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Abstract. Most implementations of public key cryptography employ
exponentiation algorithms. Side-channel attacks on secret exponents are
typically bound to the leakage of single executions due to cryptographic
protocols or side-channel countermeasures such as blinding. We pro-
pose for the first time, to use a well-established class of algorithms,
i.e. unsupervised cluster classification algorithms such as the k-means
algorithm to attack cryptographic exponentiations and recover secret
exponents without any prior profiling, manual tuning or leakage models.
Not requiring profiling is of significant advantage to attackers, as are
well-established algorithms. The proposed non-profiled single-execution
attack is able to exploit any available single-execution leakage and pro-
vides a straight-forward option to combine simultaneous measurements
to increase the available leakage. We present empirical results from attack-
ing an FPGA-based elliptic curve scalar multiplication using the k-means
clustering algorithm and successfully exploit location-based leakage from
high-resolution electromagnetic field measurements to achieve a low
remaining brute-force complexity of the secret exponent. A simulated
multi-channel measurement even enables an error-free recovery of the
exponent.

Keywords: Exponentiation - Side-channel attack - Non-profiled - Single-
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1 Introduction

The main computations in public key cryptosystems are modular exponentiations
with secret exponents or elliptic curve scalar multiplications with secret scalars.
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In both cases, the same exponentiation algorithms are employed to serially
process exponents. In DSA or ECDSA, the exponents are different for every
execution, e.g., chosen randomly as ephemeral secrets. RSA employs the same
exponent multiple times, but exponent blinding [15] is often used as a counter-
measure against side-channel analysis to use different exponents in every execu-
tion. Hence, side-channel attackers may only exploit single executions to recover
a secret exponent. To prevent conventional SPA and timing attacks [15] the
operation sequences during the serial processing of the exponents are rendered
as homogeneous as possible. Algorithms like the square-and-multiply (-always),
double-and-add(-always) or the Montgomery ladder algorithm are examples with
constant operation sequences. However, a certain amount of side-channel leakage
during single executions, i.e., single-execution leakage, about serially and inde-
pendently processed bits or digits during the exponentiation cannot be prevented
in many cases [5,14,21,24]. This may for instance be location-based leakage [12],
address bit leakage [14], or operation-dependent leakage, e.g., when square and
multiply operations can be distinguished [5].

We propose to specifically take advantage of well-established cluster classifi-
cation algorithms [9] in general and the k-means algorithm for example to exploit
any of such single-execution leakage and to recover secret exponents without any
prior profiling, manual tuning or heuristic leakage models. It is of significant
advantage for an attacker if no profiling is required because profiling can easily
be prevented by using e.g., exponent blinding in the implementation or by execut-
ing the accessible exponentiation with public inputs on a different cryptographic
engine as the private operation. Segments of the exponentiation which corre-
spond to different exponent bits or digits are classified to find similar segments
in an unsupervised way and by using algorithms from the well-researched field of
pattern classification. This is contrary to previous attempts which use individual
algorithms. An unsupervised classification equals the recovery of a secret expo-
nent. Unsupervised clustering is generally useful in side-channel analysis when
profiling information is not available and an exhaustive partitioning is compu-
tationally infeasible. The success of a correct classification of the exponent bits
depends on the amount of available leakage signal in a certain measurement.
Clustering algorithms further allow to determine posterior probabilities for clas-
sified bits. Hence, if only a part of the secret exponent is classified correctly, an
attacker may brute-force bits with low posterior probabilities first. This enables
a straight-forward approach to cope with erroneous bits and allows to signifi-
cantly reduce the secret’s entropy, thus, brute-force complexity, even if a com-
plete recovery is impossible. The only way for an attacker to gather more leakage
is to perform simultaneous measurements in multiple channels because attackers
are not able to collect measurements from repeated executions since exponents
change in every execution. Clustering algorithms allow for a straight-forward
approach to combine such simultaneous side-channel measurements.

In an empirical study, we demonstrate the proposed attack and exploit the
location-based single-execution leakage [12] of an FPGA-based implementation
of an elliptic curve scalar multiplication using the k-means clustering algorithm.
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We employ high-resolution measurements of the electromagnetic field and select
measurement positions without prior profiling. The main result from our practi-
cal experiments is that the proposed method successfully reduces the remaining
brute-force complexity of the secret scalar to a well-acceptable level in two out
of nine cases. Additionally, we show how a combination of simultaneous mea-
surements leads to a complete recovery of the scalar in a simulated setting.

Related work is discussed in Sect.2. We present the non-profiled cluster-
ing attack on exponentiation algorithms in Sect.3. In Sect.4, we describe our
practical evaluation of the attack and discuss countermeasures. Conclusions are
provided in Sect. 5.

2 Related Work

In the following, we present related work in three aspects of this contribu-
tion: other attacks on exponentiation algorithms, previous applications of cluster
analysis, and combination of measurements.

On Side-Channel Attacks on Exponentiations. Schindler and Itoh [21] present an
attack against multiple blinded executions of exponentiation algorithms assum-
ing that a single execution does not provide enough leakage. Our contribution
presents a complement rather than an alternative to Schindler and Itoh’s attack
since we propose cluster classification algorithms as a single execution attack and
means to improve the exploitation of any single-execution leakage. Walter [24]
describes a single-execution side-channel attack on m-ary (m > 2) sliding win-
dow exponentiation algorithms. He recognizes pre-computed multiplier values in
segments of the digit-wise exponentiation and uses his own algorithm to scan
through the segments in one single pass and partition them into buckets accord-
ing to their pair-wise similarity. While the main idea of our contribution is similar
to the one described by Walter, we propose to employ unsupervised cluster clas-
sification algorithms which have been thoroughly researched in other statistical
applications instead of using an individual algorithm which has not been inves-
tigated by the respective scientific community. In this way, our approach can be
extended to a wide range of exponentiation algorithms and exploit any available
kind of single-execution leakage of independent exponent bits or digits.

There are many published side-channel attacks on exponentiations based on
the correlation coefficient. Messerges et al. [19] first mention cross-correlation of
measurement segments to compare them and then perform a classification based
on manually tuned thresholds. Witteman et al. [25] present an SPA attack on
the square-and-multiply-always algorithm by cross-correlating measurements of
consecutive operations sharing the From our view, using a correlation coefficient
as a measure of similarity only incorporates linear relations while disregarding
absolute values, thus, contained information. Hence, it is only meaningful in cases
when absolute values are of different scales such as when comparing heuristic
models of power consumption to actual measurements or when comparing mea-
surements from different setups. Amiel et al. [2] and Clavier et al. [7] corre-
late heuristic leakage models from fixed multiplier values with the measurement
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to recover the exponent. Perin et al. [20] exploit bit-dependent differences in
exponentiation algorithms using measurements of electromagnetic fields. How-
ever, they require averaging of multiple measurements in their practical results,
which is infeasible in realistic circumstances. Algorithmically they simply sub-
tract exponentiation segments from each other and use manually tuned thresh-
olds to recover information. Hence, and contrary to us, all those approaches
require a manual tuning of thresholds and, in part, heuristic leakage models
as well as ad-hoc algorithms. Our approach using well-established algorithms
provides an algorithmic advantage compared to them. Furthermore, we use the
Euclidean distance instead of the correlation coefficient as a similarity metric
to incorporate the maximum amount of contained information when comparing
segments of the same measurement.

On Previous Applications of Cluster Analysis in SCA. There are previous con-
tributions which mention cluster analysis in the context of side-channel analysis.
Batina et al. [3] propose Differential Cluster Analysis (DCA) as an extension
to DPA. Instead of a difference-of-means test as in classic DPA, a cluster crite-
rion is used as statistical distinguisher. However, they do not use unsupervised
cluster classification algorithms. In [4,18], this work is extended by consider-
ing PCA. Lemke-Rust and Paar [16] propose a profiled multi-execution attack
against masked implementations of symmetric algorithms using the expectation-
maximization clustering algorithm and a training set for the estimation of the
clusters. In a profiled setting, they estimate mixture densities of clusters for
known key values and unknown mask values using multiple executions. Contrar-
ily, our approach is a non-profiled attack.

On the Combination of Measurements. A combination of simultaneous mea-
surements can generally improve the success of side-channel attacks. Agrawal
et al. [1] combine simultaneous measurements of the power consumption and elec-
tromagnetic field for profiled template attacks. Standaert and Archambeau [23]
extend this and apply Principal Component Analysis (PCA) and Fisher’s Lin-
ear Discriminant Analysis (LDA) to reduce the data dimensionality for template
attacks. They also present a simple approach to combine simultaneous measure-
ments for classic Differential Power Analysis (DPA) by treating measurements
from different channels jointly. Souissi et al. [22] and Elaabid et al. [10] extend
Correlation-based differential Power Analysis (CPA) [6] to combine simultane-
ous measurements by using products [10] or sums [22] of correlation coefficients.
Contrary to previous contributions, our approach presents a way of combining
measurements for a non-profiled single-execution attack.

3 Non-profiled Clustering to Attack Exponentiations

When attacking exponentiation algorithms used in public key cryptography, only
a single execution is available to an attacker to recover a secret exponent because
of cryptographic protocols or protection against side-channel analysis.

In the following subsections we first describe the term single-execution leak-
age and how measurement traces are segmented into samples for classification.
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As a main part, we describe how to apply unsupervised clustering algorithms for
a non-profiled and non manually-tuned attack. For the case that the attack is
not entirely successful due to insufficient single-execution leakage, we describe an
approach to cope with classification errors to achieve low remaining brute-force
complexities nonetheless. Finally, we describe how to use multiple simultaneous
measurements to gather more leakage.

3.1 Single-Execution Side-Channel Leakage of Exponentiations

The common property of all popular exponentiation algorithms, e.g., binary,
m~ary, or sliding window exponentiations is that the computation is segmented
and performed in a loop. In every segment, the same operations are repeated to
process independent bits or digits of the exponent. (If the operations would
be different and depending on exponent bits, the implementation would be
prone to conventional SPA and timing attacks [15].) We use the case of binary
exponentiations which process the exponent bit-wise for our explanations. The
square-and-multiply-always algorithm for instance repeatedly either performs a
square-and-multiply, or a square-and-dummy-multiply operation, depending on
each processed bit. Such repeated operations share similarities for equal bits.
Depending on the implementation and included countermeasures, different side-
channels can be exploited to detect such similarities. We refer to the side-channel
information about different bits which is leaked in single executions of exponen-
tiations as single-execution side-channel leakage. Our approach is able to exploit
any kind of such single-execution leakage.

Figure 1 abstractly depicts a side-channel measurement of a timing-safe binary
exponentiation algorithm in the upper part. The observed computation consists
of a loop with multiple iterations of constant timing which correspond to single
exponent bits. The algorithm could e.g. be a square-and-multiply-always, double-
and-add-always, or Montgomery ladder algorithm. Such a side-channel measure-
ment trace vector t = (t1,...,%;) of an exponentiation contains ! measurement
values t, and covers the entire execution. Binary algorithms process n bits dur-
ing this time in total. To exploit the single-execution leakage of n independent
bits, the trace is cut into n multivariate samples t; = (t(1+(i71)%)7"' L)

1 < i < n of equal length % where each sample then corresponds to one bit.
Figure 1 also depicts an abstract example for how a side-channel measurement
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Fig. 1. Segmenting a side-channel measurement of an exponentiation into samples
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is cut into samples. The segmentation borders can e.g. be derived from visual
inspection or comparison of shifted trace parts.

3.2 Clustering of Samples Reveals the Secret without Profiling

The multivariate samples t; contain the leakage of independent, secret exponent
bits. Hence, the samples belong to one of two classes, i.e., wqa and wp. (When
attacking me-ary, or sliding window exponentiation algorithms, m classes are
expected.) All side-channel measurements are affected by normally distributed
measurement- and switching noise. Therefore, samples within classes w;, j €
{A, B} are normally distributed around means p;. The distance between these
means p; is caused by the exploited single-execution leakage. Hence, the distri-
bution of samples ¢; in two classes w4 and wp can be described as p(t;|wa) ~
N(pa, Xa) and p(tilws) ~ N(pp, Xp).

The correct partition of samples ¢; into classes wys and wp is unknown to the
attacker. The number of possible partitions equals 2™ for binary exponentiations
with n bit exponents. Testing all possible partitions equals brute-forcing a secret
and is computationally infeasible for realistic exponent sizes. Template attacks
find these classifications through matching against templates which are found in
a profiling phase. Other related work use cross-correlation and manually tuned
thresholds as well as individual and ad-hoc algorithms.

However, we found that well-researched unsupervised cluster classification
algorithms such as k-means clustering [9] can be used to find partitions effec-
tively and without any manual methods or prior profiling. Hence, we propose to
use such algorithms for single-execution side-channel attacks on exponentiation
algorithms. Finding a correct partition, or classification, equals the recovery of
the secret exponent. If the correct partition is found, there are only two possibil-
ities to assign the bit values 0 and 1 to two classes w4 and wp, hence, to recover
the secret exponent.

The choice of a clustering algorithm depends on the shape of the clusters,
hence the distribution of samples within clusters. We decided to start with a
simple model of cluster distributions and assume that all variables (dimensions)
within the multivariate samples t; are independent and exhibit equal variances
o? within the two classes. Hence, the distribution of both classes w4 and wp can
be described as p(tilw;) ~ N(u;,0%I), j € {A, B}. The optimal classification
algorithm under these assumptions is the k-means clustering algorithm which is
depicted in Algorithm 1. It uses the Fuclidean distance as a similarity metric
and estimates k cluster means p;, j € {1,k}. In the case of binary algorithms,
k equals 2 and two classes w4 and wp are expected.

Initially, k random samples ¢; are randomly selected as means and the remain-
ing samples are classified according to shortest Euclidean distance. Then, in
iterations, new means are computed within each class, and the classification
according to shortest Euclidean distance is repeated until the classification is
stable in subsequent iterations. The k-means algorithm is usually executed mul-
tiple times and the best result in terms of a sum-of-squared-error criterion is
finally selected in order to prevent the algorithm from getting stuck in local
maxima.
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Algorithm 1. Unsupervised k-means clustering algorithm [9)

input: samples t;, 1 < i < n, number of clusters k
output: cluster means pj, 1 < j < k and classification ¢; € [1..k], 1 <i<n

1: initialize by picking k random samples ¢; as start values for p;, 1 <j <k

2: repeat

3 assign samples ¢; to classes ¢; € [1..k] from shortest distance to p;, 1 <j <k
4: compute new p; as mean of all samples ¢; with ¢; = j

5: until pf = p; V j, assign p; new values p; and repeat

Clustering algorithms essentially estimate cluster parameters to perform clas-
sifications. This estimation of clusters could be improved by using more samples
from multiple executions in a first step, even though the secret would then be
different in every execution. The actual attack would then be performed in a
second step and certainly only target a single execution.

Decorrelation and Reduction of Dimensions. If the samples derived from mea-
surements do not comply with the model which is required for the application
of k-means (described above), the results will be worse than theoretically pos-
sible. The k-means algorithm assumes statistical independence of dimensions
(variables) in the samples, thus, uncorrelated noise influences. However, subse-
quent measurement values of the power consumption possibly contain the same
switching noise influence. One way to handle this is to employ the expectation-
mazximization clustering algorithm which provides more degrees of freedom in
such cases (because it also models the covariance between variables). However,
it requires a significant overhead in computation. Alternatively, if necessary, this
can be coped with by employing Principal Component Analysis (PCA) [9]. PCA
performs a projection into a lower dimensional, orthogonal space by maximizing
the variance in the samples. Hence, the remaining dimensions are uncorrelated.
(As a drawback, this is performed without regard of cluster distributions or
cluster discriminants which could possibly lead to inferior results.) PCA can
certainly also be used to reduce the amount of dimensions in the samples ¢; for
computational reasons.

3.3 Brute-Force Complexity to Handle Classification Errors

If a recovered exponent cannot be verified as being entirely correct, at least one
sample (bit) is misclassified by the algorithm. We propose a way to cope with
such situations. Clustering algorithms allow to derive posterior class-membership
probabilities [9] for all samples ¢; along with their classification. For instance
when employing the k-means clustering algorithm, samples which are classified
into class w4 and are close to the separating plane between w4 and wp have a
low posterior probability of belonging to class w4. An attacker may approach
misclassifications by brute-forcing samples with low posterior probabilities first.
A straight-forward approach is to iteratively consider an increasing range of sam-
ples ¢ with the lowest posterior probabilities and brute-force their classification
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until all erroneous samples are included in this range, thus, a correct classifi-
cation is achieved. Given that m equals the final number, which the attacker
certainly does not know from the beginning, he would proceed iteratively and
increase the number of included bits ¢ starting from 1 until m is reached. The
required brute-force complexity to handle classification errors can, thus, be given
as an upper bound by using the sum formula of a geometric series. Including the
mandatory step of brute-forcing the classes-to-bit-values assignment (A and B
m
to 0 and 1), this required brute-force complexity equals 2 x > 2¢ = 2m+1+l 9
i=1
for m > 0 and can be defined as 2 for m = 0 (classification entirely correct; one
out of two trial for correct class-to-bit-value assignment). This means that even
if the exponent is not recovered entirely, the entropy can be significantly reduced
which is a significant advantage over previous methods which do not provide such
a mechanism to cope with errors during an attack.

3.4 Combining Side-Channel Measurements

The success of single-execution attacks on exponentiation algorithms generally
suffers from insufficient leakage [5,21]. Countermeasures introduce superficial
noise to decrease the signal-to-noise ratio of the leakage or aim at reducing
the leakage signal directly. Averaging repeated measurements with equal input
values is a simple example for an approach to decrease such noise. But this
is not feasible if the secret changes in every execution which is the case for
most cryptographic exponentiations. Hence, simultaneous measurements are the
only way for an attacker to increase the gathered side-channel leakage. Cluster-
ing algorithms allow to combine simultaneous side-channel measurements in a
straight-forward way. This is achieved by generating multivariate samples using
values from all measurements. As an example, samples t} from measurement 1
are combined with samples t? from measurement 2 leading to combined samples
ggombined — (¢l £2) This improves the classification, if the new measurements
contain additional leakage information. Hence, we propose to improve clustering-
based single-execution attacks through combining the contained information from
multiple, simultaneous side-channel measurements.

4 Practical Evaluation

In this section, we practically demonstrate our proposed attack against an FPGA-
based ECC implementation. As a single-execution side-channel leakage, we
exploit location-based leakage [12] revealed by high-resolution measurements of
the electromagnetic field [13]. Following the principle that our attack is non-
profiled, we do not use any prior knowledge to find measurement positions with
high leakage.
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4.1 Design-Under-Test and Measurement Setup

Our target is an implementation of an elliptic curve scalar multiplication con-
figured into a Xilinz Spartan-3 (XC85200) FPGA. It gets affine z- and y-
coordinates of a base point P and a scalar d as input and returns affine z-
and y-coordinates of the resulting point d - P. The result is computed using the
Montgomery ladder algorithm presented by Lépez and Dahab [17] which is a
binary exponentiation algorithm processing a 163 bit scalar bitwise in a uniform
operation sequence. This prevents timing-based single-execution leakage. The
projective coordinates of the input point are randomized [8] as a countermeasure
against differential power analysis. However, the design exhibits location-based
information leakage [12] because it uses working registers depending on the value
of the processed scalar bit and no protection mechanism against this is included.
For these reasons, the design is eligible for our attack and we exploit this single-
execution leakage using high-resolution electromagnetic field measurements.

Backside access to integrated circuit dies generally requires less practical
effort in case of plastic or smartcard packages. The plastic package on the back-
side of the FPGA was removed mechanically to enable measurements close to
the die surface. We use an inductive near-field probe with a 100 pm resolution,
built-in 30 dB amplifier, and external 30 dB amplifier (both with a noise figure of
4.5dB). The detected location-based leakage depends on the measurement posi-
tion on the surface of the die [12]. Since our attack is non-profiled, we are unable
to find a position with high leakage through prior profiling. Instead, we choose
measurement, positions by geometrical means. Figure 2 shows those 9 positions
marked with circles and annotated with numbers. They are organized in an 3
by 3 array with 1.5 mm distance in z- and y-direction. These geometries seem
feasible for an actual array of electromagnetic probes [22]. The dashed rectan-
gle depicts the surface of the FPGA die which measures ~ 5000 % 4000 wm. We
performed the attack on those measurements.
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Fig. 2. FPGA die area as dashed rectangle with array of marked measurement positions
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Furthermore, we demonstrate a combination of simultaneous measurements
to increase the leakage in a simulated setting. Since we did not have an array
probe or multiple probes at hand, we simulated this by moving one probe to the
marked positions and repeated the measurement with exactly equal processed
values. Hence, we prevent the device from changing the exponent and random
numbers during repeated executions. While this simplification is not exactly the
same as simultaneously using multiple probes, we are convinced that the results
are still conclusive.

All measurements were recorded at a sampling rate of 5 GS/s and compressed
by using the sum of squared values in every clock cycle (V2s) to reduce the
amount of data and computation complexity during clustering. Through syn-
chronization of the oscilloscope and the function generator, we prevent frequency
jitter and drift in the measurements.

4.2 Clustering Individual Measurements

We performed our clustering-based attack on individual measurements. Hence,
we segmented every measurement into multivariate samples t;. Each sample
contains 551 compressed values of 551 clock cycles during which one exponent
bit is processed. Figure3 depicts a cut-out of four consecutive samples (14 to
17) from the measurement at position 3 for illustrative purposes. The borders
of the samples are depicted as vertical dashed lines after every 551 cycles. The
exponent bit values which are processed in the segments are annotated, however,
the corresponding single-execution leakage is not clearly visible.

We attacked the individual measurements by employing the unsupervised
k-means clustering algorithm Algorithm 1 to classify the samples in two clus-
ters as described in Sect. 3.2. The runtime on a regular PC was neglegible and
in the range of seconds. We assess the quality of the result by computing the
remaining brute-force complexity required to recover the entirely correct scalar
after clustering as described in Sect. 3.3. Figure4 depicts the resulting brute-
force complexity for every individual measurement position according to Fig. 2
and Table 1 displays them in tabular form (columns marked with ‘1’ to ‘9’).
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8
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Fig. 3. Four samples (14 to 17) from the compressed measurement at position 3
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Table 1. Brute-force complexity after clustering single and combined measurements

Measurement positions 1 2 3 4 5 6 7 8 9 all
Brute-force complexity [bits] 165 37 70 165 165 60 51 22 165 O

As a main result of our practical study, we are able to report that in two out of
nine cases, for the measurements at position 8 and 2, the remaining brute-force
complezity (22 and 37 bits) is clearly within a practical reach. An attacker could,
thus, repeat a measurement at different positions, perform the attack including
the incremental brute-force and eventually be successful with a high probability.
This clearly demonstrates the capabilities of unsupervised cluster classification
as a non-profiled single-execution attack on exrponentiation algorithms to exploit
single-execution leakage.

Positions 1, 4, 5 and 9 lead to a brute-force complexity of 165 bits which is the
maximum value (163 + 1 + 1 bits) indicating that the clustering algorithm led to
largely incorrect results. Possible reasons for this are insufficient signal-to-noise
ratios of the exploited leakage, outlier samples, or that the k-means algorithm
is insufficient since the assumed model of cluster distributions does not fit. (An
influence of one bit of some internal ALU operation for the separation of two
clusters is impossible since each sample contains many ALU operations with
different data.)

4.3 Clustering Combined Measurements

The results from clustering individual measurements lead to remaining brute-
force complexities greater than zero and in seven out of nine cases beyond limits
for practical brute-force. As a second step, we demonstrate how simultaneous
side-channel measurements can be combined to reduce the remaining brute-
force complexity, hence, improve the attack. We combined the measurements
as described in Sect. 3.4 and repeated the k-means clustering. As an important
result we report, that the classification then leads to a remaining brute-force



90 J. Heyszl et al.

+ 4+ + class A

class A density estimation
X X X classB
-~ class B density estimation

o O - OO O BMBBIOCRGHOI K - T

o 8 7 5 5 4 3 2 A 0
104 (-18) Vs
(a) Result of clustering measurement position 3

+ + + classA
= class A density estimation
X X X classB

= class B density estimation

-25 20 -15 -10 5
107 (-18) Vzs

(b) Result of clustering 9 combined measurements

Fig. 5. Visual representation of clustering results to show gain of combination

complexity of zero, denoted as ‘all’ in Tablel. This clearly demonstrates the
advantage of combining measurements for attacking exponentiation algorithms
using unsupervised clustering algorithms.

Figure5(a), (b) demonstrate the advantage of combining measurements in
an more illustrative way. Figure 5(a) visually represents the result after clus-
tering the single measurement at position number 1. The clustering algorithm
output two cluster means p 4 and pp and samples which are classified according
to a separation plane in the middle between those means (equals classification
according to shortest Euclidean distance). For the illustration of this cluster-
ing result, we projected all multivariate samples ¢; (multi-dimensional) onto a
line (one-dimensional) which extends through both cluster means. As such, the
resulting single values per sample are linear combinations of all vector dimen-
sions according to the weighting factors determined by the clustering result. After
this projection, the two cluster distributions become clearly observable. For the
illustration, we use the correct scalar to mark the samples according to their
proper class membership. Additionally, we estimate the two assumed Gaussian
distributions and depict two curves, denoted as class A/B density estimation.
It is obvious that the two distributions overlap in Fig.5(a) which means that
there have been misclassifications. Many samples are across the wrong side of the
half distance between the two distributions which corresponds to the separation
plane. This leads to the high brute-force complexity reported in Table 1.
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Figure 5(b) depicts a similar linear projection of the result after clustering
of 9 combined measurements. It can be observed clearly, that the separation of
the two classes is significantly improved by the combination of measurements
which also complies with the brute-force complexity of 0 reported in Table 1.

4.4 Countermeasures

Generally, all methods which reduce the signal-to-noise ratio of arbitrary single-
execution leakage, either by reducing the single-execution leakage signal, or
increasing the noise level, make our attack more difficult since the attacker is
limited in the number of measurements he can record simultaneously. There is
no dedicated other countermeasure except for such general ones.

Location-based single-execution leakage as it is exploited in this practical
attack can specifically be prevented by randomizing variable locations [12], by
balancing registers and their signal paths, or by locating them in an interleaved
way that they cannot be distinguished [11].

5 Conclusion

We demonstrate that unsupervised clustering algorithms are powerful for attack-
ing a wide range of exponentiation algorithms in single-execution settings and
without any prior profiling or manually tuned thresholds, which is of significant
advantage for attackers. Instead of individual ad-hoc algorithms we propose to
use well-research cluster classification algorithms. Any available single-execution
side-channel leakage can be exploited.

In a practical evaluation we successfully recover the secret scalar from an
FPGA-based ECC implementation. Individual measurements of the electromag-
netic field partly lead to sufficiently low remaining brute-force complexities.
By performing the attack including the incremental brute-force at several posi-
tions, the attacker might get successful with a realistic effort. Additionally, we
provide evidence for the advantage of combining simultaneous measurements.
This means that instead of finding specifically good measurement positions, an
attacker might simply combine leakage information from multiple simultaneous
measurements.

Acknowledgments. This work was partly funded by the German Federal Ministry
of Education and Research in the project SIBASE through grant number 01IS13020.
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