our experience of using two independent verification chains
to validate concrete track layouts and control tables against the SafeCap
safety theories.

1 Introduction

Ensuring and demonstrating railway system dependability is crucial for the way
our society operates. Formal methods have been successfully used in developing
various railway control systems. The best-known examples include the use of
the B Method [1] for designing various metro and suburban lines, and airport
shuttles all over the world [5, 8]. The formal methods here are used to trace the
requirements to system models and to ensure and demonstrate the system safety.
Our work builds on this work.

The SafeCap Platform [19] is an integrated modelling environment aimed at a
railway signalling engineer. Its focus is the microscopic analysis of a railway node
(station, marshalling yard, complex junction) with the purpose of investigation,
with the maximum level of detail, the performance of a node under various ser-
vice patterns, train types and stability margins. Central to achieving this goal
is an efficient and scalable approach to the verification of operational safety. In-
deed, any change in track layout, train detection circuit boundary and control
rule potentially renders a node unsafe. It is our goal to address the highly chal-
lenging verification problem in such a way that it does not unnecessarily distract
an engineer from the primary goal of optimization. This means a push-button
approach where no expertise in verification technology is required and a feedback
is presented promptly and in a friendly manner.

We continue with the discussion of principal problems and objectives of
railway signalling verification. Within the hierarchy defined by Fokkink and
Hollingshead [22], we focus exclusively on the middle interlocking layer leav-
ing out details of lower layer of physical equipment functioning and upper layer
of railway logics and exploitation largely out of the view. We identify five kinds
of railway safety verification concerns.

L. George and T. Vardanega (Eds.): Ada-Europe 2014, LNCS 8454, pp. 177–192, 2014.
c© Springer International Publishing Switzerland 2014

178 A. Iliasov, I. Lopatkin, A. Romanovsky

point P : clear(AD)
route A S10 : clear(AA,AB)

route S10 S12 : clear(AB,AC,AD) ∧ locked(P)
route S12 S14 : clear(AD,AE,AF,AG) ∧ normal(P) ∧ normal(T)
route S12 S24 : clear(AD,BE,BF,BG) ∧ reverse(P,T) ∧ occupied(AC:15)

. . . : . . .

Fig. 1. A simple junction and an excerpt from its control table

The first three are the fundamental safety properties that may be reasoned
about at a specification level abstracting away from minute details of physical
track topology and the setting in which the track is laid. The remaining two
require consideration of concrete track geometry, topography, train exploitation
characteristics and prospective service requirements.

A schema must be free from collisions. A collision happens when two trains
occupy the same part of a track. Reasoning about collisions must take into an
account concrete topology, requires an explicit train notion, the definition of
laws of train movement and assumptions about train driver (either human or
automatic) behaviour. Note that if train drivers choose to ignore whatever means
of indication of track occupation states are available to them (e.g., track side
signals) there is nothing preventing two trains from colliding. Hence, the absence
of collisions is ensured by demonstrating the compatibility of specific topology,
signalling and certain driving rules.

The basic safety mechanism is that of route locking and holding. A train is
given permission to enter an area of a railway once there is a continuous and safe
path through this area assigned exclusively to this train. Such a path is normally
called a route and is delineated by signals — either physical track-side signals
with lamps or conceptual signals displayed to a driver via a computer screen.
Two-aspect signals (red/green or stop/proceed) are positioned at the maximum
braking distance from each other and this defines the smallest train separation.
3- and 4- and higher aspect signalling allows trains to come closer by advising
drivers on the safe speed and the extent of free track available in front.

In Fig. 1, one route example is route S10 S12 between signals S10 and S12.
This route consists of two train detection circuits: AB and AC. A train detection
circuit is a part of a railway (a sub-graph in an abstract topology) with some
equipment capable of reporting the presence or absence of a train in this part. An
additional circuit AD is also in the dependency of this route playing the role of
an overlap. An overlap is an extra part of track reserved together with a route to

Practical Formal Methods in Railways - The SafeCap Approach 179

protect a train running slightly past a red signal (when, for instance, rail adhesion
is lower than normal and a driver misjudges the stopping distance); alternatively,
it is an area to automatically engage train brakes should a driver fail to notice
a red signal (this is generally known as an automated train protection (ATP)
system).

When a route is locked, all the movable equipment such as points or level
crossings must be set and detected in a position that would let a train safely
travel on its desired route. They must remain locked in such a state until the
train passage is positively confirmed.

A schema must be free from derailments. A derailment may happen when a
train moves over a point that is not set in any specific direction and thus may
move under a train. To avoid this, a point must be positively confirmed to be
locked before a train may travel over it. In a control table one writes a condition
defining when a point reconfiguration may happen. For the example in Fig. 1
such a rule requires that circuit AD is clear.

Another reason for derailment is driving a train through a curve at an unsafe
speed. As a train goes over a curve, the combination of gravitational, centripetal
and centrifugal forces exerts a rolling force on train carriages and a substantial
lateral force on rails. This effect can be mitigated by track canting although no
single canting is a perfect fit for all train types. Hence, enforcing a safe speed limit
before a train enters a curved track area is an essential safety consideration. There
are several ways of doing this. One is a static speed limit. This can be a sign board
warning a driver (circle with number 30 over circuit AD in Fig. 1) or an electronic
signal sent to an on-board computer. A speed restriction may be also enforced by
signalling: a signal does not switch into a permissive aspect until a train is detected
to occupy some preceding detection circuit for a duration time. A combination of
such time duration and track length gives an upper train speed limit. Example
in Fig. 1 uses this technique for route S12 S24: the control table mandates that a
train travelling over the route occupies AC for at least 15 seconds.

Flank protection Consider the example in Fig. 1 and assume some train (2)
approaching to and stopping at signal S40 (going right to left) while some other
train (1) travels over route S12 S14; also, assume that there is no overlap track
for route S40 S42. Should train 2 fail to stop at the signal it might roll into the
path or hit the side of train 1. Another common scenario is having no signalling
in operation at siding BE, BF, BG. A train approaching from a siding would
be operated on sight or using less restrictive shunting signalling. If the siding
goes up a slope there is an additional danger of carriages rolling freely onto
the main line A B. Avoidance of such situations is generally known as flank
protection. Defining route overlaps (e.g., requiring AD to be clear and point P
set in reverse) would generally provide a sufficient safety margin albeit at a cost
of lower performance and extra signalling equipment. An alternative is to set
points in such a way that any interfering traffic would be diverted away or even
derailed using trap points. In our example, we protect main line route S12 S14 by
setting flanking point T to normal (straight) direction to divert any interfering
traffic coming from the siding.

180 A. Iliasov, I. Lopatkin, A. Romanovsky

Physical layout properties. A range of properties pertinent to safety requires
analysis of land topography over which track is build. As one example, it must
be ensured that physical signals have certain minimum sighting distance giving
a sufficient time for a driver to react. Sometimes tracks are so close together
that carriages of a train going through a curve may come into a contact with
carriages of a train located on a parallel track. A signalling engineer must identify
and protect such areas (known as fouling points) via signalling rules. Further
examples include gradients at stopping points (e.g., signals) that may be unsafe
for heavy trains, parts of track susceptible to landslips, derbies on the track due
to nearby trees and overpasses, and so on. An important consideration is the
spacing between signals and speed restriction signs: it must be possible for all
trains to brake within the given limits to meet signal or speed limit restriction.
Signal positioning and speed restriction would be wastefully conservative if one
does not consider specific properties of traffic, in particular train acceleration
and braking performance.

Quality of service. It is never sufficient to consider the safety aspect of a
railway in isolation from its performance. Indeed, setting all signals permanently
to red (stop) state trivially satisfies all the safety concerns discussed above. As a
less extreme example, there could be a signalling mistake preventing or hindering
train progress but not violating safety properties. Typically, when signalling a
station or a junction, an engineer would have access to a provisional time table.
A time table defines traffic class and station calling and dwelling times. It must
be ensured that signalling is able to accommodate such traffic with some extra
margin for unaccounted or delayed traffic. Simulation of train runs is the common
way to check quality of service requirements.

2 Safety Verification

In this section we discuss requirements to verification of railway signalling, in
particular verification of control tables, and characterise major approaches used
in the industry and proposed by academia. We start with the summary of aspects
of verification - the prominent traits we believe to be relevant to industrial
adoption. Our focus is largely on the application of formal verification to railway
signalling.

2.1 Aspects of Verification

Rigour. A good verification technique is both exhaustive and thorough; this
should be a natural consequence of innate properties of an applied technique
rather than achieved through measures of extra diligence or man power. Clearly,
a truly rigorous techniques must be based on an objective, formal handling
of safety-related artefacts expressed in a mathematical notation. The results
achieved with a rigorous technique must be readily reproducible from the record
of verification activity: a property highly desirable for the certification of sig-
nalling solutions.

Practical Formal Methods in Railways - The SafeCap Approach 181

Productivity. It is not enough to simply offer a rigorous techniques; there must
be means available and accessible to an engineer to apply the technique with
some definite prospect of success within a given lapse of time. It means that a
technique must provide automation for most of the routine activities and allow
an engineer to assess the problem at differing levels of detail. A good presentation
of railway artefacts and verification concerns is also an important issue.

Expertise. Signalling engineers are expected to be experts in railway signalling
but are rarely also experts in formal verification. Conversely, formal method ex-
perts are rarely proficient in the signalling domain. Hence, a technique levying
an unlikely blend of expertise - i.e., the knowledge of both formal modelling and
railways - would be costly to apply in practice. Lowering of expertise require-
ments is always welcome as it correlates with the reduction of user involvement
and increase in productivity.

Scalability. Safety verification is a pressing issue for truly large and complex
stations and junctions. Small-scale signalling may be confidently executed by an
experienced engineer without need for any advanced modelling and verification
techniques. A large layout, however, is beyond mental capacity of a human being
and has to be processed in a piece-wise manner greatly increasing the chance of
both oversights and overly conservative decisions. Therefore, to be truly useful,
a verification technique must be able to scale to the level of a large station or
an area spanning several stations.

Expressiveness. In Section 1 we have presented the main classes of verifica-
tion conditions. A perfect verification techniques would address all of them in
a satisfactory manner. For this, the notation employed to express verification
conditions must be rich and flexible enough to capture verification goals without
undermining legibility and, by extension, productivity. Automation tools must
also be capable of dealing with the complete notation, not just a subset of it.

Feedback. Although it is valuable to know whether a control table and layout are
safe, it is even more valuable to obtain an explanation of why a given combination
of a control table and layout are not safe and what steps should be taken to make
it safe. Thus, the value of a verification technique is also determined by the form
and kind of feedback a verification activity presents to an engineer. A feedback
in the terms of logical constructs obtained through a mechanical translation of a
railway model into a formal modelling notation is useless in a real life scenario.
A simple yes or no is not good enough either as it leaves an engineer in the dark
about the likely source of a problem. An ideal feedback would narrowly identify
a responsible part and step an engineer through events and actions leading to a
concrete manifestation of safety violation.

2.2 Techniques

In this section we discuss main approaches to signalling verification. In practice,
several techniques may be combined although this has unclear implications on
the overall rigour.

182 A. Iliasov, I. Lopatkin, A. Romanovsky

Manual review. Just as compilation of control tables is often a manual process,
verification may also be accomplished via a carefully set up but otherwise man-
ual review procedure. In most cases, to facilitate legibility, control tables are
written in a highly structured tabular form following a common standard, i.e.,
UK Railway Group Standard GK/RT 0202 [17] although historic and regional
peculiarities are not uncommon. One possible arrangement is having one com-
pany to design signalling and a competing company to verify it. The reasoning
is that this way both parties are incentivized to do their best.

Manual review is a slow process with very high requirements to reviewers’
expertise. It does not deliver any objective proof of safety. At the same time, it
does not suffer from any limitations of a formal verification process.

Simulation. Railway industry widely employs railway simulation tools. These
range from coarse-grained simulation of a national railway network to a detailed
simulation of various aspects of mechanical performance of specific engines and
carriages in a combination with specific rail and balast types. Verification con-
cerns span from analysis of digital communication protocols connecting trains
and regional control to stressing of tunnels and bridges by passing trains. Simu-
lation is widely applied for time table optimisation and interactive 3D simulation
is sometimes used for driver training. RailSys [16] and OpenTrack [15] are two
of the more well-known simulation suites applied in time table optimisation and
general analysis of signalling performance.

The main attraction of simulation is that it does not require deep understand-
ing of railway functioning. Simulation tools present many aspects of railway per-
formance in an intuitive, visual manner helping to quickly obtain the big picture
of overall layout and signalling performance. There is, however, no guarantee of
safety as simulation can only ever consider a tiny proportion of all scenarios.

Model checking. The safety challenge of railways and the fact that collision and
derailment properties may be dealt with within the setting of discrete, inertia-less
train movement makes railway safety verification especially appealing for formal
method practitioners. The principal idea of railway model checking is quite sim-
ple: a model of train movement laws is combined with the definitions of track
topology and signalling rules. A model checking tool attempts to go through all
or many execution scenarios to confirm that unsafe scenarios are ruled out. The
list of modelling notations used in this setting is practically endless. Notable
examples include Coloured Petri nets [7], process algebra CSP [11], a continua-
tion work based on the model-based notation ASM [12], an algebraic language
Maude [9] and the B Method together with ProB model checking tool [14].

Almost all model checking approaches allow automatic instantiation of tem-
plate models making application of model checking relatively straightforward for
engineers. Many tools are able to report a sequence of steps leading to a safety
violation. While model checkers are able to analyse many more scenarios than a
simulator this comes at a price of reduced expressiveness (i.e., inability to reason
about track geometry) and proof certificate is generally not ultimate: there could
be a false negative (i.e., the absence of an error report in case an error is present
but not discovered) when a model is too large to analyse exhaustively.

Practical Formal Methods in Railways - The SafeCap Approach 183

Table 1. Characterisation of major verification techniques and the SafeCap approach

Review Simulation Theorem proving Model checking SafeCap

Rigour −− −− ++ + +
Productivity −− ∼ −− + ++

Expertise −− ++ −− + +
Scalability + − ++ −− +

Expressiveness ++ ++ ∼ − −
Feedback + ++ − + ∼

Theorem proving. Model checking imposes limitations on the model size and
performs best with a relatively limited logical language. Theorem proving over-
comes these limitations and offers potentially unlimited opportunities for veri-
fying safety with the utmost level of rigour. Theorem proving is not necessarily
an all-manual process: there is a large and successful community developing au-
tomated theorem provers [20]. At the moment, automated prove support is best
in the domain of first order logic and set theory; an attempt at reasoning about
continuous train dynamics is likely to require an intervention by a highly skilled
verification expert - the kind of people mostly found in academia. From our ex-
perience, even reasoning about track geometry is surprisingly difficult as this is
a problem outside of the typical application domain of verification tools. One
success story with theorem proving is the ongoing application of B method in
the railway domain [8]. J.-R. Abrial has published methodological guidelines on
an economical use of basic logic and set theory to reason about railway safety
in a discrete setting [4].

Theorem proving, even with excellent tool support, requires a high level of
expertise in formal verification and mathematical modelling. The semantic gap
between logic and railway concepts is formidable. This leads to generally low
productivity (but we should notice efforts like the BART tool for automatic
refinement of B models [13]), difficulties in interpreting tool feedback, and posing
verification statements in a manner convincing to a non-expert reviewer.

Summary. Table 1 summarizes our assessment of verification techniques. Each
aspect is given a score ranging from −− (very poor) to ∼ (satisfactory) to
++ (excellent). The last column characterises the SafeCap verification approach
discussed in the following sections. The approach, as the table illustrates, offers
tangible advantages over both model checking and theorem proving: it scales
better than model checking, offers good productivity and does not require a
high level of expertise.

3 Safety Verification in SafeCap

The purpose of the SafeCap Platform is to enable railway engineers to analyse
complex junctions by experimenting with signalling rules, signalling principles,

184 A. Iliasov, I. Lopatkin, A. Romanovsky

Schema

SAFECAP DSL Core

Control Table

Line GradientSchedule

Train Classes Equipment Lib. B Model Why3 Model

ProB Z3, CVC3, ...

Simulation Engine

Editing

Capacity

Model-based

Animation

Validation Pattern Library

Automation

Pattern Engine

Verification

Fig. 2. SafeCap Platform architecture

track topology, safety limits (e.g., speed limits for points and crossings) while
receiving an on-line feedback from automated verification and analysis tools.

We have build the Platform around Eclipse — a mature and extensible IDE
framework. We used Eclipse Modelling framework (EMF) to realise our Domain
Specific Language (DSL) [10]. One important consideration was the ability to
benefit from the extensive EMF ecosystem which offers a tool-kit for model
manipulation and the construction of graphical and textual editing tools. Apart
from the editing tools, the main components of the Platform are transformation
patterns, model-based animation, simulation and verification (Fig. 2).

The SafeCap platform aims to provide a versatile tool-kit for analysing railway
node safety and capacity. The approach we have taken is based on a combination
of theorem proving and constraint solving.

We have applied the Event-B modelling notation and its refinement method-
ology to develop a theory of safe railway. This theory explicitly describes train
movements, signal operation and points control. It does not, however, deal with
any specific topology or control table. The proof of safety (we consider absence
of collisions and derailments, and protection of flanks) is done for some class of
topologies and control tables. The proof of Event-B model, although challenging,
is done once and for all.

An important by-product is the set of axiomatic conditions characterising
the class of safe topologies and safe control tables. To establish that a given
track topology and control table are safe we only need to check that they do
not contradict the mentioned axiomatic conditions. We do not need to redo the
proofs of Event-B model. Safety verification is accomplished by putting together
the definition of a concrete topology, control table and the axiomatic conditions
derived by the Event-B model. If a constraint solver does not find a contradiction
in logical statements encoded by this composition then the concrete topology and
control table are deemed safe. Returning to the Event-B domain, the absence of
contradiction established by a constraint solver means that our generic Event-B

Practical Formal Methods in Railways - The SafeCap Approach 185

machine M
sees Context
variables v
invariant I(c, s, v)
initialisation R(c, s, v′)
events

E1 = any vl where g(c, s, vl, v) then S(c, s, vl, v, v′) end
. . .

end

Fig. 3. Event-B machine structure

model of train behaviour is refined by a model instantiated with the given track
topology and control table.

Schema topology and control table theories come in the form of a list of
first order logic predicates; they do not define any state transitions or dynamic
behaviour but rather well-formedness requirements to objects describing track
topology and control table.

For constraint solving, we make use of two sets of formal notations and tools:
B together with ProB [14], and Why3 [6]. In the short term, we aim to bene-
fit from their complimentary strengths; in a longer term, the dual verification
path provides a logical redundancy that makes a low-level encoding or tool bug
unlikely to be left undiscovered.

3.1 Event-B

We apply the Event-B [2] formal modelling notation to specify and verify railway
signalling. Event-B belongs to a family of state-based modelling languages that
represent a design as a combination of state (a vector of variables) and state
transformations (computations updating variables).

An Event-B development starts with the creation of a very abstract specifi-
cation. A cornerstone of the Event-B method is the stepwise development that
facilitates a gradual design of a system implementation through a number of
correctness-preserving refinement steps. The general form of an Event-B model
(or machine) is shown in Fig. 3. Such a model encapsulates a local state (pro-
gram variables) and provides operations on the state. The actions (called events)
are characterised by a list of local variables (parameters) vl, a state predicate
g called event guard, and a next-state relation S called substitution or event
action.

Event parameters and guards may be omitted leading to syntactic short-cuts
starting with keywords when and begin.

186 A. Iliasov, I. Lopatkin, A. Romanovsky

Event guard g defines the condition when an event is enabled. Relation S
is given as a generalised substitution statement [1] and is either deterministic
(x := 2) or non-deterministic update of model variables. The latter kind comes
in two notations: selection of a value from a set, written as x :∈ {2, 3}; and a
relational constraint on the next state v′, e.g., x :| x′ ∈ {2, 3}.

The invariant clause contains the properties of the system, expressed as state
predicates, that must be preserved during system execution. These define the safe
states of a system. In order for a model to be consistent, invariant preservation
is formally demonstrated. Data types, constants and relevant axioms are defined
in a separate component called context.

Model correctness is demonstrated by generating and discharging proof obli-
gations - theorems in the first order logic. There are proof obligations for model
consistency and for a refinement link - the forward simulation relation - between
the pair of abstract and concrete models.

3.2 Discrete Driving Model

The discrete driving model is an Event-B model capturing train, signal and point
behaviour. It proves that the described behaviour is contained within a certain
safety envelope by formulating and proving, through a number of refinement
steps, safety invariants corresponding to the first three verification objectives of
Section 1. This model gives a formal definition of principal phenomena observed
in railway operation: train movement, route reservation, point locking, route
cancellation and so on.

To construct the proof we have used Event-B [3] and the Rodin Platform [18].
Train driving rules are encoded by Event-B events - atomic state transitions - so
that the overall model defines a state transition system. The safety properties
are stated as a system invariant: a subset of possible states where the dangerous
situations may not occur. The proof is done inductively by examining the effect
of each event on a given safety property and discharging relevant proof obligation
(first-order logic theorems).

The model in Fig. 4 illustrates the notation and modelling style of Event-B.
This particular model is the very first (abstract) model in the development chain.

The overall model is made of seven refinement steps with 470 verification con-
ditions of which 301 were discharged automatically by Rodin theorem provers.
Its development span over several months and several early versions were aban-
doned either due to misrepresentation of some railway concepts or unacceptable
verification costs.

Practical Formal Methods in Railways - The SafeCap Approach 187

machine route0
sees ctx line
variables

t line // Train/line association
t r hd // Train head position on a line
t r tl // Train tail position on a line

invariant

t line ∈ TRAIN �→ LINE
// A train is mapped to the id of a route occupied by the head of a train

t r hd ∈ TRAIN �→ N1

// correspondingly, t r tl(t) is the id of the route occupied by the tail of train t
t r tl ∈ TRAIN �→ N1

dom(t line) = dom(t r hd)
dom(t line) = dom(t r tl)

// A train occupies a continuous route interval of route from tail till head
∀t·t ∈ dom(t line)⇒ t r tl(t) .. t r hd(t) �= ∅

The routes a train occupies are the routes defined by the train line
∀t·t ∈ dom(t line)⇒ t r tl(t) .. t r hd(t) ⊆ dom(Line(t line(t)))
// Initially, there are no trains in the system

initialisation

t line, t r hd, t r tl := ∅,∅,∅
events

// A train may appear in the system with this operation
appear =
any t, l where

t ∈ TRAIN \ dom(t line) // a train must be not already in the system
l ∈ LINE

then

t line(t) := lset the train line to l
t r hd(t), t r tl(t) := 1, 1 // set head and tails routes

end

// Moves the head of a train from one route to another
move route hd =
any t where

t ∈ dom(t line)
t r hd(t) < LineLen(t line(t)) // train head must not be on the last line route

then

t r hd(t) := t r hd(t) + 1 // move the head one step forward
end

// Moves the tail of a train between routes
move route tl =
any t where

t ∈ dom(t line)
t r tl(t) < t r hd(t) // a tail must be strictly behind the head of the train

then

t r tl(t) := t r tl(t) + 1 // move the tail one step forward
end

. . .

Fig. 4. An Event-B model of abstract, route-level train movement (an excerpt)

188 A. Iliasov, I. Lopatkin, A. Romanovsky

/* (1) */ {} <<: NODE &
/* (2.a) */ {} <<: TRACK &
/* (2.b) */ TRACK <: NODE * NODE &
/* (2.c) */ elm(TRACK) = NODE & /* all nodes are connected by tracks */

...
/* (10) */ AMBIT : LA --> (POW(NODE) * POW(TRACK)) &
/* (11) */ ! (a, q, p) . (a : ran(AMBIT) & a = (q |-> p) => p <: q * q & {} <<: p) &
/* (12) */ ! (a, q, p) . (a : ran(AMBIT) & a = (q |-> p) => p~ <: p) &
/* (13) */ ! (a, q, p) . (a : ran(AMBIT) & a = (q |-> p) =>

! (n) . (n : q => closure(p)[{n}] = q)) &
/* (14) */ union({p | # (a, q) . (a : ran(AMBIT) & q <: NODE &

p <: TRACK & a = (q |-> p))}) = TRACK &
/* (15) */ ! (a, b, r, s, t, q) . (a : ran(AMBIT) & b : ran(AMBIT) & a /= b &

a = (r |-> s) & b = (t |-> q) => s /\ q = {}) &
...

Fig. 5. Schema well-formedness rules (an excerpt)

Apart from its role in the validation of first two layers, the discrete operational
rules of the third layer are used to visually animate train movements over a given
schema. There are two main applications for such an animation: replaying the
results of model checking of discrete driving rules in order to pin-point the source
of an error in a topology or a control table; and helping an engineer to understand
how trains may travel through a schema with a given set of control rules.

3.3 Schema Topology Theory

The schema topology theory is responsible for verifying logical conditions ex-
pressed over track layout (i.e., track connections, point placement) and logical
topology (i.e., routes and lines as paths through a schema). Few examples of
verification conditions include the connectivity property (no isolated pieces of
track), continuity of routes and lines, absence of cycles, correct traversal of points
and valid placement of train detection circuit boundaries.

As a whole, these conditions express what we understand to be a valid track
topology. We have tested them against a number of large-scale real-life layouts
and we able to discover some problem in already informally validated track
topologies. In addition, semi-automated alteration and generation of track lay-
outs (e.g., via the improvement patterns we are developing in the tool) neces-
sitates a careful and strict inspection of these basic properties. An automated
verification process ensures high productivity and enables an engineer to explore
a large range of designs within a short time.

Figure 5 gives a sample of verification conditions written in the Classical
B notation [1] and ready to be processed by model checking tool ProB [14].
Not shown is the encoding of DSL elements (track graph, control tables) as sets,
relations and functions of a B model. For a real-life example, such a model may be
6-14 thousand lines long. The same conditions and constructs are also generated
in the Why3 theory notation. It is not a direct translation of the B model and we
intentionally use a different representation of relations and functions to introduce
a form of modelling diversity. At the moment, for the topology theory, ProB and
Why3 verifications chains deliver broadly similar performance.

Practical Formal Methods in Railways - The SafeCap Approach 189

...
/* @label (CT.1): A permissive signal may be lit only when all route ambits are clear */
! (l, r). (l |-> r : CT0_DOM => ! (n). (n : 1 .. RASPECT(l, r)-1 =>

routeambits(r) <: CT_CLEAR(l, r, n))) &
/* @label (CT.2): A route with an overlap may have permissive signal only
when its overlap is reserved and confirmed as clear */

! (l, r). (l |-> r : ROVERLAP & r : dom(LINE(l)) => ! (n). (n : 1 .. RASPECT(l, r)-1 =>
TA[fst(ROUTE(LINE(l)(r)))] <: CT_CLEAR(l, r, n))) &

/* @label (CT.3.a): No point is set both normal and reverse */
! (l, r). (l |-> r : CT0_DOM => CT_NORMAL(l, r) /\ CT_REVERSE(l, r) = {}) &
...

Fig. 6. Control table conditions (an excerpt)

3.4 Control Table Theory

On the platform of the topology verification we define the conditions of op-
erational safety. These are derived, via a formal proof, from a set of discrete
(inertia-less) train movement rules and expressed as a set of constraints over
signalling rules.

In SafeCap, we depart from the convention of associating control rules with
track-side signals. Instead, we consider a more general situation where different
signalling rules are applied depending upon the ultimate train destination or
train type and attach control logic to a pair of line and route. This permits, for
instance, to model, on the same track, an express train using two aspect signalling
and a freight train travelling over the same routes but in a three or four aspect
mode. Such an arrangement may be used to achieve an optimal balance between
headway and average speed in a heterogeneous traffic mix. Given the fact that in
UK track-side signals are going to be made obsolete by 2030 [21] this represents
a fairly modest scenario of using virtual signals to improve capacity.

The control table theory demonstrate such properties as the absence of po-
tential collision (as may happen, for instance, when a proceed aspect is given
while a protected part of track is still occupied) and derailment (due to incorrect
point setting or point movement under a train). Other properties relate to the
danger or circular dependencies between signals, dependencies between multi-
aspect signals and operation of auto-signals, conformance with an ATP system,
and verification of point and signal based flank protection. Certain properties,
notably approach speed control via the timed occupation of a track section, are
not verified at this stage as the formalisation at this layer does not capture train
inertia. Speed limit conformance and other time-related properties are formu-
lated at the final, most detailed layer.

A list of sample control table theory conditions is given in Fig. 6. For the
shown rules, the outer quantification selects a pair of a line and a route that
define a list of control rules (one per aspect). This model includes the topology
model1. Constraint solving is the primary verification strategy: we try to detect
a contradiction between concrete data structures defining topology and control
tables and the verification conditions. Again, the model is given in both B and

1 At the level, it is assumed that the topology theory has been verified and the topology
constraints are turned into axioms.

190 A. Iliasov, I. Lopatkin, A. Romanovsky

Fig. 7. The station area of Carlisle example (a SafeCap editor screenshot)

Why3 notations although this time the Why3 verification route is not successful
for larger examples. In addition, for any mid to large scale schema we currently
have to exclude the verification of flank protection properties as these require
complicated computations over track topology. We are working on a program
that would output a proof term for each instance of flank protection property
so that a theorem prover or a constraint solver would only have to check the
elementary steps of a prepared proof.

4 Experimental Results

We have tested our approach on a range of synthetic and real-life examples.
Whenever possible, we have tried to accurately reproduce layout topology and
control tables from paper-based documents provided by UK’s Network Rail. A
summary of verification experiments is given in Table 2. Control table verifica-
tion scales very well; the solving of topology suffers mainly from the conditions
establishing absence of cycles in the definitions of lines and routes. If these prop-
erties are known to hold (i.e., topology is taken from an existing layout) these
properties may be suppressed.

One of the larger examples we have tackled is the Carlisle Citadel station
with the North, South, and Caldew junctions. The modelled fragment is 2.6km
long and comprises 70 train detection circuits, 63 points, 79 routes and 161
valid paths. The translation from a scanned PDF drawing and printed control
tables took 45 man-hours. The verification of the topology theory constraints
using ProB took just over 6 minutes on a PC with i7 3730 CPU and utilized

Table 2. Verification run times for several sample layouts

Benchmark Points/Lines/ Conditions, Conditions, Run time, Run time,
Routes topology control table topology control table

Station 1 8/12/14 117 230 4s 2s
Junction 1 23/4/21 280 602 24s 8s
Station 2 6/23/21 104 678 18s 6s

Carlisle, west 24/112/30 350 888 1m 17s 12s
Carlisle 63/161/79 892 1270 6m 4s 19s

Practical Formal Methods in Railways - The SafeCap Approach 191

just under 2GB of RAM. The Why3 [6] verification of the same theory takes
approximately 70 minutes. The control table theory is verified under 20 seconds
by ProB and not verified completely, with the current translation of conditions,
using Why3. It worth noting that the control table verification time is by far
more important as topology, once verified, changes rarely if at all.

The SafeCap Platform is freely available from [19] together with the verifica-
tion models discussed in this paper.

5 Conclusions

In the paper we have surveyed the architecture of the verification infrastructure
of the SafeCap Platform. Our approach has proven to be successful and we are
working with our industrial partners to further improve the fidelity of the models
and the robustness of the verification chain.

One of the advantages of applying formal modelling in the railway domain is
the ability to transfer the modelling expertise accumulated analysing existing sig-
nalling laws to the verification of novel, unexplored ideas. The level of confidence
a formal approach is especially valuable in overcoming a healthy scepticism over
a novelty in a field known for its conservatism.We plan to extend our approach to
cover moving block, virtual signals and automated train operation in a uniform
and coherent manner. We hope this will allow us to reason about hybrid solu-
tions combing elements of fixed and moving block principles, human driving and
fully automated operation. As one example, we would like to model how several
similar trains travelling through a junction may be temporarily signalled using
the train convoy principle where train separation control may realised on a more
relaxed assumption leading to smaller headway and less capacity consumption.

Acknowledgements. The work of SafeCap has been conducted as part of
the U.K. EPSRC/RSSB SafeCap and SafeCap-Impact projects. This work was
partially supported by the EPSRC/UK TrAmS-2 Platform Grant.

References

1. Abrial, J.-R.: The B-Book. Cambridge University Press (1996)
2. Abrial, J.-R.: Modelling in Event-B. Cambridge University Press (2010)
3. Abrial, J.-R., Mussat, L.: Introducing Dynamic Constraints in B. In: Bert, D. (ed.)

B 1998. LNCS, vol. 1393, pp. 83–128. Springer, Heidelberg (1998)
4. Abrial, J.-R.: Train systems. In: Butler, M., Jones, C.B., Romanovsky, A., Troubit-

syna, E. (eds.) Fault-Tolerant Systems. LNCS, vol. 4157, pp. 1–36. Springer, Hei-
delberg (2006)

5. Behm, P., Benoit, P., Faivre, A., Meynadier, J.-M.: Météor: A Successful Applica-
tion of B in a Large Project. In: Wing, J.M., Woodcock, J., Davies, J. (eds.) FM
1999. LNCS, vol. 1708, pp. 369–387. Springer, Heidelberg (1999)

6. Bobot, F., Filliâtre, J.-C., Marché, C., Paskevich, A.: Why3: Shepherd your herd of
provers. In: Boogie 2011: First International Workshop on Intermediate Verification
Languages, pp. 53–64 (August 2011)

192 A. Iliasov, I. Lopatkin, A. Romanovsky

7. Janczura, C.W.: Modelling and Analysis of Railway Network Control Logic using
Coloured Petri Nets. PhD thesis, School of Mathematics and Institute for Telecom-
munications Research, University of South Australia (1998)

8. Essamé, D., Dollé, D.: B in Large-Scale Projects: The Canarsie Line CBTC Ex-
perience. In: Julliand, J., Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355, pp.
252–254. Springer, Heidelberg (2006)

9. Hagalisletto, A.M., Bjørk, J., Yu, I.C., Enger, P.: Constructing and Refining Large-
Scale Railway Models Represented by Petri Nets. IEEE Transactions on Systems,
Man, and Cybernetics, Part C, 444–460 (2007)

10. Iliasov, A., Romanovsky, A.: SafeCap domain language for reasoning about safety
and capacity. In: Pacific-Rim Dependable Computing Conference (PRDC 2012),
Niigata, Japan. IEEE CS (November 2012)

11. Winter, K.: Model Checking Railway Interlocking Systems. In: Proceeding of the
25th Australian Computer Science Conference, ACSC 2002 (2002)

12. Winter, K., Robinson, N.: Modelling Large Railway Interlockings and Model
Checking Small Ones. In: Proceeding of the Australian Cumputer Science Con-
ference, ACSC 2003 (2003)

13. Burdy, L.: Automatic Refinement. In: Proceedings of BUGM at FM 1999 (1999)
14. Leuschel, M., Butler, M.: ProB: A Model Checker for B. In: Araki, K., Gnesi, S.,

Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg
(2003)

15. OpenTrack simulator. Website, http://www.opentrack.ch/
16. RailSys simulation platform. Website, http://www.rmcon.de
17. Railway Group Standards. Signalling Design: Control Tables,

http://www.rgsonline.co.uk/

18. Rigorous Open Development Environment for Complex Systems (RODIN). IST
FP6 STREP project, http://rodin.cs.ncl.ac.uk/

19. SafeCap Project. SafeCap Platfrom website (2013), http://safecap.sf.net
20. TPTP. Thousands of Problems for Theorem Provers, http://www.tptp.org/
21. TSLG. The Rail Technical Strategy, RTS (2012),

http://www.futurerailway.org/RTS/Pages/Intro.aspx

22. Fokkink, W.J., Hollingshead, P.R.: Verification of Interlockings: from Control Ta-
bles to Ladder Logic Diagrams. In: Proceedings of 3rd Workshop on Formal Meth-
ods for Industrial Critical Systems, FMICS 1998 (1998)

http://www.opentrack.ch/
http://www.rmcon.de
http://www.rgsonline.co.uk/
http://rodin.cs.ncl.ac.uk/
http://safecap.sf.net
http://www.tptp.org/
http://www.futurerailway.org/RTS/Pages/Intro.aspx

Author Index

Blieberger, Johann 27
Borde, Etienne 149
Burgstaller, Bernd 27
Burns, Alan 107

Crespo, Alfons 74, 134

Hanis, Gerhard 166

Iliasov, Alexei 177

Jaouën, Antoine 149

Lainé, Robert 1
Lopatkin, Ilya 11, 177
Lu, Yue 43
Lundqvist, Kristina 43

Michell, Stephen 91
Midonnet, Serge 119
Moore, Brad 91

Pautet, Laurent 149
Pedro, André de Matos 58
Pereira, David 58
Pinho, Lúıs Miguel 58, 91
Pinto, Jorge Sousa 58

Qamhieh, Manar 119

Real, Jorge 74
Robert, Thomas 149
Romanovsky, Alexander 11, 177

Sáez, Sergio 74, 134
Shawky, Mohamed 7
Stadlmann, Burkhard 166

Wellings, Andy 107

Zhou, Jiale 43

	Preface
	Organization
	Table of Contents
	Keynotes
	Lessons Learned and Easily Forgotten
	1 Introduction
	2 Some Definitions about Projects and Project Team
	3 Key Factors in Project Success
	3.1 Interacting with People
	3.2 Identifying What Hampers Progress
	3.3 Helping People to Perform
	3.4 System Engineering and Human Factor

	4 Summary: Preferred Project Leadership Style
	References

	Future Challenges in Design Frameworks for Embedded Systems: Application to Intelligent Transportation Systems
	1 Introduction
	2 Cognitive Behavior in ITS
	3 Critical Embedded Systems and ITS
	3.1 Uncertainty in Critical Systems
	3.2 Impact on Component Based Design

	4 Multicore Implementation and Redundancy
	References

	Formal Methods
	Rigorous Development of Fault-Tolerant
Systems through Co-refinement

	1 Introduction
	2 Overview
	3 Modelling Principles
	4 Refinement Strategy
	5 Method Application
	5.1 Failure-Free Functionality
	5.2 Abstract Class of System Fault Tolerance
	5.3 Fault Tolerant Component Refinement
	5.4 Behaviour Restriction

	6 Conclusions
	References

	Kronecker Algebra for Static Analysis
of Ada Programs with Protected Objects

	1 Introduction
	2 Preliminaries
	3 Modelling Ada’s Protected Objects
	4 Symbolic Analysis
	5 Conclusions
	References

	A TASM-Based Requirements Validation Approach for Safety-Critical Embedded Systems
	1 Introduction
	2 TASM Language and Its Extension
	2.1 Overview of TASM
	2.2 The Extension to TASM

	3 Case Study
	4 The TASM-Based Approach to Requirements Validation
	4.1 Requirements Modeling
	4.2 Features Modeling
	4.3 Requirements Validation

	5 Related Work
	6 Conclusions and Future Work
	References

	Uses of Ada
	Towards a Runtime Verification Framework for the Ada Programming Language
	1 Introduction
	2 The RMF4Ada Runtime Verification Framework

	2.1 The Runtime Monitoring Library
	2.2 Library Usage

	3 Contract Language Extension for Runtime Verification
	4 Experimental Scenario
	4.1 Verdicts

	5 Conclusions
	References

	Reliable Handling of Real-Time Scheduling
Attributes on Multiprocessor Platforms
in Ada 2012

	1 Introduction
	2 Motivation
	3 Design Alternatives
	3.1 Using Protected Objects
	3.2 Self Change of Attributes from the Highest Priority
	3.3 Using Timing Events
	3.4 Using Rendezvous with a Server Task

	4 Implementation
	4.1 Goals
	4.2 Representation of Scheduling Attributes
	4.3 Implementation Based on Self Changing the Attributes
	4.4 Implementation Based on Timing Events
	4.5 Implementation Based on Server Tasks

	5 Conclusions
	References

	Parallelism in Ada: Status and Prospects
	1 Introduction
	2 Proposal Model and Status
	2.1 Data Structures
	2.2 Parallel for Loops
	2.3 Parallel for Loops over Containers
	2.4 Subprograms
	2.5 Expressions
	2.6 Subprogram and Entry Parameters
	2.7 Blocks

	3 Data Parallelism and Expressions
	3.1 Parallelism within Expressions

	4 Parallel Blocks as a Building Block for Easier Parallelism Specification
	5 Open Issues
	6 Conclusion
	References

	Real-Time Scheduling
	Deadline-Aware Programming and Scheduling
	1 Introduction
	2 System Model
	3 Earliest Deadline First Dispatching and SRP in Ada
	4 The Deadline Floor Protocol
	5 Required Language Simplifications and Modifications
	5.1 Changes to Existing Library Packages
	5.2 New Locking Policy
	5.3 New Dispatching Policy
	5.4 Ravenscar-Like Profile

	6 Hierarchical and Mixed Scheduling
	7 Impact on Real-Time Programming Abstractions
	8 Multiprocessor Considerations
	9 Conclusions
	References

	Schedulability Analysis for Directed Acyclic
Graphs on Multiprocessor Systems
at a Subtask Level

	1 Introduction
	2 Related Work
	3 System Model

	4 DAG Task Scheduling
	4.1 Subtask Analysis and Modification
	4.2 Interference Analysis
	4.3 Interference from Predecessor Subtasks

	5 Workload Analysis
	5.1 Workload from Sibling Subtasks
	5.2 Workload Analysis for External Subtasks

	6 Conclusion
	References

	Integrated Schedulers for a Predictable
Interrupt Management on Real-Time Kernels

	1 Introduction
	2 System Model and Notation
	3 Integrated Interrupt Management Model
	3.1 Hardware Activated Tasks
	3.2 Software Activated Tasks

	4 Integrated Interrupt Event-Driven Schedulers
	4.1 Virtual Integrated Interrupt Event-Driven Schedulers

	5 Dual-Queue Scheduling Schemes
	5.1 Time Complexity of Queue Operations
	5.2 Dual-Queue Scheme Drawbacks

	6 A Scheduler Based on Cartesian Trees
	7 Additional Considerations
	8 Conclusions and Future Work
	References

	Applications
	PDP 4PS : Periodic-Delayed Protocol
for Partitioned Systems

	1 Introduction
	2 Context and Motivations
	3 Problem Statement
	4 PDP 4PS General Approach
	4.1 Execution and Communication Models
	4.2 PDP Communications for Non-partitioned Systems
	4.3 Adaptation to Partitioned Systems

	5 PDP 4PS for Kernel Supplier
	5.1 Architecture
	5.2 Implementation

	6 PDP 4PS for Application Supplier
	6.1 Architecture
	6.2 Implementation

	7 Experimentation
	8 Related Works
	9 Conclusion
	References

	OBUs’ Development and Maintenance of a Train Control System for Low Density Traffic Lines
	1 Basic Idea of the Train Control System
	2 System Architecture
	2.1 Traffic Control Center
	2.2 On-Board Unit

	3 Ada-Software Architecture
	3.1 Task Structure
	3.2 Inter-task Communication
	3.3 Code Structure
	3.4 IO-Encapsulation

	4 System Evolution
	4.1 Stern and Hafferl
	4.2 RZL-Pinzgau
	4.3 SATLOC

	5 Experiences
	6 Conclusion
	References

	Practical Formal Methods in Railways -
The SafeCap Approach

	1 Introduction
	2 Safety Verification
	2.1 Aspects of Verification
	2.2 Techniques

	3 Safety Verification in SafeCap
	3.1 Event-B
	3.2 Discrete Driving Model
	3.3 Schema Topology Theory
	3.4 Control Table Theory

	4 Experimental Results
	5 Conclusions
	References

	Author Index

